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Abstract

In this work a method to exert control with discontinuous signal functions onto bodies
within multibody systems is deduced and the results of some numerical experiments
are presented. The control cannot be applied in the form of servo constraints due to
discontinuities and jumps in the signal, since this would deteriorate the regularity of
the resulting DAE system. By generalizing the signal to be (at least) a L2-function,
the domain of standard multibody simulation techniques, namely the solution or ap-
proximative solution of systems of ODEs, is left and only papers dealing with specific
multibody systems are published so far. This thesis summarizes the mathematical
modelling of multibody systems, uses optimal control theory to reformulate the prob-
lem by splitting the servo constraints from the remaining joint constraints and applies a
minimization approach to the servo constraint residual. Signal samples were collected
out of the software framework of Autodesk VRED and a library for modelling and
simulation applications was implemented. Numerical algorithms were constructed and
tested, which allow control of multibody systems in real time. This renders interac-
tive simulation and visualization of multibody systems possible and the methods were
designed for the application inside modern virtual environments, such as Augmented,
Mixed and Virtual Reality, in order to contribute to an efficient preproduction process
in the field of virtual product development.
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Kurzfassung

Im Rahmen der Arbeit wurde eine Methode hergeleitet, um Mehrkörpersysteme mit
unstetigen Signalen zu steuern, und die Resultate numerischer Experimente werden
vorgestellt. Die Steuerung kann nicht in Form von Servo-Zwangsbedingungen durchge-
führt werden, da aufgrund der Unstetigkeitsstellen und Sprünge im Signal sich die
Regularität der resultierenden Systeme von differential-algebraischen Gleichungen ver-
schlechtern würde. Durch Verallgemeinerung und Annahme, dass das Signal (zumin-
dest) eine L2-Funktion ist, wird das Gebiet der Standardmethoden für Mehrkörper-
simulationen, nämlich das Lösen und Approximieren von Lösungen von gewöhnlichen
Differentialgleichungssystemen, verlassen und die Publikationen in diesem Bereich be-
fassen sich soweit nur mit sehr spezifischen Mehrkörpersystemen. Diese Diplomar-
beit fasst das mathematische Modellieren von Mehrkörpersystemen zusammen, ver-
wendet die Theorie der optimalen Kontrolle um das Problem neu zu formulieren, in-
dem Servo-Zwangsbedingungen von den restlichen Zwangsbedingungen getrennt wer-
den, und wendet ein Minimierungsverfahren auf das Servo-Residuum an. Es wurden
Signalproben aus der Software-Umgebung von Autodesk VRED entnommen und ein
Programm zur Modellierung und Simulation entworfen. Es wurden diverse numerische
Verfahren konstruiert und getestet, welche eine Steuerung von Mehrkörpersystem in
Echtzeit ermöglichen. Das wiederum ermöglicht einen interaktiven Simulations- und
Visualisierungsprozess und die Methoden wurden so gestaltet, dass eine Anwendung in
modernen Gebieten wie Augmented, Mixed und Virtual Reality möglich ist und damit
der Vorentwicklungsprozess im Bereich der virtuellen Produktentwicklung effizienter
gestaltet werden kann.
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Introduction

Motivation and goal

The importance of simulations of multibody systems has already been recognized in
industry and science. Its applications are numerous and new use cases are found regu-
larly. The automotive and robotics industry rely on this field and put great effort into
real-time simulations for in-the-loop development and other preproduction processes.
Within manufactures within the automotive industry are investing heavily in order to
virtualize the whole preproduction and development process. Modern technologies as
Augmented, Mixed and Virtual Reality, collectively abbreviated by xR, are being used to
shorten the preproduction, especially the feedback and visual assessment process. Not
only are matters of design in question, but also the assessment of kinematics. Examples
for this are the movement of wheel suspensions, the bodywork reactions to angular mo-
ments, which are applied to driving wheels, and the visual evaluation of space between
fenders, mudguards and wheels in all kinematically possible positions, to mention a few.
While it is possible to calculate motion sequences in advance and to animate the move-
ment, a far more interesting goal is to implement real-time simulations within a virtual
environment itself and to provide a certain interactivity. This will shorten the whole
preproduction process even more since one immediately gets output for applied input.

Figure 0.1.: A VR tracker and
controller from
VIVE.1

This interactivity can be realized by controllers and
similar electronic gadgets for commercial xR software.
The signals provided by these gadgets can be used for
the actuation of multibody systems, which are mod-
elled beforehand. While every commercial software
provides means for extracting the position and orien-
tation of a controller, the signal quality and usabil-
ity pose an obstacle when aiming for physically accu-
rate simulations. As an example, the Autodesk VRED
software provides Virtual Reality functionalities, but
the user can not influence how often the software reg-
isters the controller movement. One can access the
currently cached position and orientation via various
programming interfaces. This software itself relies on
Steam VR, created by the VALVE Corporation, in or-
der to create a 3D-scene. It is compatible with con-
trollers and trackers sold by VIVE and all three in
combination enable the user to create geometries, ma-
nipulate them and interact with them.
There is no need to discuss compatible versions and specify gadgets, build numbers,
etc. Solely the fact of having so many factors involved and having to move within a

1 2011-2020 HTC Corporation, accessed 4th February 2020,
https://www.vive.com/de/accessory/.
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12 Introduction

preset framework gives rise to many problems. On the one hand the microelectronic
elements inside gadgets, on the other hand the implementations, which finally provide
position and orientation in the form of vectors, are factors which deteriorate the signal
quality.

In this thesis, in collaboration with the industrial partner, the goal is to implement
a multibody simulator and visualize vehicle kinematics within a virtual environment.
Interactivity is provided by allowing the user to move single bodies with a controller.
This movement is more generally called actuation and has to be treated from a me-
chanical point of view. Since the concept of movement is not restricted to controllers,
but can also be extended to gestures in other xR applications. The virtual environment
used here is not a restriction. It is only used exemplarily.

Contact problems and elasticity are not taken into account. The thesis is restricted
to rigid bodies and their movement under specified types of constraints. The objective
is in its most simple form, the approximation of position and velocity of the rigid
bodies. The solution to this objective has to fulfil several criteria:

• Real-time simulation
In order to gain a feeling of immersion into the VR environment, the simulation
has to keep up with the visual perception of the user. This gives rise to a need for
fast numerical algorithms and approaches. The exerted actuation is also based on
the real time scale. Hence if the simulation is slower, the dynamics do not display
the correct response to the actuation.

• Accuracy
While the gaming industry provides several so-called physics engines for the real-
time visualization of movement, their physical correctness and accuracy can hardly
be comprehended and an insight is not provided. This thesis however, aims for
a solution applicable to real industrial needs and development and production
processes. Physical correctness has to be guaranteed. Since there are already
several excellent approaches which have proven to be sufficiently accurate, this
criterion can be fulfilled, but has to be balanced with the first criterion. The well-
known conflict between accuracy and efficiency gets a new, aggravated aspect:
accuracy against real-time perception.

• Generality
The solution must not be tied to a given framework. While the modelling and
solving of unactuated multibody systems is general and can be found in any
basic literature on mechanics, the actuation depends on the framework. Therefore
several different types of actuation are taken into account and generalized to
an extent, which does not depend on the framework and its implementation.
While the simulation of multibody systems is already a well-researched field, the
generality of the actuation signals is a rather new consideration.

Keeping these criteria in mind this thesis will introduce the topic from a rigorous,
mathematical point of view. The connections to the introduced framework will be
explained, such that the necessity of sometimes abstract conditions is underlined and
can be related to the source.
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Thesis overview

The simulation of multibody systems requires a wide range of preparations to be made.
It starts with defining the model and the quantities of interest. The first chapters are
based on standard literature on mechanics and ordinary differential equations (ODEs)
and summarize the topic to an extent which is sufficient for this thesis [11, 15, 18, 20].

In Chapter 1 the rigid body model and the relevant kinematic and kinetic quanti-
ties representing and influencing the kinematic state of such a body are introduced.
These quantities are the position, orientation, velocity and angular velocity. The mod-
elling of joints and actuation is achieved by stating algebraic equations, which set the
kinematic quantities into relation to each other [17, 20]. A deeper understanding for
these constraints is provided by changing the perspective to a geometrical one [10, 19].
Finally a short glance at an object-oriented approach for a computer-aided modelling
process is given [10].

In order to obtain a solvable system of ODEs, the Newton-Euler approach is used
in Chapter 2 to formulate a set of equations of motion. The algebraic equations from
Chapter 1 are used as constraints on the set of admissible solutions. The general ap-
proach to solve differential-algebraic equations (DAEs) is introduced [9] and applied to
the multibody setting. Various forms of resulting DAEs are presented and related to
constraints treated by this thesis. Additionally, means of stabilizing the system [3] are
also presented and applied.

Chapter 3 deals with the numerical approximation of the solution, since the ODEs
gained in multibody dynamics are only in simpler cases analytically solvable. At first
the requirements of the application are stated. The class of linear-implicit solvers is
then introduced and applied to the model elaborated in Chapter 2. At the end of this
chapter a comparison of results for actuation signals of different nature is presented.

In Chapter 4 the problem of actuated multibody systems is considered from another
perspective. Optimal Control Theory is applied and a single-stage approach is used in
order to minimize the residual of actuation. Algorithms based on the preliminaries in
Chapter 3 are derived in order to solve the newly obtained system of ODEs. Regular-
izations with two different norms are applied and tested.

Finally some conclusions are drawn, which summarize the results of this thesis. Ap-
pendix A contains exemplarily the modelling of three different joints. Appendix B
presents the approximation of the solution of the one-dimensional Yukawa equation
with a finite element approach. This equation appears in Chapter 4 when considering
a certain type of regularization.





1. Modelling of multibody systems

In this chapter the mathematical modelling of rigid bodies, forces and different types
of constraints is treated, where a closer look onto joints and actuation is taken. At the
end, an idea is given of how to implement the modelling process with an object oriented
approach. It serves mainly for introducing mathematical assumptions on which this
work is based, the notation and to relate to underlying literature [11, 15, 16, 19, 20].
A rigorous derivation of all mentioned physical terms is found in the cited literature.

1.1. Kinematics and kinetics of rigid bodies

The object of interest is a set of rigid bodies {Ki}nK
i=1, nK ∈ N, which move through

space. Each element has two constant physical properties, mass and inertia, associated
with it. In order to describe the space R3, the canonical base and xyz- notation are
used.

Definition 1.1 (Rigid Body)
Let Ki = Ki(t) ⊂ R3 be a compact region at time t. Let further mi ∈ (0,∞) denote
the mass and Θi ∈ R3×3 the inertia tensor, where Θi is positive definite. For every
point P ∈ Ki, let xP (t) denote the position at time t.
If

‖xP1
(t)− xP2

(t)‖2 = c(P1, P2) , ∀t ≥ 0,

holds for each pair of points P1, P2 ∈ Ki with a constant c(P1, P2) ≥ 0, then Ki is
called a rigid body. ‖·‖2 denotes the Euclidean norm for vectors in space.

The condition in Definition 1.1 implies that there is no relative movement between
points of a rigid body. Hence it is sufficient to consider only a single point of Ki and
the orientation of all remaining points with respect to this specific one. For simplicity
reasons consider the centre of gravity and denote its position with a C2-regular function

xt,i : R≥0 → R3 .

There are several ways to describe the orientation of a body. The probably most
illustrative one is the Kardan formalism [20, Sec. 3.6]. It is based on the assumption,
that each rotation in space can be decomposed into ”three, plain, elementary rotations
around defined coordinate axes” [16, P. 38]:

1. rotation: around the x-axis with angle αi.

2. rotation: around the resulting y-axis with angle βi.

3. rotation: around the z-axis, resulting after the previous rotations, with angle γi.

αi, βi and γi are functions of time and C2-regularity is assumed again. The range of
the angles is

αi(t), γi(t) ∈ [ 0, 2π ) ,

βi(t) ∈
[
−π

2
, π
2

]
.
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The vector of angles wi(t) is defined by concatenating these quantities into a function

wi : R≥0 → R3 ,

t →

 αi(t)
βi(t)
γi(t)

 .

Assuming that the position of each point P ∈ Ki is given relative to the centre of
gravity by a (constant) vector x̂P , its movement through space is hence given by

xP (t) = xt,i(t) +Ri(t)x̂P , (1.1)

where Ri(t) is a rotation matrix. It holds

det (Ri(t)) = 1 , R>i (t)Ri(t) = I , ∀t ,
where I is the identity. Instructions on how to construct the rotation matrix out of
angles can be found in [16, Chap 2.5] and [20, Chap. 3.6]. Note that Ri depends on
time only by the dependency on the angles. For readability reasons only t is denoted.

The velocity of a point is obtained by total differentiation of the position with respect
to time. This operation is denoted by a dot above the differentiated quantity. For a
point P it is

ẋP (t) = ẋt,i(t) + Ṙi(t)x̂P .

The term
vt,i(t) := ẋt,i(t) (1.2)

is called translational velocity and represents the velocity of the centre of gravity. The
derivative of the matrix introduces a new quantity. Since it equals

R>i Ri = I ,

Ṙ>i Ri +R>i Ṙi = 0 ,

Ṙ>i Ri = −R>i Ṙi = −
(
Ṙ>i Ri

)>
,

it holds that Ṙ>i Ri is a skew-symmetric matrix. Hence there exists a vector ωi such
that

ṘiR
>
i x = ωi × x , ∀x ∈ R3 .

It further holds that
Ṙi = −RiṘ

>
i Ri = ṘiR

>
i Ri .

Hence the velocity of a point P can be written as

vp(t) := ẋP (t) = vt,i(t) + ωi(t)× [Ri(t)x̂P ] . (1.3)

The vector ωi is called angular velocity of the rigid body with respect to the centre
of gravity, since the orientation is also given with respect to this point. The following
relation holds for the angular velocity and the Kardan angles:

Lemma 1.2 (Kinematic Kardan Equation, [16, Eqn. 2.87])
For a rigid body Ki, its angular velocity ωi and its vector of angles wi there exists a
singular linear mapping Ki(wi) such that

ẇi(t) = Ki(wi) ωi(t) . (1.4)

It is singular for all configurations with βi = ±π
2
.
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This singularity does not pose a huge obstacle in most cases. Even when simulat-
ing multibody systems with large finite rotations, singular configurations result rarely
due to numerical inaccuracy. However it cannot be excluded and in order to avoid
it one has to introduce a different formalism, e.g., unit quaternion based rotation.
Unit quaternions introduce more parameters (an axis and an angle instead of three an-
gles), but they have no singularities. As a matter of fact, there exists an orthonormal
mapping between the angular velocity and the derivative of a quaternion with respect
to time (see [20, Sec. 3.7]).

In summary the kinematic state of a rigid body Ki is given by the four vectorial
quantities

xt,i(t), wi(t), vt,i(t) and ωi(t) .

A system of nK rigid bodies has the total degree of freedom of 6nK . The unknowns
are the position and the orientation, whereas the velocities are derivable quantities.

There are differential relations between these functions and other, vectorial functions

f
i
(t) , mi(t) ,

which represent the vectors of acting forces and moments in a mechanical sense. They
are in general assumed to be given by, e.g., gravity, spring and damper force laws and
may depend on the kinematic states of multiple rigid bodies (springs and dampers
connecting two bodies for example). All together they represent the kinetic state of a
rigid body Ki. The relation between the kinematic and kinetic state will be presented
in Chapter 2 in the form of ordinary differential equations.

1.2. Constraints

In mechanical terms, constraints are imposed by introducing joints between rigid bod-
ies. These joints constrain the movement of respective bodies relative to each other. In
mathematical terms, constraints introduce algebraic equations containing the functions
xt,i(t) and wi(t) for various i ∈ {1, . . . , nK}. There are also constraints containing the
derivatives vt,i and ωi which are, and this is the crucial difference, not integrable to
algebraic equations. Constraints of this type are called non-holonomic [15, Sec. 2.3].
This thesis covers only holonomic constraints or those, which have a purely algebraic
form. Furthermore only constraints involving two rigid bodies Ki1 and Ki2 are consid-
ered. Involving more bodies does not change anything in the methods elaborated in
this work and is for simplicity reasons omitted.

In sum, implicit algebraic equations

Φj(xt,i1 , wi1 , xt,i2 , wi2 , t) = 0 , (1.5)

are considered, where

Φj : R3 × R3 × R3 × R3 × R→ RnBj

is at least twice continuously differentiable with respect to time. The dependency
on time of various functions is not noted, when said functions are used as argu-
ments for mappings. In total nB =

∑
nBj

algebraic equations are considered, where
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0 < nB < 6nK . If there are as many independent constraints as total degrees of
freedom, the multibody system is kinetically defined and the simulation is reduced to
solving a system of algebraic equations.

Depending on whether Equation (1.5) contains the time t explicitly or not, the con-
straints are called rheonomic or scleronomic, respectively. A pendulum of varying
length is a standard example for rheonomic constraints (see [15, Examp. 2.8]).

This thesis covers two classes of constraints.
Joints, i.e. equations of type

Φj(xt,i1 , wi1 , xt,i2 , wi2) = 0 , (1.6)

which are holonomic and scleronomic, and actuations, i.e. holonomic and rheonomic
constraints

Ψk(xt,ik , wik , t) = 0 , (1.7)

where
Ψk : R3 × R3 × R→ RnAk .

General regularity assumptions are not imposed on the Ψk. Only the amount of equa-
tions is assumed to be limited. The number of joint equations nB and the number of
actuation equations nA =

∑
nAk

must not exceed the total degrees of freedom, which
means

0 < nB + nA < 6nK .

Actuation can have various forms. Exemplarily a simple form is given by

Ψk(xt,ik , wik , t) = xt,ik − hk(t) = 0 , (1.8)

where hk(t) is a given function in time. This actuation constrains the movement of the
centre of gravity to a curve in space given by hk(t) and imposes 3 algebraic equations
onto the system. This special type of constraint is often referred to as servo constraint
[1, 4].

The modelling of joints and the underlying mathematical equations are explained in
Appendix A.
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1.3. A geometric interpretation of multibody

systems

In this section the previously introduced degrees of freedom are understood as functions,
more precisely parametrized curves in space. Without any constraints, all possible con-
figurations cover the whole space, i.e. for each body Ki the vector xt,i(t) can point to
any point in space.

Consider two bodies, Ki1 and Ki2 , and constraints of the form

Φ(xt,i1 , xt,i2) = 0 . (1.9)

Assuming Equations (1.9) can be explicitly solved for xt,i2 , a representation of the
position

xt,i2(t, ỹ) = Φ̃(xt,i1 , ỹ) (1.10)

for the second body can be obtained. A necessary condition for this conversion is the
independency of the Equations (1.9). ỹ is a set of parameters necessary to describe
the relative movement between the two bodies. The number of necessary parameters
equals the number of degrees of freedom of the joint, which is represented by Φ. In
general the parameters also depend on time. This dependency is sometimes omitted
for readability reasons.

The possible configurations for the second body are now restrained to the ones ful-
filling Equation (1.10). The union of all possible configurations form a manifold within
R3 and for an arbitrary but fixed time t a parametrization is given by Equation (1.10).
Its dimension equals the number of parameters necessary to form the explicit represen-
tation. A rigorous form of this statement will be given in Subsection 1.3.1.

Differentiation with respect to time shows an affine linear relation between the trans-
lational velocities of the bodies

vt,i2(t, ỹ) =
∂

∂xt,i1
Φ̃(xt,i1 , ỹ) vt,i1(t) +

∂

∂ỹ
Φ̃(xt,i1 , ỹ) ˙̃y . (1.11)

More general this is a relation between the tangential spaces of the parameter and image
space, called push-forward, a term originating from the field of differential geometry.

Example 1.3 (Spatial mass point pendulum)
Consider two mass points and their respective position in space, x1(t) and x2(t). A
pendulum of constant length 1 is formulated by the single constraint

Φ(x1, x2) = ‖x1 − x2‖22 − 1 = 0 .

Any spatial rotation relative to the other mass point is allowed and a constant distance
of 1 is kept. On the other hand an explicit representation of x2(t) can be achieved by
introducing spherical coordinates (r = 1, θ, φ) and stating

x2(t) = x1(t) +

 sin(θ) cos(φ)
sin(θ) sin(φ)

cos(θ)

 = Φ̃(x1, ỹ) ,
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where ỹ = [θ, φ]>. For an arbitrary but fixed time t, x1 is given and the pair (θ, φ)
parametrizes a spherical surface around the first mass point, which is a 2-dimensional
manifold in R3.

The problem of finding two curves in space can be transformed into a problem of
finding a parametrized curve in R6. By denoting

x(t) =

[
xt,i1(t)
xt,i2(t)

]
and considering constraints

Φ(x) = 0 ,

one can obtain an explicit representation

x(t) =

[
xt,i1(t)
xt,i2(t)

]
=

[
xt,i1(t)

Φ̃(xt,i1 , ỹ)

]
= Φ̂(y(t)) , (1.12)

where the set of parameters is chosen as

y(t) =

[
xt,i1(t)

ỹ

]
.

The choice of this set is not unique, but it is minimal in a sense that it is the least
amount of parameters necessary to parametrize the generalized curve in R6. This set of
coordinates is commonly referred to as generalized coordinates in mechanics’ literature.
The amount of parameters, especially contained in ỹ, depends on the modelled joint and
its degree of freedom. This concept can easily be extended to the orientational degrees
of freedom, namely the angles wi(t). Considering two rigid bodies with 6 degrees of
freedom each, the explicit representation of a single body using the constraints can
contain up to 6 additional parameters.

1.3.1. The state manifold

The idea to consider the problem of finding the kinematic curves of multiple rigid
bodies as a problem in a higher dimensional space is stated by C. Lanczos in [11].

Consider nK rigid bodies and their kinematic quantities xt,i(t), wi(t), which are 6
unknown scalar functions in total. Define the global position vector x(t) by concate-
nating the kinematic quantities in a manner deemed to be convenient

x(t) =


xt,1(t)
w1(t)

...
xt,nK

(t)
wnK

(t)

 . (1.13)

For reasons of simplicity the translational and orientational quantities of a rigid body
are kept next to each other in the global form. Methods on how to number and order
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different rigid bodies are given in Section 1.4. By the same means define the global
velocity vector v(t) and the global force vector f(t) as

v(t) =


vt,1(t)
ω1(t)

...
vt,nK

(t)
ωnK

(t)

 , f(t) =


f
1
(t)

m1(t)
...

f
nK

(t)

mnK
(t)

 . (1.14)

All possible configurations of the multibody system are now elements of the higher
dimensional ”configuration space” R6nK [11, Chap. 1], where a single point represents
all translational and orientational quantities.

Again by a manner one deems to be convenient, all holonomic constraints in implicit
form can be assembled to

Φ(x, t) = 0 , (1.15)

where

Φ : R6nK × R→ RnB , 0 < nB < 6nK ,

is a function of sufficient smoothness. Extend the assumption of independent equations
to the new, global constraint vector. The following theorem will be used for describing
the set of admissible states and can be found in any standard literature on higher
analysis and differential geometry. It can be proved to be a consequence of the implicit
function theorem.

Theorem 1.4 (Regular Value Theorem, [19, Part II, Prop. 2.1.25])
Let n,m ∈ N be such that n ≥ m and let F : Rn → Rm be a differentiable function.
Let a ∈ Rm be a regular value of F , i.e.

rank(DF (x)) = m, ∀x ∈ F−1(a) ,

where DF denotes the Jacobian of F .

Then the equation

F (x) = a

defines a (n−m)-dimensional sub-manifold M ⊂ Rn and it holds

TxM = ker(DF (x)) ,

where TxM denotes the tangential space of M at x.

By the assumption of independent equations, it holds that the Jacobian of Φ from
Equation (1.15) has full rank, i.e.

rank(DF (Φ)) = nB .

Therefore, the algebraic constraints define a 6nK − nB - dimensional manifold within
the configuration space R6nK .
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Definition 1.5 (State manifold)
Let {Ki}nK

i=1 be a multibody system with nB independent algebraic constraints. The
sub-manifold of the configuration space implicitly defined by Φ(x, t) = 0 is called state
manifold and denoted by S. It represents a set of all kinematically admissible states
of the system.

The constraints reduce the set of all kinematically possible configurations to S and
the unknown global position vector x(t) is a parametrized curve lying on this manifold.
The quantity

nff := 6nK − nB
is commonly referred to as absolute degree of freedom and is important when investi-
gating algorithms for simulating multibody systems.

Since the dimension of S is nf , a set of generalized coordinates y for an explicit
parametrization of x(t) as a subset of the S, i.e.

x = x(y, t) , (1.16)

is an element of Rnf , y = [y1, . . . , yf ]
>. Equation (1.12) showed how y can be chosen

for two bodies.

One can compute the basis of the tangential space by differentiating the parametriza-
tion with respect to time

v(y, t) = J(y, t) ẏ + v̄(y, t) , (1.17)

where

J(y, t) :=
∂

∂y
x(y, t) ,

v̄(y, t) :=
∂

∂t
x(y, t) .

(1.18)

The time t in Equation (1.16) and the vector v̄ appear only when considering rheonomic
constraints. The term ẏ is commonly referred to as generalized velocities (see [20, Sec.
5.2]). The tangential space of the state manifold at a certain point is spanned by the
columns of J(y, t) and, if applicable, by v̄(y, t),

Tx(t) := span

{
∂

∂y1
x(y, t), . . . ,

∂

∂yf
x(y, t), v̄(y, t)

}
.

By Equation (1.17) the global velocity vector v(t) (= v(y, t)) is an element of Tx(t).
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1.3.2. Restraining forces and the cotangent space

In Newtonian mechanics the change of the impulse depends on the sum of all acting
forces, i.e. the change of the velocity vector of a rigid body with constant mass is equal
to the forces acting on it. Equation (1.17) shows that the velocity is an element of the
tangential space. Therefore one can assume the existence of forces and moments, which
cancel out every change of the velocity in all directions perpendicular to the tangential
space. For an arbitrary but fixed time t, this narrows down the space in which these
restraining forces and moments exist to a manifold implicitly defined as the orthogonal
complement of Tx(t). This observation is also a consequence of the mechanical principle
of D’Alembert [15, Sec. 4.2], which states that the work done by the restraining forces
must be zero for infinitesimal variations of the position in tangential direction.

These variations are associable with velocities and since work is the scalar product
of force and changes in position, the zero value of the scalar product corresponds with
the geometrical interpretation stated here. Figure 1.1 visualizes this relation exemplar-
ily for a pendulum.

x

z

Restraining forces

Tangential spaceState manifold

m

Figure 1.1.: Tangential space and restraining forces of a pendulum at a fixed time.

Let from now on

f r(t)

denote the restraining forces and moments. The kinetic state is split into two parts
[15, Subsec. 3.1.2]

f(t) = f e(t) + f r(t) , (1.19)

where the super-script e denotes external forces and moments applied by objects like
springs and dampers.

In order to obtain a representation of the orthogonal complement, consider the im-
plicit constraints

Φ(x, t) = 0, (1.20)

and differentiate them with respect to time

d

dt
Φ(t) =

∂

∂x
Φ(x, t) v(t) +

∂

∂t
Φ(x, t) := G(x, t) v(t) + ϕ̄(t) = 0 . (1.21)
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G = G(x(t), t) is called implicit constraint matrix and the vector ϕ̄ occurs only when
considering rheonomic constraints. Substituting the velocity term by its explicit rep-
resentation from Equation (1.17) yields

G(x, t) J(y, t) ẏ +G(x, t) v̄(y, t) + ϕ̄(t) = 0 . (1.22)

Equation (1.22) holds for arbitrary, independent values of the generalized coordinates
and velocities, y and ẏ. Hence each of the terms

G(x, t) J(y, t) = 0 ,

G(x, t) v̄(y, t) + ϕ̄(t) = 0
(1.23)

must be zero. The following can be observed now:
For each time t, the rows of G are orthogonal to any vector spanned by the columns
of J . Since the columns span the tangential space, the rows of G span therefore a
subspace of the orthogonal complement. Since furthermore the dimension of the tan-
gential space is 6nK − nB and G has nB independent rows, the rows of G span the
whole orthogonal complement within the configuration space R6nK .

By this observation, the global vector of restraining forces f r(t) has an explicit repre-
sentation

f r(t) = G>(x, t) ρ , (1.24)

where ρ ∈ RnB is a Lagrangian multiplier (see Chapter 2). ρ also depends on time in
general.

Remark 1.1
The dual space

T ∗x(t) :=
(
Tx(t)

)∗
is commonly referred to as cotangent space.

If the row vectors of G(x, t) are seen as Riesz-representatives of elements of T ∗x(t) at
time t , one obtains a nB-dimensional subspace of T ∗x(t), which is orthogonal to the
nf -dimensional subspace Tx(t). Since nf = 6nK − nB they are also the orthogonal
complement to each other. Due to this, the rows of G(x, t) span the whole annihilator
of Tx(t), who is defined as

T ◦x(t) = {l∗ ∈ T ∗x(t) | l∗(v) = 0 ∀v ∈ Tx(t)} .

Restraining forces are therefore functionals, which are zero for all variations of the
position in tangential direction, which do not leave the state manifold.



1.4. Computer-based modelling 25

1.4. Computer-based modelling

In order to model and create multibody systems (MBS) computer-aided, an object-
oriented approach in Python was chosen. Abstract MBS elements were implemented
and connected to a graphic user interface callable by Autodesk VRED in a second step.
A. Kecskemethy [10] describes a very abstract way of how to model MBS by introduc-
ing the term transfer element. Such elements transfer velocities in one direction, as
seen in Section 1.3, and restraining forces in the other. A single rigid body can be a
transfer element, as well as a closed cluster of bodies. This notion is especially useful
when considering large, strongly connected and closed systems, a class of MBS which
is not treated in this thesis. Only (relatively) small and open MBS are taken into
account. The term open will be introduced in Subsection 1.4.1 and is an expression of
the connectedness of the system.

The general simulation and modelling process can be split into three layers, which
are building on each other:

1. Element layer
This layer contains all elemental objects which appear in a MBS. Rigid bodies,
joints, springs, dampers and gravity are represented by respective classes, which
have attributes and provide methods characteristic for the respective element.
Four different types of elements were implemented in total.

The first group are rigid bodies, which have all relevant physical quantities as
attributes. A single instance has the non-settable attributes mass and inertia,
which can be passed during instantiation. Further, it has settable attributes,
such as position, angles, velocity, angular velocity, external forces and external
moments, and it has dependent attributes, which are calculated from the settable
attributes. The most important ones here are the rotation matrix and the Kardan
matrix from Lemma 1.2.

The second group is formed by joints. These elements have references to the
rigid bodies they connect and provide the components of the implicit constraint
vector Φ(x(t), t), the implicit constraint matrix G(x(t), t) and other quantities
associated with the constraints based on the kinematic states. Instances of joints
have a single, non-settable attribute, which is the degree of freedom they provide.
In Appendix A, the revolute, prismatic and spherical joint are presented and their
constraint quantities are derived.

The third group consists of active elements, such as springs, dampers and the
gravity. Instances of this type also have a reference to all bodies affected by them
and manipulate their attributes representing the kinetic state. They exert forces
and moments according to their force laws.

The fourth and last group are the actuators, which again can be split into two
types. Kinetic actuators, very much like active elements, exert forces or moments
onto rigid bodies they are assigned to. Kinematic actuators on the other hand, can
be treated like joints. They constrain the movement to a given path. Therefore
they also have to provide components of the constraint matrix and vector. They
further have attributes representing the current kinematic state of the actuator,
such as velocity and acceleration.
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2. System layer
The multibody system itself can be implemented as a class, which provides means
of managing base layer elements. Elements of all types can be added and removed.
The MBS instance provides topological data based on all the elements it has a
reference to (see Subsection 1.4.1).

3. Solver layer
The solver layer is represented by either algorithms or classes, which take a MBS
instance and a time stepping scheme and start updating the kinematic states of
the rigid bodies, according to the numerical algorithm they represent.

Figure 1.2 summarizes the modelling process and provides on overview on mentioned
layers and elements.

Figure 1.2.: Class structure chart for the modelling process.

frame of reference

closed open

m1

m2

m3

m1

m2

m3

m4

m5

Figure 1.3.: The graph of a closed and an open multibody system.
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1.4.1. The topological index

Many ways of categorizing multibody systems into different classes are found in the
literature [10, 15, 16, 17, 20]. Two frequently occurring notions are those of closed
and open systems. They are based on yet another notion, the topology of a multibody
system.

Consider a system given by nK rigid bodies and nB algebraic equations imposed by
joints. When visualizing this system as a graph, let the bodies represent the nodes and
the joints the edges. Further, let there be a frame of reference, which represents the
absolute coordinate system. The bodies are allowed to be connected to this frame via
joints.

If the graph is a tree in a graph-theoretical sense, the multibody system is called
open. If there is a loop, involving the frame of reference or not, the system is called
closed.

In closed systems the problem appears that algebraic equations representing the joints
are no longer independent, hence the matrix G does not have a full rank any more.
Further treatment of the equations is necessary, which is quite technical and will not
be covered in this thesis. W. Schiehlen [15] provides some insight into a project, which
deals with constructing independent equations out of closed systems.

Loops, various trees, bodies and joints are all topological elements of a multibody sys-
tem and account for the notion of topology in this field. By considering and treating
the topology, more efficient simulation algorithms can be obtained in general. Consider
exemplarily the open system given in Figure 1.3. The rigid bodies have indices assigned
to them in a certain manner.

Definition 1.6 (Topological index)
Let {Ki} and {Φj} represent rigid bodies and joints modelled by the equations Φj.
Consider the topological graph of this multibody system.

1. If there exists a node which is connected to the frame of reference via a joint, let
it be the root node. If there is no such node, choose an arbitrary one.

2. Assign the index 1 to this node.

3. Assign the next natural numbers to all adjacent nodes in increasing order.

4. Continue this assignment in each subset of nodes with increasing distance to the
root, until all leaves have an index assigned to them.

5. Assign the indices j to the sets of joint equations, such that they correspond to
the assignment of i, i.e. the joint connecting the root to the frame of reference (if
it exists) gets j = 1, the joint between root (i = 1) and the adjacent node with
i = 2 gets j = 2, etc. . . .

The indices created by this algorithm are called topological indices.

This approach can be found in [20, Sec. 7.1] in a more generalized form, where
path and incidence matrices are defined in order to represent the connectedness of the
multibody system.
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The advantage gained through this indexing is evident, when applying it to the as-
sembly of the global quantities given in Equations (1.13), (1.14) and (1.15).

If this index is used, one can obtain a lower block diagonal form of the matrix
G(x(t), t). Since it equals

∂

∂x
Φj = Gj,1 ẋ1 + · · ·+Gj,nk

ẋnk
, Gj,i =

∂

∂xi
Φj , (1.25)

all blocks Gi,j become zero for i > j, due to the choice of the index. It will be shown
in Chapter 3 that the numerical treatment involves the inversion of terms containing
G or G>. More efficient procedures can be used when keeping the structure in mind.
Also more efficient data structures become an option, such as sparse matrices.

Remark 1.2
The choice of the root node requires more dedication when implementing an automa-
tized generation of equations. If there are bodies connected to the frame of reference,
their choice as the root is beneficial, since the respective joint equations depend only
on the kinematic state of a single body. If there are kinematic actuators present in the
system, the actuated elements can also be set as roots. The choice between multiple
nodes, which are actuated or connected to the frame, can be a matter of preference,
but also of simplicity of the structure of G, if one takes into account how many degrees
of freedom are being actuated or bound to the frame of reference.



2. Resulting systems of ordinary
differential-algebraic equations

In the second chapter the equations of motion, a set of ordinary differential equations
(ODEs) describing the movement of rigid bodies, are introduced. This set, or rather
the motion, is augmented by an additional set of algebraic equations imposed by joints
and actuators and shifts the task of finding a solution into the field of the so-called
differential-algebraic equations, or DAEs. An approach to solving such systems is
introduced and remarks on the solvability and uniqueness are given [5, 8, 9]. Finally
the stabilization method according to Baumgarte [3] is introduced for those cases, where
the algebraic part of the equations is violated.

2.1. The Newton-Euler approach

Newton’s Second Law is a principle commonly used to obtain the equations of motion
for a mass point. Applied to the centre of gravity of a rigid body Ki it states

miv̇t,i(t) = f
i
(x, v, t) . (2.1)

The force vector on the right-hand side depends in general on the kinematic state of
the whole system.

This principle yields 3 scalar equations for each body, whereas 6 are necessary since
each rigid body has 6 degrees of freedom. Euler’s equations for rigid body rotations
are introduced in order to obtain a solvable system of ordinary differential equations

Θi ω̇i(t) = mi(x, v, t)− ωi × (Θi ωi) . (2.2)

Θi denotes the inertia tensor of body Ki. Like the force vector the vector of acting
moments mi also depends in general on the global kinematic state. The constant scalar
mi, which must not to be confused with the vector mi, represents the mass. The sec-
ond term on the right-hand side is the vector of the Coriolis force. This simple form of
the Equations (2.1) and (2.2) only holds when formulated with respect to the centre
of gravity, which is assumed to be known. For formulations with respect to arbitrary
points additional terms are necessary, see e.g. [15].

These six scalar equations describe the movement of a rigid body completely[
miI

Θi

] [
v̇t,i(t)
ω̇i(t)

]
=

[
f
i
(x, v, t)

mi(x, v, t)

]
+

[
0

−ωi × (Θi ωi)

]
. (2.3)

29
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Using the indexing introduced in Subsection 1.4.1, a global, solvable system of ODEs
can be obtained by

m1I
Θ1

. . .

mnK
I

ΘnK




v̇t,1(t)
ω̇1(t)

...
v̇t,nK

(t)
ω̇nK

(t)

 =


f
1
(x, v, t)

m1(x, v, t)
...

f
nK

(x, v, t)

mnK
(x, v, t)



+


0

−ωi × (Θi ωi)
...
0

−ωnK
×
(
ΘnK

ωnK

)

 .

(2.4)
From left to right, above terms are denoted as

M v̇(t) = f(x, v, t) + f c(v) . (2.5)

M is called mass matrix and represents a block diagonal matrix. It is assumed to be
symmetric and positive definite, hence invertible. f c is the global vector of Coriolis
forces.

System (2.5) is a second order system with 6nK unknown functions. Using the Dy-
namic Kardan Equation from Lemma 1.2 a larger, first order system can be obtained.
It holds that

ẋ(t) =


I

K1(w1)
. . .

I
KnK

(wnK
)

 v(t) =: K(x) v(t) . (2.6)

This yields finally the first order system of ODEs

ẋ(t) = K(x) v(t) ,
M v̇(t) = f(x, v, t) + f c(v) ,

(2.7)

with 2 ·6nK unknown functions. Note that contrary to Chapter 1, Equation (2.6) holds
here and not ẋ(t) = v(t). This is due to the additional rotational degrees of freedom.
When applying the Kardan formalism and defining the global quantities as in (1.13)
and (1.14), the position vector contains the Kardan angles and the velocity vector the
angular velocity. Their differential relation is not obtained by total differentiation with
respect to time, but by Lemma 1.2.



2.2. Overview on the treatment of differential-algebraic equations 31

2.2. Overview on the treatment of

differential-algebraic equations

As discussed in Sections 1.2 and 1.3, System (2.7) is augmented by a set of nB algebraic
equations

Φ(x, t) = 0. (2.8)

They reduce the set of admissible solutions of the system to a manifold implicitly de-
fined by Φ. It is assumed, that Φ is at least twice continuously differentiable with
respect to time and that 0 is a regular value, i.e. the equations are independent and
the Jacobian has full rank nB.

Let y(t) =
[
x>(t), v>(t)

]>
denote the unknown vectorial functions as a mapping

y : R→ R12nK .

After inverting the mass matrix M , System (2.7) is essentially a system of ODEs of
the form

ẏ(t) = F̃ (y, t) , (2.9)

where F̃ is sufficiently often continuously differentiable with respect to time. With ini-
tial conditions y(0) = y

0
it represents a class of commonly known and well investigated

initial value problems [18]. The dependency of the algebraic equation can be changed
likewise to y. Summarized the following system of differential-algebraic equations is
considered

ẏ(t) = F̃ (y, t) ,

Φ(y, t) = 0 ,
(2.10)

with initial values y(0) = y
0
.

In terms of solvability, firstly it is noted that the algebraic part of System (2.10) also
restricts the initial values to an admissible manifold

Υ = {ỹ ∈ R12nK | Φ(ỹ, 0) = 0} . (2.11)

If y
0
/∈ Υ, a solution does not exist. When approximating the solution numerically,

larger imprecision due to ,e.g., noise or accuracy constraints can lead to instability of
the numerical algorithm. Therefore y

0
∈ Υ is always assumed, or at least inside a

sufficiently small neighbourhood.

The general idea of solving differential-algebraic systems involves the manipulation
of both equations in (2.10). This includes coordinate transformations, algebraic ma-
nipulation and most frequently differentiation. The common goal is to obtain a solvable
system of ordinary differential equations. The term index appears throughout the lit-
erature on DAEs [5, 8, 9]. For various classes of DAE systems the index is defined
differently. It is a quantity, which describes the complexity and the necessary effort to
solve it in an abstract way. In general, a higher index implies a more difficult system.
Also ”from the point of view of the numerical solution, it is desirable for the DAE to
have an index which is as small as possible” (Brenan, [5, P. 36]). This thesis utilizes
the definition of Brenan in order to describe the influence of the algebraic part of the
equations.
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Definition 2.1 (Differential index, [5, Def. 2.2.2])
For a differential-algebraic system

ẏ(t) = F̃ (y, t) ,

Φ(y, t) = 0 ,

the differential index is the minimum number of times that the algebraic part Φ has
to be differentiated with respect to time, such that a system of ordinary differential
equations

ẏ(t) = F (y, t)

can be obtained.

Remark 2.1
The obtainment of such a system involves aforementioned manipulation of the equa-
tions. In general, special care has to be taken of the regularity of Φ. Most solution
strategies involve an insertion of differentiated terms of Φ into the right-hand side of
the differential equation. This can deteriorate the regularity of the new right-hand side,
namely F . In the case of open multibody systems involving only joints, C2-regularity is
given for Φ. If servo constraints are involved, the regularity depends on the quality of
the signals. It is sufficient to have piecewise constant actuation signals to deteriorate
the regularity of F such that it is not continuous any more (see Chapter 3). Solvability
and stability of standard numerical algorithms can not be guaranteed in this case.

The approach to differentiate the algebraic constraints sufficiently often is called
index reduction method [5, Subsec. 2.5.3]. In order to force the solution of (2.9) to
fulfil the algebraic part (2.8), a Lagrangian multiplier

ρ : R→ RnB

is introduced and Equation (2.9) is augmented such that

ẏ(t) = F̃ (y, t) +G(y, t)>ρ , (2.12)

where G(y, t) is as in (1.21). According to the assumptions for (2.8), G is a nB×(12nK)-
matrix with full rank nB.

Theorem 2.2
Let

ẏ(t) = F̃ (y, t) +G(y, t)>ρ ,

Φ(y, t) = 0 ,
(2.13)

be an augmented DAE system with a Lagrangian multiplier ρ. Let F̃ be continuous and
Φ at least continuously differentiable. Let further G have full rank.

A tuple
(
y, ρ
)

is a solution to the augmented System (2.13) if and only if ρ = 0 and y
is a solution to System (2.10).

Proof. Analogous to [5, Proof of Thm. 2.5.1].

The existence and the uniqueness of a solution is mostly guaranteed by the unique
solvability of the unrestrained System (2.9). The Theorem of Picard-Lindelöf or
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Theorem of Peano can be applied as for any standard problem in the theory of ordinary
differential equation. The only difference is that two new assumptions have to be made
in order to assure unique solvability:

1. The initial value y
0

has to be an element of the admissible manifold of initial
values Υ, as defined in (2.11) (or inside a sufficiently small neighbourhood).

2. The augmentation of the ODEs and the differentiation of the algebraic part must
not deteriorate the regularity of the right-hand side (see Remark 2.1) to such a
degree, that the assumptions of the two mentioned theorems are violated, i.e. F
has to be continuous.

Example 2.3 (Index reduction for a constrained multibody system)
As seen in Chapter 1 and Section 2.1, the dynamics of a multibody system are modelled
by

ẋ(t) = K(x) v(t) ,
M v̇(t) = f(x, v, t) + f c(v) ,

or

ẏ(t) = F̃ (y, t) =

[
K(x) v(t)

M−1 [f(x, v, t) + f c(v)
] ] ,

where

y(t) =

[
x(t)
v(t)

]
.

In Subsection 1.3.2 it was shown that scleronomic constraints in the form of

Φ(x) = 0 (2.14)

introduce restraining forces of type f r(t) = G>(x) ρ, i.e.

ẏ(t) =

[
K(x) v(t)

M−1 [f(x, v, t) + f c(v) +G>(x) ρ
] ] .

The coupling by Lagrangian multipliers appears here naturally due to the mechanical
nature.

A first differentiation of (2.14) leads to the DAE System[
ẋ(t)
v̇(t)

]
=

[
K(x) v(t)

M−1 [f(x, v, t) + f c(v) +G>(x) ρ
] ] ,

G(x) v(t) = 0 .

(2.15)

This already yields a solvable system of equations, as shown in Subsection 3.1.1.
A second differentiation leads to constraints in the form of

G(x) v̇(t) + Ġ(x) v(t) =: G(x) v̇(t) + ϕ̂(t) ,

where ϕ̂(t) represents the second order terms. The resulting system is now I
M −G>(x)
−G(x)

 ẋ(t)
v̇(t)
ρ

 =

 K(x) v(t)
f(x, v, t) + f c(v)

ϕ̂(t)

 . (2.16)
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Even though this system already poses a solvable system of ODEs, it can be simplified
further. Taking the second row of (2.16) and inverting the mass matrix M yields

v̇(t) = M−1 [f(x, v, t) + f c(v) +G>(x) ρ
]
.

Inserting this representation of v̇(t) into the third row of (2.16) yields

−G(x)M−1 [f(x, v, t) + f c(v) +G>(x) ρ
]

= ϕ̂(t) ,

−G(x)M−1G>(x) ρ−G(x)M−1 [f(x, v, t) + f c(v)
]

= ϕ̂(t) .

Since G has full rank by assumption, the matrix GM−1G> is invertible. Therefore an
explicit representation of the Lagrangian multiplier ρ can be obtained

ρ = ρ(x, v, t) = −
[
G(x)M−1G>(x)

]−1 [
ϕ̂(t) +G(x)M−1 [f(x, v, t) + f c(v)

]]
. (2.17)

Inserting this representation into the second row of the vector equation in (2.15) leads
to the elimination of ρ. By doing so, an explicit system for y(t) is obtained[

ẋ(t)
v̇(t)

]
= ẏ(t) = F (y, t) =

[
K(x) v(t)

M−1 [f(x, v, t) + f c(v) +G>(x) ρ(x, v, t)
] ] . (2.18)

According to Definition 2.1 a constrained multibody system is therefore a index-2 -
system of differential-algebraic equations. (2.15) is called an index-1-reduced system,
(2.16) and (2.18) are called index-2-reduced systems. The regularity of the right-hand
side in both cases is not deteriorated, if the constraints originate from joints according
to Appendix A. These elemental joints are modelled by C∞-functions and G and ρ are
accordingly smooth.

Example 2.4 (Index reduction for an actuated multibody system)
Additionally to the scleronomic constraints as treated in Example 2.3, servo constraints
of the form

Ψ(x, t) = Px(t)− h(t) = 0 (2.19)

are introduced. P is the canonical projection onto the nA components of x(t), which
are restrained to a curve defined by the signal function h(t). The procedure remains the
same as in the previous example. The only difference now is, that additional restraining
forces are introduced,

fd = P>µ,

where µ ∈ RnA is another Lagrangian multiplier comparable to ρ.

The index-1-reduced system is now[
ẋ(t)
v̇(t)

]
=

[
K(x) v(t)

M−1 [f(x, v, t) + f c(v) +G>(x) ρ+ P>µ
] ] ,

G(x) v(t) = 0 ,

Pv(t) = ḣ(t) .

(2.20)

At this point there are multiple ways of how to tackle the system further. One does
not necessarily have to reduce the index of both types of constraints. If the regularity
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of h(t) is very low, even an index-1-reduction of the scleronomic constraints might not
be possible, since ḣ(t) might not be defined for all t in the classical sense.

Consider a partially reduced system[
ẋ(t)
v̇(t)

]
=

[
K(x) v(t)

M−1 [f(x, v, t) + f c(v) +G>(x) ρ+ P>µ
] ] ,

−G(x) v̇(t) = ϕ̂(t) ,

Px(t)− h(t) = 0,

(2.21)

where the rheonomic constraints Ψ remain unchanged and the Newton-Euler equations
are augmented by both types of restraining forces. As seen in Equation (2.17), the mul-
tiplier ρ has an explicit representation. This representation now includes a dependency
on µ, i.e

ρ(x, v, µ, t) = −
[
G(x)M−1G>(x)

]−1 [
ϕ̂(t) +G(x)M−1 [f(x, v, t) + f c(v) + P>µ

]]
.

The dependency is linear though and can be separated such that

ρ(x, v, µ, t) = ρ(x, v, t)−
[
G(x)M−1G>(x)

]−1
G(x)M−1P>µ , (2.22)

where ρ(x, v, t) is as in Equation (2.17).
Define

P̃ (x) :=
[
I −

[
G(x)M−1G>(x)

]−1
G(x)M−1

]
P> (2.23)

and eliminate the scleronomic constraints by an index-2-reduction and explicit repre-
sentation of ρ. The obtained system is of the form[

ẋ(t)
v̇(t)

]
=

[
K(x) v(t)

M−1 [f(x, v, t) + f c(v) +G>(x) ρ(x, v, t)
] ]+

[
0

M−1P̃ (x)µ

]
,

Px(t)− h(t) = 0,

or more compactly using y(t)

ẏ(t) = F (y, t) + P̂ (y)µ ,

Py(t)− h(t) = 0 ,
(2.24)

where P is extended by accordingly many zero columns.

System (2.24) is a partially reduced, index-2 system of differential-algebraic equations.
Its treatment will be the topic of Chapters 3 and 4. In Chapter 3 the rheonomic
constraints will be index-1-reduced the same way it was done for the scleronomic con-
straints and the effects of signal functions of various smoothness will be investigated.
In Chapter 4 a different approach to approximating the solution of (2.24) will be intro-
duced, without reducing the rheonomic constraints at all. The domain of DAE theory
will be left and the problem will be reformulated as an optimal control problem, where
the multipliers µ serve as a control function.
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2.3. The Baumgarte stabilization method

Index reduction methods as presented in Section 2.2 have a significant disadvantage,
the so-called drift-off phenomenon [9, P. 468], which appears frequently. This term
encloses all situations, where the approximated solution of the index-reduced system
leaves the state manifold implicitly defined by

Φ(x, t) = 0 . (2.25)

When differentiating the implicit constraints they become constraints on velocity level
[20, Subsec. 5.2.6]. The equation

Φ̇(x, t) = G(x, t) v(t) + ϕ̄(t) = 0 (2.26)

describes only the tangential space of a manifold at time t and its relation to the global
velocity. There are infinitely many manifolds whose tangential space is described by
(2.26). This loss of information is comparable to the loss of constants when differenti-
ating. Without a fixed point and the respective value, the integral yields a family of
solutions. Since all numerical schemes deliver an approximation to a certain order, the
approximated solution is designed to leave the state manifold and the drift-off effect
occurs due to approximative inaccuracy.

Depending on how often the index has been reduced, three different equations ap-
pear. The constraints on positional level (2.25), the constraints on velocity level (2.26)
and the constraints on acceleration level (see again [20, Subsec. 5.2.6])

Φ̈(x, t) = G(x, t) v̇(t) + Ġ(x, t)v(t) + ˙̄ϕ(t) = 0 . (2.27)

All second-order terms are again denoted by the vector

ϕ̂(t) := Ġ(x, t)v(t) + ˙̄ϕ(t) .

In order to nevertheless enforce the constraints on all levels, independent of the index-
reduction, Baumgarte [3] suggests a linear combination of all three equations, namely

Φ̈(x, t) + 2αΦ̇(x, t) + βΦ(x, t) = 0 . (2.28)

The parameters α and β are named Baumgarte parameters, after their inventor. Equa-
tion (2.28) is designed to represent the damped harmonic oscillator equation for Φ.
The Baumgarte parameters are chosen such that the damping goes on to the aperiodic
borderline case, i.e. both eigenvalues −α±

√
α2 − β of Equation (2.28) have negative

real parts (see [2, P. 8]).

When using only an index-1-reduction, Arnold [2] proposes a linear combination of
the form

Φ̇(x, t) + α̃Φ(x, t) = 0 . (2.29)

The choice of α̃ is such that ”the error in the position constraint after one time step
[. . . ] has the magnitude of O(h2)” [2, Sec. 3.2, P. 9]. Arnold argues though, that
one should not choose the full optimal parameter, since this can ”introduce additional

stiffness [. . . ] and a large error”. The optimal parameter is α̃ =
1

h
, where h is the time

step size of the numerical algorithm. The stabilization can be controlled by using a
parameter α, where

α = εα̃, ε ∈ (0, 1) . (2.30)

The choice of ε is mostly based on empirical references.



3. Numerical approximations using
time stepping schemes

During preliminary work for this thesis, numerical simulations have already been con-
ducted in [12, 13] for unactuated, open multibody systems. In this section the gained
insights are used and a new, suitable solver is introduced. After discussing the re-
quirements, the time stepping scheme for a partitioned linear-implicit Euler approach
is presented for general multibody systems. This scheme is then applied to three dif-
ferently actuated, simple single-body systems and the results are analysed. Starting
point are index-1-reduced systems as seen in Section 2.2, where the scleronomic joint
constraints and the rheonomic servo constraints are treated the same.

3.1. Requirements for the application

Since the application is a real-time simulation inside a virtual environment, fast solvers
are necessary. This excludes fully implicit algorithms, which often require an iterative
approach in each time step. It also excludes multistep methods of high order, since
the repeated evaluation of the right-hand side of the system can by very expensive
for complex multibody systems. The memory access and writing time in the case of
multistep methods can also influence the performance.

On the other side, multibody systems are very stiff in terms of dynamic behaviour.
It is sufficient to build in springs and dampers with constants of different decimal power
in order to introduce such behaviour. And it is further well known that in these cases
explicit solvers fail to converge to the real solution [18, Part II], [9].

Hence a compromise is necessary between efficiency and stability. This compromise
can be found in the class of linear-implicit methods.

3.1.1. A partitioned linear-implicit Euler algorithm

Explicit solvers need a drastic reduction of time step size when dealing with stiff sys-
tems, which is not ideal for a real-time application. Implicit solvers handle stiff be-
haviour better in terms of convergence, but iterations are also undesirable. The idea
of only calculating a single iteration of the implicit algorithm, leads to the class of
linear-implicit algorithms and has already been proven to be a suitable approach to
real-time simulation in the automotive industry [2, 7]. Since higher order algorithms
also lead to losses in efficiency, the restriction to first order Runge-Kutta methods was
made, namely the Euler algorithm.

37
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Consider the system of DAEs

ẋ(t) = K(x) v(t) ,
M v̇(t) = f(x, v) ,
Φ(x, t) = 0 ,

where f and K are continuous and Φ is assumed to be at least continuously differen-
tiable. An index-1-reduction as seen in Section 2.2 and Subsection 1.3.2, leads to

ẋ(t) = K(x) v(t) ,
M v̇(t)−G>(x, t)ρ = f(x, v) ,
G(x, t) v(t) + ϕ̄(t) = 0 .

Due to the index reduction, a drift-off effect might occur and stabilization according
Baumgarte is introduced

ẋ(t) = K(x) v(t) ,
M v̇(t)−G>(x, t)ρ = f(x, v) ,

G(x, t) v(t) + ϕ̄(t) + αΦ(x) = 0 .
(3.1)

The first equation in System (3.1) does not contain the possibly stiff behaviour of a
multibody system, since it represents only the differential relation between position
and velocity. The second and the third equation can though, since various force laws
and constraints influence the dynamics at this point. Therefore a partitioning can be
made, in order to gain a more efficient algorithm.

An explicit Euler algorithm is applied to the first equation. The result is then used
in a linear-implicit Euler scheme to update solely the velocity in the second and third
equation.

Let {tk}k∈N be the time grid used by the numerical approximation algorithm and let
xk and vk be the respective values of the approximating curves. A discretization of ρ
is not considered, since force analysis is omitted. The involvement of the Lagrangian
multiplier is now purely for obtaining a solvable system. The partitioning leads to the
following finite difference algorithm:

1. Position update:
1

h

(
xk+1 − xk

)
= K(xk) vk .

2. Velocity update, where xk+1 from step 1 is used:

M
1

h

(
vk+1 − vk

)
−G>(xk+1, tk+1)ρ = f(xk+1, vk+1) ,

G(xk+1, tk+1) vk+1 = −ϕ̄(tk+1)− αΦ(xk+1) .
(3.2)

f(xk+1, vk+1) is unknown due to the implicit approach. A first-order approximation
can be obtained by the first two terms of the Taylor expansion with respect to v

f(xk+1, vk+1) = f(xk+1, vk) + f
v
(xk+1, vk)

(
vk+1 − vk

)
+O(h2),

where f
v
(xk+1, vk) :=

∂

∂v
f(x, v)

∣∣∣∣
x=xk+1, v=vk

.
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Inserting this into (3.2) leads finally to the time stepping scheme

1. Position update:
xk+1 = xk + h K(xk) vk . (3.3)

2. Velocity update:[
M − h f

v
(xk+1, vk) −h G>(xk+1, tk+1)

G(xi+1, tk+1)

][
vk+1 − vk

ρ

]
=

[
h f(xk+1, vk)

−G(xk+1, tk+1)vk − ϕ̄(tk+1)− αΦ(xi+1)

]
.

(3.4)

According to Equations (3.3) and (3.4) it is necessary to update the 6nK values in the
global position vector x, solve a quadratic system of 6nK + nB linear equations and
finally update the 6nK values of the global velocity vector v. Thus, instead of having
to solve iteratively for vk+1, a single matrix inversion has to be made. This reduces the
expenses significantly and additionally introduces stabilizing properties of an implicit
algorithm.

3.2. Examples of actuation signals

Subsequently, three different actuation signals are given and the numerical method
from Section 3.1.1 is applied. In each example the systems consist of a single unit
sphere with mass m = 1 and inertia Θ = I 2

5
m, where I is the unit tensor. The position

xt(t) is actuated by providing a curve h : R→ R3 and constraining it by setting

Φ(x, t) = xt(t)− h(t) = 0 .

Differentiation with respect to time yields implicit constraints on velocity level in the
form of

vt(t)− ḣ(t) = 0 ,

or

[I, O]

[
vt(t)
ω(t)

]
− ḣ(t) = 0

when including the angular velocity in order to obtain a global formulation of the
implicit constraints. O is a 3× 3 zero matrix. Orientational quantities and angular ve-
locities are not considered in this section. The matrix [I, O] corresponds to the matrix
G(xk+1, tk+1) from Equation (3.4) and is constant in this case. The vector ϕ̄(tk+1) is

given by ḣ(tk+1) in each time step.

The first example is a smooth actuation and convergence of order 1 can be shown.
The second and third example consider piece-wise constant curves and two different
ways of approximating ḣ(t). The piece-wise constant curves represent real samples of
position signals of a VIVE controller and the following notation is used:

Controller position: pc(t) := h(t) ,

Controller velocity: vc(t) := ḣ(t) .
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3.2.1. Smooth actuation

x

z

y

[1, 0, 1]

Figure 3.1.: Setup for smooth actuation.

Let a sphere be at the initial position
xt(0) = [1, 0, 1]> and the actuation be
given by

h(t) =

 cos(ωt)
sin(ωt)

1

 ,

ḣ(t) =

 − sin(ωt)
cos(ωt)

0

ω .

(3.5)

Figure 3.1 shows the sphere in grey and
the state manifold in green. The sphere
moves along the green curve in anti-clockwise direction and a frequency ω = π

4
was

chosen. It is supposed to pass a quarter circle every 2 seconds. The point-wise error is
analysed exemplarily for the x-components of both, position and velocity. The results
remain the same for the other components.

The algorithm from Section 3.1.1 was applied with a constant time step size h = 0.001.
The parameter was uniformly refined by h = 0.001 · 2−n, n ∈ {0, 1, 2}. Figure 3.2
shows linear convergence for the point-wise error of the position approximation. For
the velocity, an exact approximation is evident, as pointed out in [2].
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Figure 3.2.: Point-wise error for the x-component approximations.
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3.2.2. Piecewise constant actuation

In Figure 3.3 a sample of an actuation signal is shown, which was extracted from
Autodesk VRED using a VIVE controller. The initial values are

pc(0) = xt(0) =

 0, 9716
−0, 1003
1, 2480

 , vc(0) = vt(0) =

 −0, 3151
−0, 3398
−1, 0652

 .

In this case the velocity values were approximated by central differences based on grid
points, which do not match the grid of the applied partitioned Euler method.

Let {τj}j∈N be a time grid, based on which the software registers a change in posi-
tion of the controller and the velocity values are approximated. Let further {tk}k∈N be
a finer grid, which represents the time steps of the numerical method and define the
velocity values as follows

vc(tk) = vc(τj), ∀ tk ∈ [ τj, τj+1 ) , j = 1 . . .

This leads to a piece-wise constant actuation signal on positional and velocity level.
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Figure 3.3.: Position and velocity sample for a moving controller.

The same algorithm as in the previous example was applied and tests for convergence
with the same time step sizes h = 0.001 · 2−n, n ∈ {0, 1, 2}, were carried out. Consis-
tency was not achieved, as seen in Figure 3.4. Despite this, an exact approximation of
the velocity was again observed, which is at first a surprising result. Since the integra-
tion method integrates polynomials up to order 1 exactly, and the velocity signal is a
piece-wise constant function, this result is expected at the continuous parts. However,
an investigation for larger discontinuities may be necessary. The problem for the po-
sition approximation emerges from the fact that the position ought to be the integral
of the velocity, a quantity which is discontinuous now. Hence the assumptions the
numerical scheme is built on are not fulfilled.
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Figure 3.4.: Results for the x-component of position and velocity.
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Figure 3.5.: Point-wise error in the x-component of the velocity.

In order to achieve a better result for the position approximation, stabilization ac-
cording to Baumgarte was applied. A parameter α = εα̃ as introduced in Section
2.3 was defined and inserted into the system of ODEs. A constant time step size of
h = 0.0005 was chosen and stabilization was introduced for ε ∈ {0.2, 0.5, 0.8}. In Figure
3.6 the results for position and velocity are displayed. While mostly satisfying result
were achieved for the position with an increasing stabilization parameter, impulse-like
deflections appear in the approximating curves. They appear at the points of discon-
tinuity of the signal, as indicated by the point-wise error in Figure 3.7. The quality of
the velocity approximation deteriorates. While it was integrated exactly without stabi-
lization, Figure 3.7 shows errors independent of the size of the stabilization parameter
α. When visualizing the movement of a single actuated body, this may not pose a great
problem. But in the case of other bodies attached to the actuated one, the effects of
these deflection may not be predictable. Joints transfer velocities and therefore this
error is also propagated.
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Figure 3.6.: Results for the x-component with Baumgarte stabilization.
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Figure 3.7.: Point-wise error in the x-component with Baumgarte stabilization.
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3.2.3. Dirac impulse-like actuation

As in Section 3.2.2, consider a grid {τj}j∈N which represents the times at which a
change in the position of the controller is registered and cached. When approximating
the velocity on a finer grid {tk}k∈N by setting

pc(tk) = pc(τj), ∀ tk ∈ [ τj, τj+1 ) , j = 1 . . . ,

the velocity becomes zero almost everywhere on the finer grid. Dirac impuls-like
changes can be observed for grid points tk+1 where there is a j such that

tk ≤ τj < tk+1 .

This leads to an actuation signal as seen in Figure 3.8.
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Figure 3.8.: Position and velocity sample for a moving controller.
The velocity is approximated on a finer grid.

Signals of this kind are considered for the following reason: Software like Autodesk
VRED provides means to conduct calculations at the moments in time, where the con-
troller position is updated. Hence the grid for the central difference approximation of
the velocity can be chosen to be the grid of the position updates. This was treated in
the previous Section 3.2.2. In order to not rely on this specific software, the velocity
approximation was carried out within the numerical integration method for the equa-
tions of motion. This results in a Dirac impulse-like velocity profile, since the time grid
for this method is in general finer.

Figure 3.9 shows the results for time step sizes h = 0.001 · 2−n, n ∈ {0, 1, 2}. As
in the previous case, consistency can not be shown for the position approximation, but
the velocity was integrated exactly. The impulse-like deflection appear in the approxi-
mation.
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Figure 3.9.: Results for the x-component of position and velocity.
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Figure 3.10.: Piece-wise error for the x-component of the velocity.

When applying the stabilization according to Baumgarte, a new behaviour occurs
in contrast to Subsection 3.2.2. The phenomena of overshooting is apparent at the
points of discontinuity. It is not dominating though and the solution evens out very
fast. The velocity approximation worsens again compared to the original problem and
shows very high deflections as seen in Figure 3.12.

In both cases of discontinuous actuation, disturbances appear at the points of discon-
tinuity. For the purpose of visualization they are not severe in a single-body setting.
The effects of this error profile on other constraints though, especially joint equations,
are not controllable and can result in unusually high errors due to error propagation.
The reason these problems occur is the breaking of the continuity assumption. Most
of the standard numerical algorithms for ODEs are based on it. Therefore a different
approach is necessary.
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Figure 3.11.: Results for the x-component with Baumgarte stabilization.
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Figure 3.12.: Piece-wise error for the x-component with Baumgarte stabilization.



4. An optimal control problem for
actuated multibody systems

It was shown in Chapter 3, that a conventional DAE approach to actuated multibody
systems fails to show convergent results in the case of discontinuous actuation signals. It
can be stabilized to a somewhat satisfactory level, though the stabilized approximations
show inconsistent behaviour around discontinuities. A new approach is introduced here
in order to avoid this problem. The restraining forces imposed by an actuation are
understood as a control function and the task is reformulated as an optimal control
problem. A single-stage approach [6] is introduced and two different regularizations are
applied and tested.

4.1. A single-stage approach with L2-regularization

In Chapter 2 a constrained, unactuated multibody system was modelled as a system
of DAEs of the form

ẋ(t) = K(x)v(t)

Mv̇(t) = F (x, v, ρ, t) = f(x, v, t) +G>(x)ρ ,

0 = Φ(x) ,

x(0) = x̃0 ,
v(0) = ṽ0 ,

(4.1)

where x̃0, ṽ0 are known initial values. All functions are sufficiently smooth and if the
initial values are consistent with the holonomic constraints, a unique solution exists.

Consider a time interval E = (0, T ) and two points in time t1 > t0 ∈ E. Consider
further a bounded function

h : E → RnA , 0 < nA < 6nK − nB ,
t 7→ h(t) ,

(4.2)

and servo constraints
Ψ(x, t) = Px(t)− h(t) = 0 , (4.3)

where P is the canonical projection onto the nA actuated components, i.e.

Pi,j ∈ {0, 1} ,∑12nK

j=1 Pi,j = 1, ∀i = 1 · · ·nA ,
rank (P ) = nA ,

Define discrete servo constraints on the subinterval [t0, t1] of the form

Ψ(t1) = Px(t1)− h(t1) = 0 (4.4)

47
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As stated in Section 2.2, servo constraints introduce restraining forces

fd = P>µ ,

where
µ : R→ RnA

is in general a vector valued and unknown function in time. They can not be substituted
as seen in Example 2.3 without loosing the solvability due to a lack of continuity.
By viewing µ as a control function in System (4.1) and assuming the knowledge of
x(t0) , v(t0), one obtains

ẋ(t) = K(x)v(t)

Mv̇(t) = F (x, v, ρ, t) = f(x, v, t) +G>(x)ρ+ P>µ ,

0 = Φ(x) ,

x(t0) = x0 ,
v(t0) = v0 ,

(4.5)

and the following minimization problem:

Problem 4.1
Find x(t) and µ(t) on [t0, t1], such that

‖Px(t1)− h(t1)‖2ν → min (4.6)

subject to the constraints
ẋ(t) = K(x)v(t)

Mv̇(t) = F (x, v, ρ, t)

0 = Φ(x) ,

and the initial values
x(t0) = x0 ,
ẋ(t0) = v0 .

Remark 4.1
1. The minimum is zero and represents a state where the servo constraints are fulfilled
at time t1. This formulation, which is a mix between a discrete and continuous setting,
aims for a time stepping scheme where tk = t0 and tk+1 = t1. The values of h are
extracted in real time, therefore the problem cannot be considered on the whole interval.

2. The regularity and continuity of h becomes irrelevant for now, as long as the
function is bounded.

3. The norm ‖·‖ν denotes a suitable norm. In the most cases the Euclidean norm is
sufficient. If there are several actuated bodies, it is suggested in [2] to use a weighted
norm

‖x̃‖2ν = ‖x̃‖2M := x̃>PMP>x̃ ,

where M is the mass matrix. This way emphasize is given to heavier bodies which are
dynamically more critical. If not specified, the subscript is omitted and the Euclidean
norm is used.
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The new goal now is to minimize the servo constraint residual, a functional of the
form

J0(x) =
1

2
‖Px(t1)− h(t1)‖2 +

1

2

t1∫
t0

[Px(t)− h(t)]> [Px(t)− h(t)] dt. (4.7)

It represents the L2(t0, t1)-norm of the residual and an additional point-wise evaluation
at the target time t1. This functional is augmented by a regularization

J1(x) = J0(x) +
ρ0
2
‖µ‖2L2(t0,t1)

, (4.8)

where 0 < ρ0 ∈ R. The idea is the following:
A piecewise constant actuation is physically not possible in the classical sense. Bod-

ies can not jump instantly and their movement has to be at least continuous. Rapid
changes of the velocity occur due to large forces acting. By penalizing the forces im-
posed by the actuation, namely µ, one can smooth out the unphysical actuation signal.
Depending on the quality and the sizes of the discontinuities in the signal, a penalty
for the derivatives of µ can be introduced in a similar form. This idea is stated in
[1] using an energy norm, where a proof of equivalence of the augmented functional is
given exemplarily for a simplified two-cars-system.

The system of DAEs, obtained by joints and the Newton-Euler approach, represents a
constraint on the set of admissible functions and can be embedded into the functional
by Lagrangian multipliers λp(t), λv(t) and κ(t) [6, Sec. 2.3]. This leads to a new
functional

J2(x) = J1(x) (4.9)

+

t1∫
t0

{
λ>p (t) [K(x)− ẋ(t)] + λ>v (t)

[
F (x, v, ρ, µ, t)−Mv̇(t)

]
+ κ>Φ(x)

}
dt

λp and λv couple the differential parts and κ the holonomic constraints. Defining the
Hamiltonian function

H = H(x, ẋ, ρ, µ, λp, λv, κ, t) (4.10)

=
1

2
[Px(t)− h(t)]> [Px(t)− h(t)] +

ρ0
2
µ>(t)µ(t)

+ λ>p (t)K(x)v(t) + λ>v (t)F (x, v, ρ, µ, t) + κ>Φ(x)

and inserting it into (4.9) yields

J(x) := J2(x) =
1

2
‖Px(t1)− h(t1)‖2 +

t1∫
t0

[
H − λ>p (t)ẋ(t)− λ>v (t)Mv̇(t)

]
dt .

Integration by parts of the terms containing λp and λv leads to

J(x) = 1
2
‖Px(t1)− h(t1)‖2 −

[
λ>p (t)x(t)

]t1
t0
−
[
λ>v (t)Mv(t)

]t1
t0

+

t1∫
t0

[
H + λ̇

>
p (t)x(t) + λ̇

>
v (t)Mv(t)

]
dt .

(4.11)
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By [11, Sec. II] a necessary condition for this functional to reach the minimum over
all possible control functions is, that the first variation δJ with respect to µ becomes
zero.

Remark 4.2
1. By introducing µ as generalized restraining forces, x and v depend on µ. There are
several attempts on how to construct a mapping

µ 7→ x ,

but they depend highly on the structure of the considered dynamical system and the
function spaces, where x and µ are considered to be in. An overview is provided in [4]
and its underlying literature.

2. ρ also depends on µ. This dependency is derived in Example 2.4, Equation (2.22).

3. Sufficient conditions for the functional to reach a minimum is, that the second
variation δ2J with respect to µ is greater than zero and that the Hamiltonian H is
convex with respect to µ.

The variation of the point-wise term in (4.7) is

δ
1

2
‖Px(t1)− h(t1)‖2 = δ

1

2

[
x>(t1)P

>Px(t1)− 2x>(t1)P
>h(t1) + h>(t1)h(t1)

]
=

[
P>Px(t1)

]>
δx(t1)−

[
P>h(t1)

]>
δx(t1)

=
[
P>Px(t1)− P>h(t1)

]>
δx(t1) . (4.12)

The variation of the second term in the right-hand side of (4.11) is simply

− δ
[
λ>p (t)x(t)

]t1
t0

= −λ>p (t1)δx(t1) , (4.13)

since x(t0) is assumed to be known and constant in all components. This can by
achieved by using only test functions, which are zero on the left-hand side of the
interval.

The same holds for the third term

− δ
[
λ>v (t)Mv(t)

]t1
t0

= −λ>v (t1)Mδv(t1) , (4.14)

since v(t0) is assumed to be known.
The variation of the integral term includes the partial derivatives

Hx =
∂

∂x
H(x, ẋ, ρ, µ, λp, λv, κ, t) ,

Hv =
∂

∂v
H(x, ẋ, ρ, µ, λp, λv, κ, t) ,

Hρ =
∂

∂ρ
H(x, ẋ, ρ, µ, λp, λv, κ, t) ,

Hµ =
∂

∂µ
H(x, ẋ, ρ, µ, λp, λv, κ, t) .
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It holds

δ

t1∫
t0

[
H + λ̇

>
p (t)x(t) + λ̇

>
v (t)Mv(t)

]
dt

=

t1∫
t0

[
Hxδx(t) +Hvδv(t) +Hρδρ+Hµδµ+ λ̇

>
p (t)δx(t) + λ̇

>
v (t)Mδv(t)

]
dt

=

t1∫
t0

[[
Hx + λ̇

>
p (t)

]
δx(t) +

[
Hv + λ̇

>
v (t)

]
δv(t) +Hρδρ+Hµδµ

]
dt . (4.15)

By the necessary condition

0
!

= δJ , (4.16)

Equations (4.12) and (4.13) lead to

[
P>Px(t1)− P>h(t1)− λp(t1)

]>
δx(t1)

!
= 0

for arbitrary, admissible variations δx(t1), which in return leads to the terminal value

λp(t1) = P>Px(t1)− P>h(t1) .

Analogously, Equation (4.14) leads to

λv(t1) = 0 ,

since M is injective. For the variations in (4.15) to be zero, each non-variational term
has to become zero, i.e.

λ̇p(t) = −H>x
M>λ̇v(t) = −H>v

0 = Hρ = λ>v (t)
∂

∂ρ
F (x, v, ρ, µ, t) = λ>v (t)G>(x) = G(x)λv(t) ,

0 = Hµ = ρ0 µ(t) + λ>v (t)
∂

∂µ
F (x, v, ρ, µ, t) = ρ0 µ(t) + Pλv(t)

(4.17)

Together with the constrained Newton-Euler system and by recalling the definition of
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H and F , a solvable second-order system of differential-algebraic equations is obtained

ẋ(t) = K(x)v(t)

Mv̇(t) = f(x, v, t) +G>(x)ρ+ P>µ ,

0 = Φ(x) ,

λ̇p(t) = −
[
∂

∂x
K(x)v(t)

]>
λp(t)−

[
∂

∂x
f(x, v, t) +

∂

∂x
G>(x)ρ

]>
λv(t)

− P>Px(t) + P>h(t)−G>(x)κ (4.18)

M>λ̇v(t) = −K>(x)λp(t)−
[
∂

∂v
f(x, v, t)

]>
λv(t)

0 = G(x)λv(t) .

Since [
∂

∂x
(K(x)v(t))

]>
λp(t) =

[
∂

∂x
ẋ(t)

]>
λp(t) = 0 ,

the fourth equation can be simplified further to

λ̇p(t) = −
[
∂

∂x
f(x, v, t) +

∂

∂x
G>(x)ρ

]>
λv(t)− P>Px(t) + P>h(t)−G>(x)κ

System (4.18) is called optimality system. Together with the initial and terminal con-
ditions

x(t0) = x0 , ẋ(t0) = v0 ,

λp(t1) = P> [Px(t1)− h(t1)] , λv(t1) = 0 ,
(4.19)

this forms a forward-backward coupled system. The control function, which represents
the restraining forces due to the actuation, is obtained by the last equation in (4.17),
i.e.

µ(t) = − 1

ρ0
P λv(t) . (4.20)

This equation will be referred to as control equation.

Remark 4.3
The holonomic constraints on the dual variable λ, namely

0 = G(x)λv(t) ,

disappear completely in the unrestrained case.
If there are no holonomic constraints on the primal variable x, the Hamiltonian

function (4.10) has no dependency on ρ and its variation with respect to ρ vanishes. .
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4.1.1. Example: A single-body drive

Consider the single-body system from Chapter 3 and the piece-wise constant actuation
signal from Subsection 3.2.2. No external forces are present, except the constant grav-
itational force denoted by g. Furthermore no joints in form of scleronomic constraints
are considered. The optimality system, which was deduced in the previous section, is
then reduced to

ẋ(t) = K(x)v(t), (4.21)

Mv̇(t) = g + P>µ , (4.22)

λ̇p(t) = −P>Px(t) + P>h(t), (4.23)

M>λ̇v(t) = −K>(x)λp(t), (4.24)

ρ0 µ(t) = −P λv(t) . (4.25)

The adjoint system is

λ̇p(t) = −P>Px(t) + P>h(t),

M>λ̇v(t) = −K>(x)λp(t) ,

with terminal conditions

λp(t1) = P> [Px(t1)− h(t1)] , λv(t1) = 0 .

A time stepping scheme as seen in Subsection 3.1.1, only backwards in time, leads to

1

h

[
λp(tk+1)− λp(tk)

]
= −P> [Px(tk)− h(tk)] ,

M> 1

h
[λv(tk+1)− λv(tk)] = −K>(x(tk))λp(tk) .

Inserting the the terminal conditions for the time interval [tk, tk+1], namely

λp(tk+1) = P> [Px(tk+1)− h(tk+1)] , λv(tk+1) = 0 ,

leads to
λp(tk) = P> [Px(tk+1)− h(tk+1)] + h P> [Px(tk)− h(tk)] , (4.26)

and

λv(tk) = h M−>K>(x(tk))λp(tk)

λv(tk) = h M−>K>(x(tk))P
> [Px(tk+1)− h(tk+1) + h [Px(tk)− h(tk)]] .(4.27)

Using Equation (4.25), the generalized actuation forces at tk can be calculated as follows

ρ0 µ(tk) = −P λv(tk) (4.28)

µ(tk) = − h

ρ0
PM−>K>(x(tk))P

> [Px(tk+1)− h(tk+1) + h [Px(tk)− h(tk)]] .
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With this approximation of µ at time tk, the primary system

ẋ(t) = K(x)v(t),

Mv̇(t) = g + P>µ ,
(4.29)

can now be solved with the partitioned linear-implicit Euler algorithm from Subsection
3.1.1.

4.1.2. Numerical results

Numerical experiments were carried out in order to approximate the curve given in
Figure 3.3. A constant time step size h = 0.001 was used, combined with an uniform

refinement
h

2n
, n ∈ {0, 1, 2}.

The only force applied was the gravitation in the negative direction of the third, transla-
tive component.
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Figure 4.1.: Results for the x-component of the position. ρ0 = 1e− 5.

Figure 4.1 shows the results for the first translative component, with a regularization
ρ0 = 1e − 5 and increasing refinement. Higher refinement leads to a smoother curve.
This is more evident when inspecting the velocity profile in Figure 4.2. But it leads to
cancellations of the order of the regularization, according to Equation (4.28). A finer
time step size demands a finer regularization parameter.
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Figure 4.2.: Results for the x-component of the velocity. ρ0 = 1e− 5.

The body is at rest at time t = 0, i.e. v0 = 0. The controller velocity was approxi-
mated on the coarser grid representing the moments in time the position was updated.
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Since the optimal control approach does not strictly restrain the solution to a manifold
defined by the actuation

Ψ(x, t) = Px(t)− h(t) = 0 ,

the discrepancy between the initial velocity values is not essential. The presented opti-
mal control approach in general effects solely the positional level, since the derivatives
of the rheonomic constraint equation do not appear. Figure 4.2 serves for comparisons.

Figure 4.3 shows a conflict between the gravitational force and the actuation force.
The regularisation parameter can be refined further, as seen in Figure 4.4. Too small
regularization parameters cause an oscillatory behaviour though.
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Figure 4.3.: Results for the z-component of the position. ρ0 = 1e− 5.
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Figure 4.4.: Results for the z-component of the position. n = 0.

The current approach has the following three issues:

Firstly, the minimization process for each time interval [tk, tk+1] is almost completely
decoupled. Only the initial conditions x(tk) and v(tk), which are the results from the
previous time step, are used. Especially for µ this results in the discrepancy, that µ(tk)
has different values, depending on the considered interval, [tk−1, tk] or [tk, tk+1]. The
control parameters µ are therefore globally discontinuous in time. This leads to v being
the integral of a globally discontinuous function.

Secondly, a linear-implicit algorithm according Section 3.1.1 can strictly speaking
not be applied. It holds

µ(tk+1) = − 1

ρ0
P λv(tk+1) = 0
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in each time step. In a correct algorithm, there would be no actuation forces in the dis-
crete finite difference scheme, where the right-hand side is evaluated at tk+1. Therefore
a mixed scheme has to be applied, where µ(tk) instead of µ(tk+1) is used.

Thirdly and finally, there is a conflict between actuation forces obtained by the
adjoint variable and both constant and solely time dependent forces. The right-hand
side of the adjoint system consists of partial derivatives of the Hamiltonian with respect
to x and v of the right-hand side of the primal system. This completely cancels out
the effects of constant and time dependent forces onto the adjoint system. Additional
treatment is necessary.

4.2. H1-regularization

In order to tackle some of the problems mentioned at the end of Subsection 4.1.2,
another kind of actuation is introduced. Recall Equation (4.8)

J1(x) = J0(x) +
ρ0
2
‖µ‖2L2(t0,t1)

,

and add an additional penalization for the derivative of µ, i.e.

J1(x) = J0(x) +
ρ0
2
‖µ‖2L2(t0,t1)

+
ρ1
2
‖µ̇‖2L2(t0,t1)

. (4.30)

This represents a regularization using a weighted Sobolev norm including derivatives
up to order 1, namely the H1-norm. The last term can be integrated by parts and
leads to

J1(x) = J0(x) +

t1∫
t0

ρ0
2
µ>(t)µ(t)dt +

[ρ1
2
µ̇>(t)µ(t)

]t1
t0
−

t1∫
t0

ρ1
2
µ̈>(t)µ(t)dt . (4.31)

Performing the same steps as in Section 4.1 yields the new control equation

− ρ1µ̈(t) + ρ0µ(t) = −Pλv(t) , (4.32)

which is a second-order ODE also known as the one-dimensional Yukawa equation.

There are two ways to choose the boundary condition.
One can demand homogeneous Neumann boundary conditions

µ̇(t0) = µ̇(t1) = 0 , (4.33)

which will cancel out the boundary term in (4.31).
Since [t0, t1] represents the interval of a time stepping scheme, one can also use

the approximation of the previous time step at the right interval end for a Dirichlet
boundary condition on the left interval end of the current time step. This results in
mixed boundary conditions of the form

µ(t0) = µ̃ , µ̇(t1) = 0 . (4.34)

Both approaches eliminate the problem of having to rely on a hybrid time stepping
scheme, since µ(t1) is not automatically zero and can be evaluated after solving (4.32).
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The later one with mixed boundary conditions assures further, that µ is a globally
continuous function.

The solution to both types of problems can be approximated with a Finite-Element
approach. This is shown in Appendix B. For each component of µ a small FE system
is derived and has to be solved. Since at each time step the value for −Pλv(t) is given
only at the interval ends, they have to be interpolated in order to gain a right-hand
side for (4.32). A linear interpolation yields the function

f(t) = −Pλv(t0) +
Pλv(t0)

t1 − t0
(t− t0) . (4.35)

Here the terminal condition Pλv(t1) = 0 has already been used.

4.2.1. Control equation with homogeneous
Neumann boundary conditions

On a time interval Ek = [tk, tk+1], each component of µ can be obtained by solving

−ρ1µ̈l + ρ0µl = fl(t) , l = 1, . . . , nA , (4.36)

µ̇l(tk) = µ̇l(tk+1) = 0 ,

where fl(t) represents a component of the vector valued function in (4.35). In Section
B.2 the following FE system on a transformed interval was constructed(

ρ1
1

hk
B + ρ0 hk C

)
µ
l
= f

l;hk
, (4.37)

Each component of the right-hand side is calculated as follows

fl,i;hk = F (Si,2;hk) =

5hk
4∫

hk
4

fl(t̃) Si,2;hk(t̃) d̃t , i = 0, . . . , 5 . (4.38)

The values of the right-hand side can be simplified further, since fl(t) is a known linear
function

fl(t) = fl(tk)−
fl(tk)

hk

(
t− hk

4

)
. By integration by substitution and by (B.9) it holds for t̃ = hkt

fl,i;hk =

5hk
4∫

hk
4

(
fl(tk)−

fl(tk)

hk

(
t̃− hk

4

))
Si,2;hk(t̃) d̃t

=

5
4∫

1
4

(
fl(tk)−

fl(tk)

hk

(
hkt−

hk
4

))
Si,2;hk(hkt) hkdt

= fl(tk) hk

5

4

5
4∫

1
4

Si,2(t) dt−

5
4∫

1
4

t Si,2(t) dt


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The right-hand side for each FE system can therefore be simply computed by

f
l;hk

= fl(tk) hk d , l = 1, . . . , nA, (4.39)

where d is a constant vector independent of hk and with components

di =
5

4

5
4∫

1
4

Si,2(t) dt−

5
4∫

1
4

t Si,2(t) dt , i = 0, . . . , 5 .

The stiffness matrix in (4.37) has to be computed and inverted only once per time step.
Similar to the circumstance described in Subsection 4.1.2, the regularization parame-
ters have to be chosen very small. Especially ρ1, since the factor 1

hk
cancels out orders

of the parameter for 0 < hk � 1.

This regularization approach was applied to the example in Subsection 4.1.1 and the
results are presented in the following. The time step size was again set to be constantly
h = 1e− 3.
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Figure 4.5.: Results for the x-component with one fixed regularization parameter
ρ0 = 1e− 6 and constant time step size h = 1e− 3.

Figure 4.5 shows the results for varying ρ1 and fixed ρ0. In terms of smoothness, the
choice ρ1 = 5e− 13 showed visually the best result. For Figure 4.6 ρ1 was fixed and ρ0
varied. It is interesting to observe, that for ρ0 = 1e− 5 the best approximating curve
was obtained. The quality deteriorates when downsizing to 5e− 6, but recovers when
taking an even smaller parameter. This indicates that there is an optimal choice of the
parameter, which does not necessarily have to be small. As in every case so far, the
velocity profile becomes less smooth when the position approximates the signal the best.

In Figure 4.7 it is evident, that decreasing ρ0 beyond a point does not change the
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result noticeably. Then the parts containing ρ1 become more dominant. It is differ-
ent, when ρ0 is fixed and ρ1 is reduced consecutively. In this case the quality of the
approximation only deteriorates further, as seen in Figure 4.8
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Figure 4.6.: Results for the x-component. ρ1 = 5e− 13. h = 1e− 3.
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Figure 4.7.: Results for the x-component. ρ1 = 5e− 13. h = 1e− 3.
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Figure 4.8.: Results for the x-component. ρ0 = 5e− 7. h = 1e− 3.
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4.2.2. Control equation with mixed boundary conditions

The time stepping scheme, which extracts the signal value at a new time, namely
the controller position, is an overlaying method. In each time step and therefore on
each time step interval, the control equation has to be solved separately. Since it is
globally one simulation and since globally the velocity is an integral of the generalized
actuation force µ, (Lipschitz-) continuity assumptions for µ have to be made. By using
the approximation calculated on the previous time step interval, the possibility to use
this data for the current time step pops up. Let µ

k
be the approximation of µ on the

time interval Ek = [tk, tk+1]. Evaluating µ
k−1(tk) leads to the opportunity to require

µ
k
(tk) = µ

k−1(tk)

for the next time step. Now the boundary term in (4.31) can be eliminated by setting
mixed boundary conditions in the form of

µ
k
(tk) = µ

k−1(tk) , µ̇
k
(tk+1) = 0 , (4.40)

for the control equation on Ek. The task now is to solve

−ρ1µ̈l + ρ0µl = fl(t) , l = 1, . . . , nA , (4.41)

µl(tk) = µ̃l , µ̇l(tk+1) = 0 ,

for each component µl of µ. In Section B.3 a way to construct a fitting FE system
using the Neumann case is shown. It leads to a FE system of the form[
ρ1

1

hk
B̃ + ρ0 hk C̃

]
µ
l
= fl(tk) hk d̃−µ̃l

[
c̃

[
ρ1

1

hk
b0 + ρ0 hk c0

]
+ ρ1

1

hk
b1 + ρ0 hk c1

]
.

The vector

aD :=

[
c̃

[
ρ1

1

hk
b0 + ρ0 hk c0

]
+ ρ1

1

hk
b1 + ρ0 hk c1

]
needs to be calculated only once per time step and represents the Dirichlet extension
onto Ek. The calculation of b0, b1, c0, and c1 is shown in Equation (B.37) and following.
The matrices B̃, C̃ and the vector d̃ represent the remaining components of B, C and
d from the previous section, after the elements containing the first two splines were
excluded. These two splines were used for the Dirichlet extension in aD. The mixed
boundaries FE system(

ρ1
1

hk
B̃ + ρ0 hk C̃

)
µ
l
= fl(tk) hk d̃− µ̃l aD (4.42)

is a solvable system of 4 linear equations.

Figure 4.9 shows the results for fixed ρ1 and varying ρ0. Fitting parameters for the
mixed problem were found to be up to two orders bigger than for the Neumann prob-
lem. The curves are in general visually smoother. Figures 4.10 and 4.11 indicate
though, that the tolerance towards the choice of parameters is smaller compared to the
Neumann problem. Independent of the direction in which the parameters are varied,
the quality of the approximation deteriorates.
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Figure 4.9.: Results for the x-component. ρ0 = 5e− 6. h = 1e− 3.
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Figure 4.10.: Results for the x-component. ρ1 = 6e− 12. h = 1e− 3.
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Figure 4.11.: Results for the x-component. ρ0 = 6e− 6. h = 1e− 3.
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4.3. Treatment of constant and time-dependent

forces

The Neumann problem avoids the circumstance of having to use a not strictly linear-
implicit algorithm. The mixed approach additionally assures globally continuous ac-
tuation forces and smoother results, but shows less stability in terms of regularization
parameters and their choice. Both approaches though are still incompatible with con-
stant and time-dependent forces, e.g., the gravity (see Figure 4.12).
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Figure 4.12.: Results for the z-component. Gravity causes large oscillations.

Consider the Newton-Euler equation

Mv̇(t) = f(x, v) + f̂(t) + P>µ . (4.43)

f̂(t) contains all forces which are either constant or solely time-dependent. These forces
do not appear in the adjoint system, since the partial derivatives of the Hamiltonian
H cancel out all terms not related to x or v. From a mechanical point of view it is
clear, that the actuating forces applied to a body have to cancel out all other forces and
additionally push towards the desired state. The idea now is to add zero to Equation
(4.43) in the form of

Mv̇(t) = f(x, v) + f̂(t)± P>P f̂(t) + P>µ . (4.44)

Using the transformation

µ̂ = µ+ P f̂(t) , (4.45)

Equation (4.44) can be rewritten as

Mv̇(t) = f(x, v) + f̂(t)− P>P f̂(t) + P>µ̂ . (4.46)

Applying all steps and regularizations as discussed so far leads to a control equation
for µ̂, namely

− ρ1 ¨̂µ(t) + ρ0µ̂(t) = −Pλv(t) . (4.47)

Inserting transformation (4.45) leads to a perturbed control equation for the original
actuation forces

− ρ1µ̈(t) + ρ0µ(t) = −Pλv(t) + ρ1 P
¨̂
f(t)− ρ0 P f̂(t) . (4.48)
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The boundary conditions also change due to the transformation.

˙̂µ(tk) = 0 ⇔ µ̇(tk) = −P ˙̂
f(tk) ,

µ̂(tk) = µ
D
⇔ µ(tk) = µ

D
− P f̂(tk) .

If f̂(t) is constant and represents only the gravitational forces f.e., the Neumann prob-
lem yields useful results. The perturbation on the right-hand side of (4.48) is sufficiently
scaled down due to the regularization parameter, as evident in Figure 4.13. The mixed
formulation showed to be unsuitable. Though the approximation does not show drift-
offs as in Figure (4.12), the changes in the Dirichlet data cause smaller and more rapid
oscillations.
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Figure 4.13.: Results for the z-component. Perturbed equation.
ρ0 = 5e− 7. ρ1 = 1e− 13.

At this point it is clear, that the changes in the right-hand side of the control equation
and the boundary conditions can simply be left out. This way the original control
equation is solved and the results will be the same as for the other components (x and
y). This is equal to only adding −P>P f̂(t) to Equation (4.43), i.e. simply cancelling
all constant and time-dependent forces for all actuated components by adding this term
to P>µ after solving the control equation. Though it is a manipulative interference
with the algorithm, it leads to the desired results.





5. Conclusion

In this thesis the modelling process for multibody systems was summarized, as well
as how to implement it generally using an object oriented approach. When exerting
control onto components of the system, the quality of the signal is crucial. Discon-
tinuous signals lead to non-converging numerical results when applying standard ODE
solvers. Despite using stabilization techniques, large errors occur around the points
of discontinuity. This problem was solved by introducing an optimal control approach
and formulating the servo constraints as a functional, which has to be minimized. Since
in this thesis’ application the signal is extracted in real time, an overlaying time step-
ping scheme was constructed and an optimal control algorithm, namely a single stage
control, was applied at each step in order to reach the target minimum. Driving forces
were introduced into the Newton-Euler system as control functions and regularization
was applied using either the L2-norm or a weighted H1-norm for the control functions.
While satisfying results can be achieved using only the L2-norm, an extension to H1

has more benefits. The development of the approximating curve can be regulated more
precisely, since the time derivative of the control function also appears in the functional.
Visually better results can be achieved. The drawback is a higher computational effort.
Finally a way to handle constant and time-dependent disturbance functions, such as
gravity, was presented. The forces were cancelled out by adding their complements to
the control functions and applying the technique to the transformed control.

By the presented approach, a way to enable simulations in real time was shown. A
simple overlaying time stepping scheme ensures a fast progress in time and the optimal
control approach in each time step assures a controllable error development. Choosing
a fitting time step size and proper regularization parameters can guarantee sufficient
overall accuracy. The assumptions for the signal function were reduced to an extent,
were boundedness is sufficient. Hence the requirements stated in the thesis introduc-
tion can be met.

In terms of regularization parameters, the tests conducted in Chapter 4 imply, that
there is an optimal choice of them. Varying the parameters has shown, that imposing
stronger regularization is futile beyond a certain point and the choice has to be made
specific. This thesis lays a path to further analysis for finding this optimal choice.
The possibility to improve the results by using a dynamic and optimal choice of the
parameters comes up.

In terms of efficiency, further work can be done too. As stated in the modelling
process in Chapter 1, the formulation was conducted in absolute coordinates. Using
the parametrization of the state manifold, one can reformulate the problem and reduce
thereby the amount of degrees of freedom, which results in smaller systems of ordinary
differential equations which have to be solved. When solving the adjoint system pre-
sented in Section 4.1, higher order derivatives of the force laws and constraint equations
have to be computed. These calculations are cumbersome and expensive. Introducing
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algorithmic differentiation can simplify this process.
Bringing this to a close, there are still open issues around the signal functions. The

signal functions appearing in this thesis’ application were of piecewise constant nature
and the jumps at the points of discontinuity are manageable. Increasing the size of the
jumps, i.e. having to deal with a worsening signal, might lead to solvability issues or
to oscillatory behaviour in the approximating curve. It is therefore possible, that the
requirement of boundedness might not suffice and that a measure of discontinuity or
variation gets involved for functions of more general nature. Further analysis is also
necessary here.

Taking all these steps will enable simulation engineers to use modern technology for the
simulation and assessment process. The Virtual Reality controllers presented here are
a first step. Augmented Reality software provides the possibility to use hand gestures
in order to interact with the surroundings. Extracting the signal from these gestures,
such es positions of fingers or rotation of the hand, is a challenging task on its own.
Being able to use these signals for simulations, like applying torque to a beam or in this
case manoeuvring multibody systems like robot arms, can be the next step in industrial
applications. Tackling this problem is a highly interesting and likely rewarding task.



A. Some models of joints

The modelling of joints can follow different aspects. A. Shabana [17] uses the contact
surface between two bodies and its measure to categorize them. Depending on weather
the contact surface is two-dimensional, a line, a curve or a point, the complexity can
vary. C. Wörnle [20] uses the terminology of elemental joints. He introduces for starters
4 elemental types of bindings, which are based solely on geometric concepts. What all
categorizations have in common is, that they describe the freedom of movement of the
two linked bodies, relative to each other. This aspect is described by the degree of
freedom of the joint, noted by fG.

If two rigid bodies are represented by vectors in R6, x1 and x2 respectively, a mapping
from x1 to x2 can involve up to 6 additional scalar variables, represented by a vector
y, as seen in Section 1.3, Example 1.3. The minimal amount of necessary variables
represents the degree of freedom fG. By Theorem 1.4, (6− fG) independent equations
are necessary to describe the manifold implicitly, which is parametrized by y. The
respective algebraic constraints therefore are a mapping

Φ : R12 → R6−fG ,

x :=
[
x>1 , x

>
2

]> 7→ Φ(x) .

Elemental joints represent constraints, which do not change over time, i.e. scleronomic
and holonomic constraints. In the following three different elemental joints are intro-
duced. The implicit constraint equations are related to the restriction of movement
and the implicit constraint matrices are derived.

A.1. Revolute joint

The revolute joints allows a a single rotational movement between two bodies around a
predefined axis [20, Subsec. 6.4.4]. All translational, relative movements are locked and
the relative spatial rotation is limited from three to a single axis. This already gives
an idea of how the constraint equations are designed: Three equations are necessary in
order to lock the translational movement and another two to disable rotations about
two axes independent of the joint axis.

Let a(t) be the joint axis and let P denote the point of articulation. Let further
xt,i(t), Ri(t) denote the position and orientation of two rigid bodies, where i ∈ {1, 2}.
The matrices Ri(t) = Ri(wi(t)) represent rotation matrices as discussed in Chapter 1.
The point P is not necessarily an element of one of the two rigid bodies, it represents
the point of reference for the relative movement between them. Let xP (t) denote the
position of P in the reference system. Since only rigid bodies are considered, there
exist two constant vectors p

1
and p

2
, where

p
i

= R>i (0)
[
xP (0)− xt,i(0)

]
, i ∈ {1, 2}.
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They represent the position vector of P at time t = 0 in the body-fixed frames of
reference represented by the body positions and orientations.

The first constraint, which are in fact 3 scalar equations, is the translational lock:
There are no translational movements of any body with respect to the point P

xt,1(t) +R1(t) p1 = xt,2(t) +R2(t) p2 , ∀t ≥ 0 .

For the rotational constraints, take any two unit vectors spanning the plain orthogonal
to the joint axis a(t). Let b(t) and c(t) denote those vectors. By calculating their
coordinates with respect to the body frames given at time t = 0

a2 = R>2 (0) a(0) ,
b1 = R>1 (0) b(0) ,
c1 = R>1 (0) c(0) ,

One can lock any rotation except about the joint axis by demanding

R1(t)b1 ·R2(t)a2 = 0 ,
R1(t)c1 ·R2(t)a2 = 0 ,

∀t ≥ 0 .

The algebraic equation are therefore given by

Φ : R12 → R5 ,

x 7→

 xt,2(t) +R2(t) p2 − xt,1(t)−R1(t) p1
R1(t)b1 ·R2(t)a2
R1(t)c1 ·R2(t)a2

 ,

Φ(x) = 0 , ∀t ≥ 0 .

The manifold of admissible states for each body with respect to the other body is a
circle in the plain perpendicular to a and with P as its middle point.

The respective implicit constraint matrix is obtained by taking the derivative of Φ
with respect to t. For the translational lock one obtains[

−I , R̃1(t) p1 , I , −R̃2(t) p2

]
v(t) = 0 .

In order to obtain this form, the equality

a× b = −b× a

for two vectors a, b ∈ R3 was used. The operator ·̃ denotes the skew-symmetric matrix,
which represents the outer product with a vector, i.e

a× b = ã b .

For the rotational constraints it holds

d

dt
(R1(t)b1 ·R2(t)a2) =

d

dt
(R1(t)b1) ·R2(t)a2 +R1(t)b1 ·

d

dt
(R2(t)a2)

= (ω1(t)×R1(t)b1) ·R2(t)a2 +R1(t)b1 · (ω2(t)×R2(t)a2) .
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With the equality
a · (b× c) = c · (a× b) , ∀a, b, c ∈ R3 ,

it holds [
0> , (R1(t)b1)

> · R̃2(t)a2 , 0> , − (R1(t)b1)
> · R̃2(t)a2

]
v(t) = 0 .

This holds analogously for the second rotational constraint with the vector c1. In total,
the implicit constraint matrix is

G(x) =


−I R̃1(t) p1 I −R̃2(t) p2

0> (R1(t)b1)
> · R̃2(t)a2 0> − (R1(t)b1)

> · R̃2(t)a2

0> (R1(t)c1)
> · R̃2(t)a2 0> − (R1(t)c1)

> · R̃2(t)a2

 ∈ R5×6 .

A.2. Spherical joint

The spherical joint is very much like the revolute joint. The only difference is that
any rotation with respect to the point of articulation is allowed. Therefore the two
rotational constraints are omitted and Φ is

Φ : R12 → R3 ,

x 7→
[
xt,2 +R2(t) p2 −

(
xt,1 +R1(t) p1

)]
,

Φ(x) = 0 , ∀t ≥ 0 .

The manifold of admissible states for each body with respect to the other body is a
sphere surface with P as its middle point. The implicit constraint matrix G(x(t)) is
given by the respective rows of the matrix of a revolute joint. The degree of freedom
is 3.

A.3. Prismatic joint

The prismatic joint has a single degree of freedom, like the revolute joint. The rotations
are locked though and the relative movement is a translation along the joint axis a(t).

The rotational lock is imposed by demanding

w1(t)− w2(t)− w0 = 0 ,∀t ≥ 0 ,

where w0 = w1(0)− w2(0) is a constant offset registered at t = 0.

Let again P be the point of articulation. The coordinates in the body fixed frame
are again calculated by

p
i

= R>i (0)
[
xP (0)− xt,i(0)

]
, i ∈ {1, 2}.

At time t = 0 it holds

xt,1(0) +R1(0) p
1

= xt,2(0) +R2(0) p
2
.
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To assure a relative translation parallel to an axis a, one has to assure the parallelism
of [

xt,1(t) +R1(t) p1 − xt,2(t)−R2(t) p2

]
‖ a(t) , ∀t ≥ 0 ,

or the orthogonality to the plane orthogonal to a(t). As for the revolute joint, let this
plane be spanned by {R1(t)b1, R1(t)c1}. The orthogonality criterion yields two scalar
constraint equations[

xt,1(t) +R1(t) p1 − xt,2(t)−R2(t) p2

]
·R1(t)b1 = 0 ,[

xt,1(t) +R1(t) p1 − xt,2(t)−R2(t) p2

]
·R1(t)c1 = 0 ,

∀t ≥ 0 .

The implicit constraints are therefore given by

Φ : R12 → R5 ,

x 7→


w1(t)− w2(t)− w0[

xt,1(t) +R1(t) p1 − xt,2(t)−R2(t) p2

]
·R1(t)b1[

xt,1(t) +R1(t) p1 − xt,2(t)−R2(t) p2

]
·R1(t)c1

 ,

Φ(x) = 0 , ∀t ≥ 0 .

The manifold of admissible states is a one-dimensional, straight line at time t in direc-
tion a(t).

The implicit constraint matrix can be calculated using the same rules as for the rev-
olute joint. The only new step is the use of the Dynamic Kardan Equation 1.2, since
the derivatives of wi(t) appear directly. The technical steps of the differentiation are
omitted now. It holds

G(x) =

 K1(t)

(R1(t)b1)
> (R1(t)b1 × d(t))> . . .

(R1(t)c1)
> (R1(t)c1 × d(t))>

−K2(t)

. . . − (R1(t)b1)
> −

(
R2(t)p2 ×R1(t)b1

)>
− (R1(t)c1)

> −
(
R2(t)p2 ×R1(t)c1

)>
 ∈ R5×6 ,

where
d(t) = xt,1(t)− xt,2(t)−R2(t)p2 .



B. Numerical and analytical
treatment of the 1-D Yukawa
equation

Consider the second order differential equation

− ρ1u′′(t) + ρ0u(t) = f(t) , t ∈ E := (t0, t1) , ρ0, ρ1 > 0 , (B.1)

with arbitrary boundary conditions for now. Let u(t) be an element of the Sobolev
space H1(E) and let v(t) ∈ H1(E) be an arbitrary test function. It holds

−ρ1
t1∫
t0

u′′(t) v(t) dt + ρ0

t1∫
t0

u(t) v(t) dt =

t1∫
t0

f(t) v(t) dt ,

ρ1

t1∫
t0

u′(t) v′(t) dt− ρ1 [u′(t) v(t)]
t1
t0

+ ρ0

t1∫
t0

u(t) v(t) dt =

t1∫
t0

f(t) v(t) dt . (B.2)

Define the bilinear form

a(u, v) : H1(E)×H1(E) → R ,

(u, v) 7→ ρ1

t1∫
t0

u′(t) v′(t) dt + ρ0

t1∫
t0

u(t) v(t) dt . (B.3)

a(u, v) is bounded, since

|a(u, v)| ≤ max{ρ0, ρ1}
(
‖u′‖L2(E)‖v′‖L2(E)+‖u‖L2(E)‖v‖L2(E)

)
≤ max{ρ0, ρ1}

(
‖u′‖L2(E)+‖u‖L2(E)

) (
‖v′‖L2(E)+‖v‖L2(E)

)
= max{ρ0, ρ1}‖u‖H1(E)‖v‖H1(E) ,

and coercive, since
|a(u, u)| ≥ min{ρ0, ρ1}‖u‖H1(E) .

The functional

F (v) :=

t1∫
t0

f(t) v(t) dt (B.4)

is likewise linear and bounded, if the function f(t) is bounded. After defining the
boundary conditions and, if necessary, restricting the trial and test space, the Lax-
Milgram lemma assures unique solvability. For a finite-dimensional approximation

71



72 B. Numerical and analytical treatment of the 1-D Yukawa equation

uh(t), Céa’s lemma yields the quasi-optimality of the approximation

‖u− uh‖H1(E) ≤
max{ρ0, ρ1}
min{ρ0, ρ1}

inf

vh ∈ Vh ‖u− vh‖H1(E) ,

where Vh is the respective discrete test space. An optimal error coefficient is therefore
reached if ρ0 = ρ1.

B.1. Discretization with second-order B-Splines

For the interval Ek = [tk, tk+1], with hk = tk+1 − tk, consider the nodes in Figure B.1.
The interval is extended by hk

4
in both directions in order to include more splines, such

tk − hk

4

tk − hk

8

tk tk +
hk

4
tk +

hk

2
tk +

3hk

4
tk+1

tk+1 +
hk

8

tk+1 +
hk

4

Figure B.1.: Interval discretization.

that non-zero values are possible at the interval ends. There are 9 nodes in total and
they are enumerated from left to right, i.e. t0 = tk − hk

4
to t8 = tk+1 + hk

4

Zero-order B-splines are defined by

Si,0;hk =

{
1 , t ∈ [ti ti+1) ,

0 , else,
(B.5)

for i ∈ {0, . . . , 7}. There are 8 splines, one for each subinterval and together they form
a decomposition of unity on the extended interval.

Second-order B-splines can be calculated by using the recursion formula [14, Def.
11.14 and following], i.e.

Si,k;hk(t) =
t− ti
ti+k − ti

Si,k−1;hk +
ti+k+1 − t
ti+k+1 − ti+1

Si+1,k−1;hk(t) . (B.6)

Figure B.2 shows the in total 6 functions, which are second-order polynomials on each
subinterval.

It can be shown, that the derivatives of the splines fulfil the recursion given by

d

dt
Si,k;hk(t) =

k

ti+k − ti
Si,k−1;hk −

k

ti+k+1 − ti+1

Si+1,k−1;h(t) . (B.7)

As preparation for a more efficient, consecutive FE method, a transformation of the
splines onto a normed interval is necessary.

It is evident by insertion, that a translation of the interval along the real axis does
not change the shape of the spline functions. The same set of B-Splines is obtained on
the interval given in Figure (B.3).

The set of nodes

K := {0, 1

8
,
1

4
,
1

2
,
3

4
, 1,

5

4
,
11

8
,
3

2
} , (B.8)
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Figure B.2.: Second-order B-Splines on the the extended interval.
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Figure B.3.: Interval discretization.

can span any such interval by scaling. Let Si,2(t) denote the second-order B-Splines
based on the set K and let Si,2;hk(t) denote those based on the scaled nodes. Using the
recursion formula (B.6) it can be shown by insertion that

Si,2;hk(hk t) = Si,2(t) . (B.9)

Using (B.7) and (B.9) it can be shown for the derivatives, that

S ′i,2;hk(hk t) =
1

hk
S ′i,2(t) . (B.10)

B.2. The homogeneous Neumann problem

Consider equation (B.1) on the shifted interval Ek =
(
hk
4
, 5hk

4

)
with homogeneous

Neumann boundary values, i.e.

u′(
hk
4

) = u′(
5hk
4

) = 0 . (B.11)

The boundary terms in the variational formulation (B.2) can be dropped now. This
leads to

ρ1

5hk
4∫

hk
4

u′(t) v′(t) dt + ρ0

5hk
4∫

hk
4

u(t) v(t) dt =

5hk
4∫

hk
4

f(t) v(t) dt , (B.12)

where u, v ∈ H1(Ek). Consider the space

Shk = span{Si,2;hk(t)}5i=0 ⊂ H1(Ek) (B.13)
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as trial and test space, where the splines are restricted to the respective subintervals.
Let uhk(t) ∈ Shk be the discrete trial function represented by

uhk(t) =
5∑
j=0

uj Sj,2;hk(t) , uj ∈ R . (B.14)

For the test function Si,2;hk(t) , i ∈ {0, . . . , 5}, it holds

a(uhk , Si,2;hk) =
5∑
j=0

uj a(Sj,2;hk , Si,2;hk) = F (Si,2;hk)

Considering this equation for each i ∈ {0, . . . , 5} leads to the solvable FE system

Ahk u = f
hk
, (B.15)

where A ∈ R6×6 and f ∈ R6. Their entries are calculated by

Ai,j;hk = a(Sj,2;hk , Si,2;hk) ,

fi;hk = F (Si,2;hk) .

The matrix Ahk is symmetric, since the bilinear from a is symmetric too. Figure B.2
shows further, that the splines have an overlapping domain only with the next 2 and
previous 2 splines in their order. Therefore Ahk is also a banded matrix with band
width 5 and it is necessary to calculate only 15 out of 36 entries. A single entry is
given by

a(Sj,2;hk , Si,2;hk) = ρ1

5hk
4∫

hk
4

S ′j,2;hk(t̃) S ′i,2;hk(t̃) d̃t + ρ0

5hk
4∫

hk
4

Sj,2;hk(t̃) Si,2;hk(t̃) d̃t .

With the interval scaling t̃ = hkt, the rule of integration by substitution and the
relations (B.9) and (B.10) it holds further

Ai,j;hk = ρ1

5hk
4∫

hk
4

S ′j,2;hk(t̃) S ′i,2;hk(t̃) d̃t + ρ0

5hk
4∫

hk
4

Sj,2;hk(t̃) Si,2;hk(t̃) d̃t

= ρ1

5
4∫

1
4

S ′j,2;hk(hkt) S
′
i,2;hk

(hkt) hkdt + ρ0

5
4∫

1
4

Sj,2;hk(hkt) Si,2;hk(hkt) hkdt

= ρ1

5
4∫

1
4

1

h2k
S ′j,2(t) S

′
i,2(t) hkdt + ρ0

5
4∫

1
4

Sj,2(t) Si,2(t) hkdt

= ρ1
1

hk

5
4∫

1
4

S ′j,2(t) S
′
i,2(t) dt + ρ0 hk

5
4∫

1
4

Sj,2(t) Si,2(t) dt

=: ρ1
1

hk
Bi,j + ρ0 hk Ci,j .
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The matrix Ahk can therefore be split into two parts

Ahk = ρ1
1

hk
B + ρ0 hk C , (B.16)

where B and C are constant matrices independent of hk. This simplifies the calculation
of Ahk for each hk significantly, since B and C have to be calculated only once.

B.2.1. The analytic approach and the fundamental solution

The task is to find u(t) such that

L [u] (t) = −ρ1u′′(t) + ρ0u(t) = f(t) , (B.17)

u′(t0) = u′(t1) = 0 .

Choose test functions v(t) ∈ H1(t0, t1), multiply the left-hand side of the equation with
them and integrate by parts

t1∫
t0

L [u] v dt =

t1∫
t0

ρ1u
′ v′ + ρ0u v dt− [ρ1u

′ v]
t1
t0

=

t1∫
t0

−ρ1u v′′ + ρ0u v dt− [ρ1u
′ v]

t1
t0

+ [ρ1u v
′]
t1
t0
,

t1∫
t0

L [u] v dt + [ρ1u
′ v]

t1
t0

=

t1∫
t0

L∗ [v] u dt + [ρ1u v
′]
t1
t0
,

t1∫
t0

f v dt + [ρ1u
′ v]

t1
t0

=

t1∫
t0

L∗ [v] u dt + [ρ1u v
′]
t1
t0
, (B.18)

where L = L∗ is self-adjoint.
Let w1(t) and w2(t) be the fundamental solutions of L∗ [v] = 0. The test functions

fulfil L∗ [v] = 0, since they are a linear combination of those solutions.

In order to find an analytical solution, we split the interval such that t0 < s < t1.
First interval: E1 = [t0, s )

Define
v0(t, s) = c01(s) w1(t) + c02(s) w2(t) ,

for t̂ ∈ E1, and let it fulfil the initial condition

d

dt
v0(t, s)|t=t0 = 0 .

Using v0 as a test function in Equation (B.18) with the limits of E1 leads to

t∫
t0

f(s) v0(t, s) ds + ρ1u
′(t) v0(t, t) = ρ1u(t)

d

dt
v0(t, s)|s=t . (B.19)
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Second interval: E2 = (s, t1 ]
Define

v1(t, s) = c11(s) w1(t) + c12(s) w2(t) ,

for t̂ ∈ E2, and let it fulfil the terminal condition

d

dt
v1(t, s)|t=t1 = 0 .

Using v1 as a test function in Equation (B.18) with the limits of E2 leads to

t1∫
t

f(s) v1(t, s) ds− ρ1u′(t) v1(t, t) = −ρ1u(t)
d

dt
v1(t, s)|s=t . (B.20)

Adding (B.20) to (B.19) leads to

t∫
t0

f(s) v0(t, s) ds +

t1∫
t

f(s) v1(t, s) ds + ρ1u
′(t) [v0(t, t)− v1(t, t)] =

= ρ1u(t)

[
d

dt
v0(t, s)|s=t −

d

dt
v1(t, s)|s=t

]
.

Assuming

v0(t, t) = v1(t, t) , (B.21)

d

dt
v0(t, s)|t=s −

d

dt
v1(t, s)|t=s =

1

ρ1
, (B.22)

one obtains

u(t) =

t1∫
t0

f(s) G(t, s) ds , (B.23)

where

G(t, s) :=

{
v0(t, s) t ∈ E1 ,

v1(t, s) t ∈ E2 ,
(B.24)

is called Green function. In order to find v0 and v1, consider the equation for t 6= s

L∗ [v] = 0 ,

−v′′(t) +
ρ0
ρ1
v(t) = 0 .

With r2 :=
ρ0
ρ1

, the fundamental solutions are given by

w1(t) = ert ,

w2(t) = e−rt .
(B.25)
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By using (B.21), (B.22) and the boundary conditions for v0 and v1, the coefficients
c01(s), c

0
2(s), c

1
1(s) and c12(s) can be obtained. The boundary conditions

0 =
d

dt
v0(t, s)|t=t0 = r c01(s)w1(t0)− rc02(s)w2(t0) ,

0 =
d

dt
v1(t, s)|t=t1 = r c11(s)w1(t1)− rc12(s)w2(t1) ,

lead to the equations

c02(s) = e2rt0c01(s) , (B.26)

c12(s) = e2rt1c11(s) , (B.27)

and the assumptions (B.21) and (B.22) yield

c01(s) w1(s) + c02(t) w2(s) = c11(s) w1(s) + c12(s) w2(s) (B.28)

c01(t) w1(s)− c02(t) w2(s)− c11(s) w1(s) + c12(s) w2(s) =
1

ρ1 r
(B.29)

Inserting (B.26) and (B.27) into (B.28) and (B.29) and using the definition of the
fundamental solutions leads to

c01(s)
[
ers + er(2t0−s)

]
= c11(s)

[
ers + er(2t1−s)

]
(B.30)

c01(s)
[
ers − er(2t0−s)

]
− c11

[
ers − er(2t1−s)

]
=

1

ρ1 r
(B.31)

Substituting c11 in (B.31) with the help of (B.30) leads to

c01(s) =
1

ρ1 r

1

ers − er(2t0−s) − [ers + er(2t0−s)]
ers − er(2t1−s)
ers + er(2t1−s)

(B.32)

Using (B.26), (B.27) and (B.30) leads finally to

G(t, s) :=


c01(s)

[
ert + er(2t0−t)

]
t ∈ E1 ,

c01(s)
ers + er(2t0−s)

ers + er(2t1−s)
[
ert + er(2t1−t))

]
t ∈ E2 .

(B.33)

Since the Green functions turns out to be very complex, the integral (B.23) has to be
approximated numerically. Due to this circumstance, one can solve equation (B.17)
numerically as seen in the previous section. The difference in efficiency is for small
intervals and small FE systems negligible.
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B.3. The mixed boundary values problem

In this section mixed boundary values for (B.1) are considered, namely a Dirichlet
condition as initial value and a Neumann condition as terminal value

u(
hk
4

) = ud , u
′(

5hk
4

) = 0 . (B.34)

In contrast to the previous section, the boundary terms in the variational formulation
(B.2) have to be taken care of. Since u′(hk

4
) is unknown, restrict the test space to

H1
0,(Ek) = {v(t) ∈ H1(Ek) | v(

hk
4

) = 0} ⊂ H1 . (B.35)

In order to take the Dirichlet data into account, decompose the solution into two parts

u(t) = u0(t) + uD(t) ,

where u0(t) ∈ H1
0,(Ek) is the solution to the problem with homogeneous Dirichlet data

and uD(t) is an extension of the boundary value onto Ek. This leads to the following
variational equation

a(u, v) = a(u0, v) + a(uD, v) = F (v) ,

a(u0, v) = F̃ (v) := F (v)− a(uD, v) , (B.36)

where u0, v ∈ H1
0,(Ek).

When using the same discretization as in Sections B.1 and B.2, it is possible to split
the 6 splines into two groups. S0,2;hk(t) and S1,2;hk(t) can be used to extend the Dirich-
let data onto Ek. Like for the Neumann problem, the splines are restricted to the
subintervals inside

[
hk
4
, 5hk

4

]
. uD(t) is now of the form

uD(t) = c0 S0,2;hk(t) + c1 S1,2;hk(t) . (B.37)

Setting c1 = ud and considering the interpolation condition

ud = c0 S0,2;hk(
hk
4

) + c1 S1,2;hk(
hk
4

) ,

yields

c0 = ud
1− S1,2;hk(hk

4
)

S0,2;hk(hk
4

)
.

The remaining 4 splines {Si,2;hk(t)}5i=2 span a finite dimensional subspace of H1
0,(Ek)

and can be used to approximate the solution of (B.36).

The discrete FE system
Âhku = f̂

hk
(B.38)

consists of parts of the Neumann FE system (B.15). Keeping in mind, that the first
two splines are excluded from the trial and test spaces, it holds

Âi,j;hk = Ai+2,j+2;hk , i, j ∈ {0, . . . , 3} , (B.39)

where Ai,j is calculated as in Section B.2. Since the Dirichlet extension is of the form
(B.37), the values a(uD, Si,2;hk) are also calculated with the help of Ai,j;hk and it holds

f̂i;hk = fi;hk − c0 Ai+2,0;hk − c1 Ai+2,1;hk , i ∈ {0, . . . , 3} . (B.40)

System (B.38) is in total a solvable system of 4 linear equations.
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