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Abstract

Unlike the ring Z of rational integers, where every non-zero non-unit has a unique

factorization, there are several algebraic structures in which uniqueness of factor-

ization of elements fails. Factorization theory involves investigating phenomena

related to this failure of uniqueness of factorization of elements. In this thesis, we

study various concepts of factorization theory in the ring of integer-valued poly-

nomials on a domain D ,

Int(D ) = { f ∈ K [x ] | f (D )⊆D },

where K is the quotient field of D . We focus on domains D which are Dedekind.

A crucial object in factorization theory is the set of lengths of a fixed element,

that is, the set of all natural numbers n such that a fixed element has a factor-

ization as a product of n irreducibles. We show that every finite multiset of nat-

ural numbers greater than 1 occurs as a set of lengths of a polynomial in Int(D ),
where D is a Dedekind domain with infinitely many maximal ideals, all of them

of finite index. This demonstrates that Int(D ) has unusual wild factorization be-

haviour as compared to algebraic integers whose sets of lengths exhibit a certain

arithmetic structure. Furthermore, we show that there is no transfer homomor-

phism from the multiplicative monoid of Int(D ) to a block monoid. This implies

that Int(D ) is one of the few domains which are not transfer Krull domains. Our

proofs are constructive and the factorizations in our constructions are square-free

which is also a typical property of known related constructions in the literature.

The main hindrance for using non-square-free factorizations is the existence of

non-absolutely irreducible elements, that is, irreducible elements some of whose

powers allow several essentially different factorizations into irreducibles. There-

fore, we want to identify the so-called absolutely irreducible elements, that is, ele-

ments all of whose powers have only one (essentially different) factorization. First,

we take our Dedekind domain D to be Z, and we construct non-absolutely irre-

ducible elements in Int(Z). These are crucial in studying patterns of factorizations

in Int(Z). Second, taking our Dedekind domain D to be a principal ideal domain,

we give a graph-theoretic sufficient condition for a polynomial f ∈ Int(D ) to be

absolutely irreducible. In addition, we show that our criterion is necessary and

sufficient in the special case of polynomials in Int(D ) with square-free denomina-

tor.
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Preface

This publication-based doctoral thesis consists of three articles by the author. The

first two articles were published in mathematical journals, and the third article is

accepted for publication. The thesis has four main chapters: the first chapter is

an introduction to the topic of the thesis, and the three subsequent chapters are

each a reprint of an article. After the main chapters, there is an appendix which

contains necessary factorization terms and results that are referred to in the sec-

ond main chapter. The articles are in the same order as they appear in the list of

publications that follows this preface. The fourth article in the list of publications

is not part of this thesis.
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1. Introduction

By a factorization we mean an expression of an element of a ring as a product

of irreducible elements. It is known that in a Noetherian domain, every non-zero

non-unit has a factorization. In fact, this is the case in every domain which sat-

isfies the ascending chain condition on principal ideals (in short ACCP), see for

instance [36, Proposition 1.1.4]. However, in many such domains (called atomic

domains), some elements have more than one factorization. A domain in which

every non-zero non-unit has a unique factorization (up to multiplication by a unit

and ordering) is called a unique factorization domain (or, a factorial domain). In-

terestingly, the factorization behaviour of a ring gives information about its arith-

metic and algebraic properties. In fact, one of the aims of factorization theory is to

characterize arithmetical and algebraic properties of algebraic structures in terms

of factorization properties. More generally, factorization theory involves investigat-

ing phenomena related to non-uniqueness of factorizations in algebraic structures.

Factorization theory originated from algebraic number theory. In the initial at-

tempts to solve Fermat’s Last Theorem, the mathematicians in the 19th century,

pioneered by Ernst E. Kummer, discovered that not every ring of integers, OK , of

a number field K is a unique factorization domain, cf. [50, p. 19]. It was proved

that OK is a unique factorization domain if and only if the class number of K is 1,

that is, if and only if all the ideals of OK are principal. Note that the mathemati-

cians in the 19th century did not immediately study the details of non-uniqueness

of factorizations. They instead devised means to avoid it and this led to Richard

Dedekind’s definition of ideals. They later discovered that although unique factor-

ization of elements fails in OK , the ring OK has unique factorization of ideals into

prime ideals. They sought comfort in this and avoided non-unique factorizations

of elements.

A renewed interest in non-unique factorizations of elements was sparked off by

Carlitz [22]. First recall that the number of irreducible factors in a factorization is

called the length of that factorization. Carlitz [22] showed that for every non-zero

non-unit a ∈OK , the factorizations of a have the same length if and only if K has

class number at most 2. Carlitz’s result motivated Narkiewicz to further investi-

gate non-unique factorizations in the rings OK , introducing the notion of blocks,

cf. [48, Chapter 9]. Narkiewicz’s work is considered as the starting point of the the-

1



1. Introduction

ory of non-unique factorizations. Several researchers, notably, Franz Halter-Koch,

further investigated the factorization properties of algebraic integers motivated by

the problems Narkiewicz [48] raised, cf. [42].

Zaks [60] called the domains D in which for every non-zero non-unit a ∈ D , the

factorizations of a have the same length, half-factorial (in short HFD). He further

investigated half-factorial domains and gave several examples of such domains,

cf. [61]. He also showed in the same paper that if R is a Krull domain, then the

polynomial ring R [x ] is half factorial if and only if the class group of R is either

{1} or Z/2Z. Note the similarity with Carlitz’s result. Zaks also sought to answer

some problems raised by Narkiewicz [49]. Several researchers have since then in-

vestigated half-factorial domains, cf. [23] for a survey.

Factorization theory was further extended to general integral domains by notably,

D. D. Anderson, David F. Anderson, Scott T. Chapman, William W. Smith and

Muhammad Zafrullah, and it caught a lot of attention in the 1990s, see for in-

stance [3, 4, 2, 9, 10, 26, 27]. A crucial paper in this development was [3] in which

D. Anderson, F. Anderson, and Zafrullah introduced and studied finite conditions

on the non-unique factorization domains which are not half-factorial. In particu-

lar, they introduced the notions of bounded factorization domains and finite fac-

torization domains, and characterized such domains. First recall that the set of

lengths, L (r ), of a non-zero non-unit r ∈ D , is the set of all natural numbers n

such that r has a factorization of length n in D . In [3], D. Anderson, F. Ander-

son, and Zafrullah defined a bounded factorization domain (in short BFD) as an

atomic domain in which the set of lengths L (r ) is finite for all r ∈D . They called

an atomic domain D a finite factorization domain (in short FFD) if every non-zero

non-unit a ∈ D has a finite number of factorizations. It is clear that every finite

factorization domain is a bounded factorization domain. A common chart of im-

plications is Figure 1.1 whose implications again first appeared in D. Anderson,

F. Anderson, and Zafrullah’s paper [3].

HFD

UFD BFD ACCP Atomic

FFD

Figure 1.1: Interdependence of factorization properties
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In the same spirit as [3], Halter-Koch [41] studied finite conditions on non-unique

factorizations in the setting of monoids. He introduced notions of BF-monoids

and FF-monoids analogous to BFD and FFD respectively. Note that the non-zero

elements of a ring form a multiplicative monoid. In fact, Halter-Koch [41] calls an

integral domain D atomic (a BFD, an FFD) if and only if the multiplicative monoid

D \{0} is atomic (a BF-monoid, an FF-monoid). In general, any factorization prop-

erty of an integral domain D can be seen by looking at the multiplicative monoid

D \{0}. This observation was mainly by Alfred Geroldinger and Franz Halter-Koch.

Another important observation was that some arithmetic properties and factor-

ization properties of integral domains can be studied from suitably constructed

monoids and then transferred back to the domain. This approach was sparked

off by Geroldinger and Halter-Koch’s notion of divisor homomorphisms in [35].
Halter-Koch [40] further introduced the concept of transfer homomorphisms and

proved that these preserve sets of lengths. The monoids which have been widely

utilized in the transfer approach are the block monoids (or, monoids of zero-

sum sequences). We define these in Appendix A and refer to the monograph

by Geroldinger and Halter-Koch [36] for details. In fact, almost everything you

need to know about factorization theory can be found in their monograph [36].
It should be mentioned that the monograph [36] has had a tremendous impact on

the spread of factorization theory.

Several objects of non-unique factorizations have been studied, for instance, elas-

ticity, sets and distances of lengths, and catenary degree, cf. [36]. Recall that the

elasticity of an element r ∈D (where D in a BFD) is ρ(r ) = max(L (r ))
min(L (r )) , and the elas-

ticity of D is ρ(D ) = sup{ρ(r ) | r ∈ D \ {0}}. Like the class group is known to

measure how far a ring OK is from being a unique factorization domain, elastic-

ity measures how far a domain is from being half-factorial. In particular, an in-

tegral domain (monoid) is half-factorial if and only if its elasticity is 1. The rings

of integer-valued polynomials that we study in this thesis have infinite elasticity.

See [8] for a survey on early work on elasticity of integral domains. A crucial ob-

ject of study in factorization theory is the set of lengths of a fixed element, cf. [34]
for a survey. The sets of lengths in a domain D tell us how bad the factorization

behaviour of D is, and from them we can deduce other objects of non-unique fac-

torizations like elasticity and catenary degree. Chapter 2 of this thesis focuses on

sets of lengths, we shall elaborate on this later in this introduction.

Factorization theory is now an independent area of algebra and it has also

3



1. Introduction

branched out to several subareas, for instance, see the survey article [58] for fac-

torization theory in non-commutative rings, and [6, 7, 1] for factorization theory

in rings with zero-divisors. Here we restrict ourselves to factorization theory in in-

tegral domains. First note that the study of non-unique factorizations has mainly

been in Krull domains but it has now gained attention in polynomial rings. Our

focus here is on the rings of integer-valued polynomials. In fact we are ready to

give a review of non-unique factorizations in rings of integer-valued polynomials.

Let D be a domain with quotient field K . The ring of integer-valued polynomials

on D , denoted Int(D ), consists of polynomials in K [x ] which map D to D . That

is,

Int(D ) = { f ∈ K [x ] | f (D )⊆D }.

It is well known that the ring Int(D ) is in general not a unique factorization do-

main. In fact, non-unique factorizations have been intensively investigated in

Int(Z) = { f ∈Q[x ] | f (Z)⊆Z}.

In this thesis, we investigate non-unique factorizations in Int(D ) when D is a

Dedekind domain. We first give a brief history of integer-valued polynomials.

It is well known that for n ∈N, the binomial polynomial

�

x

n

�

=
x (x −1)(x −2) · · · (x −n +1)

n !

is integer-valued on Z. Actually, these form a regular basis of Int(Z) as a Z-module,

moreover, they are irreducible in Int(Z), cf. [18]. However, the binomial polyno-

mials were first used for polynomial interpolation as early as the 17th century. It

was in 1919 that Pólya [53] introduced the concept of integer-valued polynomials.

Pólya [53] sought to generalize his observation that the binomial polynomials form

a regular basis of Int(Z) as a Z-module. He considered integer-valued polynomials

on the rings of integers, OK , of a number field K and showed that Int(OK ) has a

regular basis whenever K has class number 1. Ostrowski [51] further investigated

regular bases in Int(OK ) motivated by the questions Pólya [53] raised. Pólya and

Ostrowski’s papers, [53] and [51], are considered as the starting point of the theory

of integer-valued polynomials.

Today the theory of integer-valued polynomials is an independent branch of alge-

bra. We refer to the monograph by Cahen and Chabert [18] for a deeper study of

integer-valued polynomials. For a specific study of Int(Z), see [19]. Note that there

4



are now several generalizations of Int(D ), for instance, integer-valued polynomials

on subsets, cf. [16, 20] and [18, Chapter IV], integer-valued polynomials on alge-

bras, cf. [30, 59], and integer-valued polynomials in several indeterminates, cf. [18,

Chapter XI]. However, in this thesis, we restrict ourselves to Int(D ).

The ring Int(D ) is known to provide friendly counter examples, for instance, Int(Z)
is a natural example of a non-Noetherian ring. More generally, if D is Noetherian

and one dimensional or if D is Noetherian and integrally closed, then Int(D ) is

Noetherian if and only if Int(D ) =D [x ], cf. [18, Corollary VI.2.6]. Recall that in our

case D is Dedekind, therefore our rings Int(D ) 6=D [x ] in the subsequent chapters,

are not Noetherian. However, our focus is on the failure of uniqueness of factor-

ization of elements in our rings Int(D ). In fact, let us review factorization theory

in Int(D ) for an arbitrary domain D .

The study of the factorization properties of Int(D ) begun in [17] and since then

several researchers have investigated factorizations in Int(D ), see for example [11]
[12], [25], [29], [32] and [52]. The monograph by Cahen and Chabert [18] sum-

marised the early work on the factorization properties of Int(D ) and the proper-

ties we mention without reference can be found there in Chapter VI. Let us review

some of these properties. First recall that D (D [x ] ⊆ Int(D ) ⊆ K [x ]. Furthermore,

the units of Int(D ) are the units of D , and an element of D is irreducible in Int(D )
if and only if it is irreducible in D . It then follows that if D is not a unique factor-

ization domain (not an atomic domain), then Int(D ) is also not a unique factor-

ization domain (not an atomic domain). However, if D is a unique factorization

domain (an atomic domain), Int(D ) is not necessarily a unique factorization do-

main (an atomic domain). For instance, it is well known that Int(Z) is not a unique

factorization domain. For atomicity, using Rotman’s characterization [55, Proposi-

tion 1.1], one can construct an atomic domain D such that Int(D ) = D [x ] is not

atomic. Although the atomicity of D does not imply that of Int(D ), the ring Int(D )
satisfies the ascending chain condition on principal ideals (in short ACCP) if and

only if D satisfies ACCP. Therefore, if D satisfies ACCP, then Int(D ) is atomic.

Several objects of non-unique factorizations have been studied in Int(D ). Cahen

and Chabert [17, 18] studied elasticity in Int(D ) and showed that Int(D ) has in-

finite elasticity whenever D is a one dimensional Noetherian domain with finite

residue fields. To date there is no known example of a ring Int(D ) 6= D [x ] with

finite elasticity. They further showed that if D is an infinite domain, then Int(D )
is a BFD if and only if D is a BFD. This was first shown by D. Anderson, F. An-

5



1. Introduction

derson, and Zafrullah [5]. Note that in the subsequent chapters, D is a Dedekind

domain with finite residue fields. This implies that in our case, Int(D ) is atomic, a

BFD (since D is a BFD, see [3]), and has infinite elasticity. Furthermore, Frisch [29]
showed that Int(Z) is a finite factorization domain.

Like earlier mentioned, sets of lengths is an important object of study in factor-

ization theory. However, sets of lengths had not been studied in Int(D ). It is only

recently that Frisch [29] studied sets of lengths in Int(Z) and this described the

factorization behavior of Int(Z). In particular, Frisch [29] showed that every finite

set of natural numbers not containing 1 occurs as the set of lengths of a polyno-

mial in Int(Z). Similar results concerning sets of lengths have been obtained using

transfer homomorphisms to block monoids, see for example [44]. Frisch [29] also

showed that there is no transfer homomorphism to a block monoid from the mul-

tiplicative monoid of Int(Z). This added Int(Z) to the small list of naturally occur-

ring rings whose multiplicative monoids do not admit transfer homomorphisms to

block monoids cf. [28, 37, 38]. These results in [29] motivated our work in Chapter

2. Together with Sophie Frisch and Roswitha Rissner, we showed that every finite

set of natural numbers not containing 1 occurs as the set of lengths of a polyno-

mial in Int(D ), where D is a Dedekind domain with infinitely many maximal ide-

als, all of finite index. We further showed that there is no transfer homomorphism

to a block monoid from the multiplicative monoid of Int(D ).

To fully understand the factorization behaviour of rings with non-unique factor-

izations, it is important to identify the irreducible elements. Several researchers

have indeed investigated the irreducible elements of Int(D ), see for example [12,

17, 25, 52]. In fact, Chapman and McClain’s [25] characterization of the irreducible

elements of Int(D ) where D is a unique factorization domain, was instrumental in

studying the sets of lengths in Int(Z). Recently, together with Antoniou and Riss-

ner [12], we obtained a computational characterization of the irreducible elements

of Int(Z) and this was crucial for the kickoff of the work in Chapter 3. Note that

our computational characterization in [12] was motivated by Peruginelli’s [52] al-

gorithmic irreducibility criterion.

The factorization behaviour of Int(Z) is now fully understood in the case of square-

free factorizations. However, for the non square-free factorizations, nothing is

known. This is because all the investigations on the irreducible elements of Int(D )
have been on general irreducible elements. There are certain irreducible elements

some of whose powers allow several essentially different factorizations into irre-

6



ducibles. These are called non-absolutely irreducibles and their counterparts are

called absolutely irreducible. That is, an irreducible element r is called absolutely

irreducible if for all natural numbers n > 1, each power of r , r n , has essentially

only one factorization, namely r n = r · · · r . The absolutely irreducible elements

have also been called strong atoms and completely irreducible.

Several researchers have investigated absolutely irreducible elements especially in

the ring OK of integers in a number field K , see for instance [13, 24, 36, 43]. Kac-

zorowski studied the absolutely irreducible elements of OK so as to characterize

the number fields with cyclic class group, cf [43]. Actually, the concept of abso-

lutely irreducible elements first appeared in his paper [43] in which he called these

completely irreducible. Recently, Chapman and Krause [24] showed that OK is a

unique factorization domain if and only if every irreducible element is absolutely

irreducible. The study of the absolutely irreducible and non-absolutely irreducible

elements of Int(D ) has started with the work in Chapters 3 and 4. Now since every

prime element is absolutely irreducible, it follows that OK contains absolutely irre-

ducible elements even when it is a non-unique factorization domain. Similarly, our

non-unique factorization domains Int(D ) in Chapters 3 and 4 have both absolutely

irreducible elements (because of unique factorization in K [x ]) and non-absolutely

irreducible elements.

Like earlier mentioned, the researchers who have studied factorizations in Int(D )
have mostly been considering square-free factorizations. For instance, the factor-

izations used to realize the main results on sets of lengths in [29] and [32] were

all square-free. It is not known whether Int(D ) in those cases exhibits similar be-

havior for non-square-free factorizations. More generally, nothing is known about

patterns of factorizations in Int(D ). This was the motivation for the work in Chap-

ters 3 and 4.

In Chapter 3, we construct non-absolutely irreducible elements in Int(Z), and give

generalizations of these constructions. In Chapter 4, we give a graph-theoretic suf-

ficient condition for a polynomial f ∈ Int(D ) to be absolutely irreducible, when

D is a principal ideal domain. Furthermore, we show that our criterion is nec-

essary and sufficient in the special case of polynomials in Int(D ) with square-free

denominator. The work in both Chapters 3 and 4 serve as a cornerstone for study-

ing patterns of factorizations in Int(D ). Furthermore, they lay a foundation for a

complete characterization of the absolutely irreducible elements of Int(Z).

Next is Chapter 2 in which we study sets of lengths in Int(D ), when D is a

7



1. Introduction

Dedekind domain with infinitely many maximal ideals, all of finite index. In par-

ticular, we show that every finite set of natural numbers not containing 1 occurs

as the set of lengths of a polynomial in Int(D ), cf. Theorem 2.4.1. We also show

that there is no transfer homomorphism to a block monoid from the multiplicative

monoid of Int(D ), cf. Theorem 2.5.1.

For completeness, we define the notions of a block monoid, transfer homomor-

phism and related terms in Appendix A, immediately after Chapter 4. The Ap-

pendix also contains results from [36] that we refer to in Section 2.5 of Chapter 2.

8



2. Sets of lengths of factorizations

of integer-valued polynomials on

Dedekind domains with finite residue

fields

This chapter consists of article [32] titled, “Sets of lengths of factorizations of

integer-valued polynomials on Dedekind domains with finite residue fields”.

The article appeared in the Journal of Algebra in June 2019 and it is joint work

with Sophie Frisch and Roswitha Rissner. The factorization terms in Section 2.5

originally referred to [36], can be found in Appendix A.

Abstract

Let D be a Dedekind domain with infinitely many maximal ideals, all of finite in-

dex, and K its quotient field. Let Int(D ) = { f ∈ K [x ] | f (D ) ⊆ D } be the ring of

integer-valued polynomials on D . Given any finite multiset {k1, . . . , kn} of integers

greater than 1, we construct a polynomial in Int(D ) which has exactly n essentially

different factorizations into irreducibles in Int(D ), the lengths of these factoriza-

tions being k1, . . . , kn . We also show that there is no transfer homomorphism from

the multiplicative monoid of Int(D ) to a block monoid.

Keywords: Factorizations, sets of lengths, integer-valued polynomials, Dedekind

domains, block monoid, transfer homomorphism, Krull monoid

2010 Mathematics Subject Classification: 13A05, 13B25, 13F20, 11R04, 11C08

2.1. Introduction

By factorization we mean an expression of an element of a ring as a product of

irreducible elements. Until not so long ago, the fact that such a factorization, if

it exists, need not be unique, was seen as a pathology. When mathematicians

were shocked to find that uniqueness of factorization does not hold in rings of

integers in number fields, they did not immediately study the details of this non-

9
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uniqueness, but moved on to unique factorization of ideals into prime ideals.

Non-uniqueness of factorization was avoided, whenever possible.

Only in the last few decades, some mathematicians, notably Geroldinger and

Halter-Koch [36], came around to the view that the precise details of non-

uniqueness of factorization actually are a fascinating topic: the underlying phe-

nomena give a lot of information about the arithmetic of a ring.

One important object of study is the set of lengths of factorizations of a fixed el-

ement, cf. [34]. The length of a factorization is the number of irreducible factors,

and the set of lengths of an element is the set of all natural numbers that occur as

lengths of factorizations of the element. Geroldinger and Halter-Koch [36] found

that the sets of lengths of algebraic integers exhibit a certain structure.

In stark contrast to this, we show in Section 2.4 that every finite set of natural

numbers not containing 1 occurs as the set of lengths of a polynomial in the ring

of integer-valued polynomials on D ,

Int(D ) = { f ∈ K [x ] | f (D )⊆D },

where D is a Dedekind domain with infinitely many maximal ideals, all of them

of finite index, and K denotes the quotient field of D . The special case of D = Z
has been shown by Frisch [29].

The study of non-uniqueness of factorization has mostly concentrated on Krull

monoids so far. Krull monoids are characterized by having a “divisor theory”. The

multiplicative monoid D \ {0} of an integral domain D is Krull exactly if D is a

Krull ring, cf. [36].

The rings Int(D ) for which we study non-uniqueness of factorization are not Krull,

but Prüfer, cf. [21, 45]. All factorizations of a single polynomial in Int(D ), however,

take place in a Krull monoid, namely, in the divisor-closed submonoid of Int(D )
generated by f .

Following Reinhart [54], we call this monoid, consisting of all divisors in Int(D )
of all powers of f , the monadic submonoid generated by f . That all monadic sub-

monoids of Int(D ) are Krull was shown by Reinhart [54] in the case where D is a

unique factorization domain, and, by a different method, by Frisch [33] in the case

where D is a Krull ring. Thus, our Theorem 2.4.1, concerning non-unique factor-

ization in the Prüfer ring Int(D ), also serves to show that quite wild factorization

behavior is possible in Krull monoids.

10



2.2. Preliminaries

Among Krull monoids, the best studied ones are multiplicative monoids of rings

of algebraic integers. We should keep in mind, however, that the multiplicative

monoids of rings of algebraic integers are very special, in that unique factorization

of ideals always lurks in the background. In technical terms this means that there

is a transfer homomorphism to a block monoid.

In Section 2.5, we show that there is no transfer homomorphism to a block

monoid from the multiplicative monoid of Int(D ). This is relevant for two rea-

sons: Firstly, because the rings of whose multiplicative monoid it is known that it

does not admit such a transfer homomorphism are few and far between, see [28,

37, 38]; and secondly, because most, if not all, results so far concerning arbitrary

finite sets occurring as sets of lengths have been obtained using transfer homo-

morphisms to block monoids [44].

Our main results are in Sections 2.4 and 2.5; in Section 2.2 we introduce the nec-

essary notation and Section 2.3 contains some useful lemmas.

2.2. Preliminaries

We start with a short review of some elementary facts on factorizations, Dedekind

domains and integer-valued polynomials, and introduce some notation.

Factorizations

We define here only the notions that we need throughout this paper, and refer to

the monograph by Geroldinger and Halter-Koch [36] for a systematic introduction

to non-unique factorizations.

Let R be a commutative ring with identity and r , s ∈R .

(i) If r is a non-zero non-unit, we say r is irreducible in R if it cannot be written

as the product of two non-units of R .

(ii) A factorization of r in R is an expression

r = a1 · · ·an (2.2.1)

where n ≥ 1 and ai is irreducible in R for 1≤ i ≤ n .

(iii) The number n of irreducible factors is called the length of the factorization

in (2.2.1).

11
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(iv) The set of lengths of r is the set of all natural numbers n such that r has a

factorization of length n .

(v) We say r and s are associated in R if there exists a unit u ∈ R such that

r = u s . We denote this by r ∼ s .

(vi) Two factorizations of the same element,

r = a1 · · ·an = b1 · · ·bm , (2.2.2)

are called essentially the same if n =m and, after reindexing, a j ∼ b j for 1 ≤
j ≤m . If this is not the case, the factorizations in (2.2.2) are called essentially

different.

Dedekind domains

Recall that an integral domain D is a Dedekind domain if and only if every non-

zero ideal is a product of prime ideals. This is equivalent to every non-zero ideal

being invertible. It is also equivalent to D being a Noetherian domain such that

the localization at every non-zero maximal ideal is a discrete valuation domain.

And it is further equivalent to the following list of properties

(i) D is Noetherian

(ii) D is integrally closed

(iii) dim(D )≤ 1

From now on, we only consider Dedekind domains that are not fields. For a

Dedekind domain D with quotient field K , let max-spec(D ) denote the set of max-

imal ideals of D . Every prime ideal P ∈max-spec(D ) defines a discrete valuation

vP by vP (a ) =max{n ∈ Z | a ∈ P n} for a ∈ K \ {0}. vP is called the P -adic valuation

on K .

For a non-zero ideal I of D , let vP (I ) =min{vP (a ) | a ∈ I }. This is compatible with

the definition of vP (a ) for a ∈ K \ {0}, in the sense that vP (a D ) = vP (a ). With this

notation, the factorization of I into prime ideals is

I =
∏

P∈max-spec(D )

P vP (I ) (2.2.3)

Note that vP (I ) > 0 is equivalent to I ⊆ P . There are only finitely many prime

overideals of I in D and hence the product in Equation (2.2.3) is finite.

12
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For two ideals I and J of D , I ⊆ J is equivalent to vP (J ) ≤ vP (I ) for all P ∈
max-spec(D ). Note that I ⊆ J is equivalent to the fact that there exists an ideal

L of D such that J L = I , in which case we say that J divides I and write J | I .

This last equivalence is often summarized as “to contain is to divide.”

For a thorough introduction to Dedekind domains, we refer to Bourbaki [15,

Ch. VII, § 2].

Dedekind domains with finite residue fields

Let D be a Dedekind domain. For a maximal ideal P with finite residue field we

write ‖P ‖ for |D /P | and call this number the index of P . In what follows we will

only consider Dedekind rings with infinitely many maximal ideals, all of whose

residue fields are finite. We will frequently use the fact that there are only finitely

many maximal ideals of each individual finite index. This holds in every Noethe-

rian domain, as Samuel [57] has shown; see also Gilmer [39].

We include a short proof by F. Halter-Koch for the special case of Dedekind do-

mains.

Proposition 2.2.1. [Samuel [57], Gilmer [39]] Let D be a Dedekind domain. Then

for each given q ∈N, there are at most finitely many maximal ideals P of D with

‖P ‖= q .

Proof (Halter-Koch, personal communication). Suppose that for some q ≥ 2 there

exist infinitely many prime ideals of index q , and let 0 6= a ∈ D . Then there exist

infinitely many prime ideals P of D such that ‖P ‖ = q and a /∈ P . For each such

prime ideal P we obtain a q−1 ≡ 1 mod P , hence a q−1−1 ∈ P and thus a q−1 = 1. So,

every non-zero element of D is a (q −1)-st root of unity. Impossible!

Integer-valued polynomials

If D is a domain with quotient field K , the ring of integer-valued polynomials on

D is defined as

Int(D ) = { f ∈ K [x ] | f (D )⊆D }.

Every non-zero f ∈ K [x ] can be written as a quotient f = g
b where g ∈ D [x ] and

b ∈ D \ {0}. Clearly, f = g
b is an element of Int(D ) if and only if b | g (a ) for all

a ∈D .

Definition 2.2.2. Let D be a domain and g ∈ Int(D ). The fixed divisor of g is the

13
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ideal d(g ) of D generated by the elements g (a ) with a ∈D :

d(g ) = (g (a ) | a ∈D )

We say that g is image primitive if d(g ) = D . By abuse of notation, this is also

denoted d(g ) = 1.

Remark 2.2.3. Let D be a domain and K its quotient field.

(i) If g ∈ D [x ] and b ∈ D \ {0}, then g
b is an element of Int(D ) if and only if

d(g )⊆ b D .

(ii) If g ∈ D [x ] and P a prime ideal of D such that d(g ) ⊆ P then g ∈ P [x ] or

[D : P ]≤ deg(g ).

(iii) If f , g ∈ Int(D ), then d( f g )⊆ d( f )d(g ).

(iv) If g ∈D [x ] is irreducible in K [x ], then every factorization of g in Int(D ) as a

product of two (not necessarily irreducible) elements is of the form c g
c with

c ∈D and d(g )⊆ c D .

(v) If g ∈D [x ] is irreducible in K [x ] and d(g ) =D , then g is irreducible in Int(D ).

For a general introduction to integer-valued polynomials we refer to the mono-

graph by Cahen and Chabert [18] and to their more recent survey paper [19].

2.3. Auxiliary results

In this section we develop tools to construct, first, split polynomials in D [x ] with

prescribed fixed divisor (Lemma 2.3.2), then, irreducible polynomials in D [x ] with

prescribed fixed divisor (Lemma 2.3.3), and, finally, polynomials of a special form

whose essentially different factorizations in Int(D ) we have complete control over

(Lemma 2.3.8).

Remark 2.3.1. In the following, we want to consider the multiplicity of roots of

polynomials. For this purpose, we introduce some notation for multisets. Let

mS (a ) denote the multiplicity of an element a in a multiset S (with mS (a ) = 0 if

a /∈ S ). For multisets S and T , let S ]T denote the collection of elements a in the

union of the sets underlying S and T with multiplicities mS]T (a ) =mS (a ) +mT (a )
(the disjoint union of S and T ). Note that |S ]T |= |S |+ |T |.
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2.3. Auxiliary results

Lemma 2.3.2. Let D be a domain, T ⊆ D a finite multiset and f =
∏

r∈T (x − r ).
If Q is a non-zero prime ideal of D , then d( f ) ⊆Q if and only if T contains a

complete system of residues modulo Q .

Furthermore, if D is a Dedekind domain and T = T0 ]
⊎e

i=1Ti such that:

(i) For all 1 ≤ i ≤ e , Ti is a complete system of residues modulo Q and the

respective representatives of the same residue class in each Ti are congruent

modulo Q 2,

(ii) There exists z ∈D such that for all s ∈ T0, s 6≡ z mod Q ,

then vQ (d( f )) = e .

Proof. If T does not contain a complete system of residues modulo Q , then there

exists an element a ∈D such that a 6≡ r mod Q for all r ∈ T . This implies f (a ) =
∏

r∈T (a − r ) 6∈Q , hence d( f )*Q .

Conversely, if T contains a complete system of residues modulo Q then, for all a ∈
D , there exists r ∈ T such that a ≡ r mod Q . This implies f (a ) =

∏

r∈T (a − r ) ∈Q

for all a ∈D and hence d( f )⊆Q .

Now assume that D is a Dedekind domain and T =
⊎e

i=1Ti ] T0 such that (i) and

(ii) hold. If fi =
∏

r∈Ti
(x − r ) for 1≤ i ≤ e and g =

∏

s∈T0
(x − s ), then f =

�∏e
i=1 fi

�

g .

Since Ti is a complete system of residues modulo Q , it follows that vQ ( fi (a )) ≥ 1

for all a ∈D . Therefore, for all a ∈D ,

vQ ( f (a )) =
e
∑

i=1

vQ ( fi (a ))+ vQ (g (a ))≥ e (2.3.1)

For 1≤ i ≤ e , let ai ∈ Ti with ai ≡ z mod Q . Since the elements ai are in the same

residue class modulo Q 2, there exists d ∈ D in the same residue class modulo Q

as z and all the ai , but in a different residue class modulo Q 2 from all the ai .

For such a d , then vQ ( fi (d )) = 1 for all 1≤ i ≤ e and vQ (g (d )) = 0, since for all s ∈ T0,

s 6≡ z ≡ d mod Q . Therefore

vQ ( f (d )) =
e
∑

i=1

vQ ( fi (d ))+ vQ (g (d )) = e

which implies that vQ (d( f )) = e .

Next, we need to discuss how to replace split monic polynomials in D [x ] by monic

polynomials in D [x ] which are irreducible in K [x ], without changing the fixed di-

visors.
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Lemma 2.3.3. Let D be a Dedekind domain with infinitely many maximal ideals

and K its quotient field. Let I 6= ; be a finite set and fi ∈D [x ] be monic polyno-

mials for i ∈ I .

Then, there exist monic polynomials Fi ∈D [x ] for i ∈ I , such that

(i) deg(Fi ) = deg( fi ) for all i ∈ I ,

(ii) the polynomials Fi are irreducible in K [x ] and pairwise non-associated in

K [x ] and

(iii) for all subsets J ⊆ I and all partitions J = J1 ] J2,

d

 

∏

j∈J1

f j

∏

j∈J2

Fj

!

= d

 

∏

j∈J

f j

!

.

Proof. Let P1, . . . , Pn be all maximal ideals P of D with ‖P ‖ ≤ deg
�∏

i∈I fi

�

. Suppose

the prime factorization of the fixed divisor of the product of the fi is

d

�

∏

i∈I

fi

�

=
n
∏

j=1

P
e j

j .

Let Q ∈max-spec(D ) \ {P1, . . . , Pn}. Using the Chinese Remainder Theorem, we add

elements to the coefficients of the fi such that the resulting polynomials can be

seen to be irreducible according to Eisenstein’s irreducibility criterion with respect

to Q , while retaining all relevant properties with respect to sufficiently high powers

of the Pi .

Let fi k denote the coefficient of x k in fi . For i ∈ I and 0 ≤ k < deg( fi ), let g i k ∈D

such that

(i) g i k ∈
∏n

j=1 P
e j+1

j for all 0≤ k < deg( fi ).

(ii) g i k ≡− fi k mod Q for all 0≤ k < deg( fi ) and

(iii) g i 0 6≡ − fi 0 mod Q 2.

Since the g i k satisfying the above conditions are only determined modulo

Q 2
∏n

i=1 P ei+1
i , there are infinitely many choices for each g i k . We use this flexibility

to implement that g i 0+ fi 0 6= g j 0+ f j 0 for i 6= j . Then, for i ∈ I , we set

Fi = fi +
deg( fi )−1
∑

k=0

g i k x k .
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As the resulting Fi are monic and distinct, they are pairwise non-associated in

K [x ].

According to Eisenstein’s irreducibility criterion, the polynomials Fi are irreducible

in D [x ] for i ∈ I , cf. [46, §29, Lemma 1]. Since the Fi are monic and D is integrally

closed, it follows that the Fi are irreducible in K [x ] for all i ∈ I , cf. [15, Ch. 5, §1.3,

Prop. 11].

By construction,

Fi ≡ fi mod

 

n
∏

j=1

P
e j+1

j

!

D [x ]

for all i ∈ I . Now, if g (x ) is the product of any selection of the polynomials fi , and

G (x ) the modified product in which some of the fi have been replaced by Fi , then

g (x ) is congruent to G (x ) modulo
�

∏n
j=1 P

e j+1
j

�

D [x ].

Hence, for all a ∈D , g (a )≡G (a ) modulo
�

∏n
j=1 P

e j+1
j

�

and, therefore,

min
a∈D

vP (G (a )) =min
a∈D

vP (g (a ))

for all P that could conceivably divide the fixed divisor of G (x ) or g (x ) by Re-

mark 2.2.3.(ii). This implies the last assertion of the Lemma, to the effect that

substituting Fi for some or all of the fi does not change the fixed divisor of a prod-

uct.

Finally, the last two lemmas enable us to understand all essentially different fac-

torizations of a certain type of polynomials in Int(D ).

Lemma 2.3.4. Let D be a Dedekind domain with quotient field K and f ∈ Int(D )
of the following form:

f =

∏

i∈I fi

c
wi t h d

�

∏

i∈I

fi

�

= c D ,

where c is a non-unit of D and for each i ∈ I , fi ∈D [x ] is irreducible in K [x ].

Let P ⊆max-spec(D ) be the finite set of prime ideal divisors of c D . If f = g1 · · ·gm

is a factorization of f into (not necessarily irreducible) non-units in Int(D ) then

each g j is of the form

g j = a j

∏

i∈I j

fi ,

where ; 6= I j ⊆ I and a j ∈ K , such that I1 ] . . .] Im = I , a1 · · ·am = c −1 and

(i) vP (a j )≤ 0 for all P ∈max-spec(D ) and all 1≤ j ≤m; and
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(ii) vP (a j ) = 0 for all P ∈max-spec(D ) \P and all 1≤ j ≤m.

Proof. Let f = g1 · · ·gm be a factorization of f into (not necessarily irreducible)

non-units in Int(D ). Since d( f ) = 1, no g i is a constant, by Remark 2.2.3.(iv). Each

factor g j is, therefore, of the form

g j = a j

∏

i∈I j

fi (2.3.2)

where I j is a non-empty subset of I and a j ∈ K , such that I1 ] . . . ] Im = I and

a1 · · ·am = c −1. Note that for all P ∈max-spec(D )

m
∑

j=1

vP (a j ) =−vP (c ). (2.3.3)

Suppose vP (at ) > 0 for some maximal ideal P and some 1 ≤ t ≤ m . Then
∑

j 6=t vP (a j )<−vP (c ).

Remark 2.2.3.(iii) and the fact that vP

�

d
�∏

i∈I fi

��

= vP (c ) imply

vP

�

d

�

∏

j 6=t

∏

i∈I j
fi

��

≤ vP (c ). But now

vP

 

d

 

∏

j 6=t

g j

!!

= vP

 

d

 

∏

j 6=t

∏

i∈I j

fi

!!

+
∑

j 6=t

vP (a j )< 0,

which means that
∏

j 6=t

g j /∈ Int(D ),

a contradiction. We have established that vP (a j ) ≤ 0 for all P ∈max-spec(D ) and

all 1 ≤ j ≤m . Now Equation (2.3.3) and the fact that vP (c ) = 0 for all P /∈ P imply

vP (a j ) = 0 for all P /∈P and all 1≤ j ≤m .

Definition 2.3.5. Let D be a Dedekind domain, fi ∈D [x ] with i ∈ I for a finite set

I 6= ; and P ⊆max-spec(D ) be the finite set of prime ideal divisors of d
�∏

i∈I fi

�

.

If P ∈P , we say fk is indispensable for P (among the polynomials fi with i ∈ I ) if

for all J ⊆ I

vP

�

d

�

∏

i∈J

fi

��

> 0=⇒ k ∈ J .

Remark 2.3.6. Note that (with the notation of Definition 2.3.5) fk is indispensable

for P ∈ P (among the polynomials fi with i ∈ I ) if and only if there exists an ele-

ment z ∈D such that vP ( fk (z ))> 0 and vP ( fi (z )) = 0 for all i 6= k .
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Remark 2.3.7. For a finite set I 6= ;, let fi and Fi ∈D [x ] with i ∈ I such that for all

J ⊆ I and all partitions J = J1 ] J2

d

 

∏

j∈J1

fi

∏

j∈J2

Fj

!

= d

 

∏

j∈J

fi

!

.

It follows that d
�∏

i∈I fi

�

= d
�∏

i∈I Fi

�

which implies that the fixed divisor of
∏

i∈I fi

and
∏

i∈I Fi have the same set P of prime ideal divisors. Moreover, for all P ∈ P
and all J ⊆ I , it follows that vP

�

d
�∏

i∈J Fi

��

= vP

�

d
�∏

i∈J fi

��

. Hence, for P ∈ P , fk

is indispensable for P (among the polynomials fi with i ∈ I ) if and only if Fk is

indispensable for P (among the polynomials Fi with i ∈ I ). Note that this applies

in particular in the setting of Lemma 2.3.3.

Lemma 2.3.8. Let D be a Dedekind domain with quotient field K and f ∈ Int(D )
of the following form:

f =

∏

i∈I fi

c
wi t h d

�

∏

i∈I

fi

�

= c D ,

where c is a non-unit of D and for each i ∈ I , fi ∈ D [x ] is irreducible in K [x ].
Let P ⊆max-spec(D ) be the finite set of prime ideal divisors of c D .

Suppose, for each P ∈ P , ΛP is a subset of I such that fi is indispensable for P

for each i ∈ΛP . Let Λ=
⋃

P∈P ΛP .

If
⋂

P∈P ΛP 6= ;, then all essentially different factorizations of f into irreducibles in

Int(D ) are given by:
�∏

i∈Λ∪J1
fi

�

c
·
∏

j∈J2

f j

(each f j with j ∈ J2 counted as an individual factor), where I =Λ] J1] J2 such that

J1 is minimal with d
�∏

i∈Λ∪J1
fi

�

= c D .

Proof. Let f = g1 · · ·gm be a factorization of f into (not necessarily irreducible)

non-units in Int(D ). As in Lemma 2.3.4,

g j = a j

∏

i∈I j

fi (2.3.4)

where I j is a non-empty subset of I and a j ∈ K , such that I1 ] . . . ] Im = I and

a1 · · ·am = c −1. Furthermore, vP (a j ) ≤ 0 for all P ∈max-spec(D ) and all 1 ≤ j ≤m

and vP (a j ) = 0 for all P /∈P and all 1≤ j ≤m .
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We know there exists a polynomial fi0
that is indispensable for all P ∈ P .

We may assume that i0 ∈ I1. By the definition of indispensable polynomial,

vP

�

d

�

∏

i∈I j
fi

��

= 0, for 2 ≤ j ≤ m and all P ∈ P . From this and the fact that

g j = a j

∏

i∈I j
fi is in Int(D ), we infer that vP (a j ) = 0 for all 2≤ j ≤m and all P ∈P .

We have shown that a2, . . . , am are units of D .

Now u = a2 · · ·am is a unit of D such that a1u = c −1. Since g1 ∈ Int(D ), we must

have

vP

�

d

�

∏

i∈I1

fi

��

= vP (c )> 0

for all P ∈P and, by Definition 2.3.5, Λ⊆ I1.

So far we have shown that every factorization f = g1 · · ·gm of f into (not necessar-

ily irreducible) non-units of Int(D ) is – up to reordering of factors and multiplica-

tion of factors by units in D – the same as one of the following:

�∏

i∈Λ∪J1
fi

�

c
·

 

∏

j∈I2

f j

!

· · ·

 

∏

j∈Im

f j

!

, (2.3.5)

where I = I1 ] · · · ] Im and I1 =Λ] J1.

It remains to characterize, among the factorizations of the above form, those in

which all factors are irreducible in Int(D ).

Since d( f ) = D , it is clear that d(g j ) = D for all 1 ≤ j ≤ m , by Remark 2.2.3.(iii).

By the same token, d( fi ) = D for all i ∈ I j with j ≥ 2. Since the fi are irre-

ducible in K [x ], those of them with fixed divisor D are irreducible in Int(D ), by

Remark 2.2.3.(v). The criterion for each factor g j =
∏

i∈I j
fi with j ≥ 2 to be irre-

ducible is, therefore, |I j |= 1 for all j ≥ 2.

Now, concerning the irreducibility of g1, the same arguments that lead to Equa-

tion (2.3.5), applied to g1 = c −1
�∏

i∈Λ∪J1
fi

�

instead of f , show that g1 is irreducible

in Int(D ) if and only if we cannot split off any factors fi with i ∈ J1. This is equiva-

lent to d
�∏

i∈Λ∪J fi

�

6= c D for every proper subset J ( J1, in other words, to J1 being

minimal such that

d
�∏

i∈Λ∪J1
fi

�

= c D . In this case we set J2 =
⋃m

j=2 I j and the assertion follows.

Remark 2.3.9. When |P | > 1, the hypothesis
⋂

P∈P ΛP 6= ; in Lemma 2.3.8 can be

replaced by a weaker condition:

Consider the prime ideals P ∈P as vertices of an undirected graph G and let (P,Q )
be an edge of G if and only if there exists a polynomial ft which is indispensable
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2.4. Construction of polynomials with prescribed sets of lengths

for both P and Q . If G is a connected graph, then the conclusion of Lemma 2.3.8

holds. The proof of Lemma 2.3.8 generalizes readily.

2.4. Construction of polynomials with prescribed sets of

lengths

We are now ready to prove the main result of this paper.

Theorem 2.4.1. Let D be a Dedekind domain with infinitely many maximal ideals,

all of them of finite index. Let 1≤m1 ≤m2 ≤ · · · ≤mn be natural numbers.

Then there exists a polynomial H ∈ Int(D ) with exactly n essentially different fac-

torizations into irreducible polynomials in Int(D ), the length of these factorizations

being m1 + 1, . . . , mn +1.

Proof. If n = 1, then H (x ) = x m1+1 ∈ Int(D ) is a polynomial which has exactly one

factorization, and this factorization has length m1+1. From now on, assume n ≥ 2.

First, we construct H (x ). Let N =
�∑n

i=1 mi

�2 −
∑n

i=1 m 2
i and P a prime ideal of D

with ‖P ‖ > N + 1. Let c ∈ D such that vP (c ) = 1 and c is not contained in any

maximal ideal of index 2.

Say the prime factorization of c D is c D = PQ e1
1 · · ·Q

et
t . Let τ= (‖P ‖−N ) and σ the

maximum of the following numbers: τ, and ei‖Qi‖ for 1≤ i ≤ t .

We now choose two subsets of D : a set R of order N , and S = {s0, . . . , sσ−1}. Us-

ing the Chinese Remainder Theorem, we arrange that R and S have the following

properties:

(i) s0 ≡ 0 mod P , and {s0, . . . , sτ−1} ∪R is a complete system of residues modulo

P .

(ii) si ≡ 0 mod P for all i ≥τ.

(iii) For each Qi , S contains ei disjoint complete systems of residues, in which

the respective representatives of the same residue class in different systems

are congruent modulo Q 2
i .

(iv) For each Qi , no more than ei elements of S are congruent to 1 modulo Qi .

(v) For all r ∈R, r ≡ 0 mod
⋂t

i=1 Qi .
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2. Sets of lengths of factorizations of integer-valued polynomials on Dedekind
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(vi) R∪S does not contain a complete system of residues for any prime ideal Q

of D other than P and Q1, . . . ,Qt .

We now assign indices to the elements of R as follows

R= {r(k ,i ,h , j ) | 1≤ k , h ≤ n , k 6= h , 1≤ i ≤mk , 1≤ j ≤mh}.

This allows us to visualize the elements of R as entries in a square matrix B with

m =
∑n

i=1 mi rows and columns, in which the positions in the blocks of a block-

diagonal matrix with block sizes m1, . . . , mn are left empty, see Figure 2.1.

1

n

k

h

m1

mh

mk

mn

B [h , j ]

B [k , i ]r (h , j , k , i )

r (k , i , h , j )

Figure 2.1: Say the k -th region of B consists of the positions with either column index or row

index in the k -th block. Then the union of the entries in any n − 1 different regions covers R.

A union of different B [u , v ], from which B [k , i ] and B [h , j ] for two different blocks k 6= h are

missing, however, does not cover R, because r(k ,i ,h , j ) and r(h , j ,k ,i ) are not included.

The rows and columns of B are divided into n blocks each, such that the k -th

block of rows consists of mk rows, and similarly for columns. Now r(k ,i ,h , j ) desig-

nates the entry in row (k , i ), that is, in the i -th row of the k -th block of rows, and

in column (h , j ), that is, in the j -th column of the h-th block of columns. Since

no element of R has row and column index in the same block, the positions of a

block-diagonal matrix with blocks of sizes m1, . . . , mn are left empty.
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2.4. Construction of polynomials with prescribed sets of lengths

For 1≤ k ≤ n , let Ik = {(k , i ) | 1≤ i ≤mk} and set

I =
n
⋃

k=1

Ik .

Then

I = {(k , i ) | 1≤ k ≤ n , 1≤ i ≤mk}

is the set of all possible row indices, or, equivalently, column indices.

For (k , i ) ∈ Ik , let B [k , i ] be the set of all elements r ∈R which are either in row or

in column (k , i ) of B , that is,

B [k , i ] = {r(k ,i ,h , j ) | (h , j ) ∈ I \ Ik}∪ {r(h , j ,k ,i ) | (h , j ) ∈ I \ Ik} (2.4.1)

In order to construct H ∈ Int(D ), we set s (x ) =
∏σ−1

i=0 (x − si ) and, for (k , i ) ∈ I ,

f (k )i (x ) =
∏

r∈B [k ,i ]

(x − r ).

Then, let S (x ) ∈ D [x ], and, for each (k , i ) ∈ I , F (k )i (x ) ∈ D [x ] be monic polynomi-

als such as we know to exist by Lemma 2.3.3: irreducible in K [x ], pairwise non-

associated in K [x ], with deg(S ) = deg(s ) and deg(F (k )i ) = deg( f (k )i ), and such that,

for every selection of polynomials from among s and f (k )i for (k , i ) ∈ I , the product

of the polynomials has the same fixed divisor as the modified product in which s

has been replaced by S and each f (k )i by F (k )i . Now, let

G (x ) = S (x )
∏

(k ,i )∈I

F (k )i (x ) and H (x ) =
G (x )

c
.

Second, we show that d(G (x )) = c D , which implies H (x ) ∈ Int(D ) and d(H (x )) = 1.

Note that

d(G (x )) = d

�

S (x )
∏

(k ,i )∈I

F (k )i (x )

�

= d

�

s (x )
∏

(k ,i )∈I

f (k )i

�

= d

�

σ−1
∏

i=0

(x − si )
∏

r∈R
(x − r )2

�

.

(2.4.2)

By construction, the multiset R ]R ] S contains a complete system of residues

modulo P , and the residue class modulo P of s1 ∈ S occurs only once among the

elements of R]R] S. Equation (2.4.2) and Lemma 2.3.2, applied to Q = P and

T =R]R]S, e = 1, and z = s1, together imply that

vP

�

d

�

S (x )
∏

(k ,i )∈I

F (k )i (x )

��

= 1
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2. Sets of lengths of factorizations of integer-valued polynomials on Dedekind
domains with finite residue fields

One can argue similarly for Qi , 1≤ i ≤ t : The multiset R]R]S contains ei disjoint

complete systems of residues modulo Qi in which the respective representatives

of the same residue class in different systems are congruent modulo Q 2
i . No more

than ei elements of R]R]S are congruent 1 modulo Qi , and these ei elements

are all in the same residue class modulo Q 2
i . By Lemma 2.3.2, applied to Q =Qi ,

T =R]R]S, e = ei and z = 1, and Equation (2.4.2), it follows that

vQi

�

d

�

S (x )
∏

(k ,i )∈I

F (k )i (x )

��

= ei (2.4.3)

for 1 ≤ i ≤ t . Since R ]R ] S does not contain a complete system of residues

modulo any prime ideal other than P , Q1, . . . , Qt , we conclude (by Lemma 2.3.2)

that

d(G (x )) = d

�

S (x )
∏

(k ,i )∈I

F (k )i (x )

�

= PQ e1
1 · · ·Q

et
t = c D .

This shows H (x ) ∈ Int(D ) and d(H (x )) = 1.

Third, we prove that the essentially different factorizations of H (x ) into irre-

ducibles in Int(D ) are given by:

H (x ) = F (h )1 (x ) · · ·F
(h )

mh
(x ) ·

S (x )
∏

(k ,i )∈I \Ih
F (k )i (x )

c
(2.4.4)

where 1≤ h ≤ n .

It follows from the properties of R and S that the polynomial s (x ) is indispensable

for the prime ideals P and Q1, . . . , Qt (among the polynomials s (x ) and f (k )i for

(k , i ) ∈ I ). This further implies that the polynomial S (x ) is indispensable for the

prime ideals P and Q1, . . . , Qt (among the polynomials S (x ) and F (k )i for (k , i ) ∈ I ),

cf. Remark 2.3.7.

Thus, by Lemma 2.3.8, the essentially different factorizations of H (x ) into irre-

ducibles in Int(D ) are given by:

H (x ) =
S (x )

∏

(k ,i )∈J F (k )i (x )

c

∏

(h , j )∈I \J

F (h )j (x ) (2.4.5)

where J ⊆ I is minimal such that d
�

S (x )
∏

(k ,i )∈J F (k )i (x )
�

= c D .

Since vQi
(d(S (x ))) = ei by Lemma 2.3.2, the possible choices for J ⊆ I only depend

on the prime ideal P . For a subset J ⊆ I , let BJ =
⊎

(k ,i )∈J B [k , i ]. Then

d

�

S (x )
∏

(k ,i )∈J

F (k )i (x )

�

= d

 

∏

r∈S
(x − r )

∏

r∈BJ

(x − r )

!

(2.4.6)
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2.5. Not a transfer Krull domain

and it follows from Lemma 2.3.2 that the fixed divisor in Equation (2.4.6) is equal

c D if and only if S ]BJ contains a complete set of residues modulo P which is

in turn equivalent to R ⊆ BJ . This is the case if and only if there exists 1 ≤ h ≤ n

with I \ Ih ⊆ J .

Therefore, J ⊆ I is minimal with d
�

S (x )
∏

(k ,i )∈J F (k )i (x )
�

= c D if and only if J = I \ Ih

for some 1 ≤ h ≤ n . Hence, the essentially different factorizations of H (x ), given

by Equation (2.4.5), are precisely the n essentially different factorizations stated in

Equation (2.4.4), which are of lengths m1+1, . . . , mn +1.

Corollary 2.4.1. Let D be a Dedekind domain with infinitely many maximal ide-

als, all of them of finite index.

Then every finite subset of N \ {1} is the set of lengths of a polynomial in Int(D ).

Remark 2.4.2. Kainrath [44, Theorem 1] proved a similar result as Corollary 2.4.1

for Krull monoids H with infinite class group in which every divisor class contains

a prime divisor. In his proof, he uses transfer mechanisms.

Corollary 2.5.1 in the following section will show that this technique is not appli-

cable to the proof of either Theorem 2.4.1 or Corollary 2.4.1.

2.5. Not a transfer Krull domain

In this section we show that if D is a Dedekind domain with infinitely many max-

imal ideals, all of finite index, then there does not exist a transfer homomorphism

from the multiplicative monoid Int(D )\{0} to a block monoid. In the terminology

introduced by Geroldinger [34], this means, Int(D ) is not a transfer Krull domain.

We refer to [36, Definitions 2.5.5 & 3.2.1] for the definition of a block monoid and a

transfer homomorphism, respectively. So far, there is only a small list of examples

of naturally occurring rings R for which it has been shown that there is no transfer

homomorphism from R \ {0} to a block monoid, see [28], [37], [38].

In a block monoid, the lengths of factorizations of elements of the form c ·d with

c , d irreducible, c fixed, are bounded by a constant depending only on c , cf. [36,

Lemma 6.4.4]. More generally, every monoid admitting a transfer homomorphism

to a block monoid has this property; see [36, Proposition 3.2.3].

We now demonstrate for the irreducible element c = x in Int(D ) that the lengths

of factorizations of elements of the form c ·d with d irreducible in Int(D ) are not

bounded. We infer from this that there does not exist a transfer homomorphism
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2. Sets of lengths of factorizations of integer-valued polynomials on Dedekind
domains with finite residue fields

from the multiplicative monoid Int(D ) \ {0} to a block monoid.

Theorem 2.5.1. Let D be a Dedekind domain with infinitely many maximal ideals,

all of them of finite index. Then for every n ≥ 1 there exist irreducible elements

H ,G1, . . . ,Gn+1 in Int(D ) such that

x H (x ) =G1(x ) · · ·Gn+1(x ).

Proof. Let P1, . . . , Pn be distinct maximal ideals of D , none of them of index 2. By

vi we denote the discrete valuation associated to Pi . Let c ∈D such that vi (c ) = 1

for i = 1, . . . , n , and c is not contained in any maximal ideal of D of index 2.

Say the prime factorization of c D is c D = P1 · . . . ·Pn ·Q
e1
1 · . . . ·Q em

m , and define

N =max ({‖Pi‖ | 1≤ i ≤ n}∪ {ei‖Qi‖ | 1≤ i ≤m}) .

Let P = {Pi | 1≤ i ≤ n}, P1 = {Qi | 1≤ i ≤m}, and

P2 = {Q ∈max-spec(D ) \ (P ∪P1) | ‖Q‖ ≤N +n}.

Let R be a subset of D of order N with the following properties (which can be

realized by the Chinese Remainder Theorem):

(i) R contains an element r0 ∈
�⋂n

i=1 Pi

�

∩
�⋂m

i=1 Q 2
i

�

.

(ii) No element of R other than r0 is in any Pi ∈P .

(iii) For each Pi ∈P , R contains a complete system of residues modulo Pi .

(iv) For each Qi ∈ P1, R contains ei disjoint complete systems of residues, in

which the respective representatives of the same residue class in different

systems are congruent modulo Q 2
i ;

(v) No more than ei elements of R are in Qi .

(vi) For all Q ∈P2, all elements of R are contained in Q .

We set B =R \ {r0}.

Also, let a1, . . . , an ∈D with the following properties (which, again, can be realized

by the Chinese Remainder Theorem):

(i) For all i = 1, . . . , n , ai ≡ 0 mod Pi .
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2.5. Not a transfer Krull domain

(ii) For all i = 1, . . . , n , ai ≡ 1 mod Pj for all j 6= i .

(iii) For all Q ∈P1, an ≡ 0 mod Q 2 and ai ≡ 1 mod Q for all 1≤ i < n ,

(iv) For all Q ∈P2 and all 1≤ i ≤ n , ai ≡ 0 mod Q .

Let f (x ) =
∏

b∈B(x −b ) and let F (x ) ∈D [x ] be monic and irreducible in K [x ] such

that for every selection of polynomials from the set {x , f }∪{(x −ai ) | 1≤ i ≤ n} the

product of the polynomials has the same fixed divisor as the modified product in

which f has been replaced by F , as in Lemma 2.3.3.

Lemmas 2.3.3 and 2.3.2, applied to T =B∪{a1, . . . , an} and each of the prime ideals

in P ∪P1, imply that

d

�

F (x )
n
∏

i=1

(x −ai )

�

= d

�

f (x )
n
∏

i=1

(x −ai )

�

= c D .

Similarly, Lemmas 2.3.3 and 2.3.2, applied to T = B ∪ {0} and each of the prime

ideals in P ∪P1, imply that

d (x F (x )) = d
�

x f (x )
�

= c D .

We set

H (x ) =
F (x )

∏n
j=1(x −a j )

c
and G (x ) =

x F (x )
c

.

Then G (x ) and H (x ) are elements of Int(D ) with d(G (x )) = d(H (x )) = 1 such that

x H (x ) =G (x )(x −a1) · · · (x −an ).

It remains to show that H (x ) and G (x ) are irreducible in Int(D ). Observe that,

among the polynomials x and f (x ), x is indispensable for all P ∈ P and f (x ) is

indispensable for all P ∈ P and all Q ∈ P1. It follows that, among the polynomi-

als x and F (x ), x is indispensable for all P ∈ P and F (x ) is indispensable for all

P ∈ P and all Q ∈ P1, cf. Remark 2.3.7. Hence G (x ) is irreducible in Int(D ) by

Lemma 2.3.8.

Finally, again by Lemma 2.3.8 and Remark 2.3.7, H (x ) is irreducible in Int(D ), since

(i) F (x ) and x −ai are indispensable for Pi (1≤ i ≤ n)

(ii) F (x ) is indispensable for Qi (1≤ i ≤m)
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2. Sets of lengths of factorizations of integer-valued polynomials on Dedekind
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among the polynomials F (x ) and x −a j with 1≤ j ≤ n .

As discussed at the beginning of this section, we may conclude:

Corollary 2.5.1. Let D be a Dedekind domain with infinitely many maximal ide-

als, all of them of finite index.

Then there does not exist a transfer homomorphism from the multiplicative

monoid Int(D ) \ {0} to a block monoid; in other words: Int(D ) is not a transfer

Krull domain.
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3. Non-absolutely irreducible elements

in the ring of integer-valued polyno-

mials

This chapter consists of article [47] titled, “Non-absolutely irreducible elements in

the ring of integer-valued polynomials”. The article appeared in Communications

in Algebra in January 2020.

Abstract

Let R be a commutative ring with identity. An element r ∈ R is said to be abso-

lutely irreducible in R if for all natural numbers n > 1, r n has essentially only one

factorization namely r n = r · · · r . If r ∈R is irreducible in R but for some n > 1, r n

has other factorizations distinct from r n = r · · · r , then r is called non-absolutely

irreducible. In this paper, we construct non-absolutely irreducible elements in the

ring Int(Z) = { f ∈Q[x ] | f (Z)⊆ Z} of integer-valued polynomials. We also give gen-

eralizations of these constructions.

Keywords: Irreducible elements, absolutely irreducible elements, non-absolutely ir-

reducible elements, integer-valued polynomials

2010 Mathematics Subject Classification: 13A05, 13B25, 13F20, 11R09, 11C08

3.1. Introduction

The ring Int(Z) = { f ∈ Q[x ] | f (Z) ⊆ Z} of integer-valued polynomials is known

not to be a unique factorization domain. To fully understand the factorization be-

haviour of Int(Z), several researchers have investigated the irreducible elements of

Int(Z), see for example [12], [17], [25] and [52].

In [36, Chapter 7], Geroldinger and Halter-Koch defined a type of irreducible el-

ements called absolutely irreducible. They called an irreducible element r abso-

lutely irreducible if for all natural numbers n > 1, each power r n of r has essen-

tially only one factorization namely r n = r · · · r . Such irreducible elements have

also been called strong atoms in [24] and completely irreducible in [43].
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3. Non-absolutely irreducible elements in the ring of Integer-valued polynomials

Of much interest are the non-absolutely irreducible elements. We call an irre-

ducible element r non-absolutely irreducible if there exists a natural number n > 1

such that r n has other factorizations essentially distinct from r · · · r . In [24], Chap-

man and Krause proved that the ring of integers of a number field always has non-

absolutely irreducible elements unless it is a unique factorization domain. Simi-

larly, Int(Z) is a non-unique factorization domain with non-absolutely irreducible

elements. For instance, the polynomial f = x (x 2+3)
2 is not absolutely irreducible in

Int(Z) since

f 2 = f · f =
x 2(x 2+3)

4
· (x 2+3).

In this paper, we construct non-absolutely irreducible elements in Int(Z), a first

step to characterizing them. The constructions we give serve as a cornerstone for

studying patterns of factorizations in Int(Z).

The researchers who have studied factorizations in Int(Z) have mostly been con-

sidering square-free factorizations. For instance, in [29], Frisch showed that Int(Z)
has wild factorization behavior but the factorizations she used to realize her main

result (Theorem 9 in [29]) were all square-free. It is not known whether Int(Z) ex-

hibits similar behavior for non-square-free factorizations. The study of the non-

absolutely irreducible elements of Int(Z) will be helpful in answering such ques-

tions.

We first give some necessary definitions and facts in Section 3.2. In Sections 3.3

and 3.4, we construct non-absolutely irreducible elements in Int(Z). We then give

a construction for patterns of factorizations in Section 3.5 and finally in Section

3.6, we give generalizations of the examples in Sections 3.3 and 3.4.

3.2. Preliminaries

This section contains necessary definitions and facts on factorizations and irre-

ducible elements of Int(Z).

Factorization terms

We only define the factorization terms we need in this paper and refer to [36] for

a deeper study of factorization theory. Let R be a commutative ring with identity

and r, s ∈R be non-zero non-units.

(i) We say r is irreducible in R if it cannot be written as the product of two

non-units of R .
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3.2. Preliminaries

(ii) A factorization of r in R is an expression

r = a1 · · ·an (3.2.1)

where ai is irreducible in R for 1≤ i ≤ n .

(iii) The length of the factorization in (3.2.1) is the number n of irreducible fac-

tors.

(iv) We say r and s are associated in R if there exists a unit u ∈ R such that

r = u s .

(v) Two factorizations

r = a1 · · ·an = b1 · · ·bm (3.2.2)

are called essentially the same if n =m and after some possible reordering,

a j is associated to b j for 1 ≤ j ≤m . Otherwise, the factorizations in (3.2.2)

are called essentially different.

(vi) An element r ∈ R is said to be absolutely irreducible if it is irreducible in R

and for all natural numbers n > 1, every factorization of r n is essentially the

same as r n = r · · · r . Equivalently, r ∈ R is called absolutely irreducible if r n

has exactly one factorization up to associates.

If r is irreducible but there exists a natural number n > 1 such that r n has

other factorizations essentially different from r n = r · · · r , then r is called non-

absolutely irreducible.

Irreducible elements of Int(Z)

We begin with some preliminary definitions and facts, and later state a character-

ization of irreducible elements of Int(Z) which we shall use in this paper.

Definition 3.2.1. The ring Int(Z) = { f ∈Q[x ] | f (Z)⊆Z} is called the ring of integer-

valued polynomials.

We refer to [18] for a deeper study of integer-valued polynomials.

Definition 3.2.2. (i) Let f =
∑n

i=0 ai x i ∈Z[x ]. The content of f is the ideal

c( f ) = (g c d [a0, a1, . . . , an ])

of Z generated by the coefficients of f . The polynomial f is said to be prim-

itive if c( f ) = (1) =Z.
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3. Non-absolutely irreducible elements in the ring of Integer-valued polynomials

(ii) Let f ∈ Int(Z). The fixed divisor of f is the ideal

d( f ) = (g c d [ f (a ) | a ∈Z])

of Z generated by the elements f (a ) with a ∈ Z. Note that it is sufficient to

consider 0≤ a ≤ d e g ( f ), that is,

d( f ) = (g c d [ f (a ) | 0≤ a ≤ d e g ( f )]),

cf. [11, Lemma 2.7]. The polynomial f is said to be image primitive if d( f ) =
(1) =Z.

Note 3.2.3. (i) A polynomial g
b with g ∈ Z[x ] and b ∈ N, is in Int(Z) if and only

if b divides the fixed divisor d(g ) of g .

(ii) Let f ∈Z[x ] be primitive with degree n and p ∈Z be prime. If p divides the

fixed divisor of f , then p ≤ n , cf. for instance [29, Remark 3].

Remark 3.2.4. In analogy to the well known fact that f ∈Z[x ] is irreducible in Z[x ]
if and only if it is primitive and irreducible in Q[x ], Chapman and McClain [25]
showed that f ∈Z[x ] is irreducible in Int(Z) if and only if it is image primitive and

irreducible in Q[x ]. This follows as a special case from Remark 3.2.6.

Note 3.2.5. Every non-zero polynomial f ∈Q[x ] can be written in a unique way up

to the sign of a and the signs and indexing of the g i as

f (x ) =
a

b

∏

i∈I

g i (x )

with a ∈ Z, b ∈ N with gcd(a , b ) = 1, I a non-empty finite set and for i ∈ I , g i

primitive and irreducible in Z[x ].

Remark 3.2.6. [29] A non-constant polynomial f ∈ Int(Z) written as in Note 3.2.5

is irreducible in Int(Z) if and only if:

(i) a =±1,

(ii) (b ) = d
�∏

i∈I g i

�

and

(iii) there does not exist a partition of I into non-empty subsets I = I1 ] I2 and

b1, b2 ∈N with b1b2 = b and (b1) = d
�∏

i∈I1
g i

�

, (b2) = d
�∏

i∈I2
g i

�

.
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3.3. Non-absolutely irreducibles: different factorizations

of the same length

In this section we construct non-absolutely irreducible elements r such that for all

n > 1, the factorizations of r n are all of the same length.

Consider the irreducible polynomial

f =
x (x −4)(x 2+3)

4
∈ Int(Z).

It can be checked easily that

d(x (x −4)(x 2+3)) = (4) = d(x 2(x 2+3)) = d((x −4)2(x 2+3)).

Furthermore, the polynomials x 2(x 2+3)
4 and (x−4)2(x 2+3)

4 are irreducible in Int(Z) by Re-

mark 3.2.6. Thus

f 2 =
x 2(x 2+3)

4
·
(x −4)2(x 2+3)

4

is a factorization of f 2 and it is essentially different from f · f . Therefore

f =
x (x −4)(x 2+3)

4

is not absolutely irreducible in Int(Z).

More generally, we have the following construction.

Example 3.3.1. Let p be an odd prime and n > 1 a natural number. Let

h (x ) = x p n−1(p−1)−q

where q is a prime congruent to 1 mod p n+1 and q > p n−1(p − 1) +n . Then h is

irreducible in Q[x ] by Eisenstein’s irreducibility criterion.

Furthermore, vp (h (u )) ≥ n for all integers u not divisible by p since the group of

units of Z/p nZ is cyclic of order p n−1(p − 1). Moreover, if r is a generator of the

group of units of Z/p n+1Z, then, since h (r ) is not zero modulo p n+1, it follows that

vp (h (r )) = n . Therefore the minimum vp (h (u )) for u an integer not divisible by p

is exactly n .

Now let a1, . . . , an be integers divisible by p , not representing all residue classes of

p 2 that are divisible by p and such that no ai (for 1 ≤ i ≤ n) is congruent to 0

modulo any prime l ≤ p n−1(p −1) +n , l 6= p .
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3. Non-absolutely irreducible elements in the ring of Integer-valued polynomials

We set

f (x ) =
h (x )

∏n
i=1(x −ai )
p n

.

By the choice of the integers a1, . . . , an , the minimum vp

�∏n
i=1(w −ai )

�

for w ∈ pZ
is exactly n . Moreover, for each prime l ≤ p n−1(p −1) +n , l 6= p , l does not divide

the fixed divisor of the numerator h (x )
∏n

i=1(x −ai ) of f (x ). Because of these facts

and by Remark 3.2.6, f (x ) is in Int(Z) and it is irreducible in Int(Z).

Now suppose a1, . . . , an contains at least two different elements. Then for k > 1, f k

has factorizations essentially different from f · · · f . All of these factorizations have

length k .

For example, without loss of generality, let a1 and a2 be different. Then

f k =
h (x )(x −a1)2

∏n
i=3(x −ai )

p n
·

h (x )(x −a2)2
∏n

i=3(x −ai )
p n

· f · · · f
︸ ︷︷ ︸

k−2 copies

is a factorization of f k essentially different from f · · · f .

Remark 3.3.2. In Example 3.3.1, we could use a different polynomial h (x ), namely:

h (x ) = c (x )d (x )

where

c (x ) = x
p n−1(p−1)

2 −q

d (x ) = x
p n−1(p−1)

2 − r

with q and r primes congruent to 1 and −1 respectively, mod p n+1 and both q , r

greater than p n−1(p − 1) +n . Similarly, both c (x ) and d (x ) are irreducible in Q[x ]
by Eisenstein’s irreducibility criterion.

Furthermore, if u is a unit mod p n , then vp (c (u ))≥ n iff u is a square mod p n and

vp (d (u )) ≥ n iff u is a non-square mod p n . Also, if r is a generator of the group

of units of Z/p n+1Z, then vp (d (r )) = n and vp (c (r )) = 0. Therefore the minimum

vp (c (u )d (u )) for u an integer not divisible by p is exactly n .

The construction involving two polynomials c (x ) and d (x ) can be used to exhibit

factorizations of different lengths of a power of an irreducible polynomial, cf. Ex-

ample 3.4.1.

Note 3.3.3. In Example 3.3.1, we have one prime in the denominator but this can

be extended to several primes. For instance, if we allow some ai to be congruent
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3.3. Non-absolutely irreducibles: different factorizations of the same length

to 0 modulo other primes l < p n−1(p −1)+n , then the roots of the numerator of f

can contain a complete set of residues modulo some l . More specifically, we have

the following example.

Example 3.3.4. Let p , q be distinct odd primes, and let n ≥ 2q be a natural num-

ber. Let

h (x ) = x p n−1(p−1)− r

where r is a prime congruent to 1 mod p n+1 and r > p n−1(p − 1) + n . Then h is

irreducible in Q[x ] and the minimum vp (h (u )) for u an integer not divisible by p

is n .

Let a1, . . . , an be integers divisible by p , not representing all residue classes of p 2

that are divisible by p , and such that:

(i) a1, . . . , aq is a complete system of residues mod q , and the remaining ai with

i > q are all congruent to 1 mod q .

(ii) For 1≤ i ≤ n , ai 6≡ 0 (mod l ) for all primes l < p n−1(p −1) +n , l 6= p , q .

Set

f (x ) =
h (x )

∏n
i=1(x −ai )

q p n
.

Then f is irreducible in Int(Z) by Remark 3.2.6 and f 2 has a factorization essen-

tially different from f · f , namely;

f 2 =
h (x )

∏q
i=1(x −ai )2

∏n
i=2q+1(x −ai )

q 2p n
·

h (x )
∏2q

i=q+1(x −ai )2
∏n

i=2q+1(x −ai )

p n
.

Also in the spirit of Example 3.3.1, we have the following example involving two

primes.

Example 3.3.5. Let q < p be odd primes, and let 1 < m ≤ n be natural numbers.

Let

t = l c m (q m−1(q −1), p n−1(p −1)).

We set

h (x ) = x t − r

where r is a prime congruent to 1 mod p n+1q m+1 and r > t + n . Then h is

irreducible in Q[x ] and vp (h (u )) ≥ n for all integers u not divisible by p , and

vq (h (w ))≥m for all integers w not divisible by q .

35



3. Non-absolutely irreducible elements in the ring of Integer-valued polynomials

Now let a1, . . . , an be integers divisible by p but not representing all residue classes

of p 2 that are divisible by p , and such that:

(i) a1, . . . , am are divisible by q but not representing all residue classes of q 2 that

are divisible by q , and the remaining ai with i > m are all congruent to 1

mod q .

(ii) For 1≤ i ≤ n , ai 6≡ 0 (mod l ) for all primes l < t +n , l 6= p , q .

We set

f (x ) =
h (x )

∏n
i=1(x −ai )

p n q m
.

Then f is irreducible in Int(Z) by Remark 3.2.6 and if a1, . . . , am or am+1, . . . , an con-

tains at least two different elements, then for some k > 1, f k has a factorization

essentially different from f · · · f .

For instance, without loss of generality let a1 and a2 be different. Then

f 2 =
h (x )(x −a1)2

∏n
i=3(x −ai )

p n q m
·

h (x )(x −a2)2
∏n

i=3(x −ai )
p n q m

is a factorization of f 2 essentially different from f · f . Similarly, if am+1 and am+2

are different, then

f 2 =
h (x )g (x )(x −am+1)2

p n q m
·

h (x )g (x )(x −am+2)2

p n q m

where g (x ) =
∏m

i=1(x−ai )
∏n

i=m+3(x−ai ), is a factorization of f 2 essentially different

from f · f .

3.4. Non-absolutely irreducibles: factorizations of differ-

ent lengths

Here we construct non-absolutely irreducible elements r such that for some n > 1,

some factorizations of r n have different lengths.

Consider the irreducible polynomial

f =
(x −3)(x 3−17)(x 3−19)

3
∈ Int(Z).

Then

f 2 =
(x −3)2(x 3−17)(x 3−19)

9
· (x 3−17)(x 3−19)
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3.4. Non-absolutely irreducibles: factorizations of different lengths

is a factorization of f 2 essentially different from f · f . This results from

g c d (a 3−17 | a ∈ {2+3Z}) = g c d (a 3−19 | a ∈ {1+3Z}) = 9

such that for all a 6≡ 0 (mod 3), (a 3−17)(a 3−19) is divisible by 9.

This behaviour motivates the next example and more generally Lemma 3.6.7.

Example 3.4.1. Let p be an odd prime and n >m be natural numbers. We set

c (x ) = x
p n−1(p−1)

2 −q

d (x ) = x
p n−1(p−1)

2 − r

where q and r are primes congruent to 1 and −1 respectively, mod p n+1 and both

q , r are greater than p n−1(p − 1) +m . Then both c (x ) and d (x ) are irreducible in

Q[x ] by Eisenstein’s irreducibility criterion.

Furthermore, if u is a unit mod p n , then vp (c (u )) ≥ n iff u is a square mod p n

and vp (d (u ))≥ n iff u is a non-square mod p n . Note that both c (x ) and d (x ) are

irreducible in Int(Z) by Remark 3.2.4 because, being primitive, they are irreducible

in Z[x ] and d(c (x )) = d(d (x )) = (1). Furthermore, d(c (x )d (x )) = (1).

Now let a1, . . . , am be integers divisible by p , not representing all residue classes of

p 2 that are divisible by p and such that no ai (for 1 ≤ i ≤ m) is congruent to 0

modulo any prime l ≤ p n−1(p −1) +m , l 6= p .

Set

f (x ) =
c (x )d (x )

∏m
i=1(x −ai )

p m
.

Then f is irreducible in Int(Z) by Remark 3.2.6. Now irrespective of all a1, . . . , am

being the same or different,

f n =
m
∏

i=1

c (x )d (x )(x −ai )n

p n
· c (x )n−m d (x )n−m

is a factorization of f n essentially different from f · · · f
︸ ︷︷ ︸

n copies

.

Note that f k can have factorizations essentially different from f · · · f also for k < n ,

see for example the proof of Lemma 3.6.7.

For our next general example, we begin with the following motivation.

Example 3.4.2. Consider the irreducible polynomial

f =
(x 4+ x 3+8)(x −3)

4
∈ Int(Z).
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3. Non-absolutely irreducible elements in the ring of Integer-valued polynomials

It can easily be checked that

g c d (a 4+a 3+8 | a ∈ {0+2Z}) = 8

and

g c d (a 4+a 3+8 | a ∈ {1+2Z}) = 2.

Thus 0 and 1 are both roots mod 2 of x 4+x 3+8 and for all a ∈ {0+2Z}, a 4+a 3+8

is divisible by 8.

Therefore

f 2 =
(x 4+ x 3+8)(x −3)2

8
·
(x 4+ x 3+8)

2

is a factorization of f 2 essentially different from f · f .

We need the following lemma for our general example.

Lemma 3.4.3. [29, Lemma 6], [32, Lemma 3.3] Let I 6= ; be a finite set and fi ∈Z[x ]
be monic polynomials for i ∈ I . Then there exist monic polynomials Fi ∈ Z[x ] for

i ∈ I , such that

(i) deg(Fi ) = deg( fi ) for all i ∈ I ,

(ii) the polynomials Fi are irreducible in Q[x ] and pairwise non-associated in

Q[x ] and

(iii) for all subsets J ⊆ I and all partitions J = J1 ] J2,

d

 

∏

j∈J1

f j

∏

j∈J2

Fj

!

= d

 

∏

j∈J

f j

!

.

Example 3.4.4. Let p > 3 be a prime number and let a1, . . . , ap be a complete set of

residues mod p that does not contain a complete set of residues mod any prime

q < p . Let

g1 = (x −a2)
2(x −a3)

2
p
∏

i=4

(x −ai )

g2 = (x −a1)
2(x −a3)

2
p
∏

i=4

(x −ai )

g3 = (x −a1)
2(x −a2)

2
p
∏

i=4

(x −ai ).
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By Lemma 3.4.3, we find polynomials G1,G2,G3, of the same degree as g1, g2, g3

respectively, irreducible in Q[x ] and pairwise non-associated in Q[x ] such that for

any product P of polynomials from among the g i and any product Q that differs

from P in that some of the g i have been replaced by their respective Gi , we have

d(P ) = d(Q ).

Let ep (g ) = vp (d(g )) denote the exponent of p in the fixed divisor of g . Now note

that for each index i , ep (Gi ) = 0 and for any two different indices i , j , ep (Gi G j ) = 2,

and, finally, ep (G1G2G3) = 3.

This shows that

f =
G1G2G3

p 3

is in Int(Z) and is irreducible in Int(Z), and that f 2 factors as

f 2 =
G1G2

p 2
·

G2G3

p 2
·

G3G1

p 2
, (3.4.1)

which factorization is essentially different from f · f . Thus f is not absolutely ir-

reducible.

Note that in the above example, p divides the fixed divisor of Gi G j for i 6= j and

vp

�

g c d

�

Gi (a )G j (a )

�

�

�

�

a ≡ ak (mod p ), k 6= i , j

��

= 4> vp (d( f )).

This behaviour is similar to the one in example 3.4.2 and more generally in Lemma

3.6.8.

Remark 3.4.5. (i) Like Example 3.3.1, the constructions in this section can be

extended to several primes in the denominator of f .

(ii) In Example 3.4.1, if we employ the usual

h (x ) = x p n−1(p−1)−q

where q is a prime congruent to 1 mod p n+1 and q > p n−1(p −1)+n , instead

of c (x )d (x ), f remains non-absolutely irreducible but the factorizations of

f k all have the same length k .

(iii) In the examples we have given in this section, the factorizations of f k have

length greater than or equal to k but we can also have non-absolutely irre-

ducibles f in Int(Z) such that for some k > 2, some factorizations of f k have

length less than k . For instance, consider the polynomial

f =
(x 2+4)(x 4+7)

4
∈ Int(Z).
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3. Non-absolutely irreducible elements in the ring of Integer-valued polynomials

It is clearly irreducible and

f 3 =
(x 2+4)3(x 4+7)2

64
· (x 4+7)

is a factorization of f 3 essentially different from f · f · f and it is of length 2.

3.5. Patterns of factorizations

The researchers who have studied factorizations in Int(Z) have mostly been con-

sidering square-free factorizations. For instance, in [29], Frisch showed that Int(Z)
has wild factorization behavior but the factorizations she used to realize her main

result (Theorem 9 in [29]) were all square-free. It is not known whether Int(Z)
exhibits similar behavior for non-square-free factorizations. The study of non-

absolutely irreducible elements lays a foundation for studying patterns of factor-

izations.

As a first step to understanding patterns of factorizations in Int(Z), we give a con-

struction using the examples in Sections 3.3 and 3.4. We begin with a motivation.

Definition 3.5.1. Let R be a commutative ring with identity and r ∈R be a nonzero

non-unit.

(i) A sequence of natural numbers λ= (k1, . . . , ks ) is called a partition of a natu-

ral number n if k1+· · ·+ks = n with k1 ≥ k2 ≥ · · · ≥ ks > 0. The natural numbers

k1, . . . , ks are called blocks.

(ii) If λ = (k1, . . . , ks ) is a partition, we say a factorization of r is of type λ if r =
a k1

1 · · ·a ks
s for pairwise non-associated irreducible elements a1, . . . , as ∈R .

Example 3.5.2. Consider the different partitions of 4:

{(4), (3, 1), (2, 2), (2, 1, 1), (1, 1, 1, 1)}.

The polynomial

f =
(x 8−17)4(x −4)2(x −8)2

24
∈ Int(Z)
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3.5. Patterns of factorizations

gives us factorizations of type λ for partitions λ of 4 other than (4):

f = (x 8−17)3 ·
(x 8−17)(x −4)2(x −8)2

24

= (x 8−17)2 ·
�

(x 8−17)(x −4)(x −8)
22

�2

= (x 8−17)2 ·
(x 8−17)(x −4)2

22
·
(x 8−17)(x −8)2

22

=
(x 8−17)(x −4)

2
·
(x 8−17)(x −8)

2
·
(x 8−17)(x −4)(x −8)

22
· (x 8−17).

Note, however, that f has factorizations other than those above. For example,

f = (x 8−17)2 ·
(x 8−17)(x −4)2(x −8)

23
·
(x 8−17)(x −8)

2

is another factorization of f essentially different from the above.

More generally, we have the following construction for patterns of factorizations in

Int(Z). We first give a remark.

Remark 3.5.3. In the following example, we use partition of sets; if a set S is the

disjoint union of m non-empty subsets B1, . . . , Bm , then, we call B = {B1, . . . , Bm}
a partition of S . This should not be confused with the concept of partition of a

number as defined in Definition 3.5.1

Example 3.5.4. Let p ∈Z be an odd prime and n , s , t > 1 natural numbers. Set

ci (x ) = x
p n−1(p−1)

2 −qi

di (x ) = x
p n−1(p−1)

2 − ri

where q1, . . . , qs are primes congruent to 1 modulo p n+1, r1, . . . , rt are primes con-

gruent to −1 modulo p n+1 and for all 1≤ i ≤ s and 1≤ j ≤ t , qi , r j > p n−1(p −1)+n .

Now let a1, . . . , an be integers divisible by p , not representing all residue classes of

p 2 that are divisible by p and such that no a j (for 1 ≤ j ≤ n) is congruent to 0

modulo any prime l ≤ p n−1(p −1) +n , l 6= p . Set

G (x ) =

∏s
i=1 ci (x )

∏t
i=1 di (x )

∏n
j=1(x −a j )

p n
.

Then every factorization of G in Int(Z) corresponds to a triple (B ,θ ,σ) where:

(i) B is a partition of the set {1, . . . , n} into mB blocks B1, . . . , BmB
,
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3. Non-absolutely irreducible elements in the ring of Integer-valued polynomials

(ii) θ is an injective function θ : {1, . . . , mB }→ {1, . . . , s } and

(iii) σ is an injective function σ : {1, . . . , mB }→ {1, . . . , t }.

Given such a triple, for 1≤ i ≤mB , we construct a polynomial g i corresponding to

the i -th block. Suppose the i -th block consists of wi elements. We set

g i =
cθ (i )(x )dσ(i )(x )

∏

j∈Bi
(x −a j )

p wi
.

Then g i is irreducible in Int(Z) by Remark 3.2.6.

Furthermore, each factorization of G is of the form

G =
mB
∏

i=1

g i ·
∏

j 6∈ Im θ

c j (x ) ·
∏

k 6∈ Imσ

dk (x ). (3.5.1)

Note that the length of the factorization in (3.5.1) is s + t −mB .

3.6. Generalizations

In this section we give lemmas generalizing the examples in Sections 3.3 and 3.4.

We begin with a generalization of Example 3.3.1.

Definition 3.6.1. (i) Let I 6= ; be a finite set and for i ∈ I , let g i ∈Z[x ] be primi-

tive and irreducible in Z[x ]. Let

f (x ) =

∏

i∈I g i (x )
b

∈ Int(Z)

be irreducible in Int(Z) where b > 1 is a natural number. We call non-empty

subsets J1, J2 $ I interchangeable if J1 ∩ J2 = ; and

d

�

∏

i∈J1

g i (x ) ·
∏

i∈I \J2

g i (x )

�

= d

�

∏

i∈J2

g i (x ) ·
∏

i∈I \J1

g i (x )

�

= (b ).

(ii) We call two non-empty disjoint index sets J1, J2 $ I element-disjoint if

{g i | i ∈ J1}∩ {g j | j ∈ J2}= ;.

Example 3.6.2. Consider the irreducible polynomial

f =
(x −1)(x −3)(x 2+4)

4
∈ Int(Z).
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A quick check shows that

d((x −1)2(x 2+4)) = d((x −3)2(x 2+4)) = (4).

Thus setting g1 = x − 1, g2 = x − 3 and g3 = x 2 + 4, we see that the subsets J1 = {1}
and J2 = {2} of I = {1, 2, 3} are interchangeable. Furthermore, J1 and J2 are element-

disjoint since they contain different elements.

Lemma 3.6.3. Let f (x ) =
∏

i∈I g i (x )
b ∈ Int(Z) be irreducible in Int(Z), where b > 1 is

a natural number, I 6= ; is a finite set and for i ∈ I , g i ∈ Z[x ] is primitive and

irreducible in Z[x ].

If there exist two element-disjoint interchangeable subsets J1, J2 $ I , then f is not

absolutely irreducible.

Proof. Suppose J1, J2 $ I are element-disjoint and interchangeable. Then for k ≥ 2,

f k =

∏

i∈J1
g i (x )

∏

i∈I \J2
g i (x )

b

∏

i∈J2
g i (x )

∏

i∈I \J1
g i (x )

b

∏

i∈I g i (x )
b

· · ·
∏

i∈I g i (x )
b

︸ ︷︷ ︸

k−2 copies

implies the existence of a factorization of f k essentially different from f · · · f
︸ ︷︷ ︸

k copies

.

The next lemma tells us that we cannot have interchangeable subsets in the case

when the fixed divisor b of the numerator of f is a prime p . We begin with a

supporting definition.

Definition 3.6.4. Let I 6= ; be a finite set and for i ∈ I , let fi ∈Z[x ] be primitive and

irreducible in Z[x ]. Let p be a prime dividing d
�∏

i∈I fi

�

. We say fk is indispensable

for p (among the polynomials fi with i ∈ I ) if there exists an integer z such that

vp ( fk (z )) > 0 and vp ( fi (z )) = 0 for all i 6= k . We call such a z a witness for fk being

indispensable for p .

Example 3.6.5. Consider the polynomials f1 = x , f2 = x −1 and f3 = x −2 in Z[x ]. It

is easy to check that d(x (x −1)(x −2)) = 6. Now note that f2 = x −1 is indispensable

for 2 since for all odd numbers a ,

v2( f2(a )) = v2(a −1)> 0 and v2( f1(a )) = v2( f3(a )) = 0.

In this case any odd number is a witness for x − 1 being indispensable for 2. On

the other hand, x and x−2 are not indispensable for 2 since for any even number

b ,

v2( f1(b )) = v2(b )> 0 and v2( f3(b )) = v2(b −2)> 0.
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3. Non-absolutely irreducible elements in the ring of Integer-valued polynomials

Lemma 3.6.6. Let I 6= ; be a finite set and for i ∈ I , let g i ∈Z[x ] be primitive and

irreducible in Z[x ]. Let

f (x ) =

∏

i∈I g i (x )
p

∈ Int(Z)

be irreducible in Int(Z). Then there do not exist interchangeable subsets of I .

Proof. Suppose J1, J2 $ I are disjoint. Now since f is irreducible, every g i for i ∈
I is indispensable for p and this implies that g i 6= g j for i 6= j . Thus J1 and J2

being disjoint, are element-disjoint. Furthermore, if ri is a witness for g i being

indispensable for p , then

vp

 

∏

j∈I \{i }

g j (ri )

!

= 0.

Now suppose gk for k ∈ J1 is indispensable for p with witness rk . Then, since J1

and J2 are element-disjoint, it follows that

vp

 

∏

j∈(I \J1)

g j (rk ) ·
∏

j∈J2

g j (rk )

!

= 0.

Thus d

�

∏

j∈(I \J1)
g j (x ) ·

∏

j∈J2
g j (x )

�

is not divisible by p . This shows that J1, J2 are

not interchangeable because if they were, we would have

d

 

∏

j∈(I \J1)

g j (x ) ·
∏

j∈J2

g j (x )

!

=
�

p
�

.

The next lemma generalizes Example 3.4.1. In Example 3.4.1, setting g0 = c (x ),
g1 = d (x ) and g i = x −ai−1 for i = 2, . . . , m + 1, we can choose {0, 1} for the index

set J in Lemma 3.6.7.

Lemma 3.6.7. Let I 6= ; be a finite set and for i ∈ I , let g i ∈Z[x ] be primitive and

irreducible in Z[x ]. Suppose

f =

∏

i∈I g i (x )
b

∈ Int(Z)

is irreducible in Int(Z), where b > 1. Let P be the set of prime divisors of b and

b =
∏

p∈Pp ep be the prime factorization of b with ep ∈N. If there exists a subset

; 6= J $ I such that for all p ∈ P, for every integer s that is a root mod p of
∏

j∈J g j , we have

vp

 

∏

j∈J

g j (s )

!

> ep , (3.6.1)

then f is not absolutely irreducible.
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3.6. Generalizations

Proof. Suppose there exists ; 6= J $ I such that for all p ∈ P, inequality 3.6.1 is

satisfied. Let n = max{ep | p ∈ P}. We claim that f n+1 has a factorization essen-

tially different from f · · · f . The existence of such a factorization follows from 3.6.2

below.

f n+1 =

�

∏

j∈J g j (x )
�n �∏

i∈I \J g i (x )
�n+1

b n+1
·
∏

j∈J

g j (x ). (3.6.2)

To see that the factor on the left is integer-valued, let p ∈ P and s ∈ Z. If s is a

root mod p of
∏

j∈J g j , then

vp

  

∏

j∈J

g j (s )

!n!

≥ n (ep +1) = nep +n ≥ (n +1)ep = vp (b
n+1)

On the other hand, if s is not a root mod p of
∏

j∈J g j , then

vp

  

∏

j∈J

g j (s )

!n �
∏

i∈I \J

g i (s )

�n+1
!

= vp

 

�

∏

i∈I

g i (s )

�n+1
!

≥ vp (b
n+1).

Finally, that the factorization 3.6.2 can be refined to a factorization into irre-

ducibles (necessarily essentially different from f · · · f ) follows from the fact that

Int(Z) is atomic.

We generalize Examples 3.4.2 and 3.4.4 in the next lemma. In Example 3.4.2, set-

ting g0 = x 4+ x 3+8 and g1 = x −3, the index set J in Lemma 3.6.8 was {0}.

Lemma 3.6.8. Let I 6= ; be a finite set and for i ∈ I , let g i ∈Z[x ] be primitive and

irreducible in Z[x ]. Suppose

f (x ) =

∏

i∈I g i (x )
p n

∈ Int(Z)

is irreducible in Int(Z), where p is a prime and n > 1.

If there exists J $ I such that the following holds:

(i) Z = S ] T where S and T are each a union of residue classes mod p and

such that

vp

�

g c d

�

∏

i∈J

g i (a )

�

�

�

�

a ∈ S

��

> n and ∀ t ∈ T , vp

�

g c d

�

∏

i∈J

g i (b )

�

�

�

�

b ∈ t +pZ

��

= e ,

45



3. Non-absolutely irreducible elements in the ring of Integer-valued polynomials

with 1≤ e < n, and for all t ∈ T

vp

�

g c d

�

∏

i∈J

g i (b )

�

�

�

�

b ∈ t +pZ

��

+ vp

�

g c d

�

∏

i∈I \J

g i (b )

�

�

�

�

b ∈ t +pZ

��

≥ n .

(3.6.3)

Then f is not absolutely irreducible.

Proof. Suppose there exists a subset J $ I such that (i) holds.

It follows from inequality (3.6.3) and f being irreducible that

min
t ∈T

¨

vp

�

g c d

�

∏

i∈I \J

g i (b )

�

�

�

�

b ∈ t +pZ

��«

= n − e .

Now let

m = vp

�

g c d

�

∏

i∈J

g i (a )

�

�

�

�

a ∈ S

��

> n .

We set k =m − e and claim that f k has a factorization essentially different from

f · · · f . This factorization follows from

f k =

�∏

i∈J g i

�n−e �∏

i∈I \J g i

�k

p (n−e )m
·
�
∏

i∈J g i

p e

�m−n

.

In fact, for each t ∈ T , let

l = vp

�

g c d

�

∏

i∈J

g i (b )

�

�

�

�

b ∈ t +pZ

�n−e�

+ vp

 

g c d

�

∏

i∈I \J

g i (b )

�

�

�

�

b ∈ t +pZ

�k
!

.

Then l = e (n − e ) +k (n − e ) = e (n − e ) + (m − e )(n − e ) = (n − e )m .

Furthermore

vp

�

g c d

�

∏

i∈J

g i (a )

�

�

�

�

a ∈ S

�n−e�

= (n − e )m .

Moreover, k − (n − e ) =m −n and (n − e )m + (m −n )e = (m − e )n = k n .

46



4. A graph-theoretic criterion for abso-

lute irreducibility of integer-valued

polynomials with square-free de-

nominator

This chapter consists of article [31] titled, “A graph-theoretic criterion for absolute

irreducibility of integer-valued polynomials with square-free denominator”. The

article appeared in Communications in Algebra in April 2020 and it is joint work

with Sophie Frisch.

Abstract

An irreducible element of a commutative ring is absolutely irreducible if no power

of it has more than one (essentially different) factorization into irreducibles. In the

case of the ring Int(D ) = { f ∈ K [x ] | f (D )⊆D }, of integer-valued polynomials on a

principal ideal domain D with quotient field K , we give an easy to verify graph-

theoretic sufficient condition for an element to be absolutely irreducible and show

a partial converse: the condition is necessary and sufficient for polynomials with

square-free denominator.

Keywords: Factorization, non-unique factorization, irreducible elements, abso-

lutely irreducible elements, atom, atomic domain, integer-valued polynomials,

simple graphs, connected graphs.

2010 Mathematics Subject Classification: 13A05, 13B25, 13F20, 11R09, 11C08,

13P05

4.1. Introduction

An intriguing feature of non-unique factorization (of elements of an integral do-

main into irreducibles) is the existence of non-absolutely irreducible elements, that

is, irreducible elements some of whose powers allow several essentially different

factorizations into irreducibles [13, 36, 43, 47, 56].
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4. A graph-theoretic criterion for absolute irreducibility of integer-valued
polynomials with square-free denominator

For rings of integers in number fields, their existence actually characterizes non-

unique factorization, as Chapman and Krause [24] have shown. Here, we inves-

tigate absolutely and non-absolutely irreducible elements in the context of non-

unique factorization into irreducibles in the ring of integer-valued polynomials on

D

Int(D ) = { f ∈ K [x ] | f (D )⊆D },

where D is a principal ideal domain and K its quotient field.

In an earlier paper [32, Remark 3.9] we already hinted at a graph-theoretic suffi-

cient condition for f ∈ Int(D ) to be irreducible. We spell this out more fully in

Theorem 4.2.1. This condition is not, however, necessary.

We formulate a similar graph-theoretic sufficient condition for f ∈ Int(D ) to be

absolutely irreducible in Theorem 4.2.2, and show a partial converse. Namely, our

criterion for absolute irreducibility is necessary and sufficient in the special case

of polynomials with square-free denominator, cf. Theorem 4.3.1.

First, we recall some terminology. Let R be a commutative ring with identity.

(i) r ∈R is called irreducible in R (or, an atom of R ) if it is a non-zero non-unit

that is not a product of two non-units of R .

(ii) A factorization (into irreducibles) of r in R is an expression

r = a1 · · ·an (4.1.1)

where n ≥ 1 and ai is irreducible in R for 1≤ i ≤ n .

(iii) r, s ∈ R are associated in R if there exists a unit u ∈ R such that r = u s . We

denote this by r ∼ s .

(iv) Two factorizations into irreducibles of the same element,

r = a1 · · ·an = b1 · · ·bm , (4.1.2)

are called essentially the same if n =m and, after a suitable re-indexing, a j ∼
b j for 1≤ j ≤m . Otherwise, the factorizations in (4.1.2) are called essentially

different.

Definition 4.1.1. Let R be a commutative ring with identity. An irreducible element

c ∈ R is called absolutely irreducible (or, a strong atom), if for all natural numbers

n , every factorization of c n is essentially the same as c n = c · · · c .
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4.1. Introduction

Note the following fine distinction: an element of R that is called “not absolutely

irreducible” might not be irreducible at all, whereas a “non-absolutely irreducible”

element is assumed to be irreducible, but not absolutely irreducible.

We now concentrate on integer-valued polynomials over a principal ideal domain.

Recall that a polynomial in D [x ], where D is a principal ideal domain, is called

primitive if the greatest common divisor of its coefficients is 1.

Definition 4.1.2. Let D be a principal ideal domain with quotient field K , and f ∈
K [x ] a non-zero polynomial. We write f as

f =
a
∏

i∈I g i

b
,

where a , b ∈D \ {0} with gcd(a , b ) = 1, I a finite (possibly empty) set, and each g i

primitive and irreducible in D [x ] and call this the standard form of f .

We refer to b as the denominator, to a as the constant factor, and to a
∏

i∈I g i as

the numerator of f , keeping in mind that each of them is well-defined and unique

only up to multiplication by units of D .

Definition 4.1.3. For f ∈ Int(D ), the fixed divisor of f , denoted d( f ), is the ideal of

D generated by f (D ).

An integer-valued polynomial f ∈ Int(D ) with d( f ) =D is called image-primitive.

When D is a principal ideal domain, we may, by abuse of notation, write the gen-

erator for the ideal, as in d( f ) = c meaning d( f ) = c D .

Remark 4.1.4. Let D be a principal ideal domain with quotient field K , and f ∈
K [x ] written in standard form as in Definition 4.1.2. Then f is in Int(D ) if and

only if b divides d
�∏

i∈I g i

�

.

Remark 4.1.5. Let D be a principal ideal domain with quotient field K . Then any

non-constant irreducible element of Int(D ) is necessarily image-primitive. Other-

wise, if a prime element p ∈D divides d( f ), then

f = p ·
f

p

is a non-trivial factorization of f .

Furthermore, f ∈ K [x ] \ {0} (written in standard form as in Definition 4.1.2) is an

image-primitive element of Int(D ) if and only if (up to multiplication by units) a =
1 and b = d

�∏

i∈I g i

�

.
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4. A graph-theoretic criterion for absolute irreducibility of integer-valued
polynomials with square-free denominator

Definition 4.1.6. Let D be a principal ideal domain. For f ∈ Int(D ), and p a prime

element in D , we let

dp ( f ) = vp

�

d( f )
�

Remark 4.1.7. By the above definition,

d( f ) =
∏

p∈P
p dp ( f ) and dp ( f ) =min

c∈D
vp ( f (c ))

where P is a set of representatives of the prime elements of D up to multiplication

by units.

By the nature of the minimum function, the fixed divisor is not multiplicative:

dp ( f ) +dp (g )≤ dp ( f g ),

but the inequality may be strict. Accordingly,

d( f )d(g )
�

�d( f g ),

but the division may be strict. Note, however, that

d( f n ) = d( f )n

for all f ∈ Int(D ) and n ∈N.

4.2. Graph-theoretic irreducibility criteria

We refer to, for instance, [14] for the graph theory terms we use in this section.

Definition 4.2.1. Let D be a principal ideal domain, I 6= ; a finite set and for i ∈ I ,

let g i ∈D [x ] be non-constant and primitive. Let g (x ) =
∏

i∈I g i , and p ∈D a prime.

(i) We say that g i is essential for p among the g j with j ∈ I if p
�

�d(g ) and there

exists a w ∈ D such that vp

�

g i (w )
�

> 0 and vp

�

g j (w )
�

= 0 for all j ∈ I \ {i }.
Such a w is then called a witness for g i being essential for p .

(ii) We say that g i is quintessential for p among the g j with j ∈ I if p
�

�d(g ) and

there exists w ∈ D such that vp

�

g i (w )
�

= vp

�

d(g )
�

and vp

�

g j (w )
�

= 0 for all

j ∈ I \ {i }. Such a w is called a witness for g i being quintessential for p .

We will omit saying “among the g j with j ∈ I ” if the indexed set of polynomials is

clear from the context.

50



4.2. Graph-theoretic irreducibility criteria

Remark 4.2.2. When we consider an indexed set of polynomials g i with i ∈ I , we

are not, in general, requiring g i 6= g j for i 6= j . Note, however, that g i being essen-

tial (among the g j with j ∈ I ) for some prime element p ∈ D implies g i 6∼ g j in

D [x ] for all j ∈ I \ {i }.

Definition 4.2.3. Let D be a principal ideal domain, I 6= ; a finite set and for each

i ∈ I , g i ∈D [x ] primitive and irreducible.

(i) The essential graph of the indexed set of polynomials (g i | i ∈ I ) is the simple

undirected graph whose set of vertices is I , and in which (i , j ) is an edge if

and only if there exists a prime element p in D such that both g i and g j are

essential for p among the gk with k ∈ I .

(ii) The quintessential graph of the indexed set of polynomials (g i | i ∈ I ) is the

simple undirected graph whose set of vertices is I , and in which (i , j ) is an

edge if and only if there exists a prime element p in D such that both g i

and g j are quintessential for p among the gk with k ∈ I .

Example 4.2.4. Let I = {1, 2, 3, 4} and for i ∈ I , g i ∈Z[x ] as follows:

g1 = x 3−19, g2 = x 2+9, g3 = x 2+1, g4 = x −5, and set

g = (x 3−19)(x 2+9)(x 2+1)(x −5).

A quick check shows that the fixed divisor of g is 15.

(i) Taking w = 1, 2, 0 respectively, as witnesses, we see that g2, g3, g4 are

quintessential for 5. The polynomial g1 is not essential for 5 because

v5(g1(a ))> 0 only if a ∈ 4+5Z and for such a , also v5(g2(a ))> 0.

(ii) Taking w = 1, 0, 2 respectively, as witnesses, we see that g1, g2, g4 are essential

for 3. Only g4 is quintessential for 3. The polynomial g3 is not essential for

3.

Figure 4.1 shows the essential and quintessential graphs of (g1, g2, g3, g4).

3 4

1 2

Essential graph

3 4

1 2

Quintessential graph

Figure 4.1: Graphs for Example 4.2.4
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4. A graph-theoretic criterion for absolute irreducibility of integer-valued
polynomials with square-free denominator

Lemma 4.2.5. Let D be a principal ideal domain and f ∈ Int(D ) a non-constant

image-primitive integer-valued polynomial, written in standard form according to

Definition 4.1.2 as

f =

∏

i∈I g i
∏

p∈T p ep
,

where T is a finite set of pairwise non-associated primes of D , and let n ∈N.

Every h ∈ Int(D ) dividing f n can be written as

h (x ) =

∏

i∈I g γi (h )
i

∏

p∈T pβp (h )
,

with γi (h ) ∈ N0 for i ∈ I and unique βp (h ) ∈ N0 for p ∈ T . Moreover, every such

representation of h satisfies:

(i) If q ∈ T and j ∈ I such that g j is quintessential for q among the i ∈ I , then

βq (h ) = eqγ j (h ).

(ii) In particular, whenever g j and gk are both quintessential for the same prime

q ∈ T , then γ j (h ) = γk (h ).

Proof. We know d( f n ) = d( f )n (cf. Remark 4.1.7). So, f n is image-primitive, and,

therefore, all polynomials in Int(D ) dividing f n are image-primitive. Let f n = hk

with h , k ∈ Int(D ). When h is written in standard form as in Definition 4.1.2, the

fixed divisor of the numerator equals the denominator, and the constant factor is

a unit. The same holds for k . This is so because h and k are image-primitive; see

Remark 4.1.5.

Now let q ∈D be prime and j ∈ I such that g j is quintessential for q . Note that,

by Remark 4.2.2 and unique factorization in K [x ], the exponent of g j in the nu-

merator of any factor of f n is unique.

Writing f n = hk as

∏

i∈I g n
i

∏

p∈T p nep
=

∏

i∈I g γi (h )
i

∏

p∈T pβp (h )
·
∏

i∈I g γi (k )
i

∏

p∈T pβp (k )
,

we observe the following equalities and inequalities of the exponents:

(i) neq =βq (h ) +βq (k )

(ii) n = γ j (h ) +γ j (k ) and hence neq = eqγ j (h ) + eqγ j (k )
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4.2. Graph-theoretic irreducibility criteria

(iii) eqγ j (h )≥βq (h ) and eqγ j (k )≥βq (k ).

(i) follows from unique factorization in D .

(ii) follows from unique factorization in K [x ] and Remark 4.2.2.

To see (iii), consider a witness w for g j being quintessential for q . Since f is

image-primitive, eq = vq (d(
∏

i∈I g i )), by Remark 4.1.5. From Definition 4.2.1 and

Remark 4.1.4 we deduce

eqγ j (h ) = vq

�

g j (w )
�

γ j (h ) = vq

�

g
γ j (h )
j (w )

�

= vq

�

∏

i∈I

g i (w )
γi (h )

�

≥βq (h )

(and similarly for k instead of h).

Finally, (i) - (iii) together imply eqγ j (h ) =βq (h ) and eqγ j (k ) =βq (k ).

Theorem 4.2.1. Let D be a principal ideal domain with quotient field K . Let

f ∈ Int(D ) be a non-constant image-primitive integer-valued polynomial, written

in standard form as f = g /b with b ∈ D \ {0}, and g =
∏

i∈I g i , where each g i is

primitive and irreducible in D [x ].

If the essential graph of (g i | i ∈ I ) is connected, then f is irreducible in Int(D ).

Proof. If |I |= 1, then f is irreducible in K [x ], and, by being image-primitive, also

irreducible in Int(D ).

Now assume |I |> 1, and suppose f can be expressed as a product of m non-units

f = f1 · · · fm in Int(D ). Since d( f ) = 1, we see immediately that no fi is a constant,

and that d( fk ) = 1 for every 1≤ k ≤m .

Write fk = hk/bk with bk ∈ D and hk primitive in D [x ]. Then b = b1 · · ·bm and

there exists a partition of I into non-empty pairwise disjoint subsets I =
⋃m

i=1 Ik ,

such that hk =
∏

i∈Ik
g i .

Select i ∈ I1 and j ∈ I with j 6= i . We show that also j ∈ I1. Let i = i0, i1, . . . , is = j

be a path from i to j in the essential graph of (g i | i ∈ I ). For some prime element

p0 in D dividing b , g i0
and g i1

are both essential for p0. As g i is essential for p0,

p0 cannot divide any bk with k 6= 1 and, hence, p0 divides b1. For any gk essential

for p0 it follows that k ∈ I1, and, in particular, i1 ∈ I1. The same argument with

reference to a prime pk for which both g ik
and g ik+1

are essential, shows for any

two adjacent vertices ik and ik+1 in the path that they pertain to the same Ik , and,

finally, that j ∈ I1.

As j ∈ I was arbitrary, I1 = I and m = 1.
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4. A graph-theoretic criterion for absolute irreducibility of integer-valued
polynomials with square-free denominator

Theorem 4.2.2. Let D be a principal ideal domain and f ∈ Int(D ) be non-constant

and image-primitive, written in standard form as

f =

∏

i∈I g i
∏

p∈T p ep
,

where I 6= ; is a finite set and for i ∈ I , g i ∈ D [x ] is primitive and irreducible in

D [x ].

If the quintessential graph G of (g i | i ∈ I ) is connected, then f is absolutely irre-

ducible.

Proof. Suppose

f n =
s
∏

l=1

fl , where fl =

∏

i∈I g ml (i )
i

∏

p∈T p kl (p )

and 0 ≤ ml (i ) ≤ n , 0 ≤ kl (p ) ≤ nep and for all i ,
∑s

l=1 ml (i ) = n and for all p ,
∑s

l=1 kl (p ) = nep .

Fix t with 1≤ t ≤ s . We show that ft is a power of f by showing that each g i with

i ∈ I occurs in the numerator of ft with the same exponent.

Let i , j ∈ I . By the connectedness of the quintessential graph, there exists a se-

quence of indices in I , i = i0, i1, i2, . . . , ik = j and for each h , a prime element ph

in T such that g ih
and g ih+1

are both quintessential for ph . By Lemma 4.2.5, g ih

and g ih+1
occur in the numerator of ft with the same exponent. Eventually, g i and

g j occur in the numerator of ft with the same exponent, for arbitrary i , j ∈ I . In

an image-primitive polynomial, the numerator determines its denominator (as in

Remark 4.1.5) and, hence, ft is a power of f . Since ft is irreducible, ft = f .

Example 4.2.6. The binomial polynomial
�

x

p

�

=
x (x −1) · · · (x −p +1)

p !

where p ∈Z is a prime, is absolutely irreducible in Int(Z), by Theorem 4.2.2.

The converse of Theorem 4.2.2 does not hold in general. For instance, the poly-

nomial

f =
x 2(x 2+3)

4
∈ Int(Z)

is absolutely irreducible in Int(Z) but the quintessential graph of (x , x , x 2+3) is not

connected.

There is, however, a converse to Theorem 4.2.2 in the special case where the de-

nominator of f is square-free, as we now proceed to show, cf. Theorem 4.3.1.
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4.3. Absolutely irreducible polynomials with square-free denominator

4.3. Absolutely irreducible polynomials with square-free

denominator

Let D be a principal ideal domain with quotient field K . When we talk of the

denominator of a polynomial in K [x ], this refers to the standard form of a poly-

nomial introduced in Definition 4.1.2.

Remark 4.3.1. Let D be a principal ideal domain. Suppose the denominator of

f ∈ Int(D ), written in standard form as in Definition 4.1.2, is square-free:

f =

∏

i∈I g i
∏

p∈T p
.

Then, if f is irreducible in Int(D ), it follows that each g i is essential for some

p ∈ T . Otherwise, we can split off g i . This further implies g i 6∼ g j in D [x ] for

i 6= j , whenever f ∈ Int(D ) with square-free denominator is irreducible. A crite-

rion for irreducibility of an integer-valued polynomial with square-free denomina-

tor has been given by Peruginelli [52].

Theorem 4.3.1. Let D be a principal ideal domain and f ∈ Int(D ) be non-constant

and image-primitive, with square-free denominator, written in standard form as

f =

∏

i∈I g i
∏

p∈T p
,

where I 6= ; is a finite set and for i ∈ I , g i ∈ D [x ] is primitive and irreducible in

D [x ].

Let G be the quintessential graph of (g i | i ∈ I ) as in Definition 4.2.3.

Then f is absolutely irreducible if and only if G is connected.

Proof. In view of Theorem 4.2.2, we only need to show necessity. If |I | = 1, then

G is connected. Now assume |I | > 1, and suppose G is not connected. We show

that f is not absolutely irreducible. If f is not even irreducible, we are done. So

suppose f is irreducible. This implies g i 6∼ g j in D [x ] for i 6= j , by Remark 4.3.1.

Since G is not connected, I is a disjoint union of J1 and J2, both non-empty, such

that there is no edge (i , j ) with i ∈ J1 and j ∈ J2.

We express T as a disjoint union of T1 and T2 by assigning every p ∈ T for which

some g i with i ∈ J1 is quintessential to T1, every p ∈ T for which some g i with i ∈ J2

is quintessential to T2, and assigning each p ∈ T for which no g i is quintessential

to T1 or T2 arbitrarily. (It may happen that T1 = ; and T2 = T or vice versa).
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4. A graph-theoretic criterion for absolute irreducibility of integer-valued
polynomials with square-free denominator

Then f 3 factors in Int(D ) as follows:

f 3 =

�∏

i∈J1
g i

�2∏

j∈J2
g j

�

∏

p∈T1
p
�2∏

q∈T2
q
·

�

∏

j∈J2
g j

�2∏

i∈J1
g i

�

∏

q∈T2
q
�2∏

p∈T1
p

.

As Int(D ) is atomic (cf. [17]), each of the two factors above can further be factored

into irreducibles. Since J1 and J2 are both non-empty and g i 6∼ g j in D [x ] (and

hence, g i 6∼ g j in K [x ]) for i 6= j , it is clear that the resulting factorization of f 3

into irreducibles is essentially different from f · f · f .

Remark 4.3.2. Let D be a principal ideal domain. The proof of Theorem 4.3.1

shows that any non-absolutely irreducible element f ∈ Int(D ) with square-free de-

nominator exhibits non-unique factorization of f n already for n = 3.

If f (x ) =
∏

i∈I g i (x )/p , where D is a principal ideal domain, p a prime of D and

each g i ∈D [x ] primitive and irreducible in D [x ], then it is easy to see that f is an

irreducible element of Int(D ) if and only if

(i) d
�∏

i∈I g i (x )
�

= p and

(ii) each g i is essential for p , that is, for each i ∈ I there exists wi ∈D such that

vp

�

g i (wi )
�

> 0 and vp

�

g j (wi )
�

= 0 for all j ∈ I \ {i }.

An analogous statement relates absolutely irreducible integer-valued polynomials

with prime denominator to quintessential irreducible factors of the numerator:

Corollary 4.3.3. Let D be a principal ideal domain, p ∈ D a prime, and I 6= ; a

finite set. For i ∈ I , let g i ∈D [x ] be primitive and irreducible in D [x ]. Let

f (x ) =

∏

i∈I g i (x )
p

.

Then f is an absolutely irreducible element of Int(D ) if and only if

(i) d
�∏

i∈I g i (x )
�

= p and

(ii) each g i is quintessential for p among the g i with i ∈ I , that is, for each

i ∈ I there exists wi ∈ D such that vp

�

g i (wi )
�

= 1 and vp

�

g j (wi )
�

= 0 for all

j ∈ I \ {i }.

Proof. If d
�∏

i∈I g i (x )
�

= p , then f ∈ Int(D ) with d( f ) = 1, and Theorem 4.3.1 ap-

plies. If, on the other hand, f is in Int(D ) and is absolutely irreducible, then f

is, in particular, irreducible and therefore d( f ) = 1, and, again, Theorem 4.3.1 ap-

plies. Now the statement follows from the fact that, whenever d
�∏

i∈I g i (x )
�

= p is
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4.3. Absolutely irreducible polynomials with square-free denominator

prime, the quintessential graph of (g i | i ∈ I ) is connected if and only if every g i is

quintessential for p .

We conclude by an example of how to apply Theorem 4.3.1:

Example 4.3.4. The following polynomial f ∈ Int(Z) is irreducible, by Theo-

rem 4.2.1; but not absolutely irreducible, by Theorem 4.3.1:

f =
(x 3−19)(x 2+9)(x 2+1)(x −5)

15

This is so because the essential graph of (x 3−19, x 2+9, x 2+1, x −5) is connected,

but the quintessential graph is not connected, see Example 4.2.4 and Figure 4.1.
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A. Appendix

This appendix consists of factorization terms and results from [36] that we refer to

in Section 2.5. We only state the items we need in this thesis and refer to [36] for

the full results and their proofs.

Definition A.0.1. Let H , B be monoids. A map ϕ : H −→ B is called a monoid

homomorphism if:

(i) ϕ(a b ) =ϕ(a )ϕ(b ) for all a , b ∈H .

(ii) ϕ(1H ) = 1B .

Definition A.0.2. [36, Definition 3.2.1] A monoid homomorphism θ : H −→ B is

called a transfer homomorphism if it satisfies the following properties:

(i) B = θ (H )B× and θ −1(B×) =H ×.

(ii) If u ∈ H , b , c ∈ B and θ (u ) = b c , then there exist v, w ∈ H such that u =
v w ,θ (v )∼ b and θ (w )∼ c ,

where B× and H × are the units of B and H respectively.

In the next proposition, we state parts of [36, Proposition 3.2.3] that we need in

this thesis. First recall that the set of lengths of a non-zero non-unit a ∈H is the

set L (a ) of all natural numbers n such that a has a factorization of length n .

Proposition A.0.3. Let θ : H −→ B be a transfer homomorphism and a ∈H . Then

the following hold:

(i) a is an atom of H if and only if θ (a ) is an atom B .

(ii) H is atomic if and only if B is atomic.

(iii) If H is atomic, then L (a ) = L (θ (a )), H and B have the same elasticity, and

H is a BF-monoid if and only if B is a BF-monoid.

Definition A.0.4. (i) Let G be an additively written abelian group and G0 ⊆G a

nonempty subset. Let F (G0) denote the free abelian monoid with basis G0.

(ii) The elements of F (G0) are called sequences over G0 and are of the form

S =
∏

g∈G0

g ng
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where ng = vg (S ) ∈N∪{0}, ng = 0 for almost all g ∈G0.

(iii) The length of a sequence S is

|S |=
∑

g∈G0

vg (S ) ∈ N∪{0}

and the sum of S is

σ(S ) =
∑

g∈G0

vg (S )g ∈ G

(iv) The monoid

B(G0) =

�

S ∈F (G0)
�

� σ(S ) = 0

�

is called the block monoid over G0 or the monoid of zero-sum sequences.

Lemma A.0.5. [36, Lemma 6.4.4.] Let G be an additively written abelian group and

G • =G \ {0}. Let U , V be atoms of B(G •).

(i) maxL (U V )≤ min{|U | , |V |}.

(ii) maxL (U V ) = max{|U | , |V |} if and only if V =−U .

(iii) |U |= max{maxL (U U ′) |U ′ is an atom of B(G )}.

Definition A.0.6. A commutative monoid H is said to be a transfer Krull monoid

(over G0) if there exists a transfer homomorphism θ : H −→ B(G0) for a subset G0

of an abelian group G .
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