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Abstract

Solving strongly correlated quantum many-body problems requires numerical ap-
proximations due to the exponential size of the Hilbert space. Variational Monte-
Carlo methods are limited by the expressive power and flexibility of the variational
forms. To describe the correlations in many-body wavefunctions efficiently, reducing
them to the most important features is necessary. This is also a typical problem en-
countered in machine learning applications. A new approach has been recently put
forward, showing that it is possible to encode correlated quantum states with artifi-
cial neural networks. Particularly, variational optimization of a restricted Boltzmann
machine was shown to achieve competitive results for strongly correlated quantum
spin models.

In this thesis the theoretical foundation of variational quantum Monte-Carlo is
laid out and placed in the terminology of machine learning. Based on this, the
proposed method of neural network quantum states was investigated. The early
results for the Heisenberg model were quickly reproduced and the main focus was
put towards implementing the fermionic Hubbard model within this framework. The
results suggest that sign structures are more difficult to learn efficiently in agreement
with recent literature. A reference state implementation, restricting the variational
ansatz to describe only correlations, achieves better results and reproduces the so
far only published research applying NQS to the Hubbard model.
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Kurzfassung

Die Lösung von stark korrelierten quantenmechanischen Vielteilchenproblemen er-
fordert numerische Näherungsmethoden aufgrund des exponentiell anwachsenden
Hilbertraums. Die variationelle Monte-Carlo Methode ist durch die oft geringe
Flexibilität der Testfunktionen limitiert. Um Korrelationen in den Vielteilchen-
Wellenfunktionen effizient zu beschreiben, müssen diese auf die wichtigsten Eigen-
schaften reduziert werden – ein ebenfalls für Anwendungen maschinellen Lernens
typisches Problem. Mit einem neuen Verfahren konnte gezeigt werden, dass kün-
stliche neuronale Netze in der Lage sind, korrelierte Quantenzustände abzubilden.
Insbesondere konnten durch variationelles Optimieren einer Restricted Boltzmann
Machine vielversprechende Ergebnisse für Quanten-Spin Modelle erzielt werden.

In dieser Masterarbeit werden die theoretischen Grundlagen der variationellen
Quanten Monte-Carlo Methode dargelegt und in Beziehung zur Terminologie des
Maschinellen Lernens gesetzt. Darauf aufbauend wurde die vorgeschlagene Meth-
ode der Neural Network Quantum States behandelt und die ersten Ergebnisse für
das Heisenberg Modell reproduziert. Der Hauptteil der Arbeit bestand aus der Im-
plementierung der Lösung des Fermi-Hubbard Modells. Die erhaltenen Ergebnisse
legen nahe, dass das Lernen der Vorzeichenstruktur für dieses Verfahren ein Prob-
lem darstellt, was auch durch neueste Veröffentlichungen bestätigt scheint. Weiters
wurde ein Referenzzustand-Ansatz implementiert, um das neuronale Netzwerk auf
das Lernen der Korrelationen zu beschränken. Damit konnte ein besseres Ergeb-
nis erzielt und die bisher einzige publizierte Anwendung dieser Methode auf das
Hubbard Model bestätigt werden.
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Chapter 1

Introduction

Ab initio simulations of condensed matter plays an important role in modern physics.
Solving the quantum mechanical many-body problem of interacting electrons to find
the discrete energy levels of the system comes down to solving the time-independent
Schrödinger equation

Ĥ|ψn〉 = En|ψn〉 . (1.1)

After the Born-Oppenheimer approximation, decoupling the movements of the atomic
nuclei from the electrons, the resulting many-body problem for the electron system
is still too complicated to solve. The many-body Hamiltonian for the electronic
system in second quantization can be written as

Ĥ = Ĥ0 + Ĥ1

= −
∑
i,j,σ

tij ĉ
†
iσ ĉjσ +

∑
i,j,k,l,σ,σ′

Vijklĉ
†
iσ ĉjσ ĉ

†
kσ′ ĉlσ′

(1.2)

with σ, σ′ denoting the spin and each of the remaining indices defining the other
quantum numbers, indexing an orbital or a specific site in a lattice model. The
electrons will minimize their kinetic energy by hopping between lattice sites, which
is described by the first part Ĥ0. Whenever these itinerant electrons come close to
one another, the electrostatic repulsion of their charges raises the Coulomb energy,
which is described by Ĥ1. If the considered orbitals φ are strongly localized, the
hopping which is defined by the parameter

tij =

∫
φ∗i (~x) Ĥ0 φj(~x) dVx , (1.3)

can be limited to nearest neighbors <ij>, leading to the Tight Binding Hamiltonian

Ĥ0 = −t
∑
<ij>,σ

ĉ†iσ ĉjσ . (1.4)

Furthermore, the Coulomb parameter

Vijkl =

∫ ∫
φ∗i (~x)φj(~x)

1

|~x− ~x′| φ
∗
k(~x
′)φl(~x

′) dVxdVx′ (1.5)

can be simplified by assuming the orbitals to be strongly localized i = j and k = l,
and considering the screening by the other electrons leading to an exponential decay
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of the interaction and i = k. Finally, demanding translational invariance, the so
calld Hubbard-U is introduced as U = Viiii. Because of the Pauli exclusion principle,
only electrons with different spin quantum numbers can occupy the same site, hence
H1 counts the doubly occupied sites and increases their energy

Ĥ1 = U
∑
i

ĉ†iσ ĉiσ ĉ
†
iσ′ ĉiσ′ = U

∑
i

n̂i↑n̂i↓ . (1.6)

The resulting total Hamiltonian is called the single-band Hubbard Model

Ĥ = −t
∑
<ij>,σ

ĉ†iσ ĉjσ + U
∑
i

n̂i↑n̂i↓ . (1.7)

The behavior of this class of model systems is defined by the competition between
itinerancy and localization of the electrons, which as a result are usually highly
correlated.

Models such as the Hubbard model cannot generally be solved analytically and
numerical approximations are very computationally expensive because the Hilbert
space of all possible configurations grows exponentially with the number of sites.
Especially fermionic and frustrated systems escape an efficient treatment with ex-
isting Monte-Carlo approximations, as they evoke the infamous fermionic sign prob-
lem [27]. Better numerical tools to compute properties of strongly correlated elec-
tron systems in condensed matter or quantum chemistry could help understand
novel physical phases such as high-temperature superconductivity and would bring
advancements in the design of new materials.

Simplified lattice models also offer a good benchmark to compare new algorithms
to established solutions and to test their performance. One such new algorithm was
published by Carleo and Troyer [3] in 2017 and entailed numerous different propos-
als to solve quantum many-body problems with a new set of tools. They essentially
showed that artificial neural networks are capable of efficiently encoding strongly
correlated quantum states and can be optimized as variational wavefunctions in a
reinforcement learning scheme, calling their ansatz neural network quantum states
(NQS). In recent years machine learning frameworks and especially deep multi-
layered neural networks have set new benchmarks in problems usually involving
dimensional reduction of very large feature-spaces and pattern recognition. Modern
networks applied to image recognition problems or playing games make use of deep
learning architectures that are able to optimize functions with millions of parame-
ters. Many aspects of these problems are common between computational quantum
physics and what is sometimes phrased extreme data science [9], and there has been
an active search for possibilities to exchange knowledge between both fields.

In this thesis the proposed combination of the variational quantum Monte-Carlo
method and artificial neural networks, in particular the so called restricted Boltz-
mann machine is investigated. After this short introduction, some more physical
considerations about quantum many-body models are discussed to understand the
following numerical treatments. In Chapter 3 the variational Monte-Carlo technique
as the starting point for optimizing neural network quantum states is presented
before a short overview of some fundamental concepts from the field of machine
learning is given in Chapter 4. The newly proposed variational ansatz is also fi-
nally explained there. After reproducing some results for the Heisenberg model,
the Hubbard model is tackled, writing extensions to a dedicated software library
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for quantum spin models to allow for simulating fermions. While attempting to
solve the Hubbard model, introducing a reference state and thereby putting in more
physical prior knowledge seems necessary to improve the obtained results. Finally
some problems and opportunities facing future research are outlined.
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Chapter 2

Strongly Correlated Quantum
Many-Body Problems

In this Chapter selected definitions and concepts of quantum many-body physics are
presented, which are later used for treating the discussed models numerically with
the already mentioned neural network quantum states.

2.1 Quantum Many-Body Problems
The eigenstates and associated energy levels of quantum mechanical many-body sys-
tems are obtained by solving the time independent Schrödinger equation eigenvalue
problem

Ĥ|ψn〉 = En|ψn〉 , (2.1)

where Ĥ is the Hamiltonian of the system, describing the interactions and energies,
and En is the energy of the state |ψn〉. Since only the theoretical concepts and their
numerical evaluation are discussed, fundamental constants are set to one for the
sake of simplicity. Throughout this thesis Dirac notation and second quantization
is used. In this way a specific state |ψ〉 with a particle with spin σ at site i can be
written as

|ψ〉 = ĉ†iσ|0〉 (2.2)

using the creation operator ĉ†iσ, which creates a fermionic particle at site i with spin
σ when acting on the vacuum state |0〉. The annihilation operator ĉiσ on the other
hand destroys a particle at site i, if there is one. For these fermionic operators the
anticommutation relations apply

{ĉ†iσ, ĉjσ′} = ĉ†iσ ĉjσ′ + ĉjσ′ ĉ
†
iσ = δijδσσ′

{ĉiσ, ĉjσ′} = {ĉ†iσ, ĉ†jσ′} = 0 .
(2.3)

The basis states in real-space can be written as

|x〉 = |n1↑, n2↑, . . . nL↑, n1↓, n2↓, . . . nL↓〉 =
∏
σ=↑,↓

L∏
i=1

(
ĉ†iσ

)niσ
|0〉 (2.4)

where x = (n1↑, . . . nL↑, n1↓, . . . nL↓) is used as a shorthand notation for all the
fermionic occupation numbers niσ ∈ {0, 1} for the i-th of the L lattice sites with
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spin σ. In numerical implementations x can also be identified as an integer-valued
index of a specific configuration. A general many-body state |ψ〉 expanded in this
basis

|ψ〉 =
∑
x

|x〉〈x|ψ〉 =
∑
x

ψ(x)|x〉 (2.5)

assigns each possible configuration |x〉 the complex weight ψ(x) = 〈x|ψ〉. Assuming
a single orbital per lattice site, there are four possible occupations per site, |0〉, |↑〉,
|↓〉 and |↑↓〉 leading to 4L different basis states. The dimension of the Hilbert space
grows exponentially, which is why even supercomputers can usually only handle a
few tens of lattice sites.

2.2 Hubbard Model
The Hamiltonian of the single-band Hubbard Model that was heuristically derived
in the introduction

Ĥ = −t
∑
<ij>,σ

ĉ†iσ ĉjσ + U
∑
i

n̂i↑n̂i↓ (2.6)

consists of a kinetic energy term, that lowers the energy if hopping of nearest-
neighbor electrons is possible, and the so called Hubbard or Coulomb term which
raises the energy for double occupations on a lattice site due to Coulomb repulsion.
Terms for the chemical potential or an external magnetic field are not included here.
The parameter t is set to 1 in the remainder of this work, as only the fraction U/t
determines the physical properties, but for the numerical treatment the individual
values make a difference. Different physical properties appear when varying the
number of electron and usually the half-filled case with Ne = L is discussed. The
Hubbard model can describe an effect called Mott insulation, which arises from the
Coulomb repulsion of the electrons at large U/t, unlike the common band insulating
state. This happens only at half-filling, because in any other case there is necessarily
either a doubly occupied site or an empty one [8]. The kinetic energy and Coulomb
repulsion parts of the operator are diagonal in momentum space and real space
respectively, but the combination of both can’t be solved trivially in either basis.
Consequently two limits of the model parameters U/t can be identified. If the
Coulomb interactions are completely screened U � t, the electrons can move freely
and optimize the kinetic energy, leading to the tight binding model. If on the other
hand U � t, the electrons will hinder each other from moving as double occupations
are prohibited. At half-filling there will be exactly one electron per site and the
system can be identified as a Heisenberg model of spins.

2.2.1 Particle-Hole Transformation

At half-filling the Hubbard model is particle-hole symmetric, meaning that the same
results are achieved if particles and holes are swapped. On a bipartite lattice a
staggered particle-hole transformation

ĉi↓ → (−1)i ĉ†i↓

ĉi↑ → ĉi↑
(2.7)
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maps to an attractive model, which is easier to solve for some numerical methods [16].
The kinetic energy term remains unchanged, while for the ↓ spins the occupation
number operator becomes

n̂i↓ = ĉ†i↓ĉi↓ → (−1)i(−1)iĉi↓ĉ
†
i↓ = 1− ĉ†i↓ĉi↓ = 1− n̂i↓ . (2.8)

Inserting this into Equation (2.6) the resulting Hamiltonian now has a negative
interaction term U → −U and an additional external field for one spin channel
U
∑

i n̂i↑ = UN↑, which can be cancelled at half-filling when considering a chemical
potential.

2.3 Tight Binding Model
If the electrons can move freely only the kinetic energy term remains

Ĥ = −t
∑
l,σ

(
ĉ†lσ ĉ(l+1)σ + ĉ†(l+1)σ ĉlσ

)
. (2.9)

Only hopping in one dimension is considered in this section, as each additional
dimension can be added independently in the sum. The ground state of the tight
binding (TB) model, called the Fermi-sea because the lattice is filled with freely
moving electrons up to the Fermi energy, can be derived exactly in momentum
space using the Fourier transformation. Inserting the Fourier transformed operators

ĉ†lσ =
1√
L

∑
k

eiklĉ†kσ (2.10)

and
ĉlσ =

1√
L

∑
p

e−iplĉpσ (2.11)

the Hamiltonian transforms into

Ĥ = −t
∑
l,σ

1

L

∑
k,p

eiklĉ†kσe
−ip(l+1)ĉpσ + c.c.

= −t
∑
k,p,σ

1

L

∑
l

ei(k−p)l︸ ︷︷ ︸
δkp

e−ikĉ†kσ ĉpσ + c.c.

= −t
∑
k,σ

ĉ†kσ ĉkσ
(
e−ik + eik

)
= −2t

∑
k,σ

cos(k) ĉ†kσ ĉkσ =
∑
k,σ

(−2t) cos(k)︸ ︷︷ ︸
ε(k)

n̂kσ .

(2.12)

This operator is diagonal in k with the eigenvalues ε(k). Adding hopping terms
in another dimension to the Hamiltonian, the energy levels for a two-dimensional
lattice simply become

ε(~k) = −2t cos(kx)− 2t cos(ky) . (2.13)

The Fermi-sea state is obtained by filling the lowest k-levels with the Ne electrons.
The Fermi-energy εF at zero temperature is equal to the largest occupied energy
level.
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2.3.1 Periodic and Anti-Periodic Boundary Conditions

Applying periodic boundary conditions (PBC) of the lattice to the wavefunction
eikl, the allowed k ∈ (−π, π], using

eikl = eik(l+L) = eikleikL−i2πn, n ∈ Z ,

are determined by

k =
n2π

L
, n ∈ Z . (2.14)

With antiperiodic boundary conditions (APBC) the waves get a phase jump of iπ
when crossing over a boundary

eikl = eik(l+L)eiπ = eikleikL−iπ(2n−1), n ∈ Z ,

so now the k-values are
k =

(2n− 1)π

L
, n ∈ Z . (2.15)

This is used in Chapter 5 to lift the degeneracy of the TB ground state. The allowed
k-values and the corresponding energies are plotted in Fig. 2.1.

−π −π/2 0 π/2 π

k

−2

−1

0

1

2

ε k
/t

−2 cos(k)

PBC

APBC

Figure 2.1: Allowed k-values and their energies for the 1D Tight Binding
model with L = 10 sites using PBC or APBC.

2.3.2 Projection of the Fermi-Sea State to Real Space

To be able to count double occupations starting from the Fermi-sea state

|FS〉 =

ε(k)<EF∏
k

ĉ†k↑

ε(k′)<EF∏
k′

ĉ†k′↓ |0〉 (2.16)

with the lowest k-levels up to the Fermi energy EF filled, the projection to real-space
〈x|FS〉 is needed. Similarly to the reformulation of the Hamiltoninan in Eq. (2.12)
in terms of momentum-space operators, the inverse Fourier-transforms are inserted

|FS〉 =

ε(k)<EF∏
k

ĉ†k↑

ε(k′)<EF∏
k′

ĉ†k′↓ |0〉

=

ε(k)<EF∏
k

(
1√
L

∑
l

e−iklĉ†l↑

)
ε(k′)<EF∏

k′

(
1√
L

∑
l

e−ik
′lĉ†l↓

)
|0〉 .

(2.17)
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To write this state in the real-space basis, the creation operators ĉ†lσ have to be
rearranged to fulfill the standard ordering convention defined in Equation (2.4).
Applying the anticommutation relation, a minus sign is collected each time two
operators are exchanged. This can be demonstrated for a simple two-electron state,
discarding the spin momentarily,

|k1k2〉 = ĉ†k1 ĉ
†
k2
|0〉

=
1

L

∑
l1

e−ik1l1 ĉ†l1

∑
l2

e−ik2l2 ĉ†l2 |0〉

=
1

L

(
e−ik11ĉ†1 + · · ·+ e−ik1Lĉ†L

)(
e−ik21ĉ†1 + · · ·+ e−ik2Lĉ†L

)
|0〉

=
1

L

∑
l1<l2

(
e−ik1l1e−ik2l2 − e−ik2l1e−ik1l2

)
ĉ†l1 ĉ

†
l2
|0〉 .

(2.18)

After performing the multiplication, each configuration in {l1, l2}, with an electron
at lattice sites l1 and l2, appears exactly twice. Once where the order is correct,
l1 < l2, and a second time where the operators have to be exchanged to the correct
order, collecting a minus sign. The last line can be rewritten as a determinant of
the Bloch factors

|k1k2〉 =
1

L

∑
l1<l2

∣∣∣∣e−ik1l1 e−ik1l2

e−ik2l1 e−ik2l2

∣∣∣∣ ĉ†l1 ĉ†l2 |0〉 . (2.19)

This can then be systematically expanded [8] to the full system of Ne = N↑ + N↓
electrons from Eq. (2.17) to obtain

|FS〉 = L−
Ne
2

∑
x

∣∣∣∣∣∣∣∣
e−ik1l

↑
1 . . . e

−ik1l↑N↑

...
...

e−ikN↑ l
↑
1 . . . e

−ikN↑ l
↑
N↑

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
e−ik1l

↓
1 . . . e

−ik1l↓N↓

...
...

e−ikN↓ l
↓
1 . . . e

−ikN↓ l
↓
N↓

∣∣∣∣∣∣∣∣ |x〉 . (2.20)

Here the configuration x, introduced in Eq. (2.4), and the notation lσn for the site-
index of the n-th electron with spin σ are used.

2.4 The Heisenberg Model of Spins
In the other limit of large U/t the half-filled Hubbard model reduces to the antiferro-
magnetic (J = 4t2/U > 0) Heisenberg model of interacting spins with the Hamilton
operator [8]

Ĥ = J
∑
<ij>

Ŝi · Ŝj . (2.21)

For a spin-1
2
model of L spins there are 2L different configurations

|x〉 = |sz1, . . . szL〉 (2.22)

with szi ∈ {−1
2
,+1

2
}. The local states in the z-basis | ↓〉 and | ↑〉 are represented

by ( 0
1 ) and ( 1

0 ), and have the eigenvalues sz = −1
2
and sz = 1

2
respectively. The
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local spin-operators Ŝi are given by the Pauli matrices. The Hamiltonian can be
rewritten to

Ĥ = J
∑
<ij>

(
Ŝi
x
Ŝj

x
+ Ŝi

y
Ŝj

y
+ Ŝi

z
Ŝj

z
)

= J
∑
<ij>

(
1

2
(Ŝi

+
Ŝj
−

+ Ŝi
−
Ŝj

+
) + Ŝi

z
Ŝj

z
) (2.23)

using the ladder operators Ŝ±j = Ŝxj ± iŜyj , revealing hopping terms between neigh-
boring spins. This first part of Ĥ is called the exchange energy. The operators Ŝ
now have the form

Ŝz =
1

2

(
1 0
0 −1

)
, Ŝ+ =

(
0 1
0 0

)
, Ŝ− =

(
0 0
1 0

)
(2.24)

such that Ŝz retrieves the z component of the spin Ŝz|szi 〉 = szi |szi 〉, and the ladder
operators flip the spin if possible, Ŝ+| ↓〉 = | ↑〉, Ŝ+| ↑〉 = 0 and analogically for Ŝ−.
The model of spins can be mapped to a model of spinless fermions with the sz values
corresponding to the occupation numbers, but only in one dimension since particles
would catch a fermionic minus sign if they were able to switch places.

2.5 Numerical Solutions
There are different approaches to solve quantum many-body problems numerically,
performing better or worse in different scenarios. Exact diagonalization schemes such
as Lanczos work reliably with general Hamiltonians but are limited to very small
system sizes as the dimension of the Hilbert-space increases exponentially. While
density functional theory is very accurate for weakly correlated systems and is often
used for calculating real materials, effectively treating a noninteracting system, it
fails when correlations become too strong [9].

Other approaches try to overcome the exponential complexity either by com-
pression of the wavefunction or by evaluating the high-dimensional integrations
stochastically in quantum Monte-Carlo (QMC) schemes. The density-matrix renor-
malization group (DMRG) has established itself as a very powerful method to solve
strongly correlated quantum lattice problems in one dimension [20]. Matrix product
states (MPS) or the more general tensor networks offer an efficient representation
of the full wavefunction by truncating the tensors to keep only the most important
features. However, the entanglement entropy as the limiting factor that usually fol-
lows the area law scales unfavorably when looking at higher dimensions [21]. QMC
approaches offer a direct stochastic solution to the Schrödinger equation but for a
lot of interesting fermionic or frustrated models suffer from the sign problem where
the appearance of negative Boltzmann weights results in an exponential growth of
the statistical error with the number of particles [27].

Variational methods typically rely on rigid forms, for example fixed node ap-
proximations, and their expressive power cannot be systematically extended in an
efficient way [6]. The general idea of variational Monte-Carlo (VMC) approaches
is described in detail in the following Chapter. It promises not to suffer from the
typical negative sign problem [15] and based on this approach the proposed solution
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incorporating notions from machine learning will be discussed. This algorithm, in
different terms, can be regarded as a reinforcement learning scheme and using an
artificial neural network as the variational form in Chapter 4 ultimately brings this
method into the realm of machine learning.
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Chapter 3

Variational Monte-Carlo

The theoretical foundation for this family of algorithms is described in the following
sections, as it is used for the neural network quantum states presented in Chapter 4.

3.1 Variational Monte-Carlo
In variational Monte-Carlo (VMC) a trial wavefunction is optimized to minimize
the energy expectation value. Using the Rayleigh-Ritz variational principle

E[ψ] =
〈ψ|Ĥ|ψ〉
〈ψ|ψ〉 ≥ E0 (3.1)

the exact groundstate energyE0 presents a lower boundary and the time-independent
Schrödinger equation can be reformalized as a stochastic optimization problem. The
energy functional E[ψ] can be minimized by varying the wavefunction ψ to find the
groundstate

ψ0 = argmin
ψ

E[ψ] . (3.2)

The expectation value of the operator can be evaluated stochastically using Markov-
Chain Monte-Carlo integration which gives this method its name. A variational
optimization is needed that offers stability when being exposed to statistically noisy
Monte-Carlo samples.

3.2 Statistical Expectation Value of a Local Opera-
tor

Inserting full basis sets 11 =
∑

x |x〉〈x| and using the definitions ψ(x) = 〈x|ψ〉 for
the wavefunction amplitude and phase and the matrix element Hxx′ = 〈x|Ĥ|x′〉,
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Eq. (3.1) can be rewritten as

E = 〈Ĥ〉 =
〈ψ|Ĥ|ψ〉
〈ψ|ψ〉 =

∑
x,x′〈ψ|x〉〈x|Ĥ|x′〉〈x′|ψ〉∑

x〈ψ|x〉〈x|ψ〉

=

∑
x,x′ ψ

∗(x)Hxx′ψ(x′)∑
x ψ
∗(x)ψ(x)

=

∑
x ψ
∗(x)ψ(x)

∑
x′ Hxx′

ψ(x′)
ψ(x)∑

x |ψ(x)|2

=
∑
x

p(x)Eloc(x)

= 〈〈Eloc〉〉

(3.3)

with the definition of the probability distribution

p(x) =
|ψ(x)|2∑
x′ |ψ(x′)|2

. (3.4)

〈〈 . 〉〉 denotes the statistical expectation value over the probability distribution p(x)
and the final result is the expectation value of the so called local energy

Eloc(x) =
∑
x′

Hxx′
ψ(x′)

ψ(x)
. (3.5)

Naturally, in place of the Hamilton operator, for any quantum mechanical observ-
able Ô the expectation value can be calculated in this way. If Ô is diagonal in the
computational basis, it can be evaluated right away as 〈〈Ô〉〉, whereas in the general
case Ôloc is calculated as it is written in Eq. (3.5) for the Hamiltonian. In this for-
mulation, the sum over exponentially many basis vectors can then be approximated
with NS Monte-Carlo samples

〈Ĥ〉 =
∑
x

p(x)Eloc(x)

≈ 1

NS

∑
x∼p(x)

Eloc(x)
(3.6)

while the sum in Eloc(x) (Eq. (3.5)) is carried out exactly over the small subspace
of connected states x′ that are reached from x, that means for which Hxx′ 6= 0.

3.2.1 Markov Chain Monte-Carlo Sampling

To evaluate Eq. (3.6), NS configurations are drawn according to the probability dis-
tribution p(x) using the Metropolis algorithm. Belonging to the family of Markov-
chain Monte-Carlo (MCMC) methods, it creates a sequence of configurations where
each sample is only dependent on the previous one. Starting from an initial configu-
rations x, a new configuration x′ is proposed and accepted as the next sample with
the probability

p(x′|x) = min
(

1,
|ψ(x′)|2
|ψ(x)|2

)
, (3.7)
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if it gets rejected, the previous sample is taken again. Because only the quotient
of the wavefunctions is used, no normalization constant is needed. A number of
samples are discarded in a so called thermalization period in the beginning. Two
possible ways to get an update step x′ are to either perform a hopping step to a
configuration connected by the Hamiltonian, or to exchange the occupations of two
sites [15]. Both conserve the number of particles and the total spin Sz. If total spin
conservation is not needed, additional local spin flips can be used, and a lot more
advanced update procedures have been developed in the framework of quantum
Monte-Carlo.

3.3 Trial Wavefunctions
The variational trial wavefunctions should be able to capture as much complexity
and be as accurate as possible, but still be fast to calculate. If more physics is
already built into the form of the wavefunction, a good representation will usually be
found quicker. But this also limits the expressiveness and prohibits finding new and
unknown representations, so there is an ongoing search for efficient representations
of quantum states. The simplest example of a trial state for solving the Hubbard
model is the idea of Gutzwiller [11], to start with an uncorrelated metal state |Φ0〉
represented by the Fermi-sea, and then to start suppressing double occupations. A
variational parameter is introduced to find the optimum number of doubly occupied
and empty sites when U increases from 0. By including the Gutzwiller factor

|ψ〉 =
∏
j

[1− (1− η)n̂j↑n̂j↓] |Φ0〉 (3.8)

with the variational parameter η ∈ [0, 1], double occupations are either ignored at
η = 1 or, for η < 1, the probabilities of states where many of them occur are
decreased [8].

Based on this idea, an often used variational wavefunction parameterized by a
set of parameters θ, is a product

ψ(x|θ) = PG(x|θ)PJ(x|θ) Φ0(x|θ) (3.9)

of an antisymmetric part Φ0 and so called Gutzwiller and Jastrow correlation factors
PG and PJ that encode the correlations induced by interactions. The antisymmetric
part ensures the fermionic properties and sets the nodal structure of the wavefunc-
tion and can consist of for example a single Slater determinant or the pair-product
or geminal wavefunction [15]. General Gutzwiller and Jastrow factors are positive
many-body correlation functions, and can be written as

PG = exp

[∑
i

gini↑ni↓

]
(3.10)

and

PJ = exp

[
1

2

∑
i 6=j

vij(ni↑ − 1)(nj↓ − 1)

]
(3.11)

with the variational parameters gi and vij [15].
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3.4 Gradient Optimization
Using an ansatz for the wavefunction ψ(x) = ψ(x|θ) that is parameterized by a set
of parameters θ and the definition

Dk(x) =
1

ψ(x|θ)
∂

∂θk
ψ(x|θ) =

∂

∂θk
logψ(x|θ) (3.12)

the gradient of the energy expectation value with respect to the parameters θ can
be written as

∂

∂θk
〈Ĥ〉 =

∂

∂θk

∑
x,x′ ψ

∗(x)Hxx′ψ(x′)∑
x ψ
∗(x)ψ(x)

=
∂

∂θk

1

Z

∑
x,x′

ψ∗(x)Hxx′ψ(x′)

=
1

Z

∂

∂θk

∑
x,x′

ψ∗(x)Hxx′ψ(x′) +
∑
x,x′

ψ∗(x)Hxx′ψ(x′)
∂

∂θk

1

Z

=
1

Z

[∑
x,x′

ψ∗(x)Hxx′ψ(x′)D∗k(x) +
∑
x,x′

ψ∗(x)Hxx′ψ(x′)Dk(x
′)

]
− 〈Ĥ〉 1

Z

∂Z

∂θk

=

[∑
x

p(x)Eloc(x)D∗k(x) +
∑
x′

p(x′)E∗loc(x
′)Dk(x

′)

]
− 〈Ĥ〉 1

Z

∂Z

∂θk

= 〈〈ElocD
∗
k〉〉+ 〈〈E∗locDk〉〉 − 〈〈Eloc〉〉

∑
x

p(x) [D∗k(x) +Dk(x)]

= 〈〈ElocD
∗
k〉〉+ 〈〈E∗locDk〉〉 − 〈〈Eloc〉〉〈〈D∗k〉〉 − 〈〈Eloc〉〉〈〈Dk〉〉

= 〈〈ElocD
∗
k〉〉+ 〈〈E∗locDk〉〉 − 2〈〈Eloc〉〉〈〈Re{Dk}〉〉

(3.13)

If we assume the local energy to be real-valued for all configurations x

Eloc(x) = E∗loc(x) (3.14)

the gradient can be written in a simpler form

∂

∂θk
〈Ĥ〉 = 2Re 〈〈ElocDk〉〉 − 2Re [〈〈Eloc〉〉〈〈Dk〉〉]

= 〈〈2Re [(Eloc − 〈〈Eloc〉〉)Dk]〉〉
= 〈〈2Re [Eloc (Dk − 〈〈Dk〉〉)]〉〉
= 〈〈Gk〉〉

(3.15)

and is again a statistical expectation value of the gradient estimator

Gk(x) = 2Re [Eloc(x) (Dk(x)− 〈〈Dk〉〉)] . (3.16)

Even if Eq. (3.14) is not fulfilled, this is often a good enough approximation of the
gradient for the optimization procedure to work.
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3.4.1 Vanishing Gradient for an Eigenstate of the Hamilto-
nian

If |ψ〉 is an eigenstate of Ĥ with an eigenvalue E, it is easy to see that the gradient
is zero

∂

∂θk
〈Ĥ〉 =

1

〈ψ|ψ〉
∂

∂θk
〈ψ|Ĥ|ψ〉+ 〈ψ|Ĥ|ψ〉 ∂

∂θk

1

〈ψ|ψ〉

=
E

〈ψ|ψ〉
∂

∂θk
〈ψ|ψ〉 − E〈ψ|ψ〉 1

〈ψ|ψ〉2
∂

∂θk
〈ψ|ψ〉

=
E

〈ψ|ψ〉
∂

∂θk
〈ψ|ψ〉 − E

〈ψ|ψ〉
∂

∂θk
〈ψ|ψ〉

= 0 .

(3.17)

This is true not only for the groundstate with the lowest eigenvalue, but for any
eigenstate. A simple gradient-descent scheme might therefore end up in a local
minimum of the energy landscape at an excited state of the system.

3.4.2 The Zero-Variance Principle

The variance of the energy expectation value becomes zero if an exact eigenstate ψ
with the energy E is reached

Var(H) = 〈Ĥ2〉 − 〈Ĥ〉2 = 〈ψ|Ĥ2|ψ〉 − 〈ψ|Ĥ|ψ〉2 = 〈ψ|ψ〉2E2 − (〈ψ|ψ〉E)2 = 0 .
(3.18)

The local energy

Eloc(x) =
∑
x′

〈x|Ĥ|x′〉〈x
′|ψ〉
〈x|ψ〉 =

〈x|Ĥ|ψ〉
〈x|ψ〉 = E (3.19)

then becomes independent of x and its variance is also zero. This means that
stochastically evaluating the expectation value for an exact eigenstate is not affected
by fluctuations of the local energy as it is constant. As a result, also a minimization
of the variance instead of the energy should lead to an eigenstate, and this is done
as well. Indeed this was sometimes believed to be superior to optimizing the energy
expectation value, however, Snajdr et al. [23] have shown that consistently better
estimates of non-energy-related properties are achieved with energy-optimized wave
functions.

3.4.3 Stochastic Gradient Descent and the Stochastic Recon-
figuration Method

To optimize the energy, gradient descent algorithms can be used to iteratively update
the set of parameters θ until a convergence criteria is met. In the simplest case of
stochastic gradient descent, at each iteration t a number of configuration samples are
drawn to evaluate the gradient Eq. (3.16) stochastically and update the parameters

θ
(t+1)
k = θ

(t)
k − η ∂k〈Ĥ〉 . (3.20)
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The step-size η is a so called hyperparameter and also called the learning rate. It
can be set to a constant value or be decreased continuously after some time to
further improve a converging result. Stochastic gradient descent is also widely used
in machine learning applications where the data is split up into smaller randomly
chosen batches and the gradients are estimated with only such subsets of the data.
This approximates the true gradient with some additional Gaussian noise that can
prevent overfitting. Stochastic gradient descent can be linked to Langevin dynamics
and there is a lot of theoretical knowledge how it helps with large datasets to allow
for parameter uncertainty [28]. If an exact eigenstate is reached the variance goes
to zero, effectively turning off the noise term.

Second-order methods like the Newton method improve the convergence behav-
ior, especially if the gradient is much larger in certain directions of the energy hyper-
plane, at the cost of inverting the Hessian matrix. Closely related is the stochastic
reconfiguration (SR) method proposed by Sorella [25] that allows for a more stable
convergence of the parameter optimization and enables VMC simulations with an
order of a hundred thousand variational parameters [15]. This makes use of the fact
that the imaginary-time evolution of a quantum state becomes the exact groundstate
in the limit of large times, if the two states are not orthogonal to each other. Some
steps of the derivation are shown here to convey the physical motivation for the
parameter update equation. The imaginary-time-dependent Schrödinger equation
is

∂

∂τ
|ψ(τ)〉 = −Ĥ|ψ(τ)〉 . (3.21)

Substituting the normalized wavefunction |ψ̃(τ)〉 = |ψ(τ)〉/
√
〈ψ(τ)|ψ(τ)〉 into this

equation yields

∂

∂τ
|ψ̃(τ)〉 =

1√
〈ψ(τ)|ψ(τ)〉

∂

∂τ
|ψ(τ)〉 − 1

2

|ψ(τ)〉
〈ψ(τ)|ψ(τ)〉

3
2

∂

∂τ
〈ψ(τ)|ψ(τ)〉

= − 1√
〈ψ(τ)|ψ(τ)〉

Ĥ|ψ(τ)〉+
〈ψ(τ)|Ĥ|ψ(τ)〉
〈ψ(τ)|ψ(τ)〉

|ψ(τ)〉√
〈ψ(τ)|ψ(τ)〉

= −
(
Ĥ − 〈Ĥ〉

)
|ψ̃(τ)〉 .

(3.22)

After writing the derivatives in terms of the variational parameters θk

∂

∂τ
|ψ̃(τ)〉 =

∑
k

∂θk
∂τ

∂

∂θk
|ψ̃(τ)〉 = −

(
Ĥ − 〈Ĥ〉

)
|ψ̃(τ)〉 (3.23)

the so called time-dependent variational principle (TDVP) is obtained by minimizing
the L2-norm of this equation with respect to the derivatives of the parameters θ̇k =
∂θk
∂τ

[15]. After introducing discrete time steps θ̇k = ∆θk
∆τ

, a formulation for the
updated parameters is reached

θ
(t+1)
k = θ

(t)
k + ∆θ

(t)
k

= θ
(t)
k −∆τ

∑
m

S−1
kmgm

(3.24)

with
Skm = Re〈D∗kDm〉 − Re〈Dk〉〈Dm〉 (3.25)
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and
gm = Re〈HDm〉 − 〈H〉Re〈Dm〉 . (3.26)

Having gone trough these steps, the stochastic reconfiguration method approxi-
mates the imaginary-time evolution starting from the time-dependent Schrödinger
equation. It involves the diagonalization of the covariance matrix S which can be
achieved using a Cholesky decomposition or accelerated with the conjugate gradient
(CG) method [15]. gm resembles the gradient estimate in Eq. (3.15) that was derived
in terms of the local energy, and ∆τ takes the place of the step size or learning rate.
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Chapter 4

Neural Network Quantum States

In order to solve strongly correlated quantum many-body problems numerically,
compact representations of the quantum states must be found that are able to
capture the most essential features while reducing the degrees of freedom down from
the exponential complexity of the Hilbert space. This boils down to dimensional
reduction and feature extraction, for which artificial neural networks have proven to
be a very capable tool in recent years. Machine Learning algorithms and especially
artificial neural networks are able to approach complex problems in the realm of
image and speech recognition, optimizing hundreds of thousands of parameters. The
proposed variational ansatz for the VMC method by Carleo and Troyer [3] merges
ideas from the machine learning community with the longstanding experience of
statistical physics. In this Chapter, a short overview over some concepts in the field
of machine learning is provided first, to help place the ideas coming from the physics
domain within the field and terminology of machine learning. Then the particular
ansatz as well as some further solutions are discussed.

4.1 Machine Learning Rudiments

4.1.1 Supervised, Unsupervised and Reinforcement Learning

The field of machine learning is usually divided into three categories, namely su-
pervised, unsupervised and reinforcement learning. Learning in all cases means an
optimization of parameterized mathematical functions to improve at a certain task,
measured by a cost function.

Problems assigned to supervised learning deal with sets of labeled data {(xi, ti)}
containing feature vectors x and target values t [1]. The task is then either re-
gression, optimizing a parameterized function y(x) to best fit the target values, or
classification, assigning probabilities for predefined classes, minimizing a distance
function to the true class or distribution t. After an optimization period using the
training data, the model is used to predict the targets or classes of new, unlabeled
data. Best-in-class results in image recognition problems have been achieved us-
ing deep, multi-layered neural networks, especially convolutional neural networks
(CNN), due to an increase of computational power in recent years mainly relying
on GPUs, and the availability of large datasets.

Unsupervised learning schemes are used on unlabeled data sets for data com-
pression, discovering patterns and features in the data and clustering of similar
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features [1]. The most basic example is principal component analysis. Another ex-
ample to mention here, as this model is used in the following sections, is the restricted
Boltzmann machine (RBM) which is mostly used for learning probability distribu-
tions. The RBM was able to achieve very good results in recommender systems
(collecting the so called netflix price). Recent advances were made with generative
adversarial networks (GAN) that use a pair of a generative and a discriminative
network trying to trick each other and are also able to produce new samples from
a learned probability distribution, for example realistically looking human faces of
people who don’t actually exist.

The third learning scheme is reinforcement learning. In the machine learning
terminology this is usually formulated as an agent-environment scenario. Inspired
by how a human baby would learn to walk, a so-called agent is placed in an en-
vironment in which it receives rewards if it achieves or gets closer to a predefined
goal. The agent, having a set of rules on how to react to measurements in the en-
vironment, takes an action and gets a reward based on its location and the state
of the environment. The rewards, positive or negative, are then used to modify its
parameterized rule-set. Reinforcement learning schemes have come to fame thanks
to Google Deepmind’s AlphaZero, an algorithm beating the best human Go player
after training only by playing against itself with no expert input.

The variational Monte-Carlo algorithm can be identified as reinforcement learn-
ing and placed in this last category [3]. In an attempt to make a vague connection to
the agent-environment formulation, the goal of minimizing the energy expectation
value provides feedback, a reward, for a change in the parameters of the wavefunc-
tion, the rule-set. The environment is the energy surface that is defined by the
variational wavefunction and is essentially defined by the behavior of the agent. In
this case the parameterization of the agent is deeply interwoven with the shape of
the environment, so at every step, the actions, being an update of the variational
parameters, change not only the agents rule-set, but also the environment.

4.1.2 Feed Forward Neural Networks

To follow the discussion in the following sections, the concept of a feed forward
neural network (FFNN) is briefly summarized here. An artificial neuron, also called
a perceptron, receives multiple inputs, assigns them an importance according to
some parameters, and outputs an activation that usually tries to implement a certain
threshold for the signals coming in. The output of a single neuron i

yi(x|W, b) = σ

(∑
j

Wijxj + bi

)
(4.1)

is the weighted sum over all the inputs xj and an additional bias bi, fed into a
nonlinear activation function σ. For the activation function, besides tanh(x) and the
sigmoid-function 1

1+e−x
, the rectified linear unit (ReLU) function max(x, 0) is most

often used. Many of these neurons are combined to a layer, and multiple layers can
be stacked to form a deep neural network, the final layer being the output of the
computational graph, see Fig. 4.1. Intermediate layers are also called hidden layers
and the final-layer’s softmax activation function usually limits the outputs to [0, 1]
in classification applications. An important fact is that the activation function must
be nonlinear, as otherwise the whole network would collapse into a linear function
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and would not gain anything from adding additional layers [1]. The parameters to
be optimized, {Wij} and {bj} for each layer, are called the weights and biases.

x1

x2

x3

...
xn

...

o1

...
om

input
layer

hidden
layer

output
layer

Figure 4.1: Neural network (NN) computational graph with an input layer
representing the data vector x, hidden intermediate layers and an output
layer o, for example probabilities for some predefined classes.

Such a network can be trained with gradient descent algorithms to lower a pre-
defined cost function. Using the chain rule to compute the derivatives with respect
to the parameters of all the layers is called backpropagation of the error. In such a
network, the output of one layer becomes the input of the next layer, and the final
computation equates to evaluating functions of functions of some input vector.

4.1.3 The Restricted Boltzmann Machine

A Boltzmann machine is a probabilistic model on an undirected graph of binary
nodes, that can learn latent representations of data. It can learn arbitrary prob-
ability distributions through an unsupervised learning scheme and is then able to
compute new data samples from it, however, there are also different ways to use
it with supervised learning methods. Boltzmann machines descend from Hopfield
networks which are identical to the fully connected Ising model in statistical physics.
Each node, also called stochastic neuron, has a binary state and is connected to all
other neurons. Boltzmann machines introduce an additional type of nodes, so-called
hidden neurons. N visible neurons, written as a vector v represent a data sample
or feature vector while M hidden neurons h are used as latent variables to capture
the correlations between the visible neurons. Each edge in the graph, represent-
ing a connection between two neurons i and j, has a weight Wij with Wii = 0. A
large positive weight indicates a positive correlation between two units, while a large
negative weight means a negative correlation. Each neuron also has an additive bias.

In a restricted Boltzmann machine (RBM) there are edges only between the
visible and the hidden nodes, but not among them, see Fig. 4.2, which makes the
computational effort a lot more manageable.
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Figure 4.2: Undirected graph of a restricted Boltzmann machine (RBM)
with N = 4 visible nodes vi representing the data and M = 3 hidden nodes
hj encoding correlations.

It can be thought of as consisting of a visible and a hidden layer with connections
between the layers. An RBM can also be seen as a special case of a Markov random
field [1]. An Ising-type energy is defined as

E(v,h|a, b,W ) = −
∑
i

aivi −
∑
j

bjhj −
∑
i,j

Wijvihj . (4.2)

with the bias parameters ai and bj for the visible and hidden neurons respectively.
A symbol θ = (a, b,W ) will be used from now on as a shorthand notation for all
the variational parameters. The probabilistic nature of the model comes from the
definition of the probability for a specific configuration

p(v,h|θ) =
1

Z
e−E(v,h|θ) (4.3)

according to the Boltzmann distribution, which lends the model its name. The
partition function Z is usually intractable to compute, but conditional probabilities
can be used that don’t require its computation. From this the probability of a single
neuron having the value 1

p(vi = 1|v1, . . . vi−1, vi+1, . . . vN ,h, θ) =
1

1 + e−∆Ei
= σ

(∑
j 6=i

Wijhj + bi

)
(4.4)

can be derived, with ∆Ei = E(vi = 1) − E(vi = −1) [1]. This can be interpreted
as the firing rate of the neuron. The right-hand side of this expression is equal
to the deterministic activation sig(yi) of a general perceptron-type neuron, but in
case of RBM the output is of stochastic nature. For a fixed set of parameters,
Markov-chain Monte-Carlo sampling of the neurons activations is performed until
thermal equilibrium is reached, to obtain a new sample from the distribution that
was learned from data during training [1].

An exemplary use-case would be repairing a corrupt image by setting most of
the visible units to the known valid pixel-values and sampling the missing pixels,

30



obtaining a very likely image according to the learned distribution. The same proce-
dure can be used in a recommender-system of a movie-streaming platform to guess
a very likely personalized rating of a movie that a user has not yet watched, based
on his ratings of other movies and the correlations of ratings for different movies
learned from a large data base. An RBM is a universal approximator, meaning that
it can approximately represent any probability distribution to arbitrary accuracy
given a sufficient number of hidden units [12]. Training an RBM with methods
like contrastive divergence is quite different than training networks on directional
graphs (feed forward neural networks), but will not be elaborated here because in
the application of RBM as a variational wavefunction a different learning scheme is
used.

4.2 Neural Network Quantum States (NQS)
A general variational ansatz for the wavefunction is

|ψθ〉 =
∑
x

ψ(x|θ) |x〉 , (4.5)

where x is short for all the discrete-valued degrees of freedom in the computational
basis spanning the Hilbert space H. This could be for example the {σzi } of a spin-
chain or all the occupation numbers {niσ} of orbitals or lattice sites in an electron
system. The weights ψ(x|θ) are given by a function that is parameterized by the set
of parameters θ. This can be an arbitrary function

ψ : H 7→ C
x→ ψ(x|θ) (4.6)

that takes as the input a configuration x from theN -dimensional Hilbert space in the
computational basis and maps it to a complex number to represent the amplitude
and phase of the wavefunction ψ. In order to be used as a variational wavefunction,
ψ(x|θ) and its partial derivatives with respect to the parameters must be efficiently
computable.

In the initial work on this method, Carleo and Troyer [3] proposed to view ψ
as a computational black box and apply an artificial neural network to the prob-
lem, terming this ansatz neural network quantum state (NQS). Using a restricted
Boltzmann machine in a reinforcement learning scheme, they were able to achieve
competitive results for finding the groundstate energy of the Heisenberg model. An
RBM seems to be an efficient representation of quantum states meaning that the
necessary number of parameters increases at most polynomially with the dimensions
of the system [10]. With NQS it is also possible to incorporate intrinsic symmetries
of the model either by design or by sharing parameters between nodes [3].

The basic goal for finding a good variational form is to be able to extract the most
relevant features in the correlations and represent them efficiently. Some research
has already been done investigating different neural network architectures as trial
wavefunctions for VMC calculations and some of it will be mentioned in the next
sections. In addition to finding the groundstate energy and a representation for the
wavefunction, dynamical properties [3] as well as investigating excited states [5] were
also shown to be in the reach of NQS.
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4.2.1 Restricted Boltzmann Machines as Variational Wave-
functions

Because of its origins in statistical physics and its proven applicability to learning
probability distributions, the restricted Boltzmann machine is a natural candidate
for a trial neural network quantum state. The wavefunction ansatz proposed by [3]
is the expression for the probability of a configuration of visible nodes v without the
normalization

ψ(v|θ) =
∑
{h}

e−E(v,h|θ) . (4.7)

In physical terms this represents the partition function of a gas of M hidden units
connected to the N physical spins [3]. The summation over the hidden units hj = ±1
can be carried out to obtain

ψ(v|θ) =
∑
{h}

e
∑
i aivi+

∑
j bjhj+

∑
i,jWijvihj

= e
∑
i aivi

∑
{h}

∏
j

e(bj+
∑
iWijvi)hj

= e
∑
i aivi

∏
j

(
ebj+

∑
iWijvi + e−bj−

∑
iWijvi

)
= e

∑N
i=1 aivi

M∏
j=1

2 cosh

(
bj +

N∑
i=1

Wijvi

)
= eΦ(v|θ)

(4.8)

with

Φ(v|θ) =
N∑
i=1

aivi +
M∑
j=1

log

[
2 cosh

(
bj +

N∑
i=1

Wijvi

)]
. (4.9)

To represent the complex-valued and negative phases of a quantum mechanical wave-
function, the parameters (W,a, b) are now generalized to complex numbers. This
expression can be computed fairly easily and can take on arbitrary complex val-
ues. Furthermore, the complexity of the model, determined by the number of latent
variables M , can be systematically increased by setting a larger fraction α = M

N
of

hidden nodes, and the network can be shown to be capable of approximating repre-
sentations of any desired probability distribution to arbitrary accuracy [14]. In the
general case there are αN2 + αN + N variational parameters for the weights and
hidden and visible biases. A transformation-invariant restricted Boltzmann machine
has been proposed [24] based on which a translation symmetric model can be formu-
lated. By introducing sums in Equation (4.8) over all the permutations of a certain
feature following a symmetry operation, the effective number of parameters can be
reduced to αN [3]. Finally, the partial derivatives of the logarithmic wavefunctions
Dk = ∂

∂θk
lnψ(v|θ), that were defined in Chapter 3 and are necessary for the VMC

algorithm, are

Dai = vi

Dbj = tanh(yj)

DWij
= tanh(yj) vi ,

(4.10)

with the expressions simplified using the definition yj = bj +
∑

iWijvi.
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4.2.2 Representational Power of Restricted Boltzmann Ma-
chines as Quantum States

Some efforts have been made to bridge the fields of deep learning and theoretical
physics to be able to estimate the representational power of RBM and compare it
to better understood theoretical concepts for solving quantum problems. Tensor
networks (TN) and RBM are both universal approximators, but given a limited
number of parameters, they define two independent yet possibly overlapping sets
of functions. Chen et al. [4] have shown theoretical connections of tensor network
states (TNS) and RBM and have found that RBM can generally encode quantum
many-body states with fewer parameters. In theoretical frameworks such as TN the
entanglement entropy is a measure for the efficiency of a many-body wavefunction
representation. States fulfilling the area law, where the maximum entanglement
between two subspaces is determined by the surface area of the boundary between
them, are well described by tensor network states [14]. RBM however were shown
to be capable of encoding quantum states that require volume law entanglement,
hence they may be able to describe states that are out of reach for MPS [4].

RBM could be capable of encoding ground states of systems with long-range
interactions or excited states of local Hamiltonians, both of which require volume
law entanglement. In some higher dimensional models area law entanglement would
suffice but tensor networks cannot be contracted efficiently, whereas RBM might be
applied with no extended effort [14]. Since in an RBM the correlations are modeled
by all hidden units, they are intrinsically non-local and therefore not dependent on
the dimensionality of the model [3].

Reducing the number of parameters by restricting interlayer connections or in-
troducing parameter sharing, similar to how a convolutional neural network (CNN)
works, may increase the efficiency for problems suitable to area-law entanglement [14].
On the other hand, an increase in the complexity can be achieved by stacking RBM
on top of each other, creating what is called a deep RBM (DBM). Computational
effort generally increases with the model complexity but DBM have been shown to
provide more efficient representations of certain many-body wave functions. In a
DBM the visible units can principally have correlations over a longer range with
the same number of parameters, since the deep hidden units encode correlations
between the hidden units, which themselves correlate the visible units, giving DBM
exponentially better efficiency compared to RBM [10].

NQS results applying an RBM to finding the groundstates of diatomic molecules
systematically improved results obtained by conventional methods and were able to
recover almost all of the correlation energy, capturing correlations beyond double
excitations, which the other methods could not [6].

4.2.3 Feed Forward Neural Network Quantum States

The focus in the first stage of research on neural network quantum states was often
put on the RBM. There are however already signs that other architectures might be
more suitable for a lot of models. For different machine learning problems, different
architectures have turned out to be favorable. Similarly, for the various Hamiltonians
describing physical system, from bosonic spin models to high-dimensional fermionic
problems, there will probably not be a single best ansatz.
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Convolutional neural networks (CNN), which are the go-to method for image-
recognition tasks, apply convolutions with kernel matrices (also called filters) to the
input data and hence incorporate translational invariance by design. The output of
a such a convolution, called a feature map, is taken as one input channel for the
next layer, where other filters are used. An intermediate step of a further reduction
of the feature size and an activation function is usually applied. A number of these
filters per layer constitute the parameters to be optimized, and usually tens of layers
are stacked on top of each other. When compared to a fully connected network
(Fig. 4.1) this means between layers some connections are missing, and at the same
time some weights are shared between different connections. When applied to image
recognition problems, it can be visualized how the first layers learn to represent very
coarse patterns and colors, while the higher layers combine the lower level features
to achieve more and more complicated attributes [31]. A pre-training on large image
data sets can be used, such that the filters take on meaningful shapes for a certain
class of images, before the final parameter optimization for a specific classification
task is performed [31]. These concepts could all apply just as well for learning and
representing correlations in physical systems, as solving these problems also involves
discovering patterns in configurations of discrete (quantum mechanical) degrees of
freedom.

This re-use of information due to the parameter sharing in the computational
graph cannot be achieved with conventional tensor networks. An equivalent TN
would have to introduce a lot of duplicate external indices, whose data it cannot
simply copy, to achieve the same computation of a CNN’s convolutions of the input
with smaller kernels [13]. Compared to an RBM it has also been proven that a CNN
can encode volume-law entanglement polynomially more efficiently in 2D systems,
wherefore Levine et al. [13] conclude to focus on looking at state-of-the-art deep
learning principles for highly entangled many-body systems.

Some research on applying NQS using feed forward neural networks and in partic-
ular CNN include Yang et al. [30] applying a deep learning architecture to compute
the ground state of a one-dimensional spin chain, Choo et al. [7] studying the 2D
frustrated J1− J2 model and also making an effort to enforce symmetries, and an
applications to quantum chemistry by Schütt et al. [22].

4.2.4 Reinforcement Learning of a NQS using Variational
Monte-Carlo

After all these theoretical considerations, an implementation of optimizing an NQS
is now outlined in this section, and applied to an actual model in the following. To
set up a VMC calculation for an NQS ansatz, applying the reinforcement learning
scheme described in Chapter 3, the following have to be defined first:

• The graph and Hilbert space, specifying the local states (f.e. σz ∈ {−1
2
, 1

2
}).

• The Hamilton operator’s action to find the matrix elements when acting on a
state. The matrix does not need to be stored.

• The variational wavefunction ψθ(x). For an RBM, the fraction of hidden
neurons α = M/N must be defined and the parameters initialized.
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• The optimization method, whether to use simple gradient descent or the
stochastic reconfiguration method (see section 3.4.3). A fixed or adaptive
learning-rate optimizer can be set.

• The sampler, using hopping or exchange updates. Parallel tempering may be
used to reach a larger portion of the Hilbert space.

The optimization procedure using the stochastic reconfiguration method is summa-
rized in Algorithm 1. The calculations of local energy and gradient are derived in
Chapter 3 in Eq. (3.5) and Eq. (3.15). The statistical expectation values 〈〈.〉〉 at
each step are over the Monte-Carlo samples drawn according to |ψθ|2 defined by the
current set of parameters θ. To increase efficiency, look-up tables can be set up at
each iteration to store objects that are used multiple times.

Algorithm 1 Reinforcement Learning of a NQS using variational Monte-Carlo

Initialize parameters θ, let n = 0, let η = 0.02
repeat
n← n+ 1
Draw NS samples S = {x} via MCMC according to p(x) = |ψθ(x)|2
for all x ∈ S do
Find {x′} for which Hxx′ ← 〈x′|H|x〉 6= 0

Eloc(x)←∑
x′ Hxx′

ψθ(x′)
ψθ(x)

Compute derivatives {Dk(x)}
end for
∂k〈H〉 ← 2Re 〈〈ElocDk〉〉 − 2Re 〈〈Eloc〉〉〈〈Dk〉〉
Skm ← Re〈〈D∗kDm〉〉 − Re〈〈Dk〉〉〈〈Dm〉〉
θk ← θk − η

∑
m S

−1
km ∂m〈H〉

En ← 〈〈Eloc〉〉
until En converges
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4.2.5 Solving the Heisenberg Model using NQS

To demonstrate NQS, the initial results on the Heisenberg model are reproduced
using NetKet [2], an open-source library that implements - for spin systems - the
variational Monte-Carlo optimization and different variational functions. In par-
ticular, in this section the groundstate of the antiferromagnetic Heisenberg model
Eq. (2.21) on a rectangular lattice with J = 1 and periodic boundary conditions is
investigated. The visible nodes of the RBM are mapped to the sz values of a spin-
1/2 lattice with L sites. Indices for configurations are calculated by interpreting the
vectors of zeros and ones, representing spin-down and spin-up respectively, as the
binary representation of integers

(0, . . . , 0, 0, 0, 1)→ 1

(0, . . . , 0, 0, 1, 0)→ 2

(0, . . . , 0, 0, 1, 1)→ 3

. . .

(1, . . . , 1, 1, 1, 1︸ ︷︷ ︸
L

)→ 2L − 1 .

(4.11)

An observable can be defined as the sum of local operators acting on specific lat-
tice sites. The two-site operators Szi Szj and S±i S

∓
j in the Heisenberg Hamiltonian

Equation (2.23) are created as Kronecker products of the operators in Eq. (2.24)
and assigned to pairs of site indices (i, j). Total spin Sz is set to be conserved at
the sampling step, restricting the size of the Hilbert space. This way, the network
doesn’t learn anything about configurations x′ where Sz is not conserved, therefore
ψ(x′) has an arbitrary value.

As a first result, the groundstate of a one-dimensional spin chain with L = 4
sites is computed with a translation-symmetric RBM. For better optimization perfor-
mance, the Marshal sign rule is used, which in the Hamiltonian counts the exchange
energy negative but results in the same eigenvalues. The learning progression and
the final probability distribution of the configurations is shown in Fig. 4.3. In this
learning curve also the variance of the local energy Eloc calculated from the sampled
configurations at each iteration is plotted on the right axis. This can act as an indi-
cator how well the current state corresponds to an eigenstate, as described in section
3.4.2. A sample size of 1000 was used for these calculations, the fraction of hidden
units is set to α = 4 and the learning rate η to a fixed value of 0.04. This hyperpa-
rameter is to be set to a meaningful value, where convergence is fast, but fluctuations
are not too strong. Changing the coupling constant in the Hamiltonian scales the
update-step in a similar way as changing the learning rate (compare Eq. (3.15)), for
example leaving out the factors 1

2
in the S-operators in Equation (2.21) while also

setting η = 0.01 results in the exact same convergence behavior. In Fig. 4.3a the
diminishing variance as the energy approaches the groundstate can be seen. The
groundstate eigenvalue and its corresponding eigenvector are retrieved to numerical
precision compared to the exact result obtained with the Lanczos algorithm.
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Figure 4.3: Heisenberg model of a 4× 1 spin chain. (a) Groundstate energy
learning progression and (b) final probability density using an RBM ansatz
compared to exact results. Relative error in parenthesis up to numerical
precision.

The same results for the two-dimensional 4× 4 Heisenberg model are displayed
in Fig. 4.4. There remains a relative error 10−3 and in (b) one has to look very closely
to see some over- or are underrepresented configurations and the overlap with the
exact result is 〈ψ0| ψRBM〉 = 0.984. In the one-dimensional case the translation-
invariant RBM reached numerical accuracy in a quarter of the steps needed for the
full RBM, in the two-dimensional system it is able to achieve a lower energy, see
Fig. 4.5. This implementation does not improve optimization times however, as the
shared parameters are copied to form the full RBM and the inversion of the covari-
ance matrix S is of the same computational effort. A simple convolutional neural
network can also be applied to the task and performs similarly to the symmetric
RBM.
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Figure 4.4: Heisenberg model of a 4 × 4 spin lattice. (a) Groundstate en-
ergy learning progression and (b) final probability density of the allowed
states using an RBM ansatz compared to exact results. Relative error in
parenthesis.
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1104.

Finally, the groundstate energy of an 8×8 lattice is calculated for different α. The
deviations of the obtained energies from known results [19] are plotted in Fig. 4.6,
a result that matches the published results for a similarly sized system [3]. For
increasing model complexity, the relative error becomes smaller as the groundstate
is approximated with better accuracy. The obtained variances cannot really be used
as an uncertainty estimate because they represent simply the statistical deviations
over the noisy Monte-Carlo samples at that particular iteration with a fixed set of
parameters. In that state, the network represents a quantum state that must not
necessarily be the groundstate.
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Figure 4.6: Results for the groundstate energy of a 8× 8 Heisenberg model
using an RBM compared to known results [19] with increasing network size
determined by the fraction of hidden units α.
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Chapter 5

Solving the Fermionic Hubbard
Model with Neural Network
Quantum States

Solving the Hubbard model with NQS has so far been attempted by Nomura et
al. [16] using an ansatz similar to the Jastrow-Slater variational form mentioned in
section 3.3, by replacing the Jastrow and Gutzwiller factors with an RBM to encode
the correlations. With help of the RBM their program could find better groundstate
energies compared to conventional correlation functions in the variational ansatz. In
this Chapter it is attempted to apply neural network quantum states to the whole
fermionic problem, looking at the groundstate of the Fermi-Hubbard model at half-
filling on different one and two-dimensional rectangular lattices. Also the solution
by [16] is included introducing a Fermi-sea reference state. While the authors intro-
duced the RBM into a conventional VMC code, the implementation in this thesis
is based on NetKet [2], and consists of extensions to the C++ library to allow for
fermionic degrees of freedom, reference states and correlation functions as well as
Python classes for the solution of the tight binding model and for setting up the
graphs and simulations. After the necessary mapping to spin degrees of freedom and
some technical aspects of implementing fermionic NQS are explained, some selected
results are presented and discussed to finally state a few points of improvements and
to give an outlook on further research.

5.1 Implementation of the Hubbard Model for NQS

5.1.1 Mapping Fermionic Occupation Numbers to Spins

In order to encode the fermionic degrees of freedom, the occupation numbers can be
mapped to a model of interacting spins. This can be formally done using the Jordan-
Wigner Mapping, which maps the fermionic creation and annihilation operators

ĉj →
(
j−1∏
i=0

σ̂zi

)
σ̂−j

ĉ†j →
(
j−1∏
i=0

σ̂zi

)
σ̂+
j

(5.1)
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to the Pauli matrices σ̂ [6]. Since a fermionic quantum state can be occupied only
once, this results in a a one-to-one correspondance to a spin-half chain. Another
maybe more illustrative way is to identify the encoding of a spin model, for example
| ↓, ↓, ↑〉 → (0, 0, 1), as the occupation numbers and implement the operators to
account for the sign change. In machine learning this representation of data with
only binary values is called one-hot encoding, and is often better suited as an input
to neural networks compared to using fewer channels with values from a larger set.

To use NetKet’s representation of spin lattices, in the following discussions the
occupation numbers of L sites are mapped to 2L spins σi with the local values
−1 and 1, which directly correspond to the N visible nodes vi in an NQS ansatz,
following the convention

vi = 2ni↑ − 1 for i = 1 . . . L ,
vi = 2n(i−L)↓ − 1 for i = L+ 1, . . . 2L .

(5.2)

For a two-dimensional lattice, the following 2 × 2 example demonstrates how the
sites are indexed:

1 2

3 4

5 6

7 8

→
n1↑ n2↑
n3↑ n4↑

n1↓ n2↓
n3↓ n4↓

With a fixed particle number and fixed total spin there are now∏
σ=↑,↓

L!

(L−Nσ)!Nσ!
(5.3)

possible configurations.
A custom graph to define the physical lattice is built with edges of different colors

between the visible nodes of the neural network ansatz. These colors represent the
different interactions that are defined in an operator acting on the lattice sites.
Three different colors, or interaction indices, are used for the Hubbard Hamiltonian:

• 1: Hubbard terms, connecting nodes representing spin-up and spin-down oc-
cupations of the same site.

• 2: Hopping terms inside the lattice, connecting nearest neighbors.

• 3: Hopping terms crossing a boundary, needed for implementing periodic and
antiperiodic boundary conditions.

Periodic or Antiperiodic boundary conditions are implemented for the spin-up sites
and spin-down sites independently. By encoding the types of interactions in the
graph object, the implementation of operators is completely independent of the
lattice’s geometry.

5.1.2 Fermionic Hubbard Hamiltonian Implementation

When simulating systems of electrons, the anticommutation relations

{ĉ†iσ, ĉjσ′} = ĉ†iσ ĉjσ′ + ĉjσ′ ĉ
†
iσ = δijδσσ′

{ĉiσ, ĉjσ′} = {ĉ†iσ, ĉ†jσ′} = 0
(5.4)
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must be taken into account. The Hubbard Hamiltonian defined in Eq. (2.6) acting
on a state evolves it if hopping is possible and counts double occupations. As an
example, given a particular configuration in a 3-site system

|x1〉 = | ↑, ↓, ↓〉 = ĉ†1↑ĉ
†
2↓ĉ
†
3↓|0〉 (5.5)

one possible hopping event would be for the electron on site 3 to hop through the
periodic boundaries to site 1, connecting to the configuration |x2〉 = | ↑↓, ↓, 0〉. To
calculate the matrix element

〈x2|Ĥ|x1〉 = 〈x2|(−t ĉ†1↓ ĉ3↓) ĉ
†
1↑︸ ︷︷ ︸

−ĉ†1↑ĉ3↓

ĉ†2↓ĉ
†
3↓|0〉

= +t 〈x2|ĉ†1↓ĉ†1↑ ĉ3↓ĉ
†
2↓︸ ︷︷ ︸

−ĉ†2↓ĉ3↓

ĉ†3↓|0〉

= −t 〈x2| ĉ†1↓ĉ†1↑︸ ︷︷ ︸
−ĉ†1↑ĉ

†
1↓

ĉ†2↓ ĉ3↓ĉ
†
3↓︸ ︷︷ ︸

1−ĉ†3↓ĉ3↓

|0〉

= +t 〈x2|x2〉

(5.6)

the anticommutation relations are used to exchange the operators, each time catch-
ing a minus sign, until ĉ3↓ is moved all the way to the right, where it acts on the
vacuum states resulting in a zero ĉ3↓|0〉 = 0. After this, the operators have to be
brought back into the correct order, so that all spin-up operators come first, which
in this case introduces another negative sign. All the operators with an index lower
than both the hopping electron’s final and start index contribute exactly twice, once
when ĉ3↓ is brought to the right, and once when the correct ordering of ĉ†3↓ is re-
stored. Therefore for a hopping from site index i to j only the occupations of sites
after the start index i and before the final index j end up determining the sign. A
factor of (−1)n is obtain by n occupied sites between them. In this example there
was just one such occupation created by ĉ†2↓, resulting in Hx2x1 = +t.

The implementation of the Hubbard Hamiltonian needs to find the connected
states {x′} for a given configuration x of the visible units v. Looping over all edges
in the graph dedicated to hopping interactions, a vector of possible new configu-
ration is returned together with the numerical values of the matrix elements (±t).
For the Coulomb energy, the double occupations are counted, looping over the dedi-
cated edges connecting corresponding spin-up and spin-down nodes. If antiperiodic
boundary conditions are chosen, the hopping terms across a boundary get another
factor of −1.

5.1.3 Order Convention of the Creation Operators

Changing the order of the fermionic operators in the mapping leads to a different
sign structure and therefore a different behavior in reaching the ground state. The
two usual conventions are

|ψn〉 =

(
L∏
i=1

(
ĉ†i,↑

)ni,↑)( L∏
j=1

(
ĉ†j,↓

)nj,↓) |0〉 (5.7)
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and

|ψn〉 =
L∏
i=1

(
ĉ†i,↑

)ni,↑ (
ĉ†i,↓

)ni,↓ |0〉 (5.8)

where ni,σ ∈ {0, 1} is the occupation number of the site i with spin σ, and the
products are written in ascending order. The first line corresponds to the con-
vention introduced in Equation (5.2). One advantage of this ordering can be that
nearest-neighbor hopping events within the same row of a 2-D lattice don’t affect
the sign structure, as they transfer to neighboring indices as well. An advantage
of ordering the sites first and then the spins, as in Eq. (5.8), is the locality of
same-site occupations in the feature vectors, which could be taken advantage of
by a network performing local operations like a CNN. The first ordering conven-
tion |n1↑ , n2↑ , . . . nL↑ , n1↓ , n2↓ , . . . nL↓〉 is necessary for the projection of the Fermi-sea
state in the form that was derived in Eq. (2.20), therefore this is what was used in
the implementation. The difference this makes to the sign structure has some effects
on the optimization process as mentioned. As an example, for a 4× 4 tight binding
model the best achievable error of the groundstate energy was twice as high with
the second convention, which was initially implemented.

The updates of configurations during the Monte-Carlo sampling need to conserve
the number of particles and the total spin, hence conserve the number of occupations
on the two sub-lattices for spin-up and spin-down. The implementation of this
is dependent on the order convention for the mapping of occupation numbers to
spin-indices. Using hopping-updates, applying the Hamiltonian to a configuration,
automatically produces states in the correct subspace. Exchange updates, to affect
larger regions of the lattice at a single step, have to be restricted to the sub-lattices
of equal spins.

5.2 Approaching the Fermi-Hubbard Groundstate
using a Pure RBM Ansatz

In the following sections different results of computations for the tight binding and
Hubbard models at half-filling are discussed. Unless noted differently, the fraction
of hidden units α is set to 4 and a sample size of 1000 is used.

5.2.1 Solving the Tight Binding Model with an RBM Ansatz

Before solving the Hubbard model, the tight binding model of uncorrelated electrons
for which an exact solution is known and described in section 2.3, is investigated.
This has the benefit of being able to view analytically calculated excited states,
which are possible local minima, during the optimization. The most basic setup
is comprised of two sites and two electrons with opposite spin, resulting in four
possible configurations |0, ↑↓〉, | ↓, ↑〉, | ↑, ↓〉 and |0, ↑↓〉. With U = 0 the movement
of the electrons is not limited, therefore all of these states should occur with equal
probability. 100 samples were used for each iteration. Using a fairly large learning
rate η = 0.5 was possible, speeding up convergence, to reach numerical precision
and learn the correct uniform distribution |ψ(x)|2 = 0.25. The learning progression
is shown in Fig. 5.1.
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Figure 5.1: Minimal 2-site tight binding model. Optimization progress of
finding the groundstate using an RBM.

For more complex systems a smaller η must be chosen, as otherwise the system
frequently makes big jumps to higher energies. In the following calculations values
between 0.01 and 0.05 proved to work best. The groundstate of two-dimensional
lattices is investigated next. An RBM trial wavefunction on a 2× 2 lattice reaches
the degenerate exact groundstate energy up to a relative error in order of 10−5 after
about 100 iterations and doesn’t improve much further, as depicted in Fig. 5.2. As a
rough orientation, running this 2× 2 model for 1000 iterations with a sample size of
1000 and α = 4 took about 90 seconds on a single core of a 2018 notebook computer.
The program is well parallelizable and takes only 28 seconds when running on 4 cores,
even though thermal throttling of the CPU happens a lot quicker when more cores
are active.
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Figure 5.2: 2× 2 tight binding model. Optimization progress of finding the
groundstate using an RBM.
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Finally, the groundstate of a 4 × 4 model is attempted with an RBM state. In
Figure 5.3 it becomes clear, that this ansatz has some trouble navigating through
the energy surface, and eventually seems to be stuck at no exact eigenvalue with a
relative error of 6%. Using parrallel tempering, where independent samplers with
different acceptance criteria for new configurations are used and whole configurations
are swapped from time to time, did not yield a significantly better result. Neither
did the use of a momentum optimization scheme, where at each step a fraction of
the previous gradient is taken along.
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Figure 5.3: 4× 4 tight binding model. Optimization progress of finding the
groundstate using an RBM.
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5.2.2 Solving the Hubbard Model with an RBM Ansatz

Interestingly, the same optimization that was done for the simplest 2-site tight bind-
ing model in Fig. 5.1, but now with U = 4, reaches numerical precision 4 times faster,
see Fig. 5.4. With the Coulomb interaction included, the configurations with double
occupancies become less probable (Fig. 5.4b).
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Figure 5.4: 2-site Hubbard model with U = 4. (a) Groundstate energy
learning progression and (b) final probability density using an RBM ansatz
compared to exact results. Faster convergence than in the case of U = 0.

For a 2× 2 lattice, getting stuck in a local energy minimum at an excited state
already seems to be a problem. In Fig. 5.5 the stochastic reconfiguration method
spends a long time apparently being stuck in an excited eigenstate, until it finally
manages to escape it. It seems as though the RBM is capable of representing the
quantum state, the difficulty lies in finding good optimization steps. An example of
running the same simulation but with basic stochastic gradient descent instead of
the stochastic reconfiguration method is shown in Fig. 5.6. Compared to stochastic
reconfiguration, the plain stochastic gradient descent algorithm usually gets stuck a
lot quicker and takes more steps to reach good results if it can.
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Figure 5.5: 2 × 2 Hubbard model groundstate optimization progress of an
RBM intermittently getting stuck at exact eigenvalues.
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Figure 5.6: 2 × 2 Hubbard model groundstate optimization progress of an
RBM using basic stochastic gradient descent instead of the stochastic recon-
figuration method.
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As an experiment, modifying the sampler to start from a random configuration
at every iteration and using a momentum optimization scheme to smooth out the
jumps in the parameters that now occur, seems to help these small systems to
overcome such barriers. In Fig. 5.7 both energy optimization curves are compared.
For larger lattices this technique seems not to be able to improve the final energy
and can lead to divisions by very small ψ(x) when computing the local energy for a
very unlikely configuration.
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Figure 5.7: 2×2 Hubbard model groundstate optimization progress compar-
ison of an RBM using the stochastic reconfiguration method and in addition
using a momentum scheme for the parameter update and resetting the sam-
pler to random configurations at the start of every iteration.

While the tight binding groundstate was degenerate, now there is no degeneracy
and the final groundstate of the momentum-optimized RBM can be compared to
the exact eigenvector in Fig. 5.8. Compared to the Heisenberg model, the sym-
metric picture is gone now, as the wavefunction is negative for some configurations.
Therefore the requirement for a complex-valued RBM becomes clear and the sign
structure seems to be learned correctly. The probabilities are a little asymmetrical
in the RBM result, so the most likely configurations, at 24 % each,

(
−1 1 1 −1 1 −1 −1 1

)
⇐⇒ ↓ ↑

↑ ↓

and (
1 −1 −1 1 −1 1 1 −1

)
⇐⇒ ↑ ↓

↓ ↑
are not sampled equally. In the worse optimization case, these probabilities are even
more asymmetric, and for some configurations a wrong sign is assigned. Another
such pair is (

−1 1 1 −1 1 1 −1 −1
)
⇐⇒ ↓ ↑↓

↑ 0

and (
1 −1 −1 1 −1 −1 1 1

)
⇐⇒ ↑ 0

↓ ↑↓ .

These correspond to a particle-hole transformation. Unfortunately, while the prob-
abilities have this symmetry, the sign structure does not and this affects the values
of the local energies. A fundamentally particle-hole invariant formulation of the
wavefunction ansatz could solve these inaccuracies.

47



0 12 24

Configuration x

−0.4

−0.2

0.0

0.2

0.4 Re ψ0(x)

Im ψ0(x)

Re ψRBM(x)

Im ψRBM(x)

(a)

0 12 24

Configuration x

0.00

0.05

0.10

0.15

0.20

0.25

|ψ
(x

)|2 RBM groundstate

Exact eigenvector

(b)

Figure 5.8: 2 × 2 Hubbard model. (a) Real and imaginary part of the
wavefunction and (b) final probability density function of an RBM ansatz
compared to exact results ψ0.

When looking at computing larger systems, like a 4 × 4 lattice (Fig. 5.9), it
becomes clear that this ansatz in its basic form seems to be unable to efficiently learn
a good approximation of the ground state of the Hubbard model. The best results
achieved reached a relative error of about 9 % but converged very slowly. Looking
at the exact evaluation of the expectation values discussed in the next section, it
might simply take a lot more update steps to eventually reach some abrupt change
in energy, but this could not be observed with the accessible computing time.

To summarize, using the stochastic reconfiguration method speeds up conver-
gence considerably compared to basic stochastic gradient descent. Either way, the
complex-valued RBM seems to get stuck at local minima that are not always at
excited eigen-energies. Abrupt jumps to better energy values appear with longer
phases of a constant error between them. For small systems introducing a momen-
tum scheme and more randomization during the sampling helped to overcome these
barriers.
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Figure 5.9: 4 × 4 Hubbard model groundstate optimization progress using
an RBM ansatz.
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5.2.3 Exact Evaluation of the Expectation Value

To further investigate how an RBM learns the groundstate of the 2 × 2 Hubbard
model, modifications to the library code were made to compute the expectation
value Eq. (3.3) exactly, instead of evaluating it using Monte-Carlo samples. This
way, the true gradient rather than a stochastic estimate is found. For this to work,
in the implementation of the VMC algorithm the gradient Eq. (3.16), assuming a
real-valued local energy, had to be replaced with the full complex form written in
Equation (3.13).
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Figure 5.10: Learning the 2 × 2 Hubbard model groundstate using exact
expectation values rather than Monte-Carlo samples for updating the RBM
parameters.

In Fig. 5.10 the optimization progress shows long episodes of constant energy
followed by a larger jump. Compared to the stochastic evaluation it takes a large
number of update steps to get to a good result. Adding a Gaussian noise term
N (0, 0.01) to ψ(x) accelerated the convergence. In Fig. 5.11 the wavefunction after
20000 and after 40000 iterations is plotted, showing the difference before and after
the last jump in energy from a relative error 10−2 to 5× 10−5. The main difference
is that the probabilities are more symmetric and that the very last configuration
in the plot is not considered at all before the jump, while afterwards the network
learned the correct negative value. What might be of impact here, is that if the
network somehow learns a value 0 for a particular configuration x, it will not sample
x in the following step. Also, the 1

ψ(x)
term in the local energy might be problematic

in this case should it appear in the sampled configurations. The output value can
change again if the parameters are updated. Although interesting to see, it is hard
to derive any kind of direct insight to get to an improved optimization scheme from
this.
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Figure 5.11: 2 × 2 Hubbard model ground state using exact expectation
values rather than Monte-Carlo samples. The top images are after 20000
iterations, the bottom images after 40000 iterations, before and after a jump
to a better energy. (a), (c) Real and imaginary part of the wavefunction and
(b), (d) final probability density function of an RBM ansatz compared to
exact results ψ0.
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5.3 Solution to the Hubbard Model Using a Refer-
ence Sign Structure and an RBM for Correla-
tions

In the following sections the results for the groundstate of the half-filled U = 4
Hubbard model are improved with a variational wavefunction that makes use of a
physically motivated reference state.

5.3.1 Introducing a Reference State for the Fermionic Sign
Structure

Looking at insights obtained by research so far, there seems to be a difference in
difficulty between learning the phases determining the sign structure of a quantum
mechanical wavefunction and learning the amplitudes [26]. One way around this
is to introduce some physical knowledge about the sign structure of the ground-
state. Nomura et al. [16] have proposed to use a reference state, similar to the
Jastrow-Slater wavefunction ansatz in VMC calculations described in section 3.3,
and a neural network quantum state to model the correlations. The variational
wavefunction

|ψ〉 =
∑
x

|x〉F (x)〈x|Φref〉 (5.9)

is split into an antisymmetric function Φref encoding the fermionic nodal structure
and a RBM F (x). The authors replaced the Gutzwiller and Jastrow correlation func-
tions in conventional VMC calculations with a real-valued RBM and with this they
were able to improve the results in finding the Hubbard model’s groundstate energy.
One disadvantage is that they used a real-valued Restricted Boltzmann Machine
which can only produce positive numbers resulting in a fixed node approximation.
With a sub-optimal sign structure, even in the theoretical case of an infinitely sized
neural network, the exact groundstate can then never be achieved. They started
with the Fermi-sea, being the groundstate of an uncorrelated tight binding model,
as the most basic reference state.

5.3.2 Improving the Sign Structure With a More Advanced
Reference State

While the Fermi-sea sign structure improves the result considerably compared to
the plain RBM ansatz, to get competitive results it took including a better sign
structure into the reference state by using the pair-product state

|Φpair〉 =

(
L∑

i,j=1

∑
σ,σ′=↑,↓

fσσ
′

ij c†iσc
†
jσ′

)Ne
2

|0〉 (5.10)

with more variational parameters fσσ′ij [16]. This state, also called the Geminal or
also Pfaffian wavefunction, is an extension of the Slater-determinant [15] but also
introduces more variational parameters, being able to adapt during the optimization.
This ansatz therefore represents a more advanced variational function, combining a
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neural network with prior physical knowledge. Due to limited time and the focus
on the neural network part of the variational ansatz, this function was not used in
this thesis.

5.3.3 Solving the Hubbard Model Using a Fermi-Sea Refer-
ence State

To implement a Fermi-sea reference state the NetKet library was extended with a
couple of C++ classes. A Reference-state machine class was created that can be
used with an arbitrary pair of neural network and reference state. A Fermi-sea
state class that fills the system with a list of occupied k vectors and implements the
projection to real space according to Equation (2.20) was paired with an RBM.

At first a relatively small 3×2 Hubbard model with periodic boundary conditions
is investigated. For the half-filled model a relative error of 7× 10−2 is reached with
some excited energies still below the result. After taking out an electron, at Ne = 4
the relative error becomes 1× 10−2. Known results of the 4× 4 half-filled Hubbard
model [18] can be approximated only up to about 20 %. When looking at the
lowest k states in the Fermi-sea the groundstate turns out to be degenerate for
periodic boundary conditions. With an electron missing in the 3×2 simulation, this
degeneracy is lifted and a much better result was reached. From this and similar
simulations, it can be concluded that the degeneracy of the Fermi-sea hinders the
variational function to reach a good energy result.

Table 5.1: Energy levels of the 3× 2 Tight Binding Model.

(PBC in X = 3 and open boundary condition in Y = 2.)
n kx ky εk

0 0 0 -3
1 0 3.142 -1
2 2.094 0 0
3 -2.094 0 0
4 2.094 3.142 2
5 -2.094 3.142 2

A way of lifting the degeneracy is to introduce antiperiodic boundary conditions
as described in section 2.3.1 along one axis, termed APBC-PBC. This is done by
adding a phase when an electron jumps across the border in the implementation
of the Hamiltonian and by using new conditions for the allowed k values in the
Fermi-sea. In Figure 5.12 the learning progression of the 4 × 4 half-filled Hubbard
model with PBC and APBC-PBC is compared, where the latter achieves a much
better result of about 2.7 %. Finally, the results of [16] using the Fermi-sea are
reproduced and the relative errors compared to known results [18] for different model
complexities α are plotted in Fig. 5.13.

53



0 200 400 600 800 1000

Iteration

10−4

10−3

10−2

10−1

100

101

|E
−
E

0
|

PBC

APBC-PBC

± variance

± variance

Figure 5.12: 4 × 4 Hubbard model groundstate learning progression of an
RBM ansatz with a Fermi-sea reference state which is degenerate using PBC
compared to using APBC-PBC.
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Figure 5.13: Relative errors to known results [18] of a RBM with a Fermi-sea
reference state for the 8× 8 Hubbard model.

Nomura et al. [16] used the mapping to an attractive model by applying the stag-
gered particle-hole transformation described in section 2.2.1, claiming it improved
the convergence when using the pair-product reference state. For the Fermi-sea ap-
proach no difference could be observed when using a positive or negative U . Also
simply lifting the restriction of real parameters with a complex RBM did not improve
the obtained energy for large systems.
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5.3.4 Considering Only the Complex Phases of the Reference
State

In general an issue arises if certain configurations x don’t appear in the reference
state, 〈x|Φref〉 = 0, because as a result the variational function always vanishes
at these x. This is the case with the Fermi-sea, as can be seen in Figure 5.14,
where the RBM is zero for a range of configurations that should have a small but
nonzero contribution to the exact groundstate. A plausible solution to this, since
the reference state is there mainly for determining the sign structure, is to only
use the phases. So in order to avoid reducing the representational power of the
wavefunction, only the phase φFS of the Fermi-sea state

ψ(x) = F (x)ΦFS(x)→ F (x)eiφFS (5.11)

could be taken where it is calculated as

φFS = atan
(
ImΦFS(x)

ReΦFS(x)

)
.

The phase equates to zero in the case that 〈x|Φref〉 = 0, so the reference state value
is just 1. This enables a variational wavefunction to take nonzero values at these
points in configuration space while also starting from a physically motivated sign
structure. The relative errors for the 3 × 2 computations discussed above improve
by an order of magnitude in the case where the Fermi-sea is not degenerate, when
using only the phases. For larger models sadly no improvement could be achieved
with this modification.
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Figure 5.14: 3 × 2 Hubbard model with Ne = 4. Groundstate variational
wavefunction compared to the exact eigenvector ψ0. Because the Fermi-sea
reference state is zero for certain configurations, the output of the entire
wavefunction is zero as well.
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5.3.5 Density Correlation Functions

To determine whether basic known physical properties are actually captured by this
variational form, the density-density correlation function is calculated for a one-
dimensional Hubbard model with periodic boundary conditions. The parallel-spin
density-density correlation function is

〈n̂iσn̂(i+r)σ〉 = 〈ψ0|n̂iσn̂(i+r)σ|ψ0〉
=
∑
x,x′

ψ(x′)∗ψ(x)〈x′|n̂iσn̂(i+r)σ|x〉

=
∑
x

|ψ(x)|2 nxi,σnxi+r,σ

≈ 1

NSamples

∑
x∼|ψ0(x)|2

nxi,σnxi+r,σ

(5.12)

with the occupation numbers nxi,σ of site i with spin σ for a specific configuration
x. Since the fermionic occupations are mapped to a spin chain where an empty site
has a value −1, for the calculation of Eq. (5.12) the density operators in the first
two lines can be replaced by local spin operators

Ŝα =

(
1 0
0 0

)
that retrieve the σz value only for |↑〉. As an exact evaluation to compare the results,
the third line in Eq. (5.12) is used. This correlation function is plotted in Fig. 5.15 for
both U = 0 and U = 4. Both the electron density 〈n1n1〉 = 1

2
at r = 0 and the value

for uncorrelated electrons 1
4
approaching large distances are correctly reproduced.

Also the exchange hole at r = 1 due to the Pauli exclusion principle is obtained in
the tight binding model, and when switching on the interaction correlations become
stronger.
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Figure 5.15: Parallel spin density-density correlations for Hubbard and tight
binding models calculated with an RBM on a (a) 10-site chain compared to
exact results and (b) on an 18-site chain. Both are symmetric about L/2.
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The expectation value of the occupation of a k-state is obtained by Fourier-
transforming the operators

〈n̂k〉 = 〈ψ|ĉ†kĉk|ψ〉 = 〈ψ|
(

1√
L

L∑
l=1

e−iklĉ†l

)(
1√
L

L∑
l′=1

eikl
′
ĉl′

)
|ψ〉

=
1

L

L∑
l,l′=1

e−ik(l−l′)〈ψ|ĉ†l ĉl′|ψ〉

=
L−1∑
r=0

eikr〈ψ|ĉ†1+rĉ1|ψ〉

=
1

2
+

L−1∑
r=1

eikr〈ψ|ĉ†1+rĉ1|ψ〉 .

(5.13)

Translational symmetry and the fact that the summands only depend on r = |l− l′|
lead to L terms with l′ = 1. In the last step the electron density 〈ĉ†1ĉ1〉 = 1

2
is

inserted for the r = 0 term. In the Fermi-sea at zero temperature all states up to
the Fermi-energy are expected to be filled and none of the higher ones, resulting in
a step function. Correlations due to interactions however reduce this sharp Fermi
step [8].

To evaluate this, the correlation functions 〈ĉ†(1+r)σ ĉ1σ〉 need to be calculated and
then Fourier-transformed. In the NetKet framework, two-body operators can be
written as Kronecker products Ŝ+

i ⊗ Ŝ−j where ĉ†iσ and ĉjσ should become Ŝ+ and
Ŝ− for the corresponding sites i and j. However, while this mapping to bosonic
spin operators works with the local operators used for the density-density correla-
tions, for these nonlocal fermionic operators obeying the anticommutation relations
is nontrivial. The operator ĉ†(1+r)σ ĉ1σ must therefore be implemented along the same
lines as the Hamiltonian described in section 5.1.2.

This is calculated for the tight binding and Hubbard model with U = 4 on a
18×1 chain with PBC. In Fig. 5.16 the correlation function and its discrete Fourier-
transforms are plotted. The Fermi-sea seems to be well represented, but there are
some unphysical fluctuations in the unoccupied states. For the Hubbard model
the increased localization due to the Coulomb interactions results in occupations
of higher k-levels. The correlations lead to a reduced Fermi-step which is clearly
visible. On larger systems the step at the Fermi-level also for the Hubbard model
becomes sharper while with an increased model complexity α the fluctuations in the
density are further reduced.
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Figure 5.16: Hubbard and tight binding k density expectation value (right)
as the discrete Fourier transform of the correlations functions (left) calcu-
lated with an RBM on an 18-site chain. The reduced Fermi-step for the
Hubbard model due to correlations is clearly visible.
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5.4 Possible Improvements and Outlook
As already mentioned, a better reference state is needed for good results, in the
case of learning only correlations with the NQS ansatz. The pair product state for
example is what has been used in conventional VMC packages as the nodal part of
the wavefunction [15] and was also used by [16] for their results.

When trying to learn the complete groundstate, it may be of help to consider
that the nodal structure and the modulus of the wavefunction do not share the same
symmetries. While the probabilities are symmetric under, for example, a particle-
hole transformation, the signs may change, as seen in Figure 5.11. This among
other things motivates trying to separate the phase and the modulus of the complex
wavefunction during optimization. An ansatz

ψ(x| θ, γ) = Sθ(x)Aγ(x) (5.14)

similar to the idea of the reference state for the nodal structure could be used, where
Sθ(x) in the simplest case just maps to a sign from {−1, 1} and Aγ(x) is positive and
real. A reference state could be added as yet another factor. In a machine learning
workflow one of the first tasks is the creation of features from the data, considering
symmetries of the given problem, that are then taken as the input of the neural
network. Now, following such a procedure, certain invariances could be enforced
just for the amplitude part A while the nodal part S can be parameterized by a
different kind of network and with a higher complexity if needed. An implementation
of this was attempted in this work as well, but it turned out to require extensive
modifications to the code base of the software library beyond what could be achieved
in the available time.

There also seems to be some consensus in the active community that the sign-
structure is the more difficult thing to learn also for neural network quantum states.
Recent research [29] has shown, in a supervised learning scheme, that fixing the am-
plitudes to exact values and learning the sign structure is considerably more difficult
than learning the amplitudes with fixed signs. Another very recent work [26] already
applied this idea of separately learning modulus and phase of the wavefunction and
the authors also noted that this effect is apparently more dramatic with CNN ar-
chitectures than RBM. For frustrated systems they achieved much better results
compared to other variational functions by improving the initialization, first only
learning the signs with fixed amplitudes, and then optimizing both concurrently.

Up to now most of the work involving NQS was focused on quantum spin systems.
One new idea that has been put forward to tackle fermions is optimizing so-called
backflow wavefunctions consisting of slater determinants of many-body orbitals that
are each parameterized by a neural network [17]. For optimizing deep learning
architectures as quantum states, that generally help reducing parameters and often
offer certain invariances by design, some progress has also been made [30]. While
convolutional neural networks can readily be applied to configurations of spin models
like the Heisenberg model, for fermionic systems there are more local states per
lattice site than just up or down. Mapping the occupation numbers to spins ordering
the spins first and the sites last removes the locality of a particular site’s up and
down indices. In this case a typically sized convolutional kernel would not have both
the up and down occupation number of a that site in its input frame at the same
time. A Different mapping is necessary, for example introducing another dimension
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for up and down spins like in an RGB image there are different color channels.
Another area of research could be using generative neural networks, for which a lot
of progress has been made in recent years. Generative adversarial networks (GAN)
can produce new samples of a learned distribution and could replace the Monte-
Carlo sampling part of the calculations by directly sampling from the probability
distribution.
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Chapter 6

Conclusion

The focus of this work was on solving the two-dimensional Hubbard model with
the method of neural network quantum states (NQS). This new method based on
variational Monte-Carlo promises to find better representations for quantum many-
body states and opens opportunities to benefit from recent advancements of machine
learning frameworks [3]. From a quick review of the restricted Boltzmann machine
(RBM) it can be argued that this approach seems superior to conventional tensor
network approaches for encoding strongly correlated states. Moreover, convolutional
neural networks should possess an even greater expressive power. While there are
already a lot of results for quantum spin systems, the way to properly treat fermionic
problems with NQS is still an open research question and only a few published results
exist so far.

After understanding the main ideas and concepts, some early results for the
Heisenberg model were reproduced. The main effort of this thesis was to implement
a fermionic neural network quantum state and the Hubbard Hamiltonian in the
framework of variational Monte-Carlo. Mapping the fermionic degrees of freedom
to a spin chain, the implementation could be based on a software library available for
quantum spin models. For small lattices the resulting probability distributions and
complex wavefunctions were investigated to try to find a way for the RBM to learn
a good groundstate approximation more efficiently. Different optimization methods
and hyperparameters were tested. As another tool to verify that the stochastic
nature of the optimization algorithm indeed provides a good gradient estimate, an
exact evaluation of the expectation values was implemented. It turned out that
noisy gradients in practice lead to a faster convergence. Though it seems that the
RBM is capable of representing the strongly correlated groundstate, finding good
optimization steps to get there is difficult, as in most cases during the optimization
infrequent jumps in energy followed by long slow-moving periods appear.

Recent literature suggests that the sign structure, determined by the complex
phases, is more difficult to learn than the modulus of the wavefunctions. Fermionic
models or frustrated systems that suffer from the negative sign problem, at first
glance seem to also be more difficult to solve with the approaches tested so far.
This difficulty of learning sign structures was also realized in this thesis. A reference
state implementation, restricting the variational neural network ansatz to describe
only correlations, reaches better results. A Fermi-sea reference state was used in
this thesis, but for an actual application better representations for the fermionic
sign structure are needed and available. This reproduces the so far only published
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research for applying NQS to the Hubbard model [16], where the authors could im-
prove upon results by other variational forms. In order for this method to work,
degeneracy of the reference state must be taken into account and eventually con-
vergence to a fairly good approximation was reached quickly. Some efforts were
made to handle the special case where the reference state wavefunction is zero for
a certain configuration, but except for very small systems, no improvements could
be achieved. The density-density correlation function and the momentum space
occupation expectation value were calculated and display the expected Fermi-sea
occupations and the reduced Fermi-step due to correlations. An effort to implement
the idea to separate the parameterization of the sign and amplitude of the wave-
functions, for which in the meantime an attempt already appeared in the literature
and showed promising results, could not be finished in time.

A further outlook on research opportunities outlines multiple points of attack, as
for example significant improvements in performance can be expected by including
inherent symmetries and invariances into the variational architecture.
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