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Abstract

Describing complex intermolecular interactions for
structure search

Fabian Weißenbacher
Institute of Solid State Physics, Graz University of Technology

The central goal in the field of materials design is to identify novel materials with a
certain set of desired properties. One very interesting application is the adsorption of
(small) organic molecules on metal surfaces, as these layers can be used to modify the
properties of the interfaces they are applied to, for instance to shift work functions
of metal electrodes that are contacting organic semiconductors.

These effects depend on the nature of the molecular arrangement, which is more
generally known as a surface polymorph. A number of structure search algorithms has
been proposed/introduced over the years which can be used to find and study these
polymorphs, one fairly new addition to this list is the SAMPLE method.

It introduces an efficient surface polymorph generation algorithm which pushes
back the configurational explosion by means of a clever coarse-graining algorithm
in combination with an effective two-body energy model. At the same time, the
need for expensive training data is minimized by employing Bayesian Learning in
the form of Gaussian process regression to accomplish the prediction of properties,
chiefly adsorption energies.

Since the energy model at the core of SAMPLE does not go beyond two-body
interactions, the question arose whether this method is capable of describing complex
molecular interactions. Therefore, this thesis aims to test the learning and prediction
capabilities of SAMPLE for more complicated test systems than those which have
previously been studied, with the focus on intermolecular interactions.

Tests are carried out on four classes of test systems, each tackling a specific aspect
of intermolecular interactions, namely molecular symmetries, anisotropic bonds,
substituent patterns and the effect of using different functional groups as substituents.
The learning characteristics for each test system are presented, analyzed and cross-
examined in relation to the other systems in order to judge whether SAMPLE can
be seen as a robust structure search algorithm. In addition to that, a demonstration
of the principle of transfer learning with SAMPLE is conducted on the subject of
pair potentials. In summary, SAMPLE is found to be a robust and reliable structure
prediction algorithm, which has a large potential for use and further development.
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Kurzfassung

Beschreibung von komplexen intermolekularen
Wechselwirkungen im Rahmen der Struktursuche

Fabian Weißenbacher
Institut für Festkörperphysik, Technische Universität Graz

Das Hauptziel von Materialdesign ist es, neue Materialien zu identifizieren, die eine
Reihe an bestimmten, gewünschten Eigenschaften aufweisen. Ein sehr interessantes
Anwendungsgebiet bildet dabei die Adsorption von (kleinen) organischen Molekülen
auf Metalloberflächen, da die dabei gebildeten Schichten verwendet werden können,
um die Eigenschaften der jeweiligen Oberflächen zu modifizieren. Auf diese Weise
kann beispielsweise die Austrittsarbeit von Metallelektroden, welche in Verbindung
mit organischen Halbleitern stehen, verändert werden.

Diese Effekte sind abhängig von der Art der molekularen Anordnung, welche
im Allgemeinen als Oberflächenpolymorph bezeichnet wird. Im Verlauf der Jahre
wurden einige Algorithmen für die Struktursuche konzipiert, mit welchen solche
Polymorphe gefunden und untersucht werden können. Eine relativ neue Ergänzung
zu dieser Liste ist die SAMPLE-Methode.

Sie führt einen effizienten Algorithmus zur Erzeugung von Oberflächenpolymor-
phen ein, welcher die Konfigurationsexplosion mithilfe eines intelligenten Coarse-
Graining-Algorithmus in Kombination mit einem effektiven Zweikörper-Energiemodell
verlangsamt. Gleichzeitig wird die Abhängigkeit von teuren Trainingsdaten reduziert,
indem Bayes’sches Lernen in Form einer Gaußprozess-Regression anwendet wird,
um Eigenschaften – insbesondere Adsorptionsenergien – vorherzusagen.

Da das Energiemodell im Kern von SAMPLE nicht über Zweikörper-Wechselwirkungen
hinausgeht, stellte sich die Frage, ob diese Methode in der Lage ist, auch komplexe
molekulare Wechselwirkungen zu beschreiben. Daher liegt das Ziel der vorliegenen
Arbeit darin, zu testen, wie gut SAMPLE lernt und wie gut es Eigenschaften von
Testsystemen, die viel komplizierter sind, als jene, die bisher untersucht wurden,
vorhersagen kann. Der Fokus liegt dabei auf paarweisen Molekülwechselwirkun-
gen.

Es werden dazu Tests für vier Kategorien von Testsystemen durchgeführt, die sich
jeweils mit einem bestimmten Aspekt von intermolekularen Wechselwirkungen
befassen. Dazu zählen Molekülsymmetrien, anisotrope Bindungen, unterschiedliche
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Substitutionsmuster sowie durch die Verwendung verschiedener funktioneller Grup-
pen als Substituenten entstehende Effekte. Die Lerncharakteristiken für jedes Testsys-
tem werden präsentiert, analysiert und mit denen der anderen Systeme verglichen,
um zu beurteilen, ob SAMPLE als robuster Struktursuchealgorithmus angesehen
werden kann. Zudem wird das Prinzip des Transferlernens mit SAMPLE in Bezug
auf Paarpotentiale demonstriert. Zusammenfassend kann festgehalten werden, dass
SAMPLE ein robuster und verlässlicher Algorithmus zur Vorhersage von Strukturen
ist, der ein großes Potenzial für die Verwendung und Weiterentwicklung aufweist.
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1. Introduction

1.1. Motivation

The SAMPLE method is a new type of structure search algorithm that makes use
of coarse graining to generate surface polymorphs. It employs a two-body energy
model in conjunction with Gaussian process regression [Rasmussen2006a] to effi-
ciently predict polymorph properties, with a primary focus on adsorption energies.
Recently, it was successfully demonstrated that SAMPLE can be used to predict sur-
face polymorphs and interaction energies for a small number of adsorbate molecules
[Jeindl:masters-thesis, Egger:masters-thesis]. While this shows that the method
works in principle, these findings, on their own, are not enough to make the as-
sumption that SAMPLE can achieve similar results under all circumstances. In other
words, the question that still needs to be answered is

How flexible is SAMPLE’s approach to structure search with regard to arbitrarily complex
systems?

In order to answer this question, we need to, among other things, evaluate the
ability of SAMPLE’s energy model to emulate complex molecular interactions. This
evaluation is necessary, particularly due to the fact that the model only includes one
two-body term for each pair of molecules.

The aim of this thesis shall therefore be to navigate the limits of SAMPLE in terms of
its learning performance. For this purpose, the SAMPLE method is applied to four
different classes of test systems, each selected to cover specific aspects of molecular
interactions that might pose problems to the way SAMPLE is set up and provides its
predictions. The focus of these test classes or levels can be summed up as:

1. The impact of molecular symmetries
2. Effects of anisotropic interactions (example: hydrogen bonds)
3. Influence of substituent patterns
4. Functional groups

Based on these benchmarks, it should be possible to discern whether SAMPLE can
be seen as a robust structure search algorithm. In order to give the reader a guideline,

1



1. Introduction

I will begin by introducing the SAMPLE method as well as connected processes and
concepts in the following two subsections.

2



1.2. SAMPLE

1.2. SAMPLE

The primary goal of this thesis is to benchmark the performance of the SAMPLE
method, which was first explored in the master’s theses of Scherbela [Scherbela:masters-thesis],
Hörmann [Hoermann:masters-thesis] and Jeindl [Jeindl:masters-thesis] before be-
ing properly introduced in a paper by Hörmann et al. [Hoermann:sample-paper].
This section is going to describe the key concepts and inner workings of said method
and will therefore follow the approaches taken by Hörmann et al. and Jeindl.

First and foremost, SAMPLE, which cleverly stands for Surface Adsorbate Polymorph
Prediction with Little Efforts (SAMPLEs) [Hoermann:sample-paper], is a quasi-deterministic
algorithm for structure search on surfaces. It makes use of a combination of coarse-
graining and Bayesian linear regression to push back the exponential increase in
the number of potential polymorphs, also know as the configurational explosion. Si-
multaneously, due to its quasi-deterministic nature, it can give physical insight into
molecule-substrate and molecule-molecule interactions.

It was originally designed for the task of finding and describing single-layer periodic
arrangements or surface polymorphs of (organic) adsorbate molecules on metal sub-
strates, which, in the framework of SAMPLE, are often denoted as configurations.

Central to its approach is the assumption of commensurability between surface
polymorph and the substrate it sits on, or, in other words: that the polymorph unit
cell is a supercell of the substrate (surface) lattice. This assumption implies that the
molecule-substrate interactions are dominant compared to the molecule-molecule
interactions.

Overall, applying SAMPLE is a multi-step process, whose structure is described in
the following subsections.

1.2.1. Selecting local geometries

The starting point for each SAMPLE run consists of selecting the symmetry-inequivalent
local geometries (SILGs)1. In principle, they represent local minima in the potential
energy surface (PES) of an isolated molecule adsorbing to the surface of the substrate
and can be found through various types of geometry optimizations.

Each SILG is defined by the specific atomic structure of the molecule plus its
orientation and position relative to the primitive substrate unit cell.2 By applying

1called an original geometry in SAMPLE’s notation
2See section 2.4 for details on actual test systems

3



1. Introduction

(a) Discrete grid (b) First local geometry (c) Detect and discard collid-
ing configurations

(d) Valid configuration

Figure 1.1.: Building configurations of two molecules in a 4x4 supercell. Starting from the plain
substrate supercell and the discrete grid (blue) it defines (a), a single molecule/LG is
placed in the origin of said grid (b). Then, a second molecule/LG is added, moved to an
unoccupied grid point and the resulting configuration is checked for colliding atoms. If
collisions are found, the corresponding configuration is discarded (c). If not, it is added to
the list of previously found configurations. This is repeated for all remaining grid points.
Adapted from [Jeindl:masters-thesis].

point group symmetries of the substrate lattice to the SILGs, the symmetry-equivalent
local geometries, most often simply called local geometries (LGs), are generated.

They are subsequently used by SAMPLE as immutable building blocks from which
it constructs surface polymorphs by means of arranging LGs on a two-dimensional,
discrete grid defined by the surface lattice, as illustrated in a. This designation im-
plicitly asserts that, even when molecules are closely packed, the molecule-molecule
interaction is not strong enough to alter the geometry of individual molecules or
push them out of their respective local minimum positions. This, in turn, implies
that the PES needs to be sufficiently corrugated so that local energy minima are
pronounced/deep enough.

1.2.2. Generating configurations

The process of generating configurations starts by constructing a list of all substrate
or surface supercells (SCs) whose cell areas, expressed in multiples of the primitive
unit cell area, fall into a specified range. Symmetries of the substrate and certain
constraints with regard to the unit cell shape are then applied to discard superfluous
cells and thus reduce the total number of SCs.

4



1.2. SAMPLE

The next stage of the algorithm is best described as a systematic attempt to fill each
supercell with different combinations and numbers of LGs.

It entails a layered, iterative process, that is executed for each supercell separately
and is illustrated in figure 1.1. The first layer consists of creating configurations
where a single molecule/LG sits at the origin of the cell. Next, it is attempted to add
a second molecule/LG to each of the one-molecule configurations. This is done by
systematically placing the second LG at some unoccupied grid point, followed by
checking the resulting structure for atom collisions.

For this, the distances dij between atoms i of the first molecule and atoms j of the
second molecule are compared against pre-selected minimal distance thresholds dAB

min,
which are defined for each atom species pair (A, B) separately3.

Configuration candidates that fail the collision check, i.e. that have any dij < dAB
min,

are discarded, the others are kept. This procedure is repeated with different LGs
until all possible two-molecule configurations are found. In a last step, the list of
collected configurations is scanned for symmetry-equivalent duplicates, which are
eventually filtered out.4

Going to configurations with three molecules per cell involves the same steps as
above, although this time the starting points are the two-molecule configurations.
In effect, this iteration allows, at least in theory, to construct configurations with an
arbitrary number of molecules. In practice, due to the exponential growth of the
number of configurations, the number of molecules per cell will usually hit an upper
limit rather quickly.

1.2.3. Energy model

After completing the generation of configurations, the next task is finding the
properties of said configurations/polymorphs. Particular interest is awarded to the
polymorphs’ energies, as they are needed to determine which polymorph is most
likely to form under certain conditions (pressure, temperature, etc.).

As shown by Bernstein [Bernstein2011] and Nyman [Nyman2015], energy differ-
ences between two polymorphs can be as low as 20 meV. Being able to calculate or
estimate these polymorph energies with high accuracy is therefore imperative for
reliable structure search.

3While the term atom species is usually equivalent to the chemical element of an atom, it can also
be used to distinguish atoms of the same element that are in different chemical environments that
influence their interactions.

4The methods that are used to detect these duplicates were developed by Lukas Hörmann in his
master’s thesis, see [Hoermann:masters-thesis].

5



1. Introduction

Unfortunately, as of now - and for the foreseeable future - quantum chemical
calculations that can deliver this level of accuracy are far too expensive to be run for
all of the millions of configurations that SAMPLE typically generates.

Instead, SAMPLE employs a physically motivated energy model to estimate energies
of configurations. The model is based on a Taylor expansion of the configuration
energy in terms of many-body interactions. Since 3-body and higher order terms
are expected to play only a small role in the formation of surface polymorphs, the
series is broken off after the two-body term. Hence, the energy of a configuration c
is described by

E[c] = ∑
LGs g

ng[c]Ug + ∑
pairs p

np[c]Vp . (1.1)

The first sum represents the one-body (i.e. molecule-substrate) interactions and runs
over all local geometries g. We can identify Ug with the energy of the interaction
between a single molecule in LG g and the substrate. The factor ng[c] simply denotes
how often each LG appears in c, or more accurately, in its unit cell. The second sum
runs over all possible pairs of molecules, with Vp being the two-body energy and
np[c] denoting the number of occurrences of pair p.

Both Ug and Vp represent model parameters which are not known a-priori. Thus, they
need to be determined by fitting equation (1.1) to measured/calculated configuration
energies.

For notational ease, the model parameters are collected in the interaction vector
ω = (U1, U2, . . . , V1, V2, . . . )T, whereas the corresponding number of occurrences, ng
and np, form the model vector n. As a result, equation (1.1) is simplified to

E[c] = n ·ω . (1.2)

For a set S of configurations, the model vectors can be combined to form the model
matrix X , in which each row represents a single configuration. Equation 1.2 then
becomes

E[S] = X ·ω . (1.3)

In order to better compare configurations with unequal numbers of molecules Nmol
in their unit cells, it is useful to define configuration energies on a per-molecule basis.
Unless stated otherwise, all configuration energies featured in this study conform to
this convention.

Even though higher order terms are neglected, equation 1.1, at this point, still
contains an infinite number of two-body parameters Vp due to the periodic nature of
the described polymorph. The path to making this problem tractable, as explained
in the thesis of Jeindl [Jeindl:masters-thesis], is footed on two pillars:

6



1.2. SAMPLE

Firstly, it can be assumed that at some large enough intermolecular distance the
strength of any two-molecule interaction becomes small and eventually falls off to
zero. We can therefore define an upper distance limit and omit all pair interactions
where the corresponding intermolecular distance is larger. This brings down the
number of model parameters Vp from infinity to a manageable, finite number. The
distance limit is enforced on an atom-pair basis via suitably chosen maximum distance
thresholds dAB

max, similar to the collision check mentioned before.

The second pillar consists of the assumption that interaction energies Vp of two
molecule pairs in similar arrangements will be correlated. This effectively reduces the
number of free/uncorrelated model parameters. In order to apply this assumption,
we need to define a measure for the similarity of two molecule pairs.

1.2.4. Identifying similar interactions: introducing the Feature
Vector

This line of thought brings us to the feature vector (FV), written as f. It represents the
arrangement of two molecules as a vector of (scaled) interatomic distances. Using
feature vectors, the similarity of two pairs of molecules, p1 and p2, can be quantified
via their distance in feature space, which is given by

d f (p1, p2) = ‖f1 − f2‖1 , (1.4)

where f1 and f2 are the corresponding feature vectors. Relatedly, two pair arrange-
ments are treated as the same feature, and thus are mapped to the same interaction
energy Vp, if the element-wise differences of their feature vectors are below a (user-
defined) feature threshold ∆ f .

Calculating f for a pair of molecules, g1 and g2, starts by determining atom pair
distances dij = |ri − rj|, where atom i is part of g1 and atom j is part of g2. These
distances are then grouped by involved atom species (A, B) and sorted in ascending
order. Within each group, the NAB shortest distances are kept while the rest is
discarded, as highlighted in figure 1.2. The remaining entries are then normalized by
the corresponding minimal distance threshold, dAB

min and subsequently exponentiated
by n, the (negative) decay power. This last operation has the effect that differences in
pair arrangement cause a greater separation in feature space when molecules are
closer. In the end, each entry in the FV has the form

fα(g1, g2) =


∥∥∥rA

i − rB
j

∥∥∥
1

dAB
min

n

. (1.5)
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1. Introduction

Figure 1.2.: Illustration of the feature vector of a pair of 1,4-diflourobenzenes. The thin lines mark
all intermolecular connections between peripheral atoms, in this case, F and H atoms.
Drawn in bold are the shortest atom-atom connections which subsequently appear in the
feature vector. Graphic based on [Jeindl:masters-thesis].

Per convention, the entries in the FV are grouped by atom species pairs, which gives
it a more intuitive structure, as is shown in equation 1.6.

f (g1, g2) =



( ∣∣∣rF
i −r

F
j

∣∣∣
dFF

min

)n

...( ∣∣∣rF
i −r

H
j

∣∣∣
dFH

min

)n

...( ∣∣∣rH
i −r

H
j

∣∣∣
dHH

min

)n

...



NFF entriesNFH entriesNHH entries

(1.6)

1.2.5. Learning interactions

Now that the definition of feature vectors is complete, the next step is to train the
previously introduced energy model on existing data with the help of Bayesian
learning [Todorovic2019] and Gaussian process regression (GPR) [Rasmussen2006a].
The core premise of the former lies in Bayes’ theorem, which, in the case of SAMPLE,
reads [Hoermann:sample-paper]

p (ω | EDFT) =
p (EDFT | ω) p(ω)

p (EDFT)
(1.7)

It states that the unknown posterior probability p (ω | EDFT) of having one- and
two-body interactions ω when having measured energies EDFT, can be written as a
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1.2. SAMPLE

product of two known probability distributions, namely the likelihood p (EDFT|ω),
which denotes the probability of measuring EDFT given specific model parameters
ω, and the prior p (ω), which describes the a-priori probability of finding specific
model parameters ω. The marginal probability p (EDFT) serves as a normalization
of the posterior probability, but is assumed to be constant and can therefore be
neglected. The functional form of the likelihood,

p (EDFT|ω) ∝ exp

(
− 1

2σ2
model

‖EDFT − Xω‖2

)
, (1.8)

is determined by the energy model and the DFT reference energies EDFT. Here,
the term σmodel denotes the model uncertainty, which may be seen as the uncertainty
of the DFT calculations. The prior can be used to insert physical knowledge about
the system into the model, thereby rendering this in principle under-determined
problem solvable. Hörmann et al. proposed using a normal distribution with mean
ω0 and covariance matrix C,

p(ω) ∝ exp
(
−1

2
(ω−ω0)

T C−1 (ω−ω0)

)
, (1.9)

as prior, where the covariances Cij are assumed to depend on the distances in feature
space via

Cij = σ∗i σ∗j exp

−
∥∥∥ f i − f j

∥∥∥
1

ξ

 . (1.10)

The factors σ∗i and σ∗j each describe the decay of the corresponding two-body
interaction at large intermolecular distances, while ξ defines a characteristic length
scale in feature space and is known as the feature correlation length.5

When both prior and likelihood are Gaussians, equation 1.7 tells us that the posterior
probability also takes the form of a Gaussian, namely

p (ω | EDFT) ∝ exp
(
−1

2
(ω− ω̄)TC−1

post(ω− ω̄)

)
. (1.11)

In this equation, the posterior covariance C−1
post is equal to

C−1
post =

X>X
σ2

model
+ C−1 (1.12)

5For a complete list of all hyperparameters of SAMPLE, see table 2.1

9



1. Introduction

and the posterior mean ω̄ is given by

ω̄ = Cpost

(
XTEDFT

σ2
model

+C−1ω0

)
, (1.13)

where σmodel is the model uncertainty. Training the model and learning the interactions
thus means calculating ω̄ and using the expectation values for the one- and two-body
interactions that are contained in ω̄ as estimators for the real interaction energies.

1.3. Determining reference energies

Training SAMPLE’s energy model (see 1.2.3) and evaluating the prediction un-
certainty (see section 2.2) requires knowledge of reference energies Ere f for certain
configurations. Under normal circumstances, these energies will be supplied by
some type of electronic structure method.

In the present thesis, it was chosen to employ density functional theory (DFT), which,
over the last decade(s), has become the de-facto standard method for electronic
structure calculations, especially in solid state physics and the material modelling
world [Maurer2019].

From the start, SAMPLE was conceived to work in tandem with DFT, therefore, DFT
will naturally also be used in this study. In addition to that, DFT can be easily applied
to both periodic and non-periodic systems, as is required in order to calculate the
corresponding monolayer formation energy (EMLF) via equation 2.2.

While there are many quantum chemistry packages that facilitate DFT calculations,
such as Quantum ESPRESSO [QE-2009, QE-2017], VASP [Kresse1993, Kresse1996],
ORCA [Neese:ORCA-paper] or GAUSSIAN [gaussian16], to name a few, we chose
to use FHIaims [Blum:aims-paper], short for Fritz Haber Institute ab initio molecular
simulations.

FHIaims is an all-electron code that uses atom-centered orbitals as basis functions,
whose radial part is defined numerically. With this freedom in the choice of the
radial functions we can construct basis functions that take the 1/r-potential near
the nuclei into account and whose degree of localization can be controlled freely in
order to reduce the number of costly overlap integrals (cf. [Blum:aims-paper]).

For more details and information on the specific calculation settings used in this
thesis, the reader is referred to section 2.5.
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2. Methodology

2.1. Requirements for structure search algorithms

In order to be able to rate the capabilities of a structure search algorithm, we first
need to establish a set of criteria that a “good” algorithm has to meet. While there a
certainly many ways to define these, in this thesis we will pose the following three
requirements:

1. High prediction accuracy
2. Reasonable computational cost
3. Robustness

Ad) High prediction accuracy First and foremost, the algorithm should be able to
generate structures and select those which are best with respect to a desired property
or properties. In order to correctly identify the best configurations, the algorithm
must be capable of calculating or predicting the value of these properties with high
confidence.

Ad) Computational cost In an ideal world, where computational resources are
infinite and cost-free, the quality of a structure search algorithm would only be
gauged based on whether it is able to find the best possible structure or not. In
the real world, however, an algorithm also needs to be efficient, affordable and
(optimally) fast to be usable.

Ad) Robustness In order to become a reliable tool in practice, the performance of
a structure search algorithm, as determined by the first two requirements, should
not vary wildly between different applications. If performance does vary, it should
at least be in a predictable way, so that it is possible to estimate the costs of running
the algorithm in advance and weigh them against the potential reward in terms of
gained insight and knowledge.

In the scope of this thesis, an algorithm (i.e. SAMPLE) will be considered robust if
for all tested systems we can establish that:
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2. Methodology

a) Configuration energies can be predicted with an uncertainty of less than 25 meV
per molecule.

b) The computational effort needed to reach this level of prediction accuracy
can be estimated and overall stays reasonable. In case of SAMPLE, where
the compute cost is mostly determined by the number of DFT calculations
needed to provide training data, it is decided to set the limit for what is seen
as reasonable to 500 calculations.

2.2. Quantifying learning performance

To assess the learning performance of SAMPLE for different systems in accordance
with section 2.1, we need to define the “accuracy” of predictions in a quantifiable
way. This includes devising a process which assures that this quantity is measured
or, more precisely, calculated consistently in all cases. The following subsections 2.2.1
and 2.2.2 are going to discuss these two aspects, while subsection 2.2.3 introduces
some additional terms that are helpful in the analysis of learning performances.

2.2.1. Prediction uncertainty

This quantity should represent SAMPLE’s ability to predict configuration energies
(more concretely: monolayer formation energies EMLF) for all possible configurations.
Unluckily, due to practical restrictions, i.e. limited compute resources, we are usually
going to be unable to calculate the difference between predicted energy and actual
(DFT-) energy for all configurations. Therefore, we analyze the configuration-wise
prediction errors ∆EMLF = Eprediction − EDFT on a smaller subset of configurations
instead, which we will call the test set Stest. For this subset we can then define the
prediction uncertainty γ as the root mean square error (RMSE) of the ∆EMLF via

γ[Stest] = RMSE[Stest] =

√
1
N ∑

config c∈ Stest

[
Eprediction(c)− EDFT(c)

]2 . (2.1)

Assuming that Stest is a representative sample of all configurations, its γ value can
then be used as a measure for the general prediction uncertainty. As such, it becomes
an inverse quantifier for the prediction accuracy of SAMPLE.
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2.2. Quantifying learning performance

Figure 2.1.: Graphical representation of steps between generation of configurations and selection of
training sets.

2.2.2. Evaluation workflow

Evaluating the prediction uncertainty (see section 2.2.1) follows the same scheme for
all test systems. In every case, the starting point is a fully configured SAMPLE setup1,
which is then used to generate a suitably large set of configurations with varying
coverages θ. In this thesis, the coverage is varied between 6 and 16 primitive lattice
unit cells - or equivalently, substrate atoms - per test molecule. Based on the lattice
constant of the selected virtual hexagonal lattice (which is introduced in section 2.4),
this corresponds to values of 33.858 Å2/molecule to 90.289 Å2/molecule.

Another factor that decides the range of possible configurations is how many test
molecules we allow per supercell, since, as explained in section 1.2, adding an
extra molecule increases the total number of configurations exponentially. When
performing global structure search, such as looking for the structure with lowest
energy, we generally want to make the search space as large as possible or feasible.

However, as this thesis just focuses on intermolecular (two-body) interactions, we
only require that the generated configurations feature all possible relative orienta-
tions of two molecules, given of course certain restrictions on supercell size and a
discretization with regard to molecular rotations. With that in mind, there is actually
no benefit in generating configurations with more than two molecules per supercell
as those configurations do not feature any two-body arrangements that are not found
in configurations with one or two molecules per supercell.

For settings as above and test molecules as described in section 2.4, SAMPLE’s

1internally referred to as project; see section 2.4 for details.

13
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generation process2 yields approximately 5× 104 to 3× 105 configurations for each
test system. All configurations for a system are aggregated in one configuration set,
Sall. The actual number of configurations depends on the size and, more importantly,
the symmetries of each test molecule.

The subsequent step after the generation process is illustrated in figure 2.1 and
consists of selecting approximately 1000 configurations from Sall for which single
point DFT calculations in FHIaims are executed. These configurations, collectively
known as the set SDFT, and the associated calculations are the basis for all subsequent
evaluations, their selection should therefore be well motivated.

Firstly, SDFT should represent a diverse sampling of Sall. Secondly, in order to give
comparisons between different systems a solid footing, the choice of SDFT should be
deterministic to avoid the effect of randomness.

Both criteria are met by building SDFT according to the principle of D-optimal design
of experiments [Fedorov1972]. Doing so makes sure that, as a collective, the selected
configurations in SDFT contain the most diverse set of two-molecule arrangements
possible.

The actual evaluation starts when the results for the DFT calculations are in. First, the
EMLF of each configuration c is determined from the corresponding DFT calculation
via

EMLF(c) =
1

Nmolecules
Econfig − ESM , (2.2)

where Nmolecules is the number of molecules per supercell, Econfig is the total (single-
point) energy of the configuration and ESM is the energy of a single isolated molecule.
At this point, it should be noted that Econfig stems from a periodic and ESM from a
non-periodic FHIaims-calculation3.

Next, the SDFT set is split into a test set Stest and the training pool Spool. The test set is
used to evaluate the learning performance via equation 2.1. For consistency reasons,
Stest always contains 200 configurations. The size of Spool on the other hand varies
depending on the size of Sall. As the name suggests, Spool is the pool of configurations
from which training configurations are drawn and assigned to training sets Strain,
which are then used to train SAMPLE’s energy model via GPR, as discussed in
section 1.2.5.

2see chapter 1.2
3For more computation settings, see section 2.5.
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2.2. Quantifying learning performance

2.2.3. Analysis tools and performance markers

Learning curve The core strategy for gaining insight into how well/badly certain
systems can be learned with SAMPLE will be to look at how SAMPLE’s prediction
uncertainty γ evolves with an increase of the amount of training data inserted into
its energy model. This evolution of γ as a function of the training set size x will be
called the learning curve γ(x). The algorithm that is used to compute all learning
curves is depicted in figure 2.2.

It consists of a simple for-loop, that iterates over a list of targeted training set sizes
xn, which are usually evenly spread between some xstart and some larger xend < xpool ,
i.e xn = xstart + n∆x, with ∆x being a suitable increment and xpool the total number
of available training configurations in the training pool.

For each xn, a training set Sxn
train of corresponding size is drawn D-optimally from Spool

and subsequently used to train the energy model. Based on this - now trained - model,
we then predict EMLF for all test set configurations. Comparing these predicted
energies to the ones calculated by DFT via equation (2.1) then gives the prediction
uncertainty for that training set size, γ(xn).

By repeating these steps for all xn, we generate the learning curve γ(x). It should
be noted that it is important to always reset the model to an untrained state upon
entering the next iteration to prevent training data from the previous step from
influencing the learning performance.

Start: x0 = xstart

Draw training set of size
xn from training pool

Train model

Predict MLF-Energies of
test set configurations

Calculate prediction uncertainty γ(xn)

n ≥ N ? Learning curve γ(x) complete

n = n + 1

Reset model
no yes

Figure 2.2.: Algorithm for computing a learning curve. Training set sizes xn are usually chosen
linearly, i.e xn = xstart + n∆x, with ∆x being a suitable increment. The maximum training
set size is naturally given by the size of the training pool Spool .

An example of what a learning curve usually looks like is featured in figure 2.3. The
same figure also highlights tools and quantities that serve to analyze and interpret
the learning curve.
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training set size

RM
SE

 / 
m

eV

xrequired

acceptance threshold

model error Esys

double exponential fit
learning performance

Figure 2.3.: Illustration of a learning curve and related quantities. Drawn in blue with a thick stroke is
an exemplary learning curve. The dotted gray line in the back is a double exponential fit
to said learning curve. Notice how for large training set sizes, the fit function approaches
the model error, marked by a dash-dotted magenta line. Also depicted are the acceptance
threshold (green, dashed line) and the required training set size (xrequired, denoted by a
vertical green line).

Acceptance threshold Defines the level of prediction uncertainty that a SAMPLE
run needs to fall below of in order to be considered a success in terms of prediction
accuracy. For this thesis, it is decided to set an acceptance threshold of 25 meV, which
is close to 1 kBT for systems at room temperature. In the exemplary plot in figure
2.3, the acceptance threshold is depicted as a green dashed line.

Required training set size Denoted as xrequired, it marks the (approximate) number
of training configurations that is needed to achieve a RMSE that is equal to or
lower than the acceptance threshold. In this thesis, we will identify xrequired with the
smallest training set size x for which the measured γ(x) is below the acceptance
threshold.

Pair potentials Generally speaking, a pair potential is a way of visualizing the
interaction between two (identical) molecules of a function of their (relative) positions
and orientations. We can formally write the corresponding pair interaction energy
Φpair as

Φpair = Φpair(rA, rB, ϕ̂A, ϕ̂B) , (2.3)
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where rA and rB are the positions of the (symmetry-)centers of A and B, whereas
ϕ̂A and ϕ̂B describe the orientation of each molecule. Since this thesis focuses on
free-standing monolayers, we will assume that both molecules are centered in the
xy-plane, which we interpret as the plane of the monolayer.

Let x̃(A)
i be the position of i-th atom of molecule A relative to the center of that

molecule. We can then define a matrix X̃A, whose rows represent the molecule-
centered positions of all atoms in A. Subsequently, its absolute atomic coordinates
x(A)

i can be represented as a matrix

XA = rA I + X̃A , (2.4)

with I being a 3x3 identity matrix. The same can be done for molecule B.

Next we express the position and orientation of B relative to that of A. For this, we
let ΛAB be the unitary transformation which moves molecule A into the orientation
of molecule B by mapping the molecule-centered coordinates of A onto those of B:

X̃B = ΛABX̃A . (2.5)

Together with rAB = rB − rA, the above leads to

XB = rB I + X̃B = rAB I + ΛABX̃A + rA I . (2.6)

Lastly, by fixing molecule A to the origin of our reference frame, we achieve rA = 0
and can define Φpair as

ΦAB
pair = Φpair(rAB, ΛAB) , (2.7)

where rAB = (xAB, yAB, 0)T is effectively two-dimensional.

Mapping out this pair potential generally consists of the following steps:

1. put one molecule into a defined orientation and place it at the origin of a
two-dimensional reference frame

2. orient molecule B relative to molecule A and place it at some position r = (x, y),
so that the molecules do not collide and determine the energy of this arrange-
ment

3. keeping its orientation fixed, systematically move molecule B around and
record the energy as a function of r

4. Repeat steps (1) and (2) for different orientations of molecule B (=different
ΛAB)
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The procedure above is the basis of how pair potential maps are constructed in
the framework of SAMPLE. Based on the definition of SAMPLE’s energy model in
equation 1.1, it can be seen that the energy of a pair arrangement (r, Λ) is equivalent
to one of the two-body energy parameters Vp and can therefore, in theory, be easily
extracted from the trained model.

In practice, the number and type of pair arrangements for which Φpair can be
determined as described above, are controlled by the number of local geometries
and the underlying virtual lattice (as introduced in section 1.2). The possible values
for (r, Λ) also depend on the chosen minimum and maximum distance thresholds,
dmin and dmax respectively, as discussed in section 2.3.

2.2.4. Interpreting learning curves

In order to estimate the systematic model error δEsys, an attempt was made to
quantify at which training set size the prediction accuracy flattens out and becomes
stationary or even starts to worsen because of overfitting. At first it was tried to define
such a potentially stationary regime, dubbed a learning plateau, as the interval where
the slope of the learning curve stays below a certain threshold. As the prediction
accuracy is only known at discrete set sizes xn and because it does not decrease
strictly monotonically, two alternative definitions for the learning plateau were
explored. The first, ∣∣∣∣γ(xn+1)− γ(xn)

xn+1 − xn

∣∣∣∣ = ∣∣∣∣∆γ

∆x

∣∣∣∣ < ε , (2.8)

is based on the absolute slope of γ while the second,∣∣∣∣ 1
γ(xn+1)

γ(xn+1)− γ(xn)

xn+1 − xn

∣∣∣∣ < ε , (2.9)

is based on the relative change of γ. Unfortunately, both definitions turned out to be
not very reliable: the extent of the calculated learning plateaus was highly dependent
on the value of ε, rendering the result somewhat arbitrary and susceptible to noise
in the data.

To better control the influence of apparently noisy data, the thresholding approaches
via equations 2.8 and 2.9 were discarded in favor of fitting the learning curves with
a suitable model. With the assumption that the prediction accuracy is bounded by
the systematic error δEsys, the general form of this model function is

γ f it(x) = δEsys + f (x) , (2.10)
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where f (x) is monotonically decreasing and is restricted to [0, ∞). The actual choice
of f (x) was motivated by a visual analysis of several learning curves. As demon-
strated exemplary in figure 2.4, it was found that if a suitable estimate for the model
error δEsys is subtracted from the learning curve, the resulting curve appears to be
made up of two approximately linear sections when plotted semilogarithmically.
This behavior is similar to that of a linear combination of two exponential functions
e−x/λ1 and e−x/λ2 given that λ1 is significantly larger than λ2. Due to this similarity,
we define f as

f (x) = K1e−
x

λ1 + K2e−
x

λ2 . (2.11)

Combined with (2.10), the full learning curve fit model then reads:

γ f it = δEsys + K1e−
x

λ1 + K2e−
x

λ2 , (2.12)

with λ1 > 0, λ2 > 0, K1 > 0 and K2 > 0. To avoid ambiguity between the λ- and K-
parameters, we further require that K1 > K2 and λ1 < λ2. By doing so, we effectively
link K1 and λ1 to the fast decrease of prediction errors at the start of each learning
curve, while assigning K2 and λ2 to the slowly decaying part for large training set
sizes.

The task of finding the best parameters of (2.12) for a specific learning curve is
solved via non-linear least-squares optimization, whose basic premise is minimizing
a weighted sum of residuals ri = y f it − ydata:

χ2 =
N

∑
i

wir2
i =

N

∑
i

wi

(
γ f it − γdata

)2
. (2.13)

The weights wi control the impact of individual residuals ri. In the most generic
case, uniform weights (∀wi = 1) are used and all data points are treated equally. For
a more sophisticated approach, the weights can be set to wi = 1/σ2

i to reflect the
uncertainty of each data point. For the case at hand, we unfortunately do not know
the variances σi, but we are going to assume that they are proportional to the data
value:

σi ∝ γi . (2.14)

By doing so, we effectively assign more weight to the tail of each learning curve.
This is intentional as these data points are assumed to contribute more information
with regard to the model error δEsys than data points for small training set sizes.
This choice of weights also corrects the large mismatch in magnitudes between data
points from the beginning and those from the end of the learning curve.

Last but not least, it should be noted that different weighting schemes were used
to fit artificial learning curves4, where it was observed that the the data-dependent
approach mentioned above yielded the most consistent fits.

4data was based on equation 2.12 plus random noise
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Figure 2.4.: Visual analysis of a learning curve for test system l1-tm2 (C3h). Drawn with black ’x’s
is the curve that results from subtracting an estimate for the model error δEsys from
the measured learning curve. In this semilogarithmic depiction, the curve appears to
consist of two (approximately) linear sections with significantly differing slopes, with the
transition around a training set size of ≈ 80. This observation motivates choosing f (x) in
equation 2.10 as the sum of two exponential functions. The corresponding (optimized)
fit function f f it(x) is drawn as a solid green curve, with green dashes representing the
extrapolation to points beyond the fitted data range.
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2.3. Setting model hyperparameters

Besides the one- and two-body interaction energies, which directly enter into
SAMPLE’s model and can be determined from training data, there are several
other parameters which need to be set a-priori. These hyperparameters (HPs) control
the behavior of the model in general. Table 2.1 lists different types of HPs and
describes their significance.

Table 2.1.: Hyperparameters of SAMPLE
Parameter name Symbol Description
one-body
interaction
uncertainty

σ1−body estimated uncertainty of one-body energies Ug

two-body
interaction
uncertainty

σ2−body
estimated uncertainty of two-body interaction
energies Vp

DFT uncertainty σDFT estimated uncertainty of DFT calculations

feature
threshold ∆ f

sets the maximum separation in feature space
which two FV can have and still be considered
equal

feature
correlation
length

ξ
characteristic length scale in feature space, see
equation 1.10

decay power n controls decrease of feature vector entries as a
function of the inter-atomic distance

real space decay
lengths τAB control the distance above which the two-body

interactions converge to their prior mean

maximum
distance cutoff dAB

max

maximum interatomic distance up to which an
atom pair of species A and B is considered in the
FV

minimal
distance
thresholds

dAB
min

minimum allowed distance for atoms of species A
and B; structures with smaller interatomic
distances are deemed unstable due to high Pauli
repulsion

While four of the seven HPs are just scalar values, the rest, namely the real space
decay lengths τAB and the maximum/minimum distance thresholds, dAB

max and dAB
min,

can actually be defined separately for each pair of atom species (A, B). Hence
there can be much more than just 7 individual HPs. For the test systems featured
in this thesis, it was chosen to only define the minimal distance thresholds on a
per-atom-species basis, setting scalar values for all other HPs.
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Table 2.2.: Optimized hyperparameters used for all test systems
Parameter Value

σ1−body 100 meV
σ2−body 100 meV
σDFT 5 meV
∆ f 0.005
ξ 3.0
n −3
τ 3 Å

dmax 16 Å

With the exception of minimum/maximum distance thresholds, which have to be
known prior to generating configurations, selecting an appropriate value for an HP
can be done more easily by taking a mid-sized set of configurations (≈ 100 structures)
backed by DFT calculations and trying to minimize the prediction error by varying
said HP. This approach was used to set all single value HP, except for the maximum
distance threshold dmax, which was manually set to 16 Å.

After it was found that most of the first batch of test systems (level-1 and level-2
systems, see sections 3.3 and 3.4), shared the same set of optimized hyperparameters,
it was decided to forgo hyperparameter optimizations for all later systems based
on the assumption that this set of hyperparameters would be suitable for all test
systems due to their overall structural similarity. Table 2.2 below lists the values of
these hyperparameters.

The attentive reader will have noticed that the minimal distance thresholds dAB
min are

missing in table 2.2. They are omitted on purpose, for once, due to a lack of space,
but also to highlight that these hyperparameters are determined through a different
process, which is elaborated in the next section.

2.3.1. Defining minimal distance thresholds

As briefly discussed in section 2.3, the minimal distance thresholds dAB
min set the lower

limit of how close two atoms of species A and B can be in a SAMPLE-conforming
polymorph. These limits were introduced to avoid generating configurations that
can be expected to be unstable due to the appearance of highly repulsive interactions
based on Pauli exclusion. An example of this behavior is depicted in figure 2.5.

As the repulsive contribution rises continuously with decreasing distance, there is
no obvious point where the threshold should be put and thus this choice is left
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to the user. Jeindl [Jeindl:masters-thesis], for instance, positioned two molecules5

in such a way that a specific pair of atoms were most likely to interact and then
varied the intermolecular distance and calculated interaction energies at each point.
This resulted in curves similar to those depicted in figure 2.5, one for each type
of atom species pair (A, B). Based those he determined the atom-atom distance
where the repulsive interaction energy (per molecule) would cancel out the attractive
adsorption energy.

It was decided to replicate this approach for the thesis at hand, albeit with two
adaptations. Firstly, since all test systems represent free-standing monolayers, there
is no interaction with the substrate and hence the adsorption energy is not defined.
Instead it was decided to set each dAB

min in such a way that the maximum repulsive
interaction energy is no more than 500 meV per molecule and per interacting atom
pair.

The second adaptation is based on the desire to have test systems with multiple,
varied functional groups. Upon realizing that finding reasonable minimal distance
thresholds through running distance sweeps, like the one presented in figure 2.5,
for all appearing atom species pairs would be time-consuming, it was decided
to estimate the dAB

mins instead based on the sum of the van-der-Waals radii of the
involved atoms:

dAB
min = β

(
rA

vdW + rB
vdW

)
(2.15)

Here, rA
vdW and rB

vdW are the van-der-Waals radii of atom A and atom B, while β is
an empirical factor which is chosen so that equation (2.15) fits the results of distance
sweeps for several different atom species pairs.

When it was tried to fit β to the results of dmin-sweeps for different atom pair
combinations, with calculated curves depicted in figures A.1 and A.2, it was noticed
that no single value for β resulted in reasonably good agreement for all tested cases.
Instead, the observation was made that the tested combinations could be divided
into two distinct groups. The first and also larger group consisted of atom pair com-
binations that, when compared to the rest, were more repulsive. This encompasses
pairs such as O-Br, O-F and F-Cl, as well as all homogeneous combinations like O-O,
F-F, Cl-Cl etc. The dmin for these repulsive atom pairs could be well estimated by
inserting a value of β = βrep = 0.65 into equation 2.15. The remaining atom pairs
were found to allow for smaller dmin and could be well characterized with a value
of β = βatr = 0.55. Examples for these attractive atom pair combinations were O-H,
Br-H and F-H.

There was, however, one outlier in this group, namely the combination O-H. While
the corresponding sweep suggests a dOH

min of 1.35 Å, the empirical formula returns

5
1,4-Benzoquinone in his case
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Figure 2.5.: How to select minimal distance thresholds

a relatively high value of 1.50 Å, which would effectively cut off potentially valid
interactions. Contrasting this with the data for F-H and Br-H pairs, where the
difference between calculated and estimated dmin is much smaller, it seems that the
strong attractive component of the O-H interaction allows the atoms to be closer
than would be expected based on the respective van-der-Waals radii.

Based on the tested atom combinations, the difference in dmin between attractive and
repulsive atom pairs seems to come down to the fact that the tested attractive pairs
combine an electron donor atom (always H) with an electron acceptor atom with
high electronegativity. This allows the formation of hydrogen bridges, which partly
negates the repulsive Pauli exclusion interaction.

2.4. Designing test systems

The path towards answering the main research question of this thesis starts with
defining feasible test systems. As discussed in section 1.2, in the framework of
SAMPLE, any target system is made of two parts: an adsorbate molecule and some
kind of substrate on whose surface the former is placed. Both parts need to be chosen
in a way that allows the four testing scenarios introduced in chapter 1.1 to be carried
out.

2.4.1. Virtual lattice

Since the focus of this thesis lies solely on molecule-molecule interactions, there is
actually no need to incorporate a real substrate into our test systems. And because
every theoretical physicist should strive to be efficient in their use of computational
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2.4. Designing test systems

resources, we will thus avoid a lot of unnecessary compute effort by using a purely
virtual lattice instead. All test systems therefore represent free-standing molecular
monolayers, as depicted in figure 2.6. The virtual lattice for this thesis is based on a
Cu(111) surface. With copper inhabiting a face-centered cubic (fcc) crystal structure,
this makes the virtual lattice a two-dimensional hexagonal lattice. Its lattice constant
a is set to 2.553 Å.

Figure 2.6.: Definition of a test system as a molecular monolayer. The graphic on the left illustrates a
monolayer on a Cu(111) substrate, which serves as the base for the actual virtual lattice
used in SAMPLE. The graphic on the right shows only the monolayer.

2.4.2. Test molecules

Creating the test molecules was preceded by setting several design goals. These
were:

• All test molecules should be derived from a common, simple base structure
• Small molecules are preferred to reduce compute costs
• Molecules should be (mostly) flat in order to focus on in-plan interactions
• Test molecules should be chemically sound, although they do not need to exist

in the real world
• It should be possible to prepare test molecules for specific test scenarios by

adding functional groups to the base structure

In the end, it was decided that the goals above are best met by using a planar ring of
carbon atoms as the base unit for all test molecules.

2.4.3. Local geometries

As explained in section 1.2, in order to apply SAMPLE, we need to assign one or
more SILGs. These define the positions and rotations relative to the (virtual) lattice,
that a molecule can inhabit. Therefore, they control the level of detail with which
molecular arrangements can be represented in SAMPLE.
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2. Methodology

For this work, it is decided to place molecules onto three distinguishable positions
in the unit cell. Written in relative lattice coordinates, these positions, i.e. adsorption
sites in usual SAMPLE terminology, are: top at (0, 0), hollow-1 at (0, 1/2) and hollow-2
at (1/2, 1/2). Through this definition, we effectively achieve a spacing of half the
lattice constant.

With regard to the second factor, rotations, the aim is to define enough local geome-
tries to assure that all distinguishable orientations of the test molecule with an angle
increment of 30◦ can be realized. The number of LGs for each system is thus based
on the (rotational) symmetry of each test molecule, with low-symmetry molecules
requiring more LGs than high-symmetry ones.

2.5. DFT calculation settings

All calculations for this thesis, for periodic as well as for non-periodic systems,
are run with Fritz Haber Institute ab initio molecular simulations (FHIaims) using the
Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional[PBE1996], with multi-
pole correction and van-der-Waals corrections (TSsur f [Tkatchenko:TSsurf]) enabled.
FHIaims’ “tight” default species settings6 are used as basis set definitions.

The two-dimensional nature of the targeted molecular monolayers is handled via a
repeated-slab approach, i.e. by setting the height of the unit cell in the (non-periodic)
z-direction large enough, so that there is no more interaction between the monolayer
and its periodic images. In the present thesis, a unit cell heigh of 100 Å is used.

Even more impactful than the height of the unit cell is the choice of the reciprocal
lattice points k (k-points) for which the KS-equations (see 1.3) are solved. The
calculations at hand employ uniform, Γ-point centered k-point grids spaced along
the reciprocal lattice vectors v1, v2 and vz.

To conform with the repeated-slab approach, only a single k-point is chosen in the
z-direction, i.e. perpendicular to the surface. The number of k-points in v1- and
v2-direction, n1 and n2 respectively, are set for each calculation individually and in
dependence of the shape of the corresponding supercell in order to yield a k-point
density of (approximately) 36 k-points per primitive substrate unit cell.

Additionally, a dipole correction via the introduction of a virtual dipole layer is
enabled for all periodic calculations to account for any net polarization of the mono-
layer. For a complete listing of all computation settings, please see the exemplary
control files for both periodic and non-periodic calculations in appendix B.

6These basis set settings are included in a FHIaims installation. They can be found under
fhi-aims/species defaults/tight.

26



3. Results and Discussion

This chapter is going to discuss the setup and reasoning behind each of the four test
levels, followed by a presentation and an interpretation of the achieved results.

3.1. Influence of test set selection

When using equation 2.1 to measure the prediction accuracy, we have to be aware
of the fact that the choice of the test set Stest will inadvertently influence the result.
Naturally, this prompts the question of how to best allot configurations to Stest. In
order to show the range of influence that this choice can have, we will take a look at
three edge cases:

Option A: Draw test set D-optimally
Option B: Draw training pool D-optimally
Option C: Draw test set randomly. Repeat multiple times and average

For each of these three options, we determine the learning curves (see 3.3) by drawing
training sets of increasing sizes from the respective Spool, training our energy model
and then using Stest to get a value for the prediction uncertainty. In the case of option
C, we measure multiple learning curves, each based on a different randomly drawn
test set. The obtained RMSE values are then averaged point-by-point to yield a single
learning curve. The variance of this average curve is estimated by the respective
root-mean-square errors for each training set size.

Figure 3.1 compares the measured learning performance in these three cases for
a specific molecule (l4-NH). We see that choosing the test set via option A results
in the highest RMSE, whereas option B produces the lowest value. Except for very
small training sets (50 configurations), the “averaged” prediction uncertainty (option
C) falls within the values for options A and B. It should be noted that the curve
for option C is the average of just five separate learning curves. This rather small
sample size naturally reduces the significance of associated averages and standard
deviations.

The better performance of A with respect to B can be explained by the amount
of information that is contained in the configurations of their respective training
pools, SA

pool and SB
pool. In the context of SAMPLE, the information content of a
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3. Results and Discussion

configuration set is linked to the number of distinguishable features which can
be found in the configurations that constitute the set. In more general terms, an
information-rich configuration set contains a wide array of interaction pairs with
a large variation in pair orientations and distances relative to its size. Thus, such a
“diverse” configuration set allows sampling the overall PES better compared to a less
information-rich set of comparable size.

Building a configuration set by drawing configurations based on a D-optimality
criterion [Fedorov1972] assures that the most important configurations are allotted
to the set, thereby providing it with the highest possible information density. In the
case of option B, the training pool is such a D-optimally drawn set. Since test set
and training pool are disjunct by design, i.e. do not share any configurations, the
test set SB

test will be comprised of configurations with a lesser degree of variability
than SB

pool. Thus, its information density will be low, making SB
test an “easy” test set.

Consequently, a model that is trained on subsets of SB
pool should receive enough

information to predict energies of the test set configurations fairly well.

The opposite is true for option A. Here, the test set SA
test is drawn D-optimally, which

makes it a “hard” test set. What is more, this choice leaves only the least important
configurations for SA

pool. Because of this, SA
pool will provide less information for the

training sets/the model than SB
pool. In combination with the higher information

density of SA
test compared to SB

test, this explains why the prediction accuracy in case
B turns out better than in case A. By the same logic, we can interpret case C as an
intermediate between options A and B. For each of the multiple evaluations, the
information content of the test set SC

test (and training pool SC
pool) is determined by

chance, but it will never be lower than that of SB
test (SA

pool) or higher than that of
SA

test (SB
pool). It is therefore not surprising that the average prediction uncertainty for

case C, γavg, lies between the values for A and B. We can hence identify option
A as the worst-case scenario whereas yields an upper bound for the prediction
uncertainty, γworst, while option B represents the best-case scenario, with γbest as the
lower limit.

To get a more complete picture, the three test set selection modes were benchmarked
on an array of 16 test systems, which are formally introduced in section 3.6. Figure
3.2 shows a comparison between measured prediction uncertainties γA, γB and γC

of the different systems, each for a training set size of 700. We observe that for most
of the discussed systems, the type of test set influences the measured γ similarly to
what is seen for l4-tm1, i.e. that “type A” test sets yield nominally better γ than “type
B” ones. Still, we can find a system where this order is actually flipped as well as
three systems, l4-CN, l4-CO and l4-NH2, where there is only a very small difference
between γA and γB.
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3.1. Influence of test set selection

Figure 3.1.: Influence of test set on achieved prediction accuracy. Compares learning curves for
molecule l4-NH where the test set was chosen in three different ways (A, B and C). The
difference between the selection methods is explained in the main text.

Figure 3.2.: Comparison between different types of test sets for all level 4 molecules (see 3.6). Drawn
are the achieved prediction accuracies γA(blue squares), γB(orange dots) and γC(green
dots with errorbars) for training sets with 700 configurations.
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A detailed look at the distribution of prediction errors ∆EMLF for type A and type
B test sets reveals that when there is a significant difference between γA and γB,
then the prediction error distribution of the worse performing test set most often
contains strong outliers (more than 2σ deviation). When these outliers are excluded,
the RMSEs decrease, sometimes even drastically, and become closer in value.

Now that the influence of the test set selection is understood, the only thing left is
to decide which type of test set(s) should be used going forward. From a statistical
standpoint it would probably be best to go ahead with option C since it allows
specifying the average learning performance and the corresponding confidence
interval. It comes, however, with the disadvantage of a relatively high computational
demand when compared to option A and B. As this whole thesis is focused on testing
as many systems as possible, we want to keep compute effort low and therefore we
are going to dismiss option C.

The choice between the two remaining options, A and B, comes down to the question,
whether we want to determine the worst-case (A) or the best-case (B) learning
performance. Although selection mode A might be a safe choice, as it will generally
give a conservative estimate of the prowess of SAMPLE, we are still going to choose
the test sets via method B. This decision is motivated by the fact that approach B is
the one most similar to how we would use SAMPLE in an actual production scenario,
as, in practice, we would train on the most important configurations.

3.2. Evolution and convergence of pair potentials

As discussed in section 2.2.3, for the most part, we analyze the learning performance
of our model by means of discussing learning curves like the one displayed in
figure 2.3. While this approach is sound from a mathematical and statistical point of
view, it is somewhat hard to conceptualize intuitively how the model improves as
more training data is added. One alternative to learning curves, that presents the
learning/training process in a more accessible and visual fashion, is to look at the
evolution of intermolecular or pair potentials, as defined in section 2.2.3.

Figure 3.3 shows how the pair potential of two test molecules (both l4-NH) develops
as the training set size is increased and relates this evolution to the correspond-
ing learning curve. We observe that Φpair oscillates wildly for small training sets,
most notably changing from overall attractive to repulsive and back again in the
progression of 10, 20 and 30 training configurations. From a set size of around 100

configurations onward, the variations of Φpair quickly die down. Upwards of a set
size of approximately 260, the potential appears to have more or less converged, at
least qualitatively, as seen from the comparison with the pair potential map based
on 700 training configurations.
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(a) Learning curve of the NH system

(b) Pair potential evolution

Figure 3.3.: Pair potential evolution. Panel (b) depicts the evolution of the intermolecular potential of
a pair of test molecules (l4-NH) as a function of the training set size. Panel (a) shows the
corresponding learning curve. Position and orientation of the central molecule are fixed
and the second molecule is drawn in the most favorable relative position. Points in the
learning curve that correspond to the featured potentials are marked with red dots in
panel (a)
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3. Results and Discussion

3.3. Level 1: Impact of molecular symmetries

Due to the nature of the feature vector (see section 1.2.4), the number of fit coefficients
(=interaction energies) in SAMPLE’s energy model (see section 1.2) is related to the
number of unique two-body interaction pairs and thus depends on the symmetry
properties of the molecule in question.

In general, the symmetry class or group of a molecule is defined by the set of
symmetry operations (rotations, reflections or inversions) that, when applied to
the molecule, map all atoms back onto themselves. The degree of symmetry of a
molecule is therefore linked to the number of symmetry operations it fulfills. In
this particular case, where we inspect only flat molecules, it should suffice to only
investigate symmetries with respect to the surface plane.

For a highly symmetric molecule, many of the possible interaction pairs are equiva-
lent and therefore the number of fit coefficients/model parameters should be lower
than for a low symmetry molecule of comparable size and composition.

Since, as a general rule, the amount of required training data increases with the
number of fit parameters, it seems likely that the molecular symmetry will have an
impact on learning performance. The focus of this suite of test systems lies in testing
whether this hypothesis holds and if so, in trying to quantify the effect.

3.3.1. Test molecules

This level consists of 4 test molecules, each belonging to a different symmetry class.
Each test molecule is a benzene derivative and is constructed by adding halogen
atoms (F, Cl, Br) as substituents to a central C6-ring. Figure 3.4 depicts all 4 test
systems, labeled by their symmetry classes.
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Figure 3.4.: Geometries of test molecules from level 1, labeled by the corresponding symmetry class
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3.3. Level 1: Impact of molecular symmetries

3.3.2. Results

Figure 3.5 shows the learning curves1 of each test system for training set sizes of 10

to 800 configurations. Drawn as thin lines are fits to the individual learning curves.
These double exponential fits were carried out in order to estimate the systematic
model error δEsys for each test system and are based on equation 2.11. A detailed
discussion of the fitting procedure can be found in section 2.2.4. The resulting
optimized fit parameters are listed in table 3.2.

Upon taking a look at the curves in figure 3.5, we notice that almost no training
is needed for the test molecule with D6h symmetry. Even for the smallest training
set (10 configurations), the prediction accuracy is already far better than the accep-
tance threshold (γaccept) of 25 meV. Upwards of around 40 configurations, the curve
essentially flattens out and becomes stationary at a prediction uncertainty of just
0.63(2)meV, far better than expected beforehand.

Going on to the next test molecule, where the molecular symmetry is decreased
from D6h to C3h, it can be seen that now around 40 training configurations are
needed to bring the RMSE below γaccept. Still, above of a training set size of ≈100,
the learning curve of the C3h system also levels out and apparently hits the lower
limit in terms of prediction uncertainty, very much similar to the learning curve
for the D6h system. Of the tested systems, only D6h and C3h show such a rapid
decrease of the prediction uncertainty, which equates to a remarkable learning speed.
Furthermore, by correlating the training set sizes at which these two learning curves
turn stationary with the symmetry properties of the corresponding test molecules
in table 3.1, we observe that the former are close in value to the number of fit
coefficients included in the energy model.

The results for the next two molecules, i.e. the ones with C2h and C2v symmetry,
show a further degradation in learning performance. This is visible from the cor-
responding learning curves in figure 3.5: they show a much slower decrease with
increasing training set size. Overall, SAMPLE performs better for fest molecule C2v
than for test system C2h, particularly in the mid range of training set sizes (100 to
350 configurations), where the learning curve for the former is lower by ≈10 meV.
Likewise, the prediction uncertainty of C2v goes below the acceptance threshold
at a training set size of ≈180, in comparison to the ≈260 configurations needed
for C2h. However, as training sets become considerably larger, the learning curves
for C2v and C2h steadily get closer and even switch places at around 500 train-
ing configurations. In the end, at least according to the δEsyss estimated via the fit
functions, the two curves remain separated by around 1.5 meV (δEC2h

sys = 6.4(3)meV
vs. δEC2v

sys = 5(1)meV).

1see section 2.2.3
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Table 3.1.: Symmetry properties of level 1 test molecules
Property Test systems
system name/symmetry class D6h C3h C2h C2v C1h
number of in-plane symmetry
transformations (including identity) 12 4 2 2 1

number of fit coefficients 47 156 1457 1171 3759

The test system for which SAMPLE performs worst is the one with the non-symmetric
C1h molecule. Initial prediction errors are much higher than for the other systems
and, as shown in figure 3.5, learning progress is noticeably slower. This finding is
also reflected in the optimized fit parameters in table 3.2. Even though none of the
individual parameters for system C1h stand out against those of the other systems,
as a collective, they signify the worst learning performance since all of them are
close to the top of their respective value ranges.2

Relatively slow learning progress aside, SAMPLE is nonetheless capable of reaching
γaccept for the C1h system, albeit only with a training set consisting of ≈450 configu-
rations. This is almost 1.5 times the required test set size of the next-worst system
(C2h, xrequired ≈ 260 configurations).

Another possibility to gauge learning performance lies in comparing the prediction
accuracies for a fixed training set size. Such a comparison is depicted in figure
3.6. Shown are the RMSEs of all level 1 test systems for training sets with 700

configurations. We see an overall trend that a decrease in molecular symmetry goes
hand in hand with an increase in RMSE. The increase is biggest in the step from C2h
(7.0 meV) to C1h (12.2 meV), but, remarkably, there is almost no difference between
the learning performance of C2v (7.0 meV) and C2h (6.7 meV).

This can be explained as follows: the C2h and C2v test molecules fall into different
symmetry classes, and thus fulfill different symmetry transformations. But since
SAMPLE only applies in-plane rotations and mirror transformations (based on
symmetries of the substrate) in order to generate possible local geometries, it is only
relevant how many of the molecular symmetry transformations match those of the
substrate. As both the C2h and the C2v molecule share two transformations with the
substrate - identity and one mirror symmetry in the case of C2v and identity and a
180 degree rotation for C2h - it does make sense that they can be learned equally
well or badly.

2With the exception of λ2 for the D6h system. But because the double exponential fit function is
not well equipped to describe an almost completely flat learning curve, fit values for the parameters
K2 and λ2 are not be well defined for this system.
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Figure 3.5.: Comparison of learning performance for level 1 test systems. For each test system, the
measured learning curve is drawn with a thick solid line and the fitted curve (based on
equation 2.12) is represented by a thin solid line of the same color. The colored dashed
lines mark the estimated model errors, whose confidence intervals are visualized as
semitransparent bars. The dashed black horizontal line marks the acceptance threshold of
25 meV. Test system geometries are depicted on the right hand side.

Table 3.2.: Optimized parameters of fit model 2.12, based on level 1 learning curves. Listed are the
average value for each parameter (mean) and its standard error (std).

Molecular symmetry D6h C3h C2h C2v C1h

δEsys / meV mean 0.57 2.3 6.4 5 9

std 0.08 0.2 0.3 1 2

K1 / meV mean 24 760 550 380 330

std 2 120 80 30 30

λ1 mean 6.9 7.8 22 53 56

std 0.2 0.4 3 4 10

K2 / meV mean 0.27 1.4 131 16 120

std 0.07 0.3 13 8 30

λ2 mean 700 240 131 260 230

std 400 140 7 130 50
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Figure 3.6.: RMSE for training set of size 700 and test systems with different molecular symmetries
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Figure 3.7.: RMSE at training set size 700 versus number of 2-body fit parameters for level 1 systems.
The dashed line symbolizes the trend that the prediction errors grow proportionally to
the number of fit parameters. Information on the corresponding trend function is given
by the insert near the bottom right corner. It should be noted that the scaling behavior is
specific to this case and not a general finding.
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3.4. Level 2: Adding Hydrogen bonds

3.4.1. Test systems and objective

Due to its nature, SAMPLE’s energy model treats all interactions as if they were
non-directional (isotropic). In reality, there inter-molecular interactions exist that are
anisotropic, where the interaction strength, i.e.the connected potential is direction-
dependent. The prime example for this kind of interactions are hydrogen bonds.

Up to this point (see section 3.3), we treated test molecules, which, due to the choice
of substituents, will mostly form repulsive interactions.3 Under the (reasonable)
assumption that all substituents repel each other (more or less) equally, these in-
teractions are in essence isotropic. Once hydrogen atoms are allowed as possible
substituents, this picture changes as the electrostatic potential of the molecule gets
more heterogeneous. We can, for instance, compare the Hartree potentials of test
molecules l2-tm1 and l2-tm3, as is shown in figure 3.8.

If we look at the mid to long-range behavior of the respective potentials, we observe
that the PES of the hydrogen-free molecule (left panel) is more homogeneous than
its hydrogen-carrying counterpart. The difference is most noticeable in the sectors
on the left side of the respective molecules. The suspected reason for this is the
difference in the electronegativities of fluorine and hydrogen. Both interact with
the neighboring oxygen atoms, which causes a rearrangement of electron density
which in turn creates a gradient in the electrostatic potential. Since the difference in
electronegativity χ between O (χO = 3.5) and F (χF = 4.1) is smaller than between
O and H (χH = 2.2), the slope of the electrostatic potential is less pronounced for
the tm1 system compared to that of the l2-tm3 system.

Therefore, in order to test whether interaction anisotropies actually affect SAMPLE’s
performance or not, a second set of test systems was designed, which features
molecules with various hydrogen bonding configurations as well as two hydrogen-
less molecules that serve as a control group. To avoid spurious effects that arise due
to differing molecular symmetries 4, it was made sure that all test molecules adhere
to the C2v symmetry class. An overview of the structure of all 7 molecules used can
be found in figure 3.9. The keen-eyed reader will, of course, have noticed that test
molecule l2-tm6 is equal to molecule C2v from level 1. Its original identifier will not
be used in this section to minimize confusion.

3The structures of the mentioned test molecules is shown in figure 3.4.
4again, see section 3.3 for details
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(a) hydrogen-free (l2-tm1) (b) with hydrogens (l2-tm3)

Figure 3.8.: Comparison of electrostatic potential of test molecule (a) with and (b) without hydrogens

3.4.2. Results

Same as for the previous level, we start with an overview of the learning per-
formances of all systems. This is plotted in figure 3.10, accompanied by double
exponential fits. The corresponding fit parameters are listed in table 3.3.

A lot of information can be extracted from figure 3.10, starting with the observation
that for all level 2 systems, SAMPLE was able to push RMSEs below the acceptance
threshold of 25 meV with less than 350 training configurations. We also clearly notice
that fluorine/hydrogen test molecules (l2-tm2 and l3-tm1) were by far the easiest to
train, with less than 100 training configurations needed to pass γaccept. We also see,
that above a set size of 400, the curves for l2-tm4 and l2-tm3 are basically equivalent,
which is interesting, since they share the same substituents (O, Br, H), but in a
different order. The double exponential fits appear to suggest that for even higher
training set sizes l2-tm3 eventually beats l2-tm4 and ends up at a lower δEsys, but as
the corresponding confidence intervals slightly overlap, this finding does not stand
on solid ground.

While we could continue to interpret the results for level to based on figure 3.10,
due to the high information density, it might actually be more instructive to analyze
the prediction uncertainty at a fixed training set size in order to see trends in the
data. In figure 3.11, RMSEs at a set size of 700 are plotted against the number of fit
parameters (in SAMPLE’s energy model). If we then only look at the systems where
hydrogen bonds can form, which, in figure 3.11 are highlighted with a dashed box,
we see a linear increase of the model error with the number of fit parameters. In
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Figure 3.9.: Geometries of test molecules from level 2, labeled by their identifier tag. Notice: Test
molecule l2-tm6 is also featured in level 1 (C2v) and test molecule l2-tm7 is equivalent to
molecule F-ortho from level 3.
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Figure 3.10.: Summary of all level 2 learning curves. Double exponential fits are denoted by thin
lines of the corresponding color. Estimated systematic model errors δEsys are marked by
dashed lines.
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3. Results and Discussion

Table 3.3.: Optimized parameters of fit model 2.12, based on level 2 learning curves. Listed are the
average value for each parameter (mean) and its standard error (std).

l3-tm1 l3-tm2 l3-tm3 l3-tm4 l3-tm5 l3-tm6 l3-tm7

δEsys / meV mean 8.9 2.67 11.2 13.3 12.4 3.91 5

std 0.2 0.06 1.5 0.9 0.3 0.12 1

K1 / meV mean 400 170 390 455 250 240 380

std 100 30 30 30 20 20 30

λ1 mean 14 20 46 39 38 27 53

std 3 2 4 3 4 2 4

K2 / meV mean 260 17 56 54 50 14 16

std 20 3 12 12 16 3 8

λ2 mean 95 104 240 190 126 135 260

std 3 10 50 40 20 20 130

general, such an increase is to be expected when using a linear regression model
as is the case with SAMPLE. However, if the number of fit coefficients were the
only determining factor, we would expect that the non-hydrogen systems follow
the same trend, but as can be seen in figure 3.11, the two systems in question yield
a significantly (10 meV to 15 meV) lower model error than suggested by the linear
trend. This finding suggests that the inclusion of hydrogen atoms, respectively the
appearance of hydrogen bonds, makes learning the affected systems measurably
harder, although not to an extent that achieving good prediction results becomes
impossible. Nonetheless, before we can accept this interpretation, we first need to
look at other possible explanations for the observed behavior.

For instance, it could be that the non-hydrogen molecules fare better (in relation
to the hydrogen systems), because the energy spread of the configurations in their
test sets is smaller. Talking in more detail, the energy spread of a configuration set is
defined as difference in EMLF between the configurations with lowest and highest
EMLF. As such, it is an indicator for the diversity and range of interactions that
appear in the configuration set. A large energy spread signifies that the explored
part of the PES is relatively corrugated due to the inclusion of highly repulsive
interactions and also often attractive interactions as well.

Looking at the results in figure 3.12, reveals that there is no categorical difference
in energy spread between hydrogen and non-hydrogen systems. It can therefore be
argued that the trend-breaking behavior of the non-hydrogen systems is not caused
by differences in the energy spread. We thus can accept our initial interpretation that
it is the addition of hydrogen atoms that makes learning more complex.
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400 500 600 700 800 900 1000 1100 1200
Number of fit coefficients

0 0

5 5

10 10

15 15

20 20

25 25

30 30
RM

SE
 @

 s
et

 s
iz

e 
70

0 
/ m

eV

acceptance threshold

Hydrogen systems

Figure 3.11.: RMSE versus number of fit coefficients for all level 2 systems and a training set size of
700. The grey line illustrates the linear correlation between RMSE and the number of
fit coefficients that is observed for the test molecules with hydrogens. The prediction
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Figure 3.12.: RMSE versus energy spread of test set for all level 2 systems. All displayed prediction
uncertainties are based on training the model with 700 configuration.
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3. Results and Discussion

3.5. Level 3: Influence of substituent patterns

3.5.1. Objective and test systems

The third set of test systems shall answer the question, what, if any, influence the type
of substituent pattern has on the learning capabilities. The thought process behind
this level is as follows: As is known from organic chemistry, the relative arrangement
of two (or more) substituents to a benzene ring influences the electrostatic potential
of the resulting molecule. This, in turn, impacts macroscopic properties of the
corresponding substance, such as its melting point, and has an influence on the
bulk/surface structures that the material will form.

In theory, there a two aspects of substitution patterns that are of interest in the
context of SAMPLE: 1) the type of molecular symmetry that they induce and 2) their
effect on the PES of surface polymorphs. The first aspect is important due to the
findings of level 1 (see section 3.3). The second aspect is based on the assumption that
some substitution patterns will cause a more heterogeneous, or rougher, PES than
others, which, at least in theory, increases the difficulty for the SAMPLE algorithm.

Now that the intent behind this level is clear, we need to design suitable test systems.
The choice falls on two types of benzene derivatives, one with two fluorine atoms
and the other with two amine groups (-NO2). For both types, variants with an ortho,
meta and para pattern are constructed, giving a total of 6 test systems. The geometries
of the corresponding test molecules are shown in figure 3.13.

3.5.2. Results and findings

For this level we will skip showing all learning curves in favor of comparing the
prediction performances at a fixed training set size, again 700 configurations. The
double exponential fits based on equation 2.12 were carried out nonetheless and the
estimated model errors plus the rest of the optimized fit parameters can be found in
table 3.4.

Figure 3.14 shows the aforementioned results, separated into two subsets based on
the used substituent group, F and NO2, respectively.

Looking at the bottom half of figure 3.14, we see that the type of substituent pattern
has no influence on the prediction accuracy for the F-substituted molecules. The
RMSEs lie around 4 meV in all cases, with variations of less than 0.3 meV between
the different patterns. Since we assume the uncertainty of the underlying DFT
calculations to be on the order of ≈5 meV, these results show that in all three cases,
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Figure 3.13.: Overview of all level 3 test molecules, labeled by their identifier tag. Remark: test
molecule F-ortho is also used for level 2 (see 3.4), where it is referred to as tm7.

we reached the lower limit in terms of prediction errors that SAMPLE is reasonably
able to achieve.

Going on to the top half of figure 3.14, which features the results for the NO2-
substituted systems, we see a rather different picture. Here, it is noticeable that
with an RMSE of 10.4 meV the molecule with the ortho pattern can be predicted
with measurably lower accuracy than the para and meta systems with prediction
uncertainties of 7.9 meV (para) and 8.2 meV (meta), respectively.

In a separate test, it is investigated if the number of feature vector entries per atom
species pair, also known as the pairwise feature dimension (see 1.2.4), might have
an influence on the results of the NO2 subset. For this, the corresponding learning
process is done three more times, once with all feature dimensions NAB equal to
1, once with all N equal to two and once with half the original (maximal) feature
dimensions. The resulting learning curves can be seen in figure 3.16 and show that
as long as one uses more than one feature entry per pair, the learning performance
is not influenced by the feature dimensions NAB.
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Figure 3.14.: Comparison of RMSE @ set size 700 for all level 3 systems

Figure 3.15.: Learning curves for NO2 subset. Measured data is plotted as thick lines, with correspond-
ing double exponential fits superimposed as thin lines. The heights of the estimated
δEsys are signified by dashed horizontal lines. It appears that an ortho pattern (red, top
geometry) is slightly harder to learn than the other two (meta, para).
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Figure 3.16.: Learning curves for test molecule NO2-ortho as a result of using feature vectors with
varying feature dimension. The blue line corresponds to the least detailed type of feature
vector f with only one entry per species pair (A, B) (NAB = 1), while the yellow curve
results from using NAB = 2. The red line represents the most detailed f, where each
pair is assigned the maximum number of entries Nmax

AB . For the yellow curve, we have
NAB = Nmax

AB /2 for all pairs.

Table 3.4.: Optimized parameters for double-exponential fit model 2.12, based on level 3 learning
curves. Listed are the average value for each parameter (mean) and the corresponding
standard deviation (std).

F-para F-meta F-ortho NO2-para NO2-meta NO2-ortho

δEsys / meV mean 3.76 3.7 3.91 7.93 7.51 10.4
std 0.13 0.1 0.12 0.12 0.70 0.2

K1 / meV mean 258 290 240 335 203 230

std 12 30 15 15 13 40

λ1 mean 26.0 22 26.5 25.7 51 19

std 0.8 2 1.5 1.2 5 3

K2 / meV mean 6.6 27 14 24 15 50

std 1.2 5 3 5 7 5

λ2 mean 190 112 135 114 230 121

std 30 11 20 14 100 9
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3. Results and Discussion

3.6. Level 4: Functional groups

3.6.1. Objectives

The goal for this array of test systems is to determine whether functional groups
affect SAMPLE’s prediction accuracy, and if so, why. In general, we want to find
answers to the following questions:

• Which type of functional group can be learned well, which ones badly?
• Does the number of different functional groups in a molecule have an effect?
• Are there general trends?

In theory, we would expect that the more (different) functional groups we put on the
molecule, the harder it should be to successfully describe all interactions between
the molecules since the electrostatics are assumed to get more complicated.

In order to investigate the objectives above in more detail, a total of 16 test systems
is designed for this level. The general approach to choosing the test systems is as
follows:

1. Choose a set of different functional groups, i.e. oxygen and/or nitrogen centered
substituent groups

2. For each functional group, construct a test molecule where that functional
group is the only type of substituent (besides hydrogen atoms). Maximize the
molecular symmetry of the test molecule.

3. Construct test molecules with one or more different functional groups

Due to the large number of test systems, the discussion of the results is split into
two parts which form the content of sections 3.6.2 and 3.6.3.

3.6.2. Type of functional group

First we look at systems where the test molecules only contain one type of functional
group5. In total, this restriction yields a subset which consists of 9 systems, meaning
we can compare 9 different types of functional groups. Table 3.6 presents a more
detailed account of these single-group systems including, for instance, the names of the

5Hydrogens which are bonded to one of the central C-atoms are not identified as functional
groups

46



3.6. Level 4: Functional groups

C

C

C

C

C
H

C
H

H
N

H
N

H

H

(a) l4-NH (l4-tm1)

H

H

H

H

C

C

C

C

C C CC NN

(b) l4-CN (l4-tm2)

H

H

C

CC

C
H

H

C CO O
H

H

(c) l4-OH (l4-tm4)

OO CC

C

C

H

H

C

C

H

H

(d) l4-CO (l4-tm6)

N N

O

OO

O

CC

C

C

C

C

H

H

H

H

(e) l4-NO2 (l4-tm7)

O

O

C C

H

H

C C

C

C

C

C

H

H

H

HO

O

(f) l4-COOH (l4-tm9)

C C

C

CC

C

H

H

H

H

NN NN

(g) l4-N2 (l4-tm11)

H

HH

H
C C

C

CC

C

H

H

H

H

NN

(h) l4-NH2 (l4-tm12)

H

H

H

H
C

CC

C

C C NN
N

N
N

N

(i) l4-N3 (l4-tm13)

Figure 3.17.: Compilation of all level 4 test molecules with only one type of functional group. Names
inside brackets stem from the original enumeration of all level 4 systems, which also
includes the multi-group systems (shown in figure 3.20).

involved functional groups and their structure. In addition to that, the test molecule
geometries for these 9 systems are depicted in figure 3.17.

Now on to the results. Figure 3.18 features the learning curves for all single-group
systems and the corresponding double exponential fit functions. The optimized fit
parameters and their standard deviations are listed in table 3.5.

It is found that while the acceptance threshold of 25 meV can be reached for each
type of functional group, there are significant differences in terms of learning speed
and highest achievable prediction accuracy. For system l4-NH2 (gray), SAMPLE
only needs data from just 20 training configurations to reach γaccept and only 80

to decrease its prediction accuracy down to 5 meV. A calculated model error of
δEsys(NH2) = 0.74(1)meV is by far the lowest model error of all tested systems. It
is approximately 8 meV lower than the one of the next best systems, whose final
RMSEs all hover slightly under 10 meV.

A skeptic might now say that the extraordinary learning performance for l4-NH2
must be too good to be true. Unfortunately, it seems as if in this particular case, the
skeptic is at least partly correct, because when we calculate energy spreads for each
system, that is we determine the range of monolayer formation energies for DFT
dataset and compare them, as is shown in figure 3.19, we find a possible explanation
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3. Results and Discussion

Table 3.5.: Optimized parameters of double-exponential fit functions 2.12, based on single group
learning curves. Listed are the average value for each parameter (mean) and its standard
deviation (std).

δEsys / meV K1 / meV λ1 K2 / meV λ2
System mean std mean std mean std mean std mean std

l4-NH2 0.74 0.01 36 1 32.4 1.2 2.0 0.5 135 20

l4-N3 7.7 0.2 224 20 33 3 88 7 142 6

l4-N2 8.89 0.11 284 20 22.2 1.2 13 3 116 20

l4-NO2 9.0 0.2 875 50 23 1 29 6 130 20

l4-CO 9.5 0.2 475 30 19 1 16 3 130 20

l4-COOH 10.0 1.4 230 30 70 12 40 20 250 100

l4-OH 11.4 0.3 240 70 9 2 76 3 180 7

l4-NH 12.4 0.2 330 40 19 2 68 3 152 6

l4-CN 16.0 0.2 293 13 27.3 1.4 28 5 119 14

for this behavior. Namely, that the energy spread for the l4-NH2 is just around
250 meV, which is significantly smaller than for all the other single group systems,
which typically have energy spreads of 1000 meV. Based on this, l4-NH2 appears to
be the least interacting system, with neither highly repulsive nor strongly attractive
interactions. This suggests a shallow, smooth PES, which would facilitate learning.
However, seeing that the system with the second smallest energy spread, l4-OH,
ranks third from last in terms of model error, raises questions whether a different
effect might contribute to the singular nature of the l4-NH2 curve.

Focusing on the other test systems, we notice that the majority of learning curves
eventually meet up into two clusters, one of which ends at around 10 meV, consist-
ing of systems l4-N3, l4-N2, l4-NO2 and l4-CO. The learning curves of the other
cluster start out way higher, but the separation shrinks from around 15 meV at
300 configurations down to less than 5 meV.

While the molecules belonging to cluster 1 do not seem to be related in any ob-
vious way, the case of cluster 2 does raise interest, because all corresponding test
molecules include either an OH- or and NH-group. Both functional groups feature
an unbound electron pair. This could mean that, at least near the mentioned groups,
the electrostatics should be similar.

The test system l4-CN appears to be an outlier in the opposite direction to l4-
NH2, as its prediction uncertainty remains highest, with an estimated δEsys of
16.0(2)meV. Remarkably, the acceptance threshold is actually reached quite early for
this system, at around 160 training configurations, much earlier than for the systems
in cluster 2.
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Figure 3.18.: Collection of learning curves for all test molecules with just one type of functional group.
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Figure 3.19.: Range of EMLF of test set configurations for all single-group systems
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3. Results and Discussion

Table 3.6.: Chart of single-group system properties. Includes information on the corresponding
functional group. In the depicted chemical structure formulas, R stands for the connection
to the rest of the molecule.

System identifier Functional
group identifier

Structural
formula

Name of functional
group

l4-NH NH R N
H

imine-group

l4-CN CN R C N cyano-/cyanide-group

l4-OH OH R O
H

hydroxy-group

l4-CO CO C
R

R
O carbonyl-/ketone-group

l4-NO2 NO2 R N
O

O

nitro-group

l4-COOH COOH R C
O

O H carboxyl-/carbonic acid
group

l4-N2 N2 R N N diazo-/diazonium group

l4-NH2 NH2 R N
HH

amino-group

l4-N3 N3

R
N N N azide-group
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3.6. Level 4: Functional groups

3.6.3. Combining multiple functional groups

This section builds upon the results for the single-group systems (see 3.6.2), adding
test systems with more than one functional group. The geometries of these additional
test molecules are depicted in figure 3.20.
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Figure 3.20.: Overview of all level 4 test molecules with multiple types of functional group.

We begin by examining the learning curves of just these additional systems. They
are plotted in figure 3.21. Although not shown in figure 3.21, double exponential fits
were also carried out for these multi-group systems. The corresponding optimized
fit parameters are listed in table 3.7.

Looking at figure 3.21, we see that the learning curves can be separated broadly into
two groups based on their appearance. The first group includes systems l4-tm10
and l4-tm8. System l4-tm10 shows a lower required test set size (xl4−tm10

required ≈ 140)

than l4-tm8 (xl4−tm8
required ≈ 200), but in both cases, the prediction uncertainty ends up at

around 5 meV.

The learning curves for the remaining multi-group systems all cluster together and
lie 10 meV apart at most. Their estimated systematic errors cover a range of 10 meV
to 15 meV and a training set size of between 250 and 350 configurations was needed
for γ to reach the acceptance threshold. SAMPLE performed worst for system l4-tm5

(OH and NH substituents) and was only marginally better for the systems with
nitrogen functional groups. Ranked by increasing learning performance, these were
the systems l4-tm15, l4-tm14, l4-tm3 and l4-tm16.
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Figure 3.21.: Learning curves for all test systems with more than one type of functional group. Plots of
the double exponential fit functions were omitted for sake of clarity. The corresponding
optimized fit parameters are tabulated below in table 3.7. Geometries of the test molecules
are depicted in the column on the right.

Table 3.7.: Fit parameters for multi-group systems. As all attempts to estimate the learning curves for
the l4-tm8 system with a double exponential fit function failed, it was decided to fall back
to fitting the tail of the learning curve (set size ≥ 300) with γ(x) = δEsys + K2 exp{−x/λ2}
instead.

l4-tm3 l4-tm5 l4-tm8 l4-tm10 l4-tm14 l4-tm15 l4-tm16

δEsys / meV mean 9.8 14.4 5.4 4.6 10.3 9.2 8.5
std 0.4 0.3 0.4 0.4 1.2 0.9 0.8

K1 / meV mean 190 390 - 158 420 183 103

std 25 60 - 14 20 12 15

λ1 mean 37 13 - 45 38 46 18

std 7 2 - 5 2 4 3

K2 / meV mean 115 132 11 23 150 40 57

std 20 6 2 8 20 4 3

λ2 mean 137 125 290 190 143 290 185

std 12 4 70 40 14 40 15
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3.6. Level 4: Functional groups

Nitrogen systems

To finish the discussion of multi-group systems, we will look at one case were we
take one test molecule with three different functional groups, l4-tm15, and compare
its learning curve to those of the three test molecules that each carry one of l4-
tm15’s functional groups. These three molecules are l4-CN, l4-N2 and l4-N3. This
combination of systems was chosen because it excludes functional groups with
hydrogens or oxygens, such as NH2, OH or NH and focuses nitrogen-based groups
instead. The resulting comparison can be seen in figure 3.22.
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Figure 3.22.: Learning curves for single and multigroup nitrogen systems. Double exponential fit
functions are drawn as thin lines. Model errors are denoted by dashed horizontal lines.

We observe that for the majority of the investigated set size range, i.e. from the
beginning up to approximately 500 configurations, the multi-group system l4-tm15
is the hardest one to learn with SAMPLE, as it shows a relatively slow decline in
RMSE and subsequently requires the highest number of configurations to reach
γaccept. However, above a training set size of about 500 configurations, it is surpassed,
in the negative way, by the learning curve of l4-CN, which essentially runs flat in this
interval. With regard to the reason behind this behavior a clear prediction cannot be
made based on this data, but it can be hypothesized that the learning performance of
SAMPLE for the system l4-tm15 is somewhat of a mix/superposition of the learning
curves of the involved single-group systems. Whatever causes the learning curve
of l4-CN to remain high, it seems reasonable to assume that the same factor also
hinders training for multi-group system l4-tm15, since it basically contains l4-CN.
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3. Results and Discussion

3.7. A look at transfer learning with SAMPLE

Based on the findings from levels 1 to 4, which are discussed at length in sections
3.3 to 3.6, we know that the number of training points that are needed to converge
the energy model and achieve good prediction accuracies can be substantial. This
might not be a huge problem when the test systems are small and the substrate
is omitted, as is the case here, but when working with actual production systems,
generating training data can become much more costly. The amount of available
compute resources then puts a practical limit on the number of different systems
that can be treated.

In the light of these facts, it would be very advantageous if training data and
predictions for one system could be (re)used to predict the properties of another
system. This transfer of information/knowledge from one system to the other is at
the core of what is known as transfer learning.

So far, it has not been tested, whether SAMPLE can be used to facilitate transfer
learning. The purpose of this section is to remedy this by investigating whether it is
possible to predict properties of a test molecule based on prediction data from two
other, albeit closely related molecules within the current framework of SAMPLE.

The systems that are chosen for this test are shown in figure 3.23 and fall into two
categories: source systems and the target system. The former set is formed by test
molecules tm-NH and tm-OH, which each feature functional groups in a para config-
uration. While tm-NH carries two imine groups (-NH), molecule tm-OH features two
hydroxy groups (-OH).
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Figure 3.23.: Test systems used for a demonstration of transfer learning with SAMPLE. Data from
the source systems, tm-NH (a) and tm-OH (b), is used to predict properties of the target
tm-OH+NH (c).

The target system, molecule tm-NH+OH, combines both types of functional groups
that are found in the source systems. The relative orientation of imine and hydroxy
groups in the target system represents the energetically most favorable arrange-
ment.
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3.7. A look at transfer learning with SAMPLE
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Figure 3.24.: Learning curves for source (tm-NH, tm-OH) and target (tm-NH+OH) systems used in the
transfer learning test. The dashed, black horizontal line marks the acceptance threshold
(25 meV).

As preparation for the actual test, SAMPLE was applied to all three systems, using the
hyperparameters and lattice settings as described in sections 2.3 and 2.4, respectively.
The models for each system were then trained using the approach described in
section 2.2.2. From the resulting learning curves, shown in figure 3.24, we see
that learning performance is similar for all three systems, with RMSEs hitting the
acceptance threshold of 25 meV above a training set size of 340 and reaching values
between 14 meV and 16 meV for the biggest training sets (800 configurations).

Based on the above, this setup seems to be a good candidate to try transfer learning.
The property which we are going to focus on are pair potentials, i.e. a mapping of
the strength of the interaction between two molecules as a function of their relative
position. Information on how these pair potentials are calculated is given in section
2.2.3.

Out of all local geometries of both tm-NH and tm-OH, we choose those that best
match the target system in terms of orientation. Then we predict pair potential maps,
separately for tm-NH and tm-OH, based on the chosen local geometries. These are
then summed up point-by-point, with a small restriction: for consistency, we only
include those data points that appear in both pair potentials. The reason, why not
all positions are featured in both maps is grounded in two factors: (A) The minimal
distance threshold for (N, H) is larger than for (O, H) and (B) the selected tm-NH
geometries are rotated by 60◦ with respect to the tm-OH geometries. In combination,
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3. Results and Discussion

these factors cause some positions of the second molecule to be dismissed as being
“too close” to the center molecule for tm-OH, but not for tm-NH and vice versa.

This carefully assembled pair potential is then compared against the pair potential of
the target system. This comparison is shown graphically in the upper row of figure
3.25, with the composite pair potential on the left and the target pair potential on
the right. Looking at the results, we see that, at least qualitatively, the composite
potential can reproduce the target potential reasonably well.

When comparing the two pair potentials quantitatively, however, it is noticeable that
point-wise differences can locally be rather large, i.e. up to 300 meV, as illustrated in
figure 3.25d.
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(d) Difference between composite potential and direct pair potential of the
target system

Figure 3.25.: Comparisons between composite and direct NH+OH pair potential
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4. Summary and Conclusion

The primary focus of this thesis was to analyze the learning performance of the
SAMPLE method with regard to complex molecular interactions. In oder to achieve
this, the method was applied to four different classes of test systems, each designed
to cover specific aspects of molecular interactions. The specific test systems consisted
of free-standing monolayers of small organic test molecules, each derived from
benzene by adding one or more substituents.

The performance of the algorithm was analyzed in terms of the accuracy with
which it could predict system properties such as the formation energies of the tested
monolayers. It was tracked how much training data was needed to push the root
mean square error of said monolayer formation energy down to an acceptable level
(γaccept), which was set to 25 meV per molecule. In addition to that, it was attempted
to estimate the systematic model error δEsys of SAMPLE by fitting the measured
RMSE vs. training set curves with a custom fit function and extrapolating them to
infinite amounts of training data.

Carrying out this testing methodology for all systems, it was found that SAMPLE
was always able to achieve the acceptance threshold of 25 meV per molecule. The
amount of training data needed to reach γaccept also stayed below 500 training
configurations, which was deemed acceptable. Thus, the SAMPLE method can be
seen as a robust structure search algorithm under the criteria for robustness defined
in this work.

The first set of test systems featured molecules with different symmetries and
only halogen atoms as substituents. The results showed that molecules with lower
molecular symmetry were generally harder to learn, due to the higher number of fit
parameters that they contain.

In the second tranche of test systems, also hydrogen atoms were allowed as sub-
stituents to look at the influence of hydrogen bonds. Comparing the observed
learning performance with that of similar systems without hydrogens led to the
conclusion that the existence of hydrogen bonds increases the learning difficulty.
While the cause for this behavior is not fully understood, it is thought to be connected
to the roughness of the potential energy surface of the individual test molecules
that form the monolayer, with hydrogen-carrying molecules sporting a comparably
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4. Summary and Conclusion

rough potential energy surface due to the inclusion of substituent atoms with high
as well as with low electronegativity.

With the third class of test systems it was investigated whether substitution patterns
had an effect on the learning performance. It featured systems for two types of
substituents, F and NO2, which were arranged in ortho-, meta- and para-patterns. It
was found that, when correcting for effects attributable to symmetry differences, the
type of pattern made no significant difference.

The last batch of test systems focused on functional groups with the aim to determine
which type of functional group performs best and whether or not trends can be
deduced. The results for this class of test systems unfortunately proved much harder
to interpret and classify and no clear tendencies or trends could be established.

Additionally, the large number and variety of systems also made it possible to try
out transfer learning in a proof-of-concept style experiment, by trying to recreate the
pair potential of a target system from the potentials of two source systems. This was
successfully demonstrated, highlighting a potential route to make SAMPLE much
more efficient, especially once it gains wide-spread use and shared databases of
training data become available.

On a more general level, the large number of test sets needed to explore all 4 areas
of interest underscored the importance of a systematic and structured workflow.
This encompassed both the design of the test sets and the choice of the model
hyperparameters. Designing the testing methodology also required a significant
amount of consideration towards the question of how to best measure learning
performance. This concerned both the test set selection process and the different
ways to interpret learning curves.

Coming to a conclusion and summing up all of the above, this thesis finds SAMPLE
to be a robust and reliable structure prediction algorithm, which has a lot of potential
for use and further development.
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Appendix A.

Determination of hyperparameters

A.1. Calculated minimal distance thresholds

Table A.1.: Minimal distance thresholds. Calculated via equation 2.15 with parameters βattr = 0.55
and βrep = 0.65, with the exception of dOH

min, which was chosen manually in accordance
with the corresponding minimal distance sweep, which is depicted in figure A.2.

Atom A Atom B dAB
min / Å Atom A Atom B dAB

min / Å

Br Br 2.41 Cl F 2.09

Br C 2.31 Cl H 1.62

Br Cl 2.34 Cl N 2.15

Br F 2.16 Cl O 2.13

Br H 1.68 F F 1.91

Br N 2.21 F H 1.47

Br O 2.19 F N 1.96

C C 2.21 F O 1.94

C Cl 2.24 H H 1.56

C F 2.06 H N 1.51

C H 1.89 H O 1.35

C N 2.11 N N 2.02

C O 2.09 N O 2.00

Cl Cl 2.27 O O 1.98
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Appendix A. Determination of hyperparameters

A.2. Minimal distance threshold sweeps
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Figure A.1.: Distance threshold sweep curves, page 1
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A.2. Minimal distance threshold sweeps
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Figure A.2.: Distance threshold sweep curves, page 2
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Appendix B.

Listings

B.1. FHIaims control file for periodic calculations

1 # General Settings:

2 xc pbe

3 spin none

4 charge 0.0

5 relativistic atomic_zora scalar

6 occupation_type gaussian 0.01

7 k_grid <Nx> <Ny> 1

8

9 # Convergence criteria:

10 sc_accuracy_forces 0.001

11 sc_accuracy_etot 1e-06

12 sc_iter_limit 100

13

14 # Mixer:

15 mixer pulay

16 charge_mix_param 0.3

17 preconditioner none

18

19 # Corrections:

20 compensate_multipole_errors .true.

21 vdw_correction_hirshfeld .true.

22 use_dipole_correction .true.

For each calculation, the placeholders <Nx> and <Ny> are substituted for the actual
number of k-points in the x- and y-direction, which depend on the size of the
corresponding unit cell.
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Appendix B. Listings

B.2. FHIaims control file for non-periodic calculations

1 # General Settings:

2 xc pbe

3 spin none

4 charge 0.0

5 relativistic atomic_zora scalar

6 occupation_type gaussian 0.01

7

8 # Convergence criteria:

9 sc_accuracy_forces 0.001

10 sc_accuracy_etot 1e-06

11 sc_iter_limit 100

12

13 # Mixer:

14 mixer pulay

15 charge_mix_param 0.3

16 preconditioner none

17

18 # Corrections:

19 compensate_multipole_errors .true.

20 vdw_correction_hirshfeld .true.
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B.2. FHIaims control file for non-periodic calculations

Acronyms and Symbols

Acronyms
RMSE root mean square error
DFT density functional theory
SAMPLE Surface Adsorbate Polymorph Prediction with Little Effort
PES potential energy surface
GPR Gaussian process regression
FHIaims Fritz Haber Institute ab initio molecular simulations
PBE Perdew-Burke-Ernzerhof
fcc face-centered cubic
LG local geometry
SILG symmetry-inequivalent local geometry
KS Kohn-Sham
SC supercell
SCF self-consistent field
HP hyperparameter
FV feature vector

Symbols
EMLF monolayer formation energy
γ prediction uncertainty
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