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Dr. René Hammer

Materials Center Leoben Forschung GmbH

Graz, July 2020





AFFIDAVIT

I declare that I have authored this thesis independently, that I have not used 

other than the declared sources/resources, and that I have explicitly indicated 

all material which has been quoted either literally or by content from the sources 

used. The text document uploaded to TUGRAZonline is identical to the present 

masterʼs thesis.

Date, Signature





Acknowledgements

The author gratefully acknowledges the financial support under the scope
of the COMET program within the K2 Center “Integrated Computational
Material, Process and Product Engineering (IC-MPPE)” (Project No 859480).
This program is supported by the Austrian Federal Ministries for Climate
Action, Environment, Energy, Mobility, Innovation and Technology (BMK)
and for Digital and Economic Affairs (BMDW), represented by the Austrian
research funding association (FFG), and the federal states of Styria, Upper
Austria and Tyrol.

v





Abstract

Phonons are quasiparticles describing the lattice vibrations in a crystal, and
they are responsible of transporting heat and sound. Phonon transport in
bulk materials is usually described by a diffusive picture. At nanoscale
lengths, however, boundaries and interfaces play an important role. At this
scale, when the phonon mean free path is larger than the length a phonon
can travels before meeting a boundary, transport becomes ‘ballistic’. In
the ballistic regime phonons can be scattered diffusively or be reflected
specularly (coherently) at interfaces. Phonons with a wavelength in the
order of the structure sizes are scattered coherently, which is a manifestation
of the wave-like nature of the phonons. This phonon coherence creates
phonon band gaps and alters the phonon dispersion relation. Materials
which show coherence effects, have potential applications in thermo-optics,
thermoelectrics, as phonon sources, filters, and detectors, heat-waveguides
and more.

In this work, computer simulations are used to design potential superlat-
tices that feature significant phonon coherence. The dynamics of the atoms
within the superlattices is simulated using classical molecular dynamics.
The fluctuations of the atomic velocities are tracked throughout the sim-
ulation, and their correlations are used to calculate the coherence length.
The method is initially tested for two test-superlattices (one-dimensional
and bulk superlattices interacting by means of a Lennard-Jones potential).
Then, the coherence lengths of GaN/InN superlattices, as well as structures
made of monolayers of InN in a GaN matrix, are investigated. It is shown
that acoustic modes feature high phonon coherence lengths (up to a few
100 nm), and that superlattices with low period feature higher phonon co-
herence lengths than superlattice with long period. Drawbacks and possible
improvements of the used method are discussed.
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Kurzfassung

Phononen sind Quasiteilchen, welche die Gitterschwingungen in einem
Kristall beschreiben. In Isolatoren und Halbleitern sind Phononen maßge-
blich verantwortlich für den Transport von Schall und Wärme. Der Phononen-
transport in Volumen-materialien wird üblicherweise diffus beschrieben. Im
Nanometer-Bereich spielen die Grenzen und Grenzflächen eine wichtige
Rolle. In diesem Längenbereich, wenn die mittlere freie Weglänge der
Phononen größer ist, als die Strecke, welche ein Phonon zurücklegen kann
bis es auf eine Grenzfläche trifft, wird der Phononentransport ’ballistisch‘.
Im ballistischen Bereich können die Phononen an den Grenzflächen dif-
fus oder gespiegelt (kohärent) reflektiert werden. Phononen mit einer
Wellenlänge im Bereich der typischen Strukturgrößen werden kohärent
gestreut, was eine Manifestation der Wellennatur der Phononen ist. Die
Kohärenz der Phononen führt zu phononischen Bandlücken und ändert die
Phononen Dispersionsrelation. Materialien, welche Kohärenzeffekte zeigen
haben mögliche Anwendungen im Bereich Thermooptik, Thermoelektrik,
als Quellen, Filter und Detektoren für Phononen, als Wärme-Wellenleiter
und weitere Anwendungen.

In dieser Arbeit werden mit Computer-Simulationen Superlattices ent-
worfen, welche signifikante Phononen-Kohärenz zeigen. Die Dynamik
der Atome innerhalb der Superlattices wird mit klassischer Moleküldy-
namik simuliert. Die Fluktuationen der atomaren Geschwindigkeit wer-
den während der Simulation aufgezeichnet und aus den Korrelationen
der Geschwindigkeiten wird die Kohärenzlänge berechnet. Die Methode
wird zunächst an zwei Testsystemen getestet (ein- und drei-dimensionale
Superlattices mit einem Lennard-Jones Potential). Anschließend wird die
Kohärenzlänge von GaN/InN Superlattices und von Strukturen mit einer
Monolage von InN in einer GaN-Matrix untersucht. Es wird gezeigt, dass
die akustischen Phononen eine hohe Kohärenzlange zeigen (bis zu einigen
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100 nm) und dass Superlattices mit kleiner Superlattice-Periode eine höhere
Kohärenzlange zeigen als Superlattices mit einer langen Periode. Nachteile
und mögliche Verbesserungen der Methode werden diskutiert.
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1. Introduction

Phonons are the quanta describing the lattice vibrations of a crystal. Under-
standing the vibrations in solids is of fundamental interest and becomes
more and more important in application [1, 2, 3]. Sound and heat are carried
by lattice vibrations through a solid. By understanding the lattice vibrations,
materials with desired phonon properties can be engineered for applica-
tions as thermoelectric energy conversion [4], thermal engineering [5, 6] and
thermal diodes [1].
Phonons are described as quasiparticles of collective movements of atoms,
carrying one energy quantum h̄ω, traveling with a propagation speed ac-
cording to their group velocity, and having a finite lifetime determined by
scattering mechanisms. Possible scattering mechanisms are phonon-phonon
scattering, scattering of phonons with other quasiparticles like electrons,
scattering at defects and crystal imperfections, and scattering at interfaces
and boundaries.
The average distance a phonon travels before a scattering event takes place
is the phonon mean free path (MFP). At nanoscale lengths, the scattering at
interfaces becomes more and more important as the interface density gets
higher. At this scale, the phonons mean free path exceeds the characteristic
length of the material, and the diffusive transport picture has to be replaced
by the ballistic one, as phonons will scatter at the interfaces and not in
the bulk. Phonons can be scattered diffusely (incoherent) or be reflected
specularly (coherent) at the interfaces [7, 8, 9]. If the typical structure size is
in the order of the wavelength of the phonons, the phonons will be coherent
as the wave-like nature of the phonons appears. Coherent phonons are
in-phase oscillations of neighboring atoms that keep the phase information
when they are scattered coherently. The coherence of phonons leads to a
change in the dispersion relation, to the appearing of phononic band gaps,
and can influence the thermal conductivity [10]. The phonon coherence can
be used to engineer materials with desired phonon properties.
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1. Introduction

Materials which are promising candidates to show coherent phonon trans-
port are superlattices [2, 8]. Superlattices are periodic arrangements of layers
of two ore more materials. They are ideal systems to study the coherence
of phonons, because of their typical structure sizes. Their lattice period is
in the order of the nanometers, thus feature structure sizes in the order of
the wavelengths of the phonons. Moreover, it is easy to vary the typical
structure size by changing the thickness of the layers, resulting ideal to
study the struture size dependence of the phonon coherence. Possible ap-
plications of superlattices showing coherent phonons are in thermo-optics,
thermoelectrics [4], as sources, filters and detectors of coherent phonons,
heat-waveguides and more.

The engineering of materials with desired phonon properties can lead to
many possible applications. Superlattices with short structure sizes show
wave interference effects, but are often difficult to fabricate experimentally,
involving demanding thin film techniques that are not always well estab-
lished. Computer simulations allows to investigate the physical behavior of
different structures without the need of experimentally fabricating them, ac-
celerating the process of finding and developing new materials. The goal of
this thesis is to use molecular dynamics simulations to simulate and obtain
superlattices that feature phonon coherence. A recently reported method-
ology based on molecular dynamics [11, 12] is implemented and used to
extract a phonon-frequency dependent coherence length. The implemented
code is tested on two toy systems. The code is then used to study gallium
nitride / indium nitride (GaN/InN) superlattices. The piezoelectricity [13]
of the GaN/InN systems could be used to generate coherence phonons.
These phonons, as long as they keep their coherence, can propagate in the
superlattice, which would serve then as a source of coherent phonons.

The thesis is structured as follow: In the next chapter, some theoretical
background is described. Lattice dynamics and molecular dynamics are
described, which are the simulation methods used in this thesis. Then
the methodology to calculate the phonon coherence length [11, 12] is pre-
sented. This methodology estimates the coherence lengths from molecular
dynamics trajectories, by calculating the cross correlations of the atomic
velocities. In other words, from these calculations one can calculate upto
which separation-distance the motion of atoms is still correlated.
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In the third chapter, the computational details and the used software pack-
ages are described. The force field potentials describing the interactions
between the atoms in the crystal are also introduced. A Lennard Jones
potential is used to describe one dimensional superlattices (linear chains
of atoms) and crystalline argon (FCC-crystals). Gallium nitride/indium ni-
tride superlattices are described with a modified Stillinger Weber potential.
The details of the lattice dynamics and molecular dynamics are presented.
Furthermore, the code and the post-processing tools to analyze the data are
explained.
The results of the simulated superlattices are presented in the fourth chapter.
The density of states and the frequency dependent coherence length is
calculated for various superlattice periods for the same system to analyze
the influence of the superlattice period on the phonon coherence. The im-
plemented code for calculating the phonon coherence length, was tested
on one dimensional and bulk superlattices. The results of this two systems
are discussed and compared to results previously reported in the literature.
These calculations have provided a better understanding of the microscopic
picture of the phonon coherence.
For the gallium nitride/indium nitride system, superlattices with various
layer thicknesses, and structures with monolayers of indium nitrite in a
gallium nitride matrix are considered. The superlattices have periods of
1.06, 2.12, 6.36 and 10.6 nm. In the molecular dynamics simulations 3× 2×N
supercells were initially considered. To better resolve the acoustic modes,
and to better capture their long coherence lengths, 1× 1× N supercells
were simulated. The coherence length of the longitudinal modes of these
superlattices, and the method for calculating it are presented and discussed.
GaN/InN superlattices have a large lattice mismatch, and a defect free
growth of thick InN layers on GaN layers is difficult [14], but it is possible
to grow monolayers of InN layers on GaN [15]. Thus, structures with mono-
layers of InN are simulated for various thicknesses of GaN in between. The
coherence length of the longitudinal modes are calculated.
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2. Theory

In this chapter some theoretical background important for this thesis is
given. Lattice dynamics is described before briefly explaining molecular
dynamics. The phonon density of states can be calculated from the velocity
auto-correlation function. This latter is obtained from a molecular dynamics
simulation. The methodology used to obtain the microscopic picture of
the phonon´s coherence is presented [11, 12]. At the end of the chapter,
the wurtzite crystal structure and its orthogonal representation are shortly
presented.

2.1. Phonons and Lattice Dynamics

Atoms in a crystal are not fixed at their equilibrium position but vibrate
around it. In the harmonic approximation the potential between two atoms is
expanded around the equilibrium position, and truncated after the harmonic
term. In this simple picture, the atoms in a crystal can be thought of as
connected by stronger and weaker springs. Lattice Dynamics is the study
of the vibrations in a crystal. With a plane wave Ansatz, the equations of
motions of the atoms in the system can be solved. The solutions are normal
modes of vibration with a certain wave vector k and frequency ω. In this
section, Lattice Dynamics is presented, and it mostly follows the review of
Dove [16].

Lets consider an atomic chain of atoms connected by springs of constant K.
There are two different atoms in the unit cell of this system, with different
masses m1 and m2. The equilibrium distance of the atoms is a/2 (Figure
2.1). Periodic boundary conditions are applied, and the system consists of
N unit cells (2N atoms). The displacement of atom j (j = 1, 2) in unit cell

5



2. Theory

Figure 2.1.: Diatomic chain of equidistant atoms with two different masses. The length of
the unit cell is a, the atoms are connected by springs with spring constant K.
un,1 is the displacement of atom 1 in unit cell n from the equilibrium position.

n (n = 1, 2, ..., N) is denoted as un,j. The equations of motion can be written
as:

m1ün,1 = −K(un,1 − un−1,2) + K(un,2 − un,1) (2.1)

m2ün,2 = −K(un,2 − un,1) + K(un+1,1 − un,2) (2.2)

As we have periodic boundary conditions we use, according to Bloch’s
theorem, a plane wave Ansatz:

un,j = u0
j ei(kna−ωt), (2.3)

where u0
j is the amplitude, and k has the allowed values:

k = km =
2πm
Na

for m = 0,±1,±2, ...± N
2

. (2.4)

Putting the Ansatz (2.3) into the equations of motion, one gets by dividing
through the common exponential in each term and using un±1,j = un,j exp(±ika):

m1ω2u0
1 = K

(
2u0

1 − (1 + e−ika)u0
2

)
(2.5)

m2ω2u0
2 = K

(
2u0

2 − (1 + eika)u0
1

)
(2.6)

6



2.1. Phonons and Lattice Dynamics

Equations (2.5) and (2.6) can be written as a matrix equation.

[
m1ω2 − 2K K(1 + e−ika)
K(1 + eika) m2ω2 − 2K

] [
u0

1
u0

2

]
=

[
0
0

]
. (2.7)

The solutions of these set equation are the modes of vibrations and are
obtained by setting the determinant of the matrix equation equal to zero.
There are two solutions for the frequency ω for every allowed k:

ω2
1,2 =

K
m1m2

(
m1 + m2 ±

√
m2

1 + m2
2 + 2m1m2cos(ka)

)
. (2.8)

Eq. (2.8) relates the frequency to the wave vector and is called the dispersion
relation. In Figure 2.2 the dispersion relation for the two atomic chain is
plotted for different mass ratios m1/m2. If the masses are not equal, a gap
appears in the dispersion relation, which grows larger with larger mass ratio.
For every allowed wave vector k there are two solutions and two branches
appear in the dispersion relation. The lower branch is called the acoustic
branch. For low k, the acoustic modes correspond to in-phase motion of
neighboring atoms, similar as sound waves and, thus, the origin of their
name. For the optical modes, the neighboring modes move out of phase.
They are called optical as in some materials these modes can be excited
optically.

To calculate the phonon modes in three dimensions, the above statements
need to be generalized, and the Newton’s equations of motion need to be
solved to calculate the phonon frequencies. The energy of the system is at
the minimum, when the atoms are at their equilibrium positions. The total
energy can be expanded in a Taylor series for small displacements of the
atoms around their equilibrium positions:

E(r + u) = E(r) + ∑
j,j′

∑
a,b

∑
n,n′

∂2E
∂un

j;a∂un′
j′;b

∣∣∣∣∣
r

un
j,aun′

j′,b, (2.9)

Here the atoms in the unit cell are denoted as j and j′, the unit cells are
labeled as n, n′ and a, b label the Cartesian coordinates.

7



2. Theory

Figure 2.2.: Dispersion relation of a two-atomic chain with different mass ratios m1/m2.
The larger the mass ratio, the larger the gap in the dispersion becomes. There
are two atoms in the unit cell leading to one acoustic and one optical branch.

The linear term in Eq. (2.9) vanishes as the energy is at a minimum at r, and
the series is truncated after the quadratic term (harmonic approximation).
The second derivatives are the force constants, which describe how the force
on an atom j′ in the unit cell n′ changes, when the atom j in unit cell n is
displaced in the direction a.

Φn,n′
j,j′;a,b =

∂2E
∂un

j;a∂un′
j′;b

= −
∂Fn′

j′;b

∂un
j;a

(2.10)

The displacement of atom j in unit cell n is described with a plane wave
Ansatz:

un
j (t) = ũjei(kRn−ωt) (2.11)

8



2.1. Phonons and Lattice Dynamics

ũj is the amplitude, Rn the position of unit cell n. One defines ej = ũj/mj,
with mj the mass of atom j and inserts this Ansatz (2.11) into the equations
of motion. This leads to a matrix equation and the matrix is called the
dynamical matrix. The dynamical matrix needs to be diagonalized to obtain
the solutions (for simplicity, the Cartesian indexes are omitted):

Dj,j′(k) =
1

√mjmj′
∑
n′

Φn,n′
j,j′ eik(R0−Rn′ ). (2.12)

The sum in Eq. (2.12) would go over all pairs of unit cells (n, n′), but it is
sufficient to just look at the pairs of the first unit cell at R = 0 with all the
other unit cells. The eigenvalues of the dynamical matrix are the squared
phonon frequencies,

ω2(k)e = D(k)e, (2.13)

while the eigenvectors describe the relative amplitudes of the atoms in a
phonon mode:

e = (... ũj/mj... ) (2.14)

The eigenvectors contains dNuc entries, where Nuc is the number of atoms
in the unit cell and d is the dimension of the system. With the method
of calculating the phonons established, one needs to calculate the force
constant matrix (equation 2.10) from an inter atomic potential to describe
the vibrations of a crystal. The harmonic approximation is useful to describe
the vibrations of atoms in a system. It is, however only valid when the
displacements from the equilibrium positions are small. The harmonic
lattice dynamics does not include temperature effects and anharmonic
effects like thermal expansion. Anharmonic lattice dynamics can be used to
investigate thermal expansion by using the Grüneisen parameters.

In quantum mechanics, the energy of a harmonic oscillator is quantized.
The quanta of the lattice vibrations are called phonons, and the energy of a
single oscillator can be written as:

En =

(
n +

1
2

)
h̄ω, (2.15)

9



2. Theory

with n the number of excited phonons. The phonons are bosons and follow
a Bose-Einstein distribution. The average occupation number of a mode
with frequency ωk,λ is:

〈n(ωk,λ)〉 =
1

e(h̄ωk,λ/kbT) − 1
(2.16)

In lattice dynamics, the phonon modes are calculated from the classical New-
ton’s equations of motion and the bosonic nature of the phonons is taken
into account by imposing the Bose-Einstein distribution. Molecular dynam-
ics is a purely classical method and the bosonic nature of the phonons is not
captured and all modes are occupied uniformly (equipartition theorem).

2.2. Superlattices and phonon coherence

Superlattices are periodic arrangements of layers of two or more crystalline
materials with periods in the order of nanometers. Due to the periodic
arrangement of the layers in the superlattices, phonon confinements are
reached, and an additional translational symmetry is introduced. This leads
to Brillouin-zone-folding and to a change in the phonon density of states.
Superlattices have a high interface density. In the limit in which the phonon’s
mean free path exceeds the typical structure size of the system, and the
crystal is of high quality that scattering from defects plays a minor role,
phonons are scattered at the interface or at a boundary, before another type
of scattering takes place (e.g. phonon-phonon). In this limit transport is
ballistic rather than diffusive.

In the diffusive regime, the phase relation between the phonons is random
and phonons are not coherent (i.e. incoherent). Coherent phonons are col-
lective motions of atoms, where the phase relation between the vibrations is
not random. Coherent phonons can be excited by outer stimuli (e.g. light,
mechanic stimuli). A coherent wave packet moves through the crystal with-
out losing the phase relationship between the vibrations. The questions
that arise in the case of superlattices are, what is the coherence phonon

10



2.2. Superlattices and phonon coherence

length, and whether the scattered phonons at the interfaces are transmitted
coherently or incoherently.

Superlattices have been addressed to show coherent phonon transport
in theoretical and experimental studies [10, 9]. Often the coherence of
longitudinal acoustic phonons is studied [17, 18, 19, 20], involving just
a small part of the whole phonon spectrum. The longitudinal acoustic
phonons are generated by a short laser pump pulse and then detected with
another pulse in a pump probe technique.

The phonon modes contribute differently to the thermal conductivity, de-
pending on the occupation number a smaller or larger part of the phonon
spectrum is involved in the heat conduction. A minimum in the thermal
conductivity as a function of the superlattice period (usually with atomically
flat interfaces) have been reported in experiments and simulations [21, 22,
23, 8, 24]. Interfaces are barriers for phonon and hence heat transport, and a
higher interface density should lead to a lower thermal conductivity. The
minimum of the thermal conductivity is explained by a transition from a
phonon diffusive interface scattering to a phonon ballistic coherent trans-
port through the interfaces. A recent study of the thermal conductivity in
superlattices, using the Boltzmann transport equation [25], showed that
the Boltzmann equation is not able to predict the experimental trends of
thermal conductivity in superlattices, leading to the conclusion, that phonon
interference and coherence plays an important role. Another study, based
on a Boltzmann transport model, uses different transport models for short
and long wavelength modes. They showed that thermal transport of Si/Ge
superlattices can be explained by an interplay of coherent and incoherent
phonon transport [26].
In summary, phonon coherence has been shown to be present in superlat-
tices. Moreover, they are ideal systems to study phonon coherence, as the
superlattice period and the total thickness of the superlattice can be varied
systematically.

11



2. Theory

2.3. Molecular Dynamics

Molecular dynamics (MD) is a method to study the dynamics of a system
composed of atoms. Only a short introduction to the method is given here
based on [27, 28], where further information can be found. MD is based
on integrating the classical equations of motions for all the particles in a
system. The force F on the particle of mass m in the potential energy surface
U is F = −∇U. According to Newton’s second law, the acceleration of
the particle is mẍ(t) = F(t). Assuming a constant force in the short time
interval ∆t, the position x and velocity ẋ are:

x(t + ∆t) = x(t) + ẋ(t)∆t +
1

2m
F(t)(∆t)2 (2.17)

ẋ(t + ∆t) = ẋ(t) +
1
m

F(t)∆t (2.18)

In an MD simulation, a large number of particles N is simulated. These
particles interact by means of a potential energy U(X), that depends on
the relative positions among the particles. Here X stands for all particle
positions x1, x2, ..., xN.

The workflow of an MD simulation is presented in Figure 2.3. To start
an MD simulation, the initial positions x0 and initial velocities v0 of the
particles are set. For a crystalline system, the atoms are placed at their
equilibrium positions in the crystal. The forces on all particles are calculated
according to the potential energy U(X0). Then the equations of motions
(2.17,2.18) are integrated leading to new positions X(t0 + dt) and velocities
Ẋ(t0 + dt), with dt being the time-step of the simulation. New forces are
calculated according to the new positions, which then are used to integrate
the equations of motion again. In this way, the time evolution of the system
is simulated. The time-step dt of the simulation needs to be sufficiently
small, so that the total energy of the system is conserved, and that atoms do
not move too far in one simulation step.

12



2.4. Vibrational density of states from the velocity auto-correlation function

Figure 2.3.: Workflow of a simple molecular dynamics simulation

2.4. Vibrational density of states from the
velocity auto-correlation function

In this work, molecular dynamics simulations are done to learn about the
phonons in a crystal. In this section the relationship between the Fourier
transform of the velocity auto-correlation function (VACF), calculated from
the trajectories of an MD simulation, and the vibrational density of states
(DOS) [29, 30] is shown.

The vibrational density of states ρ(ω) is a function of the angular frequency
ω. The density of states expresses how many vibrational states are in the
interval between ω and ω + dω. The density of states can be calculated
either from a phonon band dispersion using lattice dynamics, or from the
velocity auto correlation function using molecular dynamics.

The auto-correlation function C(τ) of a time signal x(t) is a measure of
how strongly the signal at time t is correlated to itself at time t + τ. The
auto-correlation is defined as:
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2. Theory

C(τ) = lim
T−→∞

1
T

∫ T

0
x(t0)x(t0 + τ) dt0 (2.19)

The integral is an average over different time origins t0. If the system is at
equilibrium, and the signal stationary, the auto-correlation function does not
depend on the origin t0. Then the auto-correlation function is often denoted
as:

C(τ) = 〈x(t0)x(t0 + τ)〉, (2.20)

The velocity auto-correlation function (for one atom j) is:

VACFj(τ) = 〈vj(t0)vj(t0 + τ)〉, (2.21)

where vj(t) is the velocity of the atom j in the system, and it is assumed
that its Fourier transform exists.

vj(ω) =
∫ ∞

−∞
vj(t)eiωtdt. (2.22)

The power spectrum of the velocity (2.22) is:

|vj(ω)|2 =
∫ ∞

−∞

∫ ∞

−∞
vj(t)vj(t′)eiω(t−t′)dtdt′. (2.23)

If the physical system is in equilibrium, the power spectrum only depends
on the difference between times, t′′ = t− t′:

|vj(ω)|2 =
∫ ∞

−∞

∫ ∞

−∞
vj(t′′ + t′)vj(t′)eiωt′′dt′′dt′ (2.24)

Within the harmonic approximation, the coordinates uα(t) (α labels the 3N
atomic coordinates, i.e. in all three dimensions of all atoms j) can be written
in terms of the modes of vibrations in the system:

uα(t) =
1
√mj

∑
k,p

e(k, p; α)eikRj q(k, p)e−iω(k,p)t (2.25)
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2.4. Vibrational density of states from the velocity auto-correlation function

The normal modes are labeled with the wave vector k and the branch p,
e(k, p; α) is the component of the mode eigenvector regarding the coordinate
α, Rj is the position and mj the mass of the atom j to which belongs the
coordinate α. q(k, p) are called the normal mode coordinates and e−iω(k,p)t is
the time dependence of the normal mode coordinate. For a simpler notation,
the normal modes are labelled with s instead of (k, p) and the quantity
Qsα = e(k, p; α)eikRj q(k, p) is used:

uα(t) =
1
√mj

∑
s

Qsαe−iωst (2.26)

The sum goes over all normal modes s of the system. The velocity is the
time derivative of Eq. (2.26):

u̇α(t) = vα(t) =
1
√mj

∑
s

Qsα(−iωs)e−iωst (2.27)

Putting (2.27) into equation (2.24), and summing over all N atoms in the
system, and 3N coordinates respectively, we obtain:

1
N

N

∑
i=j

mj|vj(ω)|2 =
1
N ∑

s,s′

3N

∑
α=1

∫ ∞

−∞
QsαQ∗s′α(iωs)(iω′s)e

i(ω+ωs)t′′dt′′×
∫ ∞

−∞
ei(ω′s−ωs)t′dt′

(2.28)

As
∫ ∞
−∞ ei(ω′s−ωs)t′dt′ = δs,s′ , we can simplify (2.28):

N

∑
j=1

mj|vj(ω)|2 = ∑
s

3N

∑
α=1

∫ ∞

−∞
|Qsα|2ω2

s ei(ω+ωs)t′′dt′′ (2.29)

If the system is in thermal equilibrium, the equipartition theorem applies
and |Qsα|2ω2

s = kbT:
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2. Theory

N

∑
j=1

mj|vj(ω)|2 = ∑
s

∫ ∞

−∞
3NkbTei(ω+ωs)t′′dt′′ = 3NkbT ∑

s
δ(ω + ωs) (2.30)

In the harmonic approximation, the density of states is a sum of delta
functions and can be written as ρ(ω) = ∑s δ(ω + ωS). From Eq. (2.30) we
can get the following expression for the density of states:

ρ(ω) =
1

3NkbT

N

∑
j=1

mj|vj(ω)|2 (2.31)

If we look at the expression (2.24) for the power spectrum |vj(ω)|2, we can
identify the integral over t′ as an average over different origins of time t′.
Setting t′ = 0 and t′′ = t, the equation (2.24) is identified as the velocity
auto-correlation function. Fourier-transform of the velocity auto-correlation
function equals the power spectrum.

|vj(ω)|2 =
∫ ∞

−∞
〈vj(t)vj(0)〉eiω(t)dt (2.32)

Using (2.32), the vibrational density of states is proportional to the Fourier
transform of the velocity auto-correlation function [29, 30].

ρ(ω) =
1

3NkbT

∫ ∞

−∞

N

∑
j=1

mj〈vj(t)vj(0)〉eiωtdt (2.33)
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2.5. Microscopic picture of phonon coherence

2.5. Microscopic picture of phonon coherence

In order to calculate the phonon coherence length from molecular dynam-
ics simulations, we need a microscopic picture of the phonon coherence.
This microscopic picture is obtained from a methodology reported in the
literature [11, 12]. The following chapter is based on these works. The
methodology is explained in detail, as a big part of this thesis is based on
it. The methodology makes use of the second order coherence theory, that
states that any coherence phenomena can be formalized as a correlation
[31]. For example, the spatial correlations of electromagnetic fields leads
to spatial coherence of electromagnetic light [32]. The spatial coherence of
wave-functions leads also to spatial coherence of Bose-Einstein condensates
[33]. In analogy, for phonons this would mean that the phonon coherence
corresponds to the spatial correlation of atomic displacements.

If two atoms in the crystal, which are separated by a certain distance l vibrate
in phase, their motion will be correlated. This correlated motion comes from
phonon-wave-packets moving through the crystal. Atoms within the wave-
packet move non-randomly, featuring a phase relationship and, thus, are
correlated. Atoms separated by a larger distance l + ∆l might not show a
correlated motion as the phase-information is lost for a long distance. In
the microscopic picture provided by the methodology proposed by [11] and
[12], the distance over which atoms show a correlated motion corresponds
to the spatial coherence length lc.

For the formalization, let us consider a crystal whose unit cell has nuc atoms.
The primitive vectors of the Bravais lattice are ai. The (equilibrium) position
of the cell labeled k in the d-dimensional system is denoted as R0

k = ∑d
i ck

i ai,
with ck

i ∈ Z. The velocity of the atom b, in the unit cell k, is v(t, R0
k, b).

The cross correlation function 〈va(t)vb(t + τ)〉t between two velocities (the
indices a and b label different atoms) is (2.34):

〈va(t)vb(t + τ)〉t = lim
T−→∞

1
T

∫ T

0
va(t0)vb(t0 + τ) dt0. (2.34)

As the times from the MD simulation are discrete, the integral becomes a
sum. Thus, Eq. (2.34) can be written as:
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2. Theory

〈va(t)vb(t + τ)〉t =
1

Nt
∑
t0

va(t0)vb(t0 + τ) (2.35)

As the system is in equilibrium, and the velocity field is stationary, the
correlation function just depends on the time difference τ = t2 − t1. For
improving the statistics, the correlation in equation (2.35) is calculated as an
average over all Nt possible origins t0.

If the system is in equilibrium, and assuming a stationary velocity field, the
mutual coherence function T(τ, R0

k, R0
l ) is calculated. The mutual coherence

function is the mass-weighted time cross-correlation function between the
velocities of an atom in unit cell k with the corresponding atom in unit cell
l. The summation goes over the nuc atoms in the unit cell.

T(τ, R0
k, R0

l ) =
1
2

nuc

∑
b=1

mb〈v(t, R0
k, b)v(t + τ, R0

l , b)〉t (2.36)

Taking the time Fourier transform of equation (2.36), leads to the spatial
cross spectral density function T(ω, R0

k, R0
l ).

T(ω, R0
k, R0

l ) =
1
2

nuc

∑
b=1

mb v∗(ω, R0
k, b)× v(ω, R0

l , b), (2.37)

where v(ω, R0
l , b) is the Fourier transform of the velocity v(t, R0

k, b), and
v∗(ω, R0

l , b) its complex conjugate. The cross spectral density function will
in general be complex, because v∗(ω, R0

k, b) and v(ω, R0
l , b) are velocities

of different atoms (in unit cell at position R0
k and R0

l ). The trajectories of
different atoms are different and v∗(ω, R0

k, b) is not simply the complex
conjugate of the velocity v(ω, R0

l , b) of the other atom (as it is the case for
auto-correlations).
To go from Eq. (2.36) to Eq. (2.37), we used the Wiener-Khinchin and the
cross correlation theorems. The theorems are explained in the appendix
A.1.
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2.5. Microscopic picture of phonon coherence

In the following, next to a stationarity in time, a discrete translation symme-
try is assumed. Therefore, in the next step spatial correlations (aside of time
correlations) are calculated from the cross spectral density function (2.37).

T(ω, R) =
1
2

nuc

∑
b=1

mb〈v∗(ω, R0, b)v(ω, R0 + R, b)〉R0 . (2.38)

Here 〈. . . 〉R0 denotes the spatial cross correlation. The vector R belongs to
the Bravais lattice, and R̂ = R

|R| is the spatial correlation direction, along
which the correlations are calculated. In the above equation, the translational
symmetry is assumed for distances corresponding to the materials’ unit
cells. In essence, this means that all unit cells separated by the same distance
vector R should show similar coherence and, hence, are summed up. Strictly
speaking, the translational symmetry holds only for distances corresponding
to the superlattice periodicity, and is broken for other distances as the
material changes according to the superlattice period.

Eq. (2.38) is the sum of the correlations of all atoms in the system which are
separated by the same distance vector R:

T(ω, R) = ∑
R0

i

T(ω, R0
i , R0

i + R). (2.39)

It contains the space dependent correlation information as a function of
frequency. The larger the distance R = |R|, the lower the correlated signal
will be, as atoms further away will show less correlated motion.

Choosing a single frequency ω0, the ideal functional behavior is an attenu-
ated wave:

T(ω0, R)
T(ω0, R = 0)

= cos
(

2πR
λ0

)
∗ e−

R
lc (2.40)

The decay of the attenuated wave is determined by the frequency dependent
coherence length lc(ω0). Here, λ0 is the wavelength of the phonon-mode
with frequency ω0. If there are two or more modes at the same frequency
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2. Theory

ω0, the calculated spatial cross correlation from a simulation will be a sum
of two or more attenuated waves (2.40) with different decay rates lc and
different λ0.

As shown in this section, it is possible to extract frequency dependent coher-
ence properties from the velocity field of the atoms in the system. Molecular
Dynamics is a good method to simulate the velocity field of a system over
time to capture the statistical fluctuations of the velocity-field, and allows
for relatively large simulations. Molecular Dynamics naturally includes all
anharmonicities of the potential between the atoms. The anharmonic part
of the potential is important to describe the phonon scattering. Using the
microscopic picture described in this section, it is possible to extract the
frequency dependent coherence length. A drawback of the method is that
although it is frequency dependent, it does not resolve the coherence length
depending on the wave-vector. If there are two different modes with the
same frequency along a certain symmetry direction, it is not possible to
distinguish them with the presented method, and calculate a coherence
length for each individual mode.

2.6. Spectral energy density

Latour et al [12, 34] have shown that the spectral energy density T(ω, k) can
be obtained from the cross spectral density function by Fourier transform in
space:

T(ω, R) = ∑
k

(
∑
p

1
2
|q̇(ω, k, p)|2

)
e−ikR. (2.41)

The spectral energy density is given as:

T(ω, k) = ∑
p

1
2
|q̇(ω, k, p)|2, (2.42)

where q̇(ω, k, p) is the time Fourier transform of the time derivative of the
normal mode coordinate (see Eq. 2.26) of the mode (k, p). The sum goes
over all branches p of the dispersion relation. The spectral energy density
(2.42) tells for each wave-vector k, among which frequencies the energy of
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2.7. Wurtzite crystal structure

the vibrations is distributed in the system. The spectral energy density can
be calculated from the velocities of an MD simulation, if the eigenmodes
of the system are known (for example by doing LD). Using the spectral
energy density, the coherence length could possibly be resolved wave-vector
dependent, next to a frequency dependent resolution.

2.7. Wurtzite crystal structure

Gallium nitrite and indium nitride have a wurtzite crystal structure at room
temperature. Here, the lattice vectors of the wurtzite crystal structure and
their equivalent orthogonal representation are presented. The orthogonal
representation is used for building the simulation cells of gallium nitride /
indium nitride superlattices. The wurtzite crystal structure is a hexagonal
crystal system with four atoms in the conventional unit cell. The wurtzite
unit cell is shown in Figure 2.4. The primitive vectors are the following:

A1 =
1
2

ax̂−
√

3
2

aŷ

A2 =
1
2

ax̂ +

√
3

2
aŷ

A3 = cẑ (2.43)

The basis vectors, describing the positions of the atoms in the cell, are:

B1 =
1
3

A1 +
2
3

A2

B2 =
2
3

A1 +
1
3

A2 +
1
2

A3

B3 =
1
3

A1 +
2
3

A2 + uA3

B4 =
2
3

A1 +
1
3

A2 + (
1
2
+ u)A3 (2.44)

In this thesis, an orthogonal representation of the wurtzite unit cell is used
to construct the supercells for the molecular dynamics simulations. The
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2. Theory

Figure 2.4.: Wurtzite crystal structure with 4 atoms in the basis.

change in basis can be described by a matrix M [35]:

(A′1, A′2, A′3) = (A1, A2, A3)M (2.45)

where A′i are the new lattice vectors, Ai the old lattice vectors. The lat-
tice vectors are column-vectors and A1 is the first column of the matrix
(A1, A2, A3). The matrix for the transformation from the wurtzite basis to
the orthogonal representation is:1 −1 0

1 1 0
0 0 1

 (2.46)

and Eq. (2.45) reads for the case of the transformation of the wurtzite
structure to the orthogonal representation: 1

2 a −
√

3
2 a 0

1
2 a

√
3

2 a 0
0 0 1c


1 −1 0

1 1 0
0 0 1

 =

a 0 0
0
√

3a 0
0 0 c

 (2.47)
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2.7. Wurtzite crystal structure

The resulting lattice vectors are:

A′1 = ax̂

A′2 =
√

3aŷ
A′3 = cẑ (2.48)

In Figure 2.5 the hexagonal character of the wurtzite crystal structure can
be seen in a cross section of the x-y plane. Moreover, the lattice vectors in the
first two dimensions of wurtzite unit cell and the orthogonal representation
of it are shown. The determinant of the transfer matrix M gives the ratio of
the volumes of the old and new unit cells. The determinant of the transfer
matrix (2.46) is 2. The orthogonal representation has the double volume and
has eight atoms in its basis, which can also be seen in Figure 2.5. There are
two points within the red cell, four points at the faces (which are counted
half) and each point counts for two atoms, as two atoms are above each
other at the same x-y coordinates.

Figure 2.5.: Cross section of a wurtzite crystal (for instance GaN or InN). The c-direction is
perpendicular to the paper. The black lines are the edges of the wurtzite unit
cell and the red dashed lines the edges of the orthogonal representation.

A point in the unit cell can be written as a column vector who’s entries are
fractional values with respect to the lengths of the lattice vectors.

xT = (x1, x2, x3); 0 ≤ xi < 1 (2.49)
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The atoms position (basis vectors (2.44)) can be written as

B = ∑
i

xi Ai. (2.50)

The presentation of an atom as a vector with fractional values of the lattice
vectors (Eq. 2.49) changes with the change of basis as well [35]

x′ = M−1x + t. (2.51)

t is a translation-vector, which is needed so that the atom is in the new
unit cell. The translation-vector is chosen here so that one atom sits at
(0, 0, 0)T. The eight basis vectors bi for the orthogonal representation are the
following:

b1 =~0

b2 = uA′3

b3 =
1
2

A′1 +
1
6

A′2 +
1
2

A′3

b4 =
1
2

A′1 +
1
6

A′2 + (u +
1
2
)A′3

b5 =
1
2

A′1 +
1
2

A′2

b6 =
1
2

A′1 +
1
2

A′2 + uA′3

b7 =
2
3

A′2 +
1
2

A′3

b8 =
2
3

A′2 + (u +
1
2
)A′3

(2.52)
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In the following sections details about the computation and the used pro-
grams are given. First, the force field potentials are presented: To simulate a
one-dimensional superlattice and a three-dimensional FCC superlattice, a
Lennard-Jones potential is used, while for GaN/InN superlattices, a three-
body potential is needed. The choice of the potential is also discussed. The
used programs and software packages for lattice dynamics and molecular
dynamics are presented. Details about the MD simulations are given. More-
over, the thermostats and barostat used during the molecular dynamics are
described. They are used to simulate a system at a desired temperature
and pressure, respectively. At the end of the chapter some details about the
post-processing of the MD simulations to calculate the cross spectral density
function and the coherence length are given.

3.1. Force Field Potentials

In a molecular dynamics simulation the dynamics or time evolution of the
system is determined by the masses of the particles and the potential energy
between the particles, from which the forces are calculated. The reliability of
the properties calculated out of an MD simulation depends on the reliability
of the potential. Therefore, it is crucial to have a good potential, which
describes the real system as close as possible. The lack of a satisfactory
empirical potential can be overcome by doing ab-initio molecular dynamics.
Accurate results can be obtained from ab-initio MD, but with far higher
computational costs. In this thesis, systems with up to a few ten-thousand
particles are simulated for time scales up to nanoseconds, involving million
integration time-steps. Such large simulations can not be performed in the
framework of ab-initio techniques in reasonable time. With classical force
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3. Computation

field potentials, it is possible to simulate such large systems over longer
time-scales. Growing computational power and massively parallelized MD
packages allow for simulations of larger and larger systems.
The classical force fields are a sum of different contributions (two-body
interactions, three-body interactions, long and short-range interactions) to
the potential, and each contribution is described with an analytical functions.
The analytical functions have parameters, which can be adjusted. Thus, a
potential with the same analytical functions can describe different systems.
The parameters are determined by a fitting procedure, in which the parame-
ters are adjusted so that the potential reproduces desired properties of the
material. For example, the equilibrium phase at a given temperature, crystal
structure, elastic properties. During the fitting procedure, the parameters of
the potential are changed so that the difference between the physical quan-
tities resulting from the potential and the experimental values or ab-initio
data becomes a minimum. As mentioned above all the ’physics’ relies in the
potential, therefore it is crucial to use a potential which accurately describes
the properties of interest.

3.1.1. Lennard Jones potential

A simple classical potential is the Lennard-Jones (LJ) potential. It consists of
a two-body potential which depends just on the distance r between the two
interacting particles:

E = 4ε

((σ

r

)12
−
(σ

r

)6
)

. (3.1)

The depth of the potential is given by ε, σ is the distance for which the
potential has a zero-crossing. The equilibrium distance between the two
particles is given by r0 = 21/6σ.

The Lennard-Jones potential (see Figure 3.1) goes towards zero for large dis-
tances, and hence the interactions between distant particles can be neglected.
To reduce computational time, the potential is set to zero for a certain cutoff
distance rc. For the Lennard-Jones potential this distance is usually around
rc = 3σ. In this work, the LJ-potential is used as a toy model for method
development.
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3.1. Force Field Potentials

Figure 3.1.: Lennard-Jones potential (equiation (3.1)) as a function of reduced distance r/σ

3.1.2. Many-body potential for GaN/InN

Many semiconductor materials form covalent bonds, which are difficult
to describe with two-body potentials, as the interaction strength depends
on the local environment. Gallium nitrite, for example, has a wurtzite
crystal structure at room temperature. The potential energy in this cases
does not depend only on the distance between two particles, but also on
the local environment, through the angle between atomic bonds. Three-
body potential terms are needed to describe the potential change due to
bond bending in the system, for example by punishing a deviation from
the equilibrium angle. The Stillinger-Weber potential [36] and the Tersoff
potential [37] are examples for many body potentials.

Gallium-Nitrite and Indium-Nitrite both have a wurtzite crystal structure
as the equilibrium crystal structure at room temperature. For simulations
of superlattices, consisting of two materials A and B, the potential needs
to accurately describe both materials independently. Moreover, as both
materials will be in contact at the interfaces of the superlattice, the potential
also needs to accurately describe the interactions between all the atoms
of material A with all the atoms of material B. This is a further difficulty
in developing a feasible force field potential or finding it in literature. For
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modified SW potential [39]
a 3.173 Å 3.190 Å
c 5.171 Å 5.189 Å

Table 3.1.: Lattice parameters of GaN at 300 K compared to experimental values [39].

superlattices of GaN/InN, a Stillinger-Weber potential from the literature is
used which has been modified by the authors [38] such that both GaN and
InN are stable in wurtzite and zinc blende structure, but with the wurtzite
structure as the equilibrium phase having a slightly lower energy as the zinc
blende phase. Zhou et al. [38] parametrized the potential by fitting to the
bond-lengths, lattice constants, cohesive energies and bulk modulus. They
conducted as well growth-MD simulations of GaN and InN on a substrate of
the same material and the opposite material to benchmark the potential.

Usually, the parametrization of potentials for crystals does not account
for phonon properties like the band structure and DOS during the fitting
procedure. The potential mentioned above was created to simulate the
growth of InGaN thin films, and to reproduce stacking fault energies. No
phonon properties were taken into account during the fitting of the potential
by the creators of the potential [38]. Therefore, a bench-marking of the
potential and investigation of phonon properties was done in this work. The
lattice parameters, and the phonon dispersion for GaN and InN resulting
from the modified Stillinger Weber potential are presented here, while the
results of further bench marking (elastic constants, thermal conductivity
of GaN and InN) are presented in the Appendix A.2 and A.3. The lattice
parameters of GaN with the modified Stillinger-Weber potential are in
good agreement with the experimental values (Table 3.1), while the lattice
parameters of InN are slightly lower than the experimental values (Table
3.2).

The dispersion relation of wurtzite GaN can be found in Figure 3.2. The
dispersion relation is compared to a first principle calculation. To calculate
the ab-initio data, force constants from the almaBTE database were used
[41]. Already, at the Γ point, it can be seen that the modified Stillinger-
Weber potential partially deviates from the ab-initio calculation. The phonon

28



3.1. Force Field Potentials

modified SW potential [40]
a 3.499 Å 3.5340 Å
c 5.683 Å 5.7088 Å

Table 3.2.: Lattice parameters of InN at 300 K compared to experimental values [40].

frequencies are overestimated by the Stillinger-Weber potential. This can
be seen in the deviation with respect to the DFT results for instance at
5 THz. The transverse acoustic branches are steeper leading to a higher
group velocity of the acoustics phonons. The optical bands below the large
gap tend to be flatter with the Stillinger-Weber potential, leading to a lower
group velocity of these modes. The frequencies above the band-gap are
higher as the ab-initio frequencies.

Figure 3.2.: Phonon dispersion relation from LD of wurtzite GaN with the modified
Stillinger-Weber potential (SW) [38] compared to the dispersion relation cal-
culated with ab-initio force constants (DFT). The ab-initio force constants are
taken from the almaBTE database [41].

The dispersion relation obtained from lattice dynamics of the wurtzite InN
(for 0 K) is depicted in Figure 3.3 (blue lines). Compared to the dispersion
relation from DFT of Ref. [42], the phonon frequencies of InN are underesti-
mated by the modified Stillinger-Weber potential of [38]. This is prominent
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for modes below the band gap, where the Stillinger-Weber potential gives
frequencies up to 5 THz, while the frequencies of the DFT data reach above
7 THz. A large deviation is at the Γ point where the frequencies from DFT
data are nearly three times higher.
A dispersion relation at T = 300 K is obtained from a renormalization of the
force constants using DynaPhoPy [43], which is a program that includes
anharmonic effects at finite temperature. DynaPhoPy does a normal mode
decomposition by projecting the velocities of an MD simulation onto the
harmonic phonon modes calculated by phonopy. The power spectrum is
calculated, and anharmonic properties are extracted by fitting the power
spectrum to Lorentzian functions. Anharmonic properties like the phonon
life-times and the frequency shift at finite temperature can be calculated.
The dispersion relation at T = 0 K is shown in red in Figure 3.3. The modes
below the band gap show a strong anharmonic frequency shift, with the
frequencies at the Γ point being almost twice as high than at 0 K. The disper-
sion relation at 300 K shows a better agreement to the calculated dispersion
relation from DFT from Ref. [42]. We have seen that while at Γ-point the
frequency at ν = 3.8 THz is overestimated, the frequency at ν = 5.8 THz is
slightly underestimated.

The potential does not perfectly reproduce the ab-inito phonon properties.
Unfortunately, we have not found better force fields. Moreover, parametriz-
ing our own potential is beyond the scope of the thesis. We expect, however,
that the SW potential is still able to provide good trends for the phonon
coherence of GaN/InN superlattices.
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Figure 3.3.: Phonon dispersion relation from LD of wurtzite InN with the modified
Stillinger-Weber potential. The band structure at T = 300 K was calculated
using the renormalized force constants resulting from a DynaPhoPy calcula-
tion, which uses an MD trajectory to include anharmonic effects. The anhar-
monic frequency shift is strong for the modes below the band gap. The phonon
dispersion from DFT is taken from Ref. [42].

3.2. Lattice Dynamics

In this section it is shortly mentioned the software packages used for the
lattice dynamics calculations. The force constants (equation 2.10) are calcu-
lated by using a finite difference scheme. A supercell of the crystal structure
to investigate is created. Using the Python software phonoLAMMPS [44],
the forces due to a small displacement of an atom are calculated and the
force constant matrix is created. The supercell needs to be large enough so
that an atom far away of the displaced atom does not feel a force. The lattice
dynamics calculations are done with the open source package phonopy [45].
Anharmonic phonon properties at finite temperature are calculated with
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the software package DynaPhoPy [43]. DynaPhoPy is used to calculate
dispersion relations at finite temperature, phonon lifetimes, mean free paths
and thermal conductivity.

3.3. Molecular Dynamics

Molecular dynamics simulations are performed with the open source MD-
code LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simula-
tor) [46, 47]. The code is optimized to calculate the forces between particles
in parallel, allowing long simulation times and large simulation cells.

For initializing a molecular dynamics simulation, the initial coordinates
of the atoms in a supercell are submitted to LAMMPS. The supercell is
created by integer replications of the crystal unit cell along its primitive
lattice vectors. The MD-simulations are run at finite temperature T. The
temperature in LAMMPS is calculated from the average kinetic energy of
the N atoms in the system according to Eq. (3.2), where d is the dimension
of the system, kB is the Boltzmann constant, and mi|vi|2 is the kinetic energy
of a particle i.

d
2

kbT =
N
2

N

∑
i=1

mi|vi|2 (3.2)

For initialization, the velocities of the particles in each dimension are set
according to a Gaussian distribution with a mean value at zero, and a
width such that the total kinetic energies of the particles corresponds to the
desired temperature. The velocities of the system can be set in a way that
the total momentum and angular momentum of the system is zero, to avoid
translation or rotation of the whole system.

Periodic boundaries are applied to the system. In each direction, there is a
periodic replication of the simulation box. The particles interact with their
periodic images across the boundaries of the box. Moreover, the particles can
cross the boundary of the box and reenter at the other side. In section 2.1,
it was mentioned that a one-dimensional system with periodic boundaries
has only certain allowed discrete wave-vectors for the vibrational modes,
which depend on the number of unit-cells in each direction. In general, the
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total number of modes in a system is dN, with N the number of atoms and
d the dimension of the system.

After the simulation box is set up, the integration of the Newton’s equations
of motion is performed, and the dynamics of the system is simulated. The
standard integrator in LAMMPS is a velocity-Verlet integrator, which is also
used for this work. An explanation of the velocity-Verlet algorithm can be
found in [48]. The time step of integration needs to be chosen sufficiently
small such that the particles do not move to far in one time step, and that
the total energy of the system is conserved.

The velocity fields for calculating the coherence length have to be sampled
at equilibrium; therefore, we choose a micro-canonical ensemble, at a finite
temperature T. In the micro-canonical ensemble the particles number N, the
volume of the system, and the total energy E are kept constant. Such a type
of simulation will be called in the following as NVE-simulation. Before an
NVE-simulation, therefore, one needs the equilibrium volume (V) of a given
system at a desired temperature. The equilibrium volume is calculated out
of an NPT-simulation, i.e. from running an MD-simulation at a desired
temperature (T) and pressure (P). In practice, in an NPT-simulation, the
particles equations of motions are altered so that the system is driven
towards the desired temperature and pressure.

In our simulations, one of the thermostats used is the Langevin. The sys-
tem temperature is controlled by random collisions of the system particles
with a background solvent. The virtual background solvent acts as a heat
bath, which is at the desired temperature. The random collisions and a a
frictional drag, which is proportional to the particles velocity, drives the
system towards the desired temperature. A description of the thermostat
can be found in [49].
Nose-Hoover style thermostats and barostats, also used in this thesis, use
non-Hamiltonian equations of motions [50]. The thermostatting and barostat-
ting is done by coupling the velocities and the domain extensions to dy-
namical variables. The equations of motions are designed in a way, that the
velocities and positions are sampled from a canonical (NVT) or isothermal-
isobaric (NPT) ensemble [47]. The Langevin is used sometimes for the
NVT-equilibration, which is done before an NPT simulation. In the NPT
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simulations a Nose-Hoover is used. For the NVT-equilibrations before an
NVE run, the Nose-Hoover thermostat is used.

To extract the equilibrium volume of a system of interest at given finite
temperature, first a supercell is created. A supercell is an integer replication
of a crystal unit cell in all directions. An energy minimization at zero Kelvin,
using LAMMPS, is performed. In the next step, velocities are assigned
to the atoms according to the desired temperature. A thermostat is then
applied to the system, and the system is equilibrated in a short NVT-run.
The barostat is switched on, allowing the supercell to adjust its volume,
and the lattice constants of the simulation cell are recorded in regular time
intervals during the NPT-run. As the simulation box is allowed to extend
and contract, the system will reach the equilibrium volume after some time,
but the volume will still fluctuate around its equilibrium. By doing a time
average over the recorded lattice constants, once equilibrium is reached, the
equilibrium volume is calculated.

For the NVE-run, the super-cell volume is updated to the value calcu-
lated during the NPT-run, and velocities are assigned according to the
desired temperature. The random assignment of the velocities according
to a Gaussian distribution does not represent the equilibrium state of the
system.Therefore, the system needs to be equilibrated in an NVT-run at the
desired temperature. The NVT-run should be sufficiently long, such that
the system reaches an equilibrium and one gets a collection of equilibrium
configurations, belonging to the configurational space of the system at a
given temperature. After the equilibration, the thermostat is switched off,
and the system is simulated in the NVE-ensemble to sample the equilibrium
velocity field. As the thermostat in the NVT-run changes the Newton’s
equations of motions, this change of the equations of motions might lead
to a deviation from the real equilibrium of the system. Therefore it is good
practice to let the system equilibrate for some time in the NVE-ensemble,
and not to start sampling the velocity field at the beginning of the NVE-run.
The velocities of all the atoms in the supercell are sampled at a constant
time interval. The size of the needed sampling time interval ∆t depends on
the vibrational spectrum of the system. The maximum frequency νmax from
a discrete Fourier transform of discrete data depends on the time step of ∆t
(Eq. 3.3). For systems with high phonon frequencies, the velocities need to
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be sampled at shorter time intervals.

νmax =
1

2∆t
; ωmax =

π

∆t
(3.3)

These velocities, which are the main ingredient for our coherence length
calculations, are saved for a few thousand or ten-thousand of atoms, and for
many time steps. As the saved files become very large for long simulations,
the sampling step ∆t is kept as small as possible. This save the computational
effort in the post-processing step. Nonetheless, the sampling step needs to be
chosen such that νmax is larger than all the relevant vibrational frequencies
in the system.

3.4. Post-processing of the velocity field and
calculation of the cross spectral density
function

During the NVE-Simulations, the velocity of each atom is saved every certain
time step (i.e. every sampling time step ∆t). To post-process the velocities
and to calculate the coherence lengths, a Python code was written. The
code can be found in the Appendix B.1. For calculating the cross spectral
density function (Eq. 2.39), we need to correlate the atoms of one unit cell
with the corresponding atoms of the unit cell a distance R away in the
correlation direction R̂. To achieve this, one needs to identify which atom
sits at which position. Every particle in a LAMMPS simulation has a unique
integer number as an identifier, which allows to unambiguously identify
the particle throughout the whole simulation. Additionally, each unit cell
in the simulations super-cell is labeled and assigned an integer number as
identifier. Then, it is identified which atom belongs to which unit cell.

In the next step, the unit cells which need to be correlated are identified.
Only cells along the correlation direction R̂ are correlated. To explain this
better, let’s consider the superlattice in Figure 3.4, with four atoms in the
(pure materials) unit cell. The supercell is extended 4 unit cells in the vertical
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direction. Only cells along the correlation direction R̂ are correlated with
each other. For example, the unit cells within the yellow frame, for different
distances between the cells. Likewise, the frame is moved up and down to
correlate the other cells along the correlation direction. The correlations for
same distances of different frames are summed up to achieve better statistics.
(This is equivalent to correlating the atoms of planes (perpendicular to the
correlation direction) of unit-cells to the corresponding atoms of planes at a
certain distance).

Figure 3.4.: Only cells along the correlation direction R̂ are correlated.

Periodic boundary conditions are applied to the supercell. In Figure 3.5,
the (one-dimensional) simulation box with unit cells A-G, has periodic
images on both sides. The simulation box in this example has a length
of 7. The maximum distance between two unit cells along the correlation
direction, is half the simulation box size. For example, the unit cell E is a
distance of 4 away from A, but the periodic image E* is a distance 3 away
from A, resulting closer than E. Thus, only distances up to one half of
the simulation box size are considered when calculating the cross spectral
density function.

The Fast-Fourier-Transforms of the velocities are calculated with the
numpy.fft package. The maximum frequency is, as stated in equation (3.3),
νmax = 1

2∆t . The resolution, νR, in frequency of the Fourier-transformed
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Figure 3.5.: The periodic image E* is closer to A than E, because of periodic boundary
conditions. The maximum distance considered for calculating the cross spectral
density function is half the simulation box size.

signal depends on the length, Nt, of the input signal for the discrete Fourier
transform.

νR =
1

Nt∆t
(3.4)

Nt is the number of discrete time points at which the velocity was sampled.
The longer the time series, the higher the resolution in frequency is, and the
statistics of the correlations gets better. As the velocities in time are a real
signal, the positive frequencies already contain all the information in the
frequency domain.

Following the example in Figure 3.5, the cross spectral density function
(Eq. 2.38) is calculated for each distance R like follows. For distance R = 0
each unit cell is correlated with itself, and the auto-correlations are summed
up. T(R = 0) corresponds to the DOS. For distance R = 1, unit cell A is
correlated with B, B with C, ... and G with the periodic image A’, and all the
correlations are summed up for T(R = 1). For distance R = 2: A-C,B-D,C-E,
..., G-B’. This is repeated for every possible distance until the maximum
distance, which is 3 in this example: A-D,B-E,...,G-C’. After the cross spectral
density function is calculated, the coherence length for every frequency can
be calculated by fitting an attenuated wave (Eq. 2.40) to the cross spectral
density function.
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After having presented the microscopical picture of the phonon coherence
length, and the details about the molecular dynamics simulation, the results
are presented in this chapter. First, the coherence length of superlattices
of a one-dimensional chain of atoms is presented. Then, a FCC crystal
interacting with a Lennard-Jones potential is discussed. These two systems
are simulated to test the post-processing code, and to better understand
the microscopical picture. The post-processing code can be found in the
Appendix B.1. The coherence length is extracted by fitting the cross spectral
density function (Eq. 2.37) to an attenuated wave (Eq. 2.40). As the fitting
procedure is not always successful, another approach for extracting the
coherence length from the cross spectral density function is adopted, which
is based on the idea of treating the spectral density function as a probability
density function.
After the test systems, GaN/InN superlattices are discussed. These systems
are realistic and of interest because GaN/InN structures show piezoelectric
effects, which could be harnessed for generating coherent phonons. This
would allow to use GaN/InN superlattices as a source of coherent phonons.
The phonon density of states and phonon coherence length of GaN/InN
superlattices of various superlattice periods are presented. Two different
supercells have been used for this superlattices: 3× 2× N and 1× 1× N.
The latter supercells allow for a better resolution of the acoustic phonons.
Structures of a monolayer of InN in a GaN matrix are simulated and
discussed. The creation of superlattices of GaN/InN is experimentally
limited due to the large lattice mismatch among the systems, which leads to
the introduction of dislocations. Monolayers of InN on a GaN matrix have,
nonetheless, been created experimentally [15].
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4.1. One-dimensional Lennard Jones superlattice

Part of the master thesis was to develop the code for post-processing the
velocities obtained from a molecular dynamics simulation. This code allows
to calculate the velocity correlation functions, the cross spectral density
function, and from that the phonon coherence length. The methodology to
estimate the phonon coherence was adapted from Ref. [11, 12]. For validation
of the code the same one-dimensional system as in Ref. [12] is simulated.
This helps to better understand the method, the microscopic picture of the
phonon coherence, and the phonon coherence length. Moreover, it allows
to compare the results from the written code to the results reported in Ref.
[12].

The atoms in the one-dimensional system interact by means of a Lennard-
Jones potential (3.1). The system consists of two materials M1 and M2. Each
material contains two atoms in the unit cell (Figure 4.1). The four atoms
differ in mass but interact via the same Lennard-Jones potential. In M1,
atom A has the mass of Argon m1,A = mAr = 39.948 u, while atom B has
m1,B = 2MAr, the corresponding atoms in M2 have masses m2,A = 3

2 mAr
and m2,B = 3mAr. The σ parameter of the Lennard-Jones potential is that of
argon, σ = σAr = 3.405 Å, while the depth of the potential is 5 times deeper,
ε = 5εAr = 1.19 kcal/mol. The NPT simulation of this system results in an
equilibrium distance between the atoms of 3.82 Å. Three different kind of
superlattices were created, with a superlattice period of dSL = 1.53, 6.11 and
24.5 nm. The superlattice with dSL = 1.53 nm corresponds to a stacking of
M1-M2-M1-M2.

Figure 4.1.: One-dimensional superlattices made of two materials (M1 and M2) with each
having two atoms (A,B) in the unit cell. Three different superlattices with
periods of dSL = 1.53, 6.11 and 24.5 nm were considered.
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4.1. One-dimensional Lennard Jones superlattice

The number of atoms, N, in the simulation cell is 8000 as in Ref. [12], which
corresponds to a cell length of 3056 nm. N is kept constant for the three
superlattices, in order to keep the same number of modes in the system.
The time step of the MD simulation is 1 fs. The system was first relaxed
for 106 steps (= 1 ns) in the NVT ensemble at 10 K. The NVE ensemble is
simulated for 6× 106 steps (= 6 ns), and the velocities are sampled every
128 time-steps. A sampling step of 128 fs corresponds, according to Eq. (3.3),
to a maximum frequency of νmax = 3.9 THz.

4.1.1. Lattice Dynamics

First the dispersion relation and the DOS from lattice dynamics for the
two individual materials and the superlattice with the smallest period
(dSL = 1.53 nm) are compared (Figure 4.2). From lattice dynamics, one
can already learn about the influence of the superlattice structure on the
dispersion relation and the DOS. This will serve as well as a reference for
molecular dynamics.
Material M1 and M2 have both a band gap of roughly 0.5 THz with material
M1 having higher frequencies as M2 because of the lighter atoms. The
superlattice has two more band gaps because of the Brillouin-zone folding.
The combined DOS of M1 and M2 would leave only one gap below 1.5 THz
with no states.

4.1.2. Density of states from Molecular Dynamics

From MD the density of states was calculated as described in chapter 2.4. For
the superlattice with dSL = 1.53 nm, the DOS is shown in Figure 4.3. Three
band gaps appear in the DOS (0.7, 1.3 and 1.9 THz) as in the case of the
lattice dynamics, although the DOS does not fall completely to 0. The DOS
of the raw data is noisy. As it can be seen in the plot for the corresponding
velocity auto-correlation function, Figure 4.4, the VACF decays to zero after
a certain time. However, it will fluctuate around zero due to numerical
noise, and because the time series to calculate the VACF are not infinitely
long. In the lower part of figure, there is a cutout of the VACF for lower
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Figure 4.2.: Dispersion relation and DOS from LD of M1,M2 and superlattice with
dSL = 1.53 nm. a = 0.764 nm is the length of the unit cell of M1 and M2.

values. The orange curve displays the VACF, which is smoothed with a
Gaussian function (Eq. 4.1). Calculating the DOS by Fourier transforming
the smoothed VACF results in the smooth orange DOS shown in Figure
4.3. The plots of the DOS in this thesis always involve some degree of
smoothing.

VACFsmooth(τ) = VACF(τ)× e−(
τ
σ )

2

(4.1)
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Figure 4.3.: Vibrational density of states from MD of the one-dimensional superlattice with
dSL = 1.53 nm. The figure compares the DOS calculated from the raw data of
the VACF to the DOS from the smoothed VACF. For comparison the DOS from
LD is shown in green.

Figure 4.4.: The upper plot shows the velocity auto-correlation function of the 1-
dimensional superlattice with dSL = 1.53 nm. The lower plot shows the smooth-
ing of the VACF (equation 4.1) to bring it towards zero for long times τ.
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4.1.3. Calculation of the coherence length

The coherence length for the superlattice with dSL = 1.53 nm is calculated by
fitting Eq. (2.40) to the calculated cross spectral density function T(ν, R) for
different frequencies ν. As T(ν, R) is a complex quantity, the fit is done to the
real part of T(ν, R). The parameters of the least squares fit for each frequency
are the wavelength, λ, and the coherence length, lc. The initial guess for
the wavelength λ(ν), depending on the frequency, is done according to
the linear dispersion relation (ω(k) = kvg) for the low frequency acoustic
modes: λ(ν) =

vg
2ν . The group velocity, vg, in this region is extracted from a

lattice dynamics calculation. An example of the data used for the fitting and
the resulting fitting, for one frequency ν of the spectrum, is shown in Figure
4.5. It can be seen that the data follows the attenuated wave closely.

Figure 4.5.: Example for the fit to the cross spectral density function T(ν, R) to extract the
coherence length for the 1-dimensional superlattice with dSL = 1.53 nm

Figure 4.6 shows the calculated coherence length for the phonons of the
1.53 nm-superlattice. A clear trend shows that lower frequencies have a
higher coherence length. This is expected as the low frequency modes are
acoustic modes with a long wavelength. A wave-packet consisting of modes
with a large wavelength has a large spacial extension and will have a large
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coherence length.
The coherence length is larger by a factor of roughly 2.5 compared to the
values in Ref. [12]. This deviation stays the same for all coherence lengths
calculated in for the one-dimensional test system. As the trend in coherence
length is the same, a possible explanation of this deviation is a constant in
the definition of the coherence length.

Figure 4.6.: Double logarithmic plot of the coherence lengths lc for the one 1-D SL with
SL-period dSL = 1.53 nm as a function of frequency ν. The data in red is from
Ref. [12].

The fitting procedure to the spatial cross correlation function is not always
as reliable as in the case shown in Figure 4.5. In Figure 4.7 the data for three
different frequencies for the dSL = 1.53 nm superlattice is shown. To extract
the coherence length, a fit is done to the squared real part of the spatial
cross spectral density function. The higher the frequency, the less reliable
this fit works in this case.

The fit usually works well for low frequencies (4.6 a). The frequency of
0.3 THz lies in the acoustic region. These low frequencies correspond to
acoustic modes with long wavelengths. This means that the oscillations in
R are slow and usually these modes have a high coherence length. In this

45



4. Results

Figure 4.7.: Real part of the spatial cross spectral density function T(R, ν) over distance
R for three different frequencies of the 1-D superlattice with a superlattice
period of 1.53 nm. The fit to the square of equation (2.40) works well for the low
frequencies like 0.3 THz. For higher frequencies the attenuated wave decays
fast, and the resolution in R is not high enough to represent the oscillating part.
The frequencies are not in a gap of the DOS (see Figure 4.3). Note the different
scale of the abscissa in the three plots.

case the function does not decay to zero rapidly. Indeed the data decays
to 0 after approximately 75 nm (The whole range of the distance R, which
would go up to 1528 nm, corresponding to half the size of the simulation
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cell, is not shown.). Often the function stays at zero, after it decays, but
this is not always the case. This might be due to numerical noise or not
enough statistics. For the lowest acoustic frequencies, the cross spectral
density function does not decay to zero for the whole range of distances
R. This modes have a very long wavelength, and have a coherence length
larger than the simulated supercell.
For the upper frequencies of the acoustic region and optical modes, the fit
does not work very well. (In the case of the dSL = 1.53 nm superlattice, the
fit works reasonably well up to 0.5 THz. This depends on the system and
has to be checked for each simulated system separately). The data to fit is a
discrete function of the distance R. The resolution in distance is given by
the lattice constant of the (pure material) unit cell in the system, which for
the given system is ∆R = 7.6 Å. If the wavelength λ is small, according to
equation (2.40), the oscillations have a high frequency in distance R . At
some point, the resolution in R is not high enough to resolve the oscillations,
as seen in Figure 4.7b). This makes it difficult to fit the data. Additionally,
the coherence length for high frequency and optical modes is usually low.
This leads to a rapid decay of the attenuated wave (Figure 4.7c). Although
the fitting procedure does not reproduce well the attenuated wave for high
frequencies, the value for the exponential decay is still assumed to be a good
estimator for the coherence length.

4.1.4. Results of the coherence lengths

As already mentioned, the coherence length is generally higher for modes
with lower frequencies and higher wavelengths. It is also interesting to have
a closer look at the band gaps of the DOS, and the coherence length in
this region. At the edges of the band-gaps, peaks in the coherence length
appear as can be seen in Figure 4.8, which is a cutout of Figure 4.6. Latour
and coworkers [12] have found more prominent peaks at this positions and
they associated these peaks to standing modes with large spatial extension.
The gaps in the dispersion relation appear where the branches meet the
Brillouin-zone boundary or the center of the Brillouin zone. The branches
flatten out at these points, and the group velocity of the modes drops to
zero. Thus, these modes correspond to standing modes with a large spatial
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extension. The plot of the DOS, below the coherence length, shows that the
peaks in the coherence length coincide with the peaks in the DOS next to
the band gaps.

Figure 4.8.: Cutout of the plot for the coherence length in Figure 4.6. At the edges of the
band gaps, peaks in the coherence length appear. These high coherence lengths
correspond to standing modes with a large spatial extension. The reference
data (red triangles) is from Ref. [12].

One would assume to have zero coherence length in between the band
gaps, as there are no allowed modes at these frequencies. As there is still
a signal in the cross spectral density function, the coherence length is not
zero. The density of states is low in the regions of the band gaps, but it is
not zero. A reason for this is that due to finite temperatures, the frequencies
are not sharp but broadened. The non zero coherence length in the gaps
suggests that still modes of the individual materials exist in the layers of
the individual materials. Looking at the dispersion relations from lattice
dynamics of the pure materials (Figure 4.2), one sees that at least one of the
pure materials has modes at frequencies of 0.7 THz and 1.9 THz, where the
superlattice has a band gap. Only at 1.3 THz neither of the pure materials has
allowed modes. For the frequencies in the band-gap of the superlattice, one
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would need to calculate the coherence lengths for the individual materials
for the frequencies in the gaps [12].

For this one-dimensional system, the coherence lengths for the three dif-
ferent superlattice periods are similar, and they seem to not depend on
the period, as can be seen in Figure 4.9. At least in the region where the
coherence length is not determined by the band gaps of the band structure,
the coherence lengths are similar. Above 0.1 THz the coherence lengths of
the superlattice with dSL = 6.11 nm is lower than the coherence length of the
other two superlattices. In this region, the dispersion relations show many
gaps due to Brillouin-zone folding, which makes it difficult to compare the
coherence lengths directly. Latour et al. [12] also found the coherence length
independent from the superlattice period.

Figure 4.9.: Comparison of the coherence length for the one-dimensional LJ-superlattices
with different superlattice periods dSL. The coherence length of phonons of the
same frequency does not depend on the superlattice period.

If the coherence length is independent of the superlattice period, it does
not mean that a phonon mode of frequency ν with the same coherence
length in all systems will show a ballistic transport behavior in all three
systems. If the coherence length is larger than the superlattice period, the
transport is considered to be ballistic/coherent. If the coherence length is
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smaller than the superlattice period, the phonons will scatter diffusively
at the interface, leading to an incoherent transport. (The coherence of the
phonons can also be limited by phonon scattering of the bulk constituents).
In Figure 4.10, the coherence length divided by the superlattice period is
plotted to indicate which modes are coherent and which are incoherent. For
the superlattice with the smallest period, the frequency range of coherent
phonons encompasses most of the spectrum.
As the values of the coherence length in this work are larger by a factor
of roughly 2.5 compared to the values reported in Ref. [12], a larger range
of modes is considered to be coherent than in the reference. The trend in
the coherence length is similar as in the reference; still the high deviation
in the quantitative values of the coherence length can not be explained. In
Ref. [12], an average over 20 independent simulations of the same system
was used to calculate the cross spectral density function, while in this work
only one simulation was used. For sure, the statistics is not as good as in
the reference, leading to a larger error in the estimated coherence length,
but it is not believed that this is the reason for the systematic offset.

In summary, the coherence length for the 1-D Lennard-Jones superlattices
were calculated by fitting an attenuated wave to the cross spectral density
function. The fitting works reasonably well for acoustic modes with long
wavelengths and is not as reliable for modes with higher frequencies. The
acoustic modes with lower frequencies show higher coherence lengths (Fig.
4.6). The coherence length was found to be largely independent of the
superlattice period (Fig. 4.9). To define weather the phonons are coherent or
not, the coherence length is compared to the superlattice period.
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Figure 4.10.: Coherence length divided by the superlattice period dSL for the one-
dimensional LJ-superlattices. If the ratio lc

dSL
is larger than one (marked by the

dashed line), the phonons are considered to be coherent. If the ratio is lower
than one, the phonon scatter diffusively at the interfaces, and their transport
is considered to be incoherent.

4.2. Three-dimensional Lennard Jones
superlattice

After having studied the phonon coherence of the one-dimensional Lennard-
Jones superlattices, a three-dimensional systems is investigated. As another
test system, superlattices consisting of crystalline Argon, at a temperature
of 40 K, are simulated. The superlattices are made of two different materials
with a face centered cubic (FCC) crystal structure. The atoms interact by
means of a LJ-potential (Eq. 3.1). All the atoms have the mass of Argon
mAr = 39.948 u. The first material M1 interacts with a Lennard Jones po-
tential with a depth twice that of Argon (εM1 = 2εAr = 0.476 kcal/mol).
The potential depth of the second material is 2.5 times deeper than the
depth of the first material. Atoms of the two different materials at the in-
terfaces interact with an average potential depth. The other parameter of

51



4. Results

the potential, defining the distance between the particles, is σ = 3.405 Å.
This system is suitable because there is no lattice mismatch at the interfaces,
which could hinder phonon coherence. This system was studied in Ref. [11],
but with smaller supercell-sizes. The system is simulated at a temperature
of 40 K. The time step of the simulation is set to ∆t = 1 fs. For all systems,
the equilibrium volume is calculated with an NPT simulation. The system
is equilibrated in an NVT run for 5× 105 steps (= 0.5 ns), and simulated
in the NVE ensemble for 106 steps (= 1 ns). The velocities were sampled in
the NVE ensemble every 80 steps, which, according to Eq. (3.3), leads to a
maximum frequency of νmax = 6.25 THz.

Superlattices with a period of dSL = 1, 2, 4, 8, 16 nm are created. For clarifica-
tion, the superlattice with 1 nm corresponds to a stacking of M1-M2-M1-M2

in z direction. The coherence length was calculated along the superlattice
period. Therefore, the supercells have a structure of 3× 3× N repeat units,
with the system periodic in z direction. N is chosen such that the number
of atoms in the super-cell is 72000 or close to it. The dimensions of the
simulated supercells are roughly 1.6× 1.6× 1050 nm.

4.2.1. Lattice Dynamics

Lattice dynamics calculations of the superlattices show the appearance of
band gaps due to Brillouin-zone folding. In Figure 4.11, the dispersion
relation in the superlattice direction is plotted (as a reduced zone scheme)
for some of the superlattices and the pure materials of which the super-
lattices consist. The highest allowed wave-vector for the pure materials is
kmax = π/a, where a is the lattice constant (of the cubic FCC unit cell). If
one considers the superlattice unit cell as the new unit cell of the system,
the lattice constant a gets larger with superlattice period and, thus, the maxi-
mum wave-vector becomes smaller. The branch of the 1 nm superlattice goes
to the middle of the figure, where it gets folded back and a gap appears.
The lattice parameter of the 2 nm superlattice is twice as large, and the
allowed wave-vector is half the size. The first branch of this superlattice gets
folded back at around 0.6 THz. The higher the superlattice period, the more
often the branch gets folded back, leading to more band gaps, which are as
well narrower. The dispersion relations of the superlattices are calculated
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4.2. Three-dimensional Lennard Jones superlattice

by viewing the superlattice as a new larger unit cell. As the unit cells have
more atoms, more branches appear in the dispersion relation.

Figure 4.11.: Phonon dispersion relation in the superlattice direction for the three-
dimensional Lennard Jones superlattices using LD. Only the longitudinal
branches are shown.

In Figure 4.12 the full dispersion relation for the superlattice unit cell of the
superlattice with period dSL = 1 nm. For completeness, the superlattice unit-
cell and the Brillouin-zone are shown in the Appendix A.5. The superlattice
direction is along Γ to Z. In Figure 4.11 the dispersion relation in the
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Figure 4.12.: Phonon dispersion relation of the superlattice with dSL = 1 nm. The superlat-
tice unit-cell and the Brillouin-zone are shown in the Appendix A.5.

superlattice direction is plotted, only for the longitudinal modes.
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4.2.2. DOS with Molecular Dynamics

The DOS of the superlattices is calculated from the velocities obtained during
the molecular dynamics simulations. Comparing the DOS of superlattices
with different superlattice periods already gives an insight into phonon
coherence in these systems. The DOS is also useful to interpret the results
for the coherence lengths.
In contrast to the one-dimensional system discussed before, the velocity of
one atom has three components in all three dimensions of the system, and
there are longitudinal and transverse vibrational modes in the system. The
total density of states in the three-dimensional system is the sum of the
DOS in all three dimensions. The density of states of velocities in z-direction
is calculated by calculating the velocity auto-correlation function of the
z-velocity component. In Figure 4.13 the DOS in z-direction from the MD
simulations is shown for all the superlattices. The DOS of the superlattices
with a period of 1 nm, 2 nm and 4 nm are clearly different from each other
(Figure 4.13). For higher superlattice period (8 nm and above), the DOS does
not depend on the superlattice period anymore. Their DOS resembles the
combined density of states of the pure materials M1 and M2. The change
in the DOS is a sign of the wave like nature of the phonons. The results
in Figure 4.13 suggest that wave interference occurs, and that phonons are
coherent in systems with a superlattice period of 4 nm and below.

The gaps due to the folding of the branches of the dispersion relation are
clearly seen in the low frequency part of the DOS (Figure 4.14). For example
a gap appears for the 2 nm-superlattice at 0.6 THz, which is also predicted
by the lattice dynamics calculation. The gaps of the superlattices with higher
period can also be seen. The folding does occur as well in the region with
higher frequencies, but as there is not a single (acoustic) branch, and the
DOS is smeared out over several branches, the appearing gaps due to the
Brillouin zone folding are not clearly visible in Figure 4.13.

The appearance of gaps in the DOS along the z-direction does not guarantee
that there will be a gap in the total density of states. The transverse acoustic
phonons have different group velocities to that of the longitudinal modes,
and gaps can appear at different frequencies. In Figure 4.15, the gaps of
the transverse and the longitudinal modes appear at different frequencies,
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Figure 4.13.: Vibrational density of states (DOS) in z-direction of the LJ superlattices for
different superlattice periods. In the lower plot, the combined DOS of the pure
materials M1 and M2 is plotted.

leading to a non zero DOS for the whole frequency range.
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Figure 4.14.: Acoustic region of the DOS for the LJ-superlattices. Due to Brillouin-zone
folding, phononic gaps appear in the bands.
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Figure 4.15.: DOS of the LJ-superlattice with dSL = 2 nm in the acoustic region. The gaps
due to Brillouin-zone folding appear at different frequencies for longitudinal
and transverse modes; the total DOS does not drop to zero for the whole
frequency range.
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4.2.3. Coherence length calculations

In the case of three-dimensional systems, the cross spectral density function
(Eq. 2.37) is calculated by treating the components of the velocity separately.
This results in a separate cross spectral density for each Cartesian direction.
The superlattice is extended in z-direction, and we calculate the coherence
of phonons along the z-direction. A longitudinal wave with propagation
direction along z deflects the atom in z-direction. Thus, the z velocity
component corresponds to longitudinal phonon modes in this direction,
while the components in x and y correspond to transverse phonon modes.
All the following results refer to the longitudinal phonon modes if not stated
otherwise, but similar results can be obtained for transverse modes.

To estimate the coherence length, the cross spectral density function needs to
be fitted to Eq. (2.40) like for the one-dimensional case. The fit has presented
some difficulties when doing the fit over the whole frequency spectrum.
Already in the acoustic region, there is a fast drop in the cross spectral
density function (see Figure 4.17). The first data point (i.e. at R = 0) is at 1,
because the data is normalized to it. The following data points are too low
to follow an exponential decaying trend including the data point at R = 0,
but follow an exponential trend with a lower amplitude. Fitting to this
exponential decay was not successful, as there is the amplitude A as a third
parameter to fit ( Acos(2πR/λ)exp(−R/lc) ). The first thought to explain
this abrupt drop is that there are two or more modes at the same frequency,
and that the cross spectral density function is the sum of two or more
attenuated waves. But looking at the phonon dispersion in Figure 4.16,b) for
wave-vectors pointing in z direction) at the frequency of 0.562 THz, there
is only one allowed longitudinal mode. There are two transverse modes
at this frequency, but the transverse modes are not leading to oscillations
in z-direction, and the cross spectral density here was calculated from the
velocities in z. Another explanation could be other modes with a wave
vector not in the direction of the superlattice. As the supercell is extended 3
unit-cells in x and y, there are few modes with wave vectors perpendicular
to the superlattice axis. This modes can lead to vibrations in z direction
and affect the velocities in z-direction. The propagation direction of these
perpendicular modes is not in the correlation direction, and they will not be
coherent in the correlation direction. Still they can contribute to the cross
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spectral density function and lower its value.

As the fitting procedure does not give satisfactory results for the coherence
length, another estimator of the coherence length is used like in Ref. [11].
The idea is to treat the cross spectral density function as a probability density
function. The probability density function C(ν, R) is constructed from the
absolute square of the real part of the cross spectral density function:

C(ν, R) = |Re(T(ν, R))|2. (4.2)

For a certain frequency ν0, the normalized cumulative distribution function
F(r, ν0) is calculated as:

F(r, ν0) =
∑ r

R=0 C(ν0, R)

∑Rmax
R=0 C(ν0, R)

(4.3)

The coherence length is then estimated as the distance lc = r, where the
cumulative distribution function equals F(r, ν0) = 95%. This means that up
to this length, 95 % of the correlated signal is taken into account. In Figure
4.18 a comparison between the two estimators for lc is shown assuming
an ideal behavior of the cross spectral density function like in Eq. 2.40.
The coherence length lc is extracted from |T(ν, R)|2 by a fitting procedure
(black dot in Fig. 2.40). The red dot marks the distance where the cumulative
distribution function equals 95%, which corresponds to the coherence length
lc,2. The ratio lc,2

lc
= 1.42 in this example. The two estimators deviate from each

other. The ratio between the two estimators depends on the wavelength of
the attenuated wave and resolution in R (defines how good the data-points
reproduce the attenuated wave). The ratio between lc and the maximum
R plays also a role. If the wave does not completely decay until Rmax, the
estimator lc,2 is adulterated. A rapid decay and a lot of noise in the (long) tail
of T(ν, R) can lead also to an overestimation of lc,2. As the fitting procedure
does not work, the cumulative distribution function is used to estimate the
coherence lengths.
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4.2. Three-dimensional Lennard Jones superlattice

Figure 4.16.: 2D-representation of the spectral energy density for the LJ-superlattice with
dSL = 1 nm. In practice it is given by the spatial Fourier transform of the
cross spectral density function (Eq. 2.41). The colors give the magnitude of
the spectral energy density, with dark blue being zero intensity and red being
high intensity. The wave vector, k, points in the direction of the superlattice
axis. Spectral densities a) from velocity components perpendicular to the
superlattice axis (transverse modes), and b) from the velocity components
along the superlattice axis (longitudinal modes). c) Total spectral energy
density, along with the bands calculated by a LD simulation (black lines). In
the spectral energy density appear more bands than from the LD simulation.
When calculating the spectral energy density, the spatial Fourier transform
was conducted as if the system was one-dimensional in the z direction, and
it was assumed that there are no contributions to the velocity from modes
with wave-vectors not pointing into the z direction. As they still are naturally
present in the simulation, there are more branches in the spectral energy
density than in the band structure from LD.
(For clarification only the values of T(ν, R) for which the distance R was part
of the superlattice Bravais-lattice was used to calculate the spatial Fourier
transform.)
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Figure 4.17.: The cross spectral density function T(ν, R) has a fast drop after the data point
at R = 0, leading to a non-exponential behavior. This results in a wrong fit to
equation (2.40). Example of T(ν, R) for the LJ-superlattice with dSL = 1 nm.

Figure 4.18.: The squared cross spectral density function |T(ν, R)|2 has the ideal behavior
of an attenuated wave (Eq. 2.40). The red curve is the cumulative distribution
function. The black dot marks coherence length from the cross spectral density
function, while the red dot marks the distance where the cumulative distribu-
tion function is 95%. This distance is the second estimator of the coherence
length.
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4.2.4. Results of coherence lengths

The results for the coherence length for the Lennard-Jones superlattices,
extracted with the above mentioned approach, are shown in Figure 4.19. All
five superlattices with different period show a high phonon coherence in the
acoustic region. As already mentioned, this is expected. Acoustic phonons
have a large wavelength, and thus a large spatial extension.

Figure 4.19.: Coherence lengths lc(ν) of the LJ-superlattices for different periods dSL. The
superlattices with lower period show a higher phonon coherence. (The data
of the coherence length was smoothed for better visibility.)

The coherence length for the acoustic phonons is larger than half of the
(periodic) simulation box. The plot is shaded in this region up to 0.75 THz,
because one cannot be confident in the numerical value. First because the
coherence length is limited by the supercell size. Second, because the long
wave-length phonon modes are not well described in a MD simulation.
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McGaughey and Kaviany stated in their review [51], that when phonons are
described as particles, it implies localization. The phonon modes in a crystal,
as a result of a plane wave Ansatz (see 2.1), are completely delocalized. A
localized wave can be formed as a wave-packet by superimposing modes
of similar wavelengths in the near vicinity of the desired phonon mode. To
construct a wave packet, the Brillouin-zone must be resolved high enough
(to have enough modes close to the desired mode), which requires a large
supercell. The wave-packets move around and scatter through various
scattering mechanisms, describing the phonons as a phonon gas. In order
for the phonon gas model to hold, some conditions need to be satisfied.
The extension l of the wave-packet is much greater than the wavelength
λ. In the phonon gas model the mean free path Λ should be larger than
the extension of the wave packet l, and Λ should be much smaller than the
extension of the crystal L to satisfy the condition for diffusive transport. The
lowest acoustic modes in the supercell have wavelengths in the range of the
simulation box and thus are not described properly by MD.

Above the untrusted region, the superlattices with the smallest period show
the highest coherence lengths, while superlattices with larger periods lower
phonon coherence. The 1 nm superlattice has coherence lengths up to 100 nm
for phonons with frequencies up to 1.5 THz. The superlattices with periods
8 and 16 nm show non negligible coherence lengths only for modes with
frequencies shortly above 1 THz. The superlattice with dSL = 2 nm, has a
large drop in the coherence length at 0.65 THz. The DOS of this superlattice
shows a large gap in this region (see Figure 4.14), resulting in no modes at
this frequency for the mentioned superlattice.
Latour et al [11] studied the same system but with shorter and thicker
supercells in the molecular dynamics simulations (2.5× 2.5 nm compared
to 1.6× 1.6 nm in this work). They report as well, that the superlattices
with lower period have higher coherence lengths. Their largest system
length was 160 nm, while the simulation cell of our system is around 1 µm.
They report that the coherence length does not depend on the number of
periods (simulation cell length) if the cell is larger than 80 nm, while in the
findings of this thesis the coherence length is not saturated for the already
large supercell. In the reference, the coherence length is not reported for
frequencies below ≈ 0.4 THz. There is no reason mentioned for it, but it is
probably due to the fact that the long wavelength modes are not described
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well with MD. The supercells in this work are larger and the Brillouin-
zone along the superlattice direction is sampled better, allowing to describe
modes better down to lower frequency, still the coherence length being
limited by the supercell dimension.

To define if the phonons will be transported ballistically or not, the co-
herence length is compared to the superlattice period. In Figure 4.20, the
coherence length over the superlattice period is plotted in a semi-logarithmic
plot. For the smallest superlattice period a large range of phonons are co-
herent, and for the systems with largest superlattice periods only acoustic
phonons can be classified as coherent. The coherence length of the super-
lattice with period dSL = 1 nm is larger than the superlattice period up to
3 THz, while for the superlattice with period 2 nm phonons are coherent up
to 2.3 THz. For the superlattices with period 8 nm and 16 nm only phonons
with frequencies up to 1.1 THz are coherent.

Figure 4.20.: Coherence length lc(ν) divided by the superlattice period dSL. If the ratio
is larger than 1, the phonon wave packet at this frequency have a spatial
extension larger than the superlattice period, and phonons at this frequency
will show ballistic transport.
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In summary, fitting an attenuated wave to the cross spectral density function
is not successful for the three-dimensional Lennard-Jones superlattices. The
coherence length for the three-dimensional system is calculated by treating
the cross spectral density function as a probability distribution function, and
estimating the coherence length as the distance, where 95% of the correlated
signal is taken into account. It is found that for modes with frequencies
below 0.75 THz, the coherence length is limited by the supercell size, which
is already 1 µm large. The superlattice with the lowest period (dSL = 1 nm
has the longest coherence lengths, while the coherence length gets lower
with larger period. This is in contrast to the one-dimensional system, where
it was found that the coherence length is mostly independent from the
superlattice period.
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4.3. Gallium nitride - Indium nitride superlattices

After having studied the microscopic picture of the phonon coherence on
two test systems, a more realistic system made of gallium nitride and
indium nitride is simulated. Gallium nitride is a widely used material in
the semiconductor industry. Gallium nitride (GaN) and indium nitride
(InN) show both a wurtzite crystal structure. As both materials have the
same crystal structure, coherent superlattices can be formed; at least in
a thought experiment, as the lattice mismatch between the materials can
introduce dislocations and defects, which destroys the coherent crystal.
InGaN heterostructures have applications in optoelectronics for example in
light emitting diodes [52].

Wurtzite GaN and InN have a lattice mismatch, as it can be seen in Table
3.1 and 3.2, the ratio between the lattice parameters is roughly 1.1 ( aInN

aGaN
=

1.103, cInN
cGaN

= 1.099). This leads to a high strain at the interfaces. The lattice
mismatch and the strain at the interfaces can reduce the phonon coherence.
However, the strain at the interfaces results in piezoelectric polarization [13],
which could be used in possible applications. The piezo-electricity could
be used for generating coherent phonons with a light pulse in multiple
quantum well (MQW) structures. If the superlattice making the MQW,
allows for coherent phonon transport, the coherent phonons can propagate
for a certain distance, providing a source for coherent phonons.
It is difficult to grow GaN/InN superlattices due to the different growth
temperatures and the high lattice mismatch. The critical thickness for growth
of InN on GaN is ≈ 2 monolayers [14], before misfit dislocations appear to
lower the stress.

The phonon band structures of GaN and InN can be seen in Figures 3.2 and
3.3, both materials have naturally occurring band gaps in the dispersion
relation. GaN is a semiconductor with a high phonon mean free path [53].
The phonon mean free paths (MFP) for GaN and InN were calculated by
combining lattice dynamics and molecular dynamics (see Figure A.4). GaN
has a MFP up to 1000 nm, while the MFPs of InN are below 10 nm. It is thus
expected that thick layers of InN will hinder the phonon coherence.

In the following sections, the results for simulations of GaN/InN super-
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lattices with periods of dSL = 1.06, 2.12, 6.36 and 10.6 nm are presented.
The simulated supercells have structures of 3× 2× N and 1× 1× N, with
the latter being the longer supercell. Simulations of structures with InN
monolayers in a GaN matrix are also discussed. The last type of structures
have been fabricated experimentally [15].

4.3.1. Simulation of superlattices with supercell structure
3× 2× N

Superlattices of GaN and InN for the simulations are grown along the
c-direction of the wurtzite crystal structure (see Section 2.7). The orthogonal
representation of the wurtzite unit cell with 8 atoms in its basis is used
for generating the supercell as input of the MD simulations. Symmetric
superlattices are simulated, which means that always the same number
of GaN cells are stacked on InN cells. Four different superlattices with a
stacking of 1− 1, 2− 2, 6− 6, 10− 10, which have a superlattice period of
dSL = 1.06, 2.12, 6.36 and 10.6 nm, are simulated. The supercells have a
structure of 3× 2× N unit cells. N is chosen such that the total number of
atoms in the systems are 24000, or close to it. The supercells have a size
of roughly 1.05× 1.21× 265 nm. Supercells of pure GaN and InN with the
same dimensions are also simulated. This calculations serve as reference for
the results obtained for the superlattices.
The temperature is set to 300 K, and the time step of the simulations is dt
= 1 fs. The cells are first relaxed for 0.2 ns in the NVT ensemble and then
simulated for 0.5 ns in the NVE. The velocities are sampled every ∆t = 10 fs,
leading to a maximum frequency of νmax = 50 THz (Eq. 3.3).

The lattice mismatch at the interface between GaN and InN raises the ques-
tion of what lattice parameter for the InN and GaN unit cells should be used
for the NVE simulations of the superlattices. The lengths of the simulation
box can be chosen to match the lattice parameters of GaN or InN. GaN is
widely used in semiconductor industry and GaN wafers are commercially
available. In an experiment, one would probably start from a GaN substrate,
and deposit then alternating layers of GaN and InN on it. This constrains
the lattice parameter of InN parallel to the interface to the ones of the GaN
substrate.
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In the NPT simulations, during which the equilibrium volume of the su-
perlattices is calculated, the a-lattice parameter of InN is fixed to GaN, and
just the c-lattice parameter in the z-direction is relaxed. Nonetheless, MD
simulations using this strategy, have reveled that constraining the a-lattice
parameter of InN to GaN, the system is not stable, and dislocations are
introduced to the system (using the force field potential from Ref. [38].
Using the a-lattice parameters of InN for both GaN and InN, no dislocations
are introduced, and the perfect crystal structure is preserved. Two figures of
the stability simulations can be found in the Appendix A.4. Therefore, the
equilibrium volume of the GaN/InN superlattices is calculated by stretch-
ing the GaN a-lattice parameter to that of InN. An NPT simulation of this
superlattice, allowing just relaxations in the z-direction (i.e. the c-lattice
parameter), were then performed to calculate the equilibrium volume at
300 K. The fact that the superlattice structures are not stable during the
simulation when using the lattice parameter of GaN might reflect that these
structures are not stable in reality. In fact, a study showed that during the
growth of InN on GaN, dislocations will be introduced after a thickness of
≈ 2 monolayers [14].

GaN and InN show phonon frequencies up to 25 THz and 30 THz (Figures
3.2, and 3.3. The superlattices have higher phonon frequencies up to 40 THz
(see DOS in Figure 4.21). The modes which show these high frequencies are
localized vibrations of the nitrogen atoms at the interfaces. Because of the
strain at the interfaces, high forces act on the nitrogen atoms, which leads
to rapid oscillations and high frequencies.

The density of states in z-direction, calculated from the velocities obtained
during the MD simulation, are displayed in Figure 4.21. Similar to the
Lennard-Jones superlattices, the DOS depends on the superlattice period
when the superlattice period is small. The DOSs of the superlattices with
period of 1 nm and 2 nm are different from those of the superlattices with a
period of 6 nm and 10 nm. These DOSs of the latter superlattices are very
similar among them, and look more like an average of the DOSs of both
materials the superlattices are made of.
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Figure 4.21.: Phonon density of states obtained from MD simulations for (a) GaN, InN
and (b,c) GaN-InN superlattices. These calculations were performed using a
3× 2× N supercell.

Calculation of the cross-correlations and coherence lengths

The Gan/InN superlattices are a stacking of unit cells that have different
lattice parameters along the superlattice direction. As InN has a larger unit
cell than GaN, the InN layer within the superlattice will be longer along
the z-direction than a layer of GaN with the same number of atoms. When
calculating the cross spectral density function, the correlations of the unit
cell at position R0 and the unit cell at position R0 + R are calculated. The
distance R between unit cells, which are n unit-cells apart, can have different
values in the same superlattice, because the unit cells have different lattice
parameters. For example two neighboring GaN unit cells are separated
by R = 5.2 nm, while two neighboring InN unit cells are separated by a
distance R = 5.7 nm. To have the cross spectral density still as a function of
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discrete, equidistant points in distance R, it is assumed that all the unit cells
are separated by integer multiples of the average lattice parameter in the
system, when calculating the cross spectral density function.

The calculation of the coherence length by fitting the cross spectral density
to equation (2.40) is difficult for the whole frequency spectrum. The same
problems discussed for the Lennard-Jones superlattice arise. There is a
strong drop in the cross spectral density after R = 0, the resolution in R
is limited by the lattice parameter, which leads to bad reproducibility of
the attenuated wave behavior when the wavelength is small, and if there
are two modes at the same frequency. One cannot separate them with our
approach.
The approach based on the cumulative distribution function of the cross
spectral density function is an alternative tool for calculating the coherence
length. It turns out, however, that using this approach, the quantitative
result of the coherence length depends strongly on several parameters. For
example, the choice to define the coherence length as the distance where
the cumulative distribution function (Eq. 4.3) equals 95 %. Although this
is a good estimator, it is still rather arbitrarily. It could be chosen to be any
other value below 95 %, which would result in lower coherence lengths (or
vice versa). In some cases, for instance, lowering the threshold from 95 to
93% leads to a reduction of the coherence length of 50% or more, although
the qualitative trends stay the same.

The cross spectral density function T(ν0, R) should decay to 0 after some
distance R for every frequency ν0 (e.g. Fig. 4.17). Nonetheless, our data
sometimes rises again for large R after falling to zero. Moreover, after falling
to zero, there is always small numerical noise for large R in the cross spectral
density function. If the function decays to 0 already for small R, the noise
in the long tail will have a non-negligible contribution to the cumulative
distribution function.

The DOS from molecular dynamics can be smoothed by smoothing the
VACF to zero after some time τ (Eq. 4.1, Figure 4.3). The spatial cross spec-
tral density is the Fourier transform of the cross-correlation functions. An
attempt to smooth the cross correlations in a similar way as the VACF, to
reduce the noise, was made. This would allow to overcome the aforemen-
tioned problems to extract the coherence length from these correlations.
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Before answering the question of how to possibly smooth the cross correla-
tions, it is important to have look at the cross-correlations. In Figure 4.22,
the calculated cross correlations of the atomic velocities for the example of
the GaN/InN 1− 1 superlattice are plotted as a two dimensional plot. The
color indicates the magnitude of the correlations. On the x-axis is the time
τ, and on the y-axis is the distance R. Every horizontal line at an arbitrary
R0 corresponds to the correlation for atoms separated by a distance R0
(The line at R0 = 0 corresponds to the VACF). Note that all the correlation
functions were normalized by the value of the VACF for τ = 0 and have
a range between −1 and 1. The cross-correlations for large distances and
times are considerably weaker than the auto-correlation function. The range
of the color-bar were set to low values to make the weak correlations visible.
Because of the low range of the color-bar, strong correlations (for example
VACF) are not displayed properly in the plot as their values mostly lie
outside of the color range.

The most striking feature in Figure 4.22 is the line starting out from point
(R = 0, τ = 0), moving with a constant ’speed’ towards higher distances
and times. This line corresponds to peaks in the correlation functions which
appear at the time τp = R/v. The ’velocity’ v is constant for a superlattice. It
coincides well with the group velocity of the low frequency acoustic modes,
where the dispersion is linear (compared to vg from LD calculations). This
peak appears due to wave-packets of low frequency acoustic modes, which
travel with the group velocity vg through the crystal. These modes have
a large MFP, a large coherence length, and travel a large distance without
losing the phase information. It was checked that this line is due to low fre-
quencies, by cutting out the low frequency part in the Fourier transform of
the correlations (which is the cross spectral density), and from that calculat-
ing the correlation functions again, which leads to a disappearing of the line.

For larger distances, the peak of the low frequency acoustic modes be-
comes weaker and broader which is a result of the attenuation of these
wave packets. As more and more phonons loose coherence, less modes
(i.e. frequencies) contribute to the peak. Therefore, the wave packet gets
broader.

The simulated supercell is around Lz = 265 nm long. The maximum dis-
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Figure 4.22.: Cross correlation functions of the velocities of atoms separated by a distance
R as a function of time τ. The data is obtained from an NVE simulation
of a GaN/InN 1-1 superlattice. The data is normalized by the value of the
VACF for τ = 0, and the color-bar is set to small values to make the small
correlations for larger distances visible. The simulation time was 500 ps, and
only correlations up to 50 ps are shown.

tance for which the correlations are calculated is half the simulation box size
Rmax = 132.5 nm. The box is periodic; therefore, wave-packets will travel
in both directions and can arrive again at the position of their origin after
some time. If two wave-packet start at some position x in the supercell, and
travel in opposite directions, the packet will arrive at the position x + 50 nm
after time τ = 50/v. The other packet will arrive at the same position, going
in the opposite direction, and passing through the periodic boundaries after
having traveled a distance of (Lz− 50 nm). The wave packet will take a time
τ = 215/v. In the example of Figure 4.22, a peak for R = 50 nm appears at
time τ1 ≈ 4 ps and at time τ2 ≈ 17 ps (because of the second packet moving
in opposite direction). Because the packets continue to travel further, they
arrive at the same place again after having crossed the whole simulation
box, and the peak appears again.
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Modes with a lower group velocity and a lower coherence length are the
source of the correlations at short distance and short times. They do not
have such a long MFP to show correlations for larger distances.
In the background of the plot of the correlations, there is noise and weak
lines, which are parallel to the line caused by the acoustic modes. As they
are weak, it is not possible to track their origin. A possible explanation of
this lines is that they are correlations of wave packets which have traveled
few times through the whole crystal.

Back to the question on how the smoothing of the cross correlation functions
should be done to give a smoother spatial cross correlation function. The
first idea would be to smooth all the correlations like the VACF (i.e. to
force them to go to 0 after some time τ), with the same time which gives a
smooth DOS (Approach A). This would result in correlations which looks
like Figure 4.23 a). Of course, this would leave out all the correlations after
the point in time at which the correlations have been smoothed to 0, and
there might still be some valuable information in this correlations. Another
approach is to smooth the correlations with a Gaussian centered at the peaks
in the correlations that are due to the coherent acoustic wave-packets [Figure
4.23b)] (Approach B). The third approach is to include all the signal up to
the time where the the fastest modes reach a distance half the simulation
box length, to avoid any self interactions (Figure 4.23c) (Approach C).

An example for the resulting cross spectral density function (for one fre-
quency ν0 = 0.6 THz) with the different approaches for smoothing the
correlation functions can be seen in in Figure 4.24. The different smoothing
approaches have different effects on the cross spectral density function.
Although these effects are different for different frequencies, a general trend
is observed. Smoothing correlations like for the VACF (approach A, Figure
4.23a) leads to a spectral density which decays faster than the original spec-
tral density. Smoothing with approach B (Figure 4.23b), leads to a spatial
cross spectral density which rises again after falling. With this approach,
the normalized cross spectral density (normalization is done by the value
at R = 0) can reach even values above unity for distances R 6= 0. It is
not expected that atoms, which are farther apart, are more correlated than
atoms with themselves. Smoothing the correlations using approach C, such
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Figure 4.23.: Correlation functions of the GaN/InN 1-1 superlattice. Three different ap-
proaches to smooth the correlations to calculate the cross spectral density
function, and to reduce the numerical noise are shown. In a) the correlations
are smoothed with a Gaussian, following the smoothing approach used for
the VACF (in order to obtain the DOS). In b) the correlations are smoothed
with a Gaussian centered at the peak coming from the acoustic modes. In the
last approach c), the correlations are smoothed starting from the time point,
where the acoustic modes have traveled half the simulation box.

that correlations arising from periodic self interactions are neglected (Fig-
ure 4.23c), leads to a spectral density that decays with a similar or lower
rate than the original one. The raw data often shows an abrupt drop after
R = 0 as can be seen in the black line in Figure 4.24. Smoothing with the
approaches A and C do not show the drop for this example (blue and
green curve). But for higher frequencies than ν = 0.6 THz, the drop appears
again.

To clarify the influence of the smoothing of the cross correlations on the
cross spectral density, the original cross spectral density, and the results
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Figure 4.24.: Spatial cross spectral density functions (for one frequency ν0) calculated from
the cross correlations, which have been smoothed in different ways which can
be seen in Figure 4.23

from the different smoothing approaches are shown in Figure 4.25 as a
2D-plot. It is seen clearly that only the low frequency modes show a high
coherence length. Only for modes below 3 THz the cross spectral density
is not almost zero. It also can be seen, that the spectral density obtained
with approach A is cut for large R. It falls close to 0 already at R = 40 nm.
The correlations in this approach have been smoothed out starting from
relatively low times τ. A wave which would stay coherent for a longer
distance is attenuated artificially by the smoothing, leading to vanishing
correlations at large distances (see Figure 4.23a).

In order to test the influence of the different smoothing approaches for
the cross-correlations on the coherence length, the cumulative distribution
function (Eq. 4.3) for the four different cross spectral density functions
reported in Figure 4.25 is calculated. The four different spectral densities
lead to different values for the coherence lengths as seen in Figure 4.26.
Using the raw data leads to an overestimation of the coherence length for
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Figure 4.25.: The cross spectral density function T(ν, R) in a two dimensional representa-
tion. The squared real part of T(ν, R) normalized by the value at R = 0 for
every frequency ν is plotted. Due to normalization, the values are bounded
between 0 (blue) and 1 (red). The simulation was for a GaN/InN 1-1 super-
lattice. The cross spectral density of the original data is shown in the upper
left (data). The other 3 plots (Approaches A-C) show cross spectral densities
calculated from differently smoothed correlation functions (see Figure 4.23).

the optical phonons, while all the other three estimators arrive to similar
results for this frequency regime. The approach of smoothing the cross
correlations like the VACF (Approach A), leads to a clear underestimation
of the coherence length for low frequencies, in comparison to the values
obtained with the other approaches or with the raw data. Approach C
results in a lower coherence length as approach B, but approach B is not
reliable, as it sometimes estimates larger correlations for different separated
atoms, compared to the auto-correlations. Approach C seems to be the most
reliable approach, as it does not cut the low-frequency regime as Approach
A and because Approach B is not reliable.

It is important to mention that the quantitative value of the coherence length,
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also depends strongly on the parameter σ in Eq. (4.1), when smoothing the
correlation functions. σ defines the width in time for the Gaussian function
used for the smoothing. Lowering sigma, will take less signal into account.
How strongly σ affects the quantitative values depends again on other
parameters and the approach.

Figure 4.26.: Coherence lengths lc as a function of frequency ν, for the GaN/InN 1-1
superlattice. The coherence length is calculated from four different cross
spectral densities (Figure 4.25) which have been calculated from differently
smoothed correlation functions.

Results of the coherence lengths

Based on the discussion above, the coherence length for the GaN/InN su-
perlattices is extracted by smoothing the correlations following approach
C (i.e. avoiding periodic self interaction). As expected, the superlattices
with lower period show a higher phonon coherence (Figures 4.27 and 4.28).
The superlattices with a period larger than 1 nm show significant phonon
coherence only in the acoustic region (below 3 THz). The superlattice with
a period of 1 nm has large coherence length for phonon frequencies up to
3.5 THz. Indeed, the coherence length is limited by the supercell size for
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almost the whole region up to 3 THz, and exceeds 100 nm. Above this fre-
quency the coherence length drops below 25 nm. For the other superlattices
the coherence length is limited only up to about 1 THz by the supercell size.
In Figs. 4.27 and 4.28), the areas where the value of the coherence length is
not trusted is shaded in gray; either because the coherence length is limited
by the supercell size ( Lz

2 = 133 nm ) or because long wavelength modes with
very low frequencies are not represented well in an MD simulation. For the
superlattices with period dSL =6 nm and 10 nm the values are trusted above
ν = 1 THz, for dSL =2 nm above 1.5 THz, and for dSL =1 nm above 3.2 THz
(marked in light gray).

Figure 4.27.: Coherence lengths lc of the GaN-InN superlattices as a function of the fre-
quency ν. (Longitudinal modes). The gray areas mark the region, where the
value of the coherence length is not trusted. For the upper plot the light gray
area belongs to dSL = 1 nm and the dark gray area to dSL = 2 nm.

In the dSL = 1 nm superlattice the modes are acoustic up to larger fre-
quencies than in the superlattices with higher period length. This can be
seen in the plot of the DOS (Figure 4.21b). The first peak in the DOS
of the dSL = 1 nm-superlattice appears at higher frequency than for the
other superlattices. The first peak in the DOS is located where the acoustic
branches start to bend at the Brillouin-zone boundaries. For the dSL = 1 nm-
superlattice the DOS starts to rise sharply at 3.4 THz, while for dSL = 2 nm
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at 3.1 THz. For the superlattices with dSL = 6 nm and 10 nm the DOS rises
at 2.9 THz. Only the superlattice with the smallest period shows a phonon
coherence length of few nm for frequencies above the natural band-gap of
GaN and InN (located at 10 THz to 17.5 THz for GaN and 7.5 THz to 14 THz
for InN.)

As one our main goals is to predict structures that guarantee coherent
transport of phonons, it is important to have a closer look at the coherence
of the low frequency phonons. These phonons show the highest coherence,
and could possibly be excited by optical means. The coherence length of the
low frequencies are shown in higher resolution in Figure 4.28. The coherence
lengths drops shortly above 2 THz for dSL = 2 nm, twice between 1 THz
and 2 THz for dSL = 6 nm. For dSL = 10 nm it is hard to distinguish any
drop. These drops appear due to gaps in the DOS, which have origin in
the Brillouin-zone folding. The coherence length for the superlattice with
1 nm period drops sharply after ≈ 3 THz. At this point the region with only
acoustic modes ends.

Figure 4.28.: Coherence lengths lc of the GaN-InN superlattices as a function of the fre-
quency ν only for frequencies up to 5 THz. (Longitudinal modes). The gray
areas mark the region, where the value of the coherence length is not trusted.
For the upper plot the light gray area belongs to dSL = 1 nm and the dark
gray area to dSL = 2 nm.
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The coherence length of the superlattice with 1 nm period has some small
oscillations below 2 THz. Due to periodic boundaries, only discrete wave-
vectors,~k, are allowed in the system, and thus the frequencies are discrete
as well. In the acoustic region, the dispersion relation follows (up to the
frequency where the band bends) an almost linear behavior ν = vG~k (see
for example Figure 2.2). In an MD simulation, the allowed wave-vectors
are discrete due to the periodic boundary conditions. The number of the
equidistant wave-vector points is determined by the size of the supercell.
Due to the relatively large slope of the acoustic branch, the allowed (discrete)
frequencies belonging to the discrete wave-vectors have relatively large
separations. If the resolution in frequency is high enough (long time series,
Eq. 3.4), the discrete frequencies can be resolved in this region. In Figure 4.29

the unsmoothed DOS (a) and the coherence length (b) for the superlattice
with dSL = 1 nm is shown for a small range of frequencies in the acoustic
regime. In a) it can be clearly seen that peaks appear at allowed frequencies,
while in between the DOS is zero. Thus, when there are allowed modes, the
coherence lengths reaches the maximum value (limited by the supercell size),
and falls when the DOS is zero. It is noted that the modes with frequencies
close to zero are not described well in the MD simulation, because they have
wave-lengths comparable to the supercell size.

81



4. Results

Figure 4.29.: DOS (a) and coherence length (b) of the GaN/InN 1− 1 superlattice for a small
range in the acoustic region. Due to periodic boundary conditions the allowed
wave vectors and frequencies are discrete. If the resolution in frequency is
high enough, the discrete frequencies are resolved in the DOS.

4.3.2. Supercells of structure 1× 1× N

The coherence length for the GaN/InN superlattices calculated for supercells
of 3× 2× 1 structure is limited by the supercell size in the acoustic regime.
Because these modes are the ones which show the highest coherence lengths,
one wants to get a value of the coherence length which is not affected by
the system size. To do this, longer supercells are simulated, which also
allows to describe long wavelength modes better. Longer supercells with
higher number of unit cells also lead to less spacing between the discrete
wave-vectors, and thus less spacing between the discrete phonon mode
frequencies.
To limit the computational demand of the MD simulations, superlattices of
structure 1× 1×N unit cells are considered. The supercells have dimensions
of roughly 0.35 x 0.6 x 1600 nm and have 24000 atoms. The dimensions in x
and y are very small, and the behavior of the superlattice in the x-y direction
is described poorly. Especially as the periodic images of the atoms in x-y
direction are within the potentials cut-off distance of the atoms themselves.
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Nonetheless, such structures were simulated, as an increase to a 2× 2× N
supercell would result four times computationally more expensive.
The number of allowed values for the wave vectors in x and y direction
is limited to one (i.e. Γ point) because only one unit cell in this directions
is considered. Phonons propagate only in the superlattice direction, and
can not scatter with phonons that are not traveling in this direction (as
there are none). This limits the phonon-phonon scattering, because there
are less phonons to interact with. It might lead to a longer MFP of the
phonons. Although the number of wave-vectors in x and y is one, (were
small also for the 3 × 2 × N supercells), the phonons scattering at the
interfaces, or the coherent transport along the superlattice length can be
reasonably well described. Superlattices with the same period length used
in the previous chapter are used for the 1× 1× N supercell structure. All
the other parameters of the simulation are equal.

DOS and cross spectral density function

The DOS obtained from MD calculations is shown in Figure 4.30. The period
length dependence of the DOS is in agreement with the results obtained for
the 3× 2× N supercells. The DOS of the superlattices with periods 6 nm
and 10 nm is very similar, while for lower periods there is a dependence on
the period length.

The cross spectral density function of the 1× 1× N supercells does not
show a sudden drop at R = 0, as it was for the 3× 2× N supercell, in the
range of low frequencies (see example in Figure 4.31). There is only one
allowed value (~k = 0) for the wave-vector in x-y direction for the 1× 1× N
superlattice. So only modes with wave-vector in the superlattice direction
contribute to the atoms velocities in z-direction (and modes at the center of
the Brillouin-zone, i.e. Γ-point). In the 3× 2×N superlattice, the modes with
wave-vectors that are not along the superlattice direction are not coherent,
but contribute to the cross spectral density function. The absence of these
modes in the 1× 1×N superlattice can be seen as well in the corresponding
energy spectral density (Figure 4.32). The 1× 1× N superlattice shows less
branches. The additional branches in the spectral energy density of the
3× 2× N superlattice come from modes with wave-vectors that are not
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Figure 4.30.: DOS calculated from the VACF (z-component along the superlattice direction)
for the superlattices with structure 1× 1× N unit cells.

parallel to the correlation direction. The absence of the fast drop in the cross
spectral density function allows to extract the coherence length by fitting it
to equation (2.40); at least in the low frequency part, which will be discussed
later.
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Figure 4.31.: Cross spectral density function for GaN/InN superlattices, obtained for differ-
ent supercells. The drop in the function is absent for the 1× 1× N supercell.

Figure 4.32.: Comparison of spectral energy densities of the z-velocity component for the
GaN-InN superlattice. The wave-vector ~k points in the superlattice direc-
tion. The 3× 2× N superlattice (a) shows more branches than the 1× 1× N
superlattice (b).
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4.3.3. Results of coherence lengths

The coherence length for the GaN/InN superlattices is calculated by treating
the cross spectral density function like a probability distribution function,
and considering the coherence length as the distance where 95% of the
correlated signal is account for. The correlation functions are smoothed
to avoid any periodic self interactions (Approach C, Sec. 4.3.1). From the
smoothed function the cross spectral density is calculated. In Figure 4.33,
the coherence lengths are plotted for frequencies up to 27 THz, while in
Figure 4.34 for frequencies up to 10 THz (i.e. zooming the low frequency
range). The low frequency range is now better described (compared to the
3× 2× N supercell simulations). The coherence lengths are not limited by
the supercell size and the values are trusted down to 1 THz. The coherence
lengths reach up to 250 nm, suggesting that these phonon modes will be
coherent. In agreement with the results for the 3× 2× N supercell, acoustic
modes show a higher coherence length, and only the superlattice with the
smallest period (1 nm) shows a significant coherence length in the non
acoustic region.
For comparison, supercells of pure GaN and InN were simulated and treated
as if they were superlattices. GaN shows the largest phonon coherence length
for all the simulated systems, while InN (with a phonon MFP by orders
of magnitude smaller than GaN) in comparison seems to have a very low
phonon coherence. InN is limiting the phonon coherence in the superlattices
and already the superlattice with a period of dSL = 6 nm has the coherence
length going to zero at the same frequency as the InN.
When comparing the coherence length for GaN and InN one needs to keep
in mind that acoustic phonons of InN have a lower frequency. The modes
of GaN at 5 THz are acoustic while the modes of InN at this frequency are
optical. It is noted again here that the quantitative value of the coherence
length does depend on the parameters for calculating the coherence length,
but the qualitative trends hold. For completeness the coherence lengths of
the transverse modes are shown in appendix A.6.1, which show a similar
behavior.

As discussed before, the cross spectral density function does not show a
fast drop after the first value (R=0). Therefore, although still with a large
uncertainty, fitting the cross spectral density to an attenuated wave (equation
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Figure 4.33.: Coherence length of the longitudinal modes for GaN/InN superlattices, ob-
tained from MD simulations of 1× 1× N supercells. For comparison, the
’coherence length’ of GaN and InN supercells are plotted as well.

2.40) is more promising. A fit is done for all superlattices. A similar trend in
the coherence length, as the one calculated from the cumulative distribution
function, can be seen in Figure 4.35. The coherence length calculated by the
fitting predicts a lower value, and a faster decrease with frequency. Phonons
with low values of coherence lengths (< 1 nm) are not coherent and the
coherence length does not have a physical meaning then. The regime of
validity of the coherence lengths goes from approximately 1 THz to the end
of the acoustic branch.
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Figure 4.34.: Coherence length of the longitudinal modes of GaN-InN superlattices from
the MD simulations of the 1× 1× N structured supercells for frequencies up
to 8 THz. For comparison, the ’coherence length’ of GaN and InN supercells
are plotted as well. The InN seems to limit the phonon coherence of the super-
lattices and the coherence length of superlattices witch have layer thicknesses
of InN a few nm falls to zero at the same frequency as for pure InN.
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Figure 4.35.: Coherence lengths of the GaN/InN superlattices calculated from fitting an
attenuated wave (equation 2.40) to the cross spectral density. The fitting
procedure works best for low frequencies but has a large uncertainty.
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Summary

The coherence length for GaN/InN superlattices with periods of 1, 2, 6 and
10 nm was calculated. The coherence lengths are estimated by the length,
where the cumulative distribution function of the spectral density function
takes into account 95% of the signal. The spectral density functions were
smoothed before, to avoid periodic self interactions.
The 1 nm superlattice is the only superlattice, which shows non-negligible
coherence length outside the acoustic region of the phonon spectrum. All
the superlattices show high coherence length in the acoustic region, where
the coherence length decreases with phonon frequency. Superlattices with
lower superlattice period tend to have longer coherence lengths. For the
supercells with structure 3× 2× N, it was limited by the supercell size.
Therefore, longer supercells are simulated, which also allow to resolve the
low acoustic phones better. The superlattices show coherence lengths of
250 nm in the acoustic region.

4.3.4. Monolayers of InN in a GaN matrix

Until now we have presented superlattices of GaN/InN with layers of
whole unit cells of GaN and InN, which to our knowledge have not yet
been fabricated. Structures with a single monolayer of InN in a GaN matrix
have been, however, fabricated [15]. Thus, the phonon coherence length of
different structures with a monolayer of InN in a GaN matrix are simulated.
The supercells are constructed using the superlattice unit cells shown in
Figure 4.36. The monolayer is defined as a layer of GaN or InN, as depicted
by the black squares in the figure. Structures with a InN monolayer every
4, 5 and 11 GaN-monolayers are simulated (ML 4-1, ML 5-1, ML 11-1).
Moreover, a structure with alternating layers of GaN and InN (ML 1-1) is
simulated for comparison. The layers are grown along the z-direction of
the wurtzite unit cell. When the number of GaN layer is even, subsequent
monolayers of InN will be shifted towards each other in the x-y plane. For
example, for the case of ML 4-1 (Figure 4.36), one layer of InN (A) is shifted
compared to the next layer of InN (B). The superlattice unit-cell (the smallest
repeated unit) of the ML 4-1 is, therefore, larger than for ML 5-1. 1× 1× N
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supercells have again been considered, with a total number of 24000 atoms.
For the monolayer structures, the cell relaxation was allowed in all directions
during the NPT simulations, i.e. we have not fix the lattice parameters in x
and y to the corresponding lattice parameters of InN (as done before).

Figure 4.36.: Unit cells used to construct the supercells of monolayers formed by InN in a
GaN matrix. The unit cells are stacked in the z direction.

The DOS of the ML structures (in z-direction) is very similar to the DOS
of the pure GaN (Figure 4.37 ), which is expected as the major part of the
material is made of GaN, separated by InN monolayers. The GaN DOS, in
the range of frequencies between 7 to 10 THz, can be identified in the DOS
of all monolayer supercells (except for the ML 1-1). Also, the high frequency
part of the DOS of the monolayers, above 19 THz, is similar to that of GaN.
The DOS of the monolayers, nonetheless, show more individual peaks and
gaps in the low frequency part (4.38). The monolayer introduces a new
symmetry to the crystal, which leads to Brillouin-zone folding and, hence,
to the creation of band gaps. A high peak appears at 5.3 THz in all ML
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structures, which is not present in GaN and InN. These modes are localized
oscillations of In atoms in the monolayers. The DOS of the ML 1-1 does not
follow the DOS of InN and GaN. Indeed, these DOS are not comparable
between them. The ML 1-1 is rather a new material with another unit cell
than a wurtzite structure. A lattice dynamics simulations reveled frequency
bands from 20 to 60 THz for this material, leading to a low DOS for a large
range.

Figure 4.37.: DOS in z-direction of the ML-structures.

The coherence lengths are calculated by using the cumulative distribution
function (4.3). The ML structures show a high coherence length (Figure 4.39)
for frequencies below the large band gap. The ML 5-1 and ML 4-1 have even
higher coherence lengths than GaN for frequencies until 3 THz. The values
of the coherence lengths of the ML structures are trusted above 2.5 THz as
for lower frequencies the coherence length approaches half the simulation
box size.
Overall, the coherence length is high except in the phononic band gaps
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Figure 4.38.: DOS in z-direction of the ML-structures. The InN monolayer introduces a
new lateral symmetry to the crystal which leads to Brillouin-folding and the
appearance of gaps in the DOS.

(Figure 4.40) where there are no allowed modes (compare to the DOS in
Figure 4.38). The ML 1-1 structure seems to have a large phonon coherence
length for all its modes. The monolayer of InN in the GaN matrix does not
lower the phonon coherence in the ML structures as it does for thicker layers
of InN. The monolayer structures show a large phonon coherence length
for the longitudinal modes even in the optical modes above the large band
gap. In comparison, the transverse optical modes above the band gap do
not show a high coherence length (see coherence length for the transverse
modes in the appendix A.6.2).
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Figure 4.39.: Coherence length of longitudinal modes of the monolayer structures. All the
ML structures show high coherence lengths in the acoustic region (below
10 THz) and above the large band gap.

Figure 4.40.: The coherence length in the acoustic regions of the ML structures is high
except for the frequencies where the DOS shows a gap. No allowed modes
are at the gaps, and the coherence length is zero.
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4.3.5. Summary of the results

A program to calculate phonon coherence lengths from molecular dynamics
trajectories was developed and tested for a one-dimensional system and a
three-dimensional FCC superlattice. For the one-dimensional superlattices,
the coherence length was extracted by fitting the cross spectral density
function to an attenuated wave. It was found that the frequency dependent
coherence length is independent of the superlattice period for the acoustic
modes. This is in agreement with previously reported data by Latour and
coworker [12]. The quantitative values for the coherence length are, however,
2.5 times higher than the one reported by Latour and coworkers [12].

The fitting of the cross spectral density function to the attenuated wave
turned out to be unreliable in a large frequency range for the FCC super-
lattices, and all other three-dimensional systems. Therefore, the coherence
length was extracted by treating the cross spectral density function as a
probability density function, calculating the cumulative distribution func-
tion from it, and defining the coherence length as the length for which the
cumulative distribution function equals 95%.
The FCC-superlattices with the lowest superlattice period show the highest
phonon coherence lengths. The DOS of the superlattices shows the appear-
ance of additional band gaps due to Brillouin-zone folding, as with the
superlattice period a new transnational symmetry is introduced to the crys-
tal. The coherence length of the low frequency, acoustic phonons is high (up
to 400 nm), and limited by the supercell size of the MD simulation.

The DOSs of the GaN/InN superlattices show as well additional gaps due
to Brillouin-zone folding. The DOSs of superlattices with periods 1 and
2 nm depends on the superlattice period (fingerprint of phonon coherence),
while the DOSs of larger periods ( 6 and 10 nm) are not affected. It was
found that the extraction of the coherence length does depend strongly on
several parameters when calculating the coherence length. The quantitative
values have a large uncertainty, while trends in the coherence length are
mostly independent from the parameters. For the GaN/InN superlattices,
mostly only the acoustic modes show a non-negligible coherence length.
The superlattice with the smallest superlattice period shows the highest
phonon coherence lengths, with coherence lengths of few hundred nm. It is
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the only GaN/InN superlattice, which shows some coherence length above
the band gap.

Structures made of monolayers of InN in a GaN matrix were also simulated
to study phonon coherence. The DOS of this structures is close to that
of GaN, with band gaps appearing due to the additional symmetry. The
coherence length of the monolayer structures is close to the coherence
length of GaN. The acoustic phonons show the highest coherence lengths,
but optical modes at high frequencies also show a non-zero coherence length.
As the InN-monolayer structures show a high phonon coherence length and
because they have been fabricated experimentally [15], they are the most
promising candidates out of the systems studied in this thesis for showing
high phonon coherence.
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Outlook

The coherence of phonons can alter the phonon properties; therefore it
is interesting to find materials which show coherent phonon transport.
Superlattices are periodic crystals of alternating layers of two or more
materials and are promising candidates to show high phonon coherence.
Because the fabrication of superlattices in the laboratory are often expensive,
simulations are used to find possible structures which show high phonon
coherence. MD simulations are used to investigate the coherence of phonons
in superlattices and to calculate the coherence lengths. The correlations of
the atoms velocities in the superlattice are observed throughout the MD
simulations, and the coherence lengths are calculated with a methodology
adapted from literature [11, 12]. Two test-systems are first investigated,
before studying the coherence in GaN/InN superlattices.

As a first test system, one-dimensional superlattices, which interact by means
of a Lennard-Jones potential, are simulated for three superlattice periods
(1.53, 6.11 and 24.5 nm). The coherence length is estimated by fitting an
attenuated wave to the cross spectral density function. Low frequency modes
have the higher coherence length. Acoustic modes have low frequencies
and show the highest phonon coherence lengths. In the one-dimensional
case, it is found that for a given frequency the coherence length does not
depend on the superlattice period. To define whether the phonons are
transported coherently through the superlattice or not, the coherence length
is compared to the superlattice period. As the different superlattices have
different periods, the frequency range in which the phonon transport is
coherent, is larger for superlattice with lower period-length (see Figure 4.10).
In Ref. [12], the same one-dimensional systems are studied. In this work the
coherence lengths are found to be a factor of roughly 2.5 higher. The origin
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of this deviation could not be tracked, and could possibly be a constant
factor in the formal definition of the coherence length.

The second test system was an FCC-superlattice interacting with a Lennard-
Jones potential. Five different superlattice periods are simulated (1, 2, 4,
8,16 nm). Compared to the one-dimensional system, it was more difficult
to extract the coherence length from the calculated cross spectral density
function. As fitting an attenuated wave to the cross spectral density function
was not successful, the coherence length is estimated as the length, where
95% of the total correlated signal is taken into account. The coherence length
of the acoustic phonon modes is high and goes up to a few 100 nm (Figure
4.19). Indeed, in the large part of the acoustic region, the coherence is limited
by the supercell size. The coherence length decreases with increasing phonon
frequency, but contrary to the one-dimensional system, the coherence length
depends on the superlattice period. Superlattices with lower superlattice
period show higher phonon coherence.

As a real system, GaN/InN superlattices are investigated as well as struc-
tures with monolayers of InN in a GaN matrix. The latter have been fabri-
cated experimentally [15]. The extraction of the coherence length is done like
for the FCC-superlattices, but the numerical values depend on the parame-
ters of the calculation. Different attempts are made to reduce the noise in
the cross spectral density function. For the GaN/InN systems the coherence
length is calculated by leaving out any signal from periodic self-interactions.
Large coherence lengths are found for the acoustic modes in all studied sys-
tems. Four different superlattices with periods 1.06, 2.12, 6.36 and 10.6 nm
are simulated. The superlattice with the lowest period show the highest
phonon coherence length. Because the coherence length in the acoustic
region was limited by the supercell size (Figure 4.27), larger supercells are
simulated (coherence lengths in Figure 4.33). Again the superlattices with
lower periods show longer phonon coherence lengths. up to 250 nm for
frequencies up to a few THz.
The monolayer structures (with 4, 5 and 11 monolayers of GaN between
1 monolayer of InN) show as well large coherence lengths in the acoustic
region (Figure 4.39), up to 300 nm. There is no big difference in coherence
length between the different monolayer-structures.
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The most promising candidates for structures with high phonon coherence
lengths are the monolayer structures. They show high phonon coherence
lengths. Monolayers of InN can be grown on GaN [15], while thicker lay-
ers of InN on GaN (for superlattices) are likely not stable without misfit
dislocations [14].

Discussion

The quantitative values of the coherence length often depend on several
parameters of their calculation. The trends generally hold when varying
a parameter, but the quantitative values change. Often, especially in the
acoustic region, the values are limited by the supercell size. Sometimes
only in a small frequency region the values of the coherence lengths can
be trusted. For low frequencies, the supercell size is the limiting factor. For
high frequencies the coherence lengths are low and difficult to extract. If
the coherence lengths are lower than than the typical structure size, it is not
interesting for nano-engineering.

In the following, considerations about the method used in this thesis, and
possible improvements are discussed.
The method is based on the statistical fluctuations of the atomic velocities
around their equilibrium positions. Several independent simulations of
the same system should be done for better statistics. This lowers the noise
in the data and improves the reliability of the coherence length. Only
one independent run was done for each superlattice in this thesis, while
for example in Ref. [11] an average over 10 independent simulations was
made for the FCC-superlattices. An average over more simulations should
be done for all simulations. Of course, this means a significantly higher
computational demand.

The coherence length of acoustic modes are often longer than half of the
supercell size, and are limited by it. These modes are the most interesting
because they show a high coherence length. To better resolve these coherence
lengths, a careful analysis of the dependence on the supercell size needs
to be done. By systematically varying the length of the simulation box,
one can understand the dependence of the coherence length on it. For a
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given frequency (or regime) of interest, the simulation cell size should be
increased until the coherence length does not depend anymore on it. This, of
course, is computationally demanding as the simulation boxes can become
very large.

MD simulations with a few ten thousands of atoms , as well as their post-
processing, are computationally expensive. The time-step of the MD simu-
lation cannot be made larger, as this would give erroneous trajectories of
the atoms. But the computational demand of the post-processing could be
lowered by using a longer sampling step ∆t. The sampling step defines the
maximum frequency νmax = 1

2∆t . This can be chosen so that the relevant
frequencies (i.e. those of interest) are still captured.

The methodology used in this thesis, allows to calculate the coherence
lengths frequency dependent. But it is not possible to distinguish different
modes which have the same or similar frequency. Often the calculation
of the coherence length is difficult, as the cross spectral density function
follows an unexpected behavior, and does not follow an attenuated wave.
This might be a consequence of two or more modes at the same frequency.
In this case, the resulting cross spectral density is the sum of two or more
attenuated waves, which makes the fitting difficult.
A possible way to distinguish two modes with the same frequency is to
calculate the energy spectral density. This is done by mapping the MD
velocities into the mode eigenvectors of the system. These latter have to be
calculated beforehand by using LD. As the eigenvectors [54] (and frequen-
cies) are temperature dependent, thermal expansion should be considered
for the LD calculations.

The MD simulations are run with periodic boundary conditions. The struc-
ture of the supercells defines the allowed phonon wave-vectors. The more
often a unit cell is replicated in one direction for the simulation box, the more
allowed wave vectors are in this direction. When calculating the coherence
lengths, the supercells are extended many unit cells along the superlattice
direction but just one to few in the perpendicular directions. This limits the
allowed values of the wave-vector in the perpendicular directions to a few
values, and in the case of an extension of one, to the Γ point.
The interaction and scattering of the modes in the superlattice direction
with modes that are not in the superlattice direction is limited. This may
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have a potential influence on the coherence length.
Longitudinal and transverse modes with wave-vectors not in the superlattice
direction have a contribution to the atomic velocities during the simulations.
Only modes with wave-vectors in the superlattice direction will be coherent,
because they sense the superlattice periodicity. With the methodology used
in this thesis, it is not possible to separate the ’coherent’ contributions to the
velocities from modes in the superlattice direction and the ’non-coherent’
contributions from other modes. By calculating the correlations from the
velocities, and from that the coherence length, the ’non-coherent’ part can
lower the coherence length.

The best resolution in frequency that can be achieved for the DOS and
the cross spectral density function is defined by the total simulation time
νR = 1

tsim
. When the resolution in frequency is smaller than the separation of

the allowed modes in a system, the individual modes can be distinguished
in the DOS. This requires that the modes have sharp frequencies and are
not spread out so that they overlap with neighbouring modes. For example,
as can be seen in the example in Figure 4.29, the discrete modes in the
acoustic region can be distinguished in the DOS. One could just calculate the
coherence lengths for the phonon frequencies, which have been previously
identified with LD. This approach would not work for a non-dispersive
optical band, as the frequencies would overlap.

Due to the periodic boundary conditions, a coherent wave packet can
cross the simulation box several times and stays coherent for this long,
if the simulation time is long enough. In Figure 4.22, the correlations of
a superlattice is shown as a function of time and distance in a 2D plot,
suggesting that the acoustic modes stay coherent for a long time. It might be
possible to follow the ’path’ of this signal to learn for how long it will stay
coherent. However, it is not clear how the wave-packets traveling several
times through the simulation box affect the cross spectral density function
and, hence, the coherence length. To avoid that a wave packet crosses the
simulation box several times during the simulation, one can lower the
simulation time or make the simulation size larger so that the modes do not
have enough time to cross the whole simulation box more than once.

Another aspect to keep in mind is the resolution in distance of the cross
spectral density function. The resolution is limited by the length of the
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superlattice unit cell, because only after this length, the same atoms (with the
same physical surrounding) appear again. A superlattice with a large period
has a poor resolution in distance. Thus, in this thesis the single materials
unit cell is taken as the repeat unit for calculating the cross spectral density
function, instead of the superlattice unit cell for higher resolution. For the
GaN/InN systems, the materials unit cell was used as the repeat unit. GaN
and InN have different lattice parameters; strictly speaking, the superlattice-
unit cell is the repeat unit with translational symmetry. In future, it should
be investigated, if this describes the cross spectral density function correctly.
Also if the resolution corresponding to the superlattice period is already
enough. The superlattice unit cell-resolution, might be enough to detect
coherence lengths in the order of the superlattice period. Smaller coherence
lengths are not of interest, as phonon transport is classified as coherent only
if the coherence length exceeds the superlattice period.

Last but not least, it is important to comment about the reliability of the
force field potential. The potential [38] used to simulate the GaN/InN
superlattices does not reproduce the phonon properties of GaN and InN
very well. The phonon dispersion relation deviates from DFT data already
at the Γ point. While the thermal conductivity of GaN simulated with the
potential comes close to reference data from the literature, the thermal
conductivity for InN is underestimated by an order of magnitude compared
to literature. This suggests that the potential does not properly describe
the phonons of InN. The validity of the calculated values for the coherence
length depends as well on the capability of the force field to describe the
phonons correctly.

Outlook

When one is confident with the simulations and the validity of the coherence
length one obtains, further analysis of the coherence lengths is possible, like
temperature and pressure dependence and the influence of defects. The
methodology can as well be easily adapted to study a different superlattice,
if a force-field potential is available. Higher temperature increases the
scattering rates and reduces phonon coherence. In an experiment, it is
difficult to create perfect structures with no defects. Defects and impurities
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in the crystal are disturbing the perfect crystal structure and inter-facial
mixing of the materials can occur. The influence of imperfections on the
coherence lengths needs to be studied as well as the dependence on the
defect-concentration.
Wave-packet dynamics can be done to verify if the wave-packets stays
coherent or will decay over time.
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Appendix A.

A.1. Wiener-Khinchin- theorem and cross
correlation theorem

In this section the Wiener-Khinchin theorem [55] and the cross correlation
theorem are presented. The cross correlation theorem is a generalization of
the Wiener Khinchin theorem and is widely used in this work to calculate
correlation functions efficiently. The Wiener-Khinchin theorem states that
the auto-correlation function of a wide-sense stationary random process and
the power spectrum of the signal are Fourier-transform pairs. A signal E(t)
is wide-sense stationary, when its mean value and auto-correlation function
are time invariant. As the system is in equilibrium, and does not change
over time, wide-sense stationary is fulfilled for the velocities. As the atoms
vibrate around the equilibrium position, the mean of the velocity will be
zero (otherwise the system will show a constant drift). Moreover, the VACF
is just dependent on the time difference τ = t2 − t1. Thus, the conditions
for using this theorem are fulfilled for our system.

Let E(t) be a wide-sense stationary random process. The Fourier transform
of E(t) is defined by:

E(t) =
∫

Eωe−itωdω. (A.1)

The auto-correlation function of E(t) is C(τ):

C(τ) =
∫

E∗(t)E(t + τ)dt. (A.2)
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The asterisk ∗ denotes the complex conjugate. Inserting equation (A.1) in
the auto-correlation function (A.2) results in the following expression:

C(τ) =
∫ [∫

E∗ωeitωdω

] [∫
Eω′e−i(t+τ)ω′dω′

]
dt = (A.3)

=
∫ ∫ ∫

E∗ωEω′eit(ω−ω′)e−iτω′dωdω′dt (A.4)

Using the identity ∫
dteit(ω−ω′) = δ(ω−ω′), (A.5)

one can simplify:

C(τ) =
∫

E∗ωEωe−iτωdω =
∫
|Eω|2e−iτωdω. (A.6)

The right-hand side is the Fourier transform of the power spectrum of the
signal E(ω). The auto-correlation function can be expressed, then, as the
Fourier transform (FT[]) of the power spectrum:

C(τ) = FTω

[
|Eω|2(τ)

]
(A.7)

The Wiener-Khinchin theorem is a generalization of the cross-correlation
theorem. Similarly, one can calculate the cross-correlation using the cross-
correlation theorem: Let x(t) and y(t) be two wide-sense stationary random
processes. The Fourier-transforms of x(t) and y(t) are:

x(t) =
∫

x(ω)e−iωtdω (A.8)

y(t) =
∫

y(ω)e−iωtdω (A.9)

The cross correlation function 〈x, y〉 of x(t) and y(t) is:

〈x, y〉(τ) =
∫

x∗(t)y(t + τ)dt (A.10)

Setting equations (A.8) and (A.9) into (A.10)

〈x, y〉(τ) =
∫ [∫

x∗(ω)eitωd f
∫

y(ω′)e−iω′(t+τ)dω′
]

(A.11)

=
∫ ∫ ∫

x∗(ω)y(ω′)eit(ω−ω′)e−iτω′dtdωdω′ (A.12)
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Using the identity (A.5) one obtains:

〈x, y〉(τ) =
∫ ∫

x∗(ω)y(ω′)e−iω′τδ(ω−ω′)dωdω′ =
∫

x∗(ω)y(ω)e−iωtdω

(A.13)
The right hand side of this equation is the Fourier transform of the mul-

tiplication of the Fourier transformed signals, which is equal to the cross
correlation function of those signals.

We use these theorems in order to efficiently calculate the cross-spectral
density function (Eq. 2.37). Fast-Fourier-Transform (FFT) is a very fast
method to calculate Fourier transforms of discrete signals. It is faster (often
more than by one order of magnitude) to calculate the cross- and auto-
correlation functions using this theorems. First, calculating the Fourier
transforms of the velocities v(ω), and then from that the power-spectra
(|v(ω)|2) or cross-spectral densities (v∗i (ω)vj(ω)). For the investigation of
the coherence length only the cross spectral density functions (Eq. 2.37)
are needed. The FFTs towards the cross- and auto-correlations are not
needed, although the calculations are faster if one wants to analyze also the
correlation functions. As some of the systems have a few 10000 atoms, many
correlation functions need to be calculated. Hence, the theorems presented
here provide a significant speed up of the post-processing step of the MD
simulations.

A.2. Elastic constants

The elastic constants are physical properties that a force-field-potential
should reproduce. Table A.1 lists the elastic constants (using Voigt notation)
at room temperature calculated with the modified Stillinger-Weber potential.
As it can be seen, the values are in reasonably good agreement with the
reference data [56, 57]
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Table A.1.: Elastic constants of GaN and InN calculated from MD (1) using the modified
Stillinger-Weber potential compared to literature values.
GaN (1) GaN [56] InN (1) InN [57]

C11 427 390 269 190

C22 427 390 269 190

C12 80 145 106 104

C13 88 106 70 121

C33 394 398 173 182

C44 180 104 43 10

A.3. Thermal conductivity of GaN and InN with
the modified Stillinger-Weber potential

The Stillinger-Weber force field potential[38], used to simulate superlattices
of GaN/In, was parametrized without considering the phonon proprieties.
As already remarked, the potential does not perfectly reproduce the ab-initio
phonon data (Figure 3.2 and Figure 3.3).

To estimate the impact of the potential limitations to describe phonon
related properties, the thermal conductivity of GaN and InN was calculated
by two methods: Non-equilibrium molecular dynamics (NEMD) and a
combination of lattice dynamics and molecular dynamics (normal mode
decomposition).

A.3.1. Non equilibrium molecular dynamics

The calculation of the thermal conductivity, κ, with NEMD is based on the
Fourier-law of heat conduction (A.14). In general, the thermal conductivity
is a tensor καβ:

καβ = − Jα

dT/dxβ
, (A.14)

where Jα is the heat flux in the direction α and dT/dxβ the temperature
gradient in the direction β.
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A.3. Thermal conductivity of GaN and InN with the modified Stillinger-Weber
potential

In the MD-simulation cell, two areas are defined as the hot and cold regions,
where two temperatures are imposed by thermostats. Heat will flow from
the warm to the cold bath and a temperature gradient is build up in the not
thermostatted region between the hot and the cold bath. The temperature
profile, T(x), as a function of distance, x, is calculated from the kinetic
energies of the atoms at position x and the heat current can be calculated
from the amount of energy the thermostat needs to add/remove from the
hot/cold region.
The finite size L of the simulation cell has influence on the thermal conduc-
tivity. The hot and cold regions are boundaries for the phonons, limiting
their phonon mean free path. The inverse of the thermal conductivity κL is
a linear function of the system size, and the thermal conductivity of infinite
size κ∞ can be calculated from following equation [58]:

1
κL

=
1

κ∞
+

K
L

(A.15)

Therefore, several different simulation box sizes have to be simulated to
calculate the thermal conductivity. Usually at least three different sizes are
simulated, to see if the linear behavior in equation (A.15) is reached. For
GaN and InN several different simulation box sizes have been simulated, as
it became clear that the first simulation boxes were to small. An example of
the temperature profile in the simulation box for GaN is shown in Figure
A.1. The temperature profile is calculated by averaging the temperature
of a slab of atoms over the simulation time. The temperature gradient is
calculated by a simple linear fit.

For GaN simulation cells with lengths L = 3.7, 5.6, 7.4, 11.1, 14.9, 23.3, 46.5,
93.1 and 186.1 Å are simulated and for InN cells with lengths 4.1, 6.1, 8.2,
12.3, 16.4, 25.6, 51.2 and 102.3 Å. As one can see in Figure A.2 and Figure
A.3 the linear trend of equation (A.15) is not followed. The smallest cells
are to small and strongly cut the phonon MFP. For GaN only the values of
the two largest cells are used to calculate κ∞ by a linear regression, while
for InN the values of the three largest values are used. For GaN a thermal
conductivity of κ = 211 W m−1 K−1 is calculated and for InN a small value
of κ == 6.3 W m−1 K−1.
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Figure A.1.: Temperature profile in a NEMD calculation of GaN. The temperature gradient
is calculated by a fit to the temperature profile. Together with the heat flux
calculated from the energy added/removed in the hot and cold regions, the
thermal conductivity can be calculated using Fourier’s law (Eq. A.14).

Figure A.2.: Inverse of the thermal conductivity κ as a function of the inverse simulation box
length L from NEMD simulations for GaN. Most of the simulation boxes are
too small and limit largely the phonon MFP. Only the values of the two largest
simulation boxes are taken into account to calculate the thermal conductivity
of GaN: κ∞ = 211 W m−1 K−1
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potential

Figure A.3.: Inverse of the thermal conductivity κ as a function of the inverse simulation box
length L from NEMD simulations for InN. Only the values of the three largest
simulation boxes are taken into account to calculate the thermal conductivity
of InN: κ∞ = 6.3 W m−1 K−1

A.3.2. Normal mode decomposition: LD and MD

The Boltzmann Transport equation under the relaxation time approximation
leads to following formula for the thermal conductivity (A.16).

κ = ∑
k

∑
p

cph(k, p)v2
g(k, p)τ(k, p) (A.16)

The sum goes over all wave-vectors k and branches p of the phonon disper-
sion. The group velocity vg is calculated from lattice dynamics. cph is the
volumetric phonon specific heat and is a quantum mechanical expression:

cph =
kBx2

V
ex

(ex − 1)2 (A.17)
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Table A.2.: Thermal conductivity of GaN. All the values are in W m−1 K−1

NEMD LD and MD BTE [60] [53] [61] [62] [63]
κa - 207 235 363 335 160− 220 230
κc 211 232 208 409 316

x(k, p) is the energy of the mode with frequency ω(k, p), divided by the
thermal energy kBT: x = h̄ω/kBT. kB is the Boltzmann constant, h̄ the re-
duced Plank constant. The phonon lifetimes τ(k, p) are calculated by normal
mode decomposition using the Dynaphopy package. Dynaphopy calculates
the line widths Γ(k, p) of the modes from a normal mode decomposition.
The lifetimes are the inverse of the line widths : τ = 1

2Γ . The thermal con-
ductivity of GaN and InN is anisotropic. For GaN κa = 207 W m−1 K−1

and κc = 232 W m−1 K−1 is obtained at 300 K. κc is comparable to the value
obtained from NEMD simulations. Using the Boltzmann Transport solver
ShengBTE [59] with ab initio input from a database [60], thermal conduc-
tivity of κa = 235 W m−1 K−1 and κc = 208 W m−1 K−1 is calculated. The
values are comparable but the reference has a lower thermal conductivity
in c-direction than in a-direction. Other theoretical studies show a higher
thermal conductivity up to 400 W m−1 K, while experimental studies re-
port thermal conductivity in the range of 160 W m−1 K to 230 W m−1 K. The
values are presented in table A.2.

For InN thermal conductivities of κa = 5.2 W m−1 K−1 and κc = 10.1 W m−1 K−1

are calculated (with LD and MD). The thermal conductivity in c-direction
is higher than the result of the NEMD simulations (6.3 W m−1 K−1). Values
for the thermal conductivity of InN in literature are rare but all predict
a significantly higher thermal conductivity. An early study [64] reported
an experimental value of 45 W m−1 K−1 and predicted for an ideal lattice
κ = 176 W m−1 K−1. An experimental study [65] reported a thermal conduc-
tivity of 120 W m−1 K−1, while a study [42] from first principles reports a
thermal conductivity of κa = 130 W m−1 K−1 and κb = 145 W m−1 K−1.

From the NEMD and the normal mode decomposition simulations similar
results for the thermal conductivities for the same system are calculated. The
results for the thermal conductivity of GaN are comparable to literature al-
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A.3. Thermal conductivity of GaN and InN with the modified Stillinger-Weber
potential

though other theoretical studies report a higher thermal conductivity. Using
the modified Stillinger Weber potential [38], the thermal conductivity of InN
results in a low value for both methods. The Stillinger-Weber potential [38]
underestimates the thermal conductivity of InN by an order of magnitude
compared to values from literature.

A.3.3. Phonon mean free path

From the lifetimes τ of the phonon modes and the group velocities vg the
phonon mean free path Λ is calculated by Λ = τvg. In Figure A.4 the
phonon mean free path spectra of GaN and InN are shown. It can be seen
that with the Stillinger-Weber potential [38] significantly higher mean free
paths are predicted for GaN than for InN. For InN only few phonon modes
have mean free paths above 101 nm, while many modes of GaN have a mean
free path lying between 102 nm and 103 nm. The mean free paths of GaN
are predicted about an order of magnitude larger than for InN.
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Figure A.4.: Phonon mean free path spectra of GaN (left) and InN (right) calculated using
the Stillinger-Weber potential [38].

A.4. Stability of GaN/InN superlattices with the
modified Stillinger Weber potential

In a short investigation, before the start of the thesis, the stability of the
superlattices of GaN/InN was tested with the Stillinger-Weber potential
from literature [38]. Here the results are shortly presented to motivate the
constriction of the a-lattice parameter of GaN/InN superlattices to InN
when doing MD simulations. When fixing the a-lattice parameter to GaN,
the coherent crystal structure becomes disordered while relaxing the c-
parameter as can be seen in Figure A.5. When fixing the a-parameter to
InN the crystal structure is preserved (Figure A.6). When an average lattice
parameter was chosen, the structure was stable as well. Still the lattice
parameter of InN was used for the simulations.
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A.4. Stability of GaN/InN superlattices with the modified Stillinger Weber
potential

Figure A.5.: Disordered superlattice after relaxation of the structure in superlattice direction,
while keeping the lattice parameter perpendicular to the superlattice direction
fixed to GaN.

Figure A.6.: Crystal structure is stable, when keeping lattice parameter perpendicular to
the superlattice direction fixed to InN.
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A.5. Unit cell and Brillouin-zone of the
LJ-superlattice

The unit cell of the Lennard-Jones superlattice with period dSL = 1 nm is
shown in Figure A.7, which was used to calculate the phonon dispersion
relation (Figure 4.12). The Brillouin zone is shown in figure A.8. This figure
was obtained with the online-tool of SeeK-path [66, 67]. The superlattice
direction is along Γ to Z.

Figure A.7.: Unit cell of the LJ-superlattice with period dSL = 1 nm.
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A.6. Coherence length of the transverse modes

Figure A.8.: Brillouin zone of the unit cell of Figure A.7.This figure was obtained with the
online-tool of SeeK-path [66, 67].

A.6. Coherence length of the transverse modes

In the main part, the coherence lengths of the longitudinal modes are pre-
sented. Here the coherence lengths of the transverse modes of the GaN/InN
systems are presented (for supercells with structures 1× 1× N).

A.6.1. GaN/InN superlattices

The coherence length of the transverse modes for the GaN/InN superlattices
are plotted in Figure A.10 (vx) and Figure A.10 (vy). The two transverse
directions are different as the velocity vx is parallel to the A1 lattice vector
(Eq. 2.43) and vy is perpendicular to A1. The wurtzite crystal looks different
in the two directions.

The transverse modes show a similar behavior in the coherence length. The
superlattice with the smallest superlattice period has the highest coher-
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ence length. The superlattices with period of 6 nm and 10 nm have similar
coherence lengths than the InN.

Figure A.9.: Coherence length of the transverse modes (vx) of GaN-InN superlattices from
the MD simulations of the 1x1xN structured supercells. For comparison the
coherence length of GaN and InN supercells are plotted as well.
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A.6. Coherence length of the transverse modes

Figure A.10.: Coherence length of the transverse modes (vy) of GaN-InN superlattices from
the MD simulations of the 1x1xN structured supercells. For comparison the
coherence length of GaN and InN supercells are plotted as well.

A.6.2. InN monolayers in GaN matrix

The coherence lengths for the transverse modes of the structures with a
monolayer of InN in a GaN matrix is plotted in Figure A.11 (vx) and Figure
A.12 (vy). All the simulated monolayer structures show a large coherence
length in the acoustic region. The transverse optical modes above the band
gap are not coherent, in contrast to the longitudinal modes in this region
(compare Figure 4.39 ).
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Figure A.11.: Coherence length of transverse modes (vx) modes of the monolayer structures.
All the ML structures show high coherence lengths in the acoustic region
(below 10 THz).
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A.6. Coherence length of the transverse modes

Figure A.12.: Coherence length of longitudinal modes (vy) of the monolayer structures. All
the ML structures show high coherence lengths in the acoustic region (below
10 THz).
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Appendix B.

B.1. Python code for post-processing

In this Appendix, the python code for the post-processing of the MD
simulations is presented. The script scsdf calculation.py calculates the
cross spectral density function, while scsdf analysis.py is used to calculate
the coherence length from the cross spectral density function and to do
further analysis. The modules functions latour.py, functions cells.py

and functions postprocess.py contain functions which are used by the
two scripts.

scsdf calculation.py

Script for post-processing the MD simulations. Calculates the spatial cross
correlation function from the velocities of the MD simulations:

127



#!/usr/bin/env	python3
#	-*-	coding:	utf-8	-*-
"""
-------------------------------------------------------------------------------
description:
Script	for	calculating	the	spatial	cross	spectral	density	(T(w,R))	as	definded
in	the	of	Latour		et	al.	(10.1103/PhysRevB.95.214310)

-------------------------------------------------------------------------------

required	modules	and/or	scripts:
functions_latour.py
functions_cells.py

-------------------------------------------------------------------------------
"""

import	numpy	as	np
import	matplotlib.pyplot	as	plt
import	functions_latour	as	fl
import	functions_cells	as	cl
import	time
import	os
import	sys

directory	=	'/path/to/simulation/'

'''	READING	THE	PARAMETERS	OF	THE	SIMULATION	from	the	parameter	file	'''
N_configs,md,simulation_step,n_species,teq,T,ensemble_length	=	\
				fl.read_parameter(directory+'param_file')
				
N_ensembles	=	int((N_configs-teq)/ensemble_length)	#Number	of	ensembles

#Reading	infromtation	of	the	initial	positions	from	start.dump	file
dump	=	open(directory+'start.dump','r')
for	i	in	range(3):
				dump.readline()	#	Skip	hte	first	three	lines
N_atoms	=	int(dump.readline())				
placeholder	=	dump.readline()
#Reading	simulation	box	sizes
words	=	dump.readline().split()
sizex	=	float(words[1])-float(words[0])#	Size	of	the	simulaiton	box
words	=	dump.readline().split()
sizey	=	float(words[1])-float(words[0])
words	=	dump.readline().split()
sizez	=	float(words[1])-float(words[0])
placeholder	=	dump.readline()

#Reading	the	masses	of	the	atoms
mass_of_each_atom	=	np.zeros([N_atoms])
for	i	in	range(N_atoms):
				words	=	dump.readline().split()			
				mass_of_each_atom[i]	=	float(words[1])
dump.close()
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'''
Reading	the	unitcell	of	the	material	in	the	simulation
file	in	xsf	format	with	FRACTIONAL	coordinates	-->	repeated_unitcell
Example	of	a	unitcell:	
				-	a	cubic	fcc	for	Argon
				-	an	orthorhombic	representation	of	the	wurtzite	structure	wiht	8	atoms	for	
						the	InN/GaN	system
'''	

cell_filename	=	directory+'repeated_unitcell'
#lenght	in	x,y,z,
l_unitvec_a,l_unitvec_b,l_unitvec_c,Nc,atoms_frac	=		\
				cl.load_unit_cell(cell_filename)

#Position	of	the	atoms	of	the	unit	cell	in	cartesian	coordinates	
atoms	=	atoms_frac*np.array([l_unitvec_a,l_unitvec_b,l_unitvec_c])

#	How	often	the	unit	cell	is	replicated	in	each	direction.	Either	with	Lammps	
#	or	with	atomsk.	
N_cellsx	=	int(np.round(sizex/l_unitvec_a))
N_cellsy	=	int(np.round(sizey/l_unitvec_b))
N_cellsz	=	int(np.round(sizez/l_unitvec_c))

N_cells	=	N_cellsx*N_cellsy*N_cellsz
N_atoms	=	Nc*N_cells	#total	number	of	atoms	in	the	simulation

print('Resolution	in	distanc	for	the	cohernce	length:	%6.4f	Angstrom'%l_unitvec_c)

'''Creating	dictionaries	for	the	skeleton'''
cell_dict,string_cells_dict,points_on_skeleton	=	\
				cl.create_dictionaries_skeleton(N_cellsx,N_cellsy,N_cellsz\
								,Nc,l_unitvec_a,l_unitvec_b,l_unitvec_c,atoms)
																					
#%%

'''
In	LAMMPS	each	atom	has	a	specific	atom-id	(some	integer	number	from	1	to	N)
When	dumping	the	velocites,	the	velocities	are	ordered	according	to	the	atom	
ids.

Now	we	need	to	find	out	to	which	cell	(cells	are	labeled	in	cell_dict)	an	atom	
with	an	atom-id	belongs.	We	know	that	a	cell	has	some	lattice-points,	
whos	coordinates	are	well	defined.	

So	we	compare	the	coordinates	of	the	atom	with	atom-id	in	LAMMPS	to	the	
coordinates	of	the	lattice	points	to	find	out	to	
WHICH	LATTICE-POINT	the	atom	with	the	LAMMPS-atom-id	belongs.	

'''

#	Read	the	first	configuration	from	the	dump	output	'start.dump'
#	to	assign	each	atom	to	a	position
config1	=	open(directory+'start.dump','r')
for	i	in	range(9):	#skip	some	lines
				config1.readline()
				
#In	the	following	array	the	positions	of	the	starting	configuration	of	the	
#	atoms	in	Lammps	are	stored.	The	position	of	the	atom	with	id	K	will	be	
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#	stored	in	the	Kth	row	
positions_in_lammps	=	np.zeros([N_atoms,3])
for	K	in	range(N_atoms):
				words	=	config1.readline().split()
				positions_in_lammps[K,:]	=	\
								np.array([float(words[2]),float(words[3]),float(words[4])])
				
				
#	Now	we	will	identify	which	atom	sits	in	which	lattice-point,	by	sorting
				#	If	done	brute	force	in	will	be	1/2*N_atoms^2	operations.	
				
#If	the	Sorting	has	already	been	done	once	before,	no	need	to	redo	it	as	
#	it	takes	some	time.	Load	the	result	of	prevoius	run.
if	os.path.isfile(directory+'in_pos_sits_atom.npy'):
				print('Sorting	of	atoms	to	the	skeleton	has	already	been	done.')
				print('Loading	in_pos_sits_atom.npy')
				in_point_sits_atomid	=	np.load(directory+'in_pos_sits_atom.npy')
				
else:	#if	not	done	already,	sort!
				in_point_sits_atomid,dummy	=	\
								cl.order_atomid_on_skeleton(points_on_skeleton,positions_in_lammps)
				
				if	dummy	==	False:
								np.save(directory+'in_pos_sits_atom.npy_F',in_point_sits_atomid)
								sys.exit()
				else:
								np.save(directory+'in_pos_sits_atom.npy',in_point_sits_atomid)					
								
#	in	point_sits_atom_id:
#	'lattice'	point	|	atom_id
#								1											2
#								2											4
#								3											xy

#With	the	gained	knowledge	where	each	atom,	with	the	LAMMPS	atom-id	k,	sits	on	the
#	skeleton,	we	can	now	rewrite	the	the	cell	dictionary	to	contain	the	
#	LAMMPS	atom	IDs	and	no	longer	the	'lattice-'-point	ids

cell_dict_LAMMPS_ids	=	{}
for	key	in	cell_dict.keys():
				cell_dict_LAMMPS_ids[key]	=	in_point_sits_atomid[cell_dict[key],1]
				

#%%
'''Reading	the	velocites	from	the	LAMMPS	simulation	and	storing	them	in	an	
array:	velocities'''

useall	=	'xyz'	#	Which	velocity	components	to	load	and	use
velocity_list	=	fl.get_velocities(N_atoms,teq,N_configs,\
																																		ensemble_length,N_ensembles,directory,useall)

velocities	=	(velocity_list[0])
np.save(directory+'velocities.npy',velocities)

#%%

#Define	of	which	velocity	components	you	want	to	calculate	the	cohrenece.
#Save	it	in	a	list.	0	=	vx,	1	=	vy,	2	=	vz
#[0,2]	means	thus	correlation	between	vx	and	vz
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ABs	=	[[0,0],[1,1],[2,2]]
ABs.sort()
ab	=	(len(ABs),)
#	Printing	some	output	that	one	understands	what	correlations	are	calculated
fl.print_correlation_pairs(ABs)

#	FOR	FFT	of	VELOCITIES
pad	=	1		#How	much	the	velocites	get	padded.	Not	more	than	two.	And	not	less	than	1!

#Calculate	the	discrete	fruequencies,	at	which	the	time	Fourier	transform	of
#	the	velocites	will	be	calculated	with	numpy.fft
try:
				n_fourier	=	velocities.shape[1]*pad	#Lenght	of	the	input	for	the	FFT
except:
				n_fourier	=	ensemble_length*pad
omega_val	=	(np.fft.rfftfreq(n_fourier)/(md*simulation_step))
n_omegas	=	len(omega_val)		#	Number	of	frequency	points	up	to	omega	max
#%%

NORM	=	'ortho'	#	Values	divided	by	square	root	of	number	of	points	of	the	FFT
NORM	=	None

#Calculating	the	discrete	Fouriertransform	of	the	velocities
def	caluculateFFTofvel():
				fft_velocities	=		np.complex64(np.zeros([N_atoms,n_omegas,ab[0]]))
				for	i	in	range(N_atoms):
								vel	=	velocities[i,:,:]
								for	component	in	range(ab[0]):
													fft_velocities[i,:,component]	=	\
													np.fft.rfft(vel[:,component],n_fourier,norm	=	NORM)[:n_omegas]	
fft_velocities	=	caluculateFFTofvel()

#%%
"""Calculating	the	spatial	cross	spectral	density	function	T(w,R)!

It	is	done	seperately	for	Argon	and	GaN/InN	systems,	as	for	GaN/InN	systems,
the	correlations	for	N	and	Ga/In	atoms	are	calculated	seperately.	This	was	done
to	understand	things	better.	
"""

"""	FOR	ARGON	SYSTEM	ONLY"""
if	'ArgonSL'	in	directory:
				print('Argon	SL')
				if	ab[0]	==	1:	#chooses	right	components	even	if	only	one	pair	is	wanted
								ABs	=	[[0,0],[1,1],[2,2]]
				t0	=	time.time()
				
				#Doing	the	spatial	cross	correlation	to	get	T(w,R)
				#Periodic	boundary	conditions	are	applied	to	the	simulation.	Therefore:
				max_distance	=	int(N_cellsz-1)/2
				
				#Doing	it	first	for	all	the	strings	seperately	and	then	summing	it	up
				T_R	=	np.complex128(np.zeros([int(max_distance+1),n_omegas,ab[0]]))
				
				for	dist	in	range(int(max_distance+1)):	#looping	over	all	distances	R		
								too	=	time.time()

4



								T_dist	=	np.complex128(np.zeros([n_omegas,ab[0]]))
								
								for	i	in	range(N_cellsz):	#looping	over	all	origins	R0s						
											#forwards
												r0_1	=	i		#	The	cell	at	the	origin	r0_i	(origins	numbered	by	i)
												r0_2	=	i	+	dist	
												if	r0_2	>	N_cellsz-1:		#	Due	to	periodic	boundary	conditions
																r0_2	-=	N_cellsz	#	Number	of	second	plane											
																
																
												W_r1_r2	=	np.complex128(np.zeros([n_omegas,ab[0]]))
												
												#	Going	over	all	strings	of	atoms
												for	string_cells_key	in	string_cells_dict.keys():		
																#	Getting	the	cells	in	the	current	string
																cell_ids	=	string_cells_dict[string_cells_key]	
																
																atoms1	=	cell_dict_LAMMPS_ids[cell_ids[r0_1]]
																atoms2	=	cell_dict_LAMMPS_ids[cell_ids[r0_2]]
															
																#Looping	over	the	corresponfing	atom	pairs	which	have	to	
																#be	correlated
																for	a1,a2	in	zip(atoms1,atoms2):	
																				fft_v1	=	fft_velocities[a1,:,:]
																				fft_v2	=	fft_velocities[a2,:,:]
																				mass_factor	=	np.sqrt(mass_of_each_atom[a1]*\
																																										mass_of_each_atom[a2])
																				
																				for	[alpha,beta],pair_index	in	zip(ABs,range(ab[0])):																													
																								W_r1_r2[:,pair_index]	+=	np.conjugate(fft_v1[:,alpha])\
																								*fft_v2[:,beta]*mass_factor/2
										
												T_dist	+=	W_r1_r2	
								
								T_R[dist,:,:]	=	T_dist
								if	dist==0:
												print('Expected	duration	=	%5.2f	min'%((time.time()-too)/60*int\
																																																			(max_distance+1)))
				
				print(time.time()-t0)
				
				#Dividing	by	number	of	summations
				T_R/=len(string_cells_dict.keys())#*Nc*N_cellsz	#==	/N_atoms
				
				#Saving	the	calculated	spatial	cross	spectral	density	function
				np.save(directory+'T_R.npy',T_R)

#############################################################################
#############################################################################
#############################################################################
				"""	For	GaN	InN"""
elif	'SL-GaN-InN'	in	directory:
				print('GaN-InN')
				
				if	ab[0]	==	1:	#chooses	right	components	even	if	only	one	pair	is	wanted
								ABs	=	[[0,0],[1,1],[2,2]]
				
				t0	=	time.time()
				#Periodic	boundary	conditions	are	applied	to	the	simulation.	Therefore:
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				max_distance	=	int(N_cellsz-1)/2
				
				T_GaIn	=	np.complex128(np.zeros([int(max_distance+1),n_omegas,ab[0]]))
				T_N				=	np.complex128(np.zeros([int(max_distance+1),n_omegas,ab[0]]))
				mGaIn	=	np.array([69.723,114.818])
											
				for	dist	in	range(int(max_distance+1)):	#looping	over	all	distances	R
							
								too	=	time.time()
								
								for	i	in	range(N_cellsz):	#looping	over	all	origins	R0s						
												r0_1	=	i		#	The	cell	at	the	origin	r0_i	(origins	numbered	by	i)
												r0_2	=	i	+	dist	
												if	r0_2	>	N_cellsz-1:		#	Due	to	periodic	boundary	conditions
																r0_2	-=	N_cellsz	#	Number	of	second	plane											
											
												W_r1_r2	=	np.complex128(np.zeros([n_omegas,ab[0]]))
												
												#	Going	over	all	strings	of	atoms
												for	string_cells_key	in	string_cells_dict.keys():		
																#	Getting	the	cells	in	the	current	string:
																cell_ids	=	string_cells_dict[string_cells_key]	
																
																atoms1	=	cell_dict_LAMMPS_ids[cell_ids[r0_1]]
																atoms2	=	cell_dict_LAMMPS_ids[cell_ids[r0_2]]
																
																#Looping	over	the	corresponfing	atom	pairs	which	have	to	be	
																#correlated
																for	a1,a2	in	zip(atoms1,atoms2):	
																				fft_v1	=	fft_velocities[a1,:,:]
																				fft_v2	=	fft_velocities[a2,:,:]
																				m1	=	mass_of_each_atom[a1];	m2	=	mass_of_each_atom[a2]
																				mass_factor	=	np.sqrt(m1*m2)																				
																				W_a1_a2	=	np.complex128(np.zeros([n_omegas,ab[0]]))
																				
																				for	[alpha,beta],pair_index	in	zip(ABs,range(ab[0])):																													
																								W_a1_a2[:,pair_index]	=	np.conjugate(fft_v1[:,alpha])\
																								*fft_v2[:,beta]*mass_factor/2
																				
																				W_r1_r2	+=	W_a1_a2
																				#element	wise	only
																				if	m1	==	m2	and	m1	==	14.007:	#N
																								T_N[dist,:,:]			+=	W_a1_a2																							
																				elif	m1	in	mGaIn	and	m2	in	mGaIn:
																								T_GaIn[dist,:,:]+=	W_a1_a2
																				else:	
																								print('Something	went	wrong!!!');	sys.exit()
																								

								#esimating	the	necessary	time
								if	dist==0:
												print('Expected	duration	=	%5.2f	min'%((time.time()-too)/\
																																																			60*int(max_distance+1)))
				print(time.time()-t0)
								
				T_N/=N_atoms/2	#half	of	the	atoms	are	always	Nitrogen
				T_GaIn/=N_atoms/2	#half	of	the	atoms	are	always	In	or	Ga
				T_R	=	T_GaIn+T_N
				np.save(directory+'T_N.npy',T_N)
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				np.save(directory+'T_GaIn.npy',T_GaIn)
				
				#Saving	the	calculated	spatial	cross	spectral	density	function
				np.save(directory+'T_R.npy',T_R)

#	Cleaning	RAM:
del	fft_v1
del	fft_v2
del	fft_velocities
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B.1. Python code for post-processing

scsdf analysis.py

Script for post-processing the MD simulations. Calculates the coherence
lengths from the spatial cross correlation function and does further analy-
sis:

135



#!/usr/bin/env	python3
#	-*-	coding:	utf-8	-*-
"""
-------------------------------------------------------------------------------
description:
Script	for	analyzing	the	spatial	cross	spectral	density	(T(w,R))	and	
calculating	the	coherence	length
-------------------------------------------------------------------------------

required	modules	and/or	scripts:
functions_latour.py
functions_cells.py
functions_postprocess.py

-------------------------------------------------------------------------------
last	changes:
1.0	2020.01.13,					Script	created	by	Tobias	Spitaler

"""

import	numpy	as	np
import	matplotlib.pyplot	as	plt
import	functions_latour	as	fl
import	functions_cells	as	cl
import	functions_postprocess	as	fun
import	scipy.optimize	as	optim
from	matplotlib	import	cm

def	find_f_point(freq):
				'''Finds	the	index	in	omega_val	of	the	element	which	is	closest	to	a
				desired	frequency	freq'''
				return	np.argmin(np.abs(freq-omega_val))

directory	=	'/path/to/simulation/'

directory	=	'/home/t.spitaler/correlation_length/SL-GaN-InN/NVE/GaN/tersoff/'

'''	READING	THE	PARAMETERS	OF	THE	SIMULATION	from	the	parameter	file	'''
N_configs,md,simulation_step,n_species,teq,T,ensemble_length	=	\
fl.read_parameter(directory+'param_file')
#Number	of	ensembles	to	average	over
N_ensembles	=	int((N_configs-teq)/ensemble_length)	
#	The	discrete	time	points	of	the	simulation
times	=	np.arange(ensemble_length)*md*simulation_step	#in	ps

dump	=	open(directory+'start.dump','r')
for	i	in	range(3):
				dump.readline()	#	Skip	hte	first	three	lines
N_atoms	=	int(dump.readline())				
placeholder	=	dump.readline()
#Reading	simulation	box	sizes
words	=	dump.readline().split()
sizex	=	float(words[1])-float(words[0])#	Size	of	the	simulaiton	box
words	=	dump.readline().split()
sizey	=	float(words[1])-float(words[0])
words	=	dump.readline().split()
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sizez	=	float(words[1])-float(words[0])
placeholder	=	dump.readline()

dump.close()

'''
Reading	the	unitcell	of	the	material	in	the	simulation
file	in	xsf	format	with	FRACTIONAL	coordinates	-->	repeated_unitcell
Example	of	a	unitcell:	
				-	a	cubic	fcc	for	Argon
				-	an	orthorhombic	representation	of	the	wurtzite	structure	wiht	8	atoms	for	
						the	InN/GaN	system
'''	
cell_filename	=	directory+'repeated_unitcell'

#lenght	in	x,y,z,
l_unitvec_a,l_unitvec_b,l_unitvec_c,Nc,atoms_frac	=	\
	cl.load_unit_cell(cell_filename)

#	How	often	the	unit	cell	is	replicated	in	each	direction.	Either	with	Lammps	
#	or	with	atomsk.	
N_cellsx	=	int(np.round(sizex/l_unitvec_a))
N_cellsy	=	int(np.round(sizey/l_unitvec_b))
N_cellsz	=	int(np.round(sizez/l_unitvec_c))

N_cells	=	N_cellsx*N_cellsy*N_cellsz
N_atoms	=	Nc*N_cells	#total	number	of	atoms	in	the	simulation

print('Resolution	in	distance	for	the	coherence	length:	%6.4f	Angstrom'%l_unitvec_c	)

#Calculate	the	discrete	fruequencies,	at	which	the	time	Fourier	transform	of
#	the	velocites	will	be	calculated	with	numpy.fft

#	FOR	FFT	of	VELOCITIES
pad	=	1		#How	much	the	velocites	get	padded.	Not	more	than	two.	And	not	less	than	1!
n_fourier	=	ensemble_length*pad
omega_val	=	(np.fft.rfftfreq(n_fourier)/(md*simulation_step))
n_omegas	=	len(omega_val)		#	Number	of	frequency	points	up	to	omega	max

#Loading	the	cross	spectral	density	function
T_R	=	np.load(directory+'T_R.npy')

max_distance	=	int(N_cellsz-1)/2
#The	discrete	distances	for	which	the	cross	sepctral	density	function	
#was	calculated
R_values	=	np.arange(int(max_distance+1))*sizez/N_cellsz/10	#nm

#Calculating	the	cross_correlations	for	different	distances	between	the	atoms
#from	the	LDOS	(discrete	fouriertransform	from	time	to	frequency	domain)
corr_R	=	np.fft.irfft(T_R[:,:,:],axis	=	1)

#%%

				
#Plotting	the	LDOS
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LDOS	=	np.real(T_R[0,:,:])
plt.figure()
plt.plot(omega_val,(LDOS)[:,0],label	=	'x')
plt.plot(omega_val,(LDOS)[:,1],label	=	'y')
plt.plot(omega_val,(LDOS)[:,2],label	=	'z')
plt.legend()
plt.xlabel('w	in	THz')
plt.ylabel('LDOS')

#%%

#Calculating	the	smoothed	T_R	by	smooting	the	corr_R	and	backcalculating	T_R
#	(Approach	A)

sigma	=	3/(md*simulation_step)	#		the	number		gives	the	desired	value	in	ps
T_Rsmooth	=	np.zeros_like(T_R)
corr_Rsmooth	=	np.zeros_like(corr_R)
for	i	in	range(T_R.shape[0]):
				foo	=	fun.smooth_corr(corr_R[i,:,:],sigma)
				corr_Rsmooth[i,:,:]	=	foo
				T_Rsmooth[i,:,:]	=	np.fft.rfft(foo,axis	=	0)

#%%
#Calcualaing	the	T_R	by	a	smoothed	corr_R	with	a	Gaussian	coverage	on	top	of	
#	the		peaks	(Appraoch	B)
				
#	->	need	to	find	the	velocity	of	the	peaks	
#(in	terms	of	indexes	od	positions	and	times)
#	the	user	needs	to	check	with	the	figure	if	the	procedure	finished	correctly
peak_pos	=	np.argmax(corr_R[:,:int(corr_R.shape[1]/2),:],axis	=	1)
plt.figure()
plt.plot(peak_pos)
plt.title('finding	vg	of	the	peaks')
plt.xlabel('distance	R	(index)')
plt.ylabel('time	of	maximum	(index)')
il	=	45;	ih	=	360#580

#	by	a	linear	fit	to	the	lines	of	maxima.	requires	no	data	off	the	line
v_group		=	np.zeros(3)
for	xyz	in	range(3):
				fit	=	np.polyfit(np.arange(il,ih),peak_pos[il:ih,xyz],1)
				plt.plot(np.arange(peak_pos.shape[0]),np.arange(peak_pos.shape[0])\
													*fit[0]+fit[1],'k:')
				v_group[xyz]	=	fit[0]**-1

plt.plot([ih,ih,ih],peak_pos[ih],'rx')
plt.plot([il,il,il],peak_pos[il],'rx')
plt.show()

T_Rsmooth_gauss	=	np.zeros_like(T_R)
corr_Rsmooth_gauss	=	np.zeros_like(corr_R)
for	i	in	range(T_R.shape[0]):
				for	j	in	range(3):					
								t0=		i/v_group[j]
								foo=	fun.smooth_corr_gauss(corr_R[i,:,j],sigma,t0)
								corr_Rsmooth_gauss[i,:,j]	=	foo
								T_Rsmooth_gauss[i,:,j]	=	np.fft.rfft(foo,axis	=	0)			
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#%%
##			SMOOTHING	TO	THE	POINT	the	accousitc	waves	made	half	the	cell	##

#Calculating	the	smoothed	T_R	by	smooting	the	corr_R	and	backcalculating	T_R
T_Rsmooth_long	=	np.zeros_like(T_R)
corr_Rsmooth_long	=	np.zeros_like(corr_R)
for	xyz	in	range(3):
				for	i	in	range(T_R.shape[0]):
								sigma	=	corr_R.shape[0]/v_group[xyz]
								foo	=	fun.smooth_corr(corr_R[i,:,xyz],sigma)
								corr_Rsmooth_long[i,:,xyz]	=	foo
				
T_Rsmooth_long[:,:,:]	=	np.fft.rfft(corr_Rsmooth_long,axis	=	1)

#%%

#Plotting	the	cross_correlation	as	a	heatmap
								
for	xyz	in	range(2,3):	#choose	the	dimension	vx,vy,or	bz	or	all
				R_min	=	0;			R_max	=	33333		#!	Indices
				t_min	=	0;			t_max	=	int(len(times)/2)
				
				x	=	R_values[R_min:R_max]
				y	=	times[t_min:t_max]
				X,Y	=	np.meshgrid(y,x)
				Z	=	corr_R[R_min:R_max,t_min:t_max,xyz]/(corr_R[0,0,xyz])
				#	(normalized	by	the	value	of	corr_R[0,0,xyz])
				
				plt.figure(figsize=[12,7])
				plt.pcolormesh(X,Y,Z[:-1,:-1],vmin	=	-1/2/400,vmax	=	1/400)
				plt.colorbar()
				plt.ylabel('R	in	nm')
				plt.xlabel('$\\tau$	in	ps')
				plt.title('Correlations')

				
#%%
#Plotting	the	cross	spectral	density	(T(R))	as	a	heatmap

for	xyz	in	range(2,3):
				R_min	=	0;			R_max	=	2000		#Indices!!!
				f_min	=	0;			f_max	=	len(omega_val)
				
				x	=	R_values[R_min:R_max]
				y	=	omega_val[f_min:f_max]
				X,Y	=	np.meshgrid(y,x)
				T	=	T_R
				Z	=	(np.real(T[:,:,xyz]/T[0,:,xyz])**2)
				#Z	=	(np.real(C_spatial[R_min:R_max,f_min:f_max,2])**2)
				
				plt.figure()
				plt.pcolormesh(X,Y,Z[:-1,:-1],vmin	=	0,vmax	=	1,cmap	=	cm.coolwarm)
				plt.colorbar()
				plt.ylabel('R	in	nm')
				plt.xlabel('$\\nu$	in	THz')
				#plt.xlim([0,4])	#THz
				#plt.ylim([0,100])	#R
				plt.title('np.real(T_R(R,$\\nu$))**2'+',	xyz	=	%g'%xyz)
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#%%					
#	Plotting	the	spectral	energy	density	T(k,w)	
#	Calculating	the	T_k(w)	from	the	T_R(w)	and	plotting	the	'bands'
T_kw	=	np.fft.irfft((T_R[::2,:,:]),axis	=	0)	

	
for	xyz	in	range(2,3):
				#Plotting	the	T_R	as	a	heatmap
				k_min	=	0;			k_max	=	T_kw.shape[0]//2		#Indices!!!
				f_min	=	0;			f_max	=	find_f_point(30)#len(omega_val)
				
				y	=	np.arange(T_kw.shape[0])[0:k_max]
				x	=	omega_val[f_min:f_max]
				X,Y	=	np.meshgrid(y,x)
				Z	=	np.swapaxes(np.real(T_kw[0:k_max,f_min:f_max,xyz])\
																				/np.max(np.real(T_kw[0:k_max,f_min:f_max,xyz])),0,1)
				##Doing	a	heatmap	instead	of	a	3d	plot:
				plt.figure(figsize=	[10,10])
				plt.pcolormesh(X,Y,Z[:-1,:-1],vmin	=	-0.0,vmax	=	0.005,cmap	=	cm.coolwarm)
				
				plt.colorbar()
				plt.xlabel('k')
				plt.ylabel('f	in	THz')
				plt.title('T(k,$\\nu$)'+',	xyz	=	%g'%xyz)

#%%

"""	Calculation	of	the	coherence	length	by	treating	the	cross	spectral	density	
as	a	cumulative	distribution	function	"""

#	Write	in	the	list	the	type	of	cross	spectral	density	function	you	want	to	use	
#	to	calculate	the	coherence	length	
list_scsdf	=	['T_R','T_Rsmooth','T_Rsmooth_gauss','T_Rsmooth_long']

plt.figure()

#	Possible	to	define	a	list	of	thresholds:
#->the	coherence	length	is	the	distance	at	which	the	cumulatice	distributin	
#function	equals	the	threshold.	e.g	95%	
threshold_list	=	[0.95]

#	define	the	list	of	the	dimensions	(0	=	x,	1	=	y,	2	=	z)	of	the	velocity	the	
#	cohernce	length	should	be	calculated	off
dimensions	=	[2]

for	scsdf	in	list_scsdf:	
				
				#calcualte	the	cumulative	distribution	function
				F_cumulative	=	fun.get_F_cumulative(eval(scsdf),mode	=	'real')
				
				#	Initalizing	array	for	cohernece	length
				coherence_lengths	=	np.zeros([n_omegas,eval(scsdf).shape[2]])								
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				for	dim	in	dimensions:	#loop	over	number	of	correlation	pairs
								
								for	threshold	in	threshold_list:	#	loop	over	possible	thresholds

												for	w	in	range(n_omegas):	#looping	over	frequency	points
																
																#Finding	where	the	F	is	equal	to	0	and	doing	a	linear	
																#interpolation	to	find	that	distance
																index2	=	np.argmax(F_cumulative[:,w,dim]>=threshold)
																
																if	index2	==0:
																				coherence_lengths[w]=0
																else:			
																				index1	=	index2-1
																				#the	following	index	is	a	float	now,	nor	an	integer,
																				#as	it	gives	the	place	between	two	indexes
																				index	=	(threshold-F_cumulative[index1,w,dim])\
																								/((F_cumulative[index2,w,dim]	\
																											-	F_cumulative[index1,w,dim])\
																												/(index2-index1))+index1
																				lc	=	index*R_values[1]
																				coherence_lengths[w,dim]	=	lc
						
								
												'''	Plot	COHERENCE	LENGTH	'''
												
												plt.plot(omega_val,coherence_lengths[:,2],'-',	\
																					label	=	'%s;		'%scsdf+str(threshold)+'%		dim=	'+str(dim))
																				

								plt.xlabel('$\\nu$	in	THz	')
								plt.ylabel('$l_c$')
														
plt.legend()
plt.xlim([0,30])
plt.show()

#%%###

"""	Fittingthe	data	to	an	attenuated	wave	(funct1)	to	the	calculated	cross
	spectral	density	function,	to	extract	the	cohernece	lenght.	
It	does	not	work	well	for	the	3D	systems!
"""

T_fit	=	T_R	#	Choosing	the	cross	spectral	density	function	to	fit

#	Counting	the	failed	fits!	Not	really	representative	as	some	fits	are	
#considered	successfull	by	the	fitting	routine	but	are	acutally	not
#	reproducing	the	date	well.	
fail1	=	0	
fail2	=	0

def	funct1(R,l,lc):
				'''Fitfunction	for	tht	T_R[R,w0]
				lc:	coherence	length
				l	:	wavlengtk	(=pi/k)
				'''
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				return	np.cos(2*np.pi*R/l)**2	*	np.exp(-R/lc)

frequenies	=	omega_val[:]	#define	some	freqeuncy	range	I	want	to	have	a	look	at

#Initalizing	the	coherenece	lengths	and	wave-lengths	for	the	attenuated	wave
coh_len	=	np.zeros([len(frequenies),3])
labds		=	np.zeros_like(coh_len)

for	i	in	range(len(frequenies)):	#looping	over	freuqencies

				#Find	the	index	(in	omega_val)	of	the	current	frequency
				ind	=	find_f_point(frequenies[i])
				x	=	R_values[:]	#	in	nm							
				
				for	xyz	in	range(2,3):	#for	which	pairs	to	fit	the	cohrence	lengths
								
								y	=	(np.abs(np.real((T_fit[:,ind,xyz]/T_fit[0,ind,xyz])))**2)[:]
			
				
								'''	Inital	guess	for	the	cl	and	lambda:
												An	eduacated	guess	for	lambda	often	helps	to	get	better	fit	
												results,	but	it	is	a	bit	a	playing	around
												Different	dimensions	need	different	inital	guesses	as	well
								'''
								if	xyz	==0:
												const_lam_guess	=	5
												#const_lam_guess	=	v_group[xyz]/2*times[1]/R_values[1]*100	#for	argon
												const_lam_guess	=	v_group[xyz]/2*times[1]/R_values[1]*1e4	#for	GaN/InN

								elif	xyz	==	1:
												const_lam_guess	=	5.3
												#const_lam_guess	=	v_group[xyz]/2*times[1]/R_values[1]*100	#for	argon
												const_lam_guess	=	v_group[xyz]/2*times[1]/R_values[1]*1e4	#for	GaN/InN

								elif	xyz	==	2:
												#const_lam_guess	=	v_group[xyz]/2*times[1]/R_values[1]*100	#for	argon
												const_lam_guess	=	v_group[xyz]/2*times[1]/R_values[1]*1e4	#for	GaN/InN
								#inital	guess	of	the	parameters
								x0	=	np.array([const_lam_guess/omega_val[ind],200])	
								
#								#Sometimes	it	also	helps	to	use	the	fitresults	of	neighbouring	
#								#frequencies	
#								if	i	>	5:
#												x0	=	[labds[i-1,xyz],coh_len[i-1,xyz]*4]

								try:
												x_opt,cov	=	optim.curve_fit(funct1,x,y,x0)
								except(RuntimeError):
												fail1	+=1	
												continue

																

##############
#	Running	a	second	fit	using	the	outcome	of	the	first	one	to	decide	how	long	
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#	the	signal	taken	into	account	should	be	can	improve	the	fitting	results

coh_len2	=	np.zeros_like(coh_len)
labds2	=	np.zeros_like(coh_len)

for	i	in	range(0,len(frequenies)):	
				ind	=	find_f_point(frequenies[i])
				
				for	xyz	in	range(2,3):
				
								lc_old	=	coh_len[i,xyz]
						
								take_up_to	=	np.argmin(np.abs(lc_old*3.5-R_values))
								if	take_up_to	>	T_fit.shape[0]:
												take_up_to	==	T_fit.shape[0]

								if	take_up_to	<	20:
												take_up_to	=	20
												lc_old	=	lc	#taking	the	value	of	the	previous	frequency	as	a	guess
								
								y	=	(np.abs(np.real((T_fit[:,ind,xyz]/T_fit[0,ind,xyz])))\
													**2)[0:take_up_to]
								x	=	R_values[0:take_up_to]	#	in	nm
								
								#using	the	wavelength	from	the	first	fitting	round	and	the	cohernece
								#length	of	the	neighbouring	frequency	as	an	inital	guess
								x0	=	np.array([labds[i,xyz],lc_old*1.3])

				
								try:
												x_opt,cov	=	optim.curve_fit(funct1,x,y,x0)
								except(RuntimeError):
												fail2	+=	1	
												continue												

								
								lam	=	x_opt[0]
								lc	=	x_opt[1]
				
								coh_len2[i,xyz]	=	x_opt[1]
								labds2[i,xyz]	=	x_opt[0]
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Appendix B.

functions latour.py

Module containing functions used by scsdf calculation.py and
scsdf analysis.py:
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#!/usr/bin/env	python3
#	-*-	coding:	utf-8	-*-
#####################################################
#####################################################
"""
-------------------------------------------------------------------------------

description:
This	module	contains		functions	which	are	needed	for	calculating	the	spatial	
cross	spectral	density	function	and	to	calculate	the	phonon	cohenerence	length	
of	superlattices.	

-------------------------------------------------------------------------------

required	modules	and/or	scripts:

-------------------------------------------------------------------------------
"""
##########################################################
##########################################################

#modul	import
import	numpy	as	np
import	time	
import	math	as	mat

#%%

#function	read_parameter(filename):
#
#last	change:	2019.09.10	Tobias	Spitaler

def	read_parameter(filename):
				'''Reads	the	paramter	file	of	the	simulation	out	of	filename
				
				return([N_configs,md,simulation_step,n_species,teq,T,ensemble_size])
				N_configs	:	Number	of	sampling	points
				md:	The	simulation	has	sampled	the	configuration	each	md	step
				simulation_step:	Actual	simulationstep	in	ps
				n_species	:	Number	of	different	atom	species	in	simulation
				teq:	Number	of	configurations	to	skip	at	the	beginning
				T:	Temperature	of	simulation
				ensemble_size:	number	of	simulation	steps	to	consider
				'''
				
				params	=	open(filename,'r')
				#	Number	of	configurations	saved	in	the	dump	file
				N_configs	=	int(params.readline())	
				
				words	=	params.readline().split()
				md	=	int(words[0])																		#	Sampling	step
				simulation_step	=	float(words[1])			#	Actual	simulationstep	in	ps
				ensemble_size	=	int(words[3])
				
				#	Number	of	different	atom	species	in	simulation
				n_species	=	int(params.readline())		
				
				#	Number	of	configurations	to	skip	at	the	beginning
				teq	=	int(params.readline())								
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				#	The	starting	configuration	is	always	left	out,	so	teq	>=1
				if	teq	<	1:
								teq	=	1
							
				T	=	float(params.readline())								#	Temperature	of	simulation
				
				params.close()
				return([N_configs,md,simulation_step,n_species,teq,T,ensemble_size])
				
				
#%%
				
#function	get_velocities:
#
#last	change:	2019.09.10	Tobias	Spitaler,	reading	velocities	of	more	ensembles

def	get_velocities(N_atoms,teq,N_configs,ensemble_lenght,N_ensembles,\
																			directory	=	'./',useall=	'xyz'):
				'''	Reading	the	velocites	from	the	dump-file	(custom)	and	storing	them	
				in	an	array:
				
				velocites	is	matrix	of	N_atoms*(ensemble_length)*3
				atom_id	|	timestep	|	velocity_component	(x,y,z)
				'''
				t0	=	time.time()
				print('\nStarting	extracting	the	velocities	from	the	dump	file')
				velocity_list	=	[]
				
				dump	=	open(directory+'dump.txt','r')
								
				
				#Skip	the	configurations	we	do	not	want	to	use
				lines_to_skip	=	teq*(N_atoms+9)	#+9	for	the	header	lines
				for	i	in	range(lines_to_skip):
								dump.readline()
				
				for	N	in	range(N_ensembles):
								
								#Initializing	the	velocity	array
								velocities	=	np.zeros([N_atoms,ensemble_lenght,len(useall)])
								
								#Looping	over	all	samplings	in	an	ensemble
								for	i	in	range(ensemble_lenght):
												#Skip	the	headerlines
												for	oo	in	range(9):
																dump.readline()	
												#Looping	over	all	atoms
												for	n	in	range(N_atoms):
																words	=	dump.readline().split()
																atom_id	=	int(words[0])
																
																if	useall	==	'xyz':
																				vx	=	float(words[5])
																				vy	=	float(words[6])
																				vz	=	float(words[7])
																				velocities[atom_id-1][i][0]=	vx
																				velocities[atom_id-1][i][1]=	vy
																				velocities[atom_id-1][i][2]=	vz				
																elif	useall	==	'x':
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																				vx	=	float(words[5])
																				velocities[atom_id-1][i][0]=	vx
																elif	useall	==	'y':
																				vy	=	float(words[6])
																				velocities[atom_id-1][i][0]=	vy
																elif	useall	==	'z':
																				vz	=	float(words[7])
																				velocities[atom_id-1][i][0]=	vz				
																elif	useall	==	'xy':
																				vx	=	float(words[5])
																				vy	=	float(words[6])
																				velocities[atom_id-1][i][0]=	vx
																				velocities[atom_id-1][i][1]=	vy
																elif	useall	==	'xz':
																				vx	=	float(words[5])
																				vz	=	float(words[7])
																				velocities[atom_id-1][i][0]=	vx
																				velocities[atom_id-1][i][1]=	vz			
																elif	useall	==	'yz':
																				vy	=	float(words[6])
																				vz	=	float(words[7])
																				velocities[atom_id-1][i][0]=	vy
																				velocities[atom_id-1][i][1]=	vz			
																				
												if	not(i%int(N_configs/10)):
																print(str(i//int(N_configs/10)*10)+'%	done	after	',\
																						'%6.0g'%(time.time()-t0),'	seconds')
																
								velocity_list.append(velocities)
				t1	=	time.time()
				print('All	velocities	are	extracted	in	%g	s'%(t1-t0))
				dump.close()
				return	velocity_list

#%%
				
def	print_correlation_pairs(ABs):
				'''	Help	function	which	prints	which	pairs	of	veloity	components	are	
				correlated	(the	pairs	are	storded	in	ABs)	'''
				
				names	=	['vx','vy','vz']
				num	=	len(ABs)
				print('\nThe	correlations	between	%g	pairs	of	velocity	components	is	calculated.'%num)
				print('The	pairs	are	stored	in	gamma	as	follows:')
				for	i	in	range(num):
								AB	=	ABs[i]
								s	=	'('+names[AB[0]]+','+names[AB[1]]+\
												')	is	stored	in	gamma	[:,:,:,'+str(i)+']'
								print(s)
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#!/usr/bin/env	python3
#	-*-	coding:	utf-8	-*-
"""
Created	on	Tue	Oct	22	10:38:41	2019

File	contains	functions	which	are	needed	for	different	other	scripts	for	the	
calulation	of	the	correlation	length,	when	the	knowledge	of	the	unit	cell,
which	is	replicated,	is	used	to	identify	the	positions	of	the	atoms	with	a	
specific	atom	id	in	LAMMPS

@author:	t.spitaler
"""

import	numpy	as	np
import	time	
import	sys
#%%

def	load_unit_cell(cell_filename):
				'''This	function	loads	the	xsf	file	in	fractional	coordinates	of	the	unit
				cell,	which	has	been	repilicated	to	construct	the	simulaiton	box.	
				Function	calculates	the	size	of	the	unit	cell	and	extraxts	the	positions
				of	the	atoms	within	the	unit	cell.	
				
				Returns	the	dimensions	of	the	unitcell	and	the	positions	of	the	atoms	in	
				the	unitcell	in	fractional	coordinates.
				
				Restrictions:	orthogonal	unitcell
				'''
				
				cell	=	open(cell_filename,'r')
				
				#Skip	header	lines
				for	i	in	range(3):
								cell.readline()
				#Read	dimensions	of	unit	cell
				len_a	=	float(cell.readline().split()[0])
				len_b	=	float(cell.readline().split()[1])
				len_c	=	float(cell.readline().split()[2])
				
				for	i	in	range(6):	#skip	some	rows
								cell.readline()
				
				atompos_frac=	[]
				line	=	cell.readline()
				while	line:
								words	=	line.split()
								pos	=	[float(words[1]),float(words[2]),float(words[3])]
								atompos_frac.append(pos)
								
								line=	cell.readline()
				
				Nc	=	len(atompos_frac)
	
				atoms_frac	=	np.array(atompos_frac)	#	In	fractional	coordinates
				
				if	np.max(atoms_frac)	>	1:

1



								print("'repeted_unitcell'	not	in	fractional	coordinates!")
								sys.exit()
								
				
				return	[len_a,len_b,len_c,Nc,atoms_frac]

#%%
def	create_dictionaries_skeleton(N_cellsx,N_cellsy,N_cellsz,Nc,unitvec_a,\
																																	unitvec_b,unitvec_c,atoms):
				'''	This	function	creates	some	dictionaries	which	are	needed	for	calculting
				the	cross	specral	densitiy	function.
				
				The	atoms	of	one	unitcell	are	correlated	with	the	atoms	of	the	other	unit-
				cells.	Therefore	one	needs	to	know	to	which	unitcell	an	atom	belongs.	
				
				First	we	find	the	coordinates	of	the	lattice-points	on	the	supercell.	They	
				are	labeld	just	by	rising	integers	0	to	N_atoms	-1.	Coordinates	are	
				stored	in:
								points_on_skeleton
								
				Then	we	label	the	cells	by	ascending	integers.	For	each	cell,	the	
				corresponding	labels	of	the	SC-lattice-points	are	stored	in	a	dictionary:
								cell_dict
								
				The	correlations	are	done	in	one	direction	(line/string).	Creating	a	
				dictionary	which	contains	the	labels	of	all	cells	along	a	certain	string:
								string_cells_dict
				
				'''
				
				N_cells	=	N_cellsx*N_cellsy*N_cellsz
				N_atoms	=	N_cells*Nc
				
				#Defining	the	points	of	the	atomic	positions	in	the	SC,	starting	from	the
				#positions	of	the	atoms	of	the	simple	unitcell	which	is	repeated	over		
				#the	simulation	box
				points_on_skeleton	=	np.zeros([N_atoms,3])
				i	=	0	#	Position	index
				for	z	in	range(N_cellsz):
								for	y	in	range(N_cellsy):
												for	x	in	range(N_cellsx):
																unit_cell_position	=	\
																				np.array([x*unitvec_a,y*unitvec_b,z*unitvec_c])
																for	atom	in	range(Nc):
																				points_on_skeleton[i,:]	=	unit_cell_position+atoms[atom]	
																				i+=1
				
				#Creating	a	cell	dictionary	for	the	skeleton.	
				cell_dict	=	{}
				cell_id	=	0
				for	z	in	range(N_cellsz):
								for	y	in	range(N_cellsy):
												for	x	in	range(N_cellsx):
																cell_dict[cell_id]	=	np.arange(Nc)+(cell_id*Nc)
																cell_id+=1
												
				#	Make	the	lists	of	the	cells	which	are	on	the	same	string	along	the	
				#correlation	direction	for	the	skeleton	(assumed	to	be	in	z)
				string_cells_dict	=	{}
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				n_cells_plane	=	N_cellsx*N_cellsy
				for	i	in	range(n_cells_plane):
								string_cells_dict[i]	=	\
												np.arange(i,n_cells_plane*(N_cellsz),n_cells_plane)
																					
				return	[cell_dict,string_cells_dict,points_on_skeleton]
				

#%%
#Added	on	2019.11.05	by	Tobias	Spitaler
def	order_atomid_on_skeleton(positions_atoms_on_skeleton,positions_in_lammps):

				print('	')
				print('Start	ordering	the	atoms	in	LAMMPS	onto	their	points	on	the	skeleton.')
				print('the	structure	file	for	the	skeleton	needs	to	be	in	fractional	coordinates!')
				print('Might	take	some	time	...')
				
				t0	=	time.time()
				
				N_atoms	=	positions_atoms_on_skeleton.shape[0]
				in_point_sits_atomid	=	np.zeros([N_atoms,2],dtype	=	int)
				in_point_sits_atomid[:,0]	=	np.arange(N_atoms)
					
				delta_roundoff	=	0.3	#	The	search	is	critical	to	this	parameter.	It	must
				#not	be	to	big	or	to	small.	
								
				for	i	in	range(N_atoms):	#	Looping	over	all	atoms	in	Lammps
								pos_lammps	=	positions_in_lammps[i]
															
								#Now	finding	the	corresponding	position	in	the	skeleton
								for	j	in	range(N_atoms):
												pos_skeleton	=	positions_atoms_on_skeleton[j]
												
												dist	=	(np.linalg.norm(pos_lammps-pos_skeleton))	###

												if	dist	<	delta_roundoff:
																in_point_sits_atomid[j,1]		=	i
																
																break
								
				t1	=	time.time()
				
				#Doing	a	silent	test	if	each	atom	has	only	be	assigned	once:
				test	=	np.sort(in_point_sits_atomid[:,1])
				if	not(test	==	np.arange(N_atoms)).all():
								print('THE	sorting	failed.	Some	atoms	assigned	more	times	or	not	at	all')
								print('The	ordering	of	the	atoms	on	their	positions	took:	',t1-t0,'	seconds')
								return	[in_point_sits_atomid,False]
				
				print('The	ordering	of	the	atoms	on	their	positions	took:	',t1-t0,'	seconds')
				
				return	[in_point_sits_atomid,True]
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#!/usr/bin/env	python3
#	-*-	coding:	utf-8	-*-

#####################################################
#####################################################
"""
-------------------------------------------------------------------------------

description:
This	module	contains		functions	which	are	needed	for	calculating	the	spatial	
cross	spectral	density	function	and	to	calculate	the	phonon	cohenerence	length	
of	superlattices.	

-------------------------------------------------------------------------------

required	modules	and/or	scripts:

-------------------------------------------------------------------------------
"""
##########################################################
##########################################################

import	numpy	as	np

#%%
				
def	get_F_cumulative(C_spatial,mode	=	'abs'):
				'''	Calculating	the	cumulative	distribution	function	F[n,nu,xyz]
				
				C_spatial[distance,omega,xyz]
				
				'''
								
				if	mode	=='abs':
								C_spatial	=	np.abs(C_spatial)**2
				if	mode	==	'real':
								C_spatial	=	np.real(C_spatial)**2

				F_cumulative	=	np.cumsum(C_spatial,axis	=	0)
				F_cumulative/=	F_cumulative[-1,:,:]
				return	F_cumulative

#%%
								
def	smooth_corr(corr,sigma):
				'''	Functions	for	smoothing	the	correlation	functions	to	get	a	different
				cross	spectral	density	function.	[Approach	A	and	Approach	C	(higher	sigma)]
				
				The	higher	sigma,	the	more	of	the	correlatios	(up	to	higher	tau)	is	taken	
				into	account.	The	corr	contains	positive	and	negative	times.	'''
				
				if	len(corr.shape)	==2:
								'''Havinf	x,y,z	differently'''
								length	=	corr.shape[0]
								dummy1	=	np.arange(int(length/2))	+1	
								dummy2	=	np.arange(int(length)-len(dummy1))+1
								s1	=	np.exp(-dummy1**2/(2*sigma**2))
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								s2	=	np.exp(-dummy2**2/(2*sigma**2))	
								s	=	np.zeros(corr.shape)
								s[0:int(length/2),:]	=	s1[:,np.newaxis]
								s[int(length/2):,:]		=	s2[-1::-1,np.newaxis]
								return	corr*s
				
				elif	len(corr.shape)	==	1:
								length	=	corr.shape[0]
								dummy1	=	np.arange(int(length/2))	+1	
								dummy2	=	np.arange(int(length)-len(dummy1))+1
								s1	=	np.exp(-dummy1**2/(2*sigma**2))
								s2	=	np.exp(-dummy2**2/(2*sigma**2))	
								s	=	np.zeros(corr.shape)
								s[0:int(length/2)]	=	s1[:]
								s[int(length/2):]		=	s2[-1::-1]
								return	corr*s
				
				
def	smooth_corr_gauss(corr,sigma,x0):
				'''		Functions	for	smoothing	the	correlation	functions	to	get	a	different
				cross	spectral	density	function.	(Approach	B)
								
				Smoothing	the	correlation	function,	by	putting	a	gaussian	over	the
				signal	with	the	Gaussian	centered	at	x0'''
				length	=	corr.shape[0]	#length	in	time
				dummy1	=	np.arange(int(length/2))	+1	
				#both	dummy1	and	2	needed	in	case	length	is	odd
				dummy2	=	np.arange(int(length)-len(dummy1))+1
				s1	=	np.exp(-(dummy1-x0)**2/(2*sigma**2))
				s2	=	np.exp(-(dummy2-x0)**2/(2*sigma**2))	
				s	=	np.zeros(corr.shape)
				s[0:int(length/2)]	=	s1[:]
				s[int(length/2):]		=	s2[-1::-1]
				return	corr*s				
				

def	smooth_corr_long(corr_shape,sigma,v_group):
				'''	Functions	for	smoothing	the	correlation	functions	to	get	a	different
				cross	spectral	density	function.	(Approach	C)
				
				Smoothing	the	correlation	function,	by	smoothing	after	the	accousitc	modes	
				rach	half	the	cell	length.
				
				requieres	the	group	velocity	v_group	of	the	long	wavelength	accousitc	modes
				'''
				length	=	corr_shape[1]	#	length	in	time
				s	=	np.zeros([corr_shape[1],corr_shape[2]])#
				
				for	xyz	in	range(3):#
								x0	=	corr_shape[0]/v_group[xyz]
				
								dummy1	=	np.arange(int(length/2))	+1	
								#both	dummy1	and	2	needed	in	case	length	is	odd
								dummy2	=	np.arange(int(length)-len(dummy1))+1
								
								s1	=	np.exp(-(dummy1-x0)**2/(2*sigma**2))
								s1[:int(x0)]	=	1
								s2	=	np.exp(-(dummy2-x0)**2/(2*sigma**2))	
								s2[:int(x0)]	=	1
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								s[0:int(length/2),xyz]	=	s1[:]
								s[int(length/2):,xyz]		=	s2[-1::-1]
								
				return	s				
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