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Abstract

In designing fusion reactors, the alpha particle loss rate is of high importance.
Up to now the computation is time consuming because it involves extensive
magnetic field evaluations. An idea to speed up those computations is
to replace conventional integration of particle trajectories by symplectic
mappings, which are constructed by interpolation.

Symplectic mappings have been applied to problems in particle accelerators
so far. In this work, they are tested for non-canonical systems including
trapped and passing trajectories for the first time.

An analytical model field of a tokamak is used to test the mappings. The
system is canonicalized and set up in a way that the mapping can be done in
one dimension. Collocation methods are used to approximate the symplectic
map by B-spline interpolation functions. Least-squares regression guarantees
stability of the mapping despite the complexity of the constructed system.

Using parameters inspired by the ongoing fusion project ITER, the mapping
was applied successfully during the alpha slowing down time of about 0.1 s.
Particle trajectories slightly differ from those originated from ’conventional’
integration, but still reflect the physical reality very well.

In the future, the method should be extended to higher dimensions and
applied to non-axisymmetric systems like stellarators or tokamaks with
resonant magnetic perturbation (RMP) coils to mitigate edge localized
modes (ELM). Besides, different mesh-less interpolation methods should be
tested.
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1 Introduction

An important feature of fusion devices is, that the charged fusion products
are kept in the chamber so long that they can transfer their energy to the
plasma. This is essential to heat the plasma and enable ignition. Also, it
avoids damages in the walls.

Current fusion research focuses on deuterium - tritium reactions, where
the fusion products are a fast α-particle carrying 3.5 MeV and an extremely
fast neutron with 14.1 MeV. As the neutron does not carry charge, it cannot
be trapped magnetically and will pass its energy to the walls of the fusion
device. In contrast, the α-particle is charged so it can be trapped magnetically
and used to heat the plasma. The slowing down time of α-particles in fusion
plasmas is of the order of 0.1 seconds.

In the axisymmetric, magnetic field of a tokamak, α-particles are well con-
fined. However, even small perturbations of the magnetic field can cause a
significant loss of α-particles (see S. Putvinski, 1999). In non-axisymmetric
fusion devices like stellarators or tokamaks with resonant magnetic pertur-
bation (RMP) coils to mitigate edge localized modes (ELM), α-particle losses
are an important issue per se.

For that reason, when designing fusion reactors, the α-particle loss rate has
to be taken into consideration. An effective way of theoretically anticipating
this rate, is to calculate the trajectories of many α-particles with different
initial conditions. Then one can find the ratio of α-particles , which stay in
the device during the slowing down time, and those, which leave.

Heating the plasma means transferring energy by collisions. As the α-particle
density is very low and the α-particle itself is fast and heavy compared
to the particles of the main plasma, the collisions do not really affect its
motion. Hence, the equations of motion of α-particles are solved neglecting
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1 Introduction

collisions. These calculations are time consuming, especially because the
magnetic field has to be evaluated many times.

A way to circumvent magnetic field evaluations and speed up computation
time is to find a generating function via interpolation and use it to replace
integration of the equations of motion. Using a suitable generating function
preserves also the symplectic structure and was introduced by Warnock,
Cai, and Ellison, 2009, who applied the procedure to speed up calculations
of trajectories in particle accelerators. The procedure acts on the assumption
that the interpolated system is completely symplectic. In this work, also
least-squares regression is used to approximate the generating function,
which guarantees symplecticity of the system per definition. This further
development favors long time stability and makes the idea more interesting
for fusion research. Here, it is applied to a simple model field of a tokamak
device. This work can be seen as a proof of principle and a motivation for
doing further research and calculations.

To understand the application of symplectic mappings on the modeled
tokamak system, one has to treat three main issues: Conventional orbit
integration of particles in the model field, canonical transformations, and
interpolation methods, like B-splines used in this work. These topics are
treated in the first three chapters of this work. In the following, these issues
are combined and the map construction, evaluation and application is
explained in a general form. Then it is applied to a simple pendulum and
the tokamak model system.
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2 Guiding-Center Trajectories

The foundation of the mapping procedure will be an orbit integrator, which
solves the equations of motion dependent on the initial conditions for single
α-particles in given magnetic fields. In the first section 2.1 it is justified, why
single particle motion can be considered. Then, in section 2.2, the averaged
equations of motion, which neglect the gyromotion, are introduced. In the
following, the model magnetic field of a tokamak is given (see section 2.3)
and it is shown how non-canonical systems, which are characteristic for
the averaged equations of motion, are canonicalized (see section 2.4). In
section 2.4 some trajectories are calculated (see section 2.5). Finally, in the
last section 2.6 trajectories in the subspace of constant toroidal momentum
pφ, which are of fundamental importance for the mapping procedure, are
investigated.

2.1 Single particle motion

Single particle motion is considered, which means that all interactions
between particles are neglected. This can be justified by the short slowing
down time, the low α-particle density, and the fact that the alphas are heavier
than particles of the main plasma. Also gravity and the fields, which are
induced by the moving charge (the particle we follow), are not taken into
consideration.

3



2 Guiding-Center Trajectories

2.2 Equations of motion - guiding-center
approach

To calculate the orbits of plasma particles in fusion devices one starts
from the Lagrangian of a charged particle in an electromagnetic field. The
trajectory of a charged particle in a field can be described by a superposition
of the fast gyromotion and the motion of the point R, which the particle
is gyrating around. This point is called guiding-center. We start from the
Lagrangian, which treats the guiding-center movement only:

L̄(R, Ṙ, t) =
mα(b(R, t) · Ṙ)2

2
+

Ze
c

A(R, t) · Ṙ− µB(R, t)− Ze
c

Φ(R, t),

(2.1)

given by Helander and Sigmar, 2002. This Lagrangian treats units in the
cgs system. b is a unit vector pointing in the direction of the magnetic field,
B the magnitude of the magnetic field, Φ the electrostatic potential, A the
vector potential, µ the magnetic moment, e the elementary charge, mα the
mass of the alpha particle, Z the charge number, and c the speed of light.

The described superposition is valid as long as the motion of the guiding-
center perpendicular to a surface of constant magnetic field is small com-
pared to the gyroradius. To be more precise the ratio:

ε =
ρ

LB
<< 1, with LB =

1
|∇ ln(B)| , (2.2)

of gyroradius ρ and characteristic length LB of the magnetic field B has to
be small.

If the condition given in Eq. 2.2 is fulfilled and the guiding-center approach
(Eq. 2.1) is justified, the magnetic moment µ will be a constant of motion.

Finally, the equations of motion can be deduced by inserting the Lagrangian
(Eq. 2.1) into the Euler Lagrange equation. However, the procedure is sim-
plified by first introducing a new variable - the component of the particle
velocity parallel to the magnetic field v|| = b · Ṙ. The right way to make the

4



2.2 Equations of motion - guiding-center approach

Lagrangian (Eq. 2.1) dependent on the new variable v|| is to build the phase
space Lagrangian:

L̄(R, Ṙ, v||, t) =
(

mαv||b(R, t) +
Ze
c

A(R, t)
)
· Ṙ−

mαv2
||

2
− µB(R, t)− Ze

c
Φ(R, t),

(2.3)

following the procedure described by Littlejohn, 1983.

Now, the equations of motion (see Eq. 2.4) are derived by inserting the phase
space Lagrangian (given in Eq. 2.3) into the Euler-Lagrange Equations and
introducing the modified vector potential A∗, the modified magnetic field
B∗ and the modified electric field E∗:

v̇|| =−
B∗(R, v||, t) ·

(
µ∇B(R, t)− E∗(R, v||, t)

)
mαB∗(R, v||, t) · b(R, t)

Ṙ =
v||B∗(R, v||, t) + c

Ze b(R, t)×
(

µ∇B(R, t)− E∗(R, v||, t)
)

B∗(R, v||, t) · b(R, t)

(2.4)

A∗(R, v||, t) =A(R, t) +
cmαv||

Ze
b(R, t)

B∗(R, v||, t) =∇× A∗(R, v||, t)

E∗(R, v||, t) =
Ze
c

(
∂A∗(R, v||, t)

∂t
−∇Φ(R, t)

)
.

(2.5)

2.2.1 Normalization of the equations of motion

To make the representation of orbit variables clear and comparable the equa-
tions of motion 2.4 are normalized. In the following, normalized variables
are indicated by a hat ˆ . One wants to replace the parallel velocity v|| by

v̂|| =
v||
v , the magnetic moment µ by µ̂ = µ

mαv2 and the differential time
element dt by dt̂ = v · dt. To make this variable transformation possible, the

5



2 Guiding-Center Trajectories

first equation of motion 2.4 has to be divided by v2 and the second one by v
resulting in:

dv̂||
dt̂

=−
B∗(R, v̂||, t̂) ·

(
µ̂∇B(R, t̂)− E∗(R,v̂||,t̂)

mαv2

)
B∗(R, v̂||, t̂) · b(R, t̂)

dR
dt̂

=

v̂||B∗(R, v̂||, t̂) + cmαv
Ze b(R, t̂)×

(
µ̂∇B(R, t̂)− E∗(R,v̂||,t̂)

mαv2

)
B∗(R, v̂||, t̂) · b(R, t̂)

,

(2.6)

with

B∗(R, v̂||, t̂) = B(R, t̂) +
v̂||cmαv

Ze
∇× b(R, t̂). (2.7)

Due to the normalization, energy and momentum are dimensionless quanti-
ties (p̂i =

p
mαv , and Ĥi =

H
mαv2 respectively). As a result, a fast alpha fusion

particle with 3.5 MeV carries an energy of Ĥ = 0.5.

2.2.2 Equations of motion in curvilinear coordinates

The magnetic field of fusion devices (e. g. stellarator) will be given mostly
in curvilinear coordinates. As the coordinate system does not have to be
orthogonal in that case, covariant (lower index) and contravariant (upper
index) vector components of the magnetic field are not the same and a
distinction has to be made (D’haeseleer et al., 1991). In general, a covariant
component Av belongs to a contravarient unit vector eν, and a contravarient
component Aν to a covarient unit vector eν. As the scalar product is defined
by AB = AjejBjej = AjBj = AjBj, the quantities in Eq. 2.6 and Eq. 2.7 are

6



2.3 Model magnetic field: tokamak

expressed by the form:

∇B =
∂B
∂xν

eν,

b =
Bν

B
eν,

b×∇B =
1
√

g
εijνbj

∂B
∂ui eν,

B∗ =Bνeν +
v̂||cmα

Ze
√

g
εijν ∂bj

∂xi eν,

where
√

g is the root of the metric determinant being equal to the root of
the Jacobian.

2.3 Model magnetic field: tokamak

The magnetic field of a tokamak can be approximated by an analytical model,
which provides a test case for orbit integration. The field is axisymmetric
(independent of the toroidal angle φ) and the flux surfaces, which are
aligned parallel to the magnetic field, are nested tori.

The source of the analytic model field is given by Albert, Kasilov, and Kern-
bichler, 2020. It is defined by its covariant components of the vector potential
A(r, θ), its covariant components of the unit magnetic field vector b(r, θ), its

7



2 Guiding-Center Trajectories

magnitude B(r, θ) and the square root of the metric tensor
√

g(r, θ):

Ar =0

Aθ =B0

(
r2

2
− r3

3R0

)
cos(θ)

Aφ =− ι0B0

(
r2

2
− r4

4a2

)
br =0

bθ =ι0

(
1− r2

a2

)
r2

R0

bφ =R0 + r cos(θ).

B =B0

(
1− r

R0
cos(θ)

)
,

√
g =r(R0 + r cos(θ)) +

ι0
2(1− r2

a2 )
2r3

R0 − r cos(θ).

(2.8)

Figure 2.1: Outermost flux surface in red: Model field parameters R0 and a as well as radial
coordinate r, poloidal coordinate θ and toroidal coordinate φ

The meaning of coordinates r, φ and θ, as well as the major device radius
R0 and the plasma minor radius a are shown in Fig. 2.1. B0 represents

8



2.3 Model magnetic field: tokamak

the flux surface average magnetic field magnitude and ι0 is the rotational
transform at the center of the poloidal circle marked in black. In general,
the rotational transform defines the ratio of poloidal turns of field lines per
toroidal turn.

In this context the values of B0, R0, and a are inspired by the fusion device
ITER, and set to B0 = 5 · 104 Gs, R0 = 600 cm, a = 200 cm and ι0 = 1

In Fig. 2.2 the magnetic field magnitude evaluated by Eq. 2.8 is shown.
Naturally, it is stronger at the inner part of the torus (where the radius
corresponds to R0 − a), and weaker at the outer part (where the radius
corresponds to R0 + a). As the field component Br is zero, every torus
within the torus given in Fig. 2.1 in red, represents a flux surface aligned
parallel to the magnetic field. Black circles in Fig. 2.2 represent poloidal cuts
of some of these flux surfaces.

3.5

4

4.5

5

5.5

6

6.5
10

4

Figure 2.2: Magnetic field magnitude B(r, θ) given in units Gs in the poloidal plane: black
circles represent poloidal cuts of flux surfaces

In order to evaluate the equations of motion (Eq. 2.6), one needs not only

9



2 Guiding-Center Trajectories

the covariant components of the unit magnetic field vector b, but also the
contravariant components of the magnetic field vector given by:

B(r, θ) = ∇× A(r, θ) =
εijν

√
g(r, θ)

∂Aj(r, θ)

∂xi eν, (2.9)

leading to:

Br = 0

Bθ =
−ι0B0(r− r3

a2 )√
g(r,θ)

Bφ =
−ι0B0(r− r2

R0
) cos(θ)

√
g(r,θ) .

(2.10)

2.4 Canonicalization of non-canonical systems

Let us have a look back on the equations of motion of the guiding-center of
a charged particle in an electromagnetic field (Eq. 2.6). By averaging over the
gyro motion, six-dimensional phase space was reduced by two dimensions,
resulting in a Lagrangian (see Eq. 2.3) dependent on 3 space-like variables
R and one momentum like variable v̂||. Due to this inequality the variables
are named non-canonical.

Basically, the coordinates can be canonicalized by building the conjugate
(normalized) momentum:

P̂ =
∂L(R, Ṙ, v̂||, t̂

∂Ṙ
=

Ze
cmαv

A(R, t̂) + v̂||b(R, t̂)

=
Ze

cmαv
A∗(R, v̂||, t̂).

(2.11)

Then, a component P̂i of the conjugate momentum vector is used to express
v̂|| and one turns back to Hamiltonian formulation:

Ĥ(R, P̂i, t̂) = ṘP̂− L(R, Ṙ, v̂||(P̂i), t̂)

=
mαv̂2

||(P̂i)

2
+ µ̂B(R, t̂) +

Ze
cmαv

Φ(R, t̂).
(2.12)

10



2.5 α-guiding center trajectories in the model magnetic field

At this point we have three space-like variables R and three momentum-like
variables P̂. The system is canonical, but the information of two components
of the moment P̂ is redundant. A coordinate transformation leading to
P̂1 = 0 everywhere because of A1(R, t̂) = 0 and b1(R, t̂) = 0 can be found, so
that one component of the momentum is lost. Now, the system is described
by two space like -, and two momentum like variables. One momentum like
variable is used to implicitly determine the third space coordinate and the
other one to evaluate v̂||. Canonicalization of general systems is described
by Albert, Kasilov, and Kernbichler, 2020.

2.4.1 Canonicalization using the model magnetic field

The given model field of a tokamak (see section. 2.3) is already canoni-
calized, because Ar = 0 and br = 0. Turning back to the model field, the
conjugate coordinate pairs (φ, p̂φ) and (θ, p̂θ) completely define the system.
For example, the φ component of Eq. 2.11 can be used to determine v̂||:

v̂|| =
p̂φ − Ze

cmαv Aφ(r, θ)

bφ(r, θ)
. (2.13)

The θ component of Eq. 2.11 then can be used to implicitly define the
coordinate r:

Ze
cmαv

Aθ(r, θ) + v̂||bθ(r, θ)− p̂θ = 0. (2.14)

2.5 α-guiding center trajectories in the model
magnetic field

To calculate trajectories for the given model field, the equations of motion 2.6
have to be solved. The electrostatic potential Φ is set to zero and the time-
independent magnetic field is described by the model introduced in the
previous section 2.3. An adaptive step size Runge-Kutta scheme, more
precisely the ordinary differential equation solver ode45, impelemented
in Matlab, is used to integrate the equations of motion for given initial
conditions.

11



2 Guiding-Center Trajectories

2.5.1 Initial conditions

Primarily, constants are given by the speed of light c ∼ 3 · 1010 cm
s , the α-

particle’s mass mα ∼ 6.664 · 10−24 g, its charge Ze ∼ 2 · 4.8032 · 10−10 statC,
and the thermal velocity determined by its energy E = 3.5 MeV, which
corresponds to

v =

√
2E
mα

=

√
2 · 3.5 MeV · 1.6 · 10−6 ergs

MeV
6.664 · 10−24 g

∼ 1.2964 · 109 cm
s

. (2.15)

Initial conditions r, θ, φ and v̂|| completely define the equations. Once initial
conditions are chosen, the normalized magnetic moment can be calculated
by:

µ̂ =
v̂2
⊥

2B(r, θ)
=

(1− v̂2
||)

2B(r, θ)
. (2.16)

The orbit shape depends on both the initial position and the normalized
parallel velocity v̂|| of the α-particle. In case of a high v̂|| we expect the
guiding-center orbit to move along the magnetic field lines, resulting in
a passing orbit. On the other hand a small v̂|| means high perpendicular
velocity, so that the mirror effect plays an important role and the particle will
be reflected, resulting in a trapped orbit. In order to investigate both cases,
the alpha particle is placed somewhere inside the tokamak (r = 80 cm, θ =
2π
3 , φ = 0) and the orbit is computed for both cases v̂|| = 0.9 and v̂|| = 0.1.

The integration time step is chosen by the adaptive step size Runge-Kutta
algorithm using a relative tolerance of 10−12. The trajectories are integrated
up to t̂ = 105 cm. Length units in time result from normalization: t̂ = vt.

2.5.2 Results

A reliable way to check that orbit integration works correctly is to observe
constants of motion. If those are conserved, the integration is correct. Nor-
malized energy Ĥ(r, θ, v̂||) given by Eq. 2.12 is a constant of motion. Besides,

12



2.5 α-guiding center trajectories in the model magnetic field

the toroidal momentum pφ has to be conserved, because it is a cyclic vari-
able. The field independence from φ leads to a vanishing derivative of
the Lagrangian (given by Eq. 2.3) with respect to φ. As a result, the time
derivative of the conjugate moment,

d
dt

pφ =
d
dt

∂L̄(r, ṙ, θ, θ̇, φ̇)

∂φ̇
= 0,

is zero. This means that pφ, and p̂φ are conserved. Both, conservation of
energy and of the toroidal momentum p̂φ are shown in Fig. 2.3 and Fig. 2.4
for the trapped and the passing case respectively. Fluctuations result from
inaccuracy of the ordinary differential equation solver ode45.

(a) log10(|Ĥ(r, θ, v̂||)− Ĥα(t = 0)|) (b) log10(| p̂φ(t)− pφ(t = 0)|)

Figure 2.3: Constants of motion: conservation of energy (a) and normalized toroidal mo-
mentum p̂φ (b) for initial conditions: r = 80 cm, θ = 2π

3 , φ = 0, v̂|| = 0.9 (passing
orbit).

The coordinates r, θ and φ of the alpha particle are given at every integration
step. For a better imagination of the particle movement, it is plotted for the
trapped and passing case in three dimensional cartesian space. In Fig. 2.6a
and Fig. 2.6b one can easily see that in the passing case the particle follows
the field line without changing direction, while the trapped particle is
reflected many times. In addition, the projection of the movement onto a
poloidal cut of the torus (circle at φ = 0) is plotted in Fig. 2.5.

13



2 Guiding-Center Trajectories

(a) log10(|Ĥ(r, θ, v̂||)− Ĥα(t = 0)|) (b) log10(| p̂φ(t)− pφ(t = 0)|)

Figure 2.4: Constants of motion: conservation of energy (a) and normalized toroidal mo-
mentum p̂φ (b) for initial conditions: r = 80 cm, θ = 2π

3 ,φ = 0, v̂|| = 0.1 (trapped
orbit).

(a) Passing orbit (b) Trapped orbit

Figure 2.5: Passing (a) and trapped (b) α-particle trajectories in poloidal plane for initial
conditions: r = 80 cm, θ = 2π

3 , v̂|| = 0.9 (a) and v̂|| = 0.1 (b) respectively.
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2.5 α-guiding center trajectories in the model magnetic field

(a) Initial conditions (r = 80 cm, θ = 2π
3 , v̂|| = 0.9) (passing orbit)

(b) Initial conditions (r = 80 cm, θ = 2π
3 , v̂|| = 0.1) (trapped orbit)

Figure 2.6: α-particles trajectory in three dimensions
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2 Guiding-Center Trajectories

2.6 Subspace trajectories in the model field

Here, particle trajectories in the subspace of constant normalized toroidal
momentum p̂φ = −400 and constant normalized magnetic moment µ̂ =

5 · 10−6 Gs−1 are examined. Remaining parameters are chosen as above (see
section 2.5).

Due to the toroidal invariance of the model field, poloidal coordinates r
and θ are sufficient to describe the particle motion. Analyzing trajectories of
the same constant toroidal momentum pφ in the poloidal plane allows to
reduce the canonicalized system to two dimensions (θ, p̂θ). In this case, r is
implicitly given by Eq. 2.14 and v̂|| is defined by Eq. 2.13.

The magnetic moment µ̂ is set to a constant value for all considered particles,
because at a later point it will be necessary that all particles used for a
map construction correspond to the same Hamiltonian function (given by
Eq. 2.12).

To get an overview of the orbits in the described subspace, the equations of
motion Eq. 2.6 are solved for initial conditions covering parts of the poloidal
plane of the magnetic field (see Fig 2.2) in a rough mesh with r going from
r = 0.1 a to r = 0.6 a and θ from zero to 2π with 10 steps in each direction.
Here, a corresponds to the plasma minor radius and v̂|| is given by Eq. 2.13

for each coordinate pair. The trajectories are integrated up to t̂ = 103 m.
Initial conditions and the resulting particle trajectories are illustrated in
Fig. 2.7a. Analyzing these trajectories one notes that particles in the inner
and outer region are passing. However, between these inner and outer circle
regions, particles are trapped.

Particle energies vary, depending on their initial conditions, but they are
conserved, which is shown in Fig. 2.7b. The highest particle energy of
Ĥ ≈ 1.3 corresponds to the outermost passing trajectory (see Fig. 2.7a
green). Expanding the initial conditions to greater r values would involve
particles with energies exceeding Ĥ = 1.3, which is already 2.6 times the
energy of a fusion alpha. The expansion would additionally demand time
refinement. In addition, at r = 0 the equations of motion are not solvable.
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2.6 Subspace trajectories in the model field

(a) α-particle trajectories: initial conditions are marked by +, the fastest trapped orbit
is depicted in red, the fastest passing in blue and the green line corresponds to the
trajectory with the highest particle energy.

(b) Energy conservation: the normalised energy of an α-particle carrying 3.5 MeV corre-
sponds to Ĥ = 0.5.

Figure 2.7: α-particle trajectories (a) and energy conservation (b) in the tokamak model
field for constant p̂φ = −400 and µ̂ = 5 · 10−6 Gs−1
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2 Guiding-Center Trajectories

2.6.1 Bounce time

Bounce times of trapped and passing particles in the given model field can
be calculated analytically in the large aspect ration limit (R � r) (see Al-
bert, 2017). Here (r = 200 cm, R0 = 600 cm)), they will be determined
numerically.

In the passing case a bounce is defined by completing a poloidal circle.
Assuming the particle started at a poloidal angle θ = θ0, the bounce will
be completed at θ = θ0 + 2π. In the trapped case, the particle trajectory is
called banana orbit, because of its shape. A bounce is defined by the way
from one banana tip to the other and back. Whenever a particle is at the
banana tip and changes its direction, the parallel velocity v̂|| changes sign.

The bounce time of the fastest trapped and passing orbit is estimated by
integrating trajectories with initial conditions covering the area of inter-
est, detecting two sign changes in v̂|| or angle extensions of θ − θ0 > 2π,
measuring the corresponding time, and finding the minimum.

In particular, the fastest trapped and passing orbits were determined for the
case described above with initial conditions covering the area from r = 0.1 a
to r = 0.6 a and θ = 0 to θ = 2π with 100 steps in each direction. The
location of the resulting fastest trapped and passing orbits is depicted in
Fig 2.7a in red and blue respectively. The corresponding fastest normalized
bounce times are τ̂passing = 54.65 m and τ̂trapped = 254.7 m.
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3 Canonical Transformations

The background of symplectic mappings are canonical transformations,
which connect final coordinates Q and momenta P at time t with initial
coordinates q and momenta p at t = 0. Integrating orbits for a long time
can be replaced by carrying out this transformation many times.

Canonical in the context of transformations means that the Hamiltonian
nature of the mapped system is not violated. Therefore, initial and final
coordinates both have to fulfill Hamilton’s canonical equations of motion. In
the first section 3.1 one will see that such transformations can be described
by generating functions.

In the following section 3.2 a short explanation of symplecticity is given,
and it is shown that one dimensional canonical transformations, which are
not explicitly time dependent are always symplectic and conserve volume
in phase space.

3.1 Generating functions

The theory of canonical transformations is well described by Goldstein,
1963 and summarized here. One applies the principle of least action to
both systems (q, p) and (Q, P). Lagrangians are constructed via Legendre
transformations of the corresponding Hamiltonian functions H(q, p, t), and
K(Q, P, t) respectively.
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3 Canonical Transformations

The principle of least action for both systems reads:

δ
∫ t2

t1

(q̇ · p− H(q, p, t)) dt = 0,

δ
∫ t2

t1

(
Q̇ · P− K(Q, P, t)

)
dt = 0,

(3.1)

where the variation δ of an arbitrary function f , dependent on n-dimensional
vectors q, q̇, and p is given by:

δ f (q, q̇, p, t) =
n

∑
i=1

∂ f
∂qi

δqi +
∂ f
∂q̇i

δq̇i +
∂ f
∂pi

δpi.

This variation examines the changes of trajectories in the extended phase
space (q, q̇, p) between two fixed time points t1 and t2. As all trajectories
have to go through the same start point (q(t1), q̇(t1), p(t1)) = (q1, q̇1, p1)
and through the same end point (q(t2), q̇(t2), p(t2)) = (q2, q̇2, p2), varia-
tions of independent variables δqi, δq̇i and δpi vanish at the limit points.
Using this fact and partial integration shows that both integrals in Eq. 3.1
are zero, supposed that H(q, p, t) and K(Q, P, t) fulfill Hamilton’s canonical
equations of motion.

Adding the time derivative of a function G to the integrands is possible
without violating the principle of least action (see Eq. 3.1), because naturally
the variation of the function itself has to vanish at the limit points:

δ
∫ t2

t1

dG(. . . , t)
dt

dt = δ(G(. . . , t2))− G(. . . , t1)) = 0.

This fact is used to connect the integrands given in Eq. 3.1:

Q̇ · P− K(Q, P, t) +
dG(. . . , t)

dt
= q̇ · p− H(q, p, t). (3.2)

This convenient connection already describes the desired transformation
from initial coordinates (q, p) to final coordinates (Q, P). As the variational
principle holds for both sets of coordinates and the canonical equations are
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3.1 Generating functions

fulfilled respectively, the transformation is called canonical. In the following,
G is called generating function.

In order to describe the canonical transformation from 2n initial to 2n final
coordinates, 4n variables are needed. n of them can be eliminated because
q and p are connected by Hamilton’s equations. So are Q and P. Thus the
generating function has to depend on one coordinate vector of the initial
phase space and one of the final phase space (in total 2n variables) only.
This provides four possibilities of choosing a generating function:

G1(q, Q, t), G2(q, P, t), G3(p, Q, t), G4(p, P, t).

Inserting the time derivative of the first type generating function G1(q, Q, t)
into Eq. 3.2 leads to:

Q̇ · P− K(Q, P, t) +
∂G1

∂q
q̇ +

∂G1

∂Q
Q̇ +

∂G1

∂t
= q̇ · p− H(q, p, t).

Comparing coefficients, gives the following relations for the first type gener-
ating function:

∂G1

∂q
= p,

∂G1

∂Q
= −P, H(q, p, t) = K(Q, P, t)− ∂G1

∂t
. (3.3)

Similar relations for the other types of generating functions (see Eq. 3.4) are
obtained by Legendre transformations of this generating function and then
again equating coefficients using Eq. 3.2. Time dependence of generating
functions does not change due to the Legendre transformations. So, the
relation of Hamiltonian functions H and K in Eq. 3.3 remains unchanged.

G1 =G2 −Q · P,
∂G2

∂q
= p,

∂G2

∂P
= Q.

G1 =G3 + q · p,
∂G3

∂p
= −q,

∂G3

∂Q
= −P. (3.4)

G1 =G4 −Q · P + q · p,
∂G4

∂p
= −q,

∂G4

∂P
= −Q.
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3 Canonical Transformations

Next, to introduce a more general notation of Eq. 3.4, a second type generat-
ing function G2(q, P) is used, in particular:(

∂/∂q
∂/∂P

)
G2(q, P) =

(
p
Q

)
. (3.5)

Remember, that q, Q, p, and P are vectors. In order to keep the notation as
simple as possible q and P are concatenated to one single vector ω. Likewise
p and Q are merged to γ:

ω =

(
q
P

)
, γ(ω) =

(
p(ω)
Q(ω)

)
.

Then, Eq. 3.5 is simplified to:

∂

∂ω
G2(ω) = γ. (3.6)

From Warnock and Ellison, 1997 we know that the curl of the right hand
side of Eq. 3.6 vanishes as canonical transformation are symplectic. As γ
may have more than three dimensions, its curl is interpreted in a tensorial
sense:

(∇× γ(ω))l j =
∂γj(ω)

∂ωl
− ∂γl(ω)

∂ωi
= 0. (3.7)

In the following section we see that canonical transformations are symplectic
and conserve volume in phase space, so that Eq. 3.7 is fulfilled.

3.2 Symplecticity of canonical transformations

Consider a two-dimensional configuration space (q, p): then symplecticity
means that a certain area in phase space remains constant over time. Going
to higher dimensions, symplectic means, that each projection of a certain vol-
ume on a two dimensional subspace (qi, pi) of configuration space remains
constant over time. In particular, this implies phase volume conservation.
Detailed definitions are given by Hairer, Lubich, and Wanner, 2006.
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3.2 Symplecticity of canonical transformations

3.2.1 Proof in one dimension

Here it is shown that canonical transformations, which are not time depen-
dent explicitly, are symplectic. As the mapping in the following chapter
will be defined in one dimensional configuration space (q, p), n = 1 will be
sufficient here.

From Hairer, Lubich, and Wanner, 2006 we know, that transformations are
symplectic, whenever the condition:(

∂φt
∂y0

)T
J
(

∂φt
∂y0

)
= J, J =

(
0 −1
1 0

)
, (3.8)

is fulfilled. Final coordinates φt are denoted by (Q, P), and initial coordinates

y0 by (q, p). Thus, the expressions
(

∂φt
∂y0

)T
and

(
∂φt
∂y0

)
may be replaced by:

(
∂φt
∂y0

)T
=
(

∂(q,p)
∂(Q,P)

)
=
(

∂(q,p)
∂(q,P)

) (
∂(q,P)
∂(Q,P)

)
=

(
∂q
∂Q 2 ∂q

∂P

0 ∂p
∂P

)
,

(
∂φt
∂y0

)
=
(

∂(Q,P)
∂(q,p)

)
=
(

∂(Q,P)
∂(q,P)

) (
∂(q,P)
∂(q,p)

)
=

(
∂Q
∂q 0

2 ∂P
∂q

∂P
∂p

)
,

where the fact, that (q, p) and (Q, P) are independent sets of variables is
used. In addition, we use ∂P

∂q
∂q
∂Q = 0, ∂Q

∂q
∂q
∂P = 0 and carry out the matrix

multiplication of the symplectic condition resulting in:

(
∂φt
∂y0

)T
J
(

∂φt
∂y0

)
=

(
0 − ∂P

∂p
∂q
∂Q

∂p
∂P

∂Q
∂q 0

)
=

 0 −
(

∂2G2(q,P)
∂q∂P

)−2(
∂2G2(q,P)

∂q∂P

)2
0

 .

(3.9)

On the right side, a second type generating function was used to express
variables p and Q. Remember, that the generating function describes the
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3 Canonical Transformations

desired canonical transformation and note that it is not explicitly time
dependent.

At the starting point (t = 0) final coordinates equal initial coordinates
(Q = q, P = p), so that the central term of Eq. 3.9 equals J and the symplectic
condition (Eq. 3.8) is true for t = 0.

The total time derivative of the right-hand side of Eq. 3.9 is zero. This can
be deduced from:

d
dt

(
∂2G2(q, P)

∂q∂P

)
=

∂3G2(q, P)
∂q2∂P

∂q
∂t

+
∂3G2(q, P)

∂q∂P2
∂P
∂t

=
∂2p

∂q∂P
∂q
∂t

+
∂2Q
∂q∂P

∂P
∂t

= 0.

Summing up, the symplectic condition holds true at the starting point t = 0
and its total time derivative is zero. This means that Eq. 3.9 remains constant
in time. As a result, canonical transformations described by a generating
function G2(q, P), are symplectic at any time.

3.2.2 Phase volume conservation: proof in two dimensions

The two-dimensional volume element of phase space,

∫∫∫∫
∂V

dQ1dQ2dP1dP2 =
∫∫∫∫

∂V

∣∣∣ ∂(Q1,Q2,P1,P2)
∂(q1,q2,p1,p2)

∣∣∣ dq1dq2dp1dp2,

is invariant under canonical transformation, when the Jacobian equals one:
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3.2 Symplecticity of canonical transformations

∣∣∣ ∂(Q1,Q2,P1,P2)
∂(q1,q2,p1,p2)

∣∣∣ = ∣∣∣ ∂(Q1,Q2,P1,P2)
∂(q1,q2,P1,P2)

∣∣∣ · (∣∣∣ ∂(q1,q2,p1,p2)
∂(q1,q2,P1,P2)

∣∣∣)−1

=

∣∣∣∣∣∣∣∣∣
∂2G2

∂P1∂q1

∂2G2
∂P1∂q2

0 0
∂2G2

∂P2∂q1

∂2G2
∂P2∂q2

0 0
0 0 1 0
0 0 0 1

∣∣∣∣∣∣∣∣∣ ·

∣∣∣∣∣∣∣∣∣
1 0 0 0
0 1 0 0
0 0 ∂2G2

∂q1∂P1

∂2G2
∂q1∂P2

0 0 ∂2G2
∂q2∂P1

∂2G2
∂q2∂P2

∣∣∣∣∣∣∣∣∣


−1

=
∂2G2

∂P1∂q1
· ∂2G2

∂P2∂q2
·
(

∂2G2

∂P1∂q1
· ∂2G2

∂P2∂q2

)−1

= 1.

In the first line the Jacobian was split. In the second line components Q
and p were expressed via a generating function of second kind G2 by the
relations given in Eq. 3.6. Note that each coordinate is treated as independent
from the other coordinates of the same set.
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4 B-Spline Interpolation

In order to create the mapping, two-dimensional interpolation functions
have to be constructed. In this approach B-spline interpolation is used,
because it consists of integrable and differentiable basis functions. First,
in section 4.1, B-spline interpolation is explained in one dimension. Then,
in section 4.2, the approach is expanded to higher dimensions. Finally, in
the last section 4.3, the collocation method, a way to construct a B-spline
approximation function from known partial derivatives, is clarified.

4.1 B-spline interpolation in one dimension

4.1.1 Definition

The interpolation fi(x) of an arbitrary function f (x) is given by:

fi(x) =
Nx

∑
l=1

λl Ml,k(x). (4.1)

It consists of the sum over Nx weights λl multiplied by the basis functions
Ml,k dependent on x. The second lower index k denotes the order of the
basis functions, which are expressed by:

Ml,0(x) =

{
1 hl ≤ x < hl+1

0 otherwise
,

Ml,k(x) =
x− hl

hl+k − hl
Ml,k−1 +

hl+k+1 − x
hl+k+1 − hl+1

Ml+1,k−1,

where hl are Nx + k + 1 predefined knots with hl ≤ hl+1. Fig. 4.1a shows
the B-spline basis function M1,k(x) for order k = 0, 1, 2, 3, 4, 5.
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4 B-Spline Interpolation

(a) l = 1 for order k = 0, 1, 2, 3, 4, 5

(b) l = 1, 2, 3, 4, 5 for order k = 5; centers of the basis functions are marked by +’s.

Figure 4.1: B-spline basis functions, knots are labeled by h
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4.1 B-spline interpolation in one dimension

The start point of the next basis function M2,k(x) is shifted from h1 to h2.
Fig. 4.1b shows the B-spline basis function Ml,5(x) for l = 0, 1, 2, 3, 4, 5. Once
more, a given interpolation function with Nx weights demands Nx + k + 1
predefined knots. To illustrate this fact, centers of the B-spline basis functions
are marked by +’s in Fig. 4.1b. Naturally, the number of centers matches the
number of weights. In the given example Nx + k + 1 = 11 knots are needed
to provide Nx = 5 B-spline basis functions of order k = 5.

4.1.2 Determining weights

Knowing function values f (xd) = zd and the corresponding xd for d =
1, 2, . . . , Nx, weights λl are defined by a matrix equation. This interpolation
problem can be solved by an external Matlab routine provided by Mineault,
2011. Depending on the chosen knots and the order of the interpolation
function, there may be more weights than data points leading to an under-
determined matrix equation. Using boundary conditions, equations add
up to the matrix equation and the system then is well-defined. The Matlab
routine does not support boundary conditions, so additional data has to be
provided.

4.1.3 Derivatives and integrals

Differentiation and integration of the B-spline function, given in Eq. 4.1,
were formulated by Heppler, Vermeulen, and Bartels, 1992:

d
dx

Nx

∑
l=1

λl Ml,k(x) =
Nx+1

∑
l=1

λl
(1)Ml,k−1(x),

∫ xmax

−∞

Nx

∑
l=1

λl Ml,k(x) =
Nx

∑
l=1

λl
(−1)Ml,k+1(x).

(4.2)
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4 B-Spline Interpolation

The equations defining λ
(1)
l and λ

(−1)
l read:

λl
(1) =

k
hl+k − hl

λl −
k

hl+k+1 − hl+1
λ(l−1),

λl
(−1) =

hl+k+1 − hl
k + 1

λl +
hl+k+1 − hl
hl+k − hl−1

λ(l−1)
(−1),

where the coefficients λ0, λ(Nx+1) and λ
(−1)
0 are defined to be zero. Applying

definite integration one should keep in mind to subtract the lower limit -
from the upper limit integral.

Execution of the collocation method demands the derivative of the interpo-
lation function to be expressed in terms of the basis function itself. For that
reason the derivative in Eq. 4.2 is reformulated to:

d
dx

Nx

∑
l=1

λl Ml,k(x) =
Nx

∑
l=1

λl M
(1)
l,k−1(x)

M(1)
l,k−1(x) =

k
hl+k − hl

Ml,k−1(x)− k
hl+k+1 − hl+1

Ml+1,k−1(x),

(4.3)

where MNx+1,k−1(x) = 0.

4.1.4 B-spline interpolation of example function

To illustrate B-spline interpolation a simple example is shown here: the
one-dimensional function f (x) = x2.

Consider data zd = f (xd) given on eleven points for x = 0, 1, 2, . . . , 10.
Third order interpolation (k = 3) is done. The range where basis functions
are defined has to exceed the data range in a way that the first and the
last data point are covered by rising and falling basis functions. Here, this
problem is encountered by defining eleven basis functions and adding k− 1
at the edges. In total, Nx = 11 + k− 1 = 13 weights are defined. Therefore,
Nx + k + 1 = 17 knots are needed, leading to an equidistant knot vector
covering the range from −3 to 13 with a step of size one.
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4.1 B-spline interpolation in one dimension

Supplying extra data points to enforce boundary conditions in particular
means either evaluating the function on additional points on the left and
right hand side at x = −1 and x = 11 or between the data points at the
edges (x = 0.5 and x = 9.5).

Figure 4.2: B-spline Interpolation of f (x) = x2, its derivative and its integral providing
additional data points to enforce boundary conditions

The resulting interpolation function fi(x), its derivatives and its integrals
evaluated with Eq. 4.2 are shown in Fig. 4.2.
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4 B-Spline Interpolation

4.2 Tensor product B-splines

4.2.1 Definition

The surface interpolation gi(x, y) or approximation ga(x, y) of an arbitrary
function g(x, y) is given by the tensor product of basis functions:

gi,a(x, y) =
Nx

∑
l=1

Ny

∑
j=1

λl jMl,kx(x)Mj,ky(y). (4.4)

This is the sum over weights λl j multiplied by the basis functions Ml,kx(x)
and Mj,ky(y) dependent on x and y respectively. The second lower indices
kx and ky represent the order of the corresponding basis functions.

4.2.2 Determining weights

From known function values zdm = g(xd, ym) and the corresponding xd
and ym for d = 1, 2, . . . , Nd and m = 1, 2, . . . , Nm the λl j are determined by
Nd × Nm linear equations. If (x, y) data is defined on a regular grid and
there are as many equations as unknowns λl j, the system can be solved by
the method given in section 4.2.2. Else, least squares regression described in
section 4.2.2 is used.

B-spline interpolation of data given on a regular grid

Generally, a grid is regular when the ym values for m = 1, 2, . . . , Nm are
the same for varying xd and vise versa. In the regular case, according
to Piegl and Tiller, 1997, λl j can be obtained more simply and efficiently as
a sequence of curve interpolations:

zdm =
Nx

∑
d=1

Ml,kx(xd)

( Ny

∑
j=1

Mj,ky(ym)λl j

)
=

Nx

∑
l=1

Ml,kx(xd)Rld.
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4.2 Tensor product B-splines

First, one dimensional interpolation over y on isoparametric curves is done,
supplying additional data points at each boundary (as described for the
one dimensional case). This means, that l is fixed, the interpolation is done
Nx times for l = 1, 2, . . . , Nx and the coefficients Rld are saved. Then the
interpolation is done Ny times in the other direction x with fixed d.

B-spline approximation of scattered data

When data z = g(x, y) is given for scattered x and y values, the system of
equations 4.4 is solved as a whole. Although the data is scattered, the knots
defining B-spline basis functions have to be defined on a regular grid.

Boundary conditions can be added as constraints to the system. In applica-
tion, k− 1 constraints are formulated in each direction.

When the system is overdetermined, i. e. there are more data points than
weights, it is solved to minimize least squares without violating constraints.
In practice, this is implemented for example by the Matlab routine lsqlin.

4.2.3 Partial derivatives and integrals

Extending the system to higher dimensions does not influence the relations
given in Eq. 4.2. Partial derivatives and integrals in x implicate applying
Eq. 4.2 Ny times on λl j for fixed j = 1, 2, . . . , Ny and changing the order of the
basis functions Ml,kx(x) to Ml,kx±1(x), while leaving Mj,ky(y) unchanged.

Likewise, partial derivatives and integrals in y implicate applying Eq. 4.2
Nx times on λl j for fixed l = 1, 2, . . . , Nx and changing the order of the basis
functions Mj,ky(y) to Mj,ky±1(y), while leaving Ml,kx(x) unchanged

4.2.4 B-spline interpolation of example function

To make the applications of this section clear, B-spline interpolation of data
given on a regular grid and approximation of scattered data is done for
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4 B-Spline Interpolation

a two dimensional example function g(x, y) = y2 cos(x). Both cases are
illustrated in Fig. 4.3a and Fig. 4.3b, respectively.

(a) regular data (x) (b) overdetermined system: scattered data(x)

Figure 4.3: regular interpolation grid defined by knots (dots) and centers of the B-spline
basis functions (o) for regular data (a) where boundary conditions are circum-
vented by supplying extra data on edges and scattered data (b) (twice as much
data points as weights), where boundary conditions are formulated explicitly

In order to determine the weights λl j of the interpolation function gi(x, y)
with given data illustrated in Fig. 4.3a the approach explained in section 4.2.2
is used.

In addition, the solution for λl j defining the approximation function ga(x, y)
of the overdetermined, scattered system shown in Fig. 4.3b is found follow-
ing the explanation given in section 4.2.2. In particular, boundary condi-
tions in x are periodic (ga(0, y) = ga(2π, y) and ∂ga(x,y)

∂x |x=0 = ∂ga(x,y)
∂x |x=2π).

Boundaries in y are set to constant values (ga(x, 0) = g(x, 0) and ga(x, 0) =
g(x, 0)). Both functions gi(x, y) and ga(x, y) are evaluated on a fine grid and
compared to the analytic form given above. Results are shown in Fig. 4.4.

Comparing the two approaches, the quality is more or less the same. On
the one hand, the interpolation approach is faster. On the other hand, the
approximation procedure allows scattered data. However, it depends on the
task which of the two approaches to choose.
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4.3 Collocation method

(a) log10(|gi(x, y)− g(x, y)|) (b) log10(|ga(x, y)− g(x, y)|)

Figure 4.4: Logarithmic deviation of the interpolation function gi(x, y) and the approxima-
tion function ga(x, y) from the analytic form g(x, y). Corresponding interpola-
tion (approximation) grids are given in Fig. 4.3a and Fig. 4.3b, respectively

4.3 Collocation method

The Collocation method offers a simple way to determine the approximation
function of a primitive G(x, y),

Ga(x, y) =
Nx

∑
l=1

Ny

∑
j=1

λl jMl,kx(x)Mj,ky(y),

although only the partial derivatives ∂G(x,y)
∂x |xd,yd = z(d)x and ∂G(x,y)

∂y |xd,yd =

z(d)y are given.

Using Eq. 4.3 to express the partial derivatives gives the following rela-
tions:

z(d)x =
Nx

∑
l=1

Ny

∑
j=1

λl jM
(1)
l,kx−1(xd)Mj,ky(yd),

z(d)y =
Nx

∑
l=1

Ny

∑
j=1

λl jMl,kx(xd)M(1)
j,ky−1(yd).

(4.5)
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4 B-Spline Interpolation

One can solve the system of equations for λl j by minimizing least squares
following the description given in section 4.2.2. One main difference is that
each data combination (xd, yd) supplies two equations (for z(d)x and z(d)y
respectively). Additionally, twice as many data points as grid points are
used.

As basis functions given in Eq. 4.5 are modified, the fast interpolation
approach described in section 4.2.2 can not be used, which favors least
squares approximation, even if the data was given on a regular grid.

4.3.1 Application of the collocation method

Here, the collocation method is applied to a simple example function
g(x, y) = y2 cos(x). The partial derivatives gx(x, y) and gy(x, y) are given on
a grid, which is regular in x and scattered in y, represented in Fig. 4.5a.

For each data point, Eq. 4.5 is used to set up the system of equations, for
basis functions of fifth order (kx = 5, ky = 5). The system is then solved
by minimizing least squares. Boundary conditions are periodic in x and
read: Ga(0, y) = Ga(2π, y), ∂Ga(x,y)

∂x |x=0 = ∂Ga(x,y)
∂x |x=2π, and ∂Ga(x,y)

∂y |x=0 =
∂Ga(x,y)

∂y |x=2π.

The resulting partial derivatives of the approximation function ∂Ga(x,y)
∂x and

∂Ga(x,y)
∂y are compared to its analytic forms ∂g(x,y)

∂x , and ∂g(x,y)
∂y respectively.

The logarithm of the absolute magnitude of the corresponding differences
is illustrated in Fig. 4.5b and Fig. 4.5c.

The values of the x dependent part of f (x, y) (cos(x)) vary between −1 and
1, whereas the values of the y dependent part (y2) are limited to ±100. As
a result, inaccuracy of the partial derivative of the approximation of the x
dependent part with respect to x is multiplied by values ranging from −100
to 100 (see Fig. 4.5b). In contrast, inaccuracy of the partial derivative of the
approximation of the y dependent part with respect to y is multiplied by
values ranging from −1 to 1 (see Fig. 4.5c). As a result the differences given
in Fig. 4.5b and Fig. 4.5c vary by the order of 102.
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4.3 Collocation method

(a) regular collocation grid: knots (dots), centers of basis functions (o) and scattered data
(x)

(b) log10(|
∂Ga(x,y)

∂x − ∂g(x,y)
∂x |) (c) log10(|

∂Ga(x,y)
∂y − ∂g(x,y)

∂y |)

Figure 4.5: Collocation method of fifth order applied to the function g(x, y) = y2 cos(x)
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5 Construction and Application of
Symplectic Mappings

After the excursion to orbit integration, canonical transformations and B-
Spline interpolation in the previous chapters, the theory of these chapters is
combined to explain construction and application of symplectic mappings.
These are canonical transformations described by interpolated generating
functions.

The task is to solve Eq. 3.6 for an interpolation function Gi,a(q, P), with
given initial conditions q, Q, p and P. Here, two different methods are
introduced: line integration of the interpolated vector valued function γ(ω)
(see section 5.1) and approximation of the generating function by using the
collocation method (see section 5.2).

Hereupon, in section 5.3 it is shown how the interpolated generating func-
tion Gi,a(q, P) can be used to replace orbit integration. Finally, in section 5.4,
suggestions to measure the quality and stability of the mapping are given.

5.1 Interpolation of the generating function by
line integration

Whenever a system (q, Q, p, P) is symplectic, the curl given in Eq. 3.7
vanishes. As a result, the generating function G2(γ(ω)), which obeys Eq. 3.6,
can be evaluated by a path-independent line integral:

G2(ω) =
∫ ω

ω0

γ(ω′)dω′. (5.1)
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5 Construction and Application of Symplectic Mappings

The choice of the path is free. In the easiest case it is chosen to go in a
straight line along the q1 axis from q0,1 to q1 and then in the same manner
along the q2, . . . , qN, P1, . . . , PN axes.

Eq. 5.1 is solved for G2 by finding the vector valued function γ(ω) by
B-spline interpolation and than applying partial integration to these inter-
polated functions.

The idea behind this mapping procedure was introduced by Warnock, Cai,
and Ellison, 2009 and details about B-spline interpolation of the generating
function are given by Warnock and Ellison, 1999.

5.1.1 Detailed explanation for one-dimensional case

As a matter of simplicity and tractability, here, a detailed description about
the evaluation of Eq. 5.1 is given for a one dimensional case: (q, Q, p, P).

B-spline interpolation functions of higher order poorly interpolate linear
terms, so first of all, the generating function of second type G2(q, P) is
transformed:

G̃2(q, P) = G2(q, P)− qP (5.2)

For the given case Eq. 3.6 reads:(
∂/∂q
∂/∂P

)
G̃2(q, P) =

(
p(q, P)− P
Q(q, P)− q

)
.

The transformation given in Eq. 5.2 is allowed because it leaves the curl (see
Eq. 3.7) unchanged:

∂(p(q, P)− P)
∂P

− ∂(Q(q, P)− q)
∂q

=
∂p(q, P)

∂P
− ∂Q(q, P)

∂q
.

Finally, mapping functions γ̃1,i(q, P) = p− P and γ̃2,i(q, P) = Q− q are con-
structed by discrete B-spline interpolation. Eq. 5.1 is then used to determine
the interpolated generating function G̃i(q, P):

G̃i(q, P) =
∫ P

P0

γ̃2,i(q0, P′)dP′ +
∫ q

q0

γ̃1,i(q′, P)dq. (5.3)
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5.1 Interpolation of the generating function by line integration

It is not necessary to interpolate the generating function given in Eq. 5.3
itself, because the mapping described in section 5.3 only demands partial
derivatives, which can be evaluated analytically via:(

∂/∂q
∂/∂P

)
G̃i(q, P) =

(
γ̃1,i(q, P)

γ̃2,i(q0, P) +
∫ q

q0

∂γ̃1,i(q′,P)
∂P dq′

)
. (5.4)

Discrete interpolation of the mapping functions

Mapping functions γ̃1,i(q, P) and γ̃2,i(q, P) can not be interpolated directly,
because the basis for discrete B-spline interpolation in two dimensions has
to be regular. Naturally, final coordinates P are scattered and not on a
regular grid (see x’s and o’s in Fig. 5.1).

Therefore, a regular (q, P)-grid is constructed using original q values (initial
coordinates q, p are defined on a regular grid) and artificial P values, which
are chosen to be equally spaced from the minimal to the maximal values
of the final coordinates P, with twice as many steps as the original p
vector contained (regular, mixed-variable grid points are depicted as dots in
Fig. 5.1).

Now, p and Q have to be related to the regular (q, P)-grid. p can be found
by applying Newton’s method to find the root of

P(q, p)− P = 0, (5.5)

for every point on the regular (q, P)-grid. The function P(q, p) corresponds
to an integrator solving the equations of motion for a given time. To provide
starting values and derivatives needed for Newton solvers, an interpolation
function Pi(q, p), which connects the original final momenta with the regular
(q, p)-grid, is constructed. Besides, its partial derivative with respect to
p is calculated. Summing up, a quasi-Newton method is used to solve
Eq. 5.5, where P(q, p) represents the orbit integrator and ∂Pi(q,p)

∂p is used to
approximate the derivative.

Obviously, not all (q, P)-grid points have a valid p value. For example the
maximum final momentum Pmax corresponds to just one q. In contrast, on
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5 Construction and Application of Symplectic Mappings

the mixed-variable (q, P)-grid exist many (q, Pmax) combinations, where
just one contains a valid p.

Discrete interpolation methods require valid values on every regular basis
grid point. On that account, the mixed-variable (q, P)-grid has to be reduced
by lines (or columns) containing invalid (q, P) combinations, resulting in a
regular, surjective basis grid (see o’s in Fig. 5.1). Furthermore, the surjective
q-P data point density is increased on the edges, because additional data is
needed to circumvent boundary conditions (see chapter 4).

Figure 5.1: regular (q, P)-grid construction:
+ - exemplary, surjective (q, P) points originated from the pendulum
x - examplary, non surjective (q, P) points originated from the pendulum
. - regular, mixed-variable (q, P)-grid
o - surjective, regular, mixed-variable data points

By reducing the mixed-variable (q, P)-grid by non-surjective points, also the
application area of the map is reduced.

Discrete interpolation of valid p− P values on the surjective, regular (q, P)-
grid results in the mapping function γ̃1,i(q, P), relating the initial momentum
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5.2 Approximation of the generating function using the collocation method

subtracted by the final momentum to the mixed phase space variables q
and P. The other mapping function γ̃2,i = Qi(q, P)− q can be easily found
by interpolating values of Q(q, γ̃1,i(q, P)) + P)− q on the surjective, mixed-
variable (q, P)-grid. Here, the function Q(q, p) corresponds to an integrator
solving the equations of motion for a given time.

5.2 Approximation of the generating function
using the collocation method

A different way to approximate the generating function is to define it directly
by a B-spline approximation function:

Ga(ω) =
N1

∑
l

N2

∑
m
· · ·

Na

∑
a

λl,m,...,aMl,kl
(ω1)Mm,km(ω2) . . . Ma,ka(ωNv). (5.6)

This is the tensor product of basis functions which element-wisely depend
on ω, multiplied by a weight tensor λ.

Nv is the length of vector ω, which defines the number of used indices
l, m, . . . , a and thereby the rank of the weight tensor λl,m,...,a. In contrast,
N1, N2,. . . , Na determines the number of weights in the corresponding
direction.

Now, Eq. 3.6 is used to set up a system of equations, which can be solved
for the B-spline coefficients λl,m,...,a by minimizing least squares:

γ1,a =
N1

∑
l

N2

∑
m
· · ·

Na

∑
a

λl,m,...,aM(1)
l,kl−1(ω1)Mm,km(ω2) . . . Ma,ka(ωNv)

γ2,a =
N1

∑
l

N2

∑
m
· · ·

Na

∑
a

λl,m,...,aMl,kl
(ω1)M(1)

m,km−1(ω2) . . . Ma,ka(ωNv)

...

γNv,a =
N1

∑
l

N2

∑
m
· · ·

Na

∑
a

λl,m,...,aMl,kl
(ω1)Mm,km(ω2) . . . M(1)

a,ka−1(ωNv)

(5.7)
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5 Construction and Application of Symplectic Mappings

Each known data point γa(ωi) = zi gives Nv equations, where partial
derivatives M(1)

i,ki−1 of B-spline basis functions are defined by Eq. 4.3.

The big advantage of this approach is, that the curl defined in Eq. 3.7, is
zero per definition:

∂γj,a(ω)

∂ωl
− ∂γl,a(ω)

∂ωj
=

∂2Ga(ω)

∂ωl∂ωj
− ∂2Ga(ω)

∂ωl∂ωj
= 0. (5.8)

As a result, the collocation method can be used to map slightly non-
symplectic systems. The input in that case is ’symplectified’ and the mapping
procedure is still stable, at the cost of slightly shifted trajectories.

5.2.1 Detailed explanation for one-dimensional case

As before, a detailed description about the construction of the generating
function is given for a one-dimensional case: (q, Q, p, P). With the same
motivations, the transformation described in Eq. 5.2 is performed.

For the one dimensional case Eq. 5.6 reads:

G̃a(q, P) =
Nq

∑
l=1

NP

∑
m=1

λlmMl,kq(q)Mm,kP(P).

Its derivatives are expressed by Eq. 4.3 and Eq. 5.7 results in:

p− P =
Nq

∑
l=1

NP

∑
m=1

λlmM(1)
l,kq−1(q)Mm,kP(P)

Q− q =
Nq

∑
l=1

NP

∑
m=1

λlmMl,kq(q)M(1)
m,kP−1(P)

(5.9)

Now, all initial conditions are used to set up a matrix equation which can
be solved for the B-spline coefficients λij by minimizing least squares.
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5.2 Approximation of the generating function using the collocation method

Least squares approximation

As B-spline approximation is a discrete method, the interpolation grid has to
be regular. So the mixed-variable (q, P)-grid is created in a similar manner
as before. Original q values are chosen and P values are equally spaced
between Pl and Pu. Taking all q combinations for the biggest p value into
consideration, Pu is the minimal value of the corresponding P’s. Pl is the
minimal value of the P’s originated from all q combinations of the lowest p
value. The grid is displayed in Fig. 5.2, where grid points are marked with
o’s. It is bigger than the area of definition, because B-spline approximation of
higher order demands additional weights. In particular G̃a is approximated
by basis functions of fifth order here, requiring N = k− 1 = 4 additional
weights in each dimension.

Figure 5.2: Regular (q, P)-grid construction:
+ - exemplary (q, P) data points
x - exemplary (q, P) data points out of mapping area
o - weights of regular, mixed-variable (q, P)-grid (fifth order)
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5 Construction and Application of Symplectic Mappings

Using approximation instead of interpolation allows the initial conditions
(q, P) themselves to not be located exactly at the regular (q, P)-interpolation-
grid (see +’s and x’s in Fig. 5.2). For that reason, surjectivity in its strict
sense is not demanded anymore. But still the system will be underdefined,
if the grid includes areas where little or no data exist. Therefore, again
the B-spline grid is reduced by the lines containing too little data, which
reduces the mapping application area by the data points marked as x’s in
Fig. 5.2 accordingly. The lower and upper limits of the resulting mapping
area correspond to Pl and Pu.

However, Eq. 5.9 is expressed for all valid initial condition pairs (+’s), and
the collocation method, described in section 4.3, is applied to solve for the
B-spline coefficients λlm.

5.3 Mapping in one dimension

As the partial derivatives of the generating function G̃i,a(q, P) are deter-
mined, final coordinates and momenta for any point between the grid
points can be determined easily. Subscripts refer to generating functions
originated from line integration (i) or collocation (a).

However, Newton’s method is used to search the final momentum P for the
phase space point (p, q) by solving:

∂G̃i,a(q, P)
∂q

− p + P = 0, (5.10)

where Pi(q, p) is used to define the initial guess. The final coordinate is then
calculated by:

Q =
∂G̃i,a(q, P)

∂P
+ q (5.11)

A big advantage of this approach is that the interpolated mapping func-
tion can be applied again and again. For any point in the mapping area,
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5.4 Quality of mappings

Eq. 5.10 and Eq. 5.11 are applied. Then results (Q, P) are taken as new initial
coordinates (q, p) and the procedure is started again.

The mapping procedure does not really change for canonicalized systems.
One additional demand is an interpolation function Ri(q, r) connecting the
final coordinate R with the initial coordinates (r, q), which provides an
initial condition to solve:

P(R, Q, V||(R, Q, pφ = const))− P = 0,

for R after each mapping step by Newton’s method. Details are given in
section 2.4.

5.4 Quality of mappings

5.4.1 Geometrical distance

A way to measure the mapping quality in an intuitive sense is to determine
the geometrical distance. The idea is to compare the mapped orbit with the
location of the ’exact’ trajectory from the integrator used to create initial
and final coordinates for the map construction. In order to calculate the
geometrical distance one needs to evaluate CN points using the integrator
and take out TN random points of the mapped orbit. For each of the mapped
orbit points PMi the two closest ’exact’ orbit points P1i and P2i are searched,
a triangle is constructed and the normal distance gNi is calculated by:

gNi =
|(P1i − P2i)× (PMi − P2i)|

|(P1i − P2i)|
. (5.12)

Then, the root mean square of the normal distances of all TM test points is
built and defined as the geometrical distance:

g =

√√√√ 1
TN

TN

∑
i=1

gNi
2 (5.13)
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5 Construction and Application of Symplectic Mappings

5.4.2 Normalized energy oscillation

As energy is a constant of motion, its deviation can be additionally used to
measure the mapping quality.

The normalized energy oscillation ∆H is given by the standard deviation
σH devided by its mean H̄:

∆H =
σH
H̄

(5.14)
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6 Application to the Pendulum

Symplectic mappings are tested for a canonical case- the simple pendulum
in one dimensional phase space (q, p):

H =
p2

2
− cos(q). (6.1)

First, in section. 6.1 it is explained how initial conditions are constructed.
Generally, one is free to choose parameters as for example tM, the time
one mapping involves, Ng, the number of grid points to create the initial
conditions (q, p), or k, the order of B-spline basis functions.

A certain parameter triple (tM, Ng, k = 3) is chosen and map construction,
application and quality measure is done for the line integration method, as
well as the collocation method in section 6.2, 6.3 and 6.4.

Finally, in section 6.5, different parameter combinations are tested for the
line integration method.

6.1 Initial conditions for the mapping

To create sets of initial conditions (q, Q, p, P), first a regular (q, p)-grid with
Ng points in each direction is created. Then, corresponding (Q, P) are found
by solving Hamilton’s canonical equations obeying Eq. 6.1 with a symplectic
Euler scheme.

Trajectories of the pendulum may be either passing or trapped (see Fig. 6.1).
Trapped and passing cases are separable by the parameter κ = H, where H
represents the particle’s energy given by Eq. 6.1 (see, e. g. Albert, 2017). So,
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6 Application to the Pendulum

Figure 6.1: Symplectic Euler scheme applied to initial conditions (q, p) (marked by +):
some initial conditions are randomly selected from the original set to keep
the representation clear. Trapped Orbits are gray, Passing Orbits blue and the
separatrix is depicted in red

generally κ depends on initial conditions (q, p). In case κ > 1 the particle
is passing and in case κ < 1 it is trapped. The limiting case κ = 1 is called
separatrix. In addition, the cycle duration τ for the trapped case can be
calculated by an elliptical integral,

τ = 4K(κ), (6.2)

where K stands for:

K =
1
4

∫ +2 arcsin(
√

κ)

−2 arcsin(
√

κ)

dθ√
κ − sin2( θ

2)
.

To find a convenient time-step for numerical integration, the linear bounce
time τb is computed. τb is the period of the fastest trapped particle. It is
calculated by applying Eq. 6.2 on every point of a test grid, where H < 1,
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6.2 Map creation

and then searching the minimal value. This results in τb = 6.283 ∼ 2π. Here,
the integration time step ti is set to ti =

2π
960 . This ensures, that not only the

fastest trapped particle, but also the fastest passing particle is treated on a
sufficient fine time-scale. Besides, the mapping time tM defining the time
interval between (q, p) and (Q, P) has to be chosen.

6.2 Map creation

Here, it is shown how a map is created via line integration and collocation
for the parameter triple: Ng = 64, tM = 1

8 τb k = 3. k denotes the order
of the original interpolation functions γ̃1,i(q, P) and γ̃2,i(q, P), or the order

of the partial derivatives of the generating function ∂G̃a(q,P)
∂q and ∂G̃a(q,P)

∂P ,
respectively.

First of all, the grid area of initial conditions, the resulting valid area of map
application and the general test area are shown below.

(a) Initial phase space q-p (b) miexed-variable phase space q-P

Figure 6.2: Provided data (black), surjective mapping area (green) and test area (blue) in
phase space (a) and miexed-variable phase space (b)

Primarily, the grid of initial conditions used to create the mapping is de-
fined (see Fig. 6.2 in black). This area is reduced by ’non-surjective points’,
resulting in the application area marked in Fig. 6.2 in green. Additionally,
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6 Application to the Pendulum

a test grid is chosen (see 6.2a). As a matter of comparability it should be
part of the application area of many tM, Ng, k combinations. Therefore, it
is smaller than the application area of the special case (tM = 1

8 τb, Ng = 64,
k = 3). Still it involves both: trapped and passing particles.

To summarize, the area covered by initial conditions used to create the
map is bigger than the area where the mapping can be applied to. This
results from B-spline interpolation, which is bound on a regular, rectangular
basis grid. So, the problem can be avoided by using mesh-less interpolation
methods.

6.2.1 Map creation by line integration

The mapping functions γ̃1,i and γ̃2,i are constructed as described in sec-
tion 5.1 for the one-dimensional case. The quality of the map depends on the
symplecticity of the mapping functions, which is measured by the curl:

∇× γ̃i(q, P) =
∂γ̃2,i(q, P)

∂q
− ∂γ̃1,i(q, P)

∂P
. (6.3)

It is evaluated at a fine q− P mesh, and the logarithm of its absolute magni-
tude is displayed in Fig. 6.3. One can see that it is close to zero everywhere,
which is a sign that the map is nearly symplectic. To perceive obvious
non - symplecticity (important for testing new parameter combinations), an
additional criterion is set up for the area of mapping: the absolute value of
the curl (Eq. 3.7) has to be less than a limit value of 10−2.

6.2.2 Map creation by collocation

As a second variant, the generating function is approximated by the colloca-
tion method described in section 5.2. As the curl, given in Eq. 5.8 vanishes
per definition, the quality of the map is measured directly by analyzing
the differences of values of the mapping function and the exact values
at the points, where initial conditions are given: γ̃1,a(q, P) − p + P and
γ̃2,a(q, P)−Q + q. If the map was perfect, these values are zero everywhere.
The actual values are given in Fig. 6.4.
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6.2 Map creation

Figure 6.3: Line integration: approximation of map exactness by analyzing symplecticity
of the interpolated mapping functions: log10(|∇× γ̃i(q, P)|) (see Eq. 6.3) for
tM = τb

8 , Ng = 64 and k = 3

(a) log10(|γ̃1,a(q, P)− p + P|) (b) log10(|γ̃2,a(q, P)−Q + q|

Figure 6.4: Collocation: measure of map exactness by analyzing the logarithm of the ab-
solute value of the difference between mapping function and exact values for
γ̃1,a(q, P) in (a) and γ̃2,a in (b)
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6 Application to the Pendulum

6.3 Application of the map

The above constructed mapping functions are applied on the test grid
(q ε[0, 2π], p ε[−2, 2]) marked in Fig. 6.2a in blue, following the description
given in section 5.3. Nt = 21 test points are chosen in each direction. Note
that the test grid points are shifted from the original ones.

Here, integration of 104 bounces of the fastest trapped orbit corresponding
to t f = 104τb = 2 · 104 π is replaced by the mappings. Considering that the
maps are constructed to replace integration from t = 0 to tM = 1

8 τb, the

mapping has to be applied NM =
t f
tM

= 8 · 104 times.

The results of the mapping are illustrated in Fig. 6.5.

(a) Mapping originated from Line Integration (b) Mapping originated from Collocation

Figure 6.5: Mapped orbits for different initial conditions (q, p) (marked by +) applying the
map originated from line integration (b) and from collocation (b).
trapped orbits are gray, passing orbits blue and the separatrix is depicted in red

6.4 Quality of the map

At first, the mappings in Fig. 6.5 look qualitatively similar to the integration
depicted in Fig. 6.1. In addition, one wants to have comparable measures of
the mapping quality and stability. This is given by the geometrical distance g
defined in Eq. 5.13 and the normalized energy oscillation given by Eq. 5.14.
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6.4 Quality of the map

The geometrical distance is calculated for all N2
t = 21 ∗ 21 = 441 points of

the test grid, by evaluating the normal distance gNi in Eq. 5.12 for TN = 1000
random mapped orbit points, taking CN = 50000 integrated orbit points for
comparison into consideration, and forming the root mean square. A few
points show anomalies.

On the one hand, there are two unstable points at (q = 0, p = 0) and
(q = 2π, p = 0). These are caused by the modulo function, which was
used to project q /∈ [0, 2π[ back to q ∈ [0, 2π[ (which is allowed because the
Hamiltonian in Eq. 2.12 is periodic in 2π). Due to integration, these points
will change neither momentum p nor position q. Due to the mapping, q and
p vary a little bit. Small variations in q lead to a jump of q = 0 to q = 2π
(see Fig. 6.6a) or vice versa, which results in an extremely high geometrical
distance g.

(a) unstable points caused by the modulo function (b) zoom into separatrix

Figure 6.6: Integrated orbits (black) and mapped orbits (red) with initial Conditions (q, p)
(marked by +); points leading to similar results are depicted by o

On the other hand, initial conditions lying on the seperatrix lead to devia-
tions. Mathematically, orbits at the separatrix slow down, until they reach
the instable cross point at (q = π, p = 0), where they stay forever. Sym-
plectic integration (like the Euler scheme used here) deforms this reality
a little bit, leading to passing orbits slightly away from the separatrix. So
depending on initial conditions a particle is restricted to either the upper
or the lower part of the separatrix (see Fig. 6.7b and Fig. 6.7a respectively).
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6 Application to the Pendulum

(a) lower seperatrix (b) upper seperatrix

Figure 6.7: Integrated orbits (black) and mapped orbits (red) with initial conditions (q, p)
(marked by +)
points leading to similar results are depicted by o

Mapping approximation leads to a scattering from the upper to the lower
part and vice versa (again: see Fig. 6.7b and Fig. 6.7a), which results in high
geometrical distances for these orbits. A closer look at the separatrix is given
in Fig. 6.6b.

In summary, the geometrical distance of the whole map is determined by
averaging over all geometrical distances of the test grid points and evaluat-
ing the standard deviation. All 7 anomalous initial conditions, depicted in
Fig. 6.6a, Fig. 6.7a, and Fig. 6.7b in blue, are excluded from the calculation,
because they lead to high values which do not correspond to the physical
situations. The logarithm of the geometrical distances of the remaining test
points are shown in Fig. 6.8.

In addition, the normalized energy oscillation is measured for each test point,
by evaluating Eq. 6.1 at every time step, calculating mean value and standard
deviation and building the ration given in Eq. 5.14. At (p = 0, q = π

2 ) and
(p = 0, q = 3π

2 ), the initial energy is zero, making normalization impossible.
For that reason, those points are excluded from the calculation. Results are
shown in Fig. 6.9 where two extra data points are excluded because their
oscillation is so small, that they distort the scaling of the plots.

Comparing both methods, the collocation seems to be more precise. Whereas
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6.4 Quality of the map

(a) Mapping originated from Line Integration (b) Mapping originated from Collocation

Figure 6.8: Logarithm of the geometrical distance log10(g) (see Eq. 5.13) for mapping
originated from line integration (a) and from collocation (b).

(a) Mapping originated from Line Integration (b) Mapping originated from Collocation

Figure 6.9: Logarithm of the normalized energy oscillation log10(∆H) (see Eq. 5.14) for
mapping originated from line integration (a) and from collocation (b).

the mean value of the energy oscillation in both cases is nearly the same
(∆H ∼ (0± 0.02)), the quality difference is reflected in the mean values
of the geometrical distance: (0.0005± 0.0005) vs. (3± 8) · 10−6. One may
also note that the geometrical distance varies only locally in the case of
collocation, whereas the line integration method creates regions with better
mapping quality and regions with worse quality.
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6 Application to the Pendulum

6.5 Line integration: parameter study

Finally one wants to know how the parameters tM and Ng affect the mapping
precision of the line integration method. Therefore, different parameter
combinations are tested and the average of the normalized maximal energy
oscillation as well as the geometrical distance are calculated.

Beforehand, the limits of both parameters are defined. Here, the lower limit
for tM is set to tM = τb

15 due to computation time and matrix sizes.

Concerning tM, the upper limit refers to symplecticity and injectivity of
the mapping functions. To make the statement clear area conservation and
the curl given in Eq. 3.7 are observed for the cases tM = τb

3 , tM = τb
4 and

tM = τb
5 using a grid size of Ng = 128. In addition injectivity is examined

qualitatively.

(a) Time evolution in phase space
(b) log10(|∇× γ̃i(q, P)|) (see Eq. 6.3)

Figure 6.10: Mapping from (q, p) to (Q, P) for tM = τb
5 and Ng = 128

Area conservation in phase space is measured by the ratio of initial area
(black rectangles in Fig. 6.10a, Fig. 6.11a and Fig. 6.12a) and time evoluted
area (red shapes). It gives values close to one up to five digits in all three
cases. Additionally, lines defining the shape in phase space do not cross
each other, so the transformation is still symplectic.

Turning to the mapping condition Eq. 3.7, which is close to zero if the map-
ping was symplectic and injective, one encounters the following situation:
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6.5 Line integration: parameter study

(a) Time evolution in phase space
(b) log10(|∇× γ̃i(q, P)|) (see Eq. 6.3)

Figure 6.11: Mapping from (q, p) to (Q, P) for tM = τb
4 , Ng = 132

(a) time evolution in phase space
(b) log10(|∇× γ̃i(q, P)|) (see Eq. 6.3)

Figure 6.12: mapping from (q, p) to (Q, P) for tM = τb
3 , Ng = 128

In Fig. 6.11b one may observe that the curl grows to values close to one (for
tM = τb

4 ) in the central mapping region, where the mapping area cannot
be reduced. In case of tM = τb

3 , the curl obviously exceeds one (see black
framed yellow dots in the orange region of Fig. 6.12b).

As area conservation is fulfilled and lines do not cross each other, the only
remaining problem is injectivity. A two-dimensional function has to be
injective on one dimensional isolines in order to be injective as a whole.
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6 Application to the Pendulum

Exemplary, the mapping function γ̃1,i(q, P) is observed at a fixed q value to
explain the high curl values in the figures above. For tM = τb

5 the function is
injective (see Fig. 6.13c). tM = τb

4 represents the limiting case, where P = 0
may have more than one solution (see Fig. 6.13b) and tM = τb

3 is definitely
not injective (see Fig. 6.13a).

As it is impossible to reach global curl values below the limitation 10−2 for
tM = τb

4 and tM = τb
3 with the maximal grid size of Ng = 256, the upper

limit for the time one mapping involves is tM = τb
5 .

Considering the second parameter Ng, the upper limit is set to Ng = 256
because of memory and computation time. The lower limit for Ng is set to
Ng = 32, where the curl defined in Eq. 6.3 does not fall below the limit for
all considered cases of tM.

Finally, knowing the limits, the logarithm of the geometrical distance and
the normalized energy oscillation (described in the previous section) is
determined for all valid parameter combinations tM = τb

5 , τb
6 , τb

8 , τb
10 , τb

12 , τb
15

and Ng = 32, 64, 80, 96, 112, 128, 256. The natural logarithm of the average
geometrical distance and the normalized energy oscillations are depicted in
Fig. 6.14.

While the normalized energy oscillation is converging towards the same
value for all map times tM, the averaged geometrical distance improves
by reducing the mapping time. This can be explained by the properties
of the interpolated mapping functions γi, which are more exact and more
’symplectic’ for smaller mapping times. Reducing tM one should keep in
mind the increasing computing time.

Besides, the mapping precision is quite sensitive to the grid size. Choosing
insufficient points to interpolate the mapping functions naturally leads to
less accuracy in the results. Choosing too many points, in contrast, implicates
over fitting. The smaller the mapping time-step tM, the smoother and less
contorted is the data to interpolate (Q− q) and (p− P). Smoothness in the
case of k = 3 favors overfitting, so that the optimal grid size is shifted to
smaller values for smaller mapping time steps tM.

Here, it is important to note that Ng is the number of grid points in q
direction of the mapping functions. In P, one started with 2Ng grid points,
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6.5 Line integration: parameter study

(a) tM = τb
3

(b) tM = τb
4 (c) tM = τb

5

Figure 6.13: P→ p relation at constant q = π
10

where some of them where cut off in order to represent valid mapping. This
leads to approximately Ng grid points in P direction for the mapping area.
Allowing the number of grid points to vary in both directions q and P could
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6 Application to the Pendulum

(a) ln(ḡ) (b) ln(| ¯∆H|)

Figure 6.14: natural logarithm of the averaged (a) geometrical distance and (b) magnitude
of the normalized energy oscillation for different parameter combinations tM
and Ng

further improve the mapping results here.
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7 Application to the Tokamak
Model Field

Symplectic mappings are tested for a non-canonical case with trajectories
in the tokamak model field resulting from the guiding-center Lagrangian
described in chapter 2.

First, in section. 7.1 further details about the construction of initial conditions
are given.

Then, in section 7.2, 7.3 and 7.4, a certain parameter triple tM, Ng and k is
chosen to show how map construction, application and quality measure
works.

One will see, that in the model field case only collocation results in stable
mappings. Finally, in section 7.5, different parameter combinations are tested
and analyzed for the mentioned method.

7.1 Choice of initial conditions

The mapping is done for the one-dimensional, canonicalized tokamak sys-
tem in the subspace p̂φ = −400 and µ̂ = 5 · 106 Gs−1. In order to create
initial conditions (θ, Θ, p̂θ, P̂θ) for map interpolation, the equations of mo-
tion (see Eq. 2.6) are integrated following the description (and using the
parameters) given in section 2.6.

Primarily, initial conditions for integration are defined on a (θ, r)-grid,
depicted in Fig. 7.1a in black. Ng grid points are used in each direction.
The corresponding v̂|| and p̂θ are given by Eq. 2.13 and Eq. 2.14. The triple
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7 Application to the Tokamak Model Field

(r, θ, v̂||) is integrated on the given grid up to the mapping time tM, resulting
in R, Θ, V̂||. Again, P̂θ is evaluated by Eq. 2.14. Initial conditions for map
interpolation in mixed variable phase space (θ, P̂θ) are shown in Fig 7.1b in
black.

(a) initial space θ-r (b) mixed variable phase space θ-P̂θ

Figure 7.1: Provided data (black), surjective mapping area (green) and test area (blue) in
’real’ space (a) and mixed variable phase space (b)

In analogy to the harmonic oscillator, the area where the mapping can be
applied to is smaller than the original area covered by initial conditions
(θ, Θ, p̂θ, P̂θ) because the interpolation has to be surjective. Here, this is illus-
trated for the special parameter triple: Ng = 64, tM = 1

10 τ̂passing (τ̂passing =
54.65 m), k = 4 in Fig. 7.1 in green. To guarantee surjectivity for different
parameter triples, the test area, where the map is finally applied to, is even
smaller (see blue rectangle in Fig. 7.1a).

Trajectories of particles initiated in the test area are shown in Fig 7.2.

7.2 Map creation

To exemplify map construction the parameter triple: Ng = 64, tM =
1

10 τ̂passing, k = 4, is considered. In this context, k stands for the order of
the partial derivative of a B-spline basis function describing G̃a(θ, P̂θ) or the

64



7.2 Map creation

Figure 7.2: Particle trajectories for initial conditions marked by +: some initial conditions
are randomly selected to keep the representation clear.

order of the interpolated mapping function γ̃i(θ, P̂θ). The canonicalized ini-
tial conditions (θ, Θ, p̂θ, P̂θ) are taken to create a map via the line integration
method on the one hand, and via collocation on the other hand.

7.2.1 Map creation by line integration

Essentially, the map is constructed following the description given in sec-
tion 5.1. In analogy to the pendulum a first impression of the quality of
the map is given by the curl of the mapping functions (see Eq. 6.3). The
logarithm of its magnitude is depicted in Fig 7.3.

One should remember that the mapping is symplectic only if the curl is
close to zero everywhere. In Fig. 7.3 one can see, that it exceeds 10−2, which
is a sign that symplecticity and stability will not be guaranteed in the long
run.
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7 Application to the Tokamak Model Field

-6

-4

-2

Figure 7.3: Line integration: approximation of map exactness by analyzing symplecticity
of interpolated mapping functions: log10(|∇× γ̃i(θ, P̂θ)|) (see Eq. 6.3) for tM =
1

10 τ̂passing, Ng = 64 and k = 4

The initial conditions involve particles carrying energies from about Ĥ = 0.2
to Ĥ = 1.3 (in terms of 7 MeV) (see Fig. 2.7b). The sensitivity to the
integration time-step varies from orbit to orbit. Whereas original integration
was done by an adaptive step-size Runge Kutta method, the mapping is
done with the same step-size for all trajectories. This may lead to difficulties
constructing such a map. In addition, the momenta p̂θ and P̂θ used as inital
conditions for the map construction depend on integration variables v̂||,θ
and r up to the forth power. Small deviations in the integration variables
may lead to higher deviations in the mapping functions.

7.2.2 Map creation by collocation

Here, the map is constructed following the instructions given in section 5.2.
The momenta are normalized, so that the least squares approximation is
done on a unique square of 2π × 2π.
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7.3 Application of the map

Considering collocation, the curl given in Eq. 5.8 vanishes anyway. So, the
accuracy of the map is measured by analyzing the normalized differences of
the evaluated mapping functions and the exact values, which is displaced in
Fig. 7.4.The variation is in the same range for both coordinates. Regardless,
one should consider that the orbits may not be reproduced exactly.

-7

-6

-5

-4

-3

(a) log10

(
| γ̃1,a(θ,P̂θ )− p̂θ+P̂θ

P̂max
θ

|
)

-7

-6

-5

-4

-3

(b) log10

(
| γ̃2,a(θ,P̂θ )−Θ+θ

2π |
)

Figure 7.4: Collocation: measure of map accuracy by analyzing the logarithm of the normal-
ized differences between the evaluated mapping function and the exact values
for γ̃1,a(θ, P̂θ) in (a) and γ̃2,a(θ, P̂θ) in (b)

In principle, the deviations shown in Fig. 7.4 can be related to the curl
illustrated in Fig. 7.3. γ is a gradient field (defined in Eq. 3.6), whose exact
primitive will only exist if it was curl free. Applying the collocation method,
the generating function is constructed in a way that the curl vanishes,
whereas the gradient field γa slightly deviates from the given data.

7.3 Application of the map

Here, the map is applied to the test particles. These originate from a grid
covering the area marked in Fig. 7.1a in blue with 21× 21 points.

The mapping is done for a time interval of 0.1 s, which approximately
corresponds to the slowing down time. From another point of view, the
mapping interval accounts for 23722 τ̂passing, where τpassing = τ̂passingv =
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7 Application to the Tokamak Model Field

4.2155 · 10−6 s. Considering the mapping time tM = 1
10 τ̂passing, there are

237220 mapping steps in total.

Finally, mapping functions originating from both methods are applied to
the test points following the guidelines given in section 5.3. The coordinate
r is implicitly given by Eq. 2.14 and v̂|| is defined by Eq. 2.13. The energy
of some particles is calculated at each time step and its conservation is
observed for both methods (see Fig. 7.5). As expected, the mapping fails
using the Line Integration method. However, collocation conserves energy
very well. Regardless, energy may oscillate, which is the reason why the
lines in Fig. 7.5b appear thicker.

(a) Line integration Method (b) Collocation

Figure 7.5: Conservation of energy from mapping originated from (a) and (b), respectively.
Note the difference in the time axes.

Particle trajectories resulting from the mapping originated from collocation
are displayed in Fig. 7.6. At a first glance, the orbits are like the ones origi-
nated from conventional integration depicted in Fig. 7.2. Closely observing
the separatrix, one may note differences.

7.4 Quality of the map

In this section the quality of the mapping originated from collocation is
analysed. Both, geometrical distance and normalized energy oscillation are
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7.4 Quality of the map

Figure 7.6: Collocation: Mapping over 0.1 s with parameters: tM = 1
10 τ̂passing, Ng = 64,

k = 4. Initial conditions are marked by +. Note the difference to the integrated
orbits in Fig. 7.2 at the separatrix.

calculated for each test point. The logarithm of its magnitude is illustrated
in Fig. 7.7.

For the calculation of the geometrical distance, TN = 1000 points of each
mapped orbit are chosen randomly. For each point the normal distance
gNi is computed evaluating Eq. 5.12 for the two closest out of CN = 50000
reference points originated from conventional integration. Then the geomet-
rical distance is given by the root mean square of the normal distances (see
Eq. 5.13).

In Fig. 7.7, one notes that the accuracy of the mapping depends strongly on
its initial conditions. Large geometrical distances and normalized energy
oscillations are observed at the separatrix, where trapped orbits are sepa-
rated from passing ones. Describing this distinct boundary by continuous
functions will naturally fail, so at the separatrix the map is partly invalid,
or rather the trajectories are shifted. Detailed and scientific explanations
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7 Application to the Tokamak Model Field

(a) log10(g) (b) log10(|∆H|)

Figure 7.7: Collocation: Mapping quality for parameter triple Ng = 64, tM = 1
10 τ̂passing,

k = 4 with a total mapping time of t = 0.1 s. Logarithm of (a) geometrical
distance (Eq. 5.13) and (b) magnitude of the normalized energy oscillation
(Eq. 5.14)

are given by Lichtenberg and Lieberman, 1992. The behavior is similar to
the behaviour of the trajectories of the pendulum described in the previous
chapter.

Critical trajectories with large geometrical distances at the separatrix are
illustrated in Fig. 7.8c, Fig. 7.8d, and Fig. 7.8e. In comparison, a ’common’
banana and a ’common’ passing trajectory are displayed in Fig. 7.8b and
Fig. 7.8f respectively. As the geometrical distance of innermost bananas
is increased as well (see Fig. 7.7a), the innermost banana is depicted in
Fig. 7.8a.

In addition, the normalized energy oscillations are high for outermost orbits,
where particle energies are large.
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7.4 Quality of the map

(a) innermost banana orbit (b) banana orbit

(c) trajectory close to the separatrix (1) (d) trajectory close to the separatrix (2)

(e) trajectory close to the separatrix (3) (f) passing oribit

Figure 7.8: Particle trajectories (a),(b), (c),(d), (e) and (f) from the inside to the outside:
black lines corresponds to ’conventionally’ integrated orbits, whereas blue lines
originates from the mapping (tM = 1

10 τ̂passing, Ng = 64, k = 4); initial conditions
are marked by +
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7.5 Collocation: parameter study

In this section, it is examined how the parameter pair Ng and tM affects
the quality of the mappings constructed by collocation for k = 4. As above,
the mapping is applied to 441 test points covering the blue area given in
Fig. 7.1a. To keep the computing time within acceptable limits it is done
over 104 τ̂passing.

Least squares approximation demands more memory than direct B-spline
interpolation, therefore the upper limit for the grid size is set to Ng = 96
here. The lower limit is determined to be Ng = 8. The Matlab internal least
squares solver lsqlin can be regulated either by tolerances or iterations. Here,
it is adjusted to iterate a thousand times. The bigger the approximation
grid, the slower the convergence. For that reason, the iteration number is
increased to 3000 for Ng = 96.

Regarding the mapping time tM, its upper limit is given by mapping stability.
For tM = 1

3 τ̂passing, the inner- and outermost orbits start to leave the area
where mapping is valid.

For the given point with tM = 1
3 τ̂passing and Ng = 64, the line integration

method is applied to measure the curl given by Eq. 6.3. It is illustrated
in Fig. 7.9 and should be compared to Fig. 7.3, where one notes that the
values are a little bit larger for tM = 1

3 τ̂passing. Generally, the higher the
mapping time is chosen, the higher the curl values grow and the more the
corresponding trajectories are distorted. In contrast to the previous chapter
where the limit for the mapping time was determined by injectivity, which
was accompanied by sudden rises in the curl value, here the curl values
are high from the beginning and the mapping is still injective for slightly
unstable mappings. So, the limit referring to the upper mapping time is not
so obvious.

From that point of view, tM = 1
3 τ̂passing is chosen as an upper limit because

the mapping failed for one to four out of N2
t = 441 test particles. In addition,

the lower limit is set to tM = 1
20 τ̂passing due to computation time and

memory.
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7.5 Collocation: parameter study

Figure 7.9: Line integration method: logarithm of the curl given by Eq. 6.3:
log10(|∇× γi(θ, P̂θ)|); parameter combination tM = 1

3 τ̂passing and Ng = 64.

In practice the mapping is done for the following parameter combinations:
Ng = 8, 16, 32, 64, 96 and tM = 1

3 , 1
4 , 1

5 , 1
6 , 1

8 , 1
10 , 1

12 , 1
15 , 1

20 multiples of
τ̂passing.

For each parameter combination the averaged normalized energy oscillation
(given by Eq. 5.14) is calculated and its natural logarithm plotted in Fig. 7.10.
The lower the mapping time the exacter the solutions.

As least squares approximation is used, over fitting in the original sense is
not a problem any more. For high mapping times tM, the complexity of the
system is increased and the convergence may be slowed down. This could
explain the minima of the averaged energy oscillations at lower grid sizes
for the red and blue line in Fig. 7.10.

Observing shapes of mapped trajectories, the scattering reduces by de-
creasing tM and increasing Ng corresponding to the decrease in averaged
normalized energy oscillations given in Fig. 7.10. To underline this state-
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Figure 7.10: natural logarithm of normalized energy oscillations ln(| ¯∆H|) for different
parameter combinations Ng and tM. τ in the legend replaces τ̂passing.

ment two particular trajectories are chosen and the mapped shapes are
illustrated.

Trajectories close to the separatrix are depicted for a fixed grid size Ng = 32
and varying tM in Fig. 7.11 and fixed tM with varying grid sizes Ng in
Fig. 7.12, respectively. One can see that orbits get less scattered and better
resolved. Keep in mind that this does not necessarily mean that they are
approaching to the shape originated from direct integration. These shifted
orbits may be related to curl values (e. g. in Fig. 7.3 and Fig. 7.9), which do
not vanish in any case. As the interpolated mapping function γi is not curl
free it is impossible to find an exact primitive Ga. In that sense, collocation
leads to slightly shifted orbits while preserving symplecticity and energy.
These shifts especially occur close to the separatrix.

In addition, trajectories of a common banana orbit are depicted for a fixed
mapping time tM with varying grid sizes Ng in Fig. 7.13, and fixed grid size
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(a) Separatrix (b) Zoom into separatrix

Figure 7.11: Varying map time tM for fixed grid size Ng = 32, reference shape originated
from integration is marked in black

(a) Separatrix (b) Zoom into separatrix

Figure 7.12: Varying gridsize Ng for fixed tM = 1
10 τ̂passing, reference shape originated from

integration is marked in black

Ng = 32 with varying tM in Fig. 7.14 respectively. Similarily, orbits get less
scattered, but not necessarily closer to the integrated orbit line by increasing
grid sizes and reducing mapping times.
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(a) Banana (b) Zoom into banana tip

Figure 7.13: Varying gridsize Ng for fixed tM = 1
10 τ̂passing, reference shape originated from

integration is marked in black

(a) Banana (b) Zoom into banana tip

Figure 7.14: Varying map time tM for fixed grid size Ng = 32, reference shape originated
from integration is marked in black
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8 Summary and Outlook

In this work, symplectic mappings were applied to trace guiding-center
orbits in fusion devices. It was shown that a stable mapping can be con-
structed for a tokamak model field using the collocation method. The used
parameters were inspired by ITER.

Up to now, the mapping has been done for a fixed magnetic moment µ and a
fixed toroidal moment pφ leading to varying energies in the range of fast ion
orbits originating from fusion. This was necessary to create a system where
all particles obey to the same Hamiltonian function. Moreover, this system
could be canonicalized and the mapping reduced to one dimension.

Generally, in the next step, the mapping will have to be extended to two
dimensions in order to enable mappings for non-axisymmetric devices
like stellarators or tokamaks with RMP coils to mitigate ELMs. It is al-
ready known how such systems can be canonicalized ( Albert, Kasilov, and
Kernbichler, 2020).

In addition, one has to keep in mind that the basic idea was to create
mappings for predefined constant energies. Maybe one can transform the
system or find a way to do the mapping on hypersurfaces of constant energy
only.

High energies including trapped and passing orbits, complicated the map-
ping procedure and lead to small deviations of the mapped trajectories when
compared to direct integration, especially at the separatrix. Another idea
to improve the mapping quality would be to separate trapped and passing
regions and construct the mappings independently for each region.

Finally, discrete B-spline interpolation (or approximation) used in this work
could be replaced by mesh-less methods like radial basis functions. Due to
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the regular interpolation grid, the area where the map can be applied to
was restricted.

The big advantage of the symplectic mappings is, that once the map is
created, evaluations of the magnetic field are avoided. Also, in calculating
particle trajectories, there are less mapping steps needed than integration
steps (Runge-Kutta, ode45). Nevertheless, one has to be careful with approx-
imations concerning the improvement of computation time, because finally,
when the mapping is applied to non-axisymmetric cases, the approximation
of the map has to be done in four- or even five-dimensional space. This
leads to an increase in memory demand and computation time. In contrast,
the description of the magnetic field is given in three dimensions. In con-
clusion, the gain in computation time in real applications has to be still
investigated.
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