
Christian Köthe, BSc BSc
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Abstract

This thesis deals with shape optimization problems which are motivated by the de-
sign optimization of an electrical machine. Mathematically each problem results in an
infinite dimensional optimization problem which is constrained by a linear system of
coupled parabolic partial differential equations (PDEs). We are facing three different
problems: (i) a one-phase problem, (ii) an interface problem, (iii) a linear shape op-
timization problem for an electric motor. We solve each problem by means of shape
optimization techniques based on sensitivity information. The underlying PDEs are
solved via a conforming space-time finite element method.

In a first step we solve the coupled system of linear parabolic PDEs of problem (i)
and (ii) via a conforming space-time method. The method is based on a Galerkin-
Petrov variational formulation and allows continuous ansatz and test spaces. We
present numerical results which illustrate the experimental order of convergence (eoc)
for the error in the L2-norm and energy norm.

In a second step we briefly introduce the reader to the theory of shape optimization
in which we define the so called shape derivative. We show how this derivative can be
embedded in algorithms in order to get improved designs.

Next, we apply the introduced shape optimization techniques to problem (i) and
(ii). We compute the shape derivative for each problem and describe the main steps of
the algorithm which is used to solve the problems. We state numerical results which
demonstrate the correctness of the presented method.

Finally, we focus on (iii) which is a linear shape optimization problem for an electric
motor. We describe the mathematical problem as well as the geometrical setting
for a motor geometry in 2D. Further we discuss the solvability of the state system
and solve (iii) by employing the shape derivative. Since we do not use any parallel
implementation and consider the state system to be of linear type the obtained results
have to be understood as a proof of concept.
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Introduction

Shape optimization problems arise in many engineering applications in which one
wants to find an optimal design of a shape such that a given performance criterion is
minimized or maximized. For instance in mechanical engineering one wants to find
the optimal structure of a bridge such that the compliance is minimized or in aviation
one is interested in finding an optimal layout of a wing. [13]

Following the classification in [12] one basically distinguishes between parametric
and non-parametric shape optimization. In parametric shape optimization the design
is described by a set of parameters such as dimensions or orientation of an object
[12]. This results in a shape optimization problem, where the design space is finite
dimensional and has vector space structure. Hence one is able to use standard tools
from analysis like the Fréchet-derivative in order to set up gradient-based algorithms.
In general the possible designs are restricted due to the finite number of parameters.
Further we want to mention (cf. [13]) that parametric shape optimization problems
can be solved via evolutionary algorithms. This class of algorithms gets along without
the knowledge of a derivative. Hence, they are less prone to getting stuck in local
optima and it is more likely that the global optimum can be found [13]. Moreover
these algorithms are also useful in the context of multi-objective optimization. One
disadvantage of evolutionary algorithms compared to gradient-type algorithms is that
they typically need much more computational time.

Non-parametric shape optimization problems allow for a wider variety of optimal
designs since the design space is infinite dimensional. Since the design space does
not have vector space structure the mathematical tool used in this context is shape
sensitivity analysis. [12]

In this thesis we deal with non-parametric shape optimization problems and use
shape sensitivity analysis in order to set up gradient-type algorithms.

An important class of shape optimization problems are PDE-constrained shape op-
timization problems. This means that the function which is minimized or maximized
depends on the shape via the solution of a partial differential equation (PDE). In gen-
eral a PDE-constrained shape optimization problem consists of an objective function
J (Ω) = J(Ω, uΩ), where Ω ∈ A is an element out of the set of admissible shapes A
and uΩ satisfies the PDE constraint E(Ω, uΩ) = 0 [39]. The goal is to minimize the
objective function J : A → R over the set of admissible shapes, i.e.

min
Ω∈A

J(Ω, u) s.t. u solves E(Ω, u) = 0. (0.1)
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8 Introduction

Note that maximizing the objective function J can be achieved by minimizing −J
[12]. The PDE constraint E could be a single PDE or a system of PDEs. Elliptic
PDE-constrained shape optimization problems are well investigated in literature, see
e.g. [7, 34, 39]. They are also considered in practical applications like in the design
optimization of an electric motor, see [12, 14]. The literature for parabolic PDE-
constrained shape optimization problems is more limited, as it is also remarked in
[15]. Theoretical results are presented in [10, 33]. In [15] the numerical solution of a
parabolic shape optimization problem using multipole-based space-time boundary el-
ements has been considered. In [32] a parabolic shape optimization problem is solved
via a BFGS-quasi Newton method. The underlying parabolic PDE is solved with
the vertical method of lines. The space discretization is done via standard linear finite
elements and the resulting first-order system is solved using the implicit Euler method.

So far, parabolic shape optimization using space-time finite elements has not been
considered to the best of our knowledge. We focus on this approach. Different space-
time methods have been considered in literature. In [22, 23] a discontinuous Galerkin
method is used in time. Conforming space-time methods have been considered by
Steinbach [35] and Toulopoulos [40]. In [20] a space-time method is proposed in which
Isogeometric Analysis is used for space-time discretization. This space-time scheme
is extended in the master thesis [28] in which a conforming finite element method is
used to discretize. We focus on the space-time approach by Steinbach [35] in this
thesis, which is a conforming space-time finite element method and allows continuous
ansatz and test spaces. The idea is to treat the time variable as an additional spatial
coordinate. The discretization is done simultaneously in space and time. Thus one is
able to use adaptive mesh refinement strategies in space-time. Further it is possible to
parallelize the method not only with respect to space, but also with respect to time.
The main disadvantage of the space-time method proposed in [35] is that it leads to a
problem in one dimension higher which results in a bigger computational effort.

The objective of this master thesis is to solve parabolic PDE-constrained shape opti-
mization problems via a gradient-based algorithm and using space-time finite elements.
The problem we are going to consider is motivated from the design optimization of an
electric motor. In general the task is to find an optimal design of the rotor such that
a given performance criterion which is measured in terms of an objective function J is
as good as possible [12]. For instance J could measure the torque and one is interested
in finding a rotor design such that the torque is maximized or in [12, 14] a shape opti-
mization of an electric motor is considered such that the rotation pattern of the rotor
becomes smooth. Mathematically, the design optimization of an electric motor can be
formulated as PDE-constrained shape optimization problem. The PDE constraint can
be of elliptic type if the rotor of the motor is considered to rotate at a constant speed,
see [12, 14]. We are also interested in the starting phase of the motor, i.e. when the
rotor is accelerated from its resting position. The PDE constraint then turns out to
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be a system of parabolic PDEs. This system of PDEs describes the physical model of
the motor, which is due to the electromagnetic-thermal coupling in the motor. This
coupling is on the one hand given through eddy-currents which have an impact on the
temperature and on the other hand given through the electrical conductivity σ = σ(ϑ)
which depends on the temperature and has an influence on the magnetic induction
B. Furthermore the properties of the permanent magnets depend on the temperature.
The shape optimization problem for a motor geometry D ⊂ R2 and T > 0 reads:

min
Ω∈A

J(Ω, Az, θ), such that (0.2a)

σ(ϑ)
∂Az
∂t
− div (ν∇Az) = Jsrc − div

(
H⊥0 (ϑ)

)
in QD := D × (0, T ), (0.2b)

cH%
∂ϑ

∂t
− div (λ∇ϑ) = σ(ϑ)

(
∂Az
∂t

)2

− Jsrc
∂Az
∂t

in QD. (0.2c)

Here, Az denotes the third component of the vector potential, ϑ describes the tem-
perature distribution, H0 describes the magnetization and Jsrc denotes an impressed
current density. The parameter σ describes the electrical conductivity, ν the reluc-
tivity, cH the specific heat capacity, % the density and λ the heat conductivity. The
admissible set of shapes is denoted by A and the objective function by J . Of course
problem (0.2) is not complete for the moment since we have not specified the objective
function J , the set A as well as boundary and initial conditions. These things will be
stated later when we consider concrete problems. Further we want to mention that
the system of PDEs is of nonlinear type. This is can be seen from the fact that the
reluctivity ν is a nonlinear function depending on |∇Az| and the right hand side of
(0.2c). Moreover, note that the second term in (0.2b) has to be understood in the
distributional sense.

Based on (0.2) we are facing three different shape optimization problems: (i) a one
phase-problem, (ii) an interface problem, (iii) a linear version of (0.2). We solve each
problem by means of shape optimization techniques based on sensitivity information.
Hence, this thesis is structured as follows: In Chapter 1 we derive the physical model
(0.2b)-(0.2c) describing the electromagnetic-thermal coupling in an electric motor in
more detail. Based on the physical model we state two shape optimization model
problems: (i) a one phase-problem, (ii) an interface problem. In Chapter 2 we concen-
trate on the numerical solution of parabolic PDEs via a conforming space-time method
proposed in [35]. We solve the state systems given by (i) and (ii) and determine the
experimental order of convergence (eoc) of the L2-error as well as the energy error. In
Chapter 3 we give a brief introduction to the theory of shape optimization. We present
standard results on shape calculus and explain the averaged adjoint method which we
use to compute the shape derivative of the problems (i)-(iii). Further we describe how
one can employ the shape derivative in order to compute a descent direction and state
a generic algorithm. In Chapter 4 we apply the introduced methods from Chapter
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2-3 to problem (i) and (ii). In Chapter 5 we apply the shape optimization techniques
shown in the previous chapter to an electric motor. We consider (iii) on a motor geom-
etry in 2D. We discuss the analysis of the state system, compute the shape derivative
of the objective function and give a proof of concept of the numerical method used in
Chapter 4.



1 Physical model and model
problems

In this chapter we will introduce the reader to the physical model which is used to
describe the electromagnetic-thermal coupling in an electrical motor. Therefore we will
first give a brief introduction to electrical machines and explain some basic notions.
Following that we will derive the physical model which describes the electromagnetic
field as well as the heat propagation in an electrical motor. Finally we will state two
model problems which are based on the physical model and which will be considered
throughout this thesis.

1.1 Introduction to electrical machines

Electrical machines are part of our everyday life. They appear in the sector of mobility
like in cars or bikes, in industrial applications like in automated production lines and
in household applications like in washing machines. [12] They are also used in the field
of energy production and renewable energies like in water power plants or wind power
plants. All these different areas of applications of electrical machines lead to the fact
that the improvement of the performance of an electrical machine is an active field of
research.

Electrical machines can basically be distinguished between generators and motors.
A generator converts mechanical energy into electrical energy while a motor converts
electrical energy into mechanical energy. Electric motors can further be distinguished
in direct current motors (DC-motors) and in alternating current motors (AC-motors).
Two important types of AC-motors are the synchronous motor and asynchronous
motor. Electric motors generally consist of a fixed part which is called stator and a
rotating or moving part which is called rotor. [5, 43]

In this thesis we will deal with an asynchronous motor also called induction motor
with a so called squirrel-cage rotor. In this type of motor the rotor rotates at a slower
speed than the stator field. This is due to the fact that in an induction motor the
torque is built by stator and rotor currents. In the starting phase, i.e., when the rotor
is accelerated from its resting position, the magnetic field of the stator, which is caused
due to the AC power supply, induces currents in the rotor bars. The induced currents
create a magnetic field in the rotor which interacts with the stator field. Due to Lenz’s
law [42], the rotor will start to rotate in direction of the rotating stator field. The

11
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maximal rotational speed of an induction motor is slightly lower than the rotational
speed of the magnetic field in the stator since at synchronous speed no current would
be induced in the rotor and therefore the torque would be zero. The difference between
actual and synchronous speed is called slip. [41]

For more information on electrical machines we refer the reader to [5].

1.2 Physical model

In this section we will derive the physical model which describes the electromagnetic-
thermal coupling in an electrical motor. In a first step we will derive the magneto-
quasistatic formulation which is the common physical model to describe the magnetic
field in an electrical motor in the starting phase. In a second step we will make use of
a classical heat conduction equation in order to model the temperature propagation.
The crucial part in this step will be in the choice of the right hand side of the heat
equation in order to describe the impact of the magnetic field on the temperature in
an appropriate way. Finally we will reduce the 3 dimensional model in space to a
2 dimensional model in space which is commonly used in the context of an electric
motor. This section is based on [12, 16, 18, 24].

Starting point for the magnetoquasistatic formulation are Maxwell’s equations [16]:

curlH = J +
∂D

∂t
, (1.1a)

curlE = −∂B
∂t

, (1.1b)

divB = 0, (1.1c)

divD = ρ. (1.1d)

The quantities which occur in (1.1) have the following meaning:

• H = H(x, t) is called magnetic field intensity,

• E = E(x, t) is called electric field intensity,

• B = B(x, t) is called magnetic induction or magnetic flux density,

• D = D(x, t) is called electric flux density or electric induction,

• J = J(x, t) is called current density,

• ρ = ρ(x, t) electrical charge density.

Note that H ,E,B,D,J are vector valued functions mapping form R3 × R → R3.
These quantities are connected via the material laws [16]

D = εE + P , (1.2a)

B = µ(H +H0), (1.2b)

J = σE + J s, (1.2c)
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where ε denotes the electric permittivity, P the electric polarization, µ the magnetic
permeability and σ the electric conductivity. The vector field H0 describes the mag-
netic field intensity which is for instance due to permanent magnets. One can see that
the current density J is split up into a part J s and a part J c = σE. J s describes
the impressed current density which is usually due to an external source. J c describes
the conduction currents which occur due to the fact that in materials where σ 6= 0 an
electric field causes a current which is described by Ohm’s law. An important class of
conduction currents are eddy currents which occur due to a changing magnetic field
[45].

In general ε, µ, σ are tensors of rank 2 which depend on space, time and the field
quantities E,H . We will assume isotropic material throughout this thesis. Hence
these quantities become scalar fields [24]. In addition to that we assume that these
quantities are constant in time. Of special interest in the context of an electric motor is
the magnetic reluctivity which is defined as the reciprocal of the magnetic permeability,
i.e. ν := µ−1. Since we are dealing with ferromagnetic material in an electric motor
which is of nonlinear type the reluctivity turns out to be a nonlinear function depending
on space and the magnitude of the magnetic flux, i.e. ν = ν(x, |B|). For so called
linear material the reluctivity is independent of the field intensities, cf. [45].

Furthermore we assume P = 0 and we neglect ∂D
∂t

in (1.1a) which is a common
assumption for electrical machines since they are low frequency applications [12].
Therefore (1.1d) decouples from (1.1a)-(1.1c) and the resulting system which is called
magnetoquasistatic problem or eddy current problem reads

curlH = J , (1.3a)

curlE = −∂B
∂t

, (1.3b)

divB = 0. (1.3c)

We will now derive the vector potential formulation of (1.3) which is used to solve
the eddy current problem numerically. Due to (1.3c) and the identity div curl(.) = 0
there exists a vector potential Ã such that

B = curl Ã. (1.4)

Note that the vector potential Ã is not unique. We can add a gradient field ∇ϕ to Ã
which results in a solution to (1.4) as well. Plugging in (1.4) into (1.3b) yields

curl

(
E +

∂Ã

∂t

)
= 0.

Due to the identity curl∇(.) = 0 we conclude that there exists a scalar field ϕ such
that

−∇ϕ = E +
∂Ã

∂t
. (1.5)
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We are now able to introduce the gauging vector potential A by

A(x, t) = Ã(x, t) +

∫ t

0

∇ϕ(x, s) ds (1.6)

Note that A fulfills B = curlA which can be seen by an easy computation. Moreover
we get out of the material law (1.2b) that

H =
1

µ
B −H0 = νB −H0. (1.7)

Plugging in (1.7) into the left hand side of (1.3a) one gets

curlH = curl(νB)− curl(H0) = curl(ν curlA)− curl(H0) (1.8)

The right hand side of (1.3a) turns out to be

J = J c + J s = σE + J s = σ

(
−∇ϕ− ∂Ã

∂t

)
+ J s

= σ

(
−∇ϕ− ∂A

∂t
+∇ϕ

)
+ J s = −σ∂A

∂t
+ J s.

(1.9)

Putting (1.8) and (1.9) together yields the vector potential formulation of (1.3) which
reads

σ
∂A

∂t
+ curl(ν curlA) = J s + curl(H0). (1.10)

Once one has solved (1.10) the magnectic induction as well as the electric field intensity
can be computed by B = curlA and E = −∂A

∂t
, cf. [45].

In order to describe the heat distribution in an electrical motor we use a classical
heat conduction equation of the form

cH%
∂ϑ

∂t
− div (λ∇ϑ) = Q. (1.11)

The quantities involved are

• ϑ = ϑ(x, t) temperature distribution,

• cH specific heat capacity,

• % mass density,

• λ heat conductivity.

The quantities cH , %, λ are dependent on space, but constant in time. The term Q
represents the Joule losses of the electromagnetic field [18]. We model these losses
according to [18] by

Q = J ·E = (J c + J s) ·E = σE ·E + J s ·E = σ
∂A

∂t
· ∂A
∂t
− J s ·

∂A

∂t
. (1.12)
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The first term in (1.12) is due to eddy currents while the second part is due to the
Joule losses [18].

Accounting for the fact that the electrical conductivity σ as well as the properties
of permanent magnets (i.e. H0) depend on the temperature ϑ, the physical model to
describe the electromagnetic-thermal coupling reads

σ(ϑ)
∂A

∂t
+ curl(ν curlA) = J s + curl(H0(ϑ)), (1.13a)

cH%
∂ϑ

∂t
− div (λ∇ϑ) = σ(ϑ)

∂A

∂t
· ∂A
∂t
− J s ·

∂A

∂t
. (1.13b)

In order to solve problem (1.13) numerically one has to introduce boundary, initial
as well as interface conditions. Let therefore Ω × (0, T ) with Ω ⊂ R3, T > 0 be the
computational domain with Γ := ∂Ω. Further denote by n the outer unit normal vector
to the computational domain. One possible choice of boundary and initial conditions
is to choose

A× n = 0 on Γ× (0, T ), (1.14a)

ϑ = ϑ0 on Γ× (0, T ), (1.14b)

A(., 0) = 0 in Ω, (1.14c)

ϑ(., 0) = ϑ0 in Ω. (1.14d)

Condition (1.14a) implies that B ·n = 0 on Γ [24]. This means that no magnetic flux
can leave the computational domain. This is also called induction boundary condition
and is a common choice in the context of an electric motor [12]. The initial condition
of A corresponds to the case that at t = 0 the current J s is switched on and the
motor is accelerated from its resting position. We assume that the temperature at
initial time as well as on the boundary of the motor are constant and given by room
temperature. For more information on the different types of boundary conditions on
the electromagnetic field we refer the reader to [6],[45].

Since we have different materials in the motor we need interface conditions as well.
Let therefore ΓI × (0, T ) represent the material interface where the reluctivity ν and
the heat conductivity λ jumps. Further denote by JvK the jump of a function v along
the interface, i.e.

JvK = v+
∣∣
ΓI×(0,T )

− v−
∣∣
ΓI×(0,T )

,

where v+ and v− are the restriction of v to the corresponding subdomains, cf. [12].
The interface conditions are given by

JB · nK = 0 on ΓI × (0, T ), (1.15a)

JH × nK = 0 on ΓI × (0, T ), (1.15b)

JϑK = 0 on ΓI × (0, T ), (1.15c)

Jλ∇ϑ · nK = 0 on ΓI × (0, T ). (1.15d)
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Under certain assumptions it is possible to reduce (1.13) to a two dimensional model
in space. The assumptions read [12, 24]:

(i) Ω = Ω̃× (−l, l) with l >> diam(Ω̃),

(ii) J s,H0 and H are constant with respect to the third spatial coordinate and of
the form

J s =

 0
0

J3(x1, x2, t)

 ,H0 =

H01(x1, x2, t)
H02(x1, x2, t)

0

 ,H =

H1(x1, x2, t)
H2(x1, x2, t)

0

 ,

for (x1, x2, t) ∈ Ω̃× (0, T ).

One can immediately see that due the assumptions and the constitutive equation (1.2b)
the vector field B is of the same form as H ,H0. Since there has to hold B = curlA
this can be achieved by the ansatz

A =

 0
0

u(x1, x2, t)

 for (x1, x2, t) ∈ Ω̃× (0, T ).

Note that this ansatz also ensures the so called Coulomb condition divA = 0. One
can show [12], [24] that through this ansatz the physical model (1.13) reduces to the
following initial boundary value problem: Find u, p : Ω̃× (0, T )→ R such that

σ(p)∂tu− div (ν∇u) = J3 − divH⊥0 (p) in Ω̃× (0, T ), (1.16a)

cH%∂tp− div (λ∇p) = σ(p) (∂tu)2 − J3∂tu in Ω̃× (0, T ), (1.16b)

u = 0 on ∂Ω̃× (0, T ), (1.16c)

p = p0 on ∂Ω̃× (0, T ), (1.16d)

u (., 0) = 0 in Ω̃, (1.16e)

p(., 0) = p0 in Ω̃, (1.16f)

JuK = 0 on ΓI × (0, T ), (1.16g)

Jν∇u · nK = 0 on ΓI × (0, T ), (1.16h)

JpK = 0 on ΓI × (0, T ), (1.16i)

Jλ∇p · nK = 0 on ΓI × (0, T ), (1.16j)

where ν = ν(x, |∇u|), p(x, t) := ϑ(x, t) and H⊥0 := (−H02, H01)T . Problem (1.16) is a
system of coupled nonlinear parabolic PDEs. The nonlinearity can be seen from the
fact that the parameter ν is a nonlinear function with respect to |∇u| and the right
hand side in the second equation.
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1.3 Model problems

Based on (1.16) we will formulate two PDE-constrained shape optimization problems
which will be considered throughout this thesis. We make the following assumptions:

Assumption 1.1. Let D ⊂ Rd with d ∈ {1, 2, 3} a bounded Lipschitz domain,
A(D) := {Ω ⊂ D : Ω open, Lipschitz with uniform Lipschitz constant LA} and T >
0. Further let QD := D× (0, T ) and for Ω ∈ A(D) let QΩ := Ω× (0, T ). Moreover de-
note the boundaries of the space-time cylinder with ΣΩ := ∂Ω×(0, T ), ΣΩ0 := Ω×{0},
ΣD := ∂D × (0, T ) and ΣD0 := D × {0}.

The first shape optimization problem reads

min
Ω∈A(D)

J1(Ω, u, p) :=

∫ T

0

∫
Ω

|u− ud|2 dxdt+

∫ T

0

∫
Ω

|p− pd|2 dxdt, (1.17)

where (u, p) is solution to

∂tu−∆u = f1 + p in QΩ, (1.18a)

∂tp−∆p = f2 + u in QΩ, (1.18b)

u = 0 on ΣΩ ∪ ΣΩ0, (1.18c)

p = 0 on ΣΩ ∪ ΣΩ0. (1.18d)

and ud, pd, f1, f2 ∈ C1(QD) are given functions. The functional J1 is of so called
tracking type. The goal is to find a shape Ω? such that the states u = u(Ω), p = p(Ω)
which depend on the shape Ω come as close as possible to given functions ud, pd and
fulfill (1.18).

In the second shape optimization problem we consider a transmission problem. We
assume that the material parameters are piecewise constant functions of the form

ν(x, t) =

{
ν1 for (x, t) ∈ QΩ

ν2 for (x, t) ∈ QD \QΩ

, λ(x, t) =

{
λ1 for (x, t) ∈ QΩ

λ2 for (x, t) ∈ QD \QΩ

. (1.19)

Thus the material coefficients describe linear material behavior. We denote by ΓI ×
(0, T ) the interface where the material parameters jump. The problem reads

min
Ω∈A(D)

J2(u, p) :=

∫ T

0

∫
D

|u− ud|2 dxdt+

∫ T

0

∫
D

|p− pd|2 dxdt, (1.20)
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where (u, p) is solution to

∂tu− div (ν∇u) = f1 + p in QD, (1.21a)

∂tp− div (λ∇p) = f2 + u in QD, (1.21b)

u = 0 on ΣD ∪ ΣD0, (1.21c)

p = 0 on ΣD ∪ ΣD0, (1.21d)

JuK = 0 on ΓI × (0, T ), (1.21e)

Jν∇u · nK = 0 on ΓI × (0, T ), (1.21f)

JpK = 0 on ΓI × (0, T ), (1.21g)

Jλ∇p · nK = 0 on ΓI × (0, T ), (1.21h)

where ud, pd, f1, f2 ∈ C1(QD) are given functions. The functional J2 is again of
tracking type. Note the difference between J1 and J2. While J1 also depends explicitly
on the shape Ω the dependence of J2 on the shape Ω is given only implicitly through
the states u and p.



2 Parabolic PDE system

In this chapter we focus on the parabolic PDE system as seen in (1.18) and (1.21),
respectively. At this point we want to mention that we will not treat any analysis of
the coupled system, since this task is more involved and thus is beyond the scope of
this master thesis. Instead we will numerically solve the coupled system with a space-
time method according to the approach of Steinbach in [35],[37] and determine the
experimental order of convergence of the error in the L2-norm and energy norm. The
idea of space-time methods is to treat the time variable as additional space coordinate.
In contrast to other solution methods like the vertical method of lines or Rothe’s
method one has to deal with a problem in one dimension higher, which leads to a
higher computational effort. The main advantage of the space-time method described
in [35] is that it is possible to use adaptive finite element meshes since the discretization
is done simultaneously in space and time. Another advantage lies in the possibility
to parallelize the method. Moreover the proposed approach in [35] allows to use
continuous ansatz and test spaces.

Throughout this chapter let Ω ⊂ Rd, d ∈ {1, 2, 3} be a bounded domain with
Lipschitz boundary Γ := ∂Ω. Further let T > 0 and Q := Ω× (0, T ) be the space-time
cylinder. Moreover let Σ := Γ × (0, T ), Σ0 := Ω × {0}, ΣT := Ω × {T} such that
∂Q = Σ ∪ Σ0 ∪ ΣT . For given functions f1 and f2 we want to find (u, p) such that

∂tu−∆u = f1 + p in Q, (2.1a)

∂tp−∆p = f2 + u in Q, (2.1b)

u = 0 on Σ ∪ Σ0, (2.1c)

p = 0 on Σ ∪ Σ0. (2.1d)

This chapter is organized as follows: We start with some preliminaries in which we
introduce the function spaces and basic definitions which we are going to use through-
out this section. Afterwards we will treat the variational formulation of problem (2.1).
Following that we will discuss the discretization and last but not least we will consider
some numerical examples.

2.1 Preliminaries

In this section we are going to introduce the so called Bochner spaces which we will
need to state the variational formulation. In addition to that we will present some
basic definitions which we will need to discretize (2.1).

19
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2.1.1 Bochner spaces

The approach in [35] uses Bochner spaces. We will give a brief introduction to them.
The basic definitions and results are taken from [26], [29], [46].

Definition 2.1 ([29, Def. 2.1, p. 25]). Let (X, ‖.‖X) be a Banach space, p ∈ [1,∞]
and T > 0. The space of p-integrable functions is denoted by

Lp(0, T ;X) :=

{
f : (0, T )→ X measurable,

∫ T

0

‖f(t)‖pX dt <∞
}
, p ∈ [1,∞) ,

L∞(0, T ;X) :=

{
f : (0, T )→ X measurable, ess sup

t∈(0,T )

‖f(t)‖X <∞

}
.

Moreover we call

Lp(0, T ;X) := Lp(0, T ;X)/∼, with f ∼ g :⇔ f = g almost everywhere (a.e.),

Bochner space of p-integrable functions.

One can show [26, Satz 1.22], that Lp(0, T ;X) is a Banach space with respect to
the norm

‖f‖Lp(0,T ;X) :=

(∫ T

0

‖f(t)‖pX dt

) 1
p

, p ∈ [1,∞) ,

‖f‖L∞(0,T ;X) := ess sup
t∈(0,T )

‖f(t)‖X .

We will also need a characterization of the dual space (Lp(0, T ;X))′. One can show
[29, Thm. 3.13] that for p ∈ [1,∞) , 1

p
+ 1

q
= 1 and a reflexive Banach space X the

mapping

T : Lq(0, T ;X ′)→ (Lp(0, T ;X))′ , u 7→ Tu

〈Tu, v〉 :=

∫ T

0

〈u(t), v(t)〉X′,X dt, v ∈ Lp(0, T ;X),

is an isometric isomorphism. Thus we can identify (Lp(0, T ;X))′ with Lq(0, T ;X ′).
In order to state the variational formulation we further need so called generalized

Sobolev spaces. For this reason we first introduce the concept of a generalized deriva-
tive for a function u ∈ Lp(0, T ;X).

Definition 2.2 ([29, Def. 4.17, p. 54]). Let (X, ‖.‖X) be a Banach space, T > 0, and
u ∈ L1

loc(0, T ;X). The function u obtains a generalized n-th derivative if there exists
a function v ∈ L1

loc(0, T ;X) such that∫ T

0

v(t)ϕ(t) dt = (−1)n
∫ T

0

u(t)ϕ(n)(t) dt ∀ϕ ∈ C∞0 (0, T ). (2.2)

We write dnu
dtn

:= v and call dnu
dtn

n-th generalized derivative of u.
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We are now able to state the definition of generalized Sobolev spaces.

Definition 2.3 ([29, Def. 5.1, p. 63]). Let (X, ‖.‖X) be a Banach space and p ≥ 1.
The space

W 1,p(0, T ;X) :=

{
u ∈ Lp(0, T ;X) :

du

dt
∈ Lp(0, T ;X)

}
(2.3)

is called generalized Sobolev space where du
dt

has to be understood in the sense of
Definition 2.2. For p = 2 we also use the notation

H1(0, T ;X) := W 1,2(0, T ;X).

One can show [29, Thm.5.2] that the space W 1,p(0, T ;X) for p ≥ 1 is a Banach
space with respect to the norm

‖u‖W 1,p(0,T ;X) := ‖u‖Lp(0,T ;X) +

∥∥∥∥du

dt

∥∥∥∥
Lp(0,T ;X)

.

For more information on the generalized derivative as well as generalized Sobolev
spaces we refer the reader to [29, Chapter 4,5], [46, Chapter 23].

2.1.2 Basic notion of finite element discretization

In this section we will recall some basic notions of finite element discretization. For
the rest of this section we consider Ω ⊂ Rd to be a bounded Lipschitz domain. The
definitions are taken from [8],[11]. We start with the definition of a simplex.

Definition 2.4. Let s ∈ {0, 1, ..., d} and z1, ..., zs+1 ∈ Rd be given, such that the
vectors (zj − z1)j=2,...,s+1 are linearly independent. Then T = conv {z1, ..., zs+1} is
called a non-degenerate s-dimensional simplex in Rd. The corner points z1, ..., zs+1 are
called nodes of T . For z′1, ..., z

′
r+1 ∈ {z1, ..., zs+1} and r ∈ {0, ..., s− 1} the convolution

T ′ = conv
{
z′1, ..., z

′
r+1

}
is called r-dimensional face of the simplex T .

In R2 a 2-dimensional simplex is called triangle and the 1-dimensional face of the
triangle are called edges. In R3 a 3-dimensional simplex is called tetrahedron. The
2-dimensional faces of the tetrahedron are called surfaces, the 1-dimensional faces are
called edges. The next definition states the notion of triangulation, which is a basic
concept when dealing with finite elements.

Definition 2.5. The set T := {T1, ..., TM} is called triangulation or mesh of Ω ⊂ Rd,
if the following conditions hold:

(i) For each i ∈ {1, ...,M}: Ti is a d-dimensional simplex,

(ii) Ω =
⋃
T∈T

T ,



22 2 Parabolic PDE system

(iii) ∀T, T ′ ∈ T with T 6= T ′ holds: |T ∩ T ′| = 0.

The triangulation T is called admissible, if for all T, T ′ ∈ T with T 6= T ′ one of the
following statements hold:

• T ∩ T ′ = ∅,
• T ∩T ′ = S, where S is a r-dimensional face of T and T ′, where r ∈ {0, ..., d− 1}.

In numerical simulations we use shape regular triangulations which are defined in
the following way:

Definition 2.6 ([11, Def. 1.107]). A family of admissible triangulations (Th)h∈I is
called shape regular if there exists a constant σ0 > 0 such that

∀h ∈ I : σ(Th) := max
T∈Th

h(T )

ρ(T )
< σ0,

where h(T ) and ρ(T ) are defined by

h(T ) := max
x,y∈T

‖x− y‖2, ρ(T ) := 2 max
x∈T

{
r ∈ R+ : Br(x) ⊂ T

}
.

The finite element space which we are going to use throughout this master thesis is
the space of globally continuous and piecewise polynomial functions of order k defined
as

Sk(T ) :=
{
v ∈ C

(
Ω
)

: v|T ∈ Pk(T ) ∀T ∈ T
}
, where

Pk(T ) :=

v : T → R : v(x) =
∑
α∈Nd

0
|α|≤k

cαx
α, cα ∈ R

 .

2.2 Variational formulation

We derive a weak formulation of (2.1) in the usual manner by multiplying with a
test function, integrating over the space-time cylinder and by applying Green’s for-
mula. By introducing the spaces X := L2(0, T ;H1

0 (Ω)) ∩ H1(0, T ;H−1(Ω)), X0 :={
v ∈ X : v|Σ0

= 0
}

and Y := L2(0, T ;H1
0 (Ω)) the variational formulation of (2.1) is

to find (u, p) ∈ X0 ×X0 such that∫
Q

∂tuv dxdt+

∫
Q

∇xu · ∇xv dxdt =

∫
Q

f1v dxdt+

∫
Q

pv dxdt ∀v ∈ Y, (2.4a)∫
Q

∂tpq dxdt+

∫
Q

∇xp · ∇xq dxdt =

∫
Q

f2q dxdt+

∫
Q

uq dxdt ∀q ∈ Y. (2.4b)
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By introducing the bilinear forms

a(u, v) :=

∫
Q

∂tuv dxdt+

∫
Q

∇xu · ∇xv dxdt

b(p, v) :=

∫
Q

pv dxdt

the variational formulation (2.4) reads: Find (u, p) ∈ X0 ×X0 such that

a(u, v)− b(p, v) = 〈f1, v〉Q ∀v ∈ Y, (2.5a)

a(p, q)− b(u, q) = 〈f2, q〉Q ∀q ∈ Y. (2.5b)

Note that (2.5) is a Petrov-Galerkin variational formulation meaning that ansatz and
test spaces are different. Hence it is necessary to establish an inf − sup condition
in order to show existence and uniqueness of a solution to (2.5). In [35] and [37] a
stability estimate is derived for a problem of the form

cH∂tu− div(A∇u) = f in Q, (2.6a)

u = 0 on Σ, (2.6b)

u = u0 on Σ0, (2.6c)

where cH > 0 is a given heat capacity, A a symmetric and positive definite coefficient
matrix and u0 ∈ H1

0 (Ω) some initial data. It is however not clear if the proof of this
estimate can be generalized to a coupled problem like (2.5).

2.3 Discretization

Let (Th)h∈I be a shape regular family of triangulations of the space-time cylinder Q.
Further let X0h ⊂ X, Yh ⊂ Y and as in the continuous case X0 ⊂ Y we assume
the inclusion X0h ⊂ Yh [35]. The discrete version of the Galerkin-Petrov variational
formulation (2.5) is to find (uh, ph) ∈ X0h ×X0h such that

a(uh, vh)− b(ph, vh) = 〈f1, vh〉Q ∀vh ∈ Yh, (2.7a)

a(ph, qh)− b(uh, qh) = 〈f2, qh〉Q ∀qh ∈ Yh. (2.7b)

2.4 Numerical examples

In this section we will numerically solve the coupled problem (2.1) which also comes
up in the shape optimization problem (1.17)-(1.18). Further we will consider the



24 2 Parabolic PDE system

interface problem which arises in the shape optimization problem (1.20)-(1.21). We
will present numerical solutions to (2.1) as well as (1.21) in one (d=1) and two (d=2)
space dimensions, respectively.

In all numerical tests we determine the experimental order of convergence in the
L2-norm as well as in the energy norm. In order to obtain these error rates we have
to compute the error of the coupled problems in total. Hence, we define

Z :=

[
u
p

]
, Zh :=

[
uh
ph

]
and the total errors by

‖Z − Zh‖L2(Q) :=
√
‖u− uh‖2

L2(Q) + ‖p− ph‖2
L2(Q),

‖Z − Zh‖L2(0,T ;H1
0 (Ω)) :=

√
‖u− uh‖2

L2(0,T ;H1
0 (Ω)) + ‖p− ph‖2

L2(0,T ;H1
0 (Ω)).

The mesh generation as well as the numerical simulation is done in the finite element
software Netgen/NGSolve [31]. In all numerical tests the resulting linear system is
built using a piecewise linear and globally continuous finite element space (k = 1)
where it is sufficient to consider Yh = Xh [35]. The linear system is solved using the
package UMFPACK.

2.4.1 Examples in 1d-1d

Example 1

In this example we consider (2.1) on the unit square, i.e. d = 1, T = 1, Q = (0, 1)2.
We choose the exact solutions to be

u(x, t) = sin(πx) sin(πt) for (x, t) ∈ Q,
p(x, t) = x(1− x)t(1− t) for (x, t) ∈ Q.

The functions f1, f2 are given by

f1(x, t) = −p(x, t) + π cos(πt) sin(πx) + π2 sin(πt) sin(πx) for (x, t) ∈ Q, (2.8a)

f2(x, t) = −u(x, t) + x(1− x)(1− 2t) + 2t(1− t) for (x, t) ∈ Q. (2.8b)

In Table 2.1 one can see the errors in the L2(Q)-norm and energy norm as well as
the experimental order of convergence for different refinement levels. The order of
convergence is quadratic in the L2(Q)-norm and linear in the energy norm. In Figure
2.1 one can see the numerical solutions uh, ph for the refinement level L = 4.
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L N ‖Z − Zh‖L2(Q) eoc ‖Z − Zh‖L2(0,T ;H1
0 (Ω)) eoc

0 8 3.645e-01 0.000 1.253e+00 0.000
1 21 1.007e-01 1.855 6.277e-01 0.998
2 65 2.537e-02 1.989 3.204e-01 0.970
3 225 6.235e-03 2.025 1.609e-01 0.993
4 833 1.521e-03 2.035 8.063e-02 0.997
5 3201 3.747e-04 2.021 4.034e-02 0.999
6 12545 9.318e-05 2.008 2.017e-02 1.000
7 49665 2.325e-05 2.003 1.009e-02 1.000

Table 2.1: Error table for problem (2.1) with d = 1 and k = 1

(a) uh (b) ph

Figure 2.1: Numerical solutions uh, ph for (2.1) with d = 1 and k = 1 on refinement
level L = 4

Example 2

In this example we consider the transmission problem (1.21) for d = 1. Before we
discuss the settings for the numerical test in more detail let us recall problem (1.21).

Let D ⊂ Rd be a bounded Lipschitz domain and Ω ⊂ D open with Lipschitz
boundary. Denote QD := D × (0, T ), QΩ := Ω × (0, T ),ΣD = ∂D × (0, T ),ΣD0 =
D × {0}. We consider piecewise constant material coefficients which are given by

ν(x, t) =

{
ν1 for (x, t) ∈ QΩ

ν2 for (x, t) ∈ QD \QΩ

, λ(x, t) =

{
λ1 for (x, t) ∈ QΩ

λ2 for (x, t) ∈ QD \QΩ

. (2.9)

Note that we assume the material parameters to be constant in time. We denote by
ΓI × (0, T ) the material interface where the parameters jump. The interface problem
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reads: For given functions f1, f2 find functions u, p such that

∂tu− div (ν∇u) = f1 + p in QD, (2.10a)

∂tp− div (λ∇p) = f2 + u in QD, (2.10b)

u = 0 on ΣD ∪ ΣD0, (2.10c)

p = 0 on ΣD ∪ ΣD0, (2.10d)

JuK = 0 on ΓI × (0, T ), (2.10e)

Jν∇u · nK = 0 on ΓI × (0, T ), (2.10f)

JpK = 0 on ΓI × (0, T ), (2.10g)

Jλ∇p · nK = 0 on ΓI × (0, T ). (2.10h)

For the numerical simulation we choose the computational domain QD = (0, 1)2 and
QΩ = (1

4
, 3

4
) × (0, 1). We assume that the domain QΩ corresponds to iron (ferro-

magnetic) and that QD \ QΩ corresponds to air (non-ferromagnetic). In view of this
assumption we choose the parameters ν1 = 1

µ0·µr1
,ν2 = 1

µ0·µr2
where µ0 = 4π

107 is the
magnetic permeability of vacuum, µr1 = 5100 the relative permeability of the ferro-
magnetic material and µr2 = 1 the relative permeability of air. The values for the
parameter λ read λ1 = 80.2 and λ2 = 0.0262. The computational domain QD is
depicted in Figure 2.2 in which blue corresponds to iron and red corresponds to air.
We choose the functions f1, f2 as in (2.8). Note that we do not know the exact solu-

Figure 2.2: Computational domain QD, blue: iron, red: air

tion for this problem. One possible way to work around this problem is to compute
the numerical solutions uhref , phref on a very fine mesh and consider them as exact
solution, i.e. u := uhref , p := phref . Hence it is possible to obtain error rates, but
one has to treat the obtained rates with care since the numerical solutions uh and ph
converge in a natural way to uhref , phref as the mesh size gets smaller. We compute
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the reference solutions on a mesh with N = 307823 nodes (dofs). The obtained error
rates are shown in Table 2.2. We observe that the rates increase in every refinement
step. This is perhaps due to the fact that we do not compute the error against the
exact solution. The rates increase to a value of 2.1 for the error in the L2(QD)-norm
and a value of 1.5 in the energy norm which is better than expected. Figure 2.3 shows

L N ‖Z − Zh‖L2(QD) eoc ‖Z − Zh‖L2(0,T ;H1
0 (D)) eoc

0 24 5.238e-02 0.000 3.718e-01 0.000
1 77 3.500e-02 0.582 2.447e-01 0.603
2 273 2.879e-02 0.282 1.527e-01 0.681
3 1025 1.600e-02 0.847 8.129e-02 0.909
4 3969 5.581e-03 1.519 3.185e-02 1.352
5 15617 1.225e-03 2.187 1.098e-02 1.537

Table 2.2: Error rates for problem (2.10) with d = 1 and k = 1

the numerical solutions uh, ph on refinement level 5.

(a) uh (b) ph

Figure 2.3: Numerical solutions uh, ph for (2.10) with d = 1, k = 1 on refinement level
L = 5
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2.4.2 Examples in 2d-1d

Example 1

In this example we consider (2.1) on the unit cube, i.e. d = 2, T = 1, Q = (0, 1)3. We
choose the exact solutions to be

u(x, y, t) = sin(πx) sin(πy) sin(πt) for (x, y, t) ∈ Q,
p(x, y, t) = x(1− x)y(1− y)t(1− t) for (x, y, t) ∈ Q.

The functions f1, f2 are given by

f1(x, y, t) = −p(x, y, t) + π sin(πx) sin(πy) cos(πt) + 2π2u(x, y, t)

for (x, y, t) ∈ Q, (2.11a)

f2(x, y, t) = −u(x, y, t) + x(1− x)y(1− y)(1− 2t) + 2y(1− y)t(1− t)
+ 2x(1− x)t(1− t) for (x, y, t) ∈ Q. (2.11b)

The numerical results can be seen in Table 2.3. We observe an experimental order
of convergence of up to 1.7 for the error in the L2(Q)-norm and a linear order of
convergence in the energy norm.

L N ‖Z − Zh‖L2(Q) eoc ‖Z − Zh‖L2(0,T ;H1
0 (Ω)) eoc

0 21 6.200e-02 0.000 6.977e-01 0.000
1 87 7.045e-02 -0.184 6.610e-01 0.078
2 469 3.805e-02 0.888 4.591e-01 0.526
3 3017 1.245e-02 1.612 2.513e-01 0.869
4 21521 4.043e-03 1.622 1.287e-01 0.966
5 162337 1.231e-03 1.716 6.476e-02 0.991

Table 2.3: Error table for problem (2.1) with d = 2 and k = 1

Example 2

In this example we consider the interface problem (2.10) in two space dimension, i.e.
d = 2. We choose D = (0, 1)2, T = 1, x0 = (0.5, 0.5)T and Ω to be a circle with center
x0 and radius 0.3, i.e. Ω = {x ∈ D : ‖x− x0‖2 < 0.3}. The computational domain
QD is shown in Figure 2.4, where the domain QΩ is highlighted in blue and the domain
QD \QΩ is highlighted in green. We assume that the material properties of domain QΩ

corresponds to air and that the material properties of domain QD \ QΩ corresponds
to iron. The values for the material coefficients ν,λ are chosen similar to example 2 in
Section 2.4.1. The functions f1, f2 are chosen according to (2.11). In order to obtain
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Figure 2.4: Computational domain QD, green: iron, blue: air

convergence rates we compute a reference solution on a mesh with N = 34851 dofs
and consider this solution as ”exact” solution. The error rates can be seen in Table 2.4.
One observes a rate of 2 for the L2(QD)-error and a rate of about 1.3 for the error in
the energy norm, which is better than expected. In Figure 2.5 the numerical solution

L N ‖Z − Zh‖L2(QD) eoc ‖Z − Zh‖L2(0,T ;H1
0 (D)) eoc

0 256 9.880e-03 0.000 1.978e-01 0.000
1 1706 2.671e-03 1.887 8.721e-02 1.182
2 12467 6.520e-04 2.035 3.450e-02 1.338

Table 2.4: Error rates for problem (2.10) with d = 2 and k = 1

uh computed on the refinement level L = 2 is depicted for different values of t. The
numerical solution ph on refinement level L = 2 and for different values of t can be
seen in Figure 2.6.
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(a) t = 0.2 (b) t = 0.5

(c) t = 0.8 (d) t = 1

Figure 2.5: Numerical solution uh to (2.10) with d = 2, k = 1 on refinement level
L = 2
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(a) t = 0.2 (b) t = 0.5

(c) t = 0.8 (d) t = 1

Figure 2.6: Numerical solution ph to (2.10) with d = 2, k = 1 on refinement level
L = 2





3 Introduction to shape
optimization

In this chapter we give a brief introduction to the theory of shape optimization. We
want to mention that we focus on those parts of the theory which are essential to
set up an algorithm and to solve the model problems from a numerical point of view.
Therefore we put a strong emphasis in characterizing the shape derivative for PDE-
constrained shape optimization problems and in explaining the numerical procedure
in this chapter. While the existence of optimal shapes to shape optimization problems
is certainly an interesting task we do not consider this issue here. The following is
motivated by [13, 25].

In general a shape optimization problem reads

min
Ω∈A(D)

J (Ω) (3.1)

in which A(D) is some admissible set of shapes and J : A(D)→ R a mapping called
shape functional. Note that the model problems can be written in the sense of (3.1)
too by introducing the reduced functionals J1(Ω) := J1(Ω, uΩ, pΩ), where (uΩ, pΩ) is
solution to (1.18) and J2(Ω) := J2(uΩ, pΩ), where (uΩ, pΩ) is solution to (1.21). The
problems then read

min
Ω∈A(D)

J1(Ω), (3.2)

min
Ω∈A(D)

J2(Ω). (3.3)

For this reason it is sufficient to study problem (3.1). In order to get an idea of how
a shape optimization algorithm could look like let us first recall the main ingredients
of a gradient based optimization algorithm in a Banach space to solve the problem

min
x∈X

F (x), (3.4)

where X is a Banach space and F : X → R some functional. The goal is to find a
minimizer x∗ of the functional F , i.e. F (x∗) ≤ F (x) ∀x ∈ X. The main steps of the
algorithm read:

• Compute a descent direction, i.e. for given xk ∈ X find yk ∈ X such that
DF (xk)yk < 0. Here the mapping DF : X → L(X,R) denotes the Fréchet
derivative.

33
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• Choose a step size tk ∈ R and calculate xk+1 := xk + tkyk such that F (xk+1) <
F (xk).

We want to use a similar approach in the context of shape optimization. Since we
minimize over a set of admissible shapes which does not have vector space structure
we cannot use the Fréchet derivative. Therefore, in a first step we have to think of a
suitable notion of derivative of a function J (Ω) with respect to Ω. In literature this
derivative is known as shape derivative. In a second step we have to think of how to
extract a descent direction out of the shape derivative and finally we have to discuss
how to perform the optimization step.

This chapter is structured as follows: First we will introduce basic definitions and
results in which we define the shape derivative. Following that we will discuss how to
calculate the shape derivative via the averaged adjoint method. Furthermore we will
have a look on how to get descent directions and on domain evolution. Last but not
least we will state a gradient type shape optimization algorithm.

3.1 Basic definitions and results

In this section we state basic definitions and results which will be used later on. The
definitions and results are taken from [7],[12],[25],[30] and [39]. To begin with we start
with the definition of a shape function.

Definition 3.1 ([7]). Let ∅ 6= D ⊆ Rd open, bounded and P(D) := {Ω : Ω ⊂ D} the
set of subsets of D. The set D will be referred to as the underlying hold all domain.
A shape function(al) J is a map

J : A(D)→ R, Ω 7→ J (Ω)

from some admissible set A(D) ⊂ P(D) into R.

In this thesis we consider the hold all domain D to be a bounded Lipschitz domain
or a Ck domain (k ≥ 1) meaning that D is a bounded domain and its boundary ∂D
is of class Ck in the sense of [7, p.68, Def.3.1.]. Before we can define the notion of
derivative for a shape function we have to introduce domain pertubations. There are
different kinds of pertubations like the pertubation of identity or the velocity method.
We focus on the latter approach. The velocity method is a method to define a mapping
Tτ used to transform an initial shape Ω. It is important to notice that the shape Ω
we are going to transform is an element out of the admissible set, i.e. Ω ∈ A(D).
One feature of the transformation Tτ should be that it leads to an element in A(D),
i.e. Tτ (Ω) ∈ A(D). More precisely we are looking for a transformation which on the
one hand preserves the topology and on the other hand preserves the regularity of the
boundary of the set Ω. Mappings which guarantee that are so called diffeomorphic
mappings. Before we state the definition of the transformation Tτ let us recall the
definition of the tangent cone of a set D ⊂ Rd.



3.1 Basic definitions and results 35

Definition 3.2 ([39, Def. 2.15, Rem. 2.17]). The tangent cone of a set D ⊂ Rd at
x ∈ D is defined as

TD(x) :=

{
h ∈ Rd : lim inf

t↘0

d(x+ th,D)

t
= 0

}
,

where d(x,D) := inf
y∈D
|x− y|.

Note that d(x,D) = d(x,D) and hence TD(x) = TD(x). We are now able to state
the definition of the mapping Tτ by the velocity method.

Definition 3.3. Let V : [0, τ̃ ]×D → Rd be a non-autonomous vector field satisfying
the conditions

∀x ∈ D : V (., x) ∈ C([0, τ̃ ] ,Rd), (3.5a)

∃L > 0, s.t. ∀x, y ∈ D : ‖V (., x)− V (., y)‖C([0,τ̃ ],Rd) ≤ L |x− y| , (3.5b)

∀x ∈ D ∀τ ∈ [0, τ̃ ] : ±V (τ, x) ∈ TD(x). (3.5c)

The transformation T : [0, τ̃ ]×D → Rd (also called flow) associated with the vector
field V is defined by

T (τ,X) := Tτ (X) := x(τ)

where x(τ) is solution of the differential equation

x′(τ) = V (τ, x(τ)), τ > 0, x(0) = X

We denote the transformation of a shape Ω ⊂ D ⊂ Rd by the mapping Tτ as

Ωτ := Tτ (Ω) = {Tτ (X) : X ∈ Ω} .

Of course the mapping Tτ depends on the vector field V meaning that Tτ = T Vτ , but
we will not indicate this dependence for ease of notation. The conditions (3.5) are
sufficient to conclude [7, pp.194, Thm. 5.1, Remark 5.1.] that for all τ ∈ [0, τ̃ ] the
mapping Tτ : D → D is a homeomorphism, i.e. Tτ and its inverse are continuous. In
particular this means that interior points are mapped to interior points and boundary
points are mapped to boundary points. Throughout this thesis we assume the vector
field V to be autonomous, i.e. V = V (x). The conditions (3.5) then reduces to [39, p.
14]

V ∈ C0,1(D,Rd) and ∀x ∈ D : ±V (x) ∈ TD(x). (3.6)

In addition to that we will assume that V ∈ Ck
c (D,Rd) for some k ≥ 1. Hence V clearly

fulfills (3.6) by extending it with zero to D [39, p. 15]. As a consequence the flow
Tτ : D → D is a homeomorphism and further it holds that Tτ (D) = D, Tτ (∂D) = ∂D
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and for Ω ⊂ D : Tτ (Ω) ⊂ D. Moreover the mappings Tτ and T−1
τ belong to Ck(D,Rd)

[34, p.51, Thm.2.16.] which guarantee that the regularity of the boundary [39, p.13,
Remark 2.8.] as well as the topology is preserved.

Summing up we can conclude that for Ω ∈ A(D) with

A(D) := {Ω ⊂ D : Ω open, Lipschitz with uniform Lipschitz constant LA}

given like in the model problems, the transformed set Ωτ = Tτ (Ω) is an element of
A(D) for sufficient small τ .

We are now able to define the notion of derivative for a shape function.

Definition 3.4 ([38], Eulerian semi-derivative). Let V ∈ Ck
c (D,Rd) for k ≥ 1 and for

Ω ∈ A(D) let Ωτ := Tτ (Ω) according to Definition 3.3. Moreover let τ sufficiently small
such that Ωτ ∈ A(D). The Eulerian semi-derivative of a shape function J : A(D)→ R
at Ω in direction V is defined as

dJ (Ω;V ) := lim
τ↘0

J (Ωτ )− J (Ω)

τ
(3.7)

if the limit exists and is finite.

The Eulerian semi-derivative basically gives us information about the sensitivity of
the shape function J with respect to a perturbation of the domain Ω by a deformation
map Tτ [12].

Definition 3.5 ([9]). A shape function J is said to be shape differentiable at Ω if for
some k ≥ 1 the Eulerian semi-derivative dJ (Ω;V ) exists for all V ∈ Ck

c (D,Rd) and
the mapping V 7→ dJ (Ω;V ) is linear and continuous from Ck

c (D,Rd) to R. Moreover
the smallest integer k ≥ 0 for which V 7→ dJ (Ω;V ) is continuous with respect to the
Ck(D,R)-topology is called order of dJ (Ω; .)

In the following we state the structure theorem of Hadamard-Zolésio. Basically, this
theorem says that under certain smoothness assumptions on the boundary ∂Ω and V
the shape derivative only depends on the normal component V · n [13, 9].

Theorem 3.1 (Structure theorem of Hadamard-Zolésio). Let J be a shape functional.
Assume that J is shape differentiable at Ω ∈ A(D) and that ∂Ω is of class Ck+1,
k ≥ 0. Then there exists a unique outward unit normal vector field n ∈ Ck(∂Ω,Rd)
and a scalar distribution g ∈ Ck(∂Ω)′ such that for all V ∈ Ck

c (D,Rd)

dJ (Ω;V ) = 〈g, γ∂Ω(V ) · n〉Ck(∂Ω)′×Ck(∂Ω). (3.8)

When g ∈ L1(∂Ω), we may write

dJ (Ω;V ) =

∫
∂Ω

gV · n ds. (3.9)
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Proof. A proof can be found in [7, pp.479-481, Thm. 3.6 and Cor. 1]

Formula (3.9) is also known as Hadamard formula. It can be seen from (3.9) that
the shape derivative can be represented as an integral over the boundary if the domain
Ω is regular enough. Another way to represent the shape derivative is in volume form,
i.e.

dJ (Ω;V ) =

∫
D

g(V,DV ) dx (3.10)

for some function g. The formula (3.10) is also known as distributed shape derivative.

Let us briefly comment on the two representation formulas. One advantage of having
the shape derivative in boundary form is that a descent direction is given by choosing
V = −gn, see Section 3.3. However, this descent direction is only defined on the
boundary ∂Ω and sometimes has to be regularized as it might not be regular enough.
[12, Chapter 6.1.2]

The distributed shape derivative is more general, meaning that for shapes with
lower regularity the distributed shape derivative may be well defined while the shape
derivative in Hadamard form is not. One drawback of this representation form is that
in order to obtain a descent direction one has to solve an auxiliary boundary value
problem, see Section 3.3. [12, Chapter 6.1.2]

Further we want to mention that in many numerical procedures it is necessary to
have the shape derivative defined on the whole domain and not only on the bound-
ary. This is for instance in numerical procedures the case in which the domain D is
discretized by means of a finite element mesh and one moves every node a certain
distance in direction V .[12, Chapter 6.1.2]

In this master thesis we focus on the shape derivative in volume form since in our
numerical procedure it is beneficial to have a descent direction defined on the whole
computational domain D.

3.2 Shape derivative via the averaged adjoint

method

In this section, based on [21, 38, 39], we discuss the calculation of the shape derivative
if the shape function is constrained by a PDE. There are several methods to calculate
the shape derivative for a PDE constrained shape function like the material derivative
method which is also known as chain rule approach, the minimax formulation intro-
duced in [7] or the (formal) method of Céa. We concentrate on the approach based in
[38]. This is the calculation of the shape derivative via the averaged adjoint method.
This method is a Lagrangian-type method which allows to compute the shape deriva-
tive of a shape functional depending on the solution of a PDE without the need to
compute the material derivative of the PDE [21]. The following is motivated by [21].
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The idea behind Lagrangian methods is that in order to compute the derivative of a
shape functional it is sufficient to compute derivative of the Lagrangian with respect to
τ . For better understanding let E(Ω), F (Ω) be vector spaces, τ̃ > 0 and Ωτ := Tτ (Ω)
a parametrization for τ ∈ [0, τ̃ ]. We further assume that the spaces E,F fulfill the
following property

ϕ̂ ∈ E(Ωτ )⇔ ϕ̂ ◦ Tτ ∈ E(Ω),

ψ̂ ∈ F (Ωτ )⇔ ψ̂ ◦ Tτ ∈ F (Ω).

In order to compute the derivative of J (Ωτ ) we first write the functional in terms of
the Lagrangian, i.e.

J (Ωτ ) = L(Ωτ , uτ , ψ̂)

where uτ ∈ E(Ωτ ) is the solution to the perturbed state equation and ψ̂ ∈ F (Ωτ ) is
arbitrary. The Lagrangian L(Ωτ , ϕ̂, ψ̂), where ϕ̂ ∈ E(Ωτ ), ψ̂ ∈ F (Ωτ ) usually consists
of integrals on Ωτ . Using a change of variables yields to integrals on a fixed domain Ω
and the τ -dependence is shifted to the integrands. Hence this leads to integrands of the
form ϕ̂ ◦ Tτ ∈ E(Ω) and ψ̂ ◦ Tτ ∈ F (Ω) which are not straightforward to differentiate
since ϕ̂, ψ̂ are functions on the moving domain Ωτ . To find a remedy for this problem
one defines

G(τ, ϕ, ψ) := L(Ωτ , ϕ ◦ T−1
τ , ψ ◦ T−1

τ ),

where ϕ ∈ E(Ω), ψ ∈ F (Ω), which is a re-parametrization of the Lagrangian. The
re-parametrization G leads after a change of variables to functions ϕ, ψ on the fixed
domain Ω. Summing up we end up with

dJ (Ω;V ) =
d

dτ
J (Ωτ )|τ=0 =

d

dτ
L(Ωτ , uτ , ψ̂) =

d

dτ
G (τ, uτ , ψ)|τ=0

where uτ := uτ ◦ Tτ is the pull-back of the solution to the perturbed state equation
and ψ := ψ̂ ◦ Tτ . Hence we will investigate the differentiability of G with respect to τ
in the following. We start with introducing some notation and assumptions and then
state the main theorem. We follow the lines in [38, Section 3.1].

Let E,F Banach spaces, τ̃ > 0. Consider

G : [0, τ̃ ]× E × F → R
(τ, ϕ, ψ) 7→ G(τ, ϕ, ψ),

such that ψ 7→ G(τ, ϕ, ψ) is affine for all (t, ϕ) ∈ [0, τ̃ ] × E. We introduce the set of
solutions to the state equation on the perturbed domain Ωτ := Tτ (Ω) brought back to
the fixed domain Ω by

E(τ) :=
{
u ∈ E : dψG(τ, u, 0; ψ̂) = 0 ∀ψ̂ ∈ F

}
. (3.11)

Furthermore we need the following assumptions.
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Assumption 3.1. (H0)

(i) E(τ) = {uτ} is single-valued for all τ ∈ [0, τ̃ ].

(ii) For all τ ∈ [0, τ̃ ] and p̃ ∈ F , the mapping

[0, 1]→ R, s 7→ G(τ, suτ + (1− s)u0, p̃)

is absolutely continuous.

(iii) For all τ ∈ [0, τ̃ ], ϕ̂ ∈ E, p̃ ∈ F

s 7→ dϕG(τ, suτ + (1− s)u0, p̃; ϕ̂)

is well-defined and belongs to L1(0, 1).

Remark 3.1. Let us briefly discuss the consequences of assumption (H0).

• Point (i) of (H0) corresponds to the unique solvability of the perturbed state
equation.

• Point (ii) of (H0) implies that for almost all s ∈ [0, 1] the derivative

dϕG(τ, suτ + (1− s)u0, p̃;uτ − u0)

exists and together with (iii) this yields

G(τ, uτ , p̃)−G(τ, u0, p̃) =

∫ 1

0

dϕG(τ, suτ + (1− s)u0, p̃;uτ − u0) ds.

For τ ∈ [0, τ̃ ], uτ ∈ E(τ), u0 ∈ E(0), let

Y (τ, uτ , u0) :=

{
q ∈ F | ∀ϕ̂ ∈ E :

∫ 1

0

dϕG(τ, suτ + (1− s)u0, q; ϕ̂) ds = 0

}
(3.12)

the set of solutions to the averaged adjoint equation. For τ = 0 the set Y (0, u0) :=
Y (0, u0, u0) coincides with the solution set of the usual adjoint state equation

Y (0, u0) =
{
q ∈ F | ∀ϕ̂ ∈ E : dϕG(τ, u0, q; ϕ̂) ds = 0

}
. (3.13)

Theorem 3.2. Let E,F linear vector spaces and τ̃ > 0. Suppose that the function
G : [0, τ̃ ] × E × F → R, (τ, ϕ, ψ) 7→ G(τ, ϕ, ψ) is affine in the last argument. Let
assumption (H0) and the following conditions be satisfied.

(H1) For all τ ∈ [0, τ̃ ] and all (u, p) ∈ E(0)× F , the derivative ∂τG(τ, u, p) exists.

(H2) For all τ ∈ [0, τ̃ ] the set Y (τ, uτ , u0) is non-empty and Y (0, u0) is single-valued.

(H3) Let p0 ∈ Y (0, u0). For any sequence (τn)n ↘ 0 there exists a subsequence (τnk
)k

and (pτnk )k with pτnk ∈ Y (τnk
, uτnk , u0) such that

lim
k→∞
s↘0

∂τG(s, u0, pτnk ) = ∂τG(0, u0, p0).
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Then for any ψ ∈ F :

d

dτ
(G(τ, uτ , ψ))|τ=0 = ∂τG(0, u0, p0). (3.14)

Proof. A proof can be found in [38, Thm.3.1.].

Remark 3.2 ([38]). In concrete applications the conditions (H0)-(H3) have the following
meaning:

(i) By assumption (H0) we can apply the fundamental theorem of calculus to G with
respect to u. Note that this condition is milder than Fréchet differentiability.

(ii) Condition (H1) allows an application of the mean value theorem with respect to
t.

(iii) Condition (H2) ensures that the averaged adjoint equation is solvable and that
the adjoint equation has a unique solution.

(iv) Condition (H3) can be verified by showing that pτ converges weakly to p0 and
that (τ, ψ) 7→ G(τ, u0, ψ) is weakly continuous. Note that there is no assumption
on the convergence of uτ to u0, but in applications we need the convergence
uτ → u0 to prove pτ → p with respect to the appropriate topologies.

Using Theorem 3.2 the shape derivative can be computed by

dJ (Ω;V ) =
d

dτ
J (Ωτ )|τ=0 =

d

dτ
G(τ, uτ , ψ)|τ=0 = ∂τG(0, u0, p0).

Finally we want to mention that the averaged adjoint method is in particular well-
suited for problems involving nonlinear PDE constraints [13].

3.3 Descent directions, domain evolution and

generic algorithm

In this section we are going to state a generic gradient based shape optimization
algorithm. Therefore we first introduce descent directions and discuss how to extract
them out of the shape derivative. Furthermore we explain how to update the domain
and finally we state the generic algorithm. This section is based on [13].

We start with the definition of a descent direction.

Definition 3.6 (descent direction,[21]). The vector field V ∈ C0,1
c (D,Rd) is called a

descent direction for J at Ω if there exists an ε > 0 such that

J (Ωτ ) < J (Ω) ∀τ ∈ (0, ε) . (3.15)

The following lemma gives us a characterization of a descent direction by the shape
derivative.
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Lemma 3.3. Let J : A(D) → R be a shape functional and assume that J is shape
differentiable at Ω ∈ A(D) with shape derivative dJ (Ω, .) : Ck

c (D,Rd) → R, V 7→
dJ (Ω, V ) for some k ≥ 1. Furthermore let V ∈ Ck

c (D,Rd) such that

dJ (Ω;V ) < 0. (3.16)

Then V is a descent direction.

Proof. Since J is shape differentiable at Ω we can use the definition of the Eulerian-
semi derivative to get

0 > dJ (Ω;V ) = lim
τ↘0

J (Ωτ )− J (Ω)

τ
.

By definition of the limit there is a ε > 0 such that for all τ ∈ (0, ε)

J (Ωτ )− J (Ω)

τ
< 0.

Therefore it follows that V is a descent direction.

If dJ (Ω;V ) is given in Hadamard form (3.9) then choosing V = −gn yields a
descent direction since

dJ (Ω;−gn) =

∫
∂Ω

g(−gn) · n ds = −
∫
∂Ω

g2 ds < 0.

If dJ (Ω;V ) is given in volume form one common approach to compute a descent
direction is by solving an auxiliary boundary value problem. To make things clear let
X be a Hilbert space and assume that dJ (Ω, .) is linear and bounded on X. Further
let b : X × X → R be a positive definite and bounded bilinear form. Consider the
auxiliary boundary value problem

Find V ∈ X : b(V,W ) = −dJ (Ω,W ) ∀W ∈ X. (3.17)

If we solve (3.17) the solution V is a descent direction since

dJ (Ω, V ) = −b(V, V ) < 0.

Note that we can obtain different descent directions by choosing different bilinear
forms. Possible choices are

• b(V,W ) =
∫
D
α(x)∂V : ∂W + β(x)V ·W dx, with α, β ∈ L∞(D) positive,

• b(V,W ) =
∫
D
Eε(u) : ε(v) dx, the bilinear form of linearized elasticity.
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The next thing we are going to discuss is how to update the domain Ωn in the n-
th iteration if one has computed a descent direction Vn. There are two approaches
based on the explicit or implicit representation of the domain. We focus on the first
approach. If one has an explicit representation of the domain one can simply move
every point in Ωn a certain distance τn in direction Vn, i.e.

Ωn+1 = {x+ τnVn(x) : x ∈ Ωn} = (id+ τnVn)(Ωn).

The distance τn is called step size. There are different opportunities for the choice of
τn. Popular choices are

• τn constant and small,

• ”back-tracking”: choose τn = max
{

1, 1
2
, 1

4
, ...
}

such that J (Ωn+1) < J (Ωn),

• Armijo rule.

We are now able to state a generic gradient based shape optimization algorithm.

Algorithm 3.4. Choose an initial design Ω0.
For n = 0, 1, 2, ... until converge,

(1) Find a vector field Vn such that dJ (Ωn;Vn) < 0

(2) Choose a step size τn according to the step size rule

(3) Set Ωn+1 = (id+ τnVn)(Ωn)



4 Shape optimization of model
problem 1 and 2

In this chapter we focus on the parabolic PDE-constrained shape optimization model
problems. So far we have discussed how to solve the forward problem using space-
time finite elements and explained shape optimization techniques based on the shape
derivative. We will now apply the results from the previous chapters in order to
set up an algorithm and to solve the model problems described in (1.17)-(1.18) and
(1.20)-(1.21) numerically. We start with some preliminaries in which we collect some
basic properties of Sobolev functions composed with flows and state a modification
of Theorem 3.2 to the multi-valued case. Following that we will compute the shape
derivative of J1 and J2 via the averaged adjoint method. Moreover, we will outline
a gradient-type shape optimization algorithm used to solve the problems. Finally we
will present some numerical tests which demonstrate that the introduced algorithm is
feasible.

4.1 Preliminaries

In this section we present some basic results on Sobolev functions composed with flows
and state an extension of Theorem 3.2. This section is mainly based on [39, Chapter
2.3.3, Chapter 4.1.4]

In the following let V ∈ C1
c (D,Rd) be a given vector field and Tτ its associated flow

[39]. We will make use of the following abbreviations

ξ(τ) := det(∂Tτ ), A(τ) := det(∂Tτ )∂T
−1
τ ∂T−Tτ , B(τ) := ∂T−Tτ . (4.1)

Here, det : Rd×d → R denotes the determinant and ∂Tτ and ∂T−1
τ denote the Jaco-

bians of Tτ and T−1
τ , respectively. We will now state some properties of the functions

ξ(τ), A(τ), B(τ).

Lemma 4.1. Let V ∈ C1
c (D,Rd) and Tτ the flow associated with V via the velocity

method. The mappings τ 7→ ξ(τ), τ 7→ B(τ), τ 7→ A(τ) given by (4.1) are differ-
entiable on [0, τ̃ ], i.e. they are differentiable on (0, τ̃), the right-sided and left-sided

43
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derivatives exist in 0 and τ̃ ,respectively and these functions satisfy

d

dτ
B(τ) = −B(τ)(∂V τ )TB(τ), (4.2)

d

dτ
ξ(τ) = tr(∂V τBT (τ))ξ(τ), (4.3)

d

dτ
A(τ) = tr(∂V τBT (τ))A(τ)−BT (τ)∂V τA(τ)− (BT (τ)∂V τA(τ))T , (4.4)

where V τ (x) := V (Tτ (x)).

Proof. A proof can be found in [39, Lemma 2.14]

An immediate consequence of Lemma 4.1 together with the fact that ξ(0) = 1,
A(0) = B(0) = I is

d

dτ
(ξ(τ))|τ=0 = div V, (4.5)

d

dτ
(B(τ))|τ=0 = −∂V T , (4.6)

d

dτ
(A(τ))|τ=0 = div V − ∂V − ∂V T . (4.7)

The next lemma states that the mappings τ 7→ ξ(τ), τ 7→ A(τ) are bounded.

Lemma 4.2 ([39]). Let the mappings A ∈ C([0, τ̃ ] ;C(D,Rd×d)) and ξ ∈ C([0, τ̃ ] ;C(D))
be given and assume that A(0) = I and ξ(0) = 1. Then there are constants γ1, γ2, δ1, δ2 >
0 and τ̂ > 0 such that for all η ∈ Rd and for all τ ∈ [0, τ̂ ]:

γ1 |η|2 ≤ η · A(τ)η ≤ γ2 |η|2 ,
δ1 ≤ ξ(τ) ≤ δ2.

One common approach in shape calculus is to use function space parametrization
in order to avoid differentiating functions which live on the moving Ωτ . Hence for a
Banach space E(Ω) we need the property

ϕ̂ ∈ E(Ωτ ) ⇐⇒ ϕ̂ ◦ Tτ ∈ E(Ω).

This condition is fulfilled if E(Ω) = W 1,p(Ω), which can be seen in the next theorem.

Theorem 4.3. Let p ≥ 1. Suppose that T : Rd → Rd is a bi-Lipschitz mapping.
Suppose that U is an open subset of Rd and set W := T−1(U). Then we have

u ∈ W 1,p(U) ⇐⇒ u ◦ T ∈ W 1,p(W ).
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Proof. A proof can be found in [47, Thm.2.2.2]

The theorem basically says that for a transformation Ωτ = Tτ (Ω) we can write

H1
0 (Ωτ ) =

{
ϕ ◦ T−1

τ : ϕ ∈ H1
0 (Ω)

}
.

We can state a similar result as in Theorem 4.3 for the space L2(0, T ;H1(Ω)) too.

Theorem 4.4. Suppose that T : Rd → Rd is a bi-Lipschitz mapping. Suppose that
U is an open subset of Rd and set W := T−1(U). For u ∈ L2(0, T ;H1(U)) we have
u ◦ T ∈ L2(0, T ;H1(W )) and

Dj (u ◦ T ) =
d∑
i=1

((Diu) ◦ T ) · (DjTi), j ∈ {1, ...d} , (4.8)

where Dj denotes the weak derivative with respect to j-th spatial coordinate.

Proof. We have to show that

(i) u ◦ T ∈ L2(0, T ;L2(W )),

(ii) u ◦ T admits a weak derivative in L2(0, T ;L2(W )) which is given by (4.8).

Before we start with the proof of (i) and (ii) note that due to Rademacher’s theorem
the mappings T and T−1 are differentiable almost everywhere and there holds for
i, j ∈ {1, ..., d}:

|DjTi(x)| ≤ L, for a.e. x ∈ Rd
∣∣DjT

−1
i (y)

∣∣ ≤ L̂, for a.e. y ∈ Rd,

where L,L̂ are the Lipschitz constants of T and T−1, respectively. Hence, we conclude
that for the determinant of the Jacobian ∂T−1 there exists a C > 0 such that∣∣det

(
∂T−1(y)

)∣∣ ≤ C for a.e. y ∈ Rd. (4.9)

This results from the fact that the determinant of ∂T−1 corresponds to a finite sum
of the bounded entries of the Jacobian.

Now, we proceed with the proof of (i). Using a change of variables x = T−1(y),
estimate (4.9) and u ∈ L2(0, T ;L2(U)) we get

‖u ◦ T‖2
L2(0,T ;L2(W )) =

∫ T

0

∫
W

|u(t, T (x))|2 dxdt

=

∫ T

0

∫
U

|u(t, y)|2
∣∣det

(
∂T−1(y)

)∣∣ dydt

≤ C

∫ T

0

∫
U

|u(t, y)|2 dydt = C‖u‖L2(0,T ;L2(U)) <∞

(4.10)
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We continue with the proof of (ii). We define for j ∈ {1, ..., d}:

fj(t, x) :=
d∑
i=1

((Diu) (t, T (x))) · (DjTi(x)), for a.e. (t, x) ∈ (0, T )×W.

We show that

(a) fj ∈ L2(0, T ;L2(W )), j = 1, ..., d,

(b) (u ◦ T,Djϕ)L2(0,T ;L2(W )) = − (fj, ϕ)L2(0,T ;L2(W )) ∀ϕ ∈ L
2(0, T ;C∞0 (W )).

We start with (a). Let j ∈ {1, ..., d}. Then we have

|fj(t, x)| ≤ L
d∑
i=1

|(Diu)(t, T (x))| ≤ L

(
d∑
i=1

12

) 1
2
(

d∑
i=1

|(Diu)(t, T (x))|2
) 1

2

= Ld
1
2

(
d∑
i=1

|(Diu)(t, T (x))|2
) 1

2

, for a.e. (t, x) ∈ (0, T )×W.

Using this estimate, a change of variables x = T−1(y), estimate (4.9) and that by
assumption Diu ∈ L2(0, T ;L2(U)) for i ∈ {1, ..., d} we conclude

‖fj‖2
L2(0,T ;L2(W )) =

∫ T

0

∫
W

|fj(t, x)|2 dxdt ≤ L2d

∫ T

0

∫
W

d∑
i=1

|(Diu)(t, T (x))|2 dxdt

= L2d
d∑
i=1

∫ T

0

∫
U

|Diu(t, y)|2
∣∣det

(
∂T−1(y)

)∣∣ dydt

≤ L2dC
d∑
i=1

‖Diu‖2
L2(0,T ;L2(U)) <∞.

We proceed with (b). The idea is to approximate u ◦ T with smooth functions such
that one can use integration by parts with respect to x. For u ∈ L2(0, T ;H1(U)) let
(un)n be a sequence such that un(t) ∈ C∞0 (Rd) for a.e. t ∈ (0, T ) and un → u in
L2(0, T ;H1(U ′)) for all U ′ b U , see Remark 4.1. Hence, we conclude from (4.10) that
for all W ′ b W

‖un ◦ T − u ◦ T‖2
L2(0,T ;L2(W ′)) ≤ C‖un − u‖2

L2(0,T ;L2(U ′)) → 0, n→∞, (4.11)

and that

((Diun) ◦ T ) ·DjTi → ((Diu) ◦ T ) ·DjTi in L2(0, T ;L2(W ′)) (4.12)
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which can be seen by

‖((Diun) ◦ T )DjTi − ((Diu) ◦ T )DjTi‖2
L2(0,T ;L2(W ′))

=

∫ T

0

∫
W ′
|(Di(un − u)) ◦ T ·DjTi|2 dxdt

≤ L2

∫ T

0

∫
W ′
|(Di(un − u))(t, T (x))|2 dxdt

= L2

∫ T

0

∫
U ′
|Di(un − u)(t, y)|2

∣∣det
(
∂T−1(y)

)∣∣ dydt

≤ CL2‖Di(un − u)‖2
L2(0,T ;L2(U ′)) → 0, n→∞

Now, let ϕ ∈ L2(0, T ;C∞0 (W )). Then there exists a W ′ b W : supp (ϕ(t)) ⊂ W ′ b W .
Then we have

(u ◦ T,Djϕ)L2(0,T ;L2(W )) = (u ◦ T,Djϕ)L2(0,T ;L2(W ′))

(1)
= lim

n→∞
(un ◦ T,Djϕ)L2(0,T ;L2(W ′))

(2)
= − lim

n→∞
(Dj(un ◦ T ), ϕ)L2(0,T ;L2(W ′))

(3)
= − lim

n→∞

((
d∑
i=1

(Diun) ◦ T

)
DjTi, ϕ

)
L2(0,T ;L2(W ′))

(4)
= − (fj, ϕ)L2(0,T ;L2(W )) .

In (1) we used (4.11) and the continuity of the inner product. In (2) we applied
integration by parts. This is possible since un ◦ T is as a composition of two Lipschitz
functions again Lipschitz continuous with respect to the spatial coordinates and hence
by Rademacher’s theorem differentiable almost everywhere. (3) follows by the chain
rule and in (4) we used continuity of the inner product and (4.12).

Finally, by definition of the weak derivative we conclude that Dj(u ◦ T ) = fj ∈
L2(0, T ;L2(W )) and therefore u ◦ T ∈ L2(0, T ;H1(W )).

Remark 4.1. Let us briefly comment on the sequence (un)n in the proof of Theorem 4.4
The idea is to approximate the function u ∈ L2(0, T ;H1(U)) with smooth functions
with respect to x. This will be done with standard regularization theory. Let (%n)n
be a sequence of mollifiers, [1, Def. 6.2] and (ηn)n a sequence of cut-off functions
according to [1, p.171]. We denote with ũ the extension of u by zero with respect to
x, i.e.

ũ(t, x) =

{
u(t, x) (t, x) ∈ (0, T )× U,
0 (t, x) ∈ (0, T )× Rd \ U

.
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We define for a.e. t ∈ (0, T ) and for all x ∈ Rd the functions

un(t, x) := ηn(x)

∫
Rd

%n(x− y)ũ(t, y) dy.

For the sequence (un)n there holds that un(t) ∈ C∞0 (Rd) for all n ∈ N and that
‖un(t)− u(t)‖H1(U ′) → 0, n → ∞ for a.e. t ∈ (0, T ) and for all U ′ b U , cf. [1, Satz
6.16], [47, Lemma 2.1.3]. Further, we have by using the Cauchy-Schwarz inequality
and

∫
Rd %(x) dx = 1 that

|un(t, x)| ≤
∫
Rd

%n(x− y)
1
2%n(x− y)

1
2 |ũ(t, y)| dy

≤
(∫

Rd

%n(x− y)dy

) 1
2
(∫

Rd

%n(x− y) |ũ(t, y)|2 dy

) 1
2

=

(∫
Rd

%n(x− y) |ũ(t, y)|2 dy

) 1
2

, for a.e. t ∈ (0, T ), ∀x ∈ Rd.

(4.13)

Using (4.13) and Fubini’s Theorem we get

‖un(t)‖2
L2(U ′) ≤

∫
U ′

∫
Rd

%n(x− y) |ũ(t, y)|2 dydx

≤
∫
Rd

(∫
Rd

%n(x− y)dx

)
|ũ(t, y)|2 dy

= ‖u(t)‖2
L2(U), for a.e. t ∈ (0, T ).

(4.14)

For sufficiently large n and for almost all t ∈ (0, T ) we have, cf. [1, Satz 6.16]

Dj(un(t)) = %n ∗ D̃j(u(t)) in U ′. (4.15)

Using (4.15) and similar estimation techniques as in (4.13) we obtain

|Djun(t, x)| ≤
(∫

Rd

%n(x− y)
∣∣∣D̃ju(t, y)

∣∣∣2 dy

) 1
2

, for a.e. t ∈ (0, T ), ∀x ∈ U ′. (4.16)

By Fubini’s theorem we conclude for sufficiently large n that

‖Djun(t)‖2
L2(U ′) ≤

∫
U ′

∫
Rd

%n(x− y)
∣∣∣D̃ju(t, y)

∣∣∣2 dydx

≤
∫
Rd

(∫
Rd

%n(x− y)dx

) ∣∣∣D̃ju(t, y)
∣∣∣2 dy

= ‖Dju(t)‖2
L2(U), for a.e. t ∈ (0, T )

(4.17)
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Now, extracting a subsequence (unk
)k ⊂ (un)n one can assume by (4.14), (4.17) that

‖unk
(t)‖H1(U ′) ≤ ‖u(t)‖H1(U) for all k ∈ N and for almost every t ∈ (0, T ). Hence, we

can conclude by Lebesgue’s theorem that

‖unk
− u‖2

L2(0,T ;H1(U ′) =

∫ T

0

‖unk
(t)− u(t)‖2

H1(U ′) dt→ 0, k →∞. (4.18)

Moreover, we have the following result.

Lemma 4.5. Let D ⊂ Rd be a bounded Lipschitz domain and p > 1. Denote by Tτ
the flow of V ∈ C1

c (D,Rd). For any f ∈ Lp(D), we have

lim
t↘0
‖f ◦ Tτ − f‖Lp(D) = 0 and lim

t↘0

∥∥f ◦ T−1
τ − f

∥∥
Lp(D)

= 0.

Proof. See [39, Lemma 2.16] and the reference therein.

In order to be able to calculate the shape derivative for an optimization problem
which is constrained by two PDEs we need an extension of the single-valued case in
Theorem 3.2. We follow the lines in [39, Chapter 4.1.4]. Let E1, E2, F1, F2 be Banach
spaces and τ̃ > 0. Consider

G : [0, τ̃ ]× E1 × E2 × F1 × F2 → R
(τ, ϕ, η, ψ, ζ) 7→ G(τ, ϕ, η, ψ, ζ).

We make the following assumptions on the function G.

Assumption 4.1. (D0)

(i) For all τ ∈ [0, τ̃ ],u, ũ ∈ E1, p, p̃ ∈ E2, w ∈ F1, z ∈ F2 the mappings

[0, 1]→ R, s 7→ G(τ, u+ sũ, p, w, z),

[0, 1]→ R, s 7→ G(τ, u, p+ sp̃, w, z)

are absolutely continuous which implies

G(τ, ũ, p, w, z)−G(τ, u, p, w, z) =

∫ 1

0

dϕG(τ, sũ+ (1− s)u, p, w, z; ũ− u) ds,

G(τ, u, p̃, w, z)−G(τ, u, p, w, z) =

∫ 1

0

dηG(τ, u, sp̃+ (1− s)p, w, z; p̃− p) ds.

(ii) For all τ ∈ [0, τ̃ ], u, ũ, ϕ̂ ∈ E1, p, p̃, η̂ ∈ E2, w ∈ F1, z ∈ F2

s 7→ dϕG(τ, u+ sũ, p, w, z; ϕ̂) and s 7→ dηG(τ, u, p+ sp̃, w, z; η̂)

are well-defined and belong to L1(0, 1).
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(iii) the mapping ψ 7→ G(τ, ϕ, η, ψ, ζ) is affine linear for all (τ, ϕ, η, ζ) ∈ [0, τ̃ ]× E1 ×
E2 × F2 and ζ 7→ G(τ, ϕ, η, ψ, ζ) is affine linear for all (τ, ϕ, η, ψ) ∈ [0, τ̃ ]× E1 ×
E2 × F1.

For any τ ∈ [0, τ̃ ] the (perturbed) system of state equations is given by

dψG(τ, u, p, w, z; ψ̂) = 0 ∀ψ̂ ∈ F1 (4.19a)

dζG(τ, u, p, w, z; ζ̂) = 0 ∀ζ̂ ∈ F2. (4.19b)

We introduce the set of solution to (4.19) by

E(τ) := {(u, p) ∈ E1 × E2 : (u, p) solves (4.19)} .

For any τ ∈ [0, τ̃ ], qτ := (uτ , pτ ) ∈ E(τ), q0 := (u0, p0) ∈ E(0) the averaged adjoint
system reads ∫ 1

0

dϕG(τ, suτ + (1− s)u0, pτ , wτ , zτ ; ϕ̂) ds = 0 ∀ϕ̂ ∈ E1, (4.20a)∫ 1

0

dηG(τ, u0, spτ + (1− s)p0, wτ , zτ ; η̂) ds = 0 ∀η̂ ∈ E2. (4.20b)

We denote the set of solutions to system (4.20) by

Y (τ, qτ , q0) = {(wτ , zτ ) ∈ F1 × F2 : (wτ , zτ ) solves (4.20)}

Note that for τ = 0 the set Y (0, q0) := Y (0, q0, q0) corresponds to the solution set of
the usual adjoint system. That is (w, z) ∈ F1 × F2 solves

dϕG(0, u, p, w, z; ϕ̂) = 0 ∀ϕ̂ ∈ E1, (4.21a)

dηG(0, u, p, w, z; η̂) = 0 ∀η̂ ∈ E2, (4.21b)

where (u, p) := (u0, p0) ∈ E(0). Now we are able to state a modification of Theorem
3.2

Theorem 4.6 ([39, Thm. 4.5]). Let E1, E2, F1, F2 be Banach spaces, τ̃ > 0 and a
function

G : [0, τ̃ ]× E1 × E2 × F1 × F2 → R
(τ, ϕ, η, ψ, ζ) 7→ G(τ, ϕ, η, ψ, ζ),

be given. Let Assumption (D0) be satisfied and assume that the following conditions
hold:

(D1) For all ϕ ∈ E1, η ∈ E2, ψ ∈ F1, ζ ∈ F2 the mapping

[0, τ̃ ]→ R : τ 7→ G(τ, ϕ, η, ψ, ζ)

is differentiable.
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(D2) For all τ ∈ [0, τ̃ ] let E(τ) be non-empty and single valued. Moreover, for all
τ ∈ [0, τ̃ ], qτ ∈ E(τ), q0 ∈ E(0) let Y (τ, qτ , q0) be non-empty and single-valued.

(D3) Let q0 ∈ E(0) and p0 ∈ Y (0, q0). For any sequence of non-negative real numbers
(τn)nN converging to zero, there exists a subsequence (τnk

)k∈N, elements qτnk ∈
E(τnk

) and pτnk ∈ Y (τnk
, qτnk , q0) such that

lim
k→∞
s↘0

∂τG(s, q0,pτnk ) = ∂τG(0, q0,p0).

Then for any ψ̃ := (ψ, ζ) ∈ F1 × F2:

d

dτ

(
G(τ, qτ , ψ̃)

)∣∣∣
τ=0

= ∂τG(0, q0,p0).

4.2 Shape derivative of J1 and J2

In this section we will compute the shape derivative of model problem 1 and 2 via
the averaged adjoint method. At this point we want to mention that the obtained
derivatives dJ1(Ω;V ), dJ2(Ω;V ) have to be taken with care, since for the moment we
are not able to prove all assumptions in Theorem 4.6. We will comment on the crucial
steps in more detail when deriving the shape derivatives for J1, J2.

Throughout this section we assume V ∈ C1
c (D,Rd), i.e. V = V (x).

4.2.1 Shape derivative of J1
Recall the problem: For given ud, pd, f1, f2 ∈ C1(QD) we are looking for a solution of
the problem

min
Ω∈A(D)

J1(Ω, u, p) :=

∫ T

0

∫
Ω

|u− ud|2 dxdt+

∫ T

0

∫
Ω

|p− pd|2 dxdt, (4.22)

where (u, p) ∈ X0(Ω)×X0(Ω) is solution to

a(Ω, u, v)− b(Ω, p, v) = F1(Ω, v) ∀v ∈ Y (Ω), (4.23a)

a(Ω, p, q)− b(Ω, u, q) = F2(Ω, q) ∀q ∈ Y (Ω), (4.23b)

with

a(Ω, u, v) :=

∫
QΩ

∂tuv dxdt+

∫
QΩ

∇xu · ∇xv dxdt,

b(Ω, p, v) :=

∫
QΩ

pv dxdt,

F1(Ω, v) :=

∫
QΩ

f1v dxdt,

F2(Ω, q) :=

∫
QΩ

f2q dxdt,
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and the spaces

X0(Ω) :=
{
v ∈ X(Ω) : v|ΣΩ0

= 0
}
,

X(Ω) := L2(0, T ;H1
0 (Ω)) ∩H1(0, T ;H−1(Ω)), Y (Ω) := L2(0, T ;H1

0 (Ω)).

In the following we use the Greek letters ϕ, η, ψ, ζ as variables while the roman letters
(u, p), (w, z) are used for the solution of the state system and adjoint state system,
respectively, cf. [21]. In order to set up the re-parametrized Lagrangian G1 we first
consider the Lagrangian L1 which reads

L1(Ω, ϕ, η, ψ, ζ) := J1(Ω, ϕ, η) + a(Ω, ϕ, ψ)− b(Ω, η, ψ)− F1(Ω, ψ)

+ a(Ω, η, ζ)− b(Ω, ϕ, ζ)− F2(Ω, ζ).

Note that the reduced functional J1(Ω) can be written in terms of L1 since

J1(Ω) := J1(Ω, u, p) = L1(Ω, u, p, ψ, ζ).

In order to obtain the shape derivative we need to compute

d

dτ
J1(Ωτ )|τ=0 =

d

dτ
L1(Ωτ , uτ , pτ , ψ̂, ζ̂)

∣∣∣
τ=0

,

where (uτ , pτ ) ∈ X0(Ωτ )×X0(Ωτ ) solves the perturbed state system

a(Ωτ , uτ , v̂)− b(Ωτ , pτ , v̂) = F1(Ωτ , v̂) ∀v̂ ∈ Y (Ωτ ), (4.24a)

a(Ωτ , pτ , q̂)− b(Ωτ , uτ , q̂) = F2(Ωτ , q̂) ∀q̂ ∈ Y (Ωτ ). (4.24b)

However, the derivative of L1 can not be computed straightforwardly since after a
change of variables one has to deal with functions ϕ̂ ◦ Tτ , where ϕ̂ ∈ X0(Ωτ ) is a
function on the moving domain Ωτ , cf. [21]. To get around this difficulty one defines
a re-parametrized Lagrangian

G1 : [0, τ̃ ]×X0(Ω)×X0(Ω)×X0(Ω)×X0(Ω)→ R,
(τ, ϕ, η, ψ, ζ) 7→ G1(τ, ϕ, η, ψ, ζ),

G1(τ, ϕ, η, ψ, ζ) := L1(Ωτ , ϕ ◦ T−1
τ , η ◦ T−1

τ , ψ ◦ T−1
τ , ζ ◦ T−1

τ )

(4.25)

where X0(Ω) := {w ∈ X(Ω) : w(x, T ) = 0, x ∈ Ω}.
Remark 4.2. In order to define the re-parametrized Lagrangian we assume that

ϕ ∈ X0(Ω) ⇐⇒ ϕ ◦ T−1
τ ∈ X0(Ωτ ),

ψ ∈ X0(Ω) ⇐⇒ ψ ◦ T−1
τ ∈ X0(Ωτ ).

If the spaces X0 and X0 correspond to L2(Ω) or W 1,p(Ω), p ≥ 1 this assumption is
fulfilled, see Theorem 4.3 and [17, Remark 3.4]. Also for the space L2(0, T ;H1

0 (Ω))
this property is clear by Theorem 4.4. However, for the space H1(0, T ;H−1(Ω)) the re-
parametrization property is an open question. We want to mention that this property
was already used by Soko lowski in [33].
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The re-parametrized Lagrangian G1 reads after a change of variables

G1(τ, ϕ, η, ψ, ζ) =

∫
QΩ

ξ(τ) |ϕ− uτd|
2 dxdt+

∫
QΩ

ξ(τ) |η − pτd|
2 dxdt

+

∫
QΩ

ξ(τ)∂tϕψ dxdt+

∫
QΩ

A(τ)∇xϕ · ∇xψ dxdt

−
∫
QΩ

ξ(τ)ηψ dxdt−
∫
QΩ

ξ(τ)f τ1ψ dxdt

+

∫
QΩ

ξ(τ)∂tηζ dxdt+

∫
QΩ

A(τ)∇xη · ∇xζ dxdt

−
∫
QΩ

ξ(τ)ϕζ dxdt−
∫
QΩ

ξ(τ)f τ2 ζ dxdt,

(4.26)

where uτd := ud ◦ Tτ , pτd := pd ◦ Tτ , f τ1 := f1 ◦ Tτ , f τ2 := f2 ◦ Tτ and

ξ(τ) := det(∂Tτ ) = |det(∂Tτ )| for τ ≥ 0 small, (4.27)

A(τ) := det(∂Tτ )∂T
−1
τ ∂T−Tτ . (4.28)

Remark 4.3. Note that we assume V ∈ C1
c (D,Rd), i.e. V = V (x). Therefore the

transformation Ωτ = Tτ (Ω) only acts on the space variables. This means that the
time derivatives in (4.26) do not transform after a change of variables. Further the
shortcut f τ := f ◦ Tτ for a function f : QD → R means that f τ (t, y) = f(t, Tτ (x)),
where y ∈ Ωτ and x ∈ Ω.

The function G1 can be interpreted as perturbed Lagrangian brought back to the
original domain Ω [13].

The shape derivative in the context of the re-parametrized Lagrangian G1 reads

d

dτ
J1(Ωτ )|τ=0 =

d

dτ
(G1(τ, uτ , pτ , ψ, ζ))|τ=0 , (4.29)

where (uτ , pτ ) ∈ X0(Ω)×X0(Ω) solves∫
QΩ

ξ(τ)∂tu
τψ dxdt+

∫
QΩ

A(τ)∇xu
τ · ∇xψ dxdt−

∫
QΩ

ξ(τ)pτψ dxdt

=

∫
QΩ

ξ(τ)f τ1ψ dxdt ∀ψ ∈ Y (Ω), (4.30a)∫
QΩ

ξ(τ)∂tp
τζ dxdt+

∫
QΩ

A(τ)∇xp
τ · ∇xζ dxdt−

∫
QΩ

ξ(τ)uτζ dxdt

=

∫
QΩ

ξ(τ)f τ2 ζ dxdt ∀ζ ∈ Y (Ω). (4.30b)

Note that (4.30) corresponds to the perturbed state system (4.24) after a change
of variables Ωτ = Tτ (Ω). Therefore if (uτ , pτ ) solves (4.30) and (uτ , pτ ) solves (4.24)



54 4 Shape optimization of model problem 1 and 2

these solutions can be written in terms of each other via uτ = uτ◦T−1
τ and pτ = pτ◦T−1

τ .

In order to compute the shape derivative we want to apply Theorem 4.6 to (4.29).
Hence, one has to check assumptions (D0)-(D3) in Theorem 4.6. Let us briefly com-
ment on these assumptions. The ideas are taken from [13] and are adapted to our
setting.

(D0)(i) can be verified by showing that the maps

s 7→ G1(τ, u+ sũ, η, ψ, ζ), s 7→ G1(τ, ϕ, p+ sp̃, ψ, ζ)

are continuous differentiable. This can be done by using the theorem of Lebesgue and
the fact that the integrand is continuously differentiable with respect to s.

(D0)(ii) can be shown by direct computation using the boundedness of the mappings
τ 7→ A(τ), τ 7→ ξ(τ) described in Theorem 4.2.

(D0)(iii) follows by construction of G1. This means in order to see that G1 is affine
linear with respect to ψ write

G1(τ, ϕ, η, ψ, ζ) = C(τ, ϕ, η, ψ) +D(τ, ϕ, η, ζ) (4.31)

where C(τ, ϕ, η, ψ) is linear and D(τ, ϕ, η, ζ) is constant with respect to ψ. The same
can be done to see that G1 is affine linear with respect to ζ.

Assumption (D1) can be shown by Lebesgue’s theorem using the fact that the
integrand is differentiable with respect to τ since the mappings τ 7→ A(τ) and τ 7→ ξ(τ)
are differentiable according to Lemma 4.1.

Assumption (D2) can not be verified for the moment since we have not proved any
existence and uniqueness results for the state and adjoint state system in this master
thesis. This task is more involved and is postponed to future work.

In order to verify condition (D3) we assume that assumption (D2) is true and that
there exist constants c1, c2 > 0 such that

∀τ ∈ [0, τ̃ ] : ‖(uτ , pτ )‖X×X ≤ c1, ‖(wτ , zτ )‖X×X ≤ c2, (4.32)

where (uτ , pτ ) =: qτ ∈ E(τ), (wτ , zτ ) =: pτ ∈ Y (τ, qτ , q0). Note that (4.32) is
usually a consequence of (D2). We show that for all sequences (τn)n ↘ 0 there exists
a subsequence (τnk

)k ⊂ (τn)n such that

(i) ∃ pτnk ∈ Y (τnk
, qτnk , q0) : pτnk ⇀ p0 in X ×X,

(ii) (τ, ψ, ζ) 7→ G1(τ, u, p, ψ, ζ) is weakly continuous.

We start with (i). Let (τn)n ↘ 0. By (4.32) there exist a constant c1 > 0 such that
for all n ∈ N

‖(uτn , pτn)‖X×X ≤ c1.

Hence, (uτn , pτn)n ⊂ X×X is a bounded sequence in a reflexive Banach space. There-
fore there exists a subsequence (uτnk , pτnk )k ⊂ (uτn , pτn)n and z1, z2 ∈ X such that



4.2 Shape derivative of J1 and J2 55

(uτnk , pτnk ) ⇀ (z1, z2) in X × X. Since (uτnk , pτnk ) ∈ E(τnk
) we have (uτnk , pτnk ) ∈

X0 ×X0 and∫
QΩ

ξ(τnk
)∂tu

τnk ψ̂ dxdt+

∫
QΩ

A(τnk
)∇xu

τnk · ∇xψ̂ dxdt−
∫
QΩ

ξ(τnk
)pτnk ψ̂ dxdt

=

∫
QΩ

ξ(τnk
)f

τnk
1 ψ̂ dxdt ∀ψ̂ ∈ X0,

(4.33)

∫
QΩ

ξ(τnk
)∂tp

τnk ζ̂ dxdt+

∫
QΩ

A(τnk
)∇xp

τnk · ∇xζ̂ dxdt−
∫
QΩ

ξ(τnk
)uτnk ζ̂ dxdt

=

∫
QΩ

ξ(τnk
)f

τnk
2 ζ̂ dxdt ∀ζ̂ ∈ X0.

(4.34)

Using the weak convergence (uτnk , pτnk ) ⇀ (z1, z2), the continuity of the mappings
τ 7→ ξ(τ), τ 7→ A(τ) and that according to Lemma 4.5 f τ1 → f1 in L2(QΩ), f τ2 → f2

in L2(QΩ), we may pass to the limit k → ∞ in (4.33), (4.34) and obtain due to
E(0) = {(u, p)} that z1 = u, z2 = p. Hence, we conclude (uτnk , pτnk ) ⇀ (u, p) in
X×X. By assumption (4.32) the sequence (wτnk , zτnk )k is bounded. Therefore we can
extract a subsequence which is again denoted by (wτnk , zτnk )k and there exist q1, q2 ∈ X
such that (wτnk , zτnk ) ⇀ (q1, q2) in X ×X. Since (wτnk , zτnk ) ∈ Y (τnk

, qτnk , q0) there
holds

−
∫
QΩ

ξ(τnk
)∂tw

τnk ϕ̂ dxdt+

∫
QΩ

A(τnk
)∇xw

τnk · ∇xϕ̂ dxdt

−
∫
QΩ

ξ(τnk
)zτnk ϕ̂ dxdt = −

∫
QΩ

ξ(τnk
)(u0 + uτnk − 2u

τnk
d )ϕ̂ dxdt ∀ϕ̂ ∈ X0,

(4.35)

−
∫
QΩ

ξ(τnk
)∂tz

τnk η̂ dxdt+

∫
QΩ

A(τnk
)∇xz

τnk · ∇xη̂ dxdt

−
∫
QΩ

ξ(τnk
)wτnk η̂ dxdt = −

∫
QΩ

ξ(τnk
)(p0 + pτnk − 2p

τnk
d )η̂ dxdt ∀η̂ ∈ X0,

(4.36)

Using the weak convergence of the sequences (wτnk , zτnk ) ⇀ (q1, q2), (uτnk , pτnk ) ⇀
(u, p), the continuity of the mappings τ 7→ ξ(τ), τ 7→ A(τ) and that according to
Lemma 4.5 u

τnk
d → ud in L2(QΩ), p

τnk
d → pd in L2(QΩ) we may pass to the limit

k → ∞ in (4.35), (4.36) and obtain due to Y (0, q0) = {(w, z)} that q1 = w,q2 = z.
Hence, assertion (i) follows. Finally, note that (ii) is fulfilled and we conclude condi-
tion (D3).
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Even though we can not verify all conditions of Theorem 4.6, we will use it to
compute the shape derivative. A formal computation yields

dJ1(Ω;V ) = ∂τG1(0, u, p, w, z) =

∫
QΩ

div V |u− ud|2 dxdt

−
∫
QΩ

2(u− ud)∇xud · V dxdt+

∫
QΩ

div V |p− pd|2 dxdt

−
∫
QΩ

2(p− pd)∇xpd · V dxdt+

∫
QΩ

div V ∂tuw dxdt

+

∫
QΩ

(div V − ∂V − ∂V T )∇xu · ∇xw dxdt−
∫
QΩ

div V pw dxdt

−
∫
QΩ

div V f1w dxdt−
∫
QΩ

∇xf1 · V w dxdt+

∫
QΩ

div V ∂tpz dxdt

+

∫
QΩ

(div V − ∂V − ∂V T )∇xp · ∇xz dxdt−
∫
QΩ

div V uz dxdt

−
∫
QΩ

div V f2z dxdt−
∫
QΩ

∇xf2 · V z dxdt,

(4.37)

where (u, p) = (u0, p0) is solution to the state system (4.23) and (w, z) = (w0, z0) is
solution to the adjoint system which reads: Find (w, z) such that

−∂tw −∆w − z = −2(u− ud) in QΩ, (4.38a)

−∂tz −∆z − w = −2(p− pd) in QΩ, (4.38b)

w = 0 on ΣΩ, (4.38c)

z = 0 on ΣΩ, (4.38d)

w(T ) = 0 in Ω, (4.38e)

z(T ) = 0 in Ω. (4.38f)

The adjoint system can be derived out of the equations

dϕG1(0, u, p, w, z)(v) = 0 ∀v ∈ X0, (4.39)

dηG1(0, u, p, w, z)(q) = 0 ∀q ∈ X0. (4.40)

In the following we will show how to do that by deriving the adjoint equation for the
state u out of (4.39). Expression (4.39) is equivalent to∫
QΩ

∂tvw dxdt+

∫
QΩ

∇xv · ∇xw dxdt−
∫
QΩ

vz dxdt = −
∫
QΩ

2(u− ud)v dxdt ∀v ∈ X0.

Integration by parts with respect to the variable t yields∫
Ω

v(x, T )w(x, T ) dx−
∫

Ω

v(x, 0)w(x, 0) dx−
∫
QΩ

∂twv dxdt+∫
QΩ

∇xw · ∇xv dxdt−
∫
QΩ

vz dxdt = −
∫
QΩ

2(u− ud)v dxdt ∀v ∈ X0.

(4.41)
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Since v ∈ X0 and w ∈ X0 the first and second integral of (4.41) vanishes and we end
up with

−
∫
QΩ

∂twv dxdt+

∫
QΩ

∇xw · ∇xv dxdt−
∫
QΩ

vz dxdt =

−
∫
QΩ

2(u− ud)v dxdt ∀v ∈ X0.

(4.42)

Equation (4.42) is even well defined for v ∈ Y . Therefore a solution to the variational
formulation: Find w ∈ X0 such that

−
∫
QΩ

∂twv dxdt+

∫
QΩ

∇xw · ∇xv dxdt−
∫
QΩ

vz dxdt =

−
∫
QΩ

2(u− ud)v dxdt v ∈ Y,
(4.43)

is also a solution to (4.42) and hence dϕG1(0, u, p, w, z)(v) = 0 ∀v ∈ X0. We will
use variational formulation (4.43) for numerical implementation as it suits our setting
described in Chapter 2 better. Note that (4.43) is the weak formulation of

−∂tw −∆w − z = −2(u− ud) in QΩ, (4.44a)

w = 0 on ΣΩ (4.44b)

w(T ) = 0 in Ω. (4.44c)

The adjoint equation for z can be derived in the same way out of (4.40).

4.2.2 Shape derivative of J2
Recall model problem 2: For given functions ud, pd, f1, f2 ∈ C1(QD) we consider the
shape optimization problem

min
Ω∈A(D)

J2(u, p) :=

∫ T

0

∫
D

|u− ud|2 dxdt+

∫ T

0

∫
D

|p− pd|2 dxdt, (4.45)

where (u, p) ∈ X0 ×X0 is solution to

a1(Ω, u, v)− b(p, v) = F1(v) ∀v ∈ Y, (4.46a)

a2(Ω, p, q)− b(u, q) = F2(q) ∀q ∈ Y, (4.46b)
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with

a1(Ω, u, v) :=

∫
QD

∂tuv dxdt+

∫
QD

νΩ∇u · ∇v dxdt,

a2(Ω, p, q) :=

∫
QD

∂tpq dxdt+

∫
QD

λΩ∇p · ∇q dxdt

b(p, v) :=

∫
QD

pv dxdt,

F1(v) :=

∫
QD

f1v dxdt,

F2(q) :=

∫
QD

f2q dxdt,

where X0 :=
{
v ∈ X : v|ΣD0

= 0
}

, X = L2(0, T ;H1
0 (D))∩H1(0, T ;H−1(D)) and Y =

L2(0, T ;H1
0 (D)). The material parameters are given as νΩ := ν1χQΩ

+ν2(1−χQΩ
) and

λΩ := λ1χQΩ
+λ2(1−χQΩ

), where ν1, ν2, λ1, λ2 > 0 and χQΩ
denotes the characteristic

function. Note that in contrast to problem 1 the dependence of the functional J2 on Ω
is given only implicitly via the states u, p. We can now follow the same procedure as
in Section 4.2.1 to build the Lagrangian and to compute the shape derivative. We will
use again the Greek letters (ϕ, η, ψ, ζ) as variables while the roman letters (u, p, w, z)
are used for the solution of the state and adjoint state system. The Lagrangian L2 of
problem 2 reads

L2(Ω, ϕ, η, ψ, ζ) := J2(ϕ, η) + a1(Ω, ϕ, ψ) + b(η, ψ)− F1(ψ)

+ a2(Ω, η, ζ) + b(ϕ, ζ)− F2(ζ).

In order to compute the shape derivative we introduce the re-parametrized Lagrangian

G2 : [0, τ̃ ]×X0 ×X0 ×X0 ×X0 → R,
(τ, ϕ, η, ψ, ζ) 7→ G2(τ, ϕ, η, ψ, ζ),

G2(τ, ϕ, η, ψ, ζ) := L2(Ωτ , ϕ ◦ T−1
τ , η ◦ T−1

τ , ψ ◦ T−1
τ , ζ ◦ T−1

τ )

(4.47)

where X0 := {v ∈ X : v(x, T ) = 0, x ∈ D}.

Remark 4.4. In order to build the re-parametrized Lagrangian we assume

ϕ ∈ X0 ⇐⇒ ϕ ◦ T−1
τ ∈ X0

ψ ∈ X0 ⇐⇒ ψ ◦ T−1
τ ∈ X0.
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The re-parametrized Lagrangian G2 reads after a change of variables

G2(τ, ϕ, η, ψ, ζ) =

∫
QD

ξ(τ) |ϕ− uτd|
2 dxdt+

∫
QD

ξ(τ) |η − pτd|
2 dxdt

+

∫
QD

ξ(τ)∂tϕψ dxdt+

∫
QD

νΩA(τ)∇xϕ · ∇xψ dxdt

−
∫
QD

ξ(τ)ηψ dxdt−
∫
QD

ξ(τ)f τ1ψ dxdt

+

∫
QD

ξ(τ)∂tηζ dxdt+

∫
QD

λΩA(τ)∇xη · ∇xζ dxdt

−
∫
QD

ξ(τ)ϕζ dxdt−
∫
QD

ξ(τ)f τ2 ζ dxdt,

(4.48)

Note that the transformation Tτ does not change the hold all domain, meaning that
Tτ (D) = D, Tτ (∂D) = ∂D. Hence the domain of integration stays the same before
and after the change of variables. The shape derivative in terms of the Lagrangian G2

reads

dJ2(Ω;V ) =
d

dτ
J2(Ωτ ) =

d

dτ
G2(τ, uτ , pτ , ψ, ζ)|τ=0 , (4.49)

where (uτ , pτ ) solves

∫
QD

ξ(τ)∂tu
τψ dxdt+

∫
QD

νΩA(τ)∇xu
τ · ∇xψ dxdt−

∫
QD

ξ(τ)pτψ dxdt

=

∫
QD

ξ(τ)f τ1ψ dxdt ∀ψ ∈ Y, (4.50a)∫
QD

ξ(τ)∂tp
τζ dxdt+

∫
QD

λΩA(τ)∇xp
τ · ∇xζ dxdt−

∫
QD

ξ(τ)uτζ dxdt

=

∫
QD

ξ(τ)f τ2 ζ dxdt ∀ζ ∈ Y. (4.50b)

In order to compute the shape derivative we again want to make use of Theorem 4.6.
Assumptions (D0),(D1),(D3) can be shown analogously as in section 4.2.1 described.
However, assumption (D2) can not be verified for the moment since we have not
considered any existence and uniqueness results to the state and adjoint state system,
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respectively. Nevertheless we apply Theorem 4.6 to (4.49) and get

dJ2(Ω;V ) = ∂τG2(0, u, p, w, z) =

∫
QD

div V |u− ud|2 dxdt

−
∫
QD

2(u− ud)∇xud · V dxdt+

∫
QD

div V |p− pd|2 dxdt

−
∫
QD

2(p− pd)∇xpd · V dxdt+

∫
QD

div V ∂tuw dxdt

+

∫
QD

(div V − ∂V − ∂V T )νΩ∇xu · ∇xw dxdt−
∫
QD

div V pw dxdt

−
∫
QD

div V f1w dxdt−
∫
QD

∇xf1 · V w dxdt+

∫
QD

div V ∂tpz dxdt

+

∫
QD

(div V − ∂V − ∂V T )λΩ∇xp · ∇xz dxdt−
∫
QD

div V uz dxdt

−
∫
QD

div V f2z dxdt−
∫
QD

∇xf2 · V z dxdt,

(4.51)

where (u,p) solves (4.46) and (w, z) is solution to the adjoint system which reads

−∂tw − div (νΩ∇w)− z = −2(u− ud) in QD, (4.52a)

−∂tz − div (λΩ∇z)− w = −2(p− pd) in QD, (4.52b)

w = 0 on ΣD, (4.52c)

z = 0 on ΣD, (4.52d)

w(T ) = 0 in D, (4.52e)

z(T ) = 0 in D. (4.52f)

4.3 Numerical algorithm

In this section we focus on the numerical method which is used to solve model problem
1 and 2. First of all we summarize the main steps of the algorithm and describe the
procedure. Afterwards we discuss the computation of a descent direction in more detail
and demonstrate how one can obtain it in an advantageous manner in a parabolic
setting.

Let us briefly summarize the main ideas of the algorithm. The presented algorithm
is of gradient-type and makes use of the shape derivatives dJ1(Ω;V ) and dJ2(Ω;V )
computed in the previous section in order to generate descent directions. First of all
we have to solve the state equations (4.23), (4.46) also known as forward problem
to get the states u, p. We solve this problem by using space-time finite elements as
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explained in Chapter 2. Next we have to solve the adjoint problems (4.38),(4.52) also
known as backward problem to get the adjoint states w, z. This is also done by using
the approach explained in Chapter 2. Afterwards we compute a descent direction V
via an auxiliary boundary value problem as explained in (3.17). In the last step we
choose a step size τ and move every node of the finite element mesh according to the
step size in direction V . This procedure results in the following algorithm:

Algorithm 4.7. Choose an initial design Ω0.
For n = 0, 1, 2, ... until converge,

(1) Solve (4.23) to obtain un, pn

(2) Solve (4.38) to obtain wn, zn

(3) Find a vector field Vn such that dJ1(Ωn;Vn) < 0

(4) Choose a step size τn according to the step size rule

(5) Set Ωn+1 = (id+ τnVn)(Ωn)

Remark 4.5. Algorithm 4.7 is written in terms of model problem 1. If one wants to solve
model problem 2 replace (4.23),(4.38),dJ1(Ωn;Vn) with (4.46),(4.52),dJ2(Ωn;Vn).

Let us comment on step 3 of the algorithm. We have to compute a descent direction
which only acts on the space variables and lets the time variable unaffected. This is
different to a shape optimization problem in an elliptic setting, but we will see that it
can be done in a similar way. We explain the computation of a descent direction in
terms of model problem 1.

In order to determine a descent direction we solve the auxiliary boundary value
problem: Find V ∈ C1(Ω,Rd) such that∫

Ω

∂xV : ∂xW + V ·Wdxdt = −dJ1(Ω,W ) ∀W ∈ C1(Ω,Rd). (4.53)

This can be done in the following way: First we compute a vector field Ṽ ∈ C1(QΩ,Rd)
as solution to the boundary value problem∫

QΩ

∂xṼ : ∂xW̃ + Ṽ · W̃dx = −dJ1(Ω; W̃ ) ∀W̃ ∈ C1(QΩ,Rd). (4.54)

Note that the solution Ṽ to (4.54) is time dependent. This is not what we want to
have since a time dependent vector field would lead to geometries which change in
time. To overcome this issue we compute in a second step a time independent vector
field V by averaging the vector field Ṽ with respect to the time variable, i.e.

V (x) =

∫ T

0

Ṽ (x, s)ds. (4.55)
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The vector field V ∈ C1(Ω,Rd) then solves (4.53). This can be seen by testing (4.54)
with W ∈ C1(Ω,Rd) which yields

−dJ1(Ω;W ) =

∫
QΩ

∂xṼ : ∂xW + Ṽ ·Wdxdt

=

∫
Ω

∂xV : ∂xW + V ·Wdx ∀W ∈ C1(Ω,Rd),

where we used the fact that∫
QΩ

Ṽ ·Wdxdt =

∫
Ω

∫ T

0

d∑
j=1

Ṽj(x, t)Wj(x)dtdx

=

∫
Ω

d∑
j=1

∫ T

0

Ṽj(x, t)Wj(x)dtdx =

∫
Ω

d∑
j=1

Vj(x)Wj(x)dx

=

∫
Ω

V ·Wdx,

and ∫
QΩ

∂xṼ : ∂xWdxdt =

∫
Ω

∫ T

0

d∑
i,j=1

∂jṼi(x, t)∂jWi(x)dtdx

=

∫
Ω

d∑
i,j=1

∂jWi(x)∂j

∫ T

0

Ṽ (x, t)dtdx =

∫
Ω

∂xV : ∂xWdx.

Remark 4.6. A descent direction for model problem 2 can be computed in the same
way as described above. One just has to replace Ω by D, the space C1 by C1

c and dJ1

by dJ2.

4.4 Results for model problem 1

In this section we apply Algorithm 4.7 to model problem 1. We present numerical
examples in one and two space variables, respectively. The implementation is done in
the finite element software Netgen/NGSolve [31].

4.4.1 1d-1d

In this example we choose Ωref = (0, 1) and T = 1. Thus, QΩref
= (0, 1)2, which is

the unit square. We choose the functions ud, pd to be

ud(x, t) = sin(πx) sin(πt) for (x, t) ∈ Qref ,

pd(x, t) = x(1− x)t(1− t) for (x, t) ∈ Qref .



4.4 Results for model problem 1 63

iteration J1 Ω

0 1.043e-01 (0.2, 0.8)
3 4.477e-02 (0.109, 0.89)
7 2.227e-04 (0.007, 0.993)
15 3.487e-09 (0, 1)

Table 4.1: Evolution of cost J1 and domain Ω for problem (4.22)-(4.23) with d = 1

and determine f1, f2 such that ud, pd is solution to (1.18) onQΩref
. Hence, the functions

f1, f2 read

f1(x, t) = −pd(x, t) + π cos(πt) sin(πx) + π2 sin(πt) sin(πx) for (x, t) ∈ QΩref
,

f2(x, t) = −ud(x, t) + x(1− x)(1− 2t) + 2t(1− t) for (x, t) ∈ QΩref
.

We choose as initial domain Ω = (0.2, 0.8) which result in QΩ = (0.2, 0.8) × (0, 1).
Due to the chosen functions we expect that the initial shape Ω converges to Ωref . In
the numerical test we solved all arising PDEs with piecewise quadratic and globally
continuous finite elements and choose the step size to be τ = 0.3 in every iteration.

In Table 4.1 and Figure 4.1 one can see the numerical results. Table 4.1 shows
the evolution of the cost J1 and the domain Ω while in Figure 4.1 one can see the
corresponding computational domains QΩ. We observe that after 15 iterations the
domain Ω is basically identical to the reference domain Ωref with cost J1=3.487e-09.
Moreover, we see that the mesh quality over the optimization process is satisfying.

4.4.2 2d-1d

In this example we consider model problem 1 in two spatial coordinates, i.e. d = 2.
In the numerical test we choose the reference domain Ωref := (0, 1)2 and T = 1. The
reference space-time cylinder is then simply the unit cube, i.e. Qref = (0, 1)3. We
choose the functions ud, pd to be

ud(x, y, t) = sin(πx) sin(πy) sin(πt) for (x, y, t) ∈ Qref ,

pd(x, y, t) = x(1− x)y(1− y)t(1− t) for (x, y, t) ∈ Qref ,

and determine f1, f2 such that ud, pd is solution to (1.18) on the reference space-time
cylinder. The functions f1, f2 are therefore given by

f1(x, y, t) = −pd(x, y, t) + π sin(πx) sin(πy) cos(πt)

+ 2π2ud(x, y, t) for (x, y, t) ∈ Qref ,

f2(x, y, t) = −ud(x, y, t) + x(1− x)y(1− y)(1− 2t) + 2y(1− y)t(1− t)
+ 2x(1− x)t(1− t) for (x, y, t) ∈ Qref .
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(a) iteration: 0 (b) iteration: 3

(c) iteration: 7 (d) iteration: 15

Figure 4.1: Evolution of the computational domain QΩ for problem (4.22)-(4.23) with
d = 1
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iteration J1

0 5.078e-02
5 4.104e-04
10 2.632e-04
20 1.237e-04
80 1.362e-05
200 3.565e-06

Table 4.2: Evolution of cost function J1 for problem (4.22)-(4.23) with d = 2

We choose our initial domain to be Ω := (0.2, 0.8)2 and thus the space-time cylinder
reads QΩ = (0.2, 0.8)2 × (0, 1). Moreover, all arising PDEs were solved with piecewise
quadratic and globally continuous finite elements. Since the functional (1.17) is of
tracking type we expect that the initial domain Ω converge to Ωref . In the numerical
test we used a constant step size of τ = 1.3 in every iteration.

The results of the simulation are shown in Table 4.2 and Figure 4.2. Table 4.2
shows the values of the objective function J1 while Figure 4.2 depicts the evolution
of shape Ω. We observe that the values of the cost function decrease from 5.078e-02
in iteration 0 to 3.565e-06 in iteration 200. Moreover, we see that the initial domain
converges as expected to the reference domain. Finally, we want to mention that after
200 iterations we still observed a decrease of the objective functional in every iteration
step.

4.5 Results for model problem 2

In this section we apply Algorithm 4.7 to model problem 2. We present numerical
examples in one and two space variables, respectively. The implementation is done in
the finite element software Netgen/NGSolve [31].

4.5.1 1d-1d

We choose D = (0, 1), Ω = (0.2, 0.8), Ωref = (0.4, 0.6) and T = 1. We assume that the
material in the domain QΩ corresponds to iron while the domain QD \QΩ corresponds
to air. The particular choice of the material leads to the material coefficients

νΩ =

{
1

µ0µr1
in QΩ

1
µ0µr2

in QD \QΩ

, λΩ =

{
80.2 in QΩ

0.0262 in QD \QΩ

,
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(a) iteration: 0 (b) iteration: 5

(c) iteration: 10 (d) iteration: 20

(e) iteration: 80 (f) iteration: 200

Figure 4.2: Evolution of the domain Ω for problem (4.22)-(4.23) with d = 2
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iteration J2 Ω

0 1.107e-03 (0.2, 0.8)
2 1.134e-04 (0.3182, 0.6818)
5 2.273e-05 (0.3581, 0.6419)
10 4.907e-06 (0.3789, 0.6211)
20 6.259e-07 (0.3921, 0.6078)
50 2.417e-08 (0.3991, 0.6009)

Table 4.3: Evolution of the objective function J2 and domain Ω for problem (4.45)-
(4.46) with d = 1

where µ0 = 4π
107 , µr1 = 5100, µr2 = 1. We choose the functions f1, f2 to be

f1(x, t) = −x(1− x)t(1− t) + π cos(πt) sin(πx) + π2 sin(πt) sin(πx) for (x, t) ∈ QD,

f2(x, t) = − sin(πx) sin(πt) + x(1− x)(1− 2t) + 2t(1− t) for (x, t) ∈ QD.

The functions ud, pd are chosen as numerical solution to (1.21) onQD where we used the
material parameters νΩref

, λΩref
, i.e. we assume our reference geometry to consist of

iron in Ωref and air in D \Ωref . With these settings we expect that the initial domain,
which consists of iron in Ω and air in D \ Ω, converges to the reference geometry.
We solved all arising PDEs with piecewise quadratic and globally continuous finite
elements and used a constant step size of τ = 100 in every iteration.

The numerical results can be seen in Table 4.3 and Figure 4.3. Table 4.3 shows the
objective value J2 and the interval Ω in different iterations while Figure 4.3 depicts the
evolution of the computational domain QD. The blue area in Figure 4.3 indicates iron
while the area in red corresponds to air. We observe that the objective value decreases
from a start value of 1.107e-03 to 2.417e-08 in iteration 50. Further we see that the
interval converge from (0.2, 0.8) to (0.3991, 0.6009) which is almost Ωref . Hence the
simulation fulfills our expectations. Finally we want to mention that also the mesh
quality is satisfying during the whole optimization process as one can see in Figure
4.3.

4.5.2 2d-1d

In this example we consider model problem 2 in two spatial coordinates, i.e. d =
2. We choose D = (0, 1)2, T = 1, Ω = (0.35, 0.65)2, x0 = (0.5, 0.5)T and Ωref =
{x ∈ D : ‖x− x0‖2 < 0.3}. We assume that the material in the domains Ω, Ωref

corresponds to air while D \ Ω, D \ Ωref has the material properties of iron. Hence
the reference computational domain can be imagined as an iron cube with a hole of
radius 0.3. The initial computational domain can be viewed as an iron cube with a
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(a) iteration: 0 (b) iteration: 2

(c) iteration: 5 (d) iteration: 10

(e) iteration: 20 (f) iteration: 50

Figure 4.3: Evolution of the computational domain QD for problem (4.45)-(4.46) with
d = 1, blue: iron, red: air
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iteration J2

0 2.815e-03
2 1.802e-03
5 5.502e-04
10 4.088e-05
50 1.155e-06
100 9.608e-07

Table 4.4: Evolution of the objective function J2 for problem (4.45)-(4.46) with d = 2

square hole. We choose the material parameters

νΩ =

{
1

µ0µr1
in QΩ

1
µ0µr2

in QD \QΩ

, λΩ =

{
0.0262 in QΩ

80.2 in QD \QΩ

,

where µ0 = 4π
107 , µr1 = 1, µr2 = 5100. The functions f1, f2 read

f1(x, y, t) = −x(1− x)y(1− y)t(1− t) + π sin(πx) sin(πy) cos(πt)

+ 2π2ud(x, y, t) for (x, y, t) ∈ QD,

f2(x, y, t) = − sin(πx) sin(πy) sin(πt) + x(1− x)y(1− y)(1− 2t) + 2y(1− y)t(1− t)
+ 2x(1− x)t(1− t) for (x, y, t) ∈ QD.

The functions ud, pd are chosen as numerical solution to (1.21) on the reference geom-
etry, i.e. we used νΩref

and λΩref
as material coefficients. Through these settings we

expect that the initial geometry converges to the reference geometry. We solved all
PDEs in the algorithm with piecewise linear and globally continuous finite elements.
The step size was chosen with τ = 10 in every iteration.

In Table 4.4 and Figure 4.4 one can see the numerical results. Table 4.4 shows
the objective value J2 in different iterations. We observe that the value of the cost
function decreases from 2.815e-03 in iteration 0 to 9.608e-07 in iteration 100. Figure
4.4 depicts the evolution of the domain D. The blue area indicates the material
corresponding to iron while the red area characterizes air. One can clearly see that
the initial shape converges to the reference shape. Thus the numerical simulation
fulfills our expectations.
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(a) iteration: 0 (b) iteration: 2

(c) iteration: 5 (d) iteration: 10

(e) iteration: 50 (f) iteration: 100

Figure 4.4: Evolution of the domain D for problem (4.45)-(4.46) with d = 2, blue:
iron, red: air



5 Shape optimization of an
asynchronous motor

In this chapter we apply the presented shape optimization techniques to an asyn-
chronous motor in order to determine an optimal rotor design with respect to a given
performance criterion. We want to mention that we do not use any parallel imple-
mentation of the shape optimization algorithm. Hence, we are restricted in the time
scale of the geometric model in order to keep the dimensions of the resulting linear
system low. Further, we restrict ourselves to a linear model of (1.16) in order to keep
things simple. Moreover, we consider a fixed position of the rotor in our simulations.
For the above reasons the obtained results have to be understood as proof of concept,
meaning that parabolic shape optimization using space-time finite elements can work
for this real world application. In order to obtain more practically relevant results one
has to take parallel implementation and the nonlinearity in the physical model into
account. Since this is beyond the scope of this master thesis we postpone these tasks
to future work.

This chapter is organized as follows: First we explain the shape optimization prob-
lem and specify problem (1.16) to our concrete application. Next, we discuss the
solvability of the state system. Further we derive the shape derivative of the shape
optimization problem which we need to set up a gradient-based algorithm. Finally,
we apply the algorithm and present some first numerical results.

5.1 Problem formulation

We consider an asynchronous electric motor with a squirrel cage rotor. A schematic
construction can be seen in Figure 5.1(a). The motor consists of a fixed part called
stator and a rotating part called rotor which are separated by a thin air gap, cf. [12].
The stator consists of coils made of copper which are highlighted in red. The rotor
contains aluminum bars, marked in yellow, which are set into grooves and connected
at both ends via shorting rings forming a cage-like shape, cf. [44]. We refer to the
geometry depicted in Figure 5.1(a) as computational domain D ⊂ R2. The colors
indicate the areas in the motor with different material. Blue corresponds to iron/steel,
red to copper, yellow to aluminum and green to air. We denote the associated domains
with ΩFe, ΩCu, ΩAl and Ωair, respectively.

71
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(a) (b)

Figure 5.1: (a) Computational domain D, blue: iron, red: copper, green: air, yellow:
aluminum, (b) Design domain Ωd (red)

Remark 5.1 (cf. [12]). For the simulation of electrical machines the computational
domain D typically includes a layer of air around the stator. The reason for this is
that one assumes a homogeneous Dirichlet boundary condition on the boundary ∂D,
which implies that B · n|∂D = 0. This boundary condition in the context of an electric
motor is more realistic if the computational domain D includes a layer of air outside
the stator.

The design of the rotor grooves and hence the aluminum bars have an impact on the
speed-torque characteristics of the induction motor, cf. [44]. We refer the reader to [5,
Chapter 6.3] for different designs of the bars and their influence on the speed-torque
characteristics. We are interested in finding an optimal design of the rotor bars such
that the overall Joule losses in the rotor due to the harmonics are minimized. In order
to reach that goal we start from the layout in Figure 5.1(a) and apply shape optimiza-
tion techniques based on the shape derivative to find an optimal shape of aluminum
inside the rotor. Therefore we first need a suitable formulation as a shape optimization
problem. We state the problem in the following.

In order to describe the electromagnetic-thermal coupling in the induction motor
we use model (1.16). Note that (1.16) is a model for a motor geometry in two space
dimensions. We already mentioned that for simulating electrical machines it is common
to use a two dimensional geometry in space since the axial dimension of the motor
is large compared to its diameter, cf. [12]. Moreover we restrict (1.16) to the linear
case, i.e. we assume linear material behavior meaning that ν, λ, σ only depend on
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space and we neglect the nonlinear term on the right side of (1.16b). Further the
magnetization term on the right hand side of (1.16a) vanishes since we do not have
any permanent magnets in the induction motor. In order to state the mathematical
model we introduce the set Ωd ⊂ D, which denotes the design domain. The design
domain can be seen in Figure 5.1(b) which corresponds to the rotor of the motor.
Note that the design domain stays fixed during the whole optimization process. We
denote by Ω ⊂ Ωd those parts in the design domain which are currently occupied with
aluminum. The current configuration of iron in the motor is then given by

Ωf := (Ωd \ Ω) ∪ ΩFe,s,

where (Ωd \ Ω) corresponds to the iron in the rotor and ΩFe,s denotes the iron in the
stator. We denote by ΓI,ν and ΓI,λ the interface, where the corresponding material
parameters ν, λ jump, respectively. The problem reads

min
Ω∈A

J(p) :=

∫ T

0

∫
Ωd

|p|2 dxdt (5.1)

such that

σΩ∂tu− div (νΩ∇u) = J3 in D × (0, T ), (5.2a)

cH,Ω%Ω∂tp− div (λΩ∇p) = −J3∂tu in D × (0, T ), (5.2b)

u = 0 on ∂D × (0, T ), (5.2c)

p = g on ∂D × (0, T ), (5.2d)

u (., 0) = 0 in D, (5.2e)

p(., 0) = p0 in D, (5.2f)

JuK = 0 on ΓI,ν × (0, T ), (5.2g)

JνΩ∇u · nK = 0 on ΓI,ν × (0, T ), (5.2h)

JpK = 0 on ΓI,λ × (0, T ), (5.2i)

JλΩ∇p · nK = 0 on ΓI,λ × (0, T ), (5.2j)

where the set of admissible shapes A is given by

A := {Ω ⊂ Ωd : Ω open, Lipschitz with uniform Lipschitz constant LA} . (5.3)

The boundary condition p = g on ∂D×(0, T ) denotes the temperature on the boundary
of the air layer outside the stator in the simulation interval (0, T ) and we choose
g = 295.15 Kelvin which corresponds to room temperature. The initial condition
p(., 0) = p0 in D denotes the temperature inside the motor at initial time t = 0. We
choose p0 = 295.15 Kelvin. The material parameters read

νΩ =

{
1
µ0

in Ω ∪ ΩCu ∪ Ωair

1
4000µ0

in Ωf

, σΩ =


37.7 · 106 in Ω

58 · 106 in ΩCu

0 in Ωair

107 in Ωf
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λΩ =


236 in Ω

0.1 in ΩCu

0.026 in Ωair

40 in Ωf

, cH,Ω =


897 in Ω

400 in ΩCu

1005 in Ωair

465 in Ωf

, %Ω =


2.6989 · 103 in Ω

8.94 · 103 in ΩCu

1.293 in Ωair

7.86 · 103 in Ωf

,

where µ0 = 4π
107 . Note that the objective function J in (5.1) depends implicitly on the

shape Ω via the state p = p(Ω). The states u = u(Ω), p = p(Ω) depend on Ω via the
material parameters. Further we see that the reluctivity νΩ of copper and aluminum
are the same as for air meaning that the ferromagnetic behavior of these materials are
equal.

5.2 Analysis of the state system

In this section we discuss the solvability of (5.2). The key observation is that the
system is decoupled meaning that the boundary value problem associated to (5.2a)
is independent of the temperature p. Hence, we can show existence and uniqueness
of a solution (u, p) to (5.2) in the following way: In a first step we show that there
exists a unique solution u to the eddy current problem, that is (5.2a) together with the
corresponding boundary, initial and interface conditions. In a second step we use this
solution in order to show that there exists a unique solution p to the heat conduction
problem, that is (5.2b) together with the corresponding boundary, initial and interface
conditions. For the analysis of the eddy current problem we focus on the approach in
[2], [3], [4], [19], while for the analysis of the heat conduction problem we focus on the
space-time approach by Steinbach [35], [36] and [37].

5.2.1 Preliminaries

In this section we state the theorems which we will need to state existence and unique-
ness results of the state system (5.2). The definitions and results are taken from
[11, 46].

We start with the definition of an evolution triple.

Definition 5.1 ([46, Def. 23.11]). The triple (V,H, V ∗) is called evolution triple if

(i) (V, ‖.‖V ) is a real, separable and reflexive Banach space,

(ii) (H, (., .)H) is a real, separable Hilbert space,

(iii) the embedding V ↪→ H is dense and continuous, i.e. V ⊆ H, V
‖.‖H = H and

there exists a c > 0 such that ‖x‖H ≤ c‖x‖V for all x ∈ V .

The following theorem states existence and uniqueness of an abstract evolution
equation. We will need this theorem in order to show that the eddy current problem
has a unique solution.
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Theorem 5.1. Let (V,H, V ∗) be an evolution triple. Let A : L2(0, T ;V )→ L2(0, T ;V ∗)
be linear. Further assume that A is bounded and coercive, i.e. there exist constants
cA1 , c

A
2 > 0 such that

|〈Au, v〉| ≤ cA2 ‖u‖L2(0,T ;V )‖v‖L2(0,T ;V ) ∀u, v ∈ L2(0, T ;V ) and

〈Au, u〉 ≥ cA1 ‖u‖
2
L2(0,T ;V ) ∀u ∈ L2(0, T ;V ),

where 〈., .〉 denotes the duality pairing. Suppose furthermore that F ∈ L2(0, T ;V ∗)
and u0 ∈ H. Then the initial value problem

∂tu+ Au = F in L2(0, T ;V ∗),

u(0) = u0,

has a unique solution u ∈ L2(0, T ;V ) with weak derivative ∂tu ∈ L2(0, T ;V ∗).

Proof. A proof can be found in [46, Thm. 23.A, Cor. 23.24]

Next, we state a theorem which we will need to show that the heat conduction
problem has a unique solution.

Theorem 5.2 (Banach-Nečas-Babuška). Let X be a Banach space and let Y be a
reflexive Banach space. Let a ∈ L(X × Y,R) and f ∈ Y ′. The variational problem:

Find u ∈ X : a(u, v) = f(v) ∀v ∈ Y

has a unique solution if and only if the following conditions hold:

(i)

∃α > 0 inf
u∈X

sup
v∈Y

a(u, v)

‖u‖X‖v‖Y
≥ α,

(ii)

∀v ∈ Y, (∀u ∈ X, a(u, v) = 0)⇒ v = 0.

Moreover, the following a priori estimate holds:

‖u‖X ≤
1

α
‖f‖Y ′ .

Proof. A proof can be found in [11, Theorem 2.6]
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5.2.2 Eddy current problem

In this section we discuss the existence and uniqueness of a solution to the initial
boundary value problem associated to (5.2a). This initial boundary value problem
corresponds to a two dimensional eddy current problem. One feature of eddy cur-
rent problems in general is that they are different for conducting (σΩ > 0) and non-
conducting (σΩ = 0) regions. In conducting regions they turn out to be of parabolic
type, whereas in non-conducting regions they reduce to an elliptic problem [19]. The
strategy for showing existence and uniqueness results is based on the observation that
the solution in the non-conducting domain is uniquely determined by the solution in
the conducting domain [3]. Hence, one is able to reformulate the variational formu-
lation in terms of the solution to the conducting region and can apply standard tools
to show existence and uniqueness of a solution, cf. [19]. We will explain the crucial
steps in more detail in the following. We follow the lines in [3, 19] and adapt them to
our setting. We introduce the domains

Ω1 := Ω ∪ Ωf ∪ ΩCu,

Ω2 := Ωair.

The domain Ω1 consists of those parts of the computational domain D where the
conductivity is greater zero and the domain Ω2 corresponds to those parts of D where
the conductivity is equal to zero. The eddy current problem in more detail reads: Find
u : D × (0, T )→ R such that

σ1∂tu− div (ν1∇u) = J3 in Ω1 × (0, T ), (5.4a)

− div (ν2∇u) = 0 in Ω2 × (0, T ), (5.4b)

u = 0 on ∂D × (0, T ), (5.4c)

u(., 0) = 0 in Ω1, (5.4d)

JuK = 0 on ΓI,ν × (0, T ), (5.4e)

JνΩ∇u · nK = 0 on ΓI,ν × (0, T ), (5.4f)

where σ1 := σΩ|Ω1
, νi := νΩ|Ωi

for i = 1, 2. Note that the source current J3 only acts
in the coils of the motor, i.e. supp (J3) ⊂ ΩCu. Therefore we have no source term in
Ω2. Further note that ν1 is a piecewise constant function while ν2 is a constant. In
the following we will make use of the notation ui := u|Ωi

for i = 1, 2.

We show that there exists a unique solution to (5.4) in the following way: First,
we show that there exists a unique solution u2 in the non-conducting domain, which
depends on u1. In a second step we exploit this fact to show that there exists a unique
solution u1 in the conducting domain. For this reason we start with the observation
that the solution in the conducting domain u2 is given by the solution of the boundary
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value problem: For given u1 ∈ L2(0, T ;H1(Ω1)) find u2 such that

− div (ν2∇u2) = 0 in Ω2 × (0, T ), (5.5a)

u2 = 0 on ∂D × (0, T ), (5.5b)

u2 = u1 on ΓI,c × (0, T ), (5.5c)

where ΓI,c denotes the material interface where the conductivity σΩ jumps from σΩ = 0
to σΩ > 0. One can see that u1 together with the condition (5.4c) provide the boundary
conditions for the boundary value problem in (5.5). It is well known that (5.5) obtains
a unique solution by the lemma of Lax-Milgram. Hence, one can define the operator

H : L2(0, T ;H1(Ω1))→ L2(0, T ;H1(Ω2)), u1 7→ H(u1) = u2, (5.6)

which maps a given u1 ∈ L2(0, T ;H1(Ω1)) to the unique solution u2 ∈ L2(0, T ;H1(Ω2))
of (5.5). Note that this operator is linear and bounded. To be more precise there exists
a constant cH2 > 0 such that

‖H(u1)‖L2(0,T ;H1(Ω2)) ≤ cH2 ‖u1‖L2(0,T ;H1(Ω1)) ∀u1 ∈ L2(0, T ;H1(Ω1)). (5.7)

Estimation (5.7) is a consequence of the a priori estimate from the lemma of Lax-
Milgram and the boundedness of the trace operator. Introducing the space

Z =

u ∈ L2(0, T ;H1(D)) :
u1 ∈ L2(0, T ;H1

∗ (Ω1)),
u2 = H(u1),
u = 0 on ∂D × (0, T )

 , (5.8)

where

H1
∗ (Ω1) :=

{
v ∈ H1(Ω1) :

∫
Ω1

v dx = 0

}
,

the variational formulation of (5.4) reads: Find u ∈ Z with ∂tu ∈ Z∗ and u(., 0) = 0
in Ω1 such that∫ T

0

∫
Ω1

σ1∂tuv dxdt+

∫ T

0

∫
Ω1

ν1∇u · ∇v dxdt+

∫ T

0

∫
Ω2

ν2∇u · ∇v dxdt

=

∫ T

0

∫
Ω1

J3v dxdt ∀v ∈ Z.
(5.9)

The variational formulation (5.9) can be rewritten in terms of the function u1 which
reads: Find u1 ∈ L2(0, T ;H1

∗ (Ω1)) with ∂tu1 ∈ L2(0, T ; (H1
∗ (Ω1))∗) and u1(0) = 0 such

that ∫ T

0

∫
Ω1

σ1∂tu1v1 dxdt+

∫ T

0

∫
Ω1

ν1∇u1 · ∇v1 dxdt

+

∫ T

0

∫
Ω2

ν2∇H(u1) · ∇H(v1) dxdt =

∫ T

0

∫
Ω1

J3v1 dxdt,

(5.10)

for all v1 ∈ L2(0, T ;H1
∗ (Ω1)).
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Theorem 5.3. Let J3 ∈ L2(0, T ; (H1
∗ (Ω1))∗) and let the operator H be defined as

in (5.6). Then there exists a unique solution u1 ∈ L2(0, T ;H1
∗ (Ω1)) with ∂tu1 ∈

L2(0, T ; (H1
∗ (Ω1))∗) to the variational formulation (5.10).

Proof. Defining the operator A : L2(0, T ;H1
∗ (Ω1))→ L2(0, T ; (H1

∗ (Ω1))∗)

〈Au1, v1〉 :=

∫ T

0

∫
Ω1

ν1∇u1 · ∇v1 dxdt+

∫ T

0

∫
Ω2

ν2∇H(u1) · ∇H(v1) dxdt, (5.11)

where 〈., .〉 denotes the duality pairing and u1, v1 ∈ L2(0, T ;H1
∗ (Ω1)), the variational

formulation (5.10) is equivalent to the operator equation

σ1∂tu1 + Au1 = J3 in L2(0, T ; (H1
∗ (Ω1))∗), (5.12a)

u1(0) = 0. (5.12b)

We apply Theorem 5.1 to (5.12). First note that by setting V = H1
∗ (Ω1), H = L2(Ω1)

the triple (V,H, V ∗) is an evolution triple. The operator A is linear since H is linear.
Using the Cauchy-Schwarz inequality, estimate (5.7) and that the material parameter
νΩ is uniformly bounded, i.e.

∃ ν, ν > 0 : ν ≤ νΩ(x, t) ≤ ν ∀(x, t) ∈ D × (0, T )

we conclude that for all u1, v1 ∈ L2(0, T ;H1
∗ (Ω1)) there holds

|〈Au1, v1〉| ≤ ν̄‖∇u1‖L2(QΩ1
)‖∇v1‖L2(QΩ1

) + ν̄‖∇H(u1)‖L2(QΩ2
)‖∇H(v1)‖L2(QΩ2

)

≤ ν̄‖u1‖L2(0,T ;H1(Ω1))‖v1‖L2(0,T ;H1(Ω1)) + ν̄‖Hu1‖L2(0,T ;H1(Ω2))‖Hv1‖L2(0,T ;H1(Ω2))

= ν̄
(

1 +
(
cH2
)2
)
‖u1‖L2(0,T ;H1(Ω1))‖v1‖L2(0,T ;H1(Ω1)),

where QΩi
:= Ωi × (0, T ) for i = 1, 2. Hence, the operator A is bounded. Since

‖∇w‖L2(QΩ1
) defines an equivalent norm in L2(0, T ;H1

∗ (Ω1)) there exists a constant

c1 > 0 such that

c1‖w‖L2(0,T ;H1(Ω1)) ≤ ‖∇w‖L2(QΩ1
) ∀w ∈ L

2(0, T ;H1
∗ (Ω1)). (5.13)

Using the boundedness of the material parameter νΩ, the estimate ‖∇H(u1)‖L2(QΩ2
) ≥

0 and estimate (5.13) we conclude

〈Au1, u1〉 ≥ ν‖∇u1‖2
L2(QΩ1

) + ν‖∇H(u1)‖2
L2(QΩ2

)

≥ ν‖∇u1‖2
L2(QΩ1

)

≥ νc2
1‖u1‖2

L2(0,T ;H1(Ω1)),

which gives coercivity of the operator A. By Theorem 5.1 there exists a unique solution
u1 ∈ L2(0, T ;H1

∗ (Ω1)) with ∂tu1 ∈ L2(0, T ; (H1
∗ (Ω1))∗).
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5.2.3 Heat conduction problem

In this section we show the existence and uniqueness of a solution to the initial bound-
ary value problem associated to (5.2b) using the fact that there exists a unique solution
u to the eddy current problem. This section is based on [35].

Let T > 0 and QD := D × (0, T ) be the space time cylinder of the computational
domain D. Further let ΣD := ∂D × (0, T ) and ΣD0 := D × {0}. We introduce the
spaces

X := L2(0, T ;H1
0 (D)) ∩H1(0, T ;H−1(D)), (5.14a)

X0 :=
{
v ∈ X : v|ΣD0

= 0
}
, (5.14b)

Y := L2(0, T ;H1
0 (D)). (5.14c)

Since the boundary as well as the initial data on the state p can be seen as Dirichlet
data in the space time cylinder (cf. [35]) we choose the ansatz p = p̄+ p̄0, where p̄ ∈ X0

and p̄0 ∈ L2(0, T ;H1(D))∩H1(0, T ;H−1(D)) denotes an arbitrary but fixed extension
of the given boundary and initial data. The Petrov-Galerkin variational formulation
of (5.2b) is to find p̄ ∈ X0 such that

a(p̄, q) = F (u, q)− a(p̄0, q) ∀q ∈ Y, (5.15)

where

a(p̄, q) :=

∫
QD

cH,Ω%Ω∂tp̄q dxdt+

∫
QD

λΩ∇xp̄ · ∇xq dxdt, (5.16)

F (u, q) :=

∫
QD

−J3∂tuq dxdt. (5.17)

We are now able to state the main theorem of this section.

Theorem 5.4. Let the spaces X, X0, Y be given as in (5.14). Let J3 ∈ L∞(QD) and
p̄0 ∈ L2(0, T ;H1(D)) ∩ H1(0, T ;H−1(D)) be some given extension of the initial and
boundary data. Suppose furthermore that u ∈ Z with ∂t ∈ Z∗ is the unique solution
to (5.2a). Then the variational formulation (5.15) admits a unique solution.

Proof. We use Theorem 5.2 in order to conclude that (5.15) admits a unique solution
p̄ ∈ X0. Hence we show that a(., .) is bounded and fulfills conditions (i) and (ii) in
Theorem 5.2.

First note that the coefficients cH,Ω, %Ω, λΩ are positive and uniform bounded. Hence
we conclude that

‖p‖Y,λΩ
:=

√∫ T

0

∫
D

λΩ∇xp · ∇xp dxdt (5.18)

defines an equivalent norm in Y and

‖p‖X,λΩ
:=
√
‖cH,Ω%Ω∂tp‖2

L2(0,T ;H−1(D)) + ‖p‖2
Y,λΩ

(5.19)
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defines an equivalent norm in X. We make use of the norms (5.19), (5.18) in order
to show the boundedness and the stability condition on the bilinear form a(., .). The
bilinear form a(., .) is continuous since for all p̄ ∈ X0 and q ∈ Y there holds by using
duality and the Cauchy-Schwarz inequality

|a(p̄, q)| ≤ |〈cH,Ω%Ω∂tp̄, q〉|+
∣∣∣∣∫ T

0

∫
D

λΩ∇xp̄ · ∇xq dxdt

∣∣∣∣
≤ ‖cH,Ω%Ω∂tp̄‖L2(0,T ;H−1(D))‖q‖Y,λΩ

+ ‖p̄‖Y,λΩ
‖q‖Y,λΩ

≤
√

2
√
‖cH,Ω%Ω∂tp̄‖2

L2(0,T ;H−1(D)) + ‖p̄‖2
Y,λΩ
‖q‖Y,λΩ

=
√

2‖p̄‖X,λΩ
‖q‖Y,λΩ

.

The key in showing a stability estimate for the bilinear form a lies in the special choice
of an element w ∈ Y and the particular choice q = p̄ + w. We start with the trivial
estimate

sup
06=q∈Y

a(p̄, q)

‖q‖Y,λΩ

≥ a(p̄, p̄+ w)

‖p̄+ w‖Y,λΩ

(5.20)

For p̄ ∈ X0 we choose w ∈ Y as unique solution to the variational formulation∫
QD

λΩ∇xw · ∇xvdxdt =

∫
QD

cH,Ω%Ω∂tp̄v dxdt ∀v ∈ Y. (5.21)

By inserting v = w in (5.21) we immediately obtain

‖w‖2
Y,λΩ

=

∫
QD

λΩ∇xw · ∇xw dxdt =

∫
QD

cH,Ω%Ω∂tp̄w dxdt

≤ ‖cH,Ω%Ω∂tp̄‖L2(0,T ;H−1(D))‖w‖Y,λΩ
.

On the other hand we have

‖cH,Ω%Ω∂tp̄‖L2(0,T ;H−1(D)) = sup
06=v∈Y

〈cH,Ω%Ω∂tp̄, v〉
‖v‖Y,λΩ

= sup
06=v∈Y

〈w, v〉Y,λΩ

‖v‖Y,λΩ

≤ ‖w‖Y,λΩ
.

Summing up we get

‖w‖Y,λΩ
= ‖cH,Ω%Ω∂tp̄‖Y,λΩ

, (5.22a)

‖cH,Ω%Ω∂tp̄‖2
L2(0,T ;H−1(D)) = ‖w‖2

Y,λΩ
=

∫
QD

cH,Ω%Ω∂tp̄w dxdt = 〈cH,Ω%Ω∂tp̄, w〉.

(5.22b)
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The properties (5.22) on the element w ∈ Y will help us to conclude the stability
estimate as we will see. Considering (5.20) again we can estimate

a(p̄, p̄) =

∫ T

0

∫
D

cH,Ω%Ω∂tp̄p̄ dxdt+

∫ T

0

∫
D

λΩ∇xp̄ · ∇xp̄ dxdt

=
1

2

∫ T

0

∫
D

cH,Ω%Ω
d

dt
p̄2 dxdt+ ‖p̄‖2

Y,λΩ

≥ 1

2
c%

∫ T

0

d

dt
‖p̄(t)‖2

L2(D) dt+ ‖p̄‖2
Y,λΩ

=
1

2
c%‖p̄(T )‖2

L2(D) + ‖p̄‖2
Y,λΩ
≥ ‖p̄‖2

Y,λΩ
,

where c and % denote the corresponding lower bounds of cH,Ω and %Ω, respectively
and we used that p̄(0) = 0 for p̄ ∈ X0. Further, using (5.22b), the Cauchy-Schwarz
inequality, Young’s inequality and (5.22a) we have

a(p̄, w) = 〈cH,Ω%Ω∂tp̄, w〉+

∫ T

0

∫
D

λΩ∇xp̄ · ∇xw dxdt

≥ ‖cH,Ω%Ω∂tp̄‖2
L2(0,T ;H−1(D)) − ‖p̄‖Y,λΩ

‖w‖Y,λΩ

≥ ‖cH,Ω%Ω∂tp̄‖2
L2(0,T ;H−1(D)) −

1

2

(
‖p̄‖2

Y,λΩ
+ ‖w‖2

Y,λΩ

)
=

1

2
‖cH,Ω%Ω∂tp̄‖2

L2(0,T ;H−1(D)) −
1

2
‖p̄‖2

Y,λΩ
.

Hence we get

a(p̄, p̄+ w) ≥ 1

2

(
‖cH,Ω%Ω∂tp̄‖2

L2(0,T ;H−1(D)) + ‖p̄‖2
Y,λΩ

)
=

1

2
‖p̄‖2

X,λΩ

and together with

‖p̄+ w‖2
Y,λΩ
≤ 2

(
‖p̄‖2

Y,λΩ
+ ‖w‖2

Y,λΩ

)
= 2‖p̄‖2

X,λΩ

we conclude the stability estimate

sup
06=q∈Y

a(p̄, q)

‖q‖Y,λΩ

≥ a(p̄, p̄+ w)

‖p̄+ w‖Y,λΩ

≥
1
2
‖p̄‖2

X,λΩ√
2‖p̄‖X,λΩ

=
1

2
√

2
‖p̄‖X,λΩ

∀p̄ ∈ X0.

(5.23)
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In order to show condition (ii) in Theorem 5.2 we show that for all q ∈ Y \{0} there
exists a p̄ ∈ X0 such that a(p̄, q) > 0. For q ∈ Y \ {0} we define

p̄(x, t) :=

∫ t

0

q(x, s) ds for x ∈ D, t ∈ [0, T ] .

By definition we have p̄ ∈ X0 and there holds

a(p̄, q) =

∫ T

0

∫
D

[cH,Ω%Ω∂tp̄(x, t)q(x, t) +∇xp̄(x, t) · ∇xq(x, t)] dxdt

=

∫ T

0

∫
D

[
cH,Ω%Ω [∂tp̄(x, t)]

2 +∇xp̄(x, t) · ∇x∂tp̄(x, t)
]

dxdt

= ‖cH,Ω%Ω∂tp̄‖2
L2(QD) +

1

2
‖∇xp̄(T )‖2

L2(D) > 0.

(5.24)

Finally, note that the right hand side in (5.15) defines a linear and bounded functional
on Y . This follows from J3 ∈ L∞(QD), ∂tu ∈ Z∗ and the fact that the bilinear form
a(., .) is bounded for functions p̄0 ∈ L2(0, T ;H1(D))∩H1(0, T ;H−1(D)). Thus by using
Theorem 5.2 the variational formulation (5.15) has a unique solution p̄ ∈ X0.

5.3 Shape derivative of the objective function

In this section we derive the shape derivative of the objective function via the averaged
adjoint method. Let Ω ⊂ Ωd be the current configuration of aluminum in the design
domain. We choose V ∈ C1

c (Ωd,R2) and assume that the vector field V is extended
by zero to the computational domain D. This leads to a transformation Tτ : D → D,
which only acts on the design domain Ωd and lets the stator of the motor as well as
the air gap unchanged. To be more precise we have for τ small that Ωτ = Tτ (Ω) ⊂ Ωd,
Tτ (Ωd) = Ωd, Tτ (ΩCu) = ΩCu, Tτ (Ωair) = Ωair, Tτ (ΩFe,s) = ΩFe,s and Tτ (D) = D.

In order to compute the shape derivative we have to set up the Lagrangian of
problem (5.1)-(5.2). We make use of the spaces

Z0 := {u ∈ Z : ∂tu ∈ Z∗, u(., 0) = 0 in Ω1} , (5.25)

Z 0 := {u ∈ Z : ∂tu ∈ Z∗, u(., T ) = 0 in Ω1} , (5.26)

X := L2(0, T ;H1(D)) ∩H1(0, T ;H−1(D)), (5.27)

X0 := {v ∈ X : v(T ) = 0} , (5.28)

where Z is given as in (5.8) and X is given as in (5.14). Recall the variational
formulation (5.9), which reads in more compact form: Find u ∈ Z0 such that

a1(u, v) = F1(v) ∀v ∈ Z, (5.29)
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where

a1(u, v) :=

∫ T

0

∫
D

σΩ∂tuv dxdt+

∫ T

0

∫
D

νΩ∇xu · ∇xv dxdt,

F1(v) :=

∫ T

0

∫
D

J3v dxdt.

Instead of the variational formulation (5.15) we use the equivalent formulation: Find
p ∈ X such that

a2(p, q) = F2(u, q) ∀q ∈ Y, (5.30a)

p|ΣD
= g, (5.30b)

p|ΣD0
= p0, (5.30c)

where a2 is given as in (5.16) and F2 is given as in (5.17). The Lagrangian then reads

L(Ω, ϕ, η, ψ, ζ) := J(η) + a1(ϕ, ψ)− F1(ψ) + a2(η, ζ)− F2(ϕ, ζ)

+

∫ T

0

∫
∂D

(η − g) ζdsdt+

∫
D

cH,Ω%Ω (η(0)− p0) ζ(0)dx.
(5.31)

The adjoint system can be derived from the equations

dϕL(Ω, u, p, w, z)(v) = 0 ∀v ∈ Z0,

dηL(Ω, u, p, w, z)(q) = 0 ∀q ∈ X ,

and reads in strong form

−σΩ∂tw − div (νΩ∇w)− J3∂tz = 0 in QD, (5.32a)

−cH,Ω%Ω∂tz − div (λΩ∇z) = −2pχQΩd
in QD, (5.32b)

w = 0 on ΣD, (5.32c)

z = 0 on ΣD, (5.32d)

w(T ) = 0 in D, (5.32e)

z(T ) = 0 in D, (5.32f)

where QΩd
:= Ωd × (0, T ). Note that the adjoint system is decoupled. Hence we can

conclude unique solvability to (5.32) in the same way as for the state system described
in Section 5.2. The re-parametrized Lagrangian

G : [0, τ̃ ]×Z0 ×X ×Z 0 ×X0 → R
G(τ, ϕ, η, ψ, ζ) := L(Ωτ , ϕ ◦ T−1

τ , η ◦ T−1
τ , ψ ◦ T−1

τ , ζ ◦ T−1
τ )
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then reads

G(τ, ϕ, η, ψ, ζ) =

∫
QD

ξ(τ) |η|2 χQΩd
dxdt+

∫
QD

ξ(τ)σΩ∂tϕψ dxdt

+

∫
QD

A(τ)νΩ∇xϕ · ∇xψ dxdt−
∫
QD

Jτ3ψ dxdt

+

∫
QD

ξ(τ)cH,Ω%Ω∂tηζ dxdt+

∫
QD

A(τ)λΩ∇xη · ∇xζ dxdt

+

∫
QD

ξ(τ)Jτ3 ∂tϕζ dxdt+

∫ T

0

∫
∂D

ξ(τ) (η − gτ ) ζ dsdt

+

∫
D

ξ(τ)cH,Ω%Ω (η(0)− pτ0) ζ(0) dx,

(5.33)

where ξ(τ) = |det (∂Tτ )| = det (∂Tτ ) for τ small and A(τ) = ξ(τ)∂T−1
τ ∂T−Tτ . In

order to compute the shape derivative we make use of Theorem 4.6. The hypothe-
ses (D0),(D1) can be shown analogously as described in Section 4.2. Assumption
(D2) is satisfied since the state system, the adjoint system and the averaged ad-
joint system are uniquely solvable. The verification of (D3) can be done with sim-
ilar techniques as shown in Section 4.2. We apply Theorem 4.6 and conclude that
dJ(Ω;V ) = ∂τG(0, u, p, w, z), where (u, p) ∈ Z0×X solves the state system (5.2) and
(w, z) ∈ Z 0×X0 solves the adjoint system. For computing the shape derivative note
that supp (V ) ⊂ Ωd, supp (J3) ⊂ ΩCu and that Ωd ∩ ΩCu = ∅. Further notice that in
our case the functions g and p0 are constants. Therefore their derivatives vanish and
the shape derivative reads

dJ(Ω;V ) =

∫
QD

div V |p|2 χQΩd
dxdt+

∫
QD

div V σΩ∂tuw dxdt

+

∫
QD

(
div V − ∂V − ∂V T

)
νΩ∇xu · ∇xw dxdt

+

∫
QD

div V cH,Ω%Ω∂tpz dxdt

+

∫
QD

(
div V − ∂V − ∂V T

)
λΩ∇xp · ∇xz dxdt.

(5.34)

5.4 Numerical results

In this section we apply a gradient based shape optimization algorithm to problem
(5.1)-(5.2) and present the numerical results. The implementation of the algorithm is
done in the finite element software Netgen/NGSolve [31].
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We want to mention that we do not use any parallel implementation. Thus we are
restricted in the size of the space-time geometric model in order to keep the dimen-
sions of the resulting linear system low. For this reason we only simulate the PDEs
for T = 0.02 seconds in time and neglect the layer of air outside the stator in the
computational domain D in our simulations. Due to the short simulation time we
induce a very high current density J3 in order to see a deformation of the shape of the
aluminum bars in the rotor.

In our numerical test we use the initial design depicted in Figure 5.2(a). We choose
a rotor design in which the rotor consists of 28 aluminum bars in rectangular shape.
The numerical algorithm we apply in the test is the same as described in Algorithm
4.7. In the algorithm one has to use for the state system (5.2), for the adjoint system
(5.32) and for the shape derivative (5.34). The computation of a descent direction is
done via an auxiliary boundary value problem which reads: Find V ∈ H1

0 (Ωd,R2) such
that ∫

Ωd

∂xV : ∂xW + V ·W = −dJ (Ω;W ) ∀W ∈ H1
0 (Ωd,R2). (5.35)

The numerical results can be seen in Table 5.1 and Figure 5.2(b) for a constant step
size of τ = 0.001 in every iteration. Table 5.1 shows the evolution of the objective
value for 9 iterations. We observe an initial value of 6.729 which decreases to a value
of 6.648 in iteration 9. Further we see that the decrease of the objective value is very
small. This is maybe due to the short period of the simulation time. Figure 5.2(b)
shows the design of the rotor after 9 iterations. We observe that the change of the
shape of the aluminum bars is not uniform in the rotor. Some bars tend to get bigger
while others tend to get smaller. Still others seem to not change their shape over the
optimization process. Moreover, we have to say that the change of the shape of most
aluminum bars is small. This observation correlates with the small decrease of the
objective value.
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iteration J

0 6.729
1 6.718
2 6.708
3 6.698
4 6.688
5 6.680
6 6.671
7 6.663
8 6.655
9 6.648

Table 5.1: Values of the objective function J

(a) (b)

Figure 5.2: (a) Initial design of the rotor, (b) Design of the rotor after 9 iterations,
blue: ferromagnetic material, red: non-ferromagnetic material



Conclusion

In this thesis we considered three parabolic shape optimization problems: (i) a one-
phase problem, (ii) an interface problem, (iii) a linear shape optimization problem for
an electric motor. We solved each problem by means of shape optimization techniques
based on sensitivity information. The underlying PDEs were solved via a conforming
space-time finite element method.

First, we concentrated on the parabolic PDE systems which occurred in problem (i)
and (ii). We applied a conforming space-time method to both systems and determined
the experimental order of convergence for the L2-error as well as energy error for
piecewise linear finite elements. Numerical tests showed for (i) and (ii) a quadratic
convergence behavior in the L2-norm and a linear convergence rate in the energy norm.
This coincides with the well-known result for elliptic problems.

Second, we focused on the essential parts in the theory of shape optimization used to
set up an algorithm. We introduced the shape derivative and discussed its computation
for PDE-constrained problems within a Lagrangian framework. Further, we explained
how to exploit the shape derivative to set up gradient-type algorithms.

Next, we considered the shape optimization problems (i) and (ii). We formally
computed the shape derivatives for both problems and pointed out issues when proving
them in a rigorous way. We embedded these derivatives in a gradient-type algorithm
using space-time finite elements. Numerical results showed the correctness of the
proposed algorithm.

Finally, we applied the proposed algorithm to (iii). In order to run the algorithm we
had to use a small simulation time since a parallel implementation was not used. Due
to the small simulation time only minor changes in the design of the rotor could be
seen in the numerical test. Nevertheless, the results demonstrated that the algorithm
also might work in the framework of an electric motor.

Open questions and future work

The work presented in this thesis can be extended in the following directions:

A detailed analysis of the coupled parabolic system presented in Chapter 2 is an
open question. It would be interesting to see if the existence of a unique solution
to this coupled system could be shown by similar techniques as in [35] or if another
approach like the theory of compact perturbations [27, Chapter 8] would be necessary.

87
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Assuming that one is able to prove that the state system has a unique solution the
next step would be to prove the shape derivatives of (i) and (ii) in a rigorous way.
Here a further crucial point lies in showing the function space parametrization, see
Remark 4.2. We want to mention that this property was already used by Soko lowski
in [33].

Problem (iii) demonstrated that a parallel implementation of the space-time method
is mandatory in order to solve parabolic shape optimization problems in the context of
electric motors. It would be interesting to see how the design of the rotor in (iii) would
change if a bigger simulation interval and a parallel implementation of the algorithm
was used.

We only considered a linear shape optimization problem for an electric motor. It
would be more realistic to consider the nonlinear shape optimization problem given
in (0.2). Here, one problem from the modeling point of view is to find the correct
relation between the electrical conductivity σ and the temperature ϑ. In general this
mapping is not given analytically and one has to approximate it from measured data.
A further challenging task will be the analysis of the nonlinear state system. The
discretization of the nonlinear state system with a conforming space-time method will
lead to a system of nonlinear equations which could be solved by Newton’s method.
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[4] F. Bachinger, U. Langer, and J. Schöberl. Numerical analysis of nonlinear multi-
harmonic eddy current problems. Numerische Mathematik, 100(4):593–616, 2005.

[5] A. Binder. Elektrische Maschinen und Antriebe: Grundlagen, Betriebsverhalten.
Springer, 2017.
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Einführung in die numerischen Grundlagen und Computersimulation. Springer,
2013.

[17] D. Kalise, K. Kunisch, and K. Sturm. Optimal actuator design based on shape
calculus. Mathematical Models and Methods in Applied Sciences, 28(13):2667–
2717, 2018.

[18] C. Kaufmann, M. Günther, D. Klagges, M. Knorrenschild, M. Richwin, S. Schöps,
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