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Abstract

In this thesis, we study the Kondo effect in the Anderson impurity model
under the influence of a bias voltage in two different environments. The
model describes an impurity with a local electron-electron interaction cou-
pled to two noninteracting leads at potentially different chemical potentials.
Exchange processes of an unpaired impurity electron with the conduction
electrons qualitatively change the energy spectrum and transport properties
of the system leading to the emergence of the Kondo effect. Here, we con-
sider one setup, where the impurity electron is additionally subjected to a
local magnetic field and another one, where the leads display a pseudogap in
the density of states. We are particularly interested in the interplay of these
features with the bias voltage and their combined influence on the Kondo
effect in the current-carrying steady state. Due to their many-body nature,
the considered setups are hard to address numerically. We employ the re-
cently developed auxiliary master equation approach in combination with
two different schemes based on matrix product states for that purpose. By
mapping to an auxiliary open quantum system, we can conveniently perform
the time evolution and access the steady state as well as Green’s functions
in the steady state. The auxiliary system is addressed by means of matrix
product states providing an efficient representation for the determination of
both quantities. Our calculations yield very accurate results, when com-
pared with the numerical renormalization group. Specifically, for the setup
with the magnetic field, we determine the spin-dependent shift of the Kondo
resonance in the spectrum as well as its counterpart in the differential con-
ductance as a function of voltage. In case of the more challenging setup with
the pseudogap leads, we investigate the fate of an inherent quantum phase
transition under voltage bias.





Kurzfassung

Diese Arbeit befasst sich mit dem Kondo Effekt in Andersons Störstellenmod-
ell unter dem Einfluss einer elektrischen Spannung in zwei unterschiedlichen
Umgebungen. Dieses Modell beschreibt eine Störstelle, an der Elektronen
miteinander in Wechselwirkung treten, gekoppelt an zwei nichtwechselwirk-
ende Bäder, gegebenenfalls auf unterschiedlichen chemischen Potentialen.
Austauschprozesse zwischen einem ungepaarten Störstellenelektron und den
Leitungselektronen ändern qualitativ das Energiespektrum und die Trans-
porteigenschaften des Systems und führen schließlich zur Ausbildung des
Kondo Effekts. In dieser Arbeit betrachten wir einerseits eine Problemstel-
lung, bei der das Störstellenelektron zusätzlich einem lokalen Magnetfeld aus-
gesetzt ist, und andererseits eine Problemstellung, in der die Bäder eine soge-
nannte Pseudo-Bandlücke in der Zustandsdichte aufweisen. Wir sind beson-
ders am Zusammenspiel dieser Eigenschaften mit der Spannung interessiert
und an deren gemeinsamer Auswirkung auf den Kondo Effekt im strom-
führenden stationären Zustand des Systems. Aufgrund ihrer Vielteilchen-
natur sind die betrachteten Problemstellungen numerisch schwer zugänglich.
Wir verwenden zu diesem Zweck einen kürzlich entwickelten Ansatz, den
„Auxiliary Master Equation Approach“, in Kombination mit zwei verschiede-
nen Schemata basierend auf Matrix-Produktzuständen. Die Abbildung auf
ein offenes Quantensystem erlaubt es, bequem die Zeitentwicklung auszufüh-
ren, den stationären Zustand zu erreichen sowie Greensche Funktionen im
stationären Zustand zu berechnen. Wir adressieren das offene System mit
Hilfe von Matrix-Produktzuständen, welche eine effiziente Darstellung zur
Ermittlung beider Größen bieten. Dieser Zugang erlaubt es, äußerst präzise
Resultate im Vergleich zur numerischen Renormierungsgruppe zu generieren.



Für das System im Magnetfeld bestimmen wir die Spin-abhängige Verschie-
bung der Kondo Resonanz im Spektrum sowie ihren Gegenspieler in der dif-
ferenziellen Leitfähigkeit als Funktion der Spannung. Im Falle der anspruchs-
volleren Problemstellung mit der Pseudo-Bandlücke untersuchen wir das
Schicksal eines inhärenten Quantenphasenübergangs unter dem Einfluss einer
angelegten Spannung.
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Chapter 1

Introduction

Many exciting phenomena in physics have collective nature, i.e. they arise
due to interactions between a system’s constituents, such as electrons or
phonons, and cannot be explained just by adding up the individual behavior
of the constituents [4]. Prominent examples involve superconductivity [5, 6],
ferromagnetism [7], quantum criticality [8], the Mott transition [9], heavy
fermions [10] and the Kondo effect [11]. Besides the fundamental interest
in understanding these phenomena, also their application in present and
proposed future technologies is potentially manifold, ranging, e.g., from the
energy sector [12] to medicine [13] and information processing [14].

From a technological perspective, there is a trend towards miniaturiza-
tion, smaller and faster devices are built for enhanced performance and, at
the same time, reduced costs. At the nanoscale, classical device character-
istics are altered by quantum mechanical effects, such as energy and charge
quantization [15], and electronic interactions typically play a bigger role [16].
This is a curse and a blessing at the same time: It introduces new challenges
to cope with [17], but also opens up pathways for completely new types
of devices, which are based on the laws of quantum mechanics rather than
compromised and exploit strong interactions for their functionality [18].

While the motivation to study many-body systems on a microscopic level
is strong, this turns out to be very hard in practice and we usually have to
rely on approximate models, such as the Hubbard model [19], the related
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Anderson impurity model [20] or the Ising model [21]. These models involve
only a small number of parameters crucial to capture the underlying physics.
Despite this, analytical solutions of these models are scarce and accurate
numerical solutions tend to be hard to obtain. Out of equilibrium, where
devices typically operate, this hardship is particularly severe, since we cannot
exploit thermodynamics principles for simplification, but have to deal with
the full many-body quantum dynamics.

There is a plethora of interesting questions to address out of equilibrium,
such as the transport properties of a many-body system in the steady state
[22], its transient behavior in the course of a pump-probe experiment [23] or
the effects of periodic driving [24, 25]. Other fundamental questions involve
nonequilibrium quantum phase transitions [26], dissipation and decoherence
[27] and thermalization after a quench [28], to name a few. Describing a
quantum many-body system up to the nonequilibrium steady state with high
accuracy poses a great challenge, and method development in this direction
is currently a very active field of research [22, 29, 30].

In this thesis, we address the Kondo effect in the nonequilibrium steady
state of the Anderson impurity model under voltage bias employing the aux-
iliary master equation approach in combination with matrix product states
techniques. We study the model, consisting of an interacting impurity site
in contact with two noninteracting leads in two different environments, with
a local magnetic field and with a pseudogap in the leads’ density of states.
We focus on the interplay of these features with the bias voltage and their
combined effect on the spectral and transport properties.

Three published papers originated from the present thesis. For two of
them I was the main contributor and, accordingly, first author. Therefore,
these two papers [1, 3] are included literally as an integral part of this thesis
in Chs. 5 and 6. The further organization is as follows: Ch. 2 contains an
introduction to the Kondo effect and the Anderson impurity model, in Ch. 3
the auxiliary master equation approach is motivated and Ch. 4 deals with
matrix product states techniques. Finally, Ch. 7 holds general conclusions
and an outlook to possible future studies.
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Chapter 2

Kondo effect

This chapter deals with the Kondo effect, one of the main topics I have
studied during my PhD. It aims at providing introductive and complementary
material to my two main publications, presented in Ch. 5 and Ch. 6, to
make them more accessible. I tried to avoid overlaps with Secs. 5.2, 6.2 and
Secs. 5.3.1, 6.3.1, which also touch the basics of the Kondo effect, as much as
possible. For this chapter, I used the books by Hewson [31] and Coleman [32]
as well as the feature [33] as main sources of information. This chapter is
organized as follows:

In Sec. 2.1, the Kondo effect is introduced and ambiguities in the termi-
nology are clarified. Sec. 2.2 is meant to put the topic into historical context,
providing an overview of the developments since the discovery of the effect
up to the present. In Sec. 2.3, the Anderson impurity model is introduced
with particular focus on the spectral properties. This is the model of interest
in my two main publications, Refs. [1, 3], whose objectives are introduced in
Sec. 2.4.

2.1 Terminology

In ordinary metals, the resistance R decreases monotonically as the tempera-
ture T is lowered, because electron-phonon scattering is reduced. Further, it
takes a constant finite value as T approaches absolute zero, due to potential
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scattering on defects.1

The situation is quite different, when the metal contains magnetic im-
purities, such as atoms from the 3d transition element or the 4f rare earth
series. In this case, the resistance first goes down upon decreasing the tem-
perature, as in ordinary conductors, then it takes a minimum at T ≈ TK

and rises again as T → 0 K, see Fig. 2.1(a). This behavior is caused by a
magnetic contribution to the scattering by the impurities, which strongly
depends on the temperature. When the magnetic scattering overcomes the
electron-phonon scattering, a minimum occurs. This effect is termed Kondo
effect and the temperature TK is called Kondo temperature.

The process of magnetic scattering also triggers the entanglement of elec-
trons at the impurities with conduction electrons of the metal at tempera-
tures T � TK , culminating in the formation of a very special ground state.
In this ground state, the magnetic moments of the impurity atoms are en-
tirely screened by the spins of the conduction sea. This ground state shows
up as a resonance of width TK at the chemical potential µ in the local density
of states at the impurities, the so-called Kondo resonance, see also Fig. 2.4.
Its occurrence is nowadays also often referred to as Kondo effect.

So, the Kondo temperature sets a crossover2 between a regime, where
local magnetic moments are present, due to the free spins at the impurities
(T � TK), and the Kondo regime, where the impurity spins are screened
and no net magnetic moments survive (T � TK), see Fig. 2.2. Remarkably,
in the Kondo regime, the physics is completely governed by TK , kBTK being
the only relevant energy scale, and observables, such as the resistance, are
universal functions of T/TK . This implies that all R(T ) curves, independent
of any physical details of the experiments they result from, follow the same
function f(T/TK).

Notice that quantum dots also display the Kondo effect. These are tiny
pieces of semiconductor, where electrons are confined and have quantized
states, resembling the states in an atom. The same mechanisms that are

1Some metals suddenly loose their resistance completely and become superconducting.
This is associated with a phase transition at a critical temperature, below which electrons
form a condensate of Cooper pairs.

2Notice that no phase transition is involved here, but a smooth crossover.
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responsible for the resistance minimum in bulk metals with dilute magnetic
impurities cause the opposite effect in quantum dots, see also Fig. 2.1(b).
Here the conductance G takes a minimum at T ≈ TK and rises again as
T → 0 K to reach its quantum limit of 2 e

2

h
. The different behavior is related to

the different geometries: In a metal, electrons can circumvent the impurities
and the magnetic scattering process hinders their motion. Quantum dots,
on the other hand, are not surrounded by metal, but locally coupled to
electrodes. In order to get from one electrode to another, electrons are forced
to travel through the dot and the Kondo resonance at the chemical potential
supports the transport.3

2.2 Historical overview

Historically, the Kondo effect was first observed in gold by de Haas, de Boer
and van dën Berg in 1934 [34]. Based on measurements by Clogston, Matthias
et al. [35] and Sarachik et al. [36] the resistance minimum could be linked to
the presence of magnetic moments. On the theoretical side, Friedel intro-
duced the concept of virtual bound states, states that are almost localized
at the impurity sites [37]. This concept was taken up by Anderson, who
came up with an effective model for the situation of the impurities in the
metal. The Anderson impurity model was also able to explain the formation
of magnetic moments based on strong interactions between electrons [20].

Three decades after its discovery, the Kondo effect was explained by
Kondo, who addressed another impurity model, the s-d model, which is
nowadays also called Kondo model [38, 39]. Within third order perturba-
tion theory he found a magnetic contribution to the scattering and therefore
to the resistance ∝ lnT [11]. Together with the phonon contribution ∝ T 5

this accounts for the resistance minimum.4 However, the perturbation the-
ory breaks down as T → 0 K,5 so with this approach, the behavior at very
low temperatures T � TK could not be explained. This posed another long-
standing problem which was termed Kondo problem.

3In quantum dots, the conductance is measured from the impurity electrons.
4The potential scattering contribution is almost constant.
5lnT diverges
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(a)

(b)

Figure 2.1: (a) Qualitative behavior of the resistance R in dependence of
temperature T for (1) an ordinary metal, (2) a metal with dilute magnetic
impurities displaying the Kondo effect and (3) a superconductor. (b) Con-
ductance G in a quantum dot (1) in so-called Coulomb blockade (for an even
number of electrons at the dot) and (2) in the Kondo regime (for an odd
number). This representation was adapted from [33].
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Figure 2.2: Situation in a system capable of the Kondo effect. Impurity
(red circle) surrounded by a Kondo screening cloud at T � TK versus free
electron spins (purple arrows) at T � TK .

Another decade later, Wilson devised the numerical renormalization group
and solved the Kondo problem numerically, which was recognized with the
award of the Nobel Prize in 1982 [40]. Wilson thereby confirmed a hypothesis,
which had been proposed based on the results of previous, unsuccessful at-
tempts to solve the Kondo problem: In the ground state of the Kondo model
the impurity electron is bound to the conduction electrons in a singlet state.
This holds true also for the Anderson impurity model, which is linked to
the Kondo model in the low-energy regime by a Schrieffer-Wolff transforma-
tion [41]. Other experimental results for the transport and thermodynamic
properties at very low temperatures T � TK could be interpreted by Noz-
ières in terms of a Landau Fermi liquid theory [42]. Later, this theory was
microscopically derived on the basis of the Anderson impurity model [43, 44].

In 1980, Wiegmann and Andrei independently came up with an exact
solution to the Kondo model employing Bethe ansatz [45, 46]; shortly af-
terwards also the Anderson impurity model was solved exactly. However,
Bethe ansatz does not provide the possibility to access Green’s functions as
desirable for comparison with experiments, such as photoemission or neutron
scattering [47, 48]. A variety of methods with different degrees of approxi-
mation emerged to meet this challenge, see e.g. [43, 49–51]. They all have
in common that they yield a very narrow many-body resonance in the im-
purity density of states at the Fermi level, which was termed Abrikosov-Suhl
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resonance [52, 53] and, later on, Kondo resonance. This ground state reso-
nance accounts for the anomalous low-energy behavior of metals with dilute
magnetic impurities and, nowadays, its build-up is also often referred to as
Kondo effect.

Having assessed most aspects of the Kondo effect in theory by considering
impurity models in equilibrium, i.e. at bias voltage φ = 0 V, and employing
linear response theory, the next step was to reach out for nonequilibrium.
This is of fundamental interest and provides a more realistic description of
many experiments. Meir and Wingreen were the first to observe a suppres-
sion, broadening and splitting of the Kondo resonance at finite bias volt-
ages [54, 55] and their results have been confirmed, extended and refined by
many other works up to now [56–65]. Sill, there is no state-of-the-art method
to address the Kondo effect out of equilibrium. Studying the Anderson im-
purity model in different, nonequilibrium situations and according method
development also poses the main issue of this thesis.

The Kondo effect and the impurity models have enjoyed renewed interest
in the rapidly growing field of nanotechnology, which allows not only to
study matter on an atomic scale, but also to manipulate and control it.
An important tool in this context is the scanning tunnelling microscope. It
allows to place individual atoms on a surface, such as magnetic impurities
on a metal, forming any desired structure, and to measure the local energy
spectrum with atomic resolution. This gives rise to a completely new type of
experiments, where the position of the impurity atoms is known, may even
be tuned, prior to measuring the Kondo effect [33, 66].

Exploiting modern chip technologies, on the other hand, quantum dots
can be manufactured, which also display the Kondo effect, but in a way dif-
ferent from their bulk-metal counterparts [67, 68], as sketched in the previous
Sec. 2.1. They are often well described by impurity models, whose parame-
ters can be faithfully tuned in the laboratory [67, 69]. This also opens up new
pathways for experiments: Just recently, the Kondo screening cloud was ob-
served for the first time by Borzenets, Shim, Chen, Ludwig, Wieck, Tarucha,
Sim and Yamamoto [70]. They studied a setup where a quantum dot is
coupled to a Fabry-Pérot interferometer. Upon tuning a voltage on the in-
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terferometer end gate, they measured oscillations in the Kondo temperature,
which is a signature of the Kondo cloud.

Further, impurity models have enjoyed a revival within dynamical mean-
field theory [71, 72]. This approach, invented by Georges, Kotliar, Metzner
and Vollhardt, addresses the physics of strongly-correlated materials by map-
ping the (intractable) lattice problem onto an impurity model, which has to
be solved self-consistently. In this respect, the impurity problem constitutes
the bottleneck problem of the theory and the corresponding solution meth-
ods are referred to as impurity solvers. Therefore, it is also interesting to
develop new accurate and efficient methods to solve impurity models under
different conditions, out of equilibrium, in particular, as in the present the-
sis. The latter allows to extend the dynamical mean-field theory to treat
strongly-correlated lattice problems also out of equilibrium [25, 73–77].

2.3 Anderson impurity model

The Anderson impurity model or, more precisely, the single-impurity An-
derson model, can be used to effectively describe the situation of magnetic
impurities immersed in a metal. The corresponding Hamiltonian reads

H =

Himp︷ ︸︸ ︷
Unf↑nf↓ +

∑
σ

εfnfσ +
∑
kσ

εknkσ +
∑
kσ

(
Vk c

†
kσfσ + V ∗k f

†
σckσ

)
︸ ︷︷ ︸

Hres

.

(2.3.1)
It models the impurity as a single localized orbital ψf (r) with on-site energy
εf that can either be empty or occupied by one or two electrons with oppo-
site spins. Double occupancy is punished via the on-site interaction U that
accounts for the Coulomb repulsion of electrons,6

U =

∫
d3r d3r′ Vc(r− r′) ρf (r)ρf (r

′) , Vc(r) =
e2

4πε0|r|
. (2.3.2)

6The total energy in the system is increased for repulsive U > 0.
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Here, Vc(r) is the Coulomb potential and ρf (r) = |ψf (r)|2 is the electron
density in the impurity orbital. Further, f (†)

σ destroys (creates) an electron
at the impurity with spin σ and nfσ = f †σfσ is the corresponding particle
number operator.

The metal is modeled as effectively free electrons with dispersion εk ∈
[−D,D] within a conduction band of width 2D. When the impurity is em-
bedded in the metal, its orbital hybridizes with the Bloch waves of the con-
duction sea, giving rise to

Vk =

∫
d3r e−ik·rVion(r)ψf (r) . (2.3.3)

Here, Vion(r) is the potential of the impurity ion, c(†)
kσ destroys (creates) an

electron in the conduction band with momentum k and spin σ and nkσ =

c†kσckσ is again the corresponding particle number operator.
In order to gain insight into the physics of magnetic impurities dissolved

in a metal, the following two limiting cases of the Anderson impurity model
are particularly interesting (see Eq. (2.3.1) for definitions):

• Himp describes the atomic limit of an isolated impurity. It explains the
formation of local moments based on strong interaction U .

• Hres is the noninteracting limit. It shows the emergence of a resonance,
due to the impurity, which is a virtual bound state resonance.

2.3.1 Atomic limit

In order to understand the physics of the model, it is convenient to first
consider the atomic limit of an isolated impurity Himp and study, in which
parameter regime local moments develop by solving the corresponding eigen-
value problem.

The Hamiltonian Himp (2.3.1) has four eigenstates, which are listed in
Tab. 2.1 together with the corresponding eigenenergies. In order to obtain
the magnetic doublet (|↑〉 , |↓〉) as ground state, transitions to all other states
must cost nonzero energy. As easily checked, adding or removing one electron
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to or from the singly-occupied sector is associated with an excitation energy,

∆E =
U

2
±
(
εf +

U

2

)
. (2.3.4)

This excitation energy is positive and, thus, the ground state magnetic for
U > |2εf + U |, which is also illustrated in the phase diagram in Fig. 2.3. In
this scenario, if the impurity is probed below the smallest excitation energy
∆Emin = U

2
−
∣∣εf + U

2

∣∣, the charge degree of freedom is unaffected and it

states energy magnetic

|0〉 0 no
|↑〉 , |↓〉 εf yes
|↑↓〉 2εf + U no

Table 2.1: Eigenstates and eigenenergies of Himp.

behaves as a local moment. When coupled to the conduction sea, the Kondo
effect shows up in the parameter regime, where the local moments develop
(orange colored area).

In this thesis, we are interested in the symmetric model, 2εf + U = 0,
where the states |↑↓〉 and |0〉 are degenerate (and repulsive U > 0).

Figure 2.3: Phases of Himp and parameter regimes, where the Kondo effect
and the charge Kondo effect arise, when the impurity is immersed in a metal.
This representation was adapted from [32].

Notice that in the symmetric model for attractive U < 0, the charge
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doublet (|↑↓〉, |0〉) is the ground state (yellow line). This ground state gives
rise to the so-called charge Kondo effect, when coupled to the conduction sea
[78], but this is out of scope of this thesis.

2.3.2 Noninteracting limit

When embedded in a metal, the impurity orbital hybridizes with the Bloch
waves of the conduction sea allowing electrons to tunnel in and out with
amplitude Vk. Now, we study the consequences of this fact for the impurity
spectrum in the noninteracting limit Hres (2.3.1), using Green’s functions.

For simplicity, we consider the particular case, where the retarded hy-
bridization function has a constant imaginary part,7

−=∆R(ε) = π
∑
k

|Vk|2δ(ε− εk) ≡ Γ = const. (2.3.5)

for ε ∈ [−D,D]. Note that <∆R(ε) = O(ε/D) can be neglected for a wide
conduction band. In this case, the retarded impurity Green’s function is

GR(ε) =
1

ε− εf + iΓ
, (2.3.6)

which follows from Dyson’s equation (5.3.11) with gR0 = (ε− εf + i0+)−1 and
zero Keldysh component. The corresponding spectral function is determined
via A(ε) = −=GR(ε)/π, yielding

A(ε) =
1

π

Γ

(ε− εf )2 + Γ2
. (2.3.7)

This is a Lorentzian of width Γ and maximum 1/(πΓ) located at ε = εf , see
also Fig. 2.4. So, the hybridization has a broadening effect. The resonance,
Eq. (2.3.7), is called a virtual bound state resonance, since the corresponding
states are not completely localized like atomic bound states, but become
Bloch waves far from the impurity (instead of decaying rapidly).

7This also happens to be a commonly studied case in Kondo physics.
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Figure 2.4: Impurity spectrum A(ε) in the symmetric Anderson impurity
model for (1) U = 0 displaying a Lorentzian and (2) U > 0 displaying the
Kondo resonance in the center and the Hubbard bands to the left and right.

2.3.3 General case

The Coulomb interaction, which tends to localize electrons and which drives
the formation of magnetic moments, and the hybridization, which enables
them to spread over the whole metal, are competing. In the full Anderson
impurity model, Eq. (2.3.1) with U 6= 0 and Vk 6= 0, it is, thus, obvious that
a local moment can only develop, if the interaction exceeds the hybridization
to a sufficient extent. From mean-field theory it follows that U & πΓ must
be fulfilled.

One expects that, at finite U , the virtual bound state resonance in the
impurity spectrum splits into two peaks associated with the charge excitation
energies of the isolated impurity, Eq. (2.3.4). In detail, a spectral decompo-
sition of the impurity spectral function yields:

A(ε) =



adding one impurity electron︷ ︸︸ ︷∑
λ

∣∣〈λ|f †σ|φ0〉
∣∣2 δ(ε− [Eλ − E0]) (ε > 0)∑

λ

|〈λ|fσ|φ0〉|2 δ(ε− [E0 − Eλ])︸ ︷︷ ︸
removing one impurity electron

(ε < 0)
(2.3.8)
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Here, |φ0〉 and |λ〉 are the ground state and excited states of the full Hamilto-
nian, Eq. (2.3.1), and E0 and Eλ are the corresponding energies. Since these
energies enter only as differences, we can approximate the result by substi-
tuting them with the eigenenergies in the atomic limit, Tab. 2.1. In this way,
in the regime where the ground state is magnetic (|↑〉 , |↓〉), we obtain two
peaks separated by U , one located at εf and another one at εf + U . These
peaks have a width of ≈ Γ8 and they are called Hubbard bands.

In the symmetric Anderson impurity model, 2εf + U = 0, which we con-
sider in the present thesis, the Hubbard bands are located at ≈ ±U/2, while
the Lorentzian in the noninteracting limit is centered around zero energy. So,
at large U , one would expect all indications of this Lorentzian to vanish and
no spectral weight to be left at zero energy. Contrary to this expectation,
it turns out that there is always a peak at ε = 0.9 It becomes progressively
narrower with increasing U , but its height is pinned to 1/(πΓ) [79]. This
peak is the Kondo resonance, see Fig. 2.4. Whereas the emergence of the
Hubbard bands may be explained in the atomic limit of an isolated impu-
rity, the Kondo resonance is a genuine many-body effect that has no atomic
counterpart. We saw that the Hubbard bands are due to valence fluctuations
and describe charge excitations. The Kondo resonance, on the other hand,
is associated with spin fluctuations.

The tunneling of electrons between the impurity and the metal can ef-
fectively cause a spin flip at the impurity. This happens as a second-order
process via a virtual state, which violates the conservation of energy, see
Fig. 2.5. The energy that an impurity electron classically requires to move
into the bath, i.e. the transition energy to the virtual state, typically amounts
to |εf | = (1−10)eV. Albeit classically forbidden, the Heisenberg uncertainty
principle allows such a transition to take place without introducing energy
into the system, provided that the virtual state decays within a short time
span ≈ h/|εf |. Within this time span, another bath electron has to tunnel
onto the impurity, in order to restore the energy balance. This new impurity

8Thus, it is obvious that we will see two distinct peaks only for sufficiently large U/Γ.
9which corresponds to the position of the chemical potential in the metal
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electron may have opposite spin10 creating a spin excitation in the Fermi
sea. Such exchange processes qualitatively change the energy spectrum at
the impurity and lead to the Kondo resonance.

Figure 2.5: Spin-flip scattering process. (left) An impurity electron (red
circle) with spin up tunnels into the bath (blue) leaving the impurity empty,
which is classically high-energetic (upper panel). Then a spin-down bath
electron tunnels onto the impurity, restoring a singly-occupied state (right),
while creating a spin excitation in the bath. The order of tunnelings may also
be exchanged leading to a doubly-occupied high-energy state (lower panel).
This representation was adapted from [33].

Assuming that the spin-flip scattering takes place with a rate τ−1
sf , the

Kondo temperature may be defined in the following way,11

kBTK =
~
τsf

=

√
2UΓ

π
exp

(
−πU

8Γ

)
. (2.3.9)

As noted in Sec. 2.1, TK sets the crossover between the local moment regime
(T � TK), where the impurity spin is free, and the Kondo regime (T � TK),

10with respect to the initial impurity electron
11Note that there are various definitions of the Kondo temperature, whose numerical

values differ slightly, the scale, however, is the same.
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where it is screened. In the Kondo regime, the impurity electron entangles
with the conduction electrons via spin-flip scattering and the ground state is
a spin singlet. Further, the system behaves as a Fermi liquid, see Fig. 2.6.

Figure 2.6: Phases of H (2.3.1) and parameter regime, where the Kondo
effect arises. This representation was adapted from [32].

2.3.4 Out of equilibrium

As discussed in the previous Sec. 2.3.3, the Kondo resonance develops at
the position of the chemical potential of the metal.12 If the impurity is con-
nected to two leads at different chemical potentials, realizing a bias voltage
φ = µR − µL, one expects two resonances to emerge, one at each chemical
potential. In fact, upon turning on a bias voltage, the Kondo resonance is
first broadened and, at some critical voltage, it splits into two peaks, which,
at large bias, are located at µL and µR, respectively. The amplitudes of these
split peaks are suppressed by dissipative processes, where electrons are trans-
ferred from the lead with the higher chemical potential to the one with the
lower chemical potential. These processes also cause a broadening ~

τd
, where

τd the dissipative lifetime, see Fig. 2.7. So, out of equilibrium, the emergence
of two new energy scales13 is observed, eφ and ~

τd
, which are linked to the

bias voltage as well as the dissipative lifetime [54].
12which was at ε = 0
13in addition to kBTK
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However, while the small bias regime, φ ≈ 0, is easily accessed via linear
response theory and perturbation theory can be employed at large bias, the
intermediate regime eφ ≈ kBTK is challenging and only a few approaches are
capable of generating accurate results also for large times in the steady state.
The auxiliary master equation approach, employed in this thesis, is one of
them, see Ch. 3 as well as Ref. [63].

Figure 2.7: Impurity spectrum A(ε) in the symmetric Anderson impurity
model for (1) φ = 0 displaying the Kondo resonance and (2) φ > 0 displaying
the broadened and suppressed Kondo split peaks at the chemical potentials
µλ = ± eφ

2
.

2.4 This work

In the present thesis, we study the Kondo effect in the steady state of the
Anderson impurity model under voltage bias in two different environments,
in a local magnetic field, on the one hand, and with a pseudogap in the
density of states of the leads, on the other hand.

A local magnetic field B at the impurity produces a spin-dependent shift
in the on-site energies in Eq. (2.3.1), according to εf → εf ± 1

2
∆ε, where

∆ε = |g|µBB is the Zeeman splitting. Therefore, one expects to observe a
shift in the Kondo resonance as well, naively by the same amount as in the

19



on-site energies. However, the situation turns out to be more complex, and,
for large magnetic fields, the peaks emerge at the positions of the Zeeman
splitting±∆ε [54]. The spectral shift also affects the differential conductance,
which takes a maximum, when the Kondo split peaks enter the transport
window at eφ ≈ ∆ε. Again, the intermediate regime ∆ε ≈ kBTK is most
challenging, in particular with a bias voltage applied. In this case, one expects
to see four peaks for certain parameter combinations, located at ±∆ε ± eφ

2

[80]. In this thesis, we examine the discussed properties with the auxiliary
master equation approach in combination with matrix product states, see
Ch. 5 or Ref. [1].

At zero magnetic field, the Kondo resonance emerges at the chemical
potential of the metal, see Sec. 2.3.3. So, the density of states at the chemical
potential has a crucial influence on the effect. In particular, if there is a
gap, the Kondo resonance cannot (fully) develop. However, in case of a
pseudogap, i.e. a density of states ∝ |ε − µ|r, which is zero directly at
the chemical potential and finite elsewhere, a quantum phase transition is
observed14 depending, i.a., on the exponent r [81, 82]. The fate of this
quantum phase transition under the influence of a bias voltage is not a priori
clear and is also subject of studies in this thesis, see Ch. 6 or Ref. [3].

14in contrast to the crossover in the ordinary Anderson impurity model
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Chapter 3

Auxiliary Master Equation
Approach

This chapter is devoted to introducing and motivating the auxiliary master
equation approach (AMEA), a numerical method that has been developed
in our working group. It is particularly well suited to deal with impurity
problems out of equilibrium, such as those studied in Refs. [1, 3] and presented
in Chs. 5 and 6. Further details about AMEA can be found in Refs. [63, 83].
The books by Schaller [84] and Breuer and Petruccione [85] as well as Ref. [86]
are also serving as sources of information.

Before addressing the actual subject of this chapter, we first review the
physics of closed quantum systems in Sec. 3.1. Afterwards, in Sec. 3.2, an
overview of open quantum systems is given, which can be employed to model
a bias voltage. In Sec. 3.2.1, the Lindblad master equation is presented. This
is the central equation in the auxiliary master equation approach, which is
introduced in Sec. 3.3. The following Sec. 3.4 deals with the super-fermion
representation, which is a useful tool for solving master equations. Finally,
this representation is applied to the Anderson impurity model, see Sec. 3.5.
In particular, the structure of the Lindblad equation, which is solved in Chs. 5
and 6, is derived.

Throughout the whole chapter (except for the last Sec. 3.5), all ordinary
operators are indicated by a hat and the introduced super-operators, i.e.
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operators acting on other operators producing again other operators as a
result, are indicated by a double hat, to omit confusions.

3.1 Closed quantum systems

Pure states: In a closed quantum system, a pure state |ψ(t)〉 evolves
in time, due to the action of a Hamiltonian Ĥ(t), as described by the
Schrödinger equation,1

i~
d

dt
|ψ(t)〉 = Ĥ(t) |ψ(t)〉 . (3.1.1)

The solution to Eq. (3.1.1) can be expressed in terms of a unitary time evo-
lution operator Û(t, t0), which maps an initial state |ψ(t0)〉 to a final state
|ψ(t)〉, according to

|ψ(t)〉 = Û(t, t0) |ψ(t0)〉 . (3.1.2)

Inserting this into the Schrödinger equation results in a differential equation
for Û(t, t0), which is solved by the following expression,

Û(t, t0) = T̂ exp

− i
~

t∫
t0

dτĤ(τ)


Ĥ 6=Ĥ(τ)

= exp

[
− i
~
Ĥ(t− t0)

]
.

(3.1.3)

Here, T̂ is the chronological time ordering operator. It arranges products of
operators to its right such that their time arguments increase from the right
to the left. Since the Hamiltonian is Hermitian, Ĥ = Ĥ†, the time evolution
operator is unitary, Û †Û = Û Û † = 1̂. Finally, time dependent expectation
values of operators Ô are obtained as

〈Ô(t)〉 = 〈ψ(t)|Ô|ψ(t)〉 . (3.1.4)
1Notice that the Hamiltonian may depend on time, even though the system is said to

be closed. Such a treatment may apply, under certain conditions, to systems that are
driven by external forces, such as an electromagnetic field.
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Mixed states: In the more general case, a closed system is not in a pure
state, but in a mixed one, and it is characterized by its density operator ρ̂(t),
which obeys the Liouville - von Neumann equation,

i~
d

dt
ρ̂(t) = [Ĥ(t), ρ̂(t)] . (3.1.5)

Here, [Ĥ, ρ̂] denotes the commutator Ĥρ̂− ρ̂Ĥ. The solution to this equation
is given in terms of the same time evolution operator Û(t, t0) as in the pure-
state case, Eq. (3.1.3), as

ρ̂(t) = Û(t, t0)ρ̂(t0)Û †(t, t0) . (3.1.6)

Notice that the Liouville - von Neumann equation (3.1.5) may be rephrased
and expressed in analogy to the Schrödinger equation (3.1.1) (as well as the
classical Liouville equation),2

i~
d

dt
ρ̂(t) = ˆ̂L(t)ρ̂(t) . (3.1.7)

Here, ˆ̂L is the Liouvillian or Liouville super-operator, which is defined by its
action as ˆ̂Lρ̂ = [Ĥ, ρ̂]. Also the solution to Eq. (3.1.5) can be expressed in
terms of a super-operator,

ρ̂(t) = ˆ̂U(t, t0)ρ̂(t0) . (3.1.8)

The time evolution super-operator ˆ̂U acts as ˆ̂Uρ̂ = Û ρ̂ Û †. Alternatively, it
can be defined, in analogy to the pure-state case, Eq. (3.1.3), as

ˆ̂U(t, t0) = ˆ̂T exp

− i
~

t∫
t0

dτ ˆ̂L(τ)


ˆ̂L6=ˆ̂L(τ)

= exp

[
− i
~

ˆ̂L(t− t0)

]
.

(3.1.9)

2This is particularly useful for open quantum systems, which we study in the following.
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ˆ̂U is again unitary, ˆ̂U † ˆ̂U = ˆ̂U ˆ̂U † = ˆ̂1, since the Liouvillian is Hermitian,
ˆ̂L = ˆ̂L†. In this framework, time dependent expectation values of operators
Ô are obtained as

〈Ô(t)〉 = Tr
{
ρ̂(t)Ô

}
. (3.1.10)

In summary, a closed quantum system always evolves unitarily in time. As
discussed in the next section, this is, in general, not the case for open quantum
systems. The representation in terms of super-operators is particularly useful
for open systems, since it allows to map the problem to a standard operator
problem, which is also discussed in the following sections.

3.2 Open quantum systems

A quantum system S is called open, if it is coupled to another quantum
system E, with which it can exchange particles, energy, etc. In typical appli-
cations, the combined quantum system U = S+E is considered to be closed,
see Fig. 3.1. Therefore, E is usually termed environment and U universe.3

Figure 3.1: The open quantum system S and its environment E together
constitute the closed universe U = S +E. The respective Hilbert spaces are
denoted H, HE and HU = H⊗HE and the density operators ρ̂, ρ̂E and ρ̂U .
This illustration was adapted from [85].

3In principle, the roles of S and E could be exchanged. Here, we denote by S the part
of the universe we are interested in and by E the rest we are not explicitly interested in.
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The universe evolves unitarily in time, as summarized in the previous Sec.
3.1, due to the action of the Hamiltonian ĤU ,

ĤU = Ĥ ⊗ 1̂E + 1̂⊗ ĤE + ĤC . (3.2.1)

The dynamics of the open system, on the other hand, is not solely governed
by its Hamiltonian Ĥ - also the environment and the coupling to it, described
by ĤE and ĤC , contribute.

Formally, the time evolution of S may be obtained from the time evolution
of U by taking the partial trace over E, such as the reduced density operator
is obtained from the global one,

ρ̂ = TrE ρ̂U(t) . (3.2.2)

Under certain circumstances, this leads, applied to Eq. (3.1.8), to the defi-
nition of a dynamical map V̂ (t, t0) from the state space of reduced density
operators of S onto itsself:4

ρ̂U(t0) = ρ̂(t0)⊗ ρ̂E(t0)
unitary evolution−−−−−−−−−→ ρ̂U(t) = ˆ̂UU(t, t0) [ρ̂(t0)⊗ ρ̂E(t0)]

TrE

y yTrE

ρ̂(t0) −−−−−−−−−→
map

ρ̂(t) = ˆ̂V (t, t0) ρ̂(t0)

(3.2.3)
The dynamical map V̂ (t, t0) is, in general, not unitary. Applying the partial
trace also to the differential equation (3.1.7), its generator ˆ̂L is deduced,
which is, in general, not Hermitian:

i~
d

dt
ρ̂U(t) = ˆ̂LU ρ̂U(t)yTrE

i~
d

dt
ρ̂(t) = ˆ̂Lρ̂(t)

(3.2.4)

4We assumed U to be in a product state initially. Notice that, in general, ˆ̂V is also
dependent on ρ̂(t0) and the reduced dynamics in Eq. (3.2.4) is not always local in time.
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Summarizing, the time evolution of an open quantum system is generated by
a non-Hermitian operator and is, therefore, non-unitary.

The final Eq. (3.2.4) is called quantum master equation. This is a first
order differential equation for the reduced density operator of the open sys-
tem, in terms of other system operators and with coefficients that depend on
the environment and the coupling to it. It is analogous to the Schrödinger
equation (3.1.1) or the Liouville - von Neumann equation (3.1.5) that are
valid for closed quantum systems.

In general, the outlined derivation is not carried out in practice. Com-
puting the time evolution of the universe is usually not feasible and we are
only interested in the reduced system dynamics, anyway. For some cases, a
master equation can be derived exactly, mostly, it is an approximation. De-
pending on the assumptions that have been made, there are different types
of master equations. One of them is the Lindblad master equation, which is
discussed in the next section and which we employ in the auxiliary master
equation approach.

3.2.1 Lindblad master equation

The Lindblad master equation is the most general quantum master equation
that is local in time,5 has constant coefficients and preserves the defining
properties of the density operator [87, 88].6 It has the following form,

i~
d

dt
ρ̂(t) = [Ĥ, ρ̂(t)] + i

∑
ij

γij

[
2M̂i ρ̂(t)M̂ †

j −
{
M̂ †

j M̂i , ρ̂(t)
}]

. (3.2.5)

Ĥ comprises the closed-system Hamiltonian and, potentially, additional Her-
mitian terms produced by the coupling to the environment. The Lindblad op-
erators M̂i and the dampening matrix γ depend on the nature of environment
and the coupling.

{
M̂ †

j M̂i , ρ̂
}
means the anticommutator M̂ †

j M̂i ρ̂+ρ̂ M̂ †
j M̂i .

5This means that ρ̂(t+dt) depends on ρ̂(t), but is independent of states that lie farther
in the past, so the system has no memory.

6These are Hermiticity, ρ̂ = ρ̂†, normalization, Tr ρ̂ = 1 and positive semidefiniteness,
〈ψ| ρ̂ |ψ〉 ≥ 0 for all |ψ〉 ∈ H (in fact, complete positiveness).
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Ĥ and γ have the following properties,

Ĥ = Ĥ† ,

γ = γ† and υ†γυ ≥ 0 ,
(3.2.6)

for all vectors υ. Expressing the Lindblad equation in terms of super-
operators, as suggested in the previous section, we can distinguish two fun-
damentally different contributions to the Liouvillian:

ˆ̂L = ˆ̂LH + ˆ̂LD

ˆ̂LH ρ̂(t) = [Ĥ, ρ̂(t)]

ˆ̂LD ρ̂(t) = i
∑
ij

γij

[
2M̂i ρ̂(t)M̂ †

j −
{
M̂ †

j M̂i , ρ̂(t)
}] (3.2.7)

ˆ̂LH generates a unitary propagation in time, such as in a closed system,7

whereas ˆ̂LD has no closed-system analogue. This super-operator accounts
for the dissipation, due to the coupling to the environment. Since ˆ̂LD is not
Hermitian, it generates a non-unitary propagation in time. As a consequence,
the overall time evolution8 is non-unitary:

ˆ̂L 6= ˆ̂L†

ˆ̂V −1 6= ˆ̂V †
(3.2.8)

3.3 Auxiliary Master Equation Approach

In this section, the basic idea of the auxiliary master equation approach is
outlined. This approach has been developed in our working group, particu-
larly, to deal with impurity problems, such as the Anderson impurity model,
out of equilibrium, i.e. under the influence of a bias voltage. However, it
can also be applied to the more general setup of a small central region, such
as a molecule or several impurities, that is attached to one or more baths.

7It is the generator of a Liouville - von Neumann equation (3.1.5).
8determined from Eq. (3.1.9) changing the label ˆ̂U to ˆ̂V
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In contrast to conventional approaches based on a perturbative derivation
of the master equation, in AMEA, the general form of a master equation is
obtained by requiring that its parameters meet certain conditions. This will
be explained in the following. In Fig. 3.2, the setup we investigate in Refs. [1,
3], Chs. 5 and 6, is sketched, an Anderson impurity model with a bias voltage
applied, realized by a difference in the chemical potentials of a left (µL) and
a right (µR) bath. The baths are also called leads in this context.

Fig. 3.2(a) shows the impurity site surrounded by a bath of conduction
electrons illustrated as a cloud. In Fig. 3.2(b), the bath is split to be allocated
to a left and a right lead at potentially different chemical potentials. For sim-
plicity, the left and right lead are illustrated as two semi-infinite chains of bath
sites. Roughly, this is also the setup studied in Chs. 5 and 6. However, more
general geometries, with more general couplings between the bath sites, are
conceivable. Since this impurity problem has an infinitely large state space,
it cannot be solved exactly. As a first approximation, one can cut out a finite
system, which is small enough such that the solution of the corresponding
Schrödinger equation (3.1.1) or Liouville - von Neumann equation (3.1.5) is
feasible in practice. This is sketched in Fig. 3.2(c). However, at some instant
in time, an electron propagating towards the system boundary will be re-
flected introducing artificial finite-size effects. As a consequence, in such a
setup, we will always observe oscillating behavior and a true steady state will
never be reached. In order to simulate a genuine nonequilibrium system with
a true steady state, we need to implement absorbing boundary conditions.
They allow electrons to jump out of the system and vanish into the surround-
ing environment and vice versa. One way to implement absorbing boundary
conditions is by attaching Markovian baths, as illustrated by the clouds in
Fig. 3.2(d). Markovian means that the bath loses its memory immediately.
Such a behavior is captured by a master equation that is local in time. In
AMEA, we employ the Lindblad equation (3.2.5) for this purpose.

In summary, we map the physical impurity problem, Fig. 3.2(a) and (b),
to the finite problem with Markovian baths (d) which is termed auxiliary
impurity problem and whose dynamics is governed by a Lindblad equation.
This is done by presuming a general Lindblad equation, whose parameters,
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;

(a)

µR

µL

;

(b)

;(c)

;

(d)

Figure 3.2: Idea of AMEA sketched at the example of the Anderson impurity
model. The impurity, represented as a red circle, is in a bath of conduction
electrons (a) loosely illustrated as a cloud and (b) represented as two semi-
infinite chains of bath sites. They can have different chemical potentials µα
realizing a nonequilibrium situation. This physical system is too large to
solve. Thus, (c) it is truncated and (d) Markovian baths are attached to
remove finite-size effects. The auxiliary system obeys a Lindblad equation,
whose parameters are fitted to approximate the hybridization function of (b).

29



i.e. the dampening matrix as well as energies and hoppings in the baths and
to/from the central region,9 are obtained from a fit. They are determined
such that the hybridization function of the auxiliary system matches the
physical one as well as possible. In particular, the fit involves the retarded
and the Keldysh component of the hybridization function,10 which define the
leads’ density of states as well as their particle distribution function, i.e. the
Fermi function for the problems considered here. The hybridization function
describes the influence of the baths on the impurity or central region com-
pletely.11 Being interested only in the physics of the central region and not in
the baths, any transformation on the baths that preserves the hybridization
function and the properties of the Lindblad equation is a valid transforma-
tion that leads to the same physics. For mathematical details, we refer to
Sec. 3.5 as well as Secs. 5.3.3, 6.3.3.1, 6.3.3.2 and Refs. [63, 83].

After the mapping, the resulting Lindblad equation has to be solved.
In this thesis, we rely on matrix product states techniques, see Sec. 4.5 as
well as Secs. 5.3.3, 6.3.3.3 and Ref. [64], combined with the super-fermion
representation, which is discussed in the next Sec. 3.4 as well as Ref. [86].
Alternative methods employed by our group operate in Krylov space [63] or
are based on a stochastic evolution of the wave function [2, 89]. The central
quantity we are interested in is the Green’s function. This is the response
function to the Schrödinger equation in case of a closed system and to the
Lindblad equation in the discussed auxiliary open system. From the Green’s
function, several interesting quantities may be accessed, the spectral function
(local density of states) at the impurity, the current, differential conductance,
nonequilibrium distribution functions, etc. For an overview, see Secs. 5.3.2
and 6.3.2 in the present work and for details Refs. [90, 91].

9degrees of freedom of the leads and the coupling, excluding the central region
10see Secs. 5.3.2 and 6.3.2
11see Dyson’s equation (5.3.11)
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3.4 Super-fermion representation

The idea of the super-fermion representation is to rephrase a super-operator
problem, such as Eq. (3.2.7), such that it turns into an ordinary operator
problem in an augmented state space. The advantage of this is that standard
many-body methods can be employed to solve the problem.

The procedure is as follows [86]: If the Hilbert space of the open systemH
is defined by a complete set of orthonormal states |n〉, then a second Hilbert
space H̃ is introduced, which is an identical copy of H and which is defined
by the states |ñ〉: ∑

n

|n〉〈n| = 1̂ , 〈n|m〉 = δnm∑
n

|ñ〉〈ñ| = ˆ̃1 , 〈ñ|m̃〉 = δnm
(3.4.1)

Consequently, the augmented state space H⊗ H̃ is spanned by the product
states |n〉 ⊗ |m̃〉. In this augmented state space, it is useful to define the left
vacuum vector |I〉 as well as the nonequilibrium wave function |ρ〉 = ρ̂ |I〉, as

|I〉 =
∑
n

|n〉 ⊗ |ñ〉 , (3.4.2)

|ρ(t)〉 =
∑
nm

ρnm(t) |n〉 ⊗ |m̃〉 , (3.4.3)

with ρnm(t) = 〈n|ρ̂(t)|m〉. The left vacuum |I〉 corresponds to the identity
operator 1̂ with the bra-vector 〈n| exchanged by a ket-vector |ñ〉 in the
additional state space H̃. Essentially the same is valid for |ρ〉 and ρ̂. Applying
the whole differential equation (3.2.7) to |I〉,

i
d

dt
|ρ(t)〉 = L̂ |ρ(t)〉 , (3.4.4)

yields a Schrödinger - like equation with the ordinary, but non-Hermitian,
operator L̂ acting as Hamiltonian, L̂ |ρ(t)〉 =

[
ˆ̂Lρ̂
]
|I〉, in the augmented
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state space. In this framework, expectation values (3.1.10) are obtained as

〈Ô(t)〉 = 〈I | Ô | ρ(t)〉 . (3.4.5)

From the normalization constraint of the density operator, Tr ρ̂(t) = 1,
follows that 〈I|ρ(t)〉 = 1 must be fulfilled at any time. Further, applying 〈I|
to Eq. (3.4.4) from the left, past the derivative, leads to12

〈I| L̂ = 0 . (3.4.6)

So, 〈I| is a left eigenvector of L̂ to the eigenvalue 0. In the steady state,
|ρ∞〉 = lim

t→∞
|ρ(t)〉 does not depend on time anymore, and Eq. (3.4.4) yields

L̂ |ρ∞〉 = 0 . (3.4.7)

So, the steady state |ρ∞〉 is a right eigenvector of L̂ to the eigenvalue 0. As
a consequence, the problem of finding the steady state can be reduced to the
problem of determining this eigenvector.

3.5 Basis of this work

Following Ref. [86], we now show, how to bridge the gap between the general
form of the Lindblad equation (3.2.5) and the super-fermion representation,
Sec. 3.4, to the equations in Sec. 6.3.3.1 for the auxiliary system in case of
the Anderson impurity model, which are used in Ch. 6, of course, but also in
Ch. 5. For the sake of readability, we omit hats and double hats for operators
and super-operators, here as well as in Chs. 5, 6, while they are employed
everywhere else in this thesis.

Auxiliary impurity problem: We start by splitting the Hamiltonian of
the auxiliary system, introduced in Sec. 3.3, into three contributions arising

12since 〈I|L̂|ρ(t)〉 = 0 at any time

32



from the impurity, the leads and the coupling between them,

H = Himp +Hleads +Hcoup . (3.5.1)

Assuming interactions to be confined to the impurity, we set up for the rest
of the system a general noninteracting Hamiltonian,

Hleads +Hcoup =
∑
µνσ

{leads, coup}

Eµνc
†
µσcνσ . (3.5.2)

The operator c(†)
µσ creates (annihilates) an electron with spin σ at auxiliary

system site µ. Further, in AMEA, we consider only Lindblad operators that
are linear in these creation and annihilation operators,

M †
j =

(
c†↓, c

†
↑, c↓, c↑

)
j
,

γij = diag
(
Γ(1)T ,Γ(1)T ,Γ(2),Γ(2)

)
ij
,

(3.5.3)

where c†σ =
(
c†1σ, c

†
2σ, . . .

)
runs over the leads’ degrees of freedom and

(
Γ(1)T

)
µν

=

Γ
(1)
νµ is the transpose. Entering Eqs. (3.5.2) and (3.5.3) into the Lindblad

equation (3.2.5), we obtain:

i~
d

dt
ρ(t) = [Himp, ρ(t)]

+
∑
µνσ

{leads, coup}

Eµν [c
†
µσcνσ, ρ(t)]

+ i
∑
µνσ
{leads}

Γ(1)
µν

[
2cνσρ(t)c†µσ −

{
c†µσcνσ, ρ(t)

}]
+ i

∑
µνσ
{leads}

Γ(2)
µν

[
2c†µσρ(t)cνσ −

{
cνσc

†
µσ, ρ(t)

}]
(3.5.4)

The matrices E, Γ(1) and Γ(2) hold the parameters to be determined by a
fit, as discussed in Sec. 3.3. Γ(α) is Hermitian and positive semidefinite and
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E is Hermitian.13 Further, for a solution of the auxiliary impurity problem
with MPS, we restrict them all to be tridiagonal.14

Super-fermions: For a fermionic many-body system, such as the Ander-
son impurity model, the Hilbert space is a Fock space and the particle number
representation is useful. We chose the left vacuum (3.4.2), without exactly
specifying the ordering of states at this point,15 as

|I〉 =
∑
{nµσ}

⊗
µσ

(−i)nµσ |nµσ〉 ⊗ |ñµσ〉

=
∑

n1↓...nN↑

(−i)n1↓+...+nN↑ |n1↓ñ1↓ . . . nN↑ñN↑〉

=
∑

n1↓...nN↑

(−i)n1↓+...+nN↑
(
c†1↓c̃

†
1↓

)n1↓
. . .

(
c†N↑c̃

†
N↑

)nN↑ |0〉 ⊗ |0̃〉
(3.5.5)

One exploits the possibility to introduce an additional phase, (−i)n1+n2+...+nN ,
here, which turns out to be convenient for fermions. Since the very same
phase enters also |ρ〉, expectation values (3.4.5) are not affected by this move.
nµσ is the number of particles in state µ with spin σ,

c†µσcµσ |. . . nµσ . . .〉 = nµσ |. . . nµσ . . .〉 ,
c̃†µσ c̃µσ |. . . ñµσ . . .〉 = nµσ |. . . ñµσ . . .〉 ,

(3.5.6)

and the tilde operators refer to the additional Hilbert space H̃. The ordi-
nary fermionic anticommutation rules are fulfilled and, further, operators in
different Fock spaces H and H̃ anticommute:

{cµσ, c†νυ} = {c̃µσ, c̃†νυ} = δµνδσυ

{cµσ, cνυ} = {c†µσ, c†νυ} = {c̃µσ, c̃νυ} = {c̃†µσ, c̃†νυ} = {c(†)
µσ, c̃

(†)
νυ} = 0

(3.5.7)

13These properties are inherited from γ and H, see Eq. (3.2.6).
14Notice that one of the matrices can always be chosen tridiagonal.
15corresponding non-tilde and tilde states are next to each other
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In this representation also the so-called the tilde conjugation rules are valid,16

which constitute a useful tool for calculating expectation values, since they
allow to switch between operators in the non-tilde and the tilde state space:

cµσ |I〉 = −ic̃†µσ |I〉
c†µσ |I〉 = −ic̃µσ |I〉

(3.5.8)

Applying the Lindblad equation (3.5.4) to the left vacuum (3.5.5), yields,
with the anticommutation and tilde conjugation rules, the following equation
in super-fermion representation:

i~
d

dt
|ρ(t)〉 =

[
Himp − H̃imp

]
|ρ(t)〉

+
∑
µνσ

{leads, coup}

Eµν
[
c†µσcνσ + c̃µσ c̃

†
νσ − δµν

]
|ρ(t)〉

+
∑
µνσ
{leads}

Γ(1)
µν

[
−2c̃µσcνσ − ic†µσcνσ + ic̃µσ c̃

†
νσ − iδµν

]
|ρ(t)〉

+
∑
µνσ
{leads}

Γ(2)
µν

[
2c†µσ c̃

†
νσ + ic†µσcνσ − ic̃µσ c̃†νσ − iδµν

]
|ρ(t)〉

(3.5.9)

For the Anderson impurity model, H̃imp has exactly the same structure as
Himp, Eq. (5.3.2) or (6.3.2), but with tilde operators instead of non-tilde
ones. This is, because Himp contains only particle number operators (3.5.6).
Collecting terms and comparing with (3.4.4), one obtains the Liouvillian:

L = L0 + LU

L0 =
∑
µνσ

[(
Eµν + iΩµν

)
c†µσcνσ +

(
Eµν − iΩµν

)
c̃µσ c̃

†
νσ

]
+
∑
µνσ

[
2Γ(2)

µν c
†
µσ c̃
†
νσ − 2Γ(1)

µν c̃µσcνσ
]
− 2 Tr [E + iΛ]

LU = U [nf↑nf↓ − ñf↑ñf↓]

(3.5.10)

16since corresponding non-tilde and tilde operators come in pairs in Eq. (3.5.5)
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In order to arrive at Eq. (3.5.10), we also shifted the noninteracting terms of
Himp − H̃imp, i.e. coefficients εfσ, where f denotes the impurity site, to the
matrix E. In this way, L is split into an interacting and a noninteracting
part, LU and L0. We further defined Ω = Γ(2) − Γ(1) and Λ = Γ(2) + Γ(1).

Carrying out a particle-hole transformation c̃†µσ ↔ c̃µσ in Eq. (3.5.10) and
redefining L → iL17 we arrive at Eq. (6.3.17) for the Liouvillian with the
corresponding left vacuum Eq. (6.3.21).

17We defined L in Eq. (3.1.7) and (3.2.7) without the prefactor i for a closer analogy to
the Schrödinger equation (3.1.1) and for a better understanding of the derived properties.
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Chapter 4

Matrix Product States

This chapter constitutes an introduction to the matrix product states (MPS)
formalism, which we employ to solve the Lindblad equation resulting from
the auxiliary master equation approach to the Anderson impurity model
out of equilibrium, Refs. [1, 3], Chs. 5 and 6. Whereas MPS are mostly
renowned for representing ground states of one-dimensional gapped closed
systems efficiently, the formalism turns out to work well also for steady states
and steady state correlation functions of the open systems studied here.

Following a review by Schollwöck, Ref. [92], we start this introduction
with the singular value decomposition (SVD), which forms the core of almost
any operation on MPS, Sec. 4.1. We proceed by exactly deriving canonical
forms of matrix product states in Sec. 4.2 and discuss their truncation and
the MPS approximation in Sec. 4.3. In Sec. 4.4, matrix product operators
(MPOs) are introduced. Sec. 4.5 deals with the time evolution of a system
based on MPS, starting with a decomposition of the generator into commut-
ing terms in Sec. 4.5.1 and the definition of gates in Sec. 4.5.2. Then the two
main algorithms for the time evolution are introduced, the time-dependent
density-matrix renormalization group (tDMRG) algorithm, Sec. 4.5.3, and
the time-evolving block decimation (TEBD) algorithm, Sec. 4.5.4. These
algorithms are compared in Sec. 4.5.5. Finally, particularities of the imple-
mentations for Refs. [1, 3] are discussed in Sec. 4.6.
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4.1 Singular Value Decomposition

Working with matrix product states, a very useful tool, which is central to
many important manipulations, is the singular value decomposition: Any
arbitrary NA ×NB matrix M may be decomposed as

M = UΛV † , (4.1.1)

where the new matrices U , Λ and V † arising in this decomposition have the
following properties (a sketch is also provided in Fig. 4.1):

• U is an NA × N matrix, where N = min (NA, NB), with orthonormal
columns, U †U = 1, which are called left singular vectors. If NA ≤ NB,
U is unitary and, therefore, also UU † = 1 is valid.

• V † is an N ×NB matrix with orthonormal rows, V †V = 1, which are
analogously called right singular vectors. If NA ≥ NB, the matrix V †

is further unitary, fulfilling also V V † = 1.

• Λ is a diagonal N ×N matrix with non-negative entries Λaa ≡ λa ≥ 0,
which are called singular values. We assume them to be arranged in
descending order. The number r of non-zero singular values, λ1 ≥ λ2 ≥
. . . ≥ λr > 0, is the rank or Schmidt rank of M .

One application of the SVD, which is of utmost interest, is the approxi-
mation of a matrix M of rank r by another matrix M ′ that has a smaller
rank r′ < r. Based on the Frobenius norm,1 ‖M‖F = Tr

{
M †M

}
, the

optimal solution to this problem is

M ′ = UΛ′V †

Λ′ = diag (λ1, λ2, . . . λr′ , 0, . . . 0)
(4.1.2)

with the same matrices U and V † as in Eq. (4.1.1). Notice that the new
matrix Λ′ contains only the r′ largest singular values. So, in practice, one

1which naturally extends the 2-norm of vectors
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can reduce U to the first r′ columns, V † to the first r′ rows and Λ to the
first r′ diagonal entries, as an approximation.

Figure 4.1: Sketch of the matrix shapes in an SVD for NA < NB (top) and
NA > NB (bottom), adapted from [92].

4.2 Derivation of canonical forms

Here, we consider a lattice of L sites.2 The local Hilbert space is of dimension
d and it is spanned by the states |sl〉 for l = 1, . . . , L. Let |ψ〉 be a normalized
pure state of this system. It can be expanded as

|ψ〉 =
∑

s1,...,sL

cs1,...,sL |s1, . . . , sL〉 . (4.2.1)

In the following, we will show, how to turn this state into an MPS, i.e. how
to express the expansion coefficients cs1,...,sL as products of local matrices,

cs1,...,sL = M s1M s2 . . .M sL−1M sL . (4.2.2)

This seems to be cumbersome at first, but it has the advantage that the
matrices M sl are local,3 as indicated by the index l, allowing very efficient
algorithms to be formulated for the time evolution.

2It does not have to be one-dimensional, but in practice, calculations based on an MPS
representation become infeasible in higher dimensions.

3Notice that changing a local matrix nevertheless causes a global change of the state.
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4.2.1 Left-canonical form

In order to derive an MPS representation, let us first note that the coefficients
cs1,...,sL are commonly interpreted as entries of a vector. To emphasize that,
we change the notation and set, what we lay out as column or row degrees
of freedom of a matrix, between brackets, e.g. c(1),(s1,...,sL) for a row vector.
Of course, we have the freedom to choose a more general matrix shape, as
well, such as c(s1),(s2,...,sL), which is obtained from the previous representation
by regrouping the first-site indices. This is the first step in the construction
of an MPS, which is outlined in Eq. (4.2.6). Next, a singular value decom-
position (4.1.1) is performed, the resulting U is split into d row vectors As1

of dimension r1 (the corresponding Schmidt rank) and ΛV † is multiplied
to give the residual coefficient matrix c(a1),(s2,...,sL). We again reshape this
coefficient matrix by regrouping the second-site indices to c(a1,s2),(s3,...,sL) and
subject it to an SVD. Again, dmatricesAs2 of dimension r1×r2 are extracted
from U and ΛV † is multiplied to become the new residual coefficient matrix.
Performing this procedure for all lattice sites yields

cs1,...,sL = As1As2 . . .AsL−1AsL . (4.2.3)

This is an exact representation of (4.2.1) as a matrix product state. Since
the matrices Asl are derived from the Us of the SVD, which fulfill U †U = 1,
they have the property ∑

sl

Asl†Asl = 1 , (4.2.4)

which we call left-normalized. Matrix product states consisting only of left-
normalized matrices, such as Eq. (4.2.3), are called left-canonical.

For even L, these matrices have at most the following dimensions, from
the left to the right,

1× d, d× d2, . . . , d
L
2
−1 × dL2 , dL2 × dL2−1, . . . , d2 × d, d× 1 (4.2.5)

So, an exponentially large bond dimension of d
L
2 can be reached in the center

of the MPS. Maximal values only occur, if all singular values are non-zero.
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Derivation of a left-canonical MPS:

cs1,...,sL =

[1×dL]

c(1),(s1,...,sL)

c(s1),(s2,...,sL)︸ ︷︷ ︸
[d×dL−1]

=

r1∑
a1

U(s1),(a1)︸ ︷︷ ︸
[d×r1]

→ As11,a1

λa1
V †(a1),(s2,...,sL)︸ ︷︷ ︸
[r1×dL−1]

= c(a1),(s2,...,sL)

c(a1,s2),(s3,...,sL)︸ ︷︷ ︸
[r1d×dL−2]

=

r2∑
a2

U(a1,s2),(a2)︸ ︷︷ ︸
[r1d×r2]

→ As2a1,a2

λa2
V †(a2),(s3,...,sL)︸ ︷︷ ︸
[r2×dL−2]

= c(a2),(s3,...,sL)

c(a2,s3),(s4,...,sL)︸ ︷︷ ︸
[r2d×dL−3]

=

r3∑
a3

U(a2,s3),(a3)︸ ︷︷ ︸
[r2d×r3]

→ As3a2,a3

λa3
V †(a3),(s4,...,sL)︸ ︷︷ ︸
[r3×dL−3]

= c(a3),(s4,...,sL)

...

c(aL−2,sL−1),(sL)︸ ︷︷ ︸
[rL−2d×d]

=

rL−1∑
aL−1

U(aL−2,sL−1),(aL−1)︸ ︷︷ ︸
[rL−2d×rL−1]

→ A
sL−1
aL−2,aL−1

λaL−1
V †(aL−1),(sL)︸ ︷︷ ︸

[rL−1×d]

= c(aL−1),(sL)

c(aL−1,sL),(1)︸ ︷︷ ︸
[rL−1d×1]

→ AsLaL−1,1

(4.2.6)
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There is a very intuitive graphical representation of a matrix product
state, whose actual power will become clear later. It is depicted in Fig. 4.2,
see also Fig. 4.3. Here, each circle corresponds to a site, where a matrixM sl

sl

al−1 al

sL

aL−1

s1

a1

(a)

sl sLs1

(b)

Figure 4.2: Graphical representation of an MPS. (a) Row vector M s1
1,a1

(left),
matrix M sl

al−1,al
(center), column vector M sL

aL−1,1
(right) and (b) whole ma-

trix product state. This representation is, i.a., typically used for A and B
matrices. It was adapted from [92].

lives. The physical index sl sticks out as a vertical line and the auxiliary row
and column indices of the matrix al−1 and al, are represented as horizontal
lines.4 Connected lines are summed over, which is known as contraction.

al

a′l

Figure 4.3: Contraction of two left-normalized matrices, Asl† and Asl , over
their left index and the physical indices (pointing downwards for the conju-
gate matrix). The result is a δa′la′l line, see Eq. (4.2.4). This representation
was adapted from [92].

4The al are called auxiliary indices, since they are artificially introduced via SVDs and
vanish upon evaluating the coefficient cs1,...,sL by actually performing the matrix products.
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4.2.2 Right-canonical form

Notice that one could also start with c(s1,...,sL),(1), split off row indices from
the right hand side, starting with sL, and regroup them to become column
indices. Then one would carry out an SVD, such as before, and decompose
V † into a set of matricesBsL , while multiplying UΛ to be the new coefficient
matrix and so on and so forth, see Eq. (4.2.9). The representation achieved
in this way,

cs1,...,sL = Bs1Bs2 . . .BsL−1BsL , (4.2.7)

is, what we call right-normalized, since V †V = 1 holds for each singular
value decomposition, leading to the relation (see also Fig. 4.4)∑

sl

BslBsl† = 1 . (4.2.8)

Matrix product states consisting only of right-normalized matrices are called
right-canonical. The B matrices have the same bounds as the A matrices,
Eq. (4.2.5), and their graphical representation is analogous, see Fig. 4.2.

al

a′l

Figure 4.4: Contraction of two right-normalized matrices, Bsl and Bsl†, over
their right index and the physical indices (pointing downwards for the con-
jugate matrix). The result is a δa′la′l line, see Eq. (4.2.8). This representation
was adapted from [92].
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Derivation of a right-canonical MPS:

cs1,...,sL =

[dL×1]

c(s1,...,sL),(1)

c(s1,...,sL−1),(sL)︸ ︷︷ ︸
[dL−1×d]

=

rL−1∑
aL−1

U(s1,...,sL−1),(aL−1)λaL−1︸ ︷︷ ︸
[dL−1×rL−1]

= c(s1,...,sL−1),(aL−1)

V †(aL−1),(sL)︸ ︷︷ ︸
[rL−1×d]

→ BsL
aL−1,1

c(s1,...,sL−2),(sL−1,aL−1)︸ ︷︷ ︸
[dL−2×d rL−1]

=

rL−2∑
aL−2

U(s1,...,sL−2),(aL−2)λaL−2︸ ︷︷ ︸
[dL−2×rL−2]

= c(s1,...,sL−2),(aL−2)

V †(aL−2),(sL−1,aL−1)︸ ︷︷ ︸
[rL−2×d rL−1]

→ B
sL−1
aL−2,aL−1

c(s1,...,sL−3),(sL−2,aL−2)︸ ︷︷ ︸
[dL−3×d rL−2]

=

rL−3∑
aL−3

U(s1,...,sL−3),(aL−3)λaL−3︸ ︷︷ ︸
[dL−3×rL−3]

= c(s1,...,sL−3),(aL−3)

V †(aL−3),(sL−2,aL−2)︸ ︷︷ ︸
[rL−3×d rL−2]

→ B
sL−2
aL−3,aL−2

...

c(s1),(s2,a2)︸ ︷︷ ︸
[d×d r2]

=

r1∑
a1

U(s1),(a1)λa1︸ ︷︷ ︸
[d×r1]

= c(s1),(a1)

V †(a1),(s2,a2)︸ ︷︷ ︸
[r1×d r2]

→ Bs2
a1,a2

c(1),(s1,a1)︸ ︷︷ ︸
[1×d r1]

→ Bs1
1,a1

(4.2.9)
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4.2.3 Mixed-canonical form

It is also possible to combine the derivation of an MPS from the left and the
right side and arrive at a representation in so-called mixed canonical form,

cs1,...,sL = As1 . . .AslΛ[l]Bsl+1 . . .BsL . (4.2.10)

The diagonal matrix Λ[l] contains the singular values at the bond (l, l + 1).
If Λ[l] is multiplied with Asl , the position l is referred to as orthogonality
center.5 A special feature of this representation is that the Schmidt decom-
position into subsystems A and B may be read off directly,

|al〉A =
∑
s

(As1 . . .Asl)1,al
|s1, . . . , sl〉 ,

|al〉B =
∑
s

(Bsl+1 . . .BsL)al,1 |sl+1, . . . , sL〉 ,

|ψ〉 =
∑
al

λal |al〉A ⊗ |al〉B .

(4.2.11)

The states {|al〉A} form an orthonormal basis of A6 and so do the states
{|al〉B} of B. This is a consequence of the left- and right-normalization
property of the respective matrices, Eqs. (4.2.4) and (4.2.8). Further, the
reduced density operators7 and the von Neumann entropy of entanglement8

are readily accessed in these bases,9

ρ
[l]
A =

(
Λ[l]
)2

= ρ
[l]
B ,

SA = −Tr
[(
Λ[l]
)2

log
(
Λ[l]
)2
]

= SB .
(4.2.12)

There is also a special graphical representation of MPS in mixed-canonical
form, see Fig. 4.5. It looks quite similar to the left- and right-canonical cases,
Fig. 4.2; the additional matrix Λ[l] is represented as a diamond.

5multiplying Λ[l] with Bsl+1 makes l + 1 the orthogonality center.
6if they are complete
7ρ̂A = TrB ρ̂ with ρ̂ = |ψ〉〈ψ|
8SA = −TrA [ρ̂A log ρ̂A]
9{|al〉A} is the eigenbasis of ρ̂A and {|al〉B} of ρ̂B . They share the eigenvalues λal .
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Asl Bsl+1 BsLAs1

Λ[l]

Figure 4.5: MPS in mixed-canonical form, adapted from [92].

4.2.4 Canonical form

Another possibility is to split the singular values off all A and/or B matrices
[93]. This is useful, because it enables us to access all possible bipartitionings
into subsystems A and B at a glance. Substituting

Asl = Λ[l−1]Γsl

Bsl = ΓslΛ[l]
(4.2.13)

and additionally introducing Λ[0] = Λ[L] = 1, formally10 results in an MPS
in canonical form or Γ− Λ representation,

cs1,...,sL = Γs1Λ[1]Γs2 . . .ΓsL−1Λ[L−1]ΓsL . (4.2.14)

In this representation, both a left- and a right-normalization condition hold,
as a consequence of Eqs. (4.2.4) and (4.2.8), and are expressed, according to∑

sl

Γsl†ρ
[l−1]
B Γsl = 1 ,∑

sl

Γsl ρ
[l]
AΓ

sl† = 1 .
(4.2.15)

The Schmidt decomposition, the reduced density operators and the entan-
glement entropy are again given by Eqs. (4.2.11), (4.2.12),11 with the substi-
tution (4.2.13). MPS in canonical form have an individual graphical repre-
sentation, see Fig. 4.6, where the Λ matrices with the singular values live on
the bonds between the Γ matrices.

10In practice, SVDs have to be performed, in order to extract the singular values.
11but for arbitrary l
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ΓsL−1 ΓsLΓs2Γs1

Λ[l] Λ[L−1]Λ[2]Λ[1]

As1 As2 BsLBsL−1

Figure 4.6: MPS in canonical form, i.e. Γ− Λ form, adapted from [92].

4.2.5 Conversion

We have seen that the representation as a matrix product state is not unique.
In general, a gauge degree of freedom exists. Specifically, the transformation
with an invertible matrix X of adequate dimension, according to

Asl → AslX

Asl+1 →X−1Asl+1

(4.2.16)

leaves the coefficient unchanged, since AslXX−1Asl+1 = AslAsl+1 . The
canonical forms presented in Secs. 4.2.1-4.2.4 are only special cases of such
a transformation. They are usually preferred, since they provide useful fea-
tures, e.g.: The normalization properties can be exploited to efficienty cal-
culate overlaps; Schmidt decompositions and the entanglement entropy are
interesting for MPS approximations, see Sec. 4.3. Fig. 4.7 sketches, how dif-
ferent MPS representations relate to each other.

4.3 Approximation of matrix product states

In Sec. 4.2, it was shown, how to derive an MPS representation exactly for
an arbitrary (normalized) state. We saw that the matrices can become expo-
nentially large, which is unfavorable or even unmanageable in computational
practice. Therefore, we wish to approximate these matrices by smaller ones,
while keeping all important information.
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Figure 4.7: Conversion between MPS representations, adapted from [92].
Here, c is the coefficient of the state, M indicates an MPS representation
with general matrices and A, B, Γ and Λ are defined as in Sec. 4.2. The
conversion ΓΛ → A,B is carried out easily, whereas, vice versa, SVDs and
the division by singular values are required.

Truncation: According to Sec. 4.1, the optimal approximation of a matrix
by a smaller one of given dimensions is achieved by truncating the singular
value spectrum, accordingly. Keeping only the largest Dl singular values at
bond (l, l + 1) of an MPS results in an error

εl =

rl∑
al=Dl+1

λ2
al

= 1−
Dl∑
al=1

λ2
al
, (4.3.1)

which is referred to as discarded weight.12 After the truncation, the remaining
singular values have to be renormalized, in order to keep the state normalized,

λal →
λal√
1− εl

. (4.3.2)

Performing the truncation at all L − 1 bonds of a matrix product state is
known as compression. In this procedure, an overall error is accumulated,

12The second equality follows from the normalization of the reduced density operators,
Eq. (4.2.12).
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which can be shown to be bounded [94],

‖|ψ〉 − |ψ〉trunc‖
2 ≤ 2

L∑
l=1

εl . (4.3.3)

The compression can either be done by setting a threshold εl = ε for all bonds,
which implicitly defines a bond dimension Dl that may vary along the MPS.
Alternatively, one can choose a fixed maximum bond dimension Dl = D for
all bonds, while keeping track of the discarded weight εl. Of course, the first
option, computing at a specified maximum error, is preferable, but also the
matrix dimensions should be bounded. In the ideal case, this upper bound
is not reached in the course of the simulation.

Entanglement: The matrix size, which is necessary to faithfully represent
a state, depends on the entanglement in the system. Therefore, this quantity
should be considered, when approximating an MPS by another one with
smaller bond dimension. The entanglement entropy (4.2.12) at bond (l, l+1)

has a maximum, if all singular values are equal, λ2
al

= D−1
l , Sl = log (Dl)

leading to
Dl ∼ exp (Sl) . (4.3.4)

In this worst-case scenario, the required bond dimension scales exponentially
with the entropy. So, MPS are an efficient representation only for states with
a low bipartite entanglement entropy.

Ground states of Hamiltonians with short-range couplings and an excita-
tion gap can be shown to obey area laws [95–99]. These laws predict that the
entanglement entropy does not grow with the volume, but with the surface
area of a bipartition, Sl ∼ Ldim−1. For one-dimensional systems, this is only
a point and Sl ∼ const., which makes them suitable candidates for MPS.

However, these area laws do not extend to excited states, which are in-
teresting for dynamical correlation functions, or to open quantum systems,
which we study in this thesis. So, there is no guarantee that MPS provide an
efficient representation. Nontheless, for the impurity models considered here,
Ref. [64] states that the entanglement increases with L slower than linear and
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that the situation is even less severe for steady state correlation functions.
This moderate increase was achieved by imposing geometric restrictions on
the bath, in particular, by choosing a (quasi) one-dimensional structure.13

4.4 Matrix product operators

Here, we introduce matrix product operators, for the sake of completeness.
We do not employ them in this thesis, but there are very interesting algo-
rithms based on MPOs that could be relevant for future studies.14

In analogy to MPS, also the expansion coefficients of operators may be
encoded as products of local matrices [102–106], each one having two physical
indices sl and s

′
l now:

Ô =
∑
s,s′

c(s1,...,sL),(s′1,...,s
′
L) |s1, . . . , sL〉〈s′1, . . . , s′L|

c(s1,...,sL),(s′1,...,s
′
L) = W s1s

′
1W s2s

′
2 . . .W sL−1s

′
L−1W sLs

′
L

(4.4.1)

The primed indices correspond to the bra-vector and are, therefore, called
ingoing, whereas the outgoing indices relate to the ket-vector. Canonical
forms of MPOs are obtained in the same way as for MPS, but regrouping
the double index (sl s

′
l), instead of the single one (sl), see, e.g., Eq. (4.2.6).

There is also an analogous graphical representation, Fig. 4.8, again with the
implicit rule that connected lines are summed over.

The application of an MPO (4.4.1) to an MPS (4.2.2) yields another MPS,

Ô |ψ〉 =
∑
s,s′

W s1s
′
1 . . .W sLs

′
LM s′1 . . .M s′L |s1, . . . , sL〉

=
∑
s

N s1 . . .N sL |s1, . . . , sL〉

= |φ〉

(4.4.2)

with N sl
(bl−1al−1),(blal)

=
∑

s′l
W

sl s
′
l

bl−1bl
M

s′l
al−1al

, see also Fig. 4.9. The bond di-

13No area law was found, but that the entropy grows slower than the volume for the
considered cases.

14such as the time-dependent variational principle (TDVP) [100, 101]
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b1

(a)

s′l

sl

s′L

sL

s′1

s1

(b)

Figure 4.8: Graphical representation of an MPO, adapted from Ref. [92]. (a)
Corner MPO W

s1s′1
1,b1

(left), bulk MPO W
sls
′
l

bl−1,bl
(center), corner MPO W

sLs
′
L

bL−1,1

(right) and (b) whole MPO.

mension of this new MPS (n) is the product of the bond dimensions of the
MPO (w) and the initial MPS (m), n = w · n. Since bond dimensions are
multiplicative, the successive application of MPOs results in an exponential
growth of matrices. Therefore, it is advisable to truncate an MPS after the
application of an MPO.15

In Fig. 4.9, the power of the graphical representations becomes evident.
Given the rule that connected lines are summed over, we immediately see
that the upper physical indices of the operator will survive and the outcome
of the depicted operation will again be a state. In the special case of an
overlap, the operator reduces to a bra-vector, which does not possess any
upper physical indices. So, all lines in the graph are connected and the
outcome is obviously a scalar.

15For that purpose, first the normalization needs to be restored, which, in general, is
destroyed by the MPO.
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sLs1

sl sLs1

Figure 4.9: MPO applied to an MPS. The matching physical indices are
contracted and a new MPS emerges, whose bond dimension is the product
of the bond dimensions of the MPO and the original MPS, see Eq. (4.4.2).
This representation was adapted from [92].

4.5 Time evolution

Employing matrix product states, it is possible to perform the time evolu-
tion of a system very efficiently. In this section, according algorithms are
presented and discussed, which rely on a decomposition of the generator.

4.5.1 Suzuki-Trotter decomposition

In this thesis, we employ a Suzuki-Trotter decomposition of the time evolu-
tion operator [93, 102, 107–109]. We consider a Hamiltonian16 that contains
only nearest-neighbor couplings,

Ĥ =
∑
l

ĥl , (4.5.1)

16An analogous procedure may be applied for a Lindbladian L̂ in super-fermion repre-
sentation, instead of the Hamiltonian, and a corresponding state |ρ(t)〉, see Sec. 3.5.
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where ĥl lives on the bond between sites l and l+ 1 including, e.g., operator
pairs ĉ†l ĉl+1. We would like to decompose the time evolution due to this
Hamiltonian into smaller pieces, so-called gates, acting only on a couple of
(ideally two) sites at a time, since this is computationally cheaper. However,
such a splitting cannot be carried out exactly,17

e−iĤ∆t 6=
∏
l

e−iĥl∆t , (4.5.2)

since [ĥl, ĥl+1] 6= 0. On the other hand, [ĥl, ĥl+2] = 0 is fulfilled, since (4.5.1)
has only nearest-neighbor contributions. So, if we split the Hamiltonian into
even and odd terms in the sense that l is either even or odd,

Ĥ = Ĥeven + Ĥodd =
∑
l even

ĥl +
∑
l odd

ĥl , (4.5.3)

the following relations hold

e−iĤeven∆t =
∏
l even

e−iĥl∆t ,

e−iĤodd∆t =
∏
l odd

e−iĥl∆t .
(4.5.4)

This means that the time evolution on all even bonds can be carried out
at once or sequentially without accumulating an error and so does the time
evolution on the odd bonds.

The simplest approximation for the time evolution on the entire lattice,
containing even as well as odd bonds, is given by the first-order Suzuki-Trotter
formula

e−iĤ∆t = e−iĤeven∆te−iĤodd∆t +O
(
(∆t)2

)
. (4.5.5)

Higher-order decompositions yield better approximations with a smaller er-
ror, such as the second-order Suzuki-Trotter formula18

e−iĤ∆t = e−iĤodd
∆t
2 e−iĤeven∆te−iĤodd

∆t
2 +O

(
(∆t)3

)
, (4.5.6)

17For the sake of readability, we set ~ = 1 in the whole Sec. 4.5.
18Both of them are based on the Baker-Campbell-Hausdorff formulas.
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which we employ in Ch. 5 and Ch. 6. To keep the error as small as possible,
the time span ∆t should be kept rather small. To still be able to evolve up
to large times t, the following trick is employed,19

e−iĤt =
(
e−iĤ∆t

)N
, (4.5.7)

where t = N∆t. So, we apply the whole sequence of gates e−iĥl∆t in
Eq. (4.5.5) or (4.5.6) for small ∆t, but N times.

Notice that the Suzuki-Trotter decomposition is not restricted to even
and odd terms, only. In general, it is employed to group exponentials of
commuting operators and separate non-commuting groups. In this respect,
it might also be employed for other types of couplings.

4.5.2 Gates

Apart from the time evolution gates introduced in Sec. 4.5.1, also swap gates
are employed in this thesis. In the following, we take a closer look at these
gates and on the application of gates, in general.

Time evolution gates: The gates for the time evolution of the system are
defined as operators ĝl(∆t) = e−iĥl∆t, involving the neighboring sites l and
l + 1.

Swap gates: In order to deal also with longer-ranged couplings beyond
nearest-neighbors, such as those in Ch. 6, swap gates can be employed [110].
Applied to a pair of sites (j, k), a swap gate exchanges the states |sj〉 and
|sk〉, i.e. it swaps the physical indices of the local matrices in an MPS, see
also Fig. 4.10,

Ŝjk =
∑
s,s′

c(sjsk),(s′js
′
k) |sjsk〉〈s′js′k| ,

c(sjsk),(s′js
′
k) = ζjk δsjs′kδs′jsk ,

(4.5.8)

19This is valid, if [Ĥ(t1), Ĥ(t2)] = 0 for all considered times t1, t2, particularly, if the
Hamiltonian is independent of time, such as in the scenarios considered, here.
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The prefactor ζjk = ±1 may contain a fermionic sign, depending on the
nature of the states. For splinless fermions, ζjk = −1, if both sites are
occupied. For more complex systems, such as the one studied in Ref. [3],
Ch. 6, swap gates have a more complicated structure, see Sec. 4.6. The swap
operator (4.5.8) is unitary and its own inverse.

j

sk

k

sj

l

sl

Figure 4.10: Swap gate, adapted from [111]. Ŝjk swaps states of neighboring
sites j and k, e.g., in order to apply a time evolution gate between j and l,
whose states are nearest neighbors in the new MPS representation.

Gate application: The change of a state in MPS form (4.2.1)-(4.2.2) due
to the action of a gate may, in principle, be expressed with an MPO (4.4.1)-
(4.4.2) modifying the local matrices as

N slN sl+1 =

∑
s′l

W sl s
′
lM s′l

∑
s′l+1

W sl+1s
′
l+1M s′l+1

 , (4.5.9)

see Sec. 4.4. This has the advantage that the MPS structure is preserved.
The extended bond dimension is reduced via SVD. Alternatively, one can
also contract the matrices at sites l and l + 1 of the initial MPS and the
MPO before the application of the gate,

W
sl sl+1s

′
ls
′
l+1 = W sl s

′
lW sl+1s

′
l+1

M
s′ls
′
l+1 = M s′lM s′l+1

N
sl sl+1 =

∑
s′ls
′
l+1

W
sl sl+1s

′
ls
′
l+1M

s′ls
′
l+1

(4.5.10)
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or work with scalar coefficients c(sl sl+1),(s′ls
′
l+1) directly. This results in an

operator matrixW (or scalar coefficients) with four physical indices and state
matrices M , N with two. Upon splitting the new state matrix N slsl+1

=

N slN sl+1 via SVD, in order to restore the MPS structure, also the bond
dimension is reduced, see Fig. 4.11.

1

2

3

Figure 4.11: Application of a gate to an MPS. (1) Contraction of neighboring
matrices, (2) Application of the gate and (3) SVD to recover the original MPS
structure and compression. This representation was adapted from [111].

4.5.3 Time-dependent density-matrix renormalization

group algorithm

Here (and also in Sec. 4.5.4), we consider a single element in the Suzuki-
Trotter sequence of time evolutions, more precisely, the time evolution oper-
ator acting on the bond (l + 1, l + 2),

e−iĥl+1∆t =
∑
s,s′

c(sl+1sl+2),(s′l+1s
′
l+2) |sl+1sl+2〉〈s′l+1s

′
l+2| . (4.5.11)

The time-dependent density-matrix renormalization group (tDMRG) algo-
rithm [108, 109], which we employ in Ref. [3], Ch. 6, operates on states in the
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mixed-canonical form, Eq. (4.2.10). Computing ψsl+1sl+2 = Asl+1Λ[l+1]Bsl+2 ,
this form is modified as

|ψ〉 =
∑
s

As1 . . .Aslψsl+1sl+2Bsl+3 . . .BsL |s〉 . (4.5.12)

The action of the time evolution operator (4.5.11) on this state can be
expressed as a transformation of the matrix ψsl+1sl+2 as follows (see also
Sec. 4.5.2)

φsl+1sl+2
alal+2

=
∑

s′l+1s
′
l+2

c(sl+1sl+2),(s′l+1s
′
l+2)ψ

s′l+1s
′
l+2

alal+2 (4.5.13)

resulting in a new state of the same structure as |ψ〉,

|φ〉 =
∑
s

As1 . . .Aslφsl+1sl+2Bsl+3 . . .BsL |s〉 . (4.5.14)

In order to compute the time evolution on the next bond (l+ 3, l+ 4) in the
same way, we need to define a φ matrix on this bond, and valid A and B
matrices on the remaining sites. This can be achieved via an SVD,

φsl+1sl+2
alal+2

→ φ(alsl+1),(al+2sl+2) =
∑
al+1

U(alsl+1)(al+1)λal+1
(V †)(al+1),(al+2sl+2)

=
∑
al+1

Asl+1
alal+1

λal+1
(V †)sl+2

al+1al+2
.

(4.5.15)
In the last step φsl+1sl+2 is truncated by discarding the smallest singular
values. Further Asl+1 is formed from the U matrix and Λ[l+1], V † and the
next B matrix are combined to

φsl+2sl+3
al+1al+3

=
∑
al+2

λal+1
(V †)sl+2

al+1al+2
Bsl+3
al+2al+3

. (4.5.16)

The outlined procedure yields a new matrix product state, where φ is shifted
to the next bond,

|φ〉 =
∑
s

As1 . . .Asl+1φsl+2sl+3Bsl+4 . . .BsL |s〉 . (4.5.17)
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However, in order to apply e−iĥl+3∆t, it has to be shifted once more. So, the
procedure in Eqs. (4.5.15)-(4.5.17) is repeated, starting with an SVD,

φsl+2sl+3
al+1al+3

→ φ(al+1sl+2),(al+3sl+3) =
∑
al+2

U(al+1sl+2)(al+2)λal+2
(V †)(al+2),(al+3sl+3)

=
∑
al+2

Asl+2
al+1al+2

λal+2
(V †)sl+3

al+2al+3
.

(4.5.18)
Again, φsl+2sl+3 is truncated by discarding the smallest singular values. We
can immediately extract Asl+2 , in the same way as before, and upon defining

φsl+3sl+4
al+2al+4

=
∑
al+3

λal+2
(V †)sl+3

al+2al+3
Bsl+4
al+3al+4

(4.5.19)

we end up with the required MPS structure,

|φ〉 =
∑
s

As1 . . .Asl+2φsl+3sl+4Bsl+5 . . .BsL |s〉 . (4.5.20)

So, in tDMRG two singular value decompositions are necessary after the
application of each time evolution gate, in order to restore the structure
needed to apply the next gate.

4.5.4 Time-evolving block decimation algorithm

The starting point for the time-evolving block decimation (TEBD) algorithm
[93, 107], which we employ in Refs. [1], Ch. 5, is a state in the canonical ΓΛ

- representation, Eq. (4.2.14), which we modify as follows

|ψ〉 =
∑
s

Γs1Λ[1] . . .Γslψsl+1sl+2Γsl+3Λ[l+3] . . .ΓsL |s〉 (4.5.21)

with ψsl+1sl+2 = Λ[l]Γsl+1Λ[l+1]Γsl+2Λ[l+2]. Upon applying the time evolution
operator (4.5.11), ψsl+1sl+2 transforms, according to Eq. (4.5.13), resulting in
the new state

|φ〉 =
∑
s

Γs1Λ[1] . . .Γslφsl+1sl+2Γsl+3Λ[l+3] . . .ΓsL |s〉 . (4.5.22)
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An SVD of φsl+1sl+2 gives Eq. (4.5.15), to which we apply 1 = Λ[l]
(
Λ[l]
)−1

from the left and 1 =
(
Λ[l+2]

)−1
Λ[l+2] from the right side, to obtain new Γ

matrices as

φsl+1sl+2 = Λ[l]
(
Λ[l]
)−1

U sl+1︸ ︷︷ ︸
Γsl+1

Λ[l+1] V sl+2†
(
Λ[l+2]

)−1︸ ︷︷ ︸
Γsl+2

Λ[l+2] . (4.5.23)

So, the canonical form, Eq. (4.2.14), is restored with a single SVD, only. Λ[l+1]

is truncated, as usual, as well as the neighboring matrices. By computing
φsl+3sl+4 = Λ[l+2]Γsl+3Λ[l+3]Γsl+4Λ[l+4], we can define

|φ〉 =
∑
s

Γs1Λ[1] . . .Γsl+2φsl+3sl+4Γsl+5Λ[l+5] . . .ΓsL |s〉 (4.5.24)

as initial state for the next gate e−iĥl+3∆t acting on bond (l + 3, l + 4). For
small singular values a direct calculation of Γ matrices via Eq. (4.5.23) may
cause numerical instabilities. However, this can be avoided with slight mod-
ifications to the algorithm, see, e.g., Ref. [112].

4.5.5 Comparison of algorithms

Both algorithms, TEBD, which was historically first, and tDMRG, are based
on the representation of states as MPS. Further, they both rely on a decom-
position of the global time evolution of the lattice into a sequence of small
time evolutions on bonds, the gates. In this way, a Trotter error is intro-
duced and, as a result of the compression after each gate, a truncation error.
Comparing these algorithms step by step, it is obvious that they are math-
ematically equivalent [92]. From a numerical perspective, these are distinct
algorithms. Whereas TEBD is build upon the ΓΛ-representation, tDMRG
operates on matrix product states in the mixed canonical form. As a conse-
quence, the TEBD algorithm allows to apply all even gates in parallel, and so
the odd ones. In tDMRG, the orthogonality center needs to be shifted to one
of the sites at the respective bond, before a gate can be applied, hindering a
parallelization at this level. Further, tDMRG requires two SVDs to restore
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the MPS structure after each gate, whereas in TEBD one suffices. Here, a
division by singular values is carried out instead of the second SVD, which
can give rise to numerical instabilities, if the singular values become very
small. A way to circumvent this problem is presented in Ref. [112]. For a
more rigorous comparison of the most recent algorithms including such that
are not based on a Suzuki-Trotter decomposition we refer to Ref. [101].

4.6 This work

This thesis is concerned with the simulation of open quantum systems, which
are described by a Lindblad master equation, in particular, the Anderson
impurity model under bias voltage.

It is easily shown that the MPS techniques for closed quantum systems
can be extended to treat open quantum systems as well, but the numeric
is more involved in the latter case. Approaches have been suggested that
are based on MPOs [100, 102], on some kind of super-fermion representation
[64, 113] or on a stochastic evolution of the wave function [2, 114]. Here, we
focus on approaches based on a super-fermion representation. In this case,
the presented algorithms for the time evolution, TEBD and tDMRG, can
be used, substituting |ψ〉 → |ρ〉 and the Hamiltonian with the Lindbladian
Ĥ → L̂, see Sec. 3.5.

Magnetic field: For Ref. [1], Ch. 5, we employed the canonical MPS rep-
resentation and the TEBD algorithm. We decided for the following ordering
of basis states,(

c†1↓c̃
†
1↓

)n1↓ (
c†1↑c̃

†
1↑

)n1↑
. . .
(
c†L↓c̃

†
L↓

)nL↓ (
c†L↑c̃

†
L↑

)nL↑ |0〉 ⊗ |0̃〉 , (4.6.1)

where the tilde refers to objects in the auxiliary Hilbert space. Now it is
important to realize that the lattice sites do not necessarily have to coincide
with the matrix sites of an MPS representation. Here, we combine spin and
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tilde degrees of freedom of a lattice site in a single MPS site by defining:

|sl〉 =
(
c†l↓c̃

†
l↓

)nl↓ (
c†l↑c̃

†
l↑

)nl↑ |0〉 ⊗ |0̃〉
sl = (nl↓, ñl↓, nl↑, ñl↑)

(4.6.2)

Then each physical index sl involves four different particle numbers; the
local Hilbert space dimension is 24 = 16. No swap gates are required in this
implementation, since there are no long-range couplings of MPS sites.

Pseudogap: In Ref. [3], Ch. 6, we decided to separate the spin degrees of
freedom and chose a different ordering of states. Without going into further
details - these are presented in Sec. 6.3.3.1 - the basis states read:(

c†1↓c̃
†
1↓

)n1↓
(
c†2↓c̃

†
2↓

)n2↓
. . .
(
c†L−1↑c̃

†
L−1↑

)nL−1↑
(
c†L↑c̃

†
L↑

)nL↑ |0〉 ⊗ |0̃〉 (4.6.3)

We define an MPS site,

|slσ〉 =
(
c†lσ c̃

†
lσ

)nlσ |0〉 ⊗ |0̃〉
slσ = (nlσ, ñlσ)

(4.6.4)

with a local Hilbert space dimension of 22 = 4. So, in comparison to
Eq. (4.6.2), the number of MPS sites is doubled. Here, swap gates are neces-
sary, since long-range couplings were introduced by the separation of spins.
The swap operator, see Sec. 4.5.2, is a 16 × 16 matrix in the local basis
|sjσskυ〉, since 2 MPS sites are involved, but only 16 elements are non-zero,
see Eq. (4.6.5). The necessity to employ swap gates is the disadvantage of
this scheme. The main advantage is the possibly lower bond dimension.20

20At U = 0, it is the square root of the bond dimension of the matrices in case of (4.6.2).
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Ŝjk |0000〉 = |0000〉 Ŝjk |0100〉 = |0001〉
Ŝjk |0001〉 = |0100〉 Ŝjk |0101〉 = − |0101〉
Ŝjk |0010〉 = |1000〉 Ŝjk |0110〉 = − |1001〉
Ŝjk |0011〉 = |1100〉 Ŝjk |0111〉 = |1101〉

Ŝjk |1100〉 = |0011〉 Ŝjk |1000〉 = |0010〉
Ŝjk |1101〉 = |0111〉 Ŝjk |1001〉 = − |0110〉
Ŝjk |1110〉 = |1011〉 Ŝjk |1010〉 = − |1010〉
Ŝjk |1111〉 = |1111〉 Ŝjk |1011〉 = |1110〉

(4.6.5)
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Chapter 5

Nonequilibrium Kondo effect in a
magnetic field: Auxiliary master
equation approach

Here, I present the first out of two main papers constituting this thesis,
which was published in [1]. In this paper, we study the influence of an
external magnetic field as well as a bias voltage on the Kondo effect manifest
in quantum dots.

The results were obtained with an MPS solver to the AMEA Lindblad
problem of a single, correlated impurity. I adjusted this solver, implemented
by A. Dorda, to the new challenges of a magnetic field with his support and
performed the calculations. Further, I was the main contributor in writing
the paper. F. Schwarz performed NRG-tDMRG quench calculations for com-
parison and wrote the corresponding Sec. 5.3.4 guided by J. von Delft. E.
Arrigoni initiated this work and wrote Sec. 5.2. All authors contributed to
the discussion and conclusions of the paper and provided revisions. Major
revisions were conducted by E. Arrigoni.

In the following, Ref. [1] is included literally in its entity.1 In order to
obtain a single, coherent bibliography, the citations are merged into one list
of references at the end of this thesis. Furthermore, citations of articles
published in the meanwhile are changed accordingly.

1For simplicity, we don’t put this pasted text between quotation marks.
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5.1 Abstract

We study the single-impurity Anderson model out of equilibrium under the
influence of a bias voltage φ and a magnetic field B. We investigate the in-
terplay between the shift (ωB) of the Kondo peak in the spin-resolved density
of states (DOS) and the one (φB) of the conductance anomaly. In agreement
with experiments and previous theoretical calculations we find that, while
the latter displays a rather linear behavior with an almost constant slope as
a function of B down to the Kondo scale, the DOS shift first features a slower
increase reaching the same behavior as φB only for |g|µBB � kBTK .

Our auxiliary master equation approach yields highly accurate nonequi-
librium results for the DOS and for the conductance all the way from within
the Kondo up to the charge fluctuation regime, showing excellent agreement
with a recently introduced scheme based on a combination of numerical renor-
malization group with time-dependent density matrix renormalization group.

5.2 Introduction

Since its discovery almost one century ago, the Kondo effect has been mea-
sured in many physical systems ranging from bulk materials to nanostruc-
tures. The latter are especially attractive to study, because the parameters
controlling the effect can be precisely tuned in the laboratory. There is a va-
riety of experiments on nanowires [115–117], two-dimensional electron gases
confined in heterostructures [67, 118], carbon nanotubes [119] and also or-
ganic molecules [120] to mention a few. Whereas a finite temperature and
a bias voltage to probe the effect are perturbations that naturally arise in
these experiments and should therefore be studied, it is also interesting to
study the effect of an additional magnetic field.

It is known from these experiments that upon introducing a Zeeman mag-
netic field B the zero-bias conductance anomaly (i.e. the peak of the con-
ductance G as a function of bias voltage φ) splits into two peaks located at
±φB, where φB increases almost linearly with B [115–117, 121]. Theoreti-
cal calculations [54, 60, 80, 116, 122–125] confirm this behavior showing an
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essentially constant slope, eφB ≈ |g|µBB, almost all the way down to the
point where the splitting disappears at |g|µBB ∼ kBTK , where TK is the
Kondo temperature that characterizes the width of the zero-bias anomaly
at zero temperature and zero field. At the same time, the magnetic field
produces a similar split in the total impurity density of states (spectral func-
tion), which again starts developing for magnetic fields of the order of the
Kondo scale, and which corresponds to a shift ±~ωB in the spin-resolved
impurity density of states. However, in contrast to φB, this shift does not
show the same strictly linear behavior. Accurate calculations based on Bethe
ansatz and the numerical renormalization group (NRG) [126–128] show that
ωB is initially smaller, starting as ~ωB ≈ 2

3
|g|µBB and reaching |g|µBB for

|g|µBB � kBTK (up to logarithmic corrections [129]). Notice that less so-
phisticated equations of motion approaches [130] yield instead a constant
slope of ωB as well. On the other hand, the different behavior of ωB and φB
is in contradiction with the simple expectation [130] that the enhancement of
the conductance should occur when the chemical potential difference reaches
the splitting in the spectral function. Kondo physics out of equilibrium is a
challenging issue from the theoretical point of view and it is hard to obtain
accurate results for both the spectral function and the conductance for volt-
ages beyond the linear-response regime, most nonequilibrium steady-state
approaches being perturbative or their accuracy being uncontrolled.

In this paper, we investigate the single-impurity Anderson model (SIAM)
in the presence of both a magnetic field B and a finite bias voltage φ. We
adopt the recently introduced auxiliary master equation approach (AMEA),
which has been shown to produce very accurate results for spectral functions
and current characteristrics both in as well as out of equilibrium [64]. To
confirm the accuracy of our results we compare them with the ones obtained
within a hybrid method that combines NRG with the time-dependent density
matrix renormalization group (tDMRG) [30] to address quantum impurities
out of equilibrium. The two approaches compare excellently (see Fig. 5.6)
also at zero bias voltage, where we directly compare the spectral function
with NRG. Our results confirm the different behavior of ωB and φB, showing
that there is no incompatibility. We also evaluate the magnetization in the

65



high and low field limit, confirming the presence of a plateau at high fields
for bias voltages eφ . |g|µBB observed in previous theoretical results [123].

This work is organized as follows: In Sec. 5.3 the model and the solution
method are described. We start with an introduction to the model, Sec.
5.3.1, followed by a part about Keldysh Green’s functions, Sec. 5.3.2. Then
the general idea of AMEA and the solution method are sketched, Sec. 5.3.3.
In Sec. 5.3.4 the hybrid NRG-tDMRG method, which we use for comparison,
is described. Sec. 5.4 contains the results and Sec. 5.5 a summary and our
conclusions.

5.3 Model and Method

5.3.1 Model

We study the single-impurity Anderson model (SIAM) in a magnetic field
and out of equilibrium. Throughout this paper we use units of ~ = e = kB =

µB|g| = 1 and Γ = 1, see Eqs. (5.3.6) and (5.3.15). The model is described
by the following hamiltonian,

H = Himp +Hleads +Hcoup . (5.3.1)

Himp is the hamiltonian of the impurity. It is a single-site Hubbard hamilto-
nian with a spin-dependent on-site energy, accounting for the magnetic field,

Himp =
∑

σ∈{↑,↓}

εfσf
†
σfσ + Unf↑nf↓ , (5.3.2)

with εfσ = −1
2

(U + σB). f (†)
σ is the fermionic annihilation (creation) opera-

tor at the impurity for spin σ, nfσ = f †σfσ, U is the interaction strength and
B the magentic field. The on-site energy εfσ is chosen such that the system
is particle-hole symmetric at B = 0. The impurity is connected to two leads
described by

Hleads =
∑

λ∈{L,R}

∑
kσ

ελkd
†
λkσdλkσ . (5.3.3)
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d
(†)
λkσ is the annihilation (creation) operator for electrons with spin σ in lead
λ ∈ {L,R} at level k (out of N energy levels); ελk is the energy of level
k. The leads have different chemical potentials µλ, realizing a bias voltage
φ = µR − µL across the impurity. The hamiltonian mediating the coupling
between the impurity and the leads is given by

Hcoup =
1√
N

∑
λ∈{L,R}

t′λ
∑
kσ

(
d†λkσfσ + H.c.

)
(5.3.4)

with a symmetric hopping t′L = t′R. We assume that Hleads produces a flat
density of states (DOS) ρλ(ω) in the disconnected leads with a bandwidth of
2D,

ρλ(ω) =
1

2D
Θ(D − |ω|) , (5.3.5)

where Θ is the Heaviside step function. In this flat-band model the hybridiza-
tion strength Γ, defined in Eq. (5.3.15), is given by,

Γ =
π

2D

(
t′L

2
+ t′R

2
)
. (5.3.6)

Using Γ = 1 as unit of energy yields t′λ =
√

D
π
for the hopping to the leads.

Throughout this paper we take D = 10.
We furthermore use the following definition of the Kondo temperature TK ,

G(T = TK , φ = 0) =
1

2
G0 , (5.3.7)

at B = 0. G is the linear-response differential conductance, Eq. (5.3.18),
G0 = G(T = 0, φ = 0) = 1/π.

5.3.2 Keldysh Green’s functions

While there is only one independent Green’s function in equilibrium, there
are two in nonequilibrium: The retarded and the Keldysh Green’s function,
GR and GK , e.g., are independent of each other. At finite magnetic field
they are furthermore different for both spin kinds. In steady state, when the
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system is time-translation invariant, they are defined as

GR
σ (t) = −iΘ(t)

〈{
fσ(t), f †σ

}〉
,

GK
σ (t) = −i

〈[
fσ(t), f †σ

]〉
,

(5.3.8)

and in Fourier space,

Gα
σ(ω) =

∫
Gα
σ(t) exp(iωt) dt , (5.3.9)

with α ∈ {R,K}. Upon introducing the Keldysh contour, these Green’s
functions can be arranged in a matrix structure, according to

Gσ(ω) =

(
GR
σ (ω) GK

σ (ω)

0 GA
σ (ω)

)
, (5.3.10)

where the advanced Green’s function is related to the retarded one byGA
σ (ω) =

GR
σ (ω)†. In this way, the familiar form of Dyson’s equation is maintained,

G−1
σ (ω) = g−1

0σ
(ω)−∆(ω)− Σ(ω)

= G−1
0σ (ω)− Σ(ω) .

(5.3.11)

Gσ(ω) is the full interacting Green’s function of the impurity connected to
the leads, g

0σ
(ω) is the noninteracting Green’s function of the disconnected

impurity, ∆(ω) is the hybridization of the impurity by the leads and Σ(ω)

accounts for the interaction at the impurity. The noninteracting Green’s
functions are combined to G0σ(ω) = g−1

0σ
(ω) − ∆(ω). The hybridization

function is given by
∆(ω) =

∑
λ

t′λ
2
g
λ
(ω) , (5.3.12)

where g
λ
(ω) is the (noninteracting) Green’s function of the decoupled leads.

Since these are in equilibrium, its components obey the fluctuation-dissipation
theorem,

gKλ (ω) = 2πi (2fλ(ω, T )− 1) ρλ(ω) , (5.3.13)
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where fλ = [ exp [(ω − µλ)/T ] + 1]−1 denotes the Fermi function at temper-
ature T and chemical potential µλ. The DOS in the leads is connected to
gRλ (ω),

ρλ(ω) = − 1

π
=gRλ (ω). (5.3.14)

Therefore in equilibrium only one independent Green’s function persists. The
hybridization strength Γ is defined, using Eq. (5.3.12),

Γ = −=∆R(ω = 0). (5.3.15)

Given the full interacting Green’s function at the impurity, the spin-
resolved and total spectral functions are calculated as

Aσ(ω) = − 1

π
=GR

σ (ω), A↑↓ =
1

2
(A↑ + A↓) . (5.3.16)

The current across the impurity is determined via the Meir-Wingreen for-
mula [130]. In case of a bias-independent lead DOS with ρL(ω) = ρR(ω),
such as (5.3.5), it reduces to [91]

j =

∫
A↑↓(ω) γ(ω) (fR(ω, T )− fL(ω, T )) dω , (5.3.17)

where γ(ω) = −=∆R(ω). In linear-response the differential conductance
G = ∂j

∂φ
is calculated from (5.3.17) as

G =

∫
A↑↓(ω) γ(ω)

(
− ∂

∂ω
f(ω, T )

)
dω , (5.3.18)

where f = fL|µL=0 = fR|µR=0 is the Fermi function at zero bias. In the gen-
eral case, we calculate the differential conductance from finite current differ-
ences using three-point Lagrange polynomials to approximate the derivative.
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5.3.3 Method

We here present a short sketch of the auxiliary master equation approach
(AMEA) used in this paper. For more details, we refer to Refs. [22, 63,
64, 83]. The idea is to map the physical system described by (5.3.1) to
a finite and open auxiliary system that has almost the same hybridization
at the impurity as the original one (5.3.12) and thereby maintains the im-
purity physics, which we are interested in. The auxiliary system consists
of a small number of NB bath sites connected to Markovian environments
and its dynamics is governed by a Lindblad master equation. The param-
eters in this equation are determined to achieve a corresponding auxiliary
hybridization function ∆aux(ω) such that ∆aux(ω) ≈ ∆(ω) as accurately as
possible, cf. [83]. The physical hybridization function ∆ is calculated from
the given lead DOS, Eq. (5.3.5), using Eqs. (5.3.12)-(5.3.14) and the Kramers-
Kronig relation that links the real and imaginary part of a Green’s function.
The auxiliary hybridization function ∆aux can be calculated for a general
set of bath parameters by solving a noninteracting Lindblad problem, see,
e.g. Refs. [63, 83, 131, 132]. The determination of these parameters and
thus the mapping to the physical system is carried out with a parallel tem-
pering algorithm [83]. The resulting Lindblad equation is solved by using
matrix product states (MPS) and the time evolving block decimation algo-
rithm (TEBD), as described in [64]. Since the auxiliary Lindblad system
is essentially exactly solvable, the approximation of the method lies in the
difference between ∆aux(ω) and ∆(ω). As shown in Ref. [83], this difference
vanishes exponentially upon increasing NB. Therefore, a moderate number
of bath sites (NB ≈ 14 − 20) is sufficient to reach the accuracy required in
the present paper.

The results we present here are in the steady state, which is determined
via time evolution and formally reached with t→∞. The Green’s functions
are also calculated in the time domain, starting from the steady state; they
are continued to large times by linear prediction and then subjected to a
Fourier transformation.

The bias voltage is realized by shifting the chemical potentials in the leads
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symmetrically with respect to each other, µR = −µL = φ
2
. Note that for each

bias voltage a new ∆aux has to be determined, since φ enters the Keldysh
part of the hybridization function.

The calculations for B < 1, φ < 1.8 and B > 1, φ < 2.1 are with NB = 20

bath sites; for all other parameters NB = 14 is sufficient. For the subsequent
TEBD calculation we restrict the fit to nearest neighbour couplings.

All results shown in this paper are for the symmetric SIAM, t′L = t′R. Note
that the extension to the non-symmetric model is simple and straightforward.

5.3.4 Comparison to NRG-tDMRG quench calculations

We compare our data to results obtained in a hybrid NRG-tDMRG quench
setup which is described in Ref. [30]. While AMEA treats the impurity model
as a truly open quantum system in the sense of a Lindblad master equation,
for “small enough” time scales t one can equally well consider quenches in a
closed quantum system [133, 134]. Starting with an initial state in which the
two leads are in thermal equilibrium, but held at different chemical poten-
tial, standard Hamiltonian time evolution will drive the system towards its
“steady state” until at some point in time finite-size effects set in. For the
SIAM one faces the difficulty that the different energy and time scales inher-
ent in the model have to be handled with care. The hybrid NRG-tDMRG
approach presented in Ref. [30] meets this challenge by exploiting the fact
that energy scales outside the transport window, where fL(ω, T ) ≈ fR(ω, T ),
are effectively in equilibrium. Thus, they can be traced out using the numer-
ical renormalization group (NRG) [135]. Subsequently, the non-equilibrium
processes arising on the energy scale of the transport window are treated
within this renormalized setup using a tDMRG [92, 107–109] quench. Both
methods, NRG and tDMRG, are implemented based on MPS.

For the high-energy range outside the transport window a logarithmic
discretization is used, while the transport window itself is discretized linearly.
After mapping the problem onto a chain, the Hamiltonian of the first part of
this chain, which represents the high-energy modes, can be diagonalized using
NRG. This yields a truncated effective low-energy basis for this part of the
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system, which can be seen as the local state space of a renormalized impurity
(RI). This RI is coupled to the remainder of the leads, which corresponds
to the energy range of the transport window and therefore has an effective
bandwidth set by voltage and temperature. The quench is initialized with a
state |Ψ〉 = |ψini〉 ⊗ |Ω〉, where |ψini〉 lies in the ground state sector of the RI
and |Ω〉 is the thermal state of the remaining part of the leads at different
chemical potential and decoupled from the RI. This state is time-evolved
using tDMRG. The relevant time scale for this quench is given by the size of
the transport window.

To further simplify the MPS calculation, the leads are described in the
form suggested by the thermofield approach [136–138], in which the thermal
state |Ω〉 is a pure quantum state, and, even more advantageously, a simple
product state on the MPS chain. This implies that the time evolution of
the tDMRG quench is started with a product state and, hence, with lowest
possible entanglement.

In practice, the time evolution is typically limited, due to the entangle-
ment growth, before finite size effects set in. So far, the approach has only
been used to calculate expectation values, because the determination of spec-
tral functions would need far more numerical resources. For all data points
with φ > 0.14D there was no need to use NRG, because the transport win-
dow is of similar size as the full bandwidth. For high voltages convergence
was achieved only in the current and not in the magnetization. However,
the time dependence of the dot’s occupation, 〈nσ〉 (t), follows an exponential
decay such that one can extrapolate to the steady-state value.

5.4 Results

Our approach allows for an accurate solution of the model in and out of
equilibrium, below, but also above the energy scale TK , so as to take into
account the influence of charge excitations and of the Hubbard bands. At
the same time, below TK and in equilibrium our results show a remarkable
agreement of the spectral function with NRG up to intermediate values of
U/Γ . 6, see Fig. 5.6(a) and Ref. [64]. Here we want to study the behavior
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and interplay of the spectral function and the differential conductance in the
presence of a finite Zeeman magnetic field B and bias voltage φ. In particular,
we focus on the shift of the Kondo and of the zero-bias peak.

We start by plotting the impurity spectral function in equilibrium (φ = 0)
for different magnetic fields B, see Fig. 5.1. Most of our results are obtained
for an interaction of U = 6, corresponding to a Kondo temperature of TK ≈
0.2. The temperature is fixed to T/TK ≈ 0.25. At finite magnetic field, the
spin degeneracy is lifted, resulting in different spectral functions for spin-
up and spin-down electrons. At particle-hole symmetry they are related to
each other, according to A↑(ω) = A↓(−ω). Upon increasing the magnetic
field, the Kondo resonance is suppressed and it broadens, similarly to the
effect of a bias voltage, cf. Refs. [55–65, 139–141]. Furthermore, a magnetic
field causes a shift ωB of the Kondo resonance to higher energies in the
spin-resolved spectral function A↓ and produces a splitting δA in the total
spectral function A↑↓ = 1

2
(A↑ + A↓). This splitting starts at B & TK , see also

Refs. [122, 127, 142], and persists until the peaks merge with the Hubbard
bands. The position of the Kondo resonance in A↓ becomes ≈ B for large B,
while for decreasing B the ratio ωB/B decreases (see Fig. 5.4), consistent with
previous results, mainly on the Kondo model [54, 80, 126–128, 143]. Note
that for large magnetic fields one has δA = 2ωB, while for small magnetic
fields δA is smaller, due to the overlap of the contributions from the two spin
directions.

A similar splitting is produced by a bias voltage in the absence of a mag-
netic field [60, 63, 64], so that it is interesting to study the combined behavior
of the two effects. In the presence of both, a finite bias voltage and magnetic
field, one would expect 4 peaks in the total spectral function at ±B ± φ/2.
This has been observed within an equation of motion approach in Ref. [80]
(see also Ref. [123]). It is not easy to observe such a four-peak structure
within a numerically controlled, nonperturbative approach. In our case, for
U = 6, the higher energy peaks merge with the Hubbard bands before the
peaks are sufficiently far apart, so that they look more like shoulders than
peaks. For this reason, we investigate this effect for U = 8. Fig. 5.2(a) shows
the spin-resolved spectral functions A↓(ω) at B = 1 for different bias voltages
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(a)

(b)

Figure 5.1: Equilibrium (φ = 0) spin-resolved A↓(ω) (a) and total A↑↓(ω)
(b) impurity spectral function for different magnetic fields B and for U = 6Γ
and T = 0.05Γ/kB ≈ TK/4. Note that B is in units of Γ/ (|g|µB), ω is in
units of Γ/~ and spectral functions are in units of ~/Γ.
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(a)

(b)

Figure 5.2: Nonequilibrium spin-resolved (a) and total (b) impurity spectral
function for different values of the bias voltage φ and fixed magnetic field
B = Γ/(|g|µB); T = 0.05Γ/kB ≈ TK/2. Note that φ is in units of Γ/e. Here
a larger value of U = 8Γ is chosen, in order to resolve the four-peak structure
in A↑↓.
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φ and U = 8. At φ = 0 the position of the Kondo resonance ωB is closer to
B than for the U = 6 case, due to the fact that TK is smaller here. As a
result of the applied bias voltage the shifted Kondo resonance first acquires
a broadening and then, starting from φ ≈ 1, it gets split. The two peaks
have a distance of ≈ φ as expected, but the splitting is not symmetric. The
corresponding four-peak structure in the total spectral function can be seen
in Fig. 5.2(b) with split peaks at ω ' ±B ± φ

2
, c.f. [80].

A more direct quantity to be measured experimentally is the differential
conductance G across the impurity. In Fig. 5.3 we plot the current j (a) as
well as G (b) as a function of the bias voltage for different values of B. The
parameters are the same as in Fig. 5.1. To test the approaches, in Fig. 5.6(b)
we compare results from AMEA with the ones from the hybrid NRG-tDMRG
calculation discussed in Sec. 5.3.4. Results are essentially on top of each
other. The magnetic field affects the zero-bias peak in the conductance by
first broadening it up to B & TK and then producing a split [54, 60, 80, 122,
123, 125], as observed experimentally [67, 116, 117, 144]. Notice that δG, the
splitting in G, starts at B ≈ 0.3 and is slightly delayed in comparison to δA,
the splitting in A↑↓(ω), Fig. 5.1(b), which sets in at B ≈ 0.2. The reason
for the delay in the splitting is the averaging of the spectral function in
the current integral (5.3.17), which smears out the effect of the split peaks.
Since G = G↑ = G↓ at particle-hole symmetry, φB, the shift in the spin-
resolved conductance G↓, exactly fulfills φB = δG

2
, in contrast to its spectral

counterpart, ωB ≥ δA
2
. On the other hand, the magnitude of the shift in

G, while becoming ∼ B for B � TK , as shown in Fig. 5.4, it reaches this
limit faster than the shift in A↓(ω). In fact, Fig. 5.4 suggests that, within
the error bars2 φB becomes ∼ B as soon as it shows up, in contrast to ωB.
This is consistent with experiments [115, 116, 144], which indicate a strictly
linear behavior. At φ � B but smaller than the bandwidth the differential
conductance reaches a B-independent value of G ≈ 0.27G0.

Fig. 5.5(a) shows the magnetization 〈n↑ − n↓〉 and 5.5(b) the double occu-
2The error bars are rough estimates of the error in the numerical derivative of j used

to determine G. They are calculated under the conservative assumption that the turning
points in j(φ), which determine the maxima in G, lie at most one voltage point off the
calculated value.
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(a)

(b)

Figure 5.3: (a) Current-voltage characteristic j(φ) and (b) differential con-
ductance G(φ) for different values of the magnetic field B. G is in units of
G0 = G(T = 0, φ = 0) = e2/(π~). Parameters are as in Fig. 5.1.
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Figure 5.4: Shift φB of the conductance peak (in Fig. 5.3(b)) and ωB of the
equilibrium spectral function (in Fig. 5.1(a)) divided by the magnetic field B
plotted as a function of B. Parameters are as in Fig. 5.1.

pancy 〈n↑n↓〉 at the impurity in dependence of the bias voltage for different
magnetic fields. At large magnetic fields B � TK the magnetization shows
a plateau for φ . B followed by a logarithmic decrease (straight lines in
Fig. 5.5(a)), in agreement with previous results, cf. Ref. [123]. At small mag-
netic fields B . TK it starts to decrease for φ ≈ TK . Again, we find a
very good agreement between AMEA and NRG-tDMRG, see Fig. 5.6(c). For
small magnetic fields the double occupancy has a minimum at φ ≈ 2, which
seems to be independent of TK , cf. Ref. [145]. This minimum vanishes at
larger magnetic fields as the Zeeman splitting of the local level increases and
hence presumably is governed by charge fluctuations.
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(a)

(b)

Figure 5.5: (a) Magnetization and (b) double occupancy as a function of
the bias voltage φ for different values of the magnetic field B. (b) shares its
legend with (a). Dotted lines in (a) correspond to φ = B. Parameters are as
in Fig. 5.1.

79



In Fig. 5.6 we display a comparison of results obtained within AMEA
(dashed lines and circles) with results from NRG ((a) dotted lines) and the
hybrid NRG-tDMRG scheme discussed in Sec. 5.3.4 ((b,c) squares). Equilib-
rium spectral functions (a), differential conductance (b) and magnetization
(c) curves at different magnetic fields agree remarkably well between the two
approaches. One can only see small deviations in the spectral functions at
high energies, due to the logarithmic discretization in NRG, which makes it
less accurate in this energy region. The inset in (a) shows a zoom around
ω = 0, where NRG is known to produce essentially exact results. In this
region the two spectral functions deviate by less than 1%. The differential
conductance at finite bias, being evaluated from finite current differences (see
Sec. 5.3.2) in both approaches, is, in principle, more prone to errors. Non-
theless, the results lie essentially on top of each other. On the other hand,
as remarked in Sec. 5.3.4, the magnetization from the NRG-tDMRG scheme
is not fully converged to the steady state and the data have been extrap-
olated assuming an exponential decay of the occupancy 〈nσ〉 (t). For this
reason, at high voltages, we can see that the values for the magnetization
lie slightly above the AMEA results. While it is, in principle, possible to
calculate spectral functions within the NRG-tDMRG scheme, it is unclear at
the moment, whether this is numerically feasible. For this reason, we don’t
provide a comparison between the two approaches in Fig. 5.6.
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(a)

(b) (c)

Figure 5.6: Comparison of AMEA with NRG [146] and NRG-tDMRG [30].
(a) Equilibrium total impurity spectral function A↑↓(ω), (b) differential con-
ductance G(φ) and (c) magnetization 〈n↑ − n↓〉 (φ) for different values of B.
Dashed lines and circles correspond to AMEA, dotted lines to NRG and
squares to NRG-tDMRG. Parameters are as in Fig. 5.1.
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5.5 Summary and Conclusions

In this paper, we studied the Anderson impurity model out of equilibrium
under the influence of a bias voltage φ and a magnetic field B. In particular,
we addressed the issue of the different behavior of the shift of the Kondo peak
in the impurity spectral function and the one in the conductance anomaly as
a function of the magnetic field. We also presented explicitly results for the
spectral function showing a four-peak structure resulting from the combined
effects of B and φ.

Our results agree with previous theoretical and experimental results in
the known limits B � TK and B � TK , while our approach allows us to
access the intermediate regime B, φ & TK as well. The key aspect of our
auxiliary master equation approach [22, 63, 64, 83] is that we can obtain
very accurate results also for the spectral functions out of equilibrium, which
is difficult by other methods. The accuracy of our results in the parameter
regime we considered is confirmed by an excellent comparison of spectral
functions with NRG at φ = 0 (up to frequencies for which NRG is supposed
to yield correct results), and of expectation values with a recently introduced
hybrid NRG-tDMRG scheme [30] at finite bias voltages.

The two approaches adopted here, AMEA and the NRG-tDMRG scheme,
deal with the challenge of describing the long time behavior of the nonequilib-
rium SIAM in a different manner. While AMEA explicitly describes an open
quantum system and thus is not restricted to finite time scales, the quench
approach renormalizes the problem down to the relevant energy scale. In
addition, AMEA is able to evaluate the impurity spectral function. While,
in principle, this is also possible in the NRG-tDMRG approach, from a nu-
merical point of view, it would be more costly. Therefore, it is unclear at
the moment, whether it is realizable in practice. Also for the magnetization
AMEA was able to achieve better convergence, especially at high voltages.

In summary, it is convenient to use AMEA, whenever very long time
scales are needed, or when information over the full energy range is required,
as it is the case in the determination of spectral functions. For example,
AMEA is an interesting tool for DMFT in nonequilibrium, where spectral
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functions are needed explicitly [22, 25, 73–76]. On the other hand, the NRG-
tDMRG approach is more flexible with respect to the parameter regime, as it
uses an explicit renormalization of the impurity. In particular, it has proven
to be able to describe very strong interactions such as U/Γ = 12 and zero
temperature T = 0, see Ref. [30]. AMEA can deal with interactions of the
same strength and temperatures down to T ∼ TK/10 [64]. Much larger values
of U and/or much lower in T are not reachable at the moment, since we are
limited in the number of bath sites.3 This is also the reason, why we could
not accurately check the well-known ∼ [ln (B/TK)]−2 behavior of A↓(ω = 0)

for B � TK , Ref. [129] in equilibrium. Our results may be consistent with a
logarithmic asymptotics, but, in order to reliably confirm this behavior, we
need to consider magnetic fields that are orders of magnitude larger and at
the same time � U . Therefore, at the moment, it may be preferable to use
the NRG-tDMRG quench approach, whenever it gets crucial to work in the
scaling limit and for very low values of the bias voltage.

The only approximation in AMEA consists in replacing the physical bath
hybridization function ∆ with an auxiliary one ∆aux, so that the accuracy
depends on the difference between the two functions. Of course, the corre-
sponding error in the calculated results, e.g. the spectral function, is expected
to be strongly frequency dependent, so that regions around the Fermi ener-
gies are probably more strongly affected. More specifically, due to the fact
that at zero bias the Kondo scale depends exponentially on the ω = 0 DOS,
one may expect a corresponding exponential error in this scale. This is prob-
ably not yet the case at these moderate values of U/Γ . 8 used here, as can
be deduced from our results in Ref. [64]. For larger U (and more bath sites),
the way to avoid this exponential problem could be to carry out the fit by
constraining =∆R

aux to coincide with =∆R at ω = µR/L, or in any case require
that the fit becomes more accurate around these points.

3Work is in progress on improving the Lindblad solver and achieve larger NB . Notice
that the accuracy increases exponentially with NB .
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Chapter 6

Nonequilibrium pseudogap
Anderson impurity model: A
master equation tensor network
approach

Here, I present the second main paper constituting this thesis [3]. Similar to
Ref. [1], it also deals with the Kondo effect of a single, correlated impurity
in a fermionic bath, but in Ref. [3], the bath has a pseudogap in the density
of states at the Fermi level. This, on the one hand, enriches the physics
yielding to the generalized Kondo effect and a quantum phase transition, the
numerical treatment, on the other hand, also gets more sophisticated.

To cope with the new challenges, we designed a scheme to obtain the
AMEA Lindblad mapping at finite bias voltages from the solution at zero
bias. I implemented this scheme following the ideas of E. Arrigoni. M. So-
rantin helped with adjusting the python code for the zero-bias mapping to
a geometry suitable for MPS treatment. This python code is based on the
library tensorflow [147, 148] and it had been implemented by F. Scherr in
the course of his Bachelor thesis. To solve the resulting many-body Lindblad
problem, E. Arrigoni suggested to develop a novel MPS scheme exploiting
spin separation. With support of D. Bauernfeind I designed and implemented
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this scheme based on the C++ tensor network library iTensor [149]. D.
Bauernfeind also provided the idea to locate the phase boundary with an
extrapolation scheme and his equilibrium MPS code for comparison. I per-
formed all calculations and I was the main contributor in writing this paper.
The framework for Sec. 6.7 was provided by E. Arrigoni as well as a major
revision of this paper. All authors contributed to the discussion and con-
clusions of the paper and provided revisions. The work was initiated by E.
Arrigoni.

In the following, Ref. [3] is included literally in its entity. However, in
order to obtain a single, coherent bibliography, the citations are merged into
one list of references at the end of this thesis.

6.1 Abstract

We study equilibrium and nonequilibrium properties of the single-impurity
Anderson model with a power-law pseudogap in the density of states. In
equilibrium, the model is known to display a quantum phase transition from a
generalized Kondo to a local moment phase. In the present work, we focus on
the extension of these phases beyond equilibrium, i.e. under the influence of a
bias voltage. Within the auxiliary master equation approach combined with a
scheme based on matrix product states (MPS) we are able to directly address
the current-carrying steady state. Starting with the equilibrium situation, we
first corroborate our results by comparing with a direct numerical evaluation
of ground state spectral properties of the system by MPS. Here, a scheme to
locate the phase boundary by extrapolating the power-law exponent of the
self energy produces a very good agreement with previous results obtained
by the numerical renormalization group. Our nonequilibrium study as a
function of the applied bias voltage is then carried out for two points on
either side of the phase boundary. In the Kondo regime the resonance in
the spectral function is splitted as a function of the increasing bias voltage.
The local moment regime, instead, displays a dip in the spectrum near the
position of the chemical potentials. Similar features are observed in the
corresponding self energies. The Kondo split peaks approximately obey a
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power-law behavior as a function of frequency, whose exponents depend only
slightly on voltage. Finally, the differential conductance in the Kondo regime
shows a peculiar maximum at finite voltages, whose height, however, is below
the accuracy level.

6.2 Introduction

The single-impurity Anderson model (SIAM) was originally introduced to
address the properties of metals with dilute magnetic impurities, which dis-
played an unusual resistance minimum upon decreasing the temperature [34,
36]. This effect was termed Kondo effect and it was traced down to the forma-
tion of a highly entangled ground state of the model, namely, a singlet state
between the localized impurity electron and the conduction electrons of the
host metal screening the impurity spin. This has important consequences,
such as the existence of a regime, in which physical quantities obey a set of
universal scaling laws, which are independent of the microscopic details of
the actual physical system. In the Kondo regime, i.e. well below the so-called
Kondo temperature TK , the SIAM also behaves as a Fermi liquid. Above this
energy scale, the impurity spin is no longer screened and the model displays
a crossover from the Kondo to a local moment (LM) regime. In the impurity
spectrum, this crossover is signaled by a strong suppression and broadening
of the Kondo resonance, which, however, never completely vanishes. It is
important to mention that there is no true quantum phase transition (QPT)
in this model [31, 150].

In the last decades, the SIAM has drawn renewed interest, due to its
application in dynamical mean-field theory (DMFT), which has paved the
way to understand the properties of a variety of correlated materials [71, 151].
It has further drawn attention, due to its capability to capture the physics of
quantum dots, which can now be faithfully fabricated in the laboratory [1,
118]. These applications have in common that they usually deal with a
structured density of states (DOS) of the host material, instead of a flat one,
as in the original model. In contrast to metals, materials with a band gap
cannot (fully) display the Kondo effect, since a finite DOS in a small region
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around the Fermi energy is crucial for its occurrence. However, there are also
materials, such as peculiar semiconductors and superconductors [152, 153],
that display a pseudogap (PSG), i.e. a DOS vanishing exactly at the Fermi
energy with a certain power-law ∝ |ω|r, but remaining finite, elsewhere.
For this type of materials, the interaction of band fermions with a magnetic
impurity produces more intriguing effects [81]. The corresponding PSG SIAM
displays a rich zero-temperature phase diagram. In particular, for 0 < r < 1

2

it features a second-order QPT [154] from a Kondo screened phase to a LM
phase depending on the interplay between the power-law exponent r, the
interaction and hybridization strengths. In this model, the depletion of host
states at the Fermi energy prevents the impurity spin from being entirely
screened by the conduction electrons. As a consequence, the PSG SIAM does
not behave as an ordinary Fermi liquid in the Kondo phase. Its behavior is
captured by a natural, but non-trivial generalization of Fermi liquid theory,
and the phase is referred to as a generalized Kondo (GK) phase. Also in this
case, a Kondo scale and a set of universal laws for the physical observables
in terms of this scale is found, which is distinct from the ordinary SIAM [81,
82, 155–176].

In this paper, we are interested in understanding the properties of the
PSG SIAM, when a bias voltage φ is applied to drive the system out of
equilibrium [26, 177–183]. This model has been studied in previous works as
well with different degrees of approximation and addressing different physi-
cal questions. In Ref. [184], the PSG SIAM was studied after a local quench
within a time-dependent Gutzwiller variational scheme. The author found
that the system thermalizes within the GK phase, but when quenching across
the phase boundary, thermalization does not occur, and a highly nontrivial
dynamical behavior is observed. Refs. [185, 186] both deal with universal scal-
ing in the nonequilibrium steady state of the PSG Kondo model, employing
variants of the renormalization group and large-N techniques, respectively.
In the LM phase, close to the phase boundary, Ref. [185] reports universal
scaling of the differential conductance, spin susceptibility and conduction
electron T matrix as a function of φ/TK . In Ref. [186], on the other hand,
it was discovered that the differential conductance, spin susceptibility and
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Kondo-singlet strength, reproduce their equilibrium behavior in the scaling
regimes of the fixed points of the model, when expressed in terms of a fixed-
point specific effective temperature Teff . Ref. [187], in contrast, focuses on the
steady state impurity spectrum and differential conductance, the main quan-
tities that also we are interested in within this work. Employing second-order
perturbation theory, the authors find a cusp or dip structure in the impurity
spectrum in the GK and LM phase, respectively, when a finite bias voltage
is applied. However, in Ref. [187], when increasing the bias voltage, these
structures remain located at zero frequency and no splitting occurs. Accord-
ing to the authors, this is, because the system is not in the limit of large
interaction strength. The results of our present work, while confirming the
presence of these features, present a different scenario: the structures do split
as a function of voltage. One should point out that, while our calculations
are carried out for values of the parameters very close to the ones used in
Ref. [187], there is a difference in the way the DOS pseudogap evolves as a
function of voltage. More specifically, in Ref. [187] the pseudogap is fixed at
zero frequency also at finite bias voltages and only the chemical potentials
are shifted by ±φ/2. In our work, on the other hand, we pin the pseudogap
of each lead to the position of the respective chemical potential.

We study the PSG SIAM out of equilibrium by an approach which is non-
perturbative, neither in the interaction nor in the hybridization. Specifically,
we employ the auxiliary master equation approach (AMEA),[1, 22, 63, 83] in
which the nonequilibrium bath is accurately represented by an open quantum
system, whose many-body dynamics is controlled by a Lindblad equation.
The latter is solved by an efficient matrix product states (MPS) formulation.
We start by a benchmark of the approach in equilibrium. Here, in particular,
we exploit the power-law exponent of the self energy to find the boundary
between the GK and the LM phase. We then carry on with a qualitative
analysis of the structure of the spectral function and the self energy out
of equilibrium in both the GK and LM regimes. Besides these qualitative
aspects, we try to fit a power-law behavior to these quantities in a region
around the chemical potentials and investigate, how the corresponding power-
law exponents evolve upon increasing the bias voltage. Finally, we address
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the behavior of the differential conductance in dependence of the bias voltage.
Our method is numerically exact, the main limitation being the fact that the
pseudogap exponent in the bath DOS can be reproduced only with a limited
resolution. Therefore, we are also limited in the maximum bias voltage, in
which our power-law analysis makes sense.

This work is organized as follows: In Sec. 6.3 the model and the solution
method are described, starting with the model in Sec. 6.3.1, followed by a
small overview about nonequilibrium Green’s functions in Sec. 6.3.2 and a
description of the auxiliary master equation approach in Sec. 6.3.3. Specifi-
cally, we present the Lindblad equation in Sec. 6.3.3.1, discuss the mapping
to the auxiliary system in Sec. 6.3.3.2 and introduce the novel MPS scheme in
Sec. 6.3.3.3. Sec. 6.3.3.4 presents remarks about physical and auxiliary quan-
tities. Sec. 6.4 contains the results of this work, in particular, the results of
the fit, Sec. 6.4.1, and the ones of the many-body solution in equilibrium,
Sec. 6.4.2.1, as well as out of equilibrium, Sec. 6.4.2.2. A discussion of the
results obtained is found in Sec. 6.5.

6.3 Model and Method

6.3.1 Model

We study the single-impurity Anderson model (SIAM) in as well as out of
equilibrium with electronic leads displaying a power-law pseudogap (PSG)
in the density of states (DOS). Throughout this paper we use units of ~ =

e = kB = 1. The model is described by the following Hamiltonian,

H = Himp +Hleads +Hcoup . (6.3.1)

Himp is the Hamiltonian of the impurity. It is a single-site Hubbard Hamil-
tonian with on-site interaction U , accounting for the Coulomb repulsion be-
tween electrons, and on-site energy εf = −U

2
, producing particle-hole (PH)

symmetry,
Himp =

∑
σ

εff
†
σfσ + Unf↑nf↓ . (6.3.2)
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f †σ/fσ creates/annihilates an impurity electron with spin σ ∈ {↑, ↓} and
nfσ = f †σfσ is the corresponding particle-number operator. Hleads is the
Hamiltonian of the left and right lead, λ ∈ {L,R},

Hleads =
∑
λkσ

ελkd
†
λkσdλkσ . (6.3.3)

It describes a continuum (N → ∞) of noninteracting energy levels ελk =

εk + ε̃λ rigidly shifted symmetrically by half the bias voltage φ, so that
ε̃λ = ±φ

2
. d†λkσ/dλkσ are the corresponding creation/annihilation operators.

Finally,

Hcoup =
t′√
N

∑
λkσ

(
d†λkσfσ + f †σdλkσ

)
(6.3.4)

is the Hamiltonian that describes the coupling of the impurity to the leads
via hoppings t′.

We assume that the leads are initially decoupled (t′ = 0) and in equilib-
rium at the same temperature T and chemical potentials µλ with an occu-
pation given by the Fermi function,

fλ(ε, T ) =
1

1 + exp
(
ε−µλ
T

) . (6.3.5)

Requiring the (asymptotical) particle density of each lead to be independent
of φ amounts to setting µλ = ε̃λ.

The leads have a power-law PSG DOS at µλ, which we describe with the
retarded hybridization functions,

=∆R
λ (ω) = −πt

′2

N

∑
k

δ(ω − ελk)

= −Γ

2
e−γ(ω−ε̃λ)2|ω − ε̃λ|r , (6.3.6)

whose symmetric forms produce a PH symmetric occupation of the leads.
Here, Γ is the hybridization strength and γ > 0 is used to fix the bandwidth.1

1A Heaviside step function would also fix the bandwidth without distorting the power-
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The Keldysh hybridization functions are fixed by the fluctuation-dissipation
theorem,

∆K
λ (ω) = 2i (1− 2fλ(ω, T ))=∆R

λ (ω) , (6.3.7)

and the total hybridization function at the impurity, accounting for both the
left and the right lead, ∆β(ω) with β ∈ {R,K}, is given by

∆β(ω) =
∑
λ

∆β
λ(ω) . (6.3.8)

Notice that ∆β(ω) encodes the combined effect of Hleads and Hcoup on the
impurity. Thus, the properties of the impurity are controlled by ∆β(ω) and
by Himp, alone.

6.3.2 Nonequilibrium Green’s function

Out of equilibrium, there are two independent single-particle Green’s func-
tions. We are especially interested in the steady state Green’s functions at
the impurity. The lesser and the greater one are defined as,

G<
σ (t) = i

〈
f †σ(t)fσ

〉
∞ ,

G>
σ (t) = −i

〈
fσ(t)f †σ

〉
∞ .

(6.3.9)

Note that they have only one time argument, since in steady state (indicated
by the subscript∞), the system is time-translation invariant. After a Fourier
transform to frequency space,

Gα
σ(ω) =

∫
Gα
σ(t) exp(iωt) dt , (6.3.10)

with α ∈ {<,>}, these Green’s functions may be combined to obtain the
spectral function or local impurity DOS and the Keldysh Green’s function,

law. We choose the exponential, because AMEA performs better for smooth hybridization
functions.

92



which we are typically interested in,

Aσ(ω) =
i

2π
[G>

σ (ω)−G<
σ (ω)] , (6.3.11)

GK
σ (ω) = G>

σ (ω) +G<
σ (ω) . (6.3.12)

From the spectral function the retarded and the advanced Green’s function
are obtained via the Kramer’s Kronig relations.

In the nonequilibrium Green’s function formalism GR
σ (ω), GA

σ (ω) and
GK
σ (ω) are typically arranged in a 2 × 2 matrix (Keldysh space), which we

indicate by an underline,

Gσ(ω) ≡
(
GR
σ (ω) GK

σ (ω)

0 GA
σ (ω)

)
.

This has the advantage that Dyson’s equation is valid in the same form as
in equilibrium,

G−1
σ (ω) = G−1

0σ (ω)− Σ(ω) ,

G−1
0σ (ω) = g−1

0σ
(ω)−∆(ω) .

(6.3.13)

Here, g
0σ

is the Green’s function of the decoupled and noninteracting impu-
rity, the self energy Σ(ω) accounts for the interaction, and the hybridization
function ∆(ω) for the coupling to the noninteracting leads.

From the Green’s functions defined above, the current across the impurity
can be obtained as

jλ =
1

2π

∑
σ

∫
<
(
GR
σ∆K

λ +GK
σ ∆R

λ

)
dω . (6.3.14)

In steady state, the left and right-moving current must be identical, |jL| =

|jR|, so we can also compute j = 1
2

(jR − jL). The differential conductance
follows from the current via

G =
dj

dφ
. (6.3.15)
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6.3.3 Auxiliary master equation approach

The auxiliary master equation approach (AMEA) is based upon a mapping
of the model introduced in Sec. 6.3.1 – which we call physical system in the
following – consisting of an impurity and an infinite bath, to a finite auxiliary
open quantum system. The latter consists of the impurity coupled to a small
number of NB = N − 1 auxiliary bath sites that are furthermore attached to
Markovian environments. The dynamics of the auxiliary system is governed
by a Lindblad master equation [63], whose parameters are chosen such that
its hybridization function ∆aux approximates the one of the physical system
∆phys (Eq. (6.3.8)) as accurately as possible. Upon solving the corresponding
many-body Lindblad equation, an approximation for the behavior of the
interacting impurity in the physical system is found. We stress that this
mapping becomes exponentially exact, upon increasing the number of bath
sites NB →∞ in the sense that the Lindblad bath provides an exponentially
accurate representation of the original Hamiltonian problem [83, 188].

6.3.3.1 Lindblad equation

As outlined in Refs. [63, 86], the Lindblad equation for a fermionic lattice
model can be expressed in terms of an ordinary Schrödinger equation in an
augmented state space of twice as many sites 2N ,

d

dt
|ρ(t)〉 = L |ρ(t)〉 . (6.3.16)

In this augmented space, the density operator is represented by a quantum
state |ρ(t)〉 and the Lindbladian iL plays the role of a non-Hermitian Hamil-
tonian. For our case,2 it reads

iL =
∑
σ

c†σ

(
E + iΩ 2Γ(2)

−2Γ(1) E − iΩ

)
cσ − 2 Tr (E + iΛ)

+ U

(
nf↑nf↓ − ñf↑ñf↓ +

∑
σ

ñfσ − 1

)
.

(6.3.17)

2See, e.g., Eqs. (9)-(11) in Ref. [63].
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Here, E, Γ(1) and Γ(2) are N × N matrices holding the parameters of the
Lindblad equation yet to be determined by a fit of ∆aux to ∆phys and

Ω = Γ(2) − Γ(1) ,

Λ = Γ(2) + Γ(1) .
(6.3.18)

The vector
c†σ =

(
c†1σ, . . . , c

†
Nσ, c̃

†
1σ, . . . , c̃

†
Nσ

)
(6.3.19)

contains the creation operators c†iσ and c̃†iσ in the auxiliary system, which
is composed of original3 “nontilde” and additional “tilde” sites. They obey
the usual fermionic anticommutation rules. f is the position of the impurity
site, which is typically in the center, f = (N + 1)/2, nfσ ≡ c†fσcfσ and ñfσ
analogously.

In this framework, steady state expectation values as well as Green’s
functions are obtained as4

〈A(t)B〉 = 〈I|AeLtB|ρ∞〉 , (6.3.20)

for local impurity operators A,B and times t ≥ 0. Here, |ρ∞〉 = limt→∞ |ρ(t)〉
defines the steady state and |I〉 is the so-called left vacuum,5

|I〉 =
∑
{n}

|n, ñ〉 , (6.3.21)

|n, ñ〉 ≡ (−i)
∑
iσ niσ(c†1σ c̃1σ)n1σ . . . (c†Nσ c̃Nσ)nNσ |0〉|F̃ 〉 .

niσ and |0〉 are the occupation numbers and the vacuum in the nontilde sys-
tem and |F̃ 〉 is the completely filled Fock state in the tilde system. Eqs. (6.3.16)-
(6.3.21) describe the so-called super-fermion (SF) representation.

3“original” refers to Eqs. (9)-(11) in Ref. [63].
4Here, we have used the fact that 〈I|L = 0.
5This representation of |I〉 follows from Eq. (13) in Ref. [86] via particle-hole transfor-

mation.
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6.3.3.2 Mapping procedure

The mapping to the auxiliary system is outlined in Refs. [2, 83] and we sketch
it only briefly, here. Starting from proper initial values, the parameters
Eij,Γ

(1)
ij ,Γ

(2)
ij are adjusted by minimizing a suitable [63, 83] cost function.

This cost function punishes deviations between the auxiliary and the phys-
ical hybridization function and, in general, both the retarded and Keldysh
component contribute. Its evaluation involves only the solution of a non-
interacting problem, which is computationally cheap. In this paper, the
optimizaton of the Lindblad parameters is carried out with the ADAM [147]
algorithm as implemented in the python library tensorflow [148].

In principle, the best fit is obtained by allowing the Lindblad parameters
to connect all pairs of lattice sites [83]. However, employing matrix prod-
uct states (MPS) as solver for the many-body problem, as described in Sec.
6.3.3.3, it is convenient to adopt a one-dimensional geometry, which mini-
mizes the entanglement. Specifically, here we adopt a chain geometry with
the impurity in the center. In this case, the optimal solution numerically
turns out to be such that all sites to the left (right) of the impurity have
Γ(2) = 0 (Γ(1) = 0) and, therefore, are almost completely empty (full) [64].
This situation is particularly convenient for the MPS many-body solution,
since it prevents the propagation of entanglement, as discussed in Ref. [64]. In
addition, knowing this fact, it is then sufficient to fit the retarded component
of the hybridization function, only, as explained in App. 6.7.1.

We start from the zero-bias, φ = 0, i.e. equilibrium situation and perform
the fit as discussed above. The important physics obviously occurs in the
region around ω = 0 and is controlled by the power-law exponent r. Thus,
it is particularly important to have an accurate fit there. In order to achieve
this, we introduce a weight in the cost function, which is twice as large on
|ω| ≤ 1 than on |ω| > 1. For nonzero φ, we can construct the nonequilibrium
fit from the equilibrium one, as outlined in App. 6.7.2. This has the advantage
that the accuracy of the fit to reproduce the power-law is independent of the
bias voltage, which is crucial, in order to faithfully investigate the crossover
to finite voltage.
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6.3.3.3 Matrix product states implementation

We solve the many-body Lindblad equation employing matrix product states
(MPS) in combination with the time-dependent density matrix renormaliza-
tion group (tDMRG) algorithm [108, 109]. MPS are especially suited for
one-dimensional problems, where they can provide an efficient representation
with a small bond dimension. In particular, ground states of one-dimensional
gapped closed systems are conveniently expressed as MPS [92]. On the other
hand, also steady states and Green’s functions of open quantum systems in a
chain geometry are reproduced accurately using MPS and the entanglement
remains limited [64]. We decided to employ tDMRG for the time evolu-
tion here, since it is conveniently implemented with the C++ tensor network
library iTensor [149].

Within AMEA, a chain geometry naturally results from combining a non-
tilde and a tilde site associated with an index i, according to Eq. (6.3.19),
to a single effective site with a local Hilbert space dimension of d = 16 [64],
see Fig. 6.1. Since the SIAM couples opposite spins only at the impurity,
it is convenient to separate spin-up and spin-down degrees of freedom [189],
which reduces the local Hilbert space dimension back to d = 4. Fig. 6.1 shows
the effective sites we use in this work (lower panel) and sketches the steps to
obtain them. Note that in this arrangement, the Hubbard interaction is on
the bond between the spin-down and spin-up impurity site. Furthermore, it
is necessary to introduce two long-range terms between the empty bath sites
and the impurity, violating the linear geometry.

We encode the left vacuum |I〉 as well as a proper initial state |ρ(t = 0)〉
as MPS on these effective sites. We choose |ρ(0)〉 ∝ |I〉, since this has proved
convenient in our previous work [1, 64]. Taking

|n1↓ñ1↓ . . . nf−1↓ñf−1↓nN↓ñN↓ . . . nf↓ñf↓〉
⊗ |nf↑ñf↑ . . . nN↑ñN↑nf−1↑ñf−1↑ . . . n1↑ñ1↑〉

(6.3.22)

as basis states, we can express the corresponding expansion coefficients
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ψ({niσ, ñiσ}) of any required state as products of local matrices,

ψ({niσ, ñiσ}) =An1↓ñ1↓ . . .Anf−1↓ñf−1↓

×AnN↓ñN↓ . . .Anf↓ñf↓

×Anf↑ñf↑ . . .AnN↑ñN↑

×Anf−1↑ñf−1↑ . . .An1↑ñ1↑ .

(6.3.23)

In case of |I〉, only matrices with niσ = 1 − ñiσ are nonzero. Specifically,
comparing with Eq. (6.3.21), the corresponding expansion coefficients read

ψ({niσ, ñiσ}) =
∏
iσ

δniσ ,1−ñiσ(−i)niσ , (6.3.24)

resulting in the 1 × 1, i.e. scalar matrices A01 = 1 and A10 = −i. Having
expressed the relevant states as MPS, we can proceed with the time evolution
of the auxiliary system.

In tDMRG the time evolution of the system, |ρ(t)〉 = exp (Lt) |ρ(0)〉,
is decomposed into a Trotter sequence of small time evolutions on bonds
induced by gates. After the application of a gate, the original structure
of the MPS, Eq. (6.3.23), is restored with a singular value decomposition.
As usual at this step, the smallest singular values are neglected defining a
truncated weight, which is the sum of all discarded squared singular vales.
Then the next gate may be applied in the same way [92].

Fig. 6.2 shows the sequence of gates we use in this work to evolve one time
step ∆t. There are five layers, labelled “odd”, “even” and “swap”, and the gates
within them are displayed as boxes. In order to understand them, we identify
the following terms as building blocks of the Lindbladian, Eq. (6.3.17),

iLiσjσ = (E + iΩ)ij c
†
iσcjσ − 2Γ

(1)
ij c̃
†
iσcjσ

+ 2Γ
(2)
ij c
†
iσ c̃jσ + (E − iΩ)ij c̃

†
iσ c̃jσ ,

iLf↑f↓ = U
(
nf↑nf↓ − ñf↑ñf↓ + ñf↑ + ñf↓

)
.

(6.3.25)

Within the odd layers, all on-site terms in Eq. (6.3.25) as well as the two-
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nontilde

tilde

combined

spin separated

d = 4

d = 16

d = 4

Figure 6.1: Construction of effective sites for the MPS time evolution. The
impurity sites are displayed as red circles, the full and empty bath sites as
blue and white ones. As discussed in the text, by “full” and “empty” we
mean sites for which Γ(1) = 0 or Γ(2) = 0, respectively, for details, see App.
6.7.1. Each site is labelled with an index and its spin and tilde degrees of
freedom. The upper panel of this figure shows the sites and their couplings
occurring in the Lindblad equation in the augmented state space. Here,
the upper (lower) part of this ladder structure is formed by nontilde (tilde)
sites. Lines connecting these two sets of sites represent Γ terms, while lines
within the same set are hoppings. The central panel shows the effective sites
used in Ref. [64] that result from combining nontilde and tilde sites with the
same index. Finally, the lower panel shows the effective sites used in this
work that result from the combined sites by separating the spin degrees of
freedom. The advantage of this representation is that the local Hilbert space
has a dimension of 4, instead of 16 as in our previous work. On the other
hand, it introduces two long-range hopping terms.

99



site terms on every second bond, according to Fig. 6.2, including the impurity
bond, are grouped, exponentiated and applied as gates, see Eq. (6.3.26). In
the even layers, the two-site gates on the remaining bonds are applied, ex-
cluding the long-range bonds between the impurity and the empty baths,
which are taken care of in the swap layer [92, 110]. In the swap layer, the
innermost sites of the empty baths are swapped with their nearest neighbors,
i.e. they change positions, until they are next to the impurity sites. Then the
time evolution gates are applied, before they are swapped back to their origi-
nal positions. Swap gates are displayed as crossing time lines. Summarizing:

odd :


exp

[
(Liσjσ + Ljσiσ + Liσiσ + Ljσjσ)∆t

2

]
,

(i, j) = {(1, 2), (4, 5), · · · }

exp
[
(Lf↑f↓ + Lf↑f↑ + Lf↓f↓)

∆t
2

]
even : exp

[
(Liσjσ + Ljσiσ)∆t

2

]
,

(i, j) = {(3, 4), · · · }

swap : exp [(Lf−1σfσ + Lfσf−1σ) ∆t ]

(6.3.26)

To complete the time step, also the constant in Eq. (6.3.17) has to be taken
into account, so we multiply the MPS with exp {i∆t [2Tr (E + iΛ) + U ]}.

Notice that the described sequence of gates may be employed, provided
that NB is even, as reasonable at PH symmetry, otherwise the sequence
needs to be adjusted accordingly. Since this sequence is derived from a
second-order Suzuki-Trotter decomposition, an error O(∆t3) is acquired in
the time evolution, which is further proportional to the commutators of the
Lindbladians, Eq. (6.3.26), in different layers. Additionally, there is an error
from the truncation of the singular values after the application of each gate.

In this work, we employ the tDMRG scheme as follows: We first deter-
mine the steady state |ρ∞〉 ∝ exp(Lt∗) |I〉6 via time evolution of the ini-
tial state with tDMRG up to a time t∗, for which expectation values of

6〈I|ρ(t)〉 = 1 must be fulfilled for all t, since this corresponds to Tr ρ(t) = 1.
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Figure 6.2: Single step in the MPS time evolution of the (PSG) SIAM with
separated spin degrees of freedom. The impurity sites are represented as
red circles, the full and empty bath sites as blue and white ones. The same
colouring also classifies the time evolution gates that are represented as boxes.
A time evolution step ∆t consists of five layers, labelled “odd”, “even” and
“swap”. In each layer, a site iσ, with index i and spin σ, is touched only
by one gate. In the swap layer, swap gates displayed as crossing time lines
are employed to cope with the long-range couplings between the empty bath
sites and the impurity sites.
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static observables, such as single and double occupancies, are converged.
Afterwards, we compute, e.g., the lesser impurity Green’s function, G<

σ (t) =

i 〈I|c†fσ exp(Lt)cfσ|ρ∞〉, by applying cfσ to the steady state, employing
tDMRG again, applying cfσ to |I〉 and calculating the overlap. G<

σ (ω) is
obtained in the frequency domain via Fourier transformation of G<

σ (t) after
linear prediction [190].

6.3.3.4 Physical versus auxiliary quantities

The observables obtained directly by the MPS treatment of the auxiliary sys-
tem are called “auxiliary” quantities in the following. The auxiliary Green’s
functions are used as an approximation for the Green’s functions of the phys-
ical model. As discussed, this approximation becomes exponentially exact
upon increasing the number of bath sites. We can get an even better approx-
imation by extracting the self energy from Dyson’s equation for the auxiliary
system, assuming Σphys(ω) ≈ Σaux(ω) and reentering Dyson’s equation with
the (approximated) physical self energy and the (exact) physical hybridiza-
tion function. The Green’s functions extracted in this way are refereed to as
“physical” in the following.

6.4 Results

Here, we present results obtained with AMEA for the parameters r = 0.25,
U = 6, T = 0.05 and Γ = 1 in the generalized Kondo (GK) phase and
Γ = 0.25 in the local moment (LM) phase. In equilibrium, we compare
the results with the ones obtained with a direct MPS time evolution of the
Hamiltonian, Eq. (6.3.1), at T = 0 [189]. For clarity, we refer to this proce-
dure as “Hamiltonian MPS” (HMPS), in order to distinguish it from AMEA,
which is also treated via MPS. Of course, HMPS cannot be used to achieve
the steady state, since the system is finite. Since HMPS is faster, we also
provide equilibrium results for different values of r and U obtained with that
approach.
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6.4.1 Fit

We start by fitting the equilibrium hybridization function with the auxiliary
Lindblad system, as described in Sec. 6.3.3.2. As discussed above, we use a
weight function, such that the hybridization function is reproduced better at
low frequencies. We also concentrate on reproducing the power-law as accu-
rately as possible, while putting less emphasis on the multiplicative factors
as well as on the large-ω behavior. The results of the fit are displayed in
Fig. 6.3.

From Fig. 6.3(a) we can see that the auxiliary (AMEA) retarded hy-
bridization function accurately matches the physical one for |ω| & 0.2, which,
on the other hand, behaves approximately as

=∆R(ω) ∝ |ω|r (6.4.1)

for |ω| . 1.2. It follows that =∆R
aux(ω) displays a power-law on the interval

Ω ≡ (0.2 < |ω| < 1.2), but the exponent is slightly underestimated. In fact,
a fit by Eq. 6.4.1 on the interval Ω yields r′ = 0.23, whereas its value should
be equal to r = 0.25. Note that the behavior of −=∆R

aux(ω) is qualitatively
acceptable7 even down to |ω| ≈ 0.02, which is one order of magnitude smaller
than the lower edge of the power-law interval Ω. Below this value, though,
it bends towards a constant, −=∆R

aux(ω = 0) ≈ 0.39Γ, instead of going to
zero. Fig. 6.3(a) also shows the hybridization function used in HMPS, for
comparison. Here, it is plotted using a Lorentzian broadening of η = 0.1.8 It
features a good representation of the power-law, roughly on the same interval
Ω as AMEA, but −=∆R

HMPS(0) is larger for this value of η. Note that for
HMPS many more bath sites are necessary to get such a high resolution.
Specifically, on |ω| < 10 we use NB = 1301 for HMPS in comparison to NB =

7in the sense that it is decreasing
8In HMPS, in the Fourier transform of the Green’s function, Eq. (6.3.10), a modified

kernel exp (iωt− η|t|) with a finite broadening η is used, instead of the mathematically
exact limit η → 0. Note that in ω-space this is equivalent to a convolution of the exact
(finite size) result with a Lorentzian distribution of width η. Here, η is chosen such that
the hybridization function, the spectral function and the self energy are smooth.
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10 or 20 for AMEA9 to achieve roughly the same accuracy. In Fig. 6.3(b)
the auxiliary distribution function faux, obtained from ∆R

aux(ω) and ∆K
aux(ω)

via Eq. (6.3.7), is plotted. It compares well to the Fermi function, i.e. the
distribution function in the physical system.

Since Ω identifies the interval, where we can faithfully represent the
power-law in AMEA and in HMPS with an exponent r′ ≈ r, it is also the in-
terval, where we should study other quantities, such as the spectral function
A(ω) or the self energy ΣR(ω). With a bias voltage applied, the interval Ω

shrinks to

Ω(φ) =

(
0.2 +

φ

2
< |ω| < 1.2− φ

2

)
, for φ ≥ 0 , (6.4.2)

since the hybridization functions ∆R
L and ∆R

R are shifted by φ with respect
to each other. This also limits the values of the bias voltage, in which we
can reasonably estimate a power-law behavior to φ . 0.6. This estimate is
obtained by assuming that we need a frequency interval of width ε = 0.4, in
which to fit power-law exponents.

6.4.2 Many-body solution

After carrying out the fit, we solve the resulting Lindblad equation (or
Schrödinger equation in case of HMPS) and determine the steady state (or
just equilibrium for HMPS) Green’s functions, as described in Sec. 6.3.3.3
(or Ref. [189]). We are especially interested in the spectral function as well
as the self energy, as there are predictions about their behavior in equilib-
rium [165], and in the differential conductance. Unless stated otherwise, our
plots display the physical spectral functions and not the auxiliary ones, aco-
ording to the definition in Sec. 6.3.3.4. Due to the Trotter and truncation
errors, the MPS results break PH symmetry. Therefore, the curves we show
are PH symmetrized and the shadings indicate an estimate of these errors
obtained from the deviations from PH symmetry, see App. 6.8 for a more
detailed discussion.

9NB = 20 in nonequilibrium, see App. 6.7
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(a)

(b)

Figure 6.3: Equilibrium (φ = 0) fit results. (a) Retarded hybridization func-
tion −=∆R(ω) in units of the hybridization strength Γ and (b) distribution
function f determined from =∆R and =∆K via Eq. (6.3.7). The power-law
exponent r′ is obtained by fitting the AMEA hybridization function with
Eq. (6.4.1) on the interval Ω. The same procedure applied to the HMPS re-
sult yields quite the same exponent (up to a deviation of ≈ 0.01). |ω|r is
plotted for comparison, see Eq. (6.4.1). These curves are hardly distinguish-
able (black vs. red dots).
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6.4.2.1 Equilibrium case

The equilibrium case has been extensively studied in the literature [81, 82,
159–176]. It is well established that in a certain range of r, U and Γ the
system displays a Kondo-like behavior, the so-called generalized Kondo effect.
In the GK phase, the spectral function and the retarded self energy are
supposed to show a power-law behavior at small frequencies |ω| [165],

A(ω) ∝ |ω|−s, s = r , (6.4.3)

=ΣR(ω) ∝ |ω|κ, κ > r . (6.4.4)

First, we would like to address the question, how these properties are affected
by the fact that AMEA cannot reproduce the pseudogap exactly down to
asymptotically low energies. Therefore, we study one set of parameters in
the GK phase, according to the phase diagram in Fig. 5, Ref. [166], which is
reproduced in Fig. 6.6 of the present paper. Specifically, we solve the many-
body problem for r = 0.25, U = 6 and Γ = 1 (and a small temperature
T = 0.05) and compute the spectral function and retarded self energy. Then
we fit Eqs. (6.4.3) and (6.4.4) to these quantities on the interval Ω and extract
the corresponding power-law exponents. In the following, we denote their
numerical values as s′ and κ′, respectively. The results are plotted in Fig. 6.4
together with the ones obtained by an HMPS treatment of the model for
T = 0 and η = 0.1.

From the results plotted in Fig. 6.4 we conclude that exponents extracted
from the two methods, AMEA and HMPS, agree quite well. We can also
see that κ′ > r is fulfilled, but s′ is significantly larger than the predicted
value r. This is, because the interval Ω used to determine the exponent lies
at too large frequencies |ω|.10 On the other hand, it is not reasonable to
go to smaller |ω| values, since the power-law is not well represented there
in the hybridization function, see Fig. 6.3(a). Possibly, a more appropriate

10This is checked easily by calculating the U = 0 spectral function for the exact physical
hybridization function. The outcome shows that we need a good representation of the
power-law exponent in =∆R down to |ω| values that are at least 1−2 orders of magnitude
smaller than the lower edge of Ω and this is not feasible within AMEA, neither HMPS at
the moment.
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(a)

(b)

Figure 6.4: Equilibrium (φ = 0) (a) spectral function A(ω) and (b) retarded
self energy −=ΣR(ω) in the GK phase. The power-law exponents s′ and κ′
are obtained by fitting the AMEA results with Eqs. (6.4.3) and (6.4.4) on the
interval Ω. The same procedure applied to the HMPS results yields quite
the same exponents (up to a deviation of ≈ 0.01). A power-law ∝ |ω|−s is
plotted for comparison, see Eq. (6.4.3). The error shadings, hardly to be seen
in this figure, are estimates of the PH symmetry errors, see App. 6.8.
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way to proceed here would be to use a logarithmic energy discretization as in
NRG. However, without the possibility to integrate out high-energy degrees
of freedom, this is no use here, and indeed the AMEA fit becomes quite
unstable.

It is also well established in the literature that upon increasing U , the
system undergoes a QPT from the GK to an LM phase, where the Kondo-
like behavior is absent. Our next goal is to reproduce the phase boundary
from Fig. 5 in Ref. [166], i.e. to numerically calculate the critical value Uc,
which depends on r and Γ, see Fig. 6.6. We would like to exploit Eqs. (6.4.3)
and (6.4.4) for that purpose. Since we find that it is difficult to extract the
correct exponent s′ from the impurity spectral function, we choose to use
the one of the self energy κ′, instead. In Ref. [165] it is shown that, in the
GK phase, this exponent must be larger than r. In the equilibrium case, it
is convenient to use the HMPS solver rather than AMEA for the numerical
calculations. In Figs. 6.3 and 6.4 we have already checked that both methods
provide essentially the same values for the exponents up to a small deviation
(≈ 0.01). The HMPS solver is suitable for the equilibrium case, and, since
it is based on a Hamiltonian time evolution, it is easier to employ and a bit
faster, even for this large number of 1301 bath sites.

Specifically, we compute the Green’s functions for different values of
the interaction strength U and extract the corresponding self energy from
Dyson’s equation (6.3.13) for various Lorentzian broadenings η. Then we
fit =ΣR(ω) on Ω and determine κ′ as a function of η. The results of this
procedure are illustrated for r = 0.25 in Fig. 6.5(a). We can see that κ′ dis-
plays a significant dependence on η (in contrast to r′ and s′)11 and that it
is almost a linear function of η for all considered values of U . In order to
extract the result without artificial broadening, we perform a linear extrap-
olation, κ′0 = κ′(η → 0). In Fig. 6.5(b) the obtained values for κ′0 are plotted
and we find again an almost linear dependence on the interaction strength.
According to the condition in Eq. (6.4.4), the system should leave the GK
phase at the value of U for which κ′0 = r. Thus, we perform a second linear

11This is, due to the fact that the self energy is extracted from an inversion of the
Green’s function.
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(a)

(b)

Figure 6.5: Determination of the phase boundary by linear extrapolation of
the power-law exponent κ′ of the HMPS self energy in the GK phase. First,
(a) κ′ is extrapolated to vanishing values of the broadening η to extract
κ′0 = κ′(η → 0) for various values of the interaction strength U . Second, (b)
the critical interaction strength is determined from a second extrapolation,
Uc = U(κ′0 → r).
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extrapolation to extract the critical interaction strength as Uc = U(κ′0 → r).
The phase boundary estimated in this way agrees well with the ones

obtained by the numerical renormalization group, see Fig. 6.6. In particu-
lar, the deviations within the results obtained from different NRG calcula-
tions are of the same size as the deviation of the HMPS results from the
NRG results for the considered values of r.12 It is notable, though, that the
HMPS scheme tends to overestimate the critical interaction strength, yield-
ing slightly smaller values U r−1

c in Fig. 6.6. This could be improved by taking
into account that κ′(η) is not strictly a linear function. By accounting for
its curvature, one obtains slightly larger values κ′0 (see Fig. 6.5(a)). This,
in turn, results in smaller critical interaction strengths (see Fig. 6.5(b)) and
thus in larger values of U r−1

c , closer to the corresponding NRG results. From
the literature it is known that the GK phase can occur only for 0 < r < 0.5,
see e.g. Ref. [82]. Close to the phase boundary at r → 0.5, the HMPS cal-
culations are more involved, the quantities κ′(η) and U(κ′0) are much more
difficult to obtain and the extrapolation scheme described above breaks down.
Therefore, in Fig. 6.6 the HMPS results are plotted only up to r = 0.45.

It is remarkable that our results reproduce the NRG phase boundary
to this level of accuracy, even though the low energy part of the bath hy-
bridization function used in our calculation is not reproduced perfectly and
the Kondo effect is of course especially dependent on the hybridization func-
tion at ω ≈ 0. The encouraging performance of the HMPS scheme and the
good agreement between the results obtained from HMPS and from AMEA
prompts us to use AMEA to study the system in its nonequilibrium steady
state, for which HMPS cannot be used.

110



Figure 6.6: Phase diagram adapted from Ref. [166] (with kind permission)
displaying different NRG results.13On top of this we present our HMPS re-
sults for the phase boundary obtained via the extrapolation scheme discussed
in the text. We also indicate the two points we consider in AMEA, i.e.
r = 0.25, U = 6 and Γ = 0.25 and Γ = 1. If U is much smaller than the
bandwidth, the phase boundary for a given r is expected to depend on ΓU r−1

only [166].

6.4.2.2 Nonequilibrium steady state

We now present nonequilibrium steady state results obtained by applying
a finite bias voltage. Since the calculations are more demanding than the
conventional HMPS ones, we focus on two points in the (equilibrium) phase
diagram Fig. 6.6, one in the GK and another in the LM phase, instead of doing
a complete sweep of parameters. Specifically, we take r = 0.25, T = 0.05,
U = 6, and Γ = 0.25 and 1, respectively.

We start by studying the behavior of the Kondo peak as a function of
voltage. Therefore, we plot in Fig. 6.7(a) and (b) the spectral function and
the imaginary part of the self energy. In the Kondo regime, we observe that
upon increasing the bias voltage from φ = 0 the equilibrium Kondo peak is

12Even though the phase diagram of Ref. [166] was obtained under the assumption U �
D, where D is the bandwidth, while in this work we have U . D. For U � D, D is
irrelevant as energy scale and the phase boundary is solely determined by Γ, U and r, see
Ref. [166].

13Results obtained by the local moment approach were removed here, since they are not
relevant to the present discussion.
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(a)

(b) (c)

Figure 6.7: Nonequilibrium (φ > 0) quantities in the Kondo regime, (a) spec-
tral function, (b) retarded self energy, (c) differential conductance. The solid
lines are the physical quantities and the dotted lines the auxiliary ones, see
Sec. 6.3.3.4. Notice that the two curves are often indistinguishable. The er-
ror shadings and error bars are estimates based on symmetry considerations,
see App. 6.8.

112



suppressed and broadened and, at some value of the voltage, it splits in two
peaks. The split peaks then move apart together with the chemical potentials
and they are further suppressed and broadened. Qualitatively, this is very
similar to the situation observed for the nonequilibrium SIAM without a
pseudogap [55–65]. In our data, the splitting becomes visible for φ ≥ 0.8 in
the spectral function and, even before, for φ ≥ 0.6 in the self energy.

A measure for the accuracy of the mapping between Eq. (6.3.1) and the
auxiliary open system, which is at the basis of the AMEA approach, can be
read off from the deviations between the physical and the auxiliary spectral
functions, defined in Sec. 6.3.3.4. In the limit in which the mapping to the
auxiliary system becomes exact, i.e. for large NB, these quantities become
identical. Our data show that Aaux and Aphys differ only slightly for φ ≥ 0.3.
Decreasing the voltage below φ = 0.3 increases this deviation, especially for
ω between the chemical potentials, and it is largest at φ = 0, where the exact
physical spectral function is expected to diverge at ω = 0. Here we expect
the accuracy of the AMEA mapping to be less reliable.

It is notable that as soon as the Kondo split peaks appear, they are very
broad and poorly defined, even more in Aphys, but also in Aaux. They are
first located at |ω| values slightly below |µλ| = φ/2, which they reach mono-
tonically upon increasing the bias voltage. The physical spectral function
displays additional features, namely two cusps at ±φ/2, not to be confused
with the Kondo split peaks. We believe these to be artefacts originating from
the difference between the auxiliary and the physical system and we expect
them to disappear upon improving the accuracy.

Figs. 6.8(a) and (b) are obtained for the same parameters as Figs. 6.7(a)
and (b), but a reduced hybridization strength of Γ = 0.25, instead of Γ = 1.
According to the phase diagram in Fig. 6.6, the equilibrium system is in the
LM phase, here. This is confirmed by our results which, indeed, do not show
signatures of the Kondo effect anymore, neither in equilibrium nor at finite
bias voltage.14 Specifically, at nonzero φ, we observe dips in the spectral
function located almost exactly at the values of the chemical potentials that

14Notice that it is not clear, whether a true phase transition or rather a crossover occurs
between the two phases at finite voltage.
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(a)

(b) (c)

Figure 6.8: Nonequilibrium (φ > 0) quantities in the LM regime. Conven-
tions are as in Fig. 6.7.

appear to emerge as images of the dips in the leads’ density of states. Also
in this case, the physical and auxiliary spectral functions agree very well
with each other, thus making us confident about the accuracy of our results.
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Artificial cusps at |µλ| are also present in Aphys, but they are much smaller
than the cusps in the Kondo regime.15 These essentially lie within the error
shadings of Aaux and are notable only upon zooming in.

Figs. 6.7(c) and 6.8(c) display the differential conductance G, obtained
from Eqs. (6.3.14) and (6.3.15) as a function of the bias voltage at parameters
corresponding to the Kondo and the LM regime. A notable difference with
respect to the conventional SIAM is that in the Kondo regime, the maximum
of G(φ) appears to be shifted to a finite voltage of φ ≈ 0.2. On the other
hand, for φ & 0.2, G(φ) decreases logarithmically, as usual. The unusual
structure of the differential conductance in the Kondo regime is probably,
due to the fact that the position of the pseudogap is shifted along with the
bias voltage. On the other hand, one should be aware of the fact that, due
to the relatively large error bars,16 it is not clear, whether the maximum at
finite voltage is a genuine feature: strictly speaking, also a maximum at φ = 0

would be consistent with the error bars. Furthermore, we already noticed in
Fig. 6.7(a) that the deviations between Aphys and Aaux are large at φ ≤ 0.2

compared to the other bias voltages and this is exactly, where the peculiar
behavior of G(φ) sets in. In contrast to the Kondo regime, Fig. 6.8(c) shows
that in the LM regime the differential conductance increases with the bias
voltage, as expected.17

15Here, a smaller truncated weight was chosen in the SVDs in the MPS time evolution,
which could explain this improved accuracy.

16The error bars as well as the error shadings are estimated from the violation of PH
symmetry of the corresponding quantities, as discussed in App. 6.8. Violation of PH
symmetry via protocol 2 produces a slight difference between the left- and right-moving
current |jL| and |jR|, which is clearly unphysical for the steady state. Since G(φ) is
obtained by numerical differentiation of the jλ(φ) curves, its error is amplified. This
explains, why the error bars in the G(φ) are so large.

17There seems to be a flat region up to φ . 0.1 in G(φ). However, we do not believe
this to have a particular physical meaning. This apparent behavior may be due to the
fact that the numerical evaluation of G is quite challenging. G is obtained from finite
current differences using three-point Lagrange polynomials to approximate the derivative
and cubic splines to interpolate the result. However, we only have a coarse mesh of voltage
points, with φ = 0.1 being the first point at nonzero voltage (notice that only the points
with errorbars correspond to data points). On the other hand, using a finer mesh does
not make sense due to the limited accuracy of the fit. In addition, this apparently flat
behavior is enhanced by the logarithmic scale of the φ axis. In a linear plot, the region
φ . 0.1 obviously looks much thinner and the curve displays a quadratic shape there.
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We now attempt at extracting “effective” power-law exponents in the
Kondo regime, as we do in equilibrium, by carrying out a fit of the nonequilib-
rium curves. More specifically, in analogy to Eqs. (6.4.1), (6.4.3) and (6.4.4),
we fit the behavior

=∆R(ω) ∝ |ω − µL|r + |ω − µR|r , (6.4.5)

A(ω) ∝ |ω − µL|−s + |ω − µR|−s , (6.4.6)

=ΣR(ω) ∝ |ω − µL|κ + |ω − µR|κ . (6.4.7)

The finite voltage and the imperfect pseudogap set a low-frequency cutoff
to this behavior, which we expect not to hold down to zero frequency. The
exponents, r′(φ), s′(φ) and κ′(φ), obtained by a fit on the interval Ω(φ),
defined in Eq. (6.4.2), are presented in Fig. 6.9. Since this interval shrinks
upon increasing the bias voltage, we can faithfully perform the fit only for
voltages φ . 0.6, as discussed below Eq. (6.4.2). Thus, we can just catch
the beginning of the interesting voltage region, where the Kondo split peaks
start developing at φ ≈ 0.6, according to Fig. 6.7(a). Moreover, due to the
lower cutoff in energy, the extracted exponents can only provide a rough
semi-quantitative estimate. In the range φ . 0.6 the exponents depend only
slightly on the bias voltage. Nevertheless, it is notable that r′(φ) and s′(φ)

are almost parallel. This may indicate that deviations in =∆R(ω) (such as
between =∆R

aux and =∆R
phys) mainly translate into deviations in the spectral

function, affecting =ΣR(ω) in a minor way.18 Indeed, if the self energy is
more stable against numerical inaccuracies than the spectral function, one
could try to exploit this to study the phase transition or crossover also out
of equilibrium, with a scheme similar to the one presented in Sec. 6.4.2.1.
However, in order to do this, it would be necessary to resolve a larger fraction
of the interesting voltage region, φ & 0.6, which, on the other hand, would
require a larger Ω interval, where the power-law in the auxiliary hybridization
function is accurately resolved.

18This argument is supported by the fact that ∆ enters G0 and G in the same way in
Dyson’s equation. This is easily seen by comparing the general form of Eq. (6.3.13) to the
result for zero self energy, G=G0.
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Figure 6.9: Nonequilibrium (φ > 0) effective power-law exponents as a func-
tion of the bias voltage φ. The three pairs of exponents are extracted from
a fit of the auxiliary retarded hybridization function (r′, r′′), the spectral
function (s′, s′′) and the retarded self energy (κ′, κ′′) with Eqs. (6.4.5)-(6.4.7).
The single and double primes correspond to different fitting intervals Ω(φ)
and Ω1(φ), see text.

Fig. 6.9 also displays the power-law exponents r′′(φ), s′′(φ) and κ′′(φ)

fitted on a larger interval Ω1(φ) = 0.2 + φ
2
< |ω| < 1.2 + φ

2
, which is obtained

by a rigid shift of the equilibrium interval Ω by φ
2
. In the region φ . 0.6,

where both kinds of exponents (′ and ′′) are defined, their values lie very close
to each other. This confirms that the influence of the exponential factor in the
hybridization function is negligible on these frequency and voltage intervals.

6.5 Summary and Conclusions

In this work we addressed the single-impurity Anderson model with leads
displaying a power-law pseudogap in the density of states (PSG SIAM) by
means of a nonperturbative approach to deal with nonequilibrium steady
states, the auxiliary master equation approach (AMEA). We studied the
generalized Kondo (GK) and the local moment (LM) phase of this model in
equilibrium as well as their extension out of equilibrium.

In order to assess the validity of our approach, we first compared the re-
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sults with the ones obtained with a direct MPS time evolution of the Hamil-
tonian (HMPS) [189]. HMPS is faster than AMEA and it can treat a larger
number of bath sites in equilibrium, but, on the other hand, it cannot deal
with a nonequilibrium steady state, due to the lack of a dissipation mecha-
nism. We found that the spectral function, the self energy and the power-law
exponents of these quantities agree very well between AMEA and HMPS, see
Fig. 6.4. Furthermore, we implemented a scheme to find the phase boundary
upon linear extrapolation of the power-law exponent of the self energy in the
GK phase. The phase boundary obtained in this way agrees quite well with
previous NRG results, see Fig. 6.6.

Out of equilibrium, we observe a splitting of the Kondo peak in the spec-
tral function and in the self energy as a function of the bias voltage, see
Figs. 6.7(a) and (b), as in the case of the conventional Kondo effect. On the
other hand, the differential conductance appears to display a peculiar max-
imum at finite bias voltage, Fig. 6.7(c), which could be caused by the shift
of the hybridization functions at finite bias voltages. Due to the error bars,
it is not clear, whether this maximum can be considered a genuine feature
of the model. We are not aware of any other work on this model displaying
this feature. For example, in Ref. [187], the conductance maximum occurs at
zero bias. However, this work also does not show a splitting of the Kondo
resonance at finite bias voltages. The authors attributed this to the fact that
the system is not in the limit of large interactions. A comparison with our
results is difficult, since the position of the pseudogap as a function of voltage
is considered differently in our paper. More specifically, while in Ref. [187]
the pseudogap is fixed at ω = 0, in our case it moves with the chemical
potentials of the two leads, consistent with a rigid shift of the two leads.

Strictly speaking, what we observe in the Kondo regime, is the result
of a superposition of the (pseudogap) GK effect with a small contribution
from the ordinary one. This is, due to the fact that the imperfect mapping
produces a nonzero residual Γresid = −=∆R

aux(0) ≈ 0.39, even at zero bias
voltage. However, the contribution from this residual DOS is negligible, since
the resulting Kondo temperature TK,resid ≈ 0.0025 is much smaller than the
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temperature of our data T ≈ 20TK,resid.19 Therefore, the Kondo resonances
shown in Fig. 6.7(a) and (b) are clearly dominated by the pseudogap GK
effect.

It would be clearly desirable to be able to extend an accurate mapping
of the hybridization function down to smaller |ω| values. This would further
reduce the contribution of the ordinary Kondo effect and it would allow for
a more accurate analysis of the low-frequency behavior. In previous works,
Refs. [64, 83], we demonstrated that the accuracy of the mapping increases
exponentially upon increasing the number of bath sites. However, this is
only true, if we find good enough minima of the cost function measuring the
difference between ∆aux and ∆phys. This has, so far, turned out to be difficult
for the PSG model studied here. In order to resolve the power-law with the
cusp, bath sites on all energy scales would be required, as used in NRG. To
make progress in this direction, we tried to fit the hybridization function on a
logarithmic frequency grid and/or include its power-law exponent explicitly
into the cost function, but without success so far. The fit seems to be quite
unstable in all of these cases.

On the technical side, this work presents a development of the AMEA
Lindblad many-body impurity problem within a matrix product states algo-
rithm. Due to the reduced local Hilbert space obtained by separating the
degrees of freedom, the present implementation is faster and more stable than
the one of our previous work, Ref. [64]. On the other hand, the disadvantage
of the structure used here is that additional long-range couplings between
the impurity and the baths are introduced, as illustrated in Fig. 6.2, and the
entanglement must be carried across the sites in between, which causes the
bond dimension to increase. An obvious way to avoid this is a “fork” struc-
ture, in particular, a “double fork”, which has three bonds at the impurity,
instead of two. This structure naturally takes into account the spin separa-
tion as well as the separation between full and empty baths and, at the same
time, only has nearest neighbor couplings. The disadvantage of this scheme

19TK is estimated with the widely used formula from Ref. [31], TK =√
ΓU/2 exp [−πU/(8Γ)], assuming a constant lead DOS with a hybridization strength

of Γ = Γresid.
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is that it cannot be represented by MPS, because of the third bond, and it
thus requires the implementation of a new tensor network, similar to the one
described in Ref. [189]. Work along these lines is in progress.
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6.7 Construction of a nonequilibrium system

from equilibrium bath parameters

Here, we show two results concerning the representation of a noninteracting
fermionic bath in terms of Lindblad open systems, focussing on a geome-
try that is suitable for a treatment with MPS. As discussed in our previous
work [64], for the sake of an MPS treatment, it is convenient to connect the
impurity to a bath which is full and one which is empty. Each of the two
baths should have a one-dimensional chain geometry and couple on each side
of the impurity. This geometry guarantees a slower propagation of entangle-
ment. For this reason, in App. 6.7.1 we show, how to represent an arbitrary
hybridization function as originating from a full and an empty bath. This
is valid both for a nonequilibrium as well as for an equilibrium φ = 0 hy-
bridization function. In our paper, it is convenient to start with such a
representation for the fit of an equilibrium bath and then use this solution
to produce a full-empty representation for a finite voltage φ 6= 0. How this
is done, is shown in App. 6.7.2.
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6.7.1 Splitting into a full and empty bath

The effects of an arbitrary noninteracting fermionic bath on a single-site im-
purity are completely described by its hybridization function ∆(ω) in Keldysh
space. Here, we show that any (equilibrium or nonequilibrium) ∆ can always
be split as ∆ = ∆F + ∆E, where ∆F describes a full (F) and ∆E an empty
(E) (equilibrium) bath. As discussed above, these two baths are represented
by a Lindblad equation, where Γ(1) = 0 or Γ(2) = 0, respectively.

For better readability, we omit the frequency argument ω and introduce
the two components of the hybridization function

∆Ri ≡ =∆R , ∆Ki ≡ ∆K

2i
. (6.7.1)

In equilibrium, these two components are linked via the fluctuation-dissipation
theorem,

∆Ki = ∆Ri(1− 2f(ω − µ)) , (6.7.2)

where f is the Fermi function and µ the chemical potential. For a full/empty
equilibrium bath the relation

∆Ki
F/E = ∓∆Ri

F/E (6.7.3)

follows from Eq. (6.7.2) for f ≡ 1 (F) or 0 (E), respectively. We can, therefore,
decompose

∆Ki = ∆Ki
F + ∆Ki

E = −∆Ri
F + ∆Ri

E ,

∆Ri = ∆Ri
F + ∆Ri

E ,

which gives

∆Ri
F/E =

∆Ri ∓∆Ki

2
. (6.7.4)

Note that Eqs. (6.7.2) and (6.7.3) are equilibrium properties. Therefore, these
are valid for any component of each one of the two (uncoupled) baths, E and
F , and in particular for the Green’s function matrix. Moreover, a matrix
inversion preserves these relations. However, for a matrix Aβ, β ∈ {R,K},
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such as the Green’s function or self energy matrix, one has to replace the
imaginary part (6.7.1) with the anti-Hermitian part, i.e.:

ARi =
1

2i
(AR −AR†)

AKi =
1

4i
(AK −AK†)

(6.7.5)

Notice that the Keldysh component AK is anti-Hermitian anyway. In this
case (6.7.3) becomes

AKi
F/E = ∓ARi

F/E , (6.7.6)

Applying Eq. (6.7.5) to the Green’s function matrix of one of the two
uncoupled baths (cf. Eqs. (40) and (41) in Ref. [63]),

(
G−1

)R
= ωI −E + i

(
Γ(1) + Γ(2)

)
,(

G−1
)K

= −2i
(
Γ(2) − Γ(1)

)
,

results in (
G−1

)Ri
= Γ(1) + Γ(2) ,(

G−1
)Ki

= Γ(1) − Γ(2) .
(6.7.7)

Inserting this result further into Eq. (6.7.6) yields that a full bath has Γ(1) = 0

and an empty one Γ(2) = 0, as expected,

(
G−1

)Ri
F

= Γ(2) ,
(
G−1

)Ri
E

= Γ(1) . (6.7.8)

Notice that this splitting procedure does not change the properties of the
impurity. Furthermore, it can be carried out also for an equilibrium bath
or for a situation in which the leads are partially full or partially empty. A
crucial point is that in MPS, it is always convenient to split the baths in this
way, because the entanglement is less severe, see Ref. [64].
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6.7.2 From equilibrium to nonequilibrium

As discussed, we start by fitting a bath in equilibrium and then we split it
into a full and an empty one, see Fig. 6.10. In fact, it turns out that such a
geometry naturally comes out for a chain geometry fit.

µ

(a) (b)

Figure 6.10: (a) Impurity (red sphere) coupled to a partially filled bath
(semicircle) at chemical potential µ. (b) The same hybridization function
can be obtained by coupling the impurity to a full and empty bath with
appropriate DOS.

For the situation depicted in Fig. 6.10(b) the fit produces the following
Lindblad matrices, assuming PH symmetry,

E =


Ẽτ

0

t
0

0 t εf t 0

0
t

0
Ẽ

 (6.7.9)

and

Γ(1) =

 Γ̃τ 0 0

0 0 0

0 0 0

 , Γ(2) =

 0 0 0

0 0 0

0 0 Γ̃

 .

Here, Ẽ and Γ̃ are NB/2 × NB/2 block matrices and each matrix Aτ is
A with the order of indices inverted and different signs, see Eq. (27) in
Ref. [83], for the exact relations. For MPS, Ẽ and Γ̃ should be tridiagonal,
which corresponds to having nearest-neighbor hoppings and Γ terms only.
The retarded hybridization function of, for instance, the full bath is then
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given by
∆R
F (ω) = t2γ̄R(ω) (6.7.10)

with the boundary Green’s function

γ̄R(ω) =

[(
ωI − Ẽ + iΓ̃

)−1
]

11

(6.7.11)

and the Keldysh hybridization function ∆K
F (ω) is fixed by Eq. (6.7.3). The

result for the empty bath follows from PH symmetry.
Instead of the equilibrium situation in Fig. 6.10(a), we would now like to

represent a nonequilibrium one, as depicted in Fig. 6.11(a).

∆ε

(a)

∆ε

(b)

Figure 6.11: (a) Impurity (red sphere) coupled to a partially filled left bath
and a partially filled right bath (semicircles), whose chemical potentials differ
by 2∆ε. (b) The same situation with two full (blue) and two empty (white)
baths.

If the total DOS is fixed, this is obtained by reducing the hoppings to
the impurity by 1/

√
2 and by doubling the number of bath sites and shift-

ing their on-site energies by ±∆ε. Then Fig. 6.10(b) schematically becomes
Fig. 6.11(b), which can no longer be represented in a chain geometry (with
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tridiagonal matrices). The matrix in Eq. (6.7.9) becomes

E′ =



Ẽτ + ∆εI 0
0

t′
0 0

0 Ẽτ −∆εI
0

t′
0 0

0 t′ 0 t′ εf t′ 0 t′ 0

0 0
t′

0
Ẽ −∆εI 0

0 0
t′

0
0 Ẽ + ∆εI



(6.7.12)

with t′ = t/
√

2 and, correspondingly, Γ(1) and Γ(2). In this situation, Eq. (6.7.10)
still holds, but instead of Eq. (6.7.11), we have

∆R
F (ω) =

t2

2

(
γ̄R(ω + ∆ε) + γ̄R(ω −∆ε)

)
.

However, the matrix (6.7.12) is not suitable for MPS, as it is not tridiagonal.
To make progress, we observe that ∆R

F (ω) can be obtained by considering
the following matrix in block form

h′ =


0 t′ 0 t′ 0

t′

0
Ẽ − iΓ̃−∆εI 0

t′

0
0 Ẽ − iΓ̃ + ∆εI


and employing Dyson’s equation,

∆R
F (ω) = ω − 1

[(ωI − h′)−1]11

. (6.7.13)

For MPS we need a tridiagonal form, as discussed above. This can be
achieved with a Bi-Lanczos transformation. All we need is that [(ωI−h′)−1]11
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remains invariant. The transformation is produced by a matrix (here the up-
per block is 1× 1 and the lower is NB ×NB)

U =

(
1 0

0 Ũ

)
, (6.7.14)

where U is, in general, non-unitary, yielding

h′′ = U−1h′U

=

 0 t′′ 0

t′′

0
H ′′

 .

Here, the non-Hermitian tridiagonal matrixH ′′ identifies the new parameters
of the full (F) bath,

Ẽ′′ ≡ H
′′† +H ′′

2
,

Γ̃′′ ≡ H
′′† −H ′′

2i
,

(6.7.15)

while the ones of the empty (E) bath are obtained by PH symmetry, see
Eq. (27) in Ref. [83].

Note that, since Ũ is not unitary, Ẽ′′ and Γ̃′′ are not simply obtained by
transforming Ẽ and Γ̃, separately. This can, and in our case does, produce
Γ̃′′ that are not semi-positive definite, as should be required for the Lindblad
equation. Still, the steady state we obtain is stable and the spectral functions
turn out to be causal. The reason is that the new parameters originate from
semi-positive definite matrices.
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6.8 Symmetry considerations and error estima-

tion

In principle, we can calculate four Green’s functions individually, Gα
σ with

σ ∈ {↑, ↓} and α ∈ {<,>}. The system, though, is PH symmetric, which
relates the lesser and the greater Green’s function to each other, and it is
spin symmetric. Therefore, the following relations must be fulfilled,

G<
σ (x) = −G>

σ (−x) , (6.8.1)

Gα
↑ (x) = Gα

↓ (x) , (6.8.2)

for x being either t or ω. This reduces the number of actually independent
Green’s functions to only one. Thus, in order to obtain the spectral function,
for example, it is in principle sufficient to calculate only one Gα

σ , then con-
struct Gᾱ

σ with ᾱ 6= α from Eq. (6.8.1) and evaluate Eq. (6.3.11). We refer to
this as protocol 1.

However, if we calculate Gα
σ with AMEA employing MPS, the symmetry

relations, Eqs. (6.8.1)-(6.8.2), are not exactly fulfilled. This is, due to the
approximations within the MPS calculation, more specifically, due to the
truncation and Suzuki-Trotter errors. Fig. 6.12 shows the consequences of
these violations at the example of the spectral function.

We can see that the spectral functions determined from only one Gα
σ ,

according to protocol 1, are symmetric by construction, Aασ(ω) = Aασ(−ω),
but they differ from each other, Aασ(ω) 6= Aᾱσ̄(ω) for α 6= ᾱ and σ 6= σ̄.
The area enclosed by the four different solutions is color-shaded and the
solid curve in the center is the average of these solutions, which we call
symmetrized spectral function in this paper. The deviations of the borders
of the shaded area from the symmetrized spectral function can be used as a
measure for the symmetry errors throughout the MPS calculation.

In this figure, we can also see the spectral functions naively determined
from two Green’s functions, G<

σ and G>
σ , by evaluating Eq. (6.3.11) directly,

without enforcing PH symmetry. We refer to this as protocol 2. These
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Figure 6.12: Auxiliary spectral functions A(ω) obtained from different raw
data for symmetry considerations and error estimation, see text.

spectral functions are not exactly symmetric, Aσ(ω) 6= Aσ(−ω), as discussed
above, but they are close to the symmetrized spectral function and they lie
almost entirely within the shaded area for almost all bias voltages (except
φ = 0.8 and φ = 1).

Throughout this paper, we display also other, in principle symmetric,
quantities as symmetrized curves with errors in the form of color-shaded
areas, obtained by protocol 1. Specifically, the self energy and the differential
conductance are represented in this way, see Figs. 6.4, 6.7 and 6.8. For the
differential conductance, we also consider deviations arising by protocol 2 and
plot the corresponding errors separately, as bars, in addition to the shaded
area, see Figs. 6.7(c) and 6.8(c). For the other quantities these errors lie
almost entirely within the shaded area, anyway, and their inclusion does not
make any difference. The differential conductance, though, being obtained
as a numerical derivative of these quantities by Eqs. (6.3.14) and (6.3.15), is
more sensitive to deviations.
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Chapter 7

Conclusions and Outlook

In this thesis, we studied the Anderson impurity model in different nonequi-
librium situations generated by the application of a bias voltage. In particu-
lar, we considered an additional local magnetic field at the impurity, Ch. 5,
and leads displaying a pseudogap in the density of states, Ch. 6. We focused
on the interplay of these features with the bias voltage and studied the com-
bined effect on the spectral and transport properties in the steady state of
the system. For a detailed conclusion about these specific problem sets, we
refer the reader to Secs. 5.5 and 6.5, respectively.

We employed the auxiliary master equation approach in combination with
two different schemes based on matrix product states for our studies. Dealing
with a genuine open quantum system, we are able to follow the time evolution
up to the steady state and compute Green’s functions in the steady state.
Our approach is not limited to a certain regime of the model, specifically, we
can also access the challenging intermediate regime, where eφ ≈ kBTK (and
|g|µBB ≈ kBTK). We are able to generate very accurate results, see Fig. 5.6,
and the accuracy can, in principle, be further increased in a controlled way
by increasing the number of bath sites [83].

We found that the novel matrix product states scheme introduced in Ch. 6
is preferable to the one adapted in Ch. 5. The separation of spins clearly re-
duces the bond dimension, at best to its square root at zero interaction, but
also at large interaction, we found that the more complex new scheme is worth
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the effort. Both algorithms, the time-dependent density-matrix renormaliza-
tion group as well as the time-evolving block decimation algorithm worked
well for our purposes. Due to the restricted geometry in both schemes, i.e.
nearest neighbor couplings only, a comparatively large number of bath sites
is required for the mapping to the auxiliary Lindblad system to be accurate,
which slows down the many-body solution. This problem might be overcome
by employing the time-dependent variational principle [100, 101], instead,
which can deal with longer-ranged couplings, as well.

Thinking of future perspectives, the next step could be to tackle the time
dependency of the Anderson impurity model after a local quench or the in-
fluence of periodic driving. This can be achieved with minor modifications to
the present code. Also interesting to study are setups with multiple impuri-
ties potentially coupled to multiple baths leading to the emergence of exotic
variants of the Kondo effect. This requires a little more effort in the im-
plementation, depending on the complexity of the many-body system under
investigation. Examples include the integer-spin Kondo effect in a quantum
dot with singlet-triplet degeneracy [191], the ferromagnetic Kondo effect in
a triple quantum dot [192] and the two-channel charge Kondo effect [193].
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