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Abstract

Efficient orbit integrators are a key element of gyro-kinetic codes used for computation
of kinetic plasma equilibria and quasi-steady plasma parameters. To this end, the
geometric guiding center integrator GORILLA (Geometric ORbit Integration with
Local Linearisation Approach) has been further developed in this thesis. In GORILLA,
guiding center orbits for locally linearized fields are traced within a tetrahedral grid.
This integrator exhibits desirable features, namely, high computational efficiency and
low sensitivity to statistical noise in electro-magnetic field components, and high
long term stability due to the symplectic formulation of the guiding center equations.
Furthermore, it enables very efficient box counting for computation of distribution
functions due to the implicit evaluation of particle orbits at cell boundaries. Within
this thesis, several enhancements for the code GORILLA have been introduced.
Calculations are performed in symmetry flux coordinates in a field aligned grid, in
order to avoid interpolation errors. Additionally, an analytical solution of the guiding-
center equations in linearized fields is derived, allowing for the description of the errors
associated with the numerical integration of ordinary differential equation sets using
Runge-Kutta 4. Furthermore, the derivation of an analytical power series has allowed
to implement new efficient approaches for integrating the guiding-center orbit and
for computing intersections of these orbits with the cell boundaries of grid elements.
The neo-classical mono-energetic radial diffusion coefficient has been evaluated in
Monte Carlo simulations, using different orbit integration methods. Based on these
results, a comparison between the adaptive step size Runge-Kutta 4/5 integrator in
non-linearized fields and GORILLA has shown that the underlying physics is well
preserved in GORILLA while its computational efficiency is larger by one order of
magnitude compared to Runge-Kutta 4/5. Thus, GORILLA represents a powerful
tool for both accurate and efficient gyro-kinetic applications.
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Kurzfassung

Effiziente Orbitintegration ist ein fundamentaler Baustein für die Berechnung von
kinetischen Plasmagleichgewichten und quasistationären Plasmaparametern in gy-
rokinetischen Simulationsprogrammen. Für diese Anwendungen wurde der geometrische
Integrator GORILLA (Geometric ORbit Integration with Local Linearisation Ap-
proach) im Rahmen dieser Diplomarbeit weiterentwickelt und präsentiert. In GO-
RILLA werden die Bewegungen der Gyrationszentren von geladenen Teilchen in lokal
linearisierten Feldern in einem tetraedischen Gitter berechnet. Der beschriebene Inte-
grator besitzt hierbei die gewünschten Eigenschaften, nämlich hohe Recheneffizienz,
geringe Sensibilität auf Ungenauigkeiten von Feldgrößen sowie eine ausgezeichnete
Langzeitstabilität durch die symplektische Formulierung der Bewegungsgleichungen
des Gyrationszentrums. Des Weiteren ermöglicht bei GORILLA die Verwendung
eines Gitters eine sehr effiziente Implementierung von box counting Algorithmen, da
in GORILLA Gyrationsorbits aufgrund der Linearisierung von Feldgrößen stets von
einem Zellenrand zum nächsten berechnet werden müssen. In dieser Arbeit werden
mehrere Beiträge und Verbesserungen am besprochenen Programm beschrieben. Ein
wesentlicher Fortschritt ist, dass nun Berechnungen von Gyrationsorbits auf einem
entlang des Feldes ausgerichteten Gitter in symmetry flux coordinates möglich sind.
Weiters wird in dieser Arbeit die Herleitung der analytischen Lösung der Bewe-
gungsgleichungen der Gyrationszentren präsentiert. Diese ermöglicht einerseits die
Beschreibung des Fehlers der Runge Kutta 4 Methode bei der numerischen Integration
der Bewegungsgleichungen und eröffnet andererseits neue Zugänge für die Berechnung
der Schnittpunkte von Gyrationsorbits mit den Grenzflächen der Gitterelemente
entlang des Orbits. Hierbei wurden für die Integration der Gyrationszentren im
Rahmen dieser Diplomarbeit mehrere Algorithmen weiterentwickelt, implementiert
und präsentiert. Um die physikalische Korrektheit der Anwendung zu demonstrieren,
wurden weiters Monte Carlo Simulationen durchgeführt um den mono-energetischen
radialen Diffusionskoeffizienten zu berechnen. Beim Vergleich der Ergebnisse von
GORILLA mit denen der Referenzmethode Runge Kutta 4/5 ergab sich eine sehr
gute Übereinstimmung, wobei die Rechengeschwindigkeit von GORILLA um eine
Größenordnung höher ist.

iv



Acknowledgements

To start, I want to sincerely thank my supervisor Dr. Winfried Kernbichler for giving
me the opportunity of writing this thesis in his work group and for supporting me
with his constructive feedback.

I am also very grateful to my co-supervisor and dear friend Michael Eder for our
fruitful collaboration and his valuable ideas, but also for the amazing time that we
had at the office together with Philipp Ulbl, whom I also want to thank.

Furthermore, I want to express my gratitude to Dr. Sergei Kasilov and Markus
Meisterhofer for their important contributions to this work and also to all members
of our work group for their patience and helpful feedback in the regular team meetings.

Many thanks also to all my friends who have made these years of my studies extremely
delightful and with who I have had countless interesting discussions.

I now want to deeply thank my entire family for supporting me whenever possible
and particularly my parents for their generous financial support during my studies.

Finally, I thank my love Sarah for being there for me with all her love and patience.

This work has been carried out within the framework of the EUROfusion Con-
sortium and has received funding from the Euratom research and training programme
2014-2020 under Grant Agreement No. 633053. The views and opinions expressed
herein do not necessarily reflect those of the European Commission.

v



Contents

Contents

Abstract iii

Kurzfassung iv

Acknowledgements v

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Overview - GORILLA . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Grid Implementations for GORILLA 4
2.1 Requirements and structure . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Cylindrical contour Grid . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Generating the vertices . . . . . . . . . . . . . . . . . . . . . . 6
2.2.2 Get correct vertices of tetrahedra . . . . . . . . . . . . . . . . 7
2.2.3 Get neighbors of tetrahedra . . . . . . . . . . . . . . . . . . . 8
2.2.4 Periodic boundary conditions . . . . . . . . . . . . . . . . . . 9
2.2.5 Grid visualization . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.6 Field lines in cylindrical contour grid using cylindrical coordinates 10

2.3 Field-aligned grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.1 Field lines in toroidal fusion devices and safety factor . . . . . 12
2.3.2 Field line integration and splining of axisymmetric fields . . . 13
2.3.3 Field-aligned grid generation . . . . . . . . . . . . . . . . . . . 20
2.3.4 Poincaré plots for field-aligned grid . . . . . . . . . . . . . . . 46

3 Analytical treatment of equations of motion in GORILLA 47
3.1 Analytical solution of equations of motion . . . . . . . . . . . . . . . 47

3.1.1 Reduction to a set of three linear ODEs . . . . . . . . . . . . 48
3.1.2 Homogeneous solution to equation of motion . . . . . . . . . . 49
3.1.3 Particular solution: variation of constants . . . . . . . . . . . 50
3.1.4 Axisymmetric case . . . . . . . . . . . . . . . . . . . . . . . . 53
3.1.5 Axisymmetric homogeneous solution . . . . . . . . . . . . . . 53
3.1.6 Axisymmetric particular solution: variation of constants . . . 55

vi



CONTENTS

3.2 Integration of equations of motion with RK4 . . . . . . . . . . . . . . 58
3.2.1 Derivation of the RK4-Error for GORILLA . . . . . . . . . . . 58
3.2.2 Taylor expansion of the analytical solution . . . . . . . . . . . 61

3.3 Measurement of the RK4 error . . . . . . . . . . . . . . . . . . . . . . 63

4 Pusher algorithms for particle orbits 67
4.1 Pusher routine pusher_tetra_rk . . . . . . . . . . . . . . . . . . . . 68

4.1.1 Initializing constants of motion . . . . . . . . . . . . . . . . . 70
4.1.2 Particle pushing algorithm . . . . . . . . . . . . . . . . . . . . 70
4.1.3 Convergence and validation loop conv_val_loop . . . . . . . 72
4.1.4 Final processing . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.2 Pusher routine pusher_tetra_poly . . . . . . . . . . . . . . . . . . . 76
4.3 Search routine for tetrahedra . . . . . . . . . . . . . . . . . . . . . . . 78

5 Monte Carlo simulation of particle transport using GORILLA 79
5.1 Monte Carlo evaluation of neoclassical transport coefficients, perfor-

mance benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6 Conclusion and outlook 84

A Lagrange polynomial interpolation 86
A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
A.2 Application for a simple exponential . . . . . . . . . . . . . . . . . . 86

B Runge-Kutta integration 88
B.1 General formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
B.2 RK4 with application . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
B.3 Runge-Kutta-Fehlberg - RK45 . . . . . . . . . . . . . . . . . . . . . . 91

Bibliography 92

vii



List of Figures

List of Figures

2.1 Hexahedron split up into six tetrahedra . . . . . . . . . . . . . . . . . 8
2.4 Field lines with different safety factors in a tokamak . . . . . . . . . . 14
2.5 Visualization of quantities for Newton’s method . . . . . . . . . . . . 17
2.6 Subroutine make_tetra_grid code structure . . . . . . . . . . . . . . 21
2.7 This plot presents a magnified schematic picture of the poloidal projec-

tion of the field-aligned grid center in cylindrical coordinates for two
different values of s_min. In plot 2.7a a very small value for s_min

has been chosen, this is compared to a larger value for plot 2.7b. It is
clearly visible that the tetrahedral faces which have two corner points
on the inner-most ϑ-ring are only visible in 2.7b, while they appear to
be merely lines in 2.7a. . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.8 Poloidal projection of field-aligned grids in cylindrical coordinates of
grid size (Ns, Nϑ) = (14, 14), vertices are indicated by black dots, the
grey lines in the back indicate how these vertices will later be connected
to form tetrahedra, mind that for 2.8a intersections occur close to the
separatrix, while for 2.8b this problem was circumvented by aligning
the vertices equidistantly in geometrical angle θ . . . . . . . . . . . . 29

2.9 Grid vertex indices for the first ϕ-slice and in parentheses the indices
of the next slice, the indices between slices differ by a constant value
verts_per_slice which is equal to 13 for this configuration . . . . . 32

2.10 Prisms used to index tetrahedra, top facing prism on the left and
bottom facing prism on the right . . . . . . . . . . . . . . . . . . . . 33

2.11 Extracted lower right corner domain of figure 2.9, for computing the
Delaunay condition for the first prism, the poloidal coordinate compo-
nents of the neighboring vertices to index 1 are saved into variables u,
v, p and q, whereas for this case the coordinate tuples [ϑ, s] are u =

[0,0], v = [0, 0.33], p = [0.33,0.33] and q = [0.33,0] . . . . 34

viii



LIST OF FIGURES

2.12 Visualization of the Delaunay condition for the top facing segment
(solid line), if q lies outside or at most exactly on the circumcircle
(dashed line, center marked by red dot) around {u, v, p} the Delaunay
condition is satisfied. Since for the shown configuration all four vertices
lie on the circumcircle the Delaunay condition is satisfied for both the
top facing and bottom facing orientation, whenever this occurs the top
facing orientation is assumed in this approach. . . . . . . . . . . . . . 36

2.13 Depiction of the field-aligned grid in symmetry flux coordinates with
an increased number of poloidal vertices at s = 2/3, vertex coordinates
were extended poloidally to 2π to make the representation cleaner . . 44

2.14 Poloidal projection of the field-aligned grid in real space, the cross
sectional countour of the two combined prisms from figure 2.15 is
marked in red . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.15 On the left, two adjacent prisms of opposing orientation are drawn
in real space with the red lines indicating how the two prisms form
a hexagonal shape for a constant number of points per ϑ-ring, the
individual tetrahedra are plotted on the right, the corners are hereby
merely indexed to enable a clearer association of the tetrahedra . . . 45

2.16 (a) Poincaré plot (ϕ = 0, 107 toroidal mappings) of a trapped 1.5 keV D
ion in axisymmetric ASDEX Upgrade configuration with a tetrahedral
grid size of 20x20x20. Two-dimensional Poincaré sections of orbits
obtained with different integration methods are indicated with markers:
Exact orbit: N, 3D Geometric Integrator GORILLA with cylindrical
coordinates: �, GORILLA with symmetry flux coordinates: �. (b)
and (c) are magnifications of the pertinent zones in (a). The figure and
caption are taken without change from [9]. . . . . . . . . . . . . . . . 46

3.1 Double-logarithmic plot of two versions for the analytic error (difference
of fourth and fifth order solution (x), direct computation of fifth order
contribution (o)) are hereby plotted as function of the measured error
for a grid size of (NR, Nϕ, NZ) = (5, 5, 5), calculations were performed
using cylindrical coordinates . . . . . . . . . . . . . . . . . . . . . . . 64

3.2 Double-logarithmic plot of two versions for the analytic error (difference
of fourth and fifth order solution (x), direct computation of fifth order
contribution (o)) are hereby plotted as function of themeasured error for
a grid size of (NR, Nϕ, NZ) = (12, 12, 12), calculations were performed
using cylindrical coordinates . . . . . . . . . . . . . . . . . . . . . . . 65

ix



LIST OF FIGURES

3.3 Double-logarithmic plot of two versions for the analytic error (difference
of fourth and fifth order solution (x), direct computation of fifth order
contribution (o)) are hereby plotted as function of the measured error
for a grid size of (Ns, Nϑ, Nϕ) = (5, 5, 5), calculations were performed
using symmetry flux coordinates . . . . . . . . . . . . . . . . . . . . . 65

3.4 Double-logarithmic plot of two versions for the analytic error (difference
of fourth and fifth order solution (x), direct computation of fifth order
contribution (o)) are hereby plotted as function of the measured error
for a grid size of (Ns, Nϑ, Nϕ) = (12, 12, 12), calculations were performed
using symmetry flux coordinates . . . . . . . . . . . . . . . . . . . . . 66

4.1 Intersections of the particle orbit xi(τ) with planes confining the cell are
displayed. For demonstrative purposes, the tetrahedral cell is depicted
as a two-dimensional triangle. The particle enters the cell at xi(τ0) and
exits again at 1©. This figure is taken from [1]. . . . . . . . . . . . . 67

4.2 Code structure of pusher_tetra_orbit_mod and associated subroutine 69

5.1 Mono-energetic radial diffusion coefficients D11 for electrons (top) and
deuterium ions (bottom) as functions of (a) normalized collisionality
ν∗ and (b) Mach number v∗E. Lines of various styles (see the legends) -
reference computation, markers - results of geometric integration with
polynomial solution of the order K for K = 2 (♦), K = 3 (�) and
K = 4 (O). Error bars indicate 95 % confidence interval. . . . . . . . 81

5.2 Relative error of mono-energetic radial transport coefficient D11 of
electrons (top) and D ions (bottom) vs. relative CPU time. Compared
orbit integration methods are: Runge-Kutta 4 (?), Adaptive RK4/5
with various relative errors indicated in the plot (×), geometric inte-
gration with polynomial solution (GORILLA Poly) of the order K = 2

(♦), K = 3 (�) and K = 4 (O), and with RK4 solution (GORILLA
RK4, 4). Fits of results are depicted with lines according to the legend.
Random error of the reference result, D11,ref , is depicted as a horizontal
line limiting its 95 % confidence interval. . . . . . . . . . . . . . . . 82

A.1 Lagrange polynomials of order n with equidistant zk for f(z) = ez . . 87

x



Chapter 1. Introduction

Chapter 1

Introduction

1.1 Background

In plasma physics, particularly in kinetic theory, codes for guiding-center calculations
are an importantant tool for computing quasi-steady plasma parameters by simulating
massive amounts of charged particle orbits in toroidal fusion devices. Guiding-centers
are hereby the microscopic particle orbits averaged over the fastest time scale, in
this case the gyrating motion of the particle. This gyrating motion is induced by
the Lorentz force and it is an overlying nearly circular motion perpendicular to the
magnetic field. Now, by performing massive computations of stochastic guiding-center
orbits in an iterative Monte Carlo scheme, the properties of a given system can be
evaluated using a box counting approach on a defined grid. The system is hereby
described by the single particle distribution function fα(r,v) of particle species α,
which is the probability density for finding a particle at position r with velocity
v. For a grid element at position r, the moments of fα(r,v) (i.e., charge density ρ
and current density j) can be obtained from the averaged guiding-center motion of
the particle ensemble through this cell. While the particles of a given ensemble are
non-interacting, collisions with the plasma can be introduced artificially by adding
random small angle scattering processes (with a Lorentz scattering operator) after
each collisionless time step. From the moments of the distribution function, one can
moreover self-consistently compute the contributions to the electric and magnetic
fields using Maxwell’s equations. Doing so, the current field components can be
updated according to the new field contributions. By implementing the process of
tracing guiding-center positions, sampled from fα(r,v), together with the evaluation
of the field contributions in an iterative scheme, one aims to model kinetic plasma
equilibria.
However, due to the stochastic nature of this approach, massive amounts of particles
need to be simulated in order to obtain reasonably accurate results. This leads
to the requirement of high computational efficiency for a potential integrator. This
stochasticity furthermore generally introduces noise in the evaluated field contributions
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CHAPTER 1. INTRODUCTION

which can cause unphysical orbit behavior if interpolated fields underlie high order
spline oscillations. For this reason, the additional requirement of low sensitivity to
noise in field quantities is stated. A third requirement is that the box counting
algorithm for guiding center orbits also needs to be efficient in order for kinetic plasma
modeling to be feasible.
A geometric integrator named GORILLA which elegantly satisfies these requirements
while preserving physically correct long time orbit dynamics has therefore been
developed.

1.2 Overview - GORILLA

Firstly, this thesis is based on the work of a previous Master’s Thesis written by M.
Eder [1] under supervision of W. Kernbichler and on the contributions made by S.V.
Kasilov, C.G. Albert and M. Meisterhofer to this project. At the time of the author
joining this project, M. Eder had continued work at the institute on development
of the integrator now named GORILLA, standing for Geometric ORbit Integration
with Local Linearisation Approach. For the practical part of this thesis, the author
has joined the work group lead by W. Kernbichler in order to further develop the
integrator in cooperation with M. Eder.
As introduced in [1], the goal of the developed code is to compute guiding-center
orbits in toroidal fusion devices with specific requirements on computational efficiency
while remaining insensitive to statistical noise. Furthermore the preservation of
physically correct long time orbit dynamics is required. For the method of linearizing
field components (cf. [1]), as well as for the proposed box counting scheme to
evaluate particle distribution functions (cf. [1]), a grid was introduced which is briefly
described as the cylindrical contour grid within this thesis. Since diffusive behavior
had been detected for orbits computed in cylindrical coordinates, the implementation
of symmetry flux coordinates has therefore been proposed. In these coordinates the
magnetic vector potential assumes a linear function, reducing interpolation errors
caused by the linearization approach of GORILLA. However, since the previously
implemented cylindrical contour grid is topologically incompatible with symmetry flux
coordinates, a new field-aligned grid has been implemented. Here, M. Meisterhofer
deserves special mention for his contributions on the implementation of the field
aligned grid within the framework of his Bachelor’s Thesis at the work group. In
order to provide additional documentation of the code, the implementation process of
the field aligned grid will be presented on a rather detailed and technical level.
Additionally to the implementation of the field-aligned grid, an analytical solution
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CHAPTER 1. INTRODUCTION

of the linearized set of equations of guiding-center motion is derived within this
thesis. This derivation leads to both an analytical description of the Runge Kutta
4 (RK4) error that occurs when numerically solving the equations of guiding-center
motion and to the implementation of a polynomial expansion approach for finding
intersections of the guiding-center orbit with the tetrahedral cell boundaries along
the orbit. Regarding the problem of finding the cell boundary intersections, also
the pre-existing subroutine pusher_tetr_orb is reworked and explained within this
thesis.
Finally, results for Monte Carlo calculations of the mono-energetic radial diffusion
coefficient and for benchmarking the computational efficiency of the code are given in
this thesis. These results are directly taken from a paper regarding the GORILLA
project by M. Eder et al [9], for which the author of this thesis has contributed as
co-author.
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Chapter 2

Grid Implementations for GORILLA

The developed codeGORILLA (Geometric ORbit Integration with Local Linearisation
Approach) is a geometric guiding center orbit integrator written in Fortran 90

(with some use of functionality of the more recent Fortran versions Fortran 2003

and Fortran 2008) based on local linearization of electro-magnetic field quantities.
Due to the linearization of these fields, a grid must be implemented consisting of
tetrahedra where within each tetrahedral grid element the linearization is performed.
In this chapter the two grid implementions used by GORILLA are explained. For
compatibility reasons, the codes for the grids are also written in Fortran.

2.1 Requirements and structure

There exist several requirements that must hold for any given grid in order for the
executing code to function correctly. These requirements are:

1. The three-dimensional spatial domain, which is relevant for calculations, must be
fully covered by non-overlapping tetrahedra. In this application tetrahedra are
necessary since field quantities are used in a piece-wise linearized form, meaning
they are saved as a scalar value at a reference point and a corresponding gradient
of the quantity. Such a linear representation has four independent parameters,
therefore, the use of tetrahedra is ideal since the parameters of the linearized
field quantity can be exactly defined via the field quantities at the four vertices
of the tetrahedron. One might think that apart from tetrahedra other spatial
objects with more vertices can still be used by fitting a linear function of the field
quantity, however, such an application would destroy the important property
that the field quantities through adjacent faces of tetrahedra are continuous.
Furthermore, for vector quantities each vector component is independently
linearized.

2. All edges of tetrahedra must coincide with edges of neighboring tetrahedra.
Edges that lie on faces of neighboring tetrahedra (these are called hanging
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nodes) or crossings between edges are not permitted. This requirement is given
by the continuity condition of linearized field quantities through the faces of
each tetrahedron and as well by the requirements for Maxwell solvers, which
will be used to calculate electromagnetic field contributions.

3. Each tetrahedron must be defined via four corner vertices in a given coordinate
system. The coordinate values of each vertex are stored in an array and each
vertex is identified by its array index. The index of the four vertices belonging
to a specific tetrahedron has to be stored in a 4× 1 array and can be accessed
by indices 1 to 4 within each tetrahedron.

4. The tetrahedra are stored in an array of tetrahedron objects and identified by
their index. Each tetrahedron has four defined faces labeled face 1 to 4. Each
face i (i = 1, 2, 3, 4) is spanned by the vertices of the tetrahedron excluding
tetrahedron-vertex i. For instance, face 3 will be spanned by tetrahedron-vertices
1,2,4. This implies that the tetrahedron-vertex i will be the only tetrahedron-
vertex not lying on face i.

5. For a given tetrahedron, the neighboring tetrahedron which is separated by
the i-th face of the current tetrahedron will be considered the neighbor i to
the current tetrahedron with its global labeling index being saved in the i-th
position of a 4× 1 array.

6. In addition to saving the four faces and neighbors of each tetrahedron, the index
of the intersecting face between the original tetrahedron and its neighbor in the
index system of the neighbor will be saved with the original tetrahedron. This
means that the face through which a particle enters a neighbouring tetrahedron
can be determined by knowing through which face it is leaving the current one.

7. Tetrahedra at the outer boundary of the grid will not have neighboring tetrahedra
at the boundary face, the neighboring tetrahedron index as well as the index of
the face in the index system of the neighboring tetrahedron will be set to −1.

8. The normal vectors corresponding to each face of all tetrahedra must be explicitly
calculated and saved together with a reference point. This enables the calculation
of normal distances of any arbitrary point to all faces of each tetrahedron.

9. Grids that are made in a coordinate system with a periodic coordinate need
to have an additional property set for tetrahedra faces lying at the periodic
boundary, depending on which side the face lies. This determines in which
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direction the coordinate needs to be shifted when the particle passes through
the boundary.

2.2 Cylindrical contour Grid

The first implementation of a grid suitable for the code GORILLA is the so-called
‘cylindrical contour grid’ which is generated by the subroutine make_grid_rect. This
grid is generated in cylindrical coordinates and has uniformly distributed vertices
along the coordinate contours R,Z and ϕ.
In this section the individual procedures and approaches to generate the required grid
quantities will be discussed. To clarify, from a programmatic aspect, tetrahedra can
here be thought of as instances of a tetrahedron class with a set of properties, such
as vertex indices, neigbour indices, neighbor entry face indices, etc. Therefore, any
relevant information can be directly saved together with the tetrahedra. Furthermore,
tetrahedra properties are saved with the attributes public, protected and are thus
only permitted to be altered by the grid generating function, assuming the role of a
constructor in this context.

2.2.1 Generating the vertices

The first step in implementing this grid is to generate the vertices that will define the
corner points for the tetrahedra filling a given space. In order to do this, the domain
which will be covered by the grid needs to be specified in the coordinate system where
the grid will be generated. In this case, the grid will have vertices equidistantly spaced
in R,ϕ and Z direction with intervals for R and Z being [Rmin, Rmax], [Zmin, Zmax]

and [0, 2π] for ϕ, respectively. Now, each coordinate xi will be discretized into Ni

equidistant values for each given interval. Using nested loops, these discretized values
will be connected to NR ×Nϕ ×NZ unique triples representing the coordinates of the
individual vertices of the grid. Upon generation of the vertices, an incrementer will
label each individual vertex with an integer, starting with 1 for the first triple with
coordinates(R,ϕ, Z) = (Rmin, 0, Zmin). The order of labeling the generated vertices
will be defined by the order of the nested loops of the coordinates, in this case being
Z,R, then ϕ.
An important aspect to note is the treatment of periodic boundary conditions. De-
pending on the coordinate system there might be periodic coordinates, which in this
case arise at the ϕ-coordinate. As mentioned above, the interval given for ϕ is the
closed interval [0, 2π]. In principle this is not fully correct as the coordinate value of
ϕ = 2π is already represented by ϕ = 0, therefore the interval should be semi-open
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[0, 2π). However, later for the calculation of normal vectors of each tetrahedron, all
coordinates must be within the same period, therefore points lying on the ϕ = 0-plane
must both act as points lying on ϕ = 0 as well ϕ = 2π, depending on which side
of the boundary the tetrahedron containing the point lies. To avoid confusion, for
this grid there are separate vertices with distinct indices for ϕ = 0 and ϕ = 2π even
though they are topologically identical.

2.2.2 Get correct vertices of tetrahedra

So far, a regular grid of vertices has been implemented without any connections
between vertices. In the next step of the grid generation, the very convenient property
of the vertex grid that vertices can be easily assigned to tetrahedra via indexing will
be used. This procedure looks as follows:
Since the grid is regular (equidistant spacing between all points) 3D-integer coordinates
(i, j, k) can be introduced for all points, with the basis vectors being the discretization
step sizes times the unit vectors of the cylindrical coordinates (R,ϕ, Z). Using this,
neighboring vertices can easily be connected to form hexahedra. The eight corner
points for such hexahedra will have the coordinates [(i, j, k), (i + 1, j, k), (i + 1, j +

1, k), (i, j+ 1, k), (i, j, k+ 1), (i+ 1, j, k+ 1), (i+ 1, j+ 1, k+ 1), (i, j+ 1, k+ 1)]. These
coordinates are simply used for practical purposes and can easily be converted to the
vertex integer label ind(i, j, k) using the following formula:

ind(i, j, k) = k + (i− 1) ·NZ + (j − 1) ·NZ ·NR (2.1)

After the eight points are connected to form a hexahedron, this hexahedron is then
split up into two prisms which are subsequently and independently split up into three
tetrahedra. The precise way, how the tetrahedra fit into the hexahedron can be seen
in figure 2.1.
Here, the plane containing points (2, 4, 6, 8) cuts the hexahedron in half and therefore
splits it up into two symmetric prisms. The first prism is then split up into three
tetrahedra with the corner points (1, 2, 4, 5), (2, 4, 5, 6) and (4, 5, 6, 8). The point
indices of the tetrahedra of the second prism are (2, 3, 4, 6), (3, 4, 6, 8) and (3, 6, 7, 8),
respectively.
For each direction (R,ϕ, Z) the two faces with respect to that direction have the
same orientation of the diagonal intersection of the faces. This means, that these
hexahedra can be stacked next to each other in any direction without crossing edges
of tetrahedra, as long as the orientations of all hexahedra are the same.
The indices of all vertices for each tetrahedron can be retrieved by iterating over all
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Figure 2.1: Hexahedron split up into six tetrahedra

hexahedra within the domain using loops over i, j and k, transforming the corner points
into integer labels using formula 2.1 and then saving the correct corner point indices
for each of the six types of tetrahedra. Upon generation of each tetrahedron a separate
counter that labels the tetrahedra with an integer label needs to be incremented.
By now, all vertices of the grid have been generated, also the vertices have been
properly ‘connected’ to form tetrahedra that completely fill the domain of the grid.

2.2.3 Get neighbors of tetrahedra

In this section the procedure of finding the indices of neighboring tetrahedra with
respect to a given tetrahedron will be explained.
Each tetrahedron can be seen as a part of a hexahedron at position (i, j, k). The
indices belonging to the corner points of such a hexahedron are given in section 2.2.2
using 2.1 while the index of the corner point (i, j, k) can be interpreted as the index
of the hexahedron at hand. Since the tetrahedra were labeled in the same order as
the hexahedra, there is a simple formula to index all six tetrahedra belonging to a
given hexahedron at position (i, j, k):
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indtetra(i, j, k, l) = 6(indhexa(i, j, k)− 1) + l = (2.2)

= 6(k − 1 + (i− 1) ·NZ + (j − 1) ·NZ ·NR) + l

l = 1, 2, .., 6 (2.3)

All neighboring tetrahedra must either lie within the same hexahedron as the reference
tetrahedron or within a neighboring hexahedron. For this reason it is convenient to
use formula 2.2 to obtain the indices of all tetrahedra that are within the same or
the neighboring hexahedra. One can then loop over all faces of all tetrahedra and
compare the indices of the vertices at the given face of a tetrahedron with the vertices
of the faces of all potential neighbors. If three vertices coincide, a matching face and
therefore the neighbor to the given face is found. Using this procedure, all tetrahedra
can be efficiently connected, by setting the default value for the neighbor indices to
−1, all border tetrahedra that have no matching neighbor to a face will automatically
have set the correct value, as defined in the requirements for the grid.

2.2.4 Periodic boundary conditions

Furthermore, since this grid is constructed using cylindrical coordinates, periodicity
in the ϕ coordinate occurs which needs to be treated independently. The issue is
that vertices lying on the ϕ = 0 plane have both values 0 and 2π in the ϕ component
and particles that move through the boundary experience a jump in coordinate.
Furthermore, since normal vectors must be computed from corner vertices and field
quantities are later linearized within the grid, coordinates of corner vertices of all
tetrahedra must be smooth with respect to each other and not experience such
discontinuities. A possible solution to this problem is to introduce an additional
set of vertices, where each element corresponds to a vertex on the ϕ = 0 plane but
with the ϕ component being shifted to 2π. Neighbor indices can still be obtained by
proper indexing, a drawback of this approach however is, that vertices at the periodic
boundary plane have different indices on both sides while actually being the same
vertex in real space. In case that such information is relevant, this needs to be taken
into account independently. While this approach is a working solution, for further grid
implementations the approach was changed to not have two indices for any existing
vertex. However, here the jump in coordinate needs to be detected upon computation
of normal vectors.
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2.2.5 Grid visualization

A full 3D representation of a rather coarse cylindrical contour grid with grid size
(NR, Nϕ, NZ) = (8, 16, 8) is given in figure 2.2a. Axis orientations are given by the
arrows on the top left with the blue arrow indicating the symmetry direction Z.
Furthermore, one can see that the center region is not part of the grid, this is simply
due to range restrictions in R direction as this region is anyway obstructed by the
solenoid in a real tokamak and therefore irrelevant for particle guiding center motion.
Figure 2.2b shows additionally a single ϕ slice of the cylindrical contour grid for better
imaginability of intersections at tetrahedra boundaries.

(a) Cylindrical contour grid in real space
(b) Single ϕ slice of cylindrical contour
grid in real space

2.2.6 Field lines in cylindrical contour grid using cylindrical

coordinates

Using the cylindrical contour grid for computation of guiding center motion with
GORILLA in cylindrical coordinates also allows to easily compute field lines by
following electrons at very low energies (it is sufficient to use energies of 10−2 eV)
and strong magnetic fields (magnetic field components are scaled by 1E5) leading
to miniscule larmor radii and a diminishing curvature drift, hence any drift motion
becomes negligible. Such a particle will then accurately follow magnetic field lines.
If one follows such a particle for a long enough time given that the safety factor q
(which is the ratio of number of toroidal turns and number of poloidal turns in a
fusion device) assumes an irrational number, a continuous surface will be covered by
a single field line. Such a surface is a so-called flux surface where both the poloidal
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and toroidal magnetic flux remain constant within the central hole of the torus and
the toroidal cross section, respectively. One can furthermore intersect a given flux
surface with the φ = 0 plane to create a Poincaré plot. Such plots, calculated using
cylindrical coordinates, are given for the cyldrical contour grid in figure 2.3a and 2.3b:

(a) Poincaré cut of flux surfaces calculated with
GORILLA using a coarse cylindrical contour
grid of 6× 16× 6

(b) Poincaré cut of flux surfaces calculated with
GORILLA using a finer cylindrical contour
grid of 32× 16× 32

An important fact to note about, regarding these figures, is that due to linearization
of field quantities performed by GORILLA, all flux surfaces have polygonal shapes.
This has to do with the fact, that the field lines in a toroidal configuration, which is
used for fusion devices, are curved lines in real space and a linearization in cylindrical
coordinates will always introduce an interpolation error leading to polygonally shaped
flux surfaces and, thus, also polygonal guiding center orbits of 0th order in larmor
radius. One can reduce these effects by using a finer mesh, as shown in figure 2.3b,
however this comes at the expense of a larger computational cost. Furthermore,
a large drawback of polygonal field lines is that for 3D (non-axisymmetric) field
configurations chaos will be introduced when trying to calculate guiding center orbits.
If one wants to keep linearization of field quantities for simplicity of equations and,
thus, performance reasons, a possible solution to this problem is given via appropriate
coordinate transformations where field lines assume straight lines. The use of symmetry
flux coordinates (SFC) satisfies such a condition [2], however, the cylindrical contour
grid will no longer be guaranteed to not have overlaps between tetrahedra, when
vertices are directly connected in SFC. Since not having overlaps was one of the
initial requirements, a new grid with a more appropriate toroidal shape needs to be
implemented for the use of SFC.
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2.3 Field-aligned grid

One is now interested in computing guiding center orbits in symmetry flux coordinates
(SFC) where field lines are represented by straight lines. The straightness of field lines
in these coordinates allows to compute guiding center motion also for generally non-
axisymmetric field configurations without introducing artificial chaos. Furthermore,
field lines calculated in SFC will coincide more accurately with physical field lines,
compared to when calculated in cylindrical coordinates where they assume polygonal
shapes. A problem that arises by using SFC is, however, that in SFC the cylindrical
contour grid is no longer guaranteed to satisfy the requirement that tetrahedra must
not overlap. Therefore, a new grid with a field-aligned geometry is needed. Such a grid
can be obtained by positioning the grid vertices equidistantly along the coordinate
contours of (s, ϑf , ϕ), where s denotes the normalized flux label (normalized poloidal
or toroidal flux), ϑf the symmetry flux poloidal angle and ϕ the toroidal angle,
respectively. With such an approach, only a routine is needed that transforms any
given point in SFC back to cylindrical coordinates, where physical field quantities
are available. It should be furthermore pointed out, that any grid generated by
setting equidistant points in three dimensions will be topologically identical to the
cylindrical contour grid in cylindrical coordinates, thus an analogous indexing scheme
for tetrahedra can be applied. In this section, an approach to obtain a routine that
converts given SFC coordinates to cylindrical coordinates for an axisymmetric field
configuration is explained. A different code package for stellarator configurations has
been made available by Sergei Kasilov and has been implemented in the GORILLA
code. In this thesis only the axisymmetric approach will be discussed.

2.3.1 Field lines in toroidal fusion devices and safety factor

When trying to construct a field-aligned grid, one must first look at the geometry of
magnetic field lines themselves. By definition, magnetic field lines are curves of which
the tangent is always parallel to the magnetic field vector [2]. Mathematically this
translates to the set of differential equations

dR
dϕ

=
BR

Bϕ
,
dZ
dϕ

=
BZ

Bϕ
, (2.4)

where (R,ϕ, Z) denote cylindrical coordinates and (BR, Bϕ, BZ) the contravariant
components of the magnetic field. Important properties of field lines are that they
always remain closed and cannot cross other field lines. Furthermore, the absolute
strength of the magnetic field at a given point is proportional to the number of field
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lines going through an infinitesimal area located at that point and perpendicular to
the magnetic field vector, thus it is proportional to the areal field line density.
By numerical integration of set 2.4 over ϕ for some arbitrary starting position using a
standard ordinary differential equation solver (e.g. RK45), a field line can be traced.
In toroidal fusion devices when tracing such a field line associated with a given starting
position for one toroidal turn, in general one does not reach the same point in space
but rather a different location in the poloidal plane at the starting toroidal angle. The
different rates of change in coordinates (ϑ, ϕ) per toroidal turn are hereby linked by
the safety factor

q =
Bϕ

Bϑ
to dϕ = qdϑ. (2.5)

For irrational values of q, this field line will completely fill a 2-dimensional surface which
is then called flux surface, as both toroidal and poloidal magnetic flux remain constant
within a given field line. By gradually changing the starting point of integration for
field lines towards the center of a corresponding flux surface in the poloidal plane, one
can asymptotically reach a degenerate flux surface which is represented by a single
line, this field line is called the magnetic axis and will be used for the point of origin
in s-direction for symmetry flux coordinates. For the use of SFC, one must assume
that only one magnetic axis exists with all flux surfaces being nested flux surfaces,
thus no magnetic islands are allowed. The outermost closed flux surface is called the
separatrix, marking the transition between core plasma region and the scrape-off layer.
In this thesis, only the core plasma region is considered, additions to the grid must
therefore be programmed if one wants to include the scrape-off layer into calculations.
Figure 2.4 shows some schematic field lines in a tokamak for different values of q, each
for one poloidal turn. As can be seen, only field lines with integer valued q are closed
after one poloidal turn.

2.3.2 Field line integration and splining of axisymmetric fields

Next, one wants to construct a routine to map symmetry flux coordinate triplets to
cylindric coordinates, in which all field quantities are subsequently read out. The
approach presented here is only applicable for axisymmetric field configurations,
as present in ideal Tokamaks. Symmetry flux coordinates topologically represent
toroidal coordinates, therefore the first SFC coordinate is a minor radius-like quantity
s, which in our case is chosen to be the normalized toroidal flux. However, in theory
any flux label can be used, the second coordinate is ϑ which is related but not identical
to the geometrical poloidal angle θ. The last coordinate is the geometric toroidal
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Figure 2.4: Field lines with different safety factors in a tokamak

angle ϕ, which is the same as in standard cylindrical coordinates. Since field lines are
chosen to be straight in these coordinates, the simple relation that the change in ϑ
along the field line is proportional to the change in ϕ must hold, this proportionality
factor represents the safety factor shown above. Hence, if one performs a step-wise
integration of equation set 2.4 equidistantly along ϕ from 0 to q2π and calculates these
points in (R,ϕ, Z) they must automatically correspond to point sets (s, ϑ, ϕ) with
s being constant along a field line (0 at the magnetic axis and 1 at the separatrix),
ϑ being equidistant from 0 to 2π and ϕ being equidistant from 0 to q2π. For an
axisymmetric configuration, one can now convert these coordinates to cylindrical
coordinates via interpolation. A more detailed explantion of the procedure is given
below.

Find O-point (magnetic axis)

The first step in implementing SFC is to find the magnetic axis which represents
the s = 0 flux surface. This is done by starting to integrate a field line at position
(R,ϕ, Z) = (1

2
(Rmin +Rmax), 0,

1
2
(Zmin + Zmax)). The corresponding field values are

obtained from calling the field routine that returns all necessary field information
for the configuration. From this starting position the field line is intergrated for
one toroidal turn using a standard ODE solver. Apart from the set of ODE for the
magnetic field line, also the R and Z coordinates are computed independently by
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the ODE solver. From this information, one can directly calculate the mean values
of R and Z when following the field line by dividing the integrated values of R and
Z by the integration angle of 2π. These values are then used for the next guess for
the magnetic axis. From this new starting point another field line is followed and
the mean values of R and Z are again computed. This iteration quickly converges
to the position of the magnetic axis for a toroidally symmetric field. This routine is
implemented in the file field_line_integration_for_SYNCH.f90 where by default
20 iterations are performed.

Find X-point

Now that the magnetic axis has been found, the innermost starting point in the ϕ = 0

plane for the field line integrations has been determined. The outermost starting
point will be given by a point on the separatrix, which is the boundary between
closed and open flux surface domains (i.e. core region and scrape-off layer). To
find a starting position on the separatrix, one takes the coordinates of the magnetic
axis and parametrizes a line segment in cylindrical R-direction up to the largest
R-value possible (saved in rmx) for the given configuration. The boundaries of R and
Z for the current configuration are saved within the module field_eq_mod in file
field_divB0.f90 and can be read out via
rmn=rad(1)

rmx=rad(nrad)

zmn=zet(1)

zmx=zet(nzet).
This line segment is then split up equidistantly, by default 10000 points are chosen.
Points pi are placed equidistantly with

~pi = ~O +
i

N

(
rmx−OR

0

)
(2.6)

in cylindric coordinates for i = 0, 1, 2, .., N . Now, starting from the magnetic axis,
for each of these points a magnetic field line is integrated for two poloidal half turns
in successive steps of ∆ϕ = 2π/10, resulting in one full turn. After each integration
step the current position is compared to the (R,Z)-constraints of the domain, in
case a maximum/minimum value is exceeded the current field line is no longer closed.
Thus, the previous starting point for the integration can be assumed to represent the
starting point for the last flux surface. However, this last closed field line is already
suboptimal in quality so the preceding starting point is taken as the last closed field
line for this configuration, hence representing the separatrix. As mentioned above,
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the X-point lies on the separatrix, in addition to this condition, the X-point has the
property that the poloidal magnetic field vanishes at its position. Consequently, when
following the last closed field line, upon reaching the X-point no poloidal movement
occurs, thus (R,Z) remain constant. The algorithm for finding the X-point uses
this property by integrating the last closed field line in steps of ∆ϕ = 2π/10 and
comparing the last (R,Z) position with the position of the previous integration step.
The distance between the two positions is evaluated and compared with the distance
between the positions of the previous steps, if the new distance is so far the lowest, the
new position and the distance are saved in variables min_d and x_point. These steps
are performed until the distance between steps no longer decreases, the position of
the X-point is hereby found. To make sure that one only integrates over one poloidal
turn, one can use the property of the cross product that |~a×~b| = |a||b| sin(α) with
|~a| being the poloidal starting position of the integration and |~b| the current poloidal
position. Upon completing one full poloidal turn, the sign of the sine will flip from -1
to 1, by detecting this flip one can stop the integration accordingly.

Scanning flux surfaces

After finding the O-point and the X-point, the next step is to connect them by
a straight line in cylindrical coordinates in the ϕ = 0-plane, this line segment is
subsequently chosen to respresent the ϑ = 0 contour in SFC. On this line segment
500 points are placed equidistantly, then for each of these points, an independent
field line integration over one poloidal turn with a step size of ∆ϕ = 2π/10 is started.
The goal of these particular integrations is to determine the safety factors of the
individual field lines, which can be easily calculated from the toroidal integration
angles corresponding to exactly one poloidal turn. Again, the approach using the
flip of the cross product sign will be used to determine whether the last integration
step finished the turn. However, due to the finite size of the integration steps the
necessary toroidal integration angle is not precisely determined. Thus, iterations
of Newton’s method are applied in order to obtain the precise integration angle to
complete the turn. To implement such a routine, one needs to take a look at some
geometric considerations. Figure 2.5 depicts a sketch of the components relevant for
Newton’s method:
In order to implement a Newton’s scheme, one first takes a look at the normal distance
from the position after the last integration step ymetaxis to the θ = 0 axis, for this it
is convenient to rotate the system such that the θ axis points in the x-direction. The

16



CHAPTER 2. GRID IMPLEMENTATIONS FOR GORILLA

β

θ axis

Z

R

yme
t axis

|ymet axis|⋅sin(β)

θaxis

α

π−α

|dymet axis|⋅sin(π−α)=|dymet axis|⋅sin(α)

dym
et
axis

θ axis

O point X point

Figure 2.5: Visualization of quantities for Newton’s method

normal distance from the end position ymetaxis to the axis θaxis is then given by

d⊥ = |ymetaxis| sin(β).

Next, one is interested in the normal derivative of the field line to the axis with
respect to ϕ. In the routine, the derivatives dr_dphi and dz_dphi are provided by
the numerical integration scheme, here they are combined in vector dymetaxis. Using
the identity sin(π − x) = sin(x) one can evaluate the normal derivative as

∂d⊥
∂ϕ

= |dymetaxis| sin(α),

with Newton’s guess for the correction of the integration angle

∆ϕ = σ
d⊥(
∂d⊥
∂ϕ

) = σ
|ymetaxis| sin(β)

|dymetaxis| sin(α)

and σ being the sign of (ymetaxis×θaxis) to ensure the correct direction of integration.
This correction scheme is applied iteratively for each field line, by default 50 iterations
are performed to obtain accurate values for ϕtotal.
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Upon determining the correct toroidal integration limits to complete one poloidal turn
for each point, the safety factors for the field lines are then directly given by

qsaf =
ϕtotal

2π
.

Apart from the safety factor, also the approximate average minor radius of the field
line rsmall, the poloidal flux ψsurf (variable psisurf) and the toroidal flux Φtor

(variable phitor) are computed for each field line. For the application at hand rsmall

is irrelevant so it will not be discussed, rbeg is also an output of the routine which
has no physical meaning as it is never evaluated (it is not removed to ensure that the
function call stays the same for compatibility with other codes), the poloidal flux ψsurf

is obtained from the module field_eq_mod by calling the field_eq subroutine at the
start position of the integration, from this value the poloidal flux at the magnetic axis
then needs to be subtracted (its value is computed also via the field_eq subroutine).
The toroidal flux phitor is calculated by numerically integrating equation

∂Φtor

∂ϕ
= R · Z ·Br

when performing the field line integration, here Br denotes the physical component
of the magnetic field in the R-direction. For normalization, the obtained result still
needs to be divided by 2π.
So far, the flux functions rsmall, qsaf, psisurf and phitor were calculated for the
array of 500 field lines, with flux functions being defined as functions that remain
uniform along a field line / on a flux surface, thus only depending on the flux surface
label. Due to this property any flux function can be used to label a given flux surface,
in this application the normalized toroidal magnetic flux, here denoted s, will be
used as the flux label. Now, one is interested in the positions R, Z, the modulus of
the magnetic field bmod = (|B|) and the metric determinant sqgnorm = (

√
|g|) in

equidistant steps along the field lines. These values are needed for the interpolation
routine to convert components from symmetry flux coordinates to cylindric coordinates.
Due to axisymmetry in the configuration the field lines only need to be integrated for
exactly one poloidal turn, so all field lines need to be integrated for the previously
found ϕtotal values in ϕ direction over 500 equidistant steps. After each step, R and Z
are obtained directly as output argument from the standard ODE integrator, physical
components of the magnetic field are obtained from calling the field_eq routine, thus
bmod =

√
B2
r +B2

p +B2
z , finally sqgnorm for symmetry flux coordinates is calculated

via sqgnorm = R/|Bp|.
On a sidenote, due to the straightness of field lines in symmetry flux coordinates the
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points along the field lines are equidistant in both ϕ and ϑ but generally not in s

direction, however s remains constant along a given field line.

Interpolation of data with respect to ϑ and normalization

The algorithms concerning field line integration which are explained in the previous
subchapters are all part of the same subroutine field_line_integration_for_SYNCH.
This subroutine is called from a second subroutine preload_for_SYNCH where the
calculated quantities are saved into separate files. These files are subsequently read
out from a third subroutine load_magdata_in_symfluxcoord. In this subroutine,
the data for each field line is then interpolated with periodic third order splines in
theta with the subroutine spl_per, the toroidal angle is no longer of interest due to
axisymmetry as it is equivalent to the toroidal angle in cylindric coordinates. Moreover,
since for each field line the flux label s remains constant, the change of each quantity
along a given field line must be purely a function of the symmetry flux coordinate ϑ.
The spline coefficients from the spl_per subroutine are then saved into variables R_st,
Z_st, bmod_st, sqgnorm_st (suffix _st stands for splined in theta). The calculated
flux functions are then also read out from the file, however, these quantities remain
constant along the field line so there is no need for splines in ϑ direction. Since only the
normalized fluxes are of interest for this application, both ψsurf and Φtor are divided
by their maximum values. The normalized toroidal flux s will label the individual flux
surfaces. The precomputed data from load_magdata_in_symfluxcoord are directly
saved into the module magdata_in_symfluxcoor_mod since they only need to be
precomputed once. The subroutine magdata_in_symfluxcoord_ext then accesses
these data and performs the necessary s interpolation for arbitrary positions, which is
very efficient compared to the precomputation.

s interpolation of data

In Appendix A, the method of Lagrange polynomial interpolation is introduced. Now to
interpolate the data for a given point (s, ϑ) one searches the field line array via bisection
to find the indices and s values of the closest four field lines to the position s. As men-
tioned, this is done in subroutine magdata_in_symfluxcoord_ext(inp_label,s,psi,
theta,q,dq_ds,sqrtg,bmod,dbmod_dtheta,R,dR_ds,dR_dtheta,Z,dZ_ds,dZ_dth

eta), whereby depending on the value of the input label inp_label, either the vari-
able s or psi define the input for the minor radial position while the variable theta
defines the symmetry flux poloidal angle, the toroidal angle phi remains invariant,
thus, it is not included in the subroutine call, the remaining arguments are outputs of
the subroutine. An overview of the parameters is given in table 2.1.
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The splines for these four field lines are then evaluated for the given ϑ position,
this yields an array of four s values, which are belonging to the field lines, and the
corresponding interpolation quantities. With the four s values of the closest field lines,
the Lagrange coefficients Lk(s) are now fully determined, acting as weights for the
quantities on the fields lines that are to be interpolated. The output is then given by

P (s) =
n∑
k=0

Lk(s)fk

for any interpolated quantity f . P (s) hereby interpolates f(s) and fk represents f(sk)

with discrete values sk at flux surface k.

Table 2.1: Parameters for magdata_in_symfluxcoord_ext

Name; Data type Description
inp_label; integer input switch, where 1 sets s

and 2 sets psi as input
s; double precision normalized toroidal flux, also the value of the first

component in SFC (symmetry flux coordinates)
psi; double precision poloidal flux at (s, ϑ, ϕ)

theta; double precision value of the second component in SFC
q; double precision safety factor at (s, ϑ, ϕ)

dq_ds; double precision partial derivative of the safety factor with respect
to s at (s, ϑ, ϕ)

sqrtg; double precision square-root of the metric determinant at (s, ϑ, ϕ)

bmod; double precision modulus of the magnetic field at (s, ϑ, ϕ)

dbmod_dtheta; partial derivative of the modulus of the magnetic
double precision field with respect to ϑ
R, dR_ds, dR_dtheta; first component of position in cylindric coordinates
double precision (R,ϕ, Z) and its derivatives with respect to s and ϑ
Z, dZ_ds, dZ_dtheta third component of position in cylindric coordinates
double precision (R,ϕ, Z) and its derivatives with respect to s and ϑ

2.3.3 Field-aligned grid generation

So far, the subroutine magdata_in_symfluxcoord_ext(inp_label,s,psi,theta,q,
dq_ds,sqrtg,bmod,dbmod_dtheta,R,dR_ds,dR_dtheta,Z,dZ_ds,dZ_dtheta) has
been constructed to convert arbitrary SFC positions (s, ϑ, ϕ) back to cylindrical
coordinates positions (R,ϕ, Z). Now, the logical scheme that is used in GORILLA
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for generating the field-aligned grid is explained. Here, the subroutines that are called
in order to generate the grid are structured according to figure 2.6.

make_tetra_grid

make_grid_rect make_grid_aligned

create_points

calc_mesh

create_points_2d
/create_points_2d_vmec

extrude_points

tetra_grid_mod

Figure 2.6: Subroutine make_tetra_grid code structure

In this hierarchy, the first subroutine make_tetra_grid is called with arguments
(grid_kind_in, grid_size_in), the first input being an integer label with value
1 for the cylindrical contour grid and 2 for the field-aligned grid, the second input
is an integer array with 3 elements defining the number of grid elements along each
coordinate. From a programmatic aspect, this routine can be thought of as a con-
structor from object oriented programming as it constructs an instance of a suitable
grid according to the Fortran type tetrahedron_grid (which can essentially be seen
as a class) with additional variables saved together in the module tetra_grid_mod.
In this module, all geometry related properties of the grid are saved, moreover, they
are saved with attributes public, protected, thus, while being publically avaiable
for read-out they can only be altered from subroutines and functions belonging to
the module itself. For this reason the subroutine make_tetra_grid must also be
defined within the module. By having the entire grid generation being covered with
a single subroutine call and not being able to change it otherwise, this adds an
additional layer of security regarding unexpected changes of grid quantities due to un-
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intended coding mistakes. Depending on which grid one wants to generate (i.e. either
the cylindrical contour or the field-aligned grid), subsequently either the subroutine
make_grid_rect(tetra_grid,verts_rphiz,grid_size,Rmin,Rmax,Zmin,Zmax) or
the subroutine make_grid_aligned(grid_size,efit_vmec) is called from make_tet

ra_grid. For the make_grid_rect subroutine, the first two arguments denote the out-
put, the latter arguments are inputs for the grid generation. The make_grid_aligned
subroutine only takes input arguments, as it writes the generated grid data di-
rectly into the module, thus, the subroutine must be also defined within the module
tetra_grid_mod. For clarity, the elements of the Fortran module tetra_grid_mod

and type tetrahedron_grid are displayed in tables 2.2 and 2.3. All call parameters
of the grid constructing subroutines are hereby briefly explained.
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Table 2.2: Variables of Fortran module tetra_grid_mod

Name; Data type Description
tetra_grid array of instances of type
type(tetrahedron_grid), tetrahedron_grid with ntetr

dimension(ntetr) elements
verts_rphiz coordinate triples (R,ϕ, Z) of
double precision, all nvert grid vertices
dimension(nvert,nvert)

verts_xyz coordinate triples (x, y, z) of
double precision, all nvert grid vertices
dimension(nvert,nvert)

verts_sthetaphi coordinate triples (s, ϑ, ϕ) of
double precision, all nvert grid vertices
dimension(nvert,nvert)

ntetr total number of tetrahedra in
integer the grid
nvert total number of vertices in the
integer grid
grid_kind switch for which grid version is
integer generated
grid_size dimensions of the grid
integer, dimension(3) in (R,ϕ, Z) or (s, ϕ, ϑ)

Rmin,Rmax,Zmin,Zmax dimensions of the fusion device
double precision in cylindrical coordinates
efit_vmec switch that specifies for the field-aligned
integer grid whether the tokamak equilibrium (efit)

or the stellarator equilibrium (vmec) is taken

23



CHAPTER 2. GRID IMPLEMENTATIONS FOR GORILLA

Table 2.3: Fortran type tetrahedron_grid

name; data type description
ind_knot pointer from tetrahedron vertex index (1 to 4)
integer, dimension(4) to total vertex index (1 to nvert)
neighbour_tetr pointer from the face index to the index
integer, dimension(4) of the next tetrahedron
neighbour_face index of the neighboring tetrahedron’s entry
integer, dimension(4) face from the exit face
neighbour_perbou_phi 1 if the face is on periodic boundary ϕ = 2π,
integer, dimension(4) -1 if on ϕ = 0 and 0 otherwise
neighbour_perbou_theta 1 if the face is on periodic boundary ϑ = 2π,
integer, dimension(4) -1 if on ϑ = 0 and 0 otherwise

make_grid_aligned

As discussed, the subroutine make_grid_aligned generates the data for the field-
aligned grid and is called from subroutine make_tetra_grid. In this section, the
substructure and working principle of this subroutine, which again consists of several
subroutines, will be discussed. The code structure was previously introduced in
figure 2.6 and shows, that elements of make_grid_aligned can be further organized
into create_points and calc_mesh, whereas create_points can be subdivided into
create_points_2d and extrude_points. In addition to create_points_2d, there
exists an analogous subroutine named create_points_2d_vmec which essentially
works the same way but is used for the generation of the field-aligned grid in stellarators,
therefore, it does not use the conversion routine magdata_in_symfluxcoord_ext but
an alternative subroutine called splint_vmec_data that converts VMEC -coordinates
back to cylindrical coordinates, this was provided by S. Kasilov. Since there are
merely very minor differences in the approach of the grid generation, compared to the
axisymmetric field-aligned grid, the treatment of subroutine create_points_2d_vmec
is not within the scope of this thesis.

create_points

Upon calling the subroutine make_grid_aligned, first create_points is executed
with arguments (verts_per_ring, nphi, verts_rphiz, verts_sthetaphi, efit_

vmec, field_periodicity, nvert, r_scaling_func,theta_scaling_func, rep

eat_center_point), where verts_per_ring denotes an array where each element
represents the number of poloidal discretizations for the corresponding ϑ-ring (this is

24



CHAPTER 2. GRID IMPLEMENTATIONS FOR GORILLA

named ring due to the periodicity in ϑ-direction), nphi the number of discretizations
in toroidal direction (=grid_size(2)), repeat_center_point the boolean that sets
that the central point on the magnetic axis is in fact again a ring in ϑ-direction
(instead of a single point at the center which connected to all vertices of the first
ring, however, this only makes sense in cylindrical coordinates), finally, the scaling
functions r_scaling_func and theta_scaling_func define the distribution of grid
points in s and ϑ-direction, the remaining arguments were already discussed previously.

create_points_2d

The first step in generating the vertices for the grid within create_points is
to generate the vertices lying on the ϕ = 0 plane. This is done with subrou-
tine create_points_2d. Here, first the subroutines preload_for_SYNCH() and
load_magdata_in_symfluxcoord() are called in order to obtain access to the con-
version routine magdata_in_symfluxcoord_ext, which allows to convert components
given in axisymmetric symmetry flux coordinates (s, ϑ, ϕ) back to cylindrical coor-
dinates (R,ϕ, Z). This conversion is necessary, as magnetic field data will later be
accessed by the field subroutine which only takes arguments in cylindrical coordi-
nates.
The next step in the subroutine is to define an equidistant vector r_frac that stores
the unscaled s-values for the individual ϑ-rings. Here, it is important to note that
when using symmetry flux coordinates for orbit computation, the first ring cannot
lie precisely on the magnetic axis, but rather on an arbitrarily small distance to
the magnetic axis. This is an inherent property of the grid, since when putting
the innermost ring on the magnetic axis, every second tetrahedron of the central
tetrahedra would in fact have zero volume together with a numerically undefined
normal vector in the s-direction, furthermore, particle trajectories are computed from
one tetrahedral face to the next with a defined convergence normal-distance to the
exit face, this approach will no longer work if the tetrahedral volume approaches zero.
In reality, however, the biggest problem here is in fact that the conversion routine
magdata_in_symfluxcoord_ext is no longer sufficiently accurate for diminishingly
small values of s, so the vertices are no longer assured to be well-aligned (on infinitesi-
mal scales around the magnetic axis), but rather seemingly chaotic. One might suggest
to completely omit the generation of these pathological tetrahedra, however, this would
lead to holes in symmetry flux coordinate space, as coordinate components would be
discontinuous in ϑ-direction when moving poloidally from one tetrahedron to the next.
Instead, one defines a minimum s-value s_min for the innermost flux surface, leading
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to a continuous coordinate space with a lower boundary. This, however, has the
implication, that now a small annulus exists in the grid in real space, therefore one has
to implement a special way to handle particle orbits, that intersect with this boundary.
So far, such a treatment has not been introduced, instead particles that intersected
with this boundary were assumed to leave the torus. This has been a valid approach,
as this rarely occurs, thus, it does not significantly influence the results obtained
by statistics using high particle counts (e.g. 30000 particles). If needed, a possible
solution would be to logically connect the tetrahedral faces which lie on opposite sites
of the annulus and subsequently add π to the ϑ-component, when a particle intersects
with such a plane. To better understand the problem that occurs, a schematic picture
of poloidal projection of the field-aligned grid with different minimum values for s is
presented in figure 2.7.

(a) (b)

Figure 2.7: This plot presents a magnified schematic picture of the poloidal projection
of the field-aligned grid center in cylindrical coordinates for two different values of
s_min. In plot 2.7a a very small value for s_min has been chosen, this is compared to
a larger value for plot 2.7b. It is clearly visible that the tetrahedral faces which have
two corner points on the inner-most ϑ-ring are only visible in 2.7b, while they appear
to be merely lines in 2.7a.

Back to the grid generating procedure, the vector r_frac is defined by

r_frac = s_min + [(dble(i)*(1.d0-s_min), i=1, size(r_frac), 1)]&

&/(dble(size(verts_per_ring)) ,

where “&” denotes the line concatenation operator in Fortran.
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Next in create_points_2d, two nested loops are implemented, the outer one iterates
over the individual ϑ-rings with loop index isurf ranging from isurf=0 (for the center
point/ring) up to isurf=size(verts_per_ring), this loop represents the iteration
over the individual ϑ-rings, on which the points will lie. The inner loop iterates with
index j ranging from j=1 up to verts_per_ring(isurf), this second loop represents
the iteration over the individual vertices of the current ϑ-ring. For each iteration of
the outer loop, an additional vector theta_frac is generated according to

theta_frac = [(i, i=0, n_theta_current-1,1)] / dfloat(n_theta_current) .

Additionally, a counter point_idx is introduced, that is incremented by 1 each time
a vertex is generated, this counter determines the indices of the vertices, by which
their coordinates will later be accessed for the read-out of field data. The actual grid
points are then generated within the loop by the code fragment

s = r_scaling_func(r_frac(isurf))

theta = 2.d0*pi*theta_scaling_func(theta_frac(j))

verts_sthetaphi(:,point_idx) = [s,theta,0.d0]

call magdata_in_symfluxcoord_ext(1,s,psi,theta,q,dq_ds,sqrtg,&

&bmod,dbmod_dtheta,R,dR_ds,dR_dtheta,Z,dZ_ds,dZ_dtheta)

verts_rphiz(:,point_idx) = [R,0.d0,Z]

point_idx = point_idx +1 .

For scaling functions r_scaling_func(x) = theta_scaling_func(x) = x, equidis-
tant grid vertices lying on the ϕ = 0 plane are hereby generated in symmetry flux
coordinates. There is one optional but relevant modification that should further be
discussed. Instead of generating vertices according to a distribution defined for the
poloidal symmetry flux angle ϑ, one can also distribute vertices according to the
geometric poloidal angle θ in cylindrical coordinates. This is particularly interesting
if the field-aligned grid is intended to be used with the cylindrical coordinate system,
as vertices distributed in ϑ experience a strong poloidal shift towards the X -point
the closer they lie to the separatrix, in fact if the outermost points were actually
to lie precisely on the separatrix, they would all lie exactly at the X -point in real
space. Consequently for the grid, if the geometric θ-distribution of vertices changes
too drastically from one flux surface to the next, it is possible that scalar products for
at least one pair of normal vectors of the individual tetrahedral planes for a given
tetrahedron no longer yields a negative value (if one wants to imagine what happens
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here, assume a tetrahedron and drag one of the vertices through the opposing plane
spanned up by the remaining three vertices, the resulting tetrahedron is literally
turned inside out, this occurs as the outermost point is increasingly shifted poloidally
towards the X -point). A negative scalar product of such planes would imply that
in fact the implemented logical association of vertices is invalid and the generated
tetrahedron is therefore incompatible with the GORILLA integration scheme. Thus,
an interpolation routine was implemented, which transforms defined geometric angles
θ back to the corresponding symmetry flux angles ϑ for a given value of s. The
conversion subroutine is hereby called by

call theta_geom2theta_flux(s,2.d0*pi*&

&theta_scaling_func(theta_frac(j)),theta) !optional ,

instead of directly defining theta in the second line of the code where the ver-
tices are calculated. The variable that acts as a switch is denoted geom_flux,
where an integer value of 1 distributes the points directly in symmetry flux an-
gle ϑ and an integer value of 2 distributes the points in geometric angle θ using
the subroutine theta_geom2theta_flux. The vertices generated by the subroutine
create_points_2d are presented in figure 2.8, once with vertices poloidally equidis-
tant in symmetry flux coordinate angle ϑ (2.8a) and once with vertices poloidally
equidistant in geometric angle θ (2.8b). The grey lines indicate how these points
will be connected in cylindrical coordinates to form the tetrahedral mesh, mind that
tetrahedra are here represented by triangles in the poloidal projection. On the left
side, it can be seen that in figure 2.8a some lines close to the separatrix do indeed
intersect, this leads to a corrupted mesh logics in cylindrical coordinates that causes
errors with the GORILLA integrator, on the right side, figure 2.8b does not show
intersections, thus, this grid is compatible with GORILLA for computations done in
cylindrical coordinates. It should, however, be emphasized, that this problem only
occurs for the field-aligned grid when changing to cylindrical coordinates, as long as
calculations are performed in symmetry flux coordinates, geometrically aligned grids
become in that case obsolete.

extrude_points

The next step in constructing the vertices for the 3D-grid in subroutine create_points
is now to extrude these points symmetrically into the toroidal (ϕ) direction. This
extrusion is realized in subroutine extrude_points(verts_per_slice,nphi,
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(a) vertices are here poloidally equidistant
in symmetry flux angle ϑ

(b) vertices are here poloidally equidistant
in geometrical angle θ

Figure 2.8: Poloidal projection of field-aligned grids in cylindrical coordinates of grid
size (Ns, Nϑ) = (14, 14), vertices are indicated by black dots, the grey lines in the
back indicate how these vertices will later be connected to form tetrahedra, mind that
for 2.8a intersections occur close to the separatrix, while for 2.8b this problem was
circumvented by aligning the vertices equidistantly in geometrical angle θ

phi_position,verts_sthetaphi/verts_rphiz), with

verts_per_slice = sum(verts_per_ring) + verts_per_ring(1)

if the boolean repeat_center_point is true and

verts_per_slice = sum(verts_per_ring) + 1

otherwise. The remaining parameters nphi, phi_position and verts_sthetaphi/ver
ts_rphiz represent the number of grid points in toroidal direction, the index of the
toroidal component ϕ in the current coordinate system (the value is hereby 2 for
cylindrical coordinates (R,ϕ, Z) and 3 for symmetry flux coordinates (s, ϑ, ϕ)) and the
coordinates of the vertices that are to be extruded, respectively. The last parameter
acts here as an inout-variable where the first verts_per_slice number of points are
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the input and the remaining components are returned by the subroutine. It should
furthermore be mentioned, that some liberty has been assumed in citing the fortran
syntax as verts_sthetaphi/verts_rphiz means here that either one can be the
input, but directly evaluating this expression would return a syntax error. Using
the defined parameters, the point extrusion is performed by copying the previously
computed two-dimensional vertex coordinates and saving them together with the
appropriate ϕ-positions. This is a purely index-based operation, given by

do i = 2, nphi

vert_idx = (i-1)*verts_per_slice+1

phi = (2.d0*pi/field_periodicity*(i-1))/nphi

points(:,vert_idx:vert_idx+verts_per_slice-1) = &

& points(:, 1:verts_per_slice)

points(phi_position,vert_idx:vert_idx+verts_per_slice-1)=phi

end do

where points is a placeholder for vertex coordinates verts_sthetaphi/verts_rphiz
and field_periodicity denotes the previously introduced periodicity factor of the
magnetic field, this is 1 for the axisymmetric field and can have a different integer
value for a stellarator configuration (e.g. field_periodicity = 5 for a stellarator field
that is invariant under a coordinate shift of magnitude ∆ϕ = 2π/5 in toroidal direc-
tion). The coordinates for all grid vertices have now been computed, the subroutine
extrude_points ends here.

calc_mesh

The final step in constructing the field-aligned grid is to take the generated vertices,
and logically connect them to form tetrahedra in a way, that no unassigned spaces exist
within the given coordinate space (the only exception here is the annulus in real space
due to the degeneracy of the poloidal symmetry flux component at the magnetic axis,
as discussed previously). This contruct will be referred to as mesh, which is calculated
by the subroutine calc_mesh(verts_per_ring, nphi, verts_rphiz(:, :nvert /

nphi), ntetr, verts, neighbours, neighbour_faces, perbou_phi, perbou_t

heta, repeat_center_point = .true.). This is called from the subroutine make_gr
id_aligned, as shown in figure 2.6. Subroutine parameters, that have not yet been in-
troduced, are verts, neighbours, neighbour_faces, perbou_phi and perbou_theta.
These variables denote placeholders for tetrahedron related data, where verts(1:4,nte
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tr) stores the indices of the four corner vertices for each tetrahedron, neighbours(1:4,
ntetr) the indices of the neighboring tetrahedra (1 : ntetr) which are lying adjacent
to the four faces of the given tetrahedron, neighbour_faces(1:4,ntetr) the face
indices (1..4) that denote which face of the neighbor is lying adjacent to the current
tetrahedron, perbou_phi(1:4,ntetr) which tetrahedral faces lie on the periodic
boundary in ϕ direction where 0 is the default value for all tetrahedra, 1 is the value at
the ϕ = 2π boundary and -1 at the ϕ = 0 boundary, this is analogously implemented
for perbou_theta which treats the periodic boundary conditions in ϑ direction. Upon
generation of the tetrahedra, these data are computed and subsequently saved in the
previously introduced fortran type tetrahedron_grid given in table 2.3, there the
tetrahedra are made available for further computations.
Next, the meshing algorithm will be explained in more detail. In order to be able to
understand the ideas behind this algorithm, one needs to take a closer look at how
the vertices are indexed. For this, a set of poloidal vertices (i.e. ϕ = 0) is given in
figure 2.9. Here, one can see that vertices are first indexed in ϑ direction (along the ϑ
rings which are horizontal sets of vertices in this represenation) where due to periodic
boundary conditions in ϑ the first vertex appears twice, once for ϑ = 0 and once for
ϑ = 2π. Subsequently, the vertices of the adjacing ϑ ring are indexed in the same
fashion up to index verts_per_slice, which is the number of vertices on the ϕ = 0

plane. Due to axisymmetry of the grid, the indices of the vertices that lie on the
next slice (in positive ϕ direction) have the exact same coordinates in the poloidal
projection as the vertices lying on the first slice (ϕ = 0), only the toroidal component
differs by ∆ϕ = 2π/nphi from one slice to the next. The word slice was chosen in
this context, as it figuratively refers to a cake (the grid) being sliced into nphi pieces
of equal size, here the vertices lie on the slice faces. In this analogy, two adjacent
slice faces are created by the same cut, in the grid the cuts themselves represent the
slices on which the vertices lie, whereas the cake pieces can be thought of as the
space inbetween these slices which will be covered by the tetrahedra. This analogy
was given to justify the selected terminology and will be no longer dwelled upon.
The important information, that one can take from this picture is, however, that in
the poloidal projection the vertices of different slices are equivalent and thus, the
index for each vertex is incremented by verts_per_slice to obtain the index of the
vertex in the next slice. To account for periodicity in ϕ, the resulting index is taken
modulo(index,nvert). The indices for the second slice are given in parentheses next
to the vertex indices of the first slice in figure 2.9.
For the cylindrical contour grid, the next step is to connect the vertices to form
hexahedra, which are each comprised of six tetrahedra. However, this approach is not
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Figure 2.9: Grid vertex indices for the first ϕ-slice and in parentheses the indices of
the next slice, the indices between slices differ by a constant value verts_per_slice
which is equal to 13 for this configuration

possible as it would require that each ϑ ring had the exact same number of vertices,
which is generally no longer the case. Instead, prisms are used to connect the vertices,
these prisms have the property that their vertices can directly be indexed to form three
tetrahedra for each prism. The two types of prisms that are used to construct the grid
are shown in figure 2.10. These prisms can be associated with certain orientations
which are here denoted either top facing or bottom facing. This can be understood by
taking a look at figure 2.9. Here, in the lower right corner of the graph, the vertices
with indices 1, 2, 4 and 5 can be connected in the poloidal plane by two triangles with
the corner points for the first triangle {1, 2, 5} corresponding to prism vertices {0, 2,
3} for the top facing prism and the corner points for the second triangle {1, 4, 5} to
prism vertices {0, 1, 2} for the bottom facing prism, respectively. The first triangle
has one edge on the upper ϑ-ring, while the second triangle has one edge on the lower
ϑ ring, hence the naming top facing and bottom facing. These triangles are in fact the
cross sectional representation of the prisms, which are essentially axisymmetrically
extruded triangles. The use of prisms is hereby only possible due to the axisymmetric
arrangement of vertices on different slices.
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Figure 2.10: Prisms used to index tetrahedra, top facing prism on the left and bottom
facing prism on the right

The approach is now to use these two types of prisms to link all vertices of the
individual ϑ-rings to the face vertices of the two presented prism types. By doing so,
a full slice of the grid will be constructed, where each prism is subsequently split up
into three tetrahedra by indexing. Additionally, the tetrahedron properties verts,
neighbours, neighbour_faces, perbou_phi and perbou_theta are computed upon
generation. It was already discussed, that the vertices in the poloidal plane can be
connected by triangles representing the prisms. The question is merely, how the
triangles are to be arranged, such that the poloidal projection of the grid is fully
and unambiguously covered by triangles. For this, the Delaunay condition is used
to determine if a proposed triangle has desirable properties, i.e. a maximal smallest
interior angle. In the following, the triangles and their associated prisms will be
collectively referred to as segments. A concrete example shall allow the reader to get
a clearer image of how this process is implemented. One is first interested to mesh the
vertices of the first two ϑ-rings, therefore one starts by computing how many segments
can be put into this set of points. Taking poloidal periodicity into account, this is
simply obtained by taking the sum of the number of vertices of the two rings. Next,
one takes the first vertex of the ring (for the first ring, the first vertex has index 1)
and computes the indices of the neighboring vertices {2, 4, 5} by adding to the current
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vertex index the values 1, n_verts_lower and n_verts_lower+1, respectively. For
these four indices of the current vertex itself and its neighbors, the poloidal coordinate
components are evaluated and saved in counter clockwise order into variables u, v, p
and q. This is necessary for further evaluation of the Delaunay condition. The current
configuration is depicted in figure 2.11.
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Figure 2.11: Extracted lower right corner domain of figure 2.9, for computing the
Delaunay condition for the first prism, the poloidal coordinate components of the
neighboring vertices to index 1 are saved into variables u, v, p and q, whereas for this
case the coordinate tuples [ϑ, s] are u = [0,0], v = [0, 0.33], p = [0.33,0.33]
and q = [0.33,0]

Next, one must propose a segment orientation (top facing or bottom facing) and
compute the Delaunay condition accordingly. By default, for each ϑ-ring, the top
facing orientation is initially proposed. Here, this means that the points u, v and p

are linked to form the prism face. The Delaunay condition now states, that if one
computes the circumcircle to the triangle spanned by these three points, the remaining
point q may only lie outside this circumcircle or at most exactly on the circumcircle,
in which case the Delaunay condition is ambiguous and both prism orientations are
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allowed. The Delaunay condition for the top facing triangle is hereby given by [8]

a = u(1) - q(1)

b = u(2) - q(2)

c = (u(1) - q(1)) ** 2.d0 + (u(2) - q(2)) ** 2.d0

d = v(1) - q(1)

e = v(2) - q(2)

f = (v(1) - q(1)) ** 2.d0 + (v(2) - q(2)) ** 2.d0

g = p(1) - q(1)

h = p(2) - q(2)

i = (p(1) - q(1)) ** 2.d0 + (p(2) - q(2)) ** 2.d0

delta = a*e*i + b*f*g + c*d*h - c*e*g - b*d*i - a*f*h

if (delta<=0.d0) then

delaunay_condition = .true.

else

delaunay_condition = .false.

endif

The result from this condition is, that if delaunay_condition =.true. is returned,
the top facing configuration is accepted, if not, the bottom facing configuration with
corner points u, v and q is selected instead. This is valid, as this procedure corresponds
to the so-called Delaunay flip, which states that if four vertices are linked to form two
adjacent triangles that do not satisfy the Delaunay condition (e.g. triangles {u, v, p}
and {u, p, q}), one can always obtain two triangles that do satisfy the condition by
flipping the orientation of the line segment that divides the two triangles (i.e. leading
to new triangles {u, v, q} and {v, p, q}) [8].
Upon determining for u, v, p and q which proposed orientation is accepted, the next
step is to associate the three vertices of the accepted configuration (i.e. {u, v, p} for
top facing or {u, v, q} for bottom facing) with the poloidal face vertices of the prisms
shown in figure 2.10. Here the three vertices either correspond to prism vertex indices
{0, 2, 3} for the top facing or {0, 1, 2} for the bottom facing configuration. The grid
vertex indices of the remaining prism vertices are found as follows.
In order to explain this process, one must first take a look at the binary representation
of the prism vertex indices and the corresponding normalized offsets of the vertex
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Figure 2.12: Visualization of the Delaunay condition for the top facing segment (solid
line), if q lies outside or at most exactly on the circumcircle (dashed line, center
marked by red dot) around {u, v, p} the Delaunay condition is satisfied. Since for the
shown configuration all four vertices lie on the circumcircle the Delaunay condition is
satisfied for both the top facing and bottom facing orientation, whenever this occurs
the top facing orientation is assumed in this approach.

positions in symmetry flux space with respect to prism vertex 0 (e.g. for prism
vertex 3 of the bottom facing configuration, the vertex has an offset in the s and ϑ
direction, but not in the ϕ direction, thus the normalized offset in (ϕ, s, ϑ) is given by
(0, 1, 1)). The binary representation of the prism vertex indices and the corresponding
normalized positional offsets are given in tab. 2.4.

Table 2.4: Binary representation of prism vertices the corresponding normalized
positional offsets

Index Binary ϕ-offset s-offset ϑ-offset
0 0 - 0 - 0 0 0 0
1 0 - 0 - 1 0 0 1
2 0 - 1 - 0 0 1 0
3 0 - 1 - 1 0 1 1
4 1 - 0 - 0 1 0 0
5 1 - 0 - 1 1 0 1
6 1 - 1 - 0 1 1 0
7 1 - 1 - 1 1 1 1

One can clearly see that the bitwise representation of the prism vertices coincides
with the individual normalized positional offsets in directions ϕ, s and ϑ, respectively.
Thus, due to the specific way in which the vertices are arranged, the indices of the
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prism vertices can be directly obtained from the normalized positional offsets via

vertex_index =base_idx + theta_offset + s_offset*n_verts_lower& (2.7)

&+ phi_offset*verts_per_slice ,

where base_idx denotes the index of the current grid vertex corresponding to prism
index 0 and n_verts_lower is the number of poloidal grid points for the lower (i.e.
smaller s-component) ϑ-ring. In this concrete example for the first grid segment,
base_idx is equal to 1. Using 2.7, the remaining grid vertex indices for the corre-
sponding prism vertices are obtained to fully define the prism in the symmetry flux
coordinate space. Next, tetrahedra are constructed using grid vertex indices for the
corresponding prism vertices. The way that the prism vertices are combined to form
tetrahedra can be deduced from figure 2.10, for simplicity the tetrahedron vertex
indices are also given in table 2.5.

Table 2.5: List of tetrahedron types with corresponding prism vertex indices for both
top and bottom facing prism orientations

Tetrahedron type Prism vertex indices Prism orientation
1 0, 2, 3, 7 top facing
2 0, 2, 6, 7 top facing
3 0, 4, 6, 7 top facing
4 0, 1, 2, 6 bottom facing
5 0, 1, 5, 6 bottom facing
6 0, 4, 5, 6 bottom facing

Since now the indices of the tetrahedron vertices are known for the first three tetrahe-
dra, their values are saved into the first three rows of verts. Quantities that remain
unknown are neighbours, neighbour_faces, perbou_phi and perbou_theta. Next,
one is interested in computing the neighbours with the associated neighbour_faces

for the tetrahedra that belong to a given segment. For this, it must first be understood
what types of neighbors exist for such a segment, for this it is helpful to take another
look at figure 2.10. Here, one can see that there exist different tetrahedron boundaries
on the inside of the segments as well as boundaries on the outside of the segment.
More precisely, for three tetrahedra with four faces each, there exist 12 tetrahedral
boundaries for any given segment. For instance for the top facing prism, there are
four interior boundaries in the segment (internal boundaries are double-counted as
they belong to two tetrahedra each), furthermore the segment has two boundaries
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pointing in the ϕ direction (with one pointing in (+ϕ)-direction and one pointing
in (−ϕ)-direction), two more boundaries point in the (+s)-direction, the remaining
four boundaries point to the neighboring tetrahedra on the same ϑ-ring, with two
boundaries on the (+ϑ) side of the prism and the last two on the (−ϑ) side. For the
bottom facing segment, this is analogous with the difference, that two boundaries now
point in the (−s)-direction instead of the (+s)-direction. Moreover, to recapitulate,
the definition of a neighbor with index i (1:4) to a given tetrahedron is the index of
the tetrahedron that shares the three vertices that lie on the plane, spanned by the
current tetrahedron vertices excluding the ith vertex. For example, the third face of a
tetrahedron lies on the plane spanned by tetrahedron vertices {1, 2, 4}, if this tetrahe-
dron is for instance of type 1 the prism indices for this face would be {0, 2, 7} and the
grid vertex indices would be elements {1, 2, 4} of the corresponding row in verts. The
quantity neighbour_faces(i) with value j (1..4) is defined as the index of the face
through which one enters the neighboring tetrahedron at face i (1..4). For example,
given two tetrahedra with indices ind_1 and ind_2 that share a common plane on ver-
tices {2, 3, 4} in the system of the first tetrahedron and vertices {1, 2, 3} for the second
tetrahedron, the second tetrahedron is the first neighbor with respect to the first one,
thus neighbours(ind_1,1)=ind_2. Furthermore one enters the second tetrahedron
through its fourth plane, thus neighbour_faces(ind_1,1)=4 for the first tetrahedron.
Conversely, when starting from the second tetrahedron, the first tetrahedron is now
the fourth neighbor and one enters the tetrahedron through the first face, therefore
neighbours(ind_2,4)=ind_1 and neighbour_faces(ind_1,4)=1. Generally, for
any tetrahedron neighbours(neighbours(ind_1,i),neighbour_faces(ind_1,i))

= ind_1 must hold for all i if there exists an adjacent tetrahedron at face i. A
summary of all tetrahedral boundaries is given in table 2.6. Using this information,
one can find the internal neighbors within the segment, furthermore, one can directly
compute the indices of the neighbors in ϕ direction due to the axisymmetric config-
uration of the system. Here, one should only keep in mind, that when shifting the
index of the current tetrahedron by the relative neighbor index of table 2.6, one must
account for index periodicity in ϕ by subsequently shifting the resulting index into
the valid regime of tetrahedron indices [1, ntetr], where ntetr denotes the total
number of tetrahedra. Indices can hereby be shifted into this regime using the modulo
function in

index_shifted = modulo(index-1,ntetr)+1 .
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Table 2.6: This table shows a summary of all possible types of tetrahedron boundaries
and if possible, the relative indices for the neighboring tetrahedron at this boundary
with respect to the current tetrahedron index (however, not accounting for toroidal
periodicity here, thus, indices must still be shifted into the valid domain [1,ntetr]
using the modulo function). If a neighboring tetrahedron can be directly specified, also
the index of the adjacent face of the neighbor is given in the last column. Question
marks denote quantities that depend on how the grid is meshed and which are thus
not yet specified at the point of tetrahedron creation.

Tetrahedron Face Vertices Boundary Relative neighb. index Face
1 1 {2, 3, 7} +s ? ?
Type: top facing 2 {0, 3, 7} +ϑ ? ?
Vertices: 3 {0, 2, 7} internal +1 3
{0, 2, 3, 7} 4 {0, 2, 3} −ϕ -tetras_per_slice+2 1
2 1 {2, 6, 7} +s ? ?
Type: top facing 2 {0, 6, 7} internal +1 2
Vertices: 3 {0, 2, 7} internal -1 3
{0, 2, 6, 7} 4 {0, 2, 6} −ϑ ? ?
3 1 {4, 6, 7} +ϕ +tetras_per_slice−2 4
Type: top facing 2 {0, 6, 7} internal -1 2
Vertices: 3 {0, 4, 7} +ϑ ? ?
{0, 4, 6, 7} 4 {0, 4, 6} −ϑ ? ?
4 1 {1, 2, 6} +ϑ ? ?
Type: bot. facing 2 {0, 2, 6} −ϑ ? ?
Vertices: 3 {0, 1, 6} internal +1 3
{0, 1, 2, 6} 4 {0, 1, 2} −ϕ -tetras_per_slice+2 ?
5 1 {1, 5, 6} +ϑ ? ?
Type: bot. facing 2 {0, 5, 6} internal +1 2
Vertices: 3 {0, 1, 6} internal -1 3
{0, 1, 5, 6} 4 {0, 1, 5} −s ? ?
6 1 {4, 5, 6} +ϕ +tetras_per_slice−2 ?
Type: bot. facing 2 {0, 5, 6} internal -1 2
Vertices: 3 {0, 4, 6} −ϑ ? ?
{0, 4, 5, 6} 4 {0, 4, 5} −s ? ?

So far, a single segment has been created and split into tetrahedra. The corresponding
tetrahedron vertices have been saved into the first three rows of verts. Furthermore,
the neighbor indices for the internal tetrahedron boundaries of the segment as well
as the neighbors in ϕ-direction have been identified together with the associated
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adjacent faces of the neighbors. These values are now saved into the corresponding
fields of arrays neighbours and neighbour_faces, here it should be further noted
that this array is first initialized with values −1 for all elements, this value indicates
that no neighbor exists at the specified boundary and the domain of the grid ends.
By overwriting the corresponding elements with their actual values, the tetrahedra
are linked. Once this process is completed for all tetrahedra, the remaining elements
which contain the value −1 correspond to the actual domain boundaries at s = s_min

and s = 1.
At this point of the code, however, there are still some remaining neighbors and
neighboring faces for the current segment that cannot yet be computed as their
values depend on how the other segments are oriented (which is again determined by
the Delaunay condition). Therefore, two nested loops are implemented to construct
all segments of the first ϕ-slice where the inner loop iterates over all segments of
the current ϑ-ring and the outer loop iterates over all ϑ-rings. Within these loops,
the approach of constructing the tetrahedra corresponds exactly to the example of
the first three tetrahedra, as discussed above. After a segment is completed in the
ϑ-ring, depending on its orientation, either the indices for {v, p} (if top facing) or
for {u, q} (if bottom facing) need to be shifted by one (i.e. in +ϑ-direction) in order
to obtain the new point configuration to evaluate the Delaunay condition for the
next segment, this is realized via integer offsets upper_off and lower_off. Due to
poloidal periodicity, the indices for {u, v, p, q} must be taken as modulo(index-1,
verts_per_ring_upper) and modulo(index-1, verts_per_ring_lower) for upper
vertices {v, p} and lower vertices {u, q}, respectively. This ensures that the last
vertices of the current ring are correctly linked with the first vertices. Due to toroidal
symmetry the remaining tetrahedra of the full grid can actually be easily obtained
upon finishing the first slice by subsequently shifting the tetrahedra vertices by the
number of points per slice as well as shifting the neighbor indices by the number of
tetrahedra per slice. For a better overview, the whole procedure of the tetrahedron
generation is given as pseudo-code.

do ring=1,n_rings

set index offsets for u, v, p, q to zero

set reference point (index for first u) index to 1

set prism index to 1
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do segment=1,prisms_per_ring(ring)

compute u, v, p, q from reference point and offsets

evaluate Delaunay_condition(u, v, p, q) for top facing prism

if (Delaunay_condition==.true.) then

make top facing prism from normalized positional &

& offsets

save current prism index in top_facing_prisms for &

& neighbor indexing with next ring

index tetrahedra from top facing prism

increment index offset for upper vertices v, p

else

make bottom facing prism from normalized positional &

& offsets

index tetrahedra from bottom facing prism

if (.not. ring == 1) then

find neighbors with corresponding prism &

& in top_facing_prisms

endif

increment index offset for lower vertices u, q

endif

find internal neighbors

find neighbors to adjacent phi slices

if (segment ==1) then

find periodic boundary faces in -theta direction

endif

if (.not. segment ==1 ) then

find neighbors with the previous segment

endif

if (segment == prisms_per_ring(ring)) then

find periodic boundary faces in +theta direction

endif

enddo
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find neighbors between first and last segment in ring

shift reference point to next ring by incrementing the index &

& by n_verts_lower

save tetrahedron quantities based on &

& ind_tetra(i) = (prism index-1)*3+i for i = [1..3] &

& and increment prism index by 1

enddo

shift tetrahedra indices to obtain tetrahedra of all remaining slices

find periodic boundary faces in phi direction

There are two code elements that were not explained yet, the first being how unknown
neighbors between two adjacent prisms are found and the second being how the periodic
boundaries are determined. The first code element is implemented in subroutine
connect_prisms. This subroutine takes arguments (prism_1_idx, prism_2_idx,

verts, neighbours, neighbour_faces), where the first three arguments are input
quantities that define which adjacent prisms are being linked as well as the information
which vertices these prisms contain. The latter two arguments are the two-dimensional
arrays where the found neigbor properties are saved in the corresponding fields, these
are, thus, inout quantities. The approach in this subroutine is in fact very simple, one
constructs two nested loops where each loop iterates over the individual tetrahedra
of one of the prisms. Within these loops the vertex indices of the two tetrahedra
are compared, if three vertices coincide a neighbor has been found. In such a case
one has to further find for both tetrahedra which point is not contained in the other
tetrahedron. Here, the position of the index in the four element vertex array of the
tetrahedron which is not included in the other tetrahedron directly corresponds to
the value of neighbour_faces of the adjacent tetrahedron. Once a neighbor and its
corresponding neighbor face have been found, the values are saved accordingly. At
the end of iteration, all neighbors of the two input prisms are successfully linked, if
the two prisms are indeed adjacent.
For the second code element, the periodicity boundaries need to be treated separately
for ϑ and ϕ, whereas both are identically initialized with the value 0 for all elements.
In the ϑ-direction, depending on the orientation, the prisms at the poloidal boundary
can be directly indexed according to the results of 2.6. If for instance a top facing
prism is the first segment in a ring, the boundaries in −ϑ-direction are given by the
fourth face of the second tetrahedron and the fourth face of the third tetrahedron
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inside the prism, respectively. Thus, the value for the periodic boundary is then
saved as theta_perbou(ind_tetr,i)=-1, where ind_tetr denotes the tetrahedron
index and i the index of the face adjacent to the boundary. This is analogous for the
ϑ = 2π-boundary with the differences that here the neighbors in positive ϑ-direction
are considered and a value of 1 is assumed in theta_perbou. For the ϕ-direction,
however, the process is in fact much simpler as it can be directly solved via indexing as
both prism types have their first tetrahedron with its fourth face adjacent to the −ϕ
boundary and their third tetrahedron with its first face adjacent to the +ϕ boundary.
Thus, one can directly write

perbou_phi = 0

perbou_phi(4, :tetras_per_slice:3) = -1

perbou_phi(1, n_tetras - tetras_per_slice + 3::3) = 1

Now, all necessary tetrahedron quantities have been successfully computed and
returned to the overlying subroutine make_grid_aligned. The last step is to allocate
the tetrahedra according to the type tetrahedron _grid and set the necessary
quantities by.

allocate(tetra_grid(1:ntetr))

do i=1,ntetr

tetra_grid(i)%ind_knot = verts(:, i)

tetra_grid(i)%neighbour_tetr = neighbours(:, i)

tetra_grid(i)%neighbour_face = neighbour_faces(:, i)

tetra_grid(i)%neighbour_perbou_phi(:) = perbou_phi(:, i)

tetra_grid(i)%neighbour_perbou_theta(:) = perbou_theta(:, i)

enddo

The field-aligned grid is now finished. In order to visualize the resulting grid, some
figures are shown below.
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Figure 2.13: Depiction of the field-aligned grid in symmetry flux coordinates with an
increased number of poloidal vertices at s = 2/3, vertex coordinates were extended
poloidally to 2π to make the representation cleaner

One can see in figure 2.13, that even though a variable number of vertices was used
for the different ϑ-rings, the algorithm produces a very well aligned grid using the
Delaunay condition.
A real space representation of the field-aligned grid is given below in figures 2.14 and
2.15.
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Figure 2.14: Poloidal projection of the field-aligned grid in real space, the cross
sectional countour of the two combined prisms from figure 2.15 is marked in red
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Figure 2.15: On the left, two adjacent prisms of opposing orientation are drawn in
real space with the red lines indicating how the two prisms form a hexagonal shape
for a constant number of points per ϑ-ring, the individual tetrahedra are plotted on
the right, the corners are hereby merely indexed to enable a clearer association of the
tetrahedra
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2.3.4 Poincaré plots for field-aligned grid

Since the field-aligned grid has now been successfully implemented, one is interested
in computing Poincaré plots of the guiding-center orbits in symmetry flux coordinates.
For comparative purposes, Poincaré cuts are computed for orbits integrated in the
non-linearized fields using a Runge-Kutta 4/5 integrator with adaptive step size.
These results are then compared to Poincaré plots obtained by GORILLA for the
case of cylindrical coordinates as well as for symmetry flux coordinates. Since this
comparison has already been done in [9], figure 2.16 is directly taken from there.
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Figure 2.16: (a) Poincaré plot (ϕ = 0, 107 toroidal mappings) of a trapped 1.5 keV
D ion in axisymmetric ASDEX Upgrade configuration with a tetrahedral grid size
of 20x20x20. Two-dimensional Poincaré sections of orbits obtained with different
integration methods are indicated with markers: Exact orbit: N, 3D Geometric
Integrator GORILLA with cylindrical coordinates: �, GORILLA with symmetry flux
coordinates: �. (b) and (c) are magnifications of the pertinent zones in (a). The
figure and caption are taken without change from [9].

In 2.16, the Poincaré plots obtained by GORILLA are well-aligned with the exact orbit
intersections obtained by Runge-Kutta 4/5. Furthermore, Poincaré plots computed
in symmetry flux coordinates no longer appear as polygonal shapes in real space,
however small deviations from the exact reference plot can be seen at the banana tip.
Importantly, in all cases the Poincaré plots obtained by GORILLA are confined to
drift surfaces, which is the expected result for an axisymmetric field configuration.

46



Chapter 3. Analytical treatment of equations of motion in GORILLA

Chapter 3

Analytical treatment of equations of
motion in GORILLA

3.1 Analytical solution of equations of motion

In this section, an analytic solution to the linear equations of motion within a
tetrahedron will be derived, following the formulation of guiding center equations by
Solov’ev and Morozov [5] and the local linearization by M. Eder et al [7].
By denoting the extended set of variables with zi, where zi = xi for i = 1, 2, 3 and
z4 = v‖, the linearized equation set assumes a standard form

dzi(τ)

dτ
= ail(τ)zl(τ) + bi, (3.1)

where for i, l = 1, 2, 3 the matrix elements are

ail = εijk
(

2
∂U

∂xl
∂

∂xj
Bk

ωc
+
∂U

∂xj
∂

∂xl
Bk

ωc

)
for 1 ≤ i, l ≤ 3,

ai4 = εijk
∂Ak
∂xj

for 1 ≤ i ≤ 3,

a4l = 0 for 1 ≤ l ≤ 3,

a44 = εijk
∂U

∂xi
∂

∂xj
Bk

ωc
, (3.2)

and the components of vector bi are

bi = εijk
(

2U0
∂

∂xj
Bk

ωc
+

(
Bk

ωc

)
0

∂U

∂xj

)
for 1 ≤ i ≤ 3,

b4 = εijk
∂U

∂xi
∂Ak
∂xj

. (3.3)

Mind, that for all i, l = 1, .., 4 the coefficients ail and bi remain constant within the
scope of pushing through a tetrahedron. More precisely, since U = v2‖/2, only U0 (the

47



CHAPTER 3. ANALYTICAL TREATMENT OF EQUATIONS OF MOTION IN
GORILLA

value of U at the first vertex of the tetrahedron) and the gradient ∂U/∂xi depend on
initial conditions (xi, v‖ and v⊥) of the particle entering a given tetrahedron, all other
quantities (as well as some components of U) are independent of initial conditions and,
thus, can be precomputed upon generation of the array tetra_physics in module
tetra_physics_mod.

3.1.1 Reduction to a set of three linear ODEs

One is now interested in finding an analytic expression for zi(τ).
Here, one can start by looking at the fourth component which is the parallel velocity
as a function of time. One can quickly show that this equation is in fact decoupled
from xi, allowing for it to be solved independently, resulting to

v‖(τ) =

(
v‖(0) +

b

a

)
eaτ − b

a
, (3.4)

with a and b being

a = εijk
∂U

∂xi
∂

∂xj
Bk

ωc
, b = εijk

∂U

∂xi
∂Ak
∂xj

,

which are both constant within the linearized fields. For compactness, this expression
will be abbreviated for further calculation using η = (v‖(0) + b

a
) and θ = ( b

a
), thus,

v‖(τ) = ηeaτ − θ. (3.5)

The set of differential equations can now be formulated in a way that all time
dependence is confined to a driving term. In order to achieve this, one starts with
equation 3.1 and takes only the first three components into account, which yield for
i = 1, 2, 3

dxi(τ)

dτ
= ailx

l(τ) + ai4z
4(τ) + bi (3.6)

= εijk
(

2
∂U

∂xl
∂

∂xj
Bk

ωc
+
∂U

∂xj
∂

∂xl
Bk

ωc

)
︸ ︷︷ ︸

=ail

xl(τ) + εijk
(
∂Ak
∂xj

)
︸ ︷︷ ︸

=ai4

z4(τ)︸ ︷︷ ︸
=v‖(τ)

+ εijk
(

2U0
∂

∂xj
Bk

ωc
+

(
Bk

ωc

)
0

∂U

∂xj

)
︸ ︷︷ ︸

=bi

.
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Furthermore, using U(xi) = U0 + xi ∂U
∂xi

and U =
v2‖
2
simplifies this equation to

dxi(τ)

dτ
= εijk

∂U

∂xj
∂

∂xl
Bk

ωc︸ ︷︷ ︸
=ãil

xl(τ) + v‖(τ)εijk
∂Ak
∂xj

+ v2‖(τ)εijk
∂

∂xj
Bk

ωc
+ εijk

(
Bk

ωc

)
0

∂U

∂xj︸ ︷︷ ︸
qi(τ)

,

which can be compactly written as

dxi(τ)

dτ
= ãilx

l(τ) + qi(τ), (3.7)

where
ãil = εijk

∂U

∂xj
∂

∂xl
Bk

ωc
(3.8)

is a constant matrix and the driving term qi(τ) is explicitly given by

qi(τ) = εijk
(
v‖(τ)

∂Ak
∂xj

+ v2‖(τ)
∂

∂xj
Bk

ωc
+

(
Bk

ωc

)
0

∂U

∂xj

)
. (3.9)

For compactness, this is abbreviated as

qi(τ) = v‖(τ) εijk
(
∂Ak
∂xj

)
︸ ︷︷ ︸

αi

+v2‖(τ) εijk
∂

∂xj
Bk

ωc︸ ︷︷ ︸
βi

+ εijk
(
Bk

ωc

)
0

∂U

∂xj︸ ︷︷ ︸
γi

= v‖(τ)αi + v2‖(τ)βi + γi. (3.10)

The terms αi, βi and γi are constant within a tetrahedral cell, where the electromag-
netic fields are linear. Thus, all time dependence arises therefore from v‖(τ).

3.1.2 Homogeneous solution to equation of motion

The next step of calculating the analytical solution to the homogeneous part of
equation 3.7 is to start with the following Ansatz

~x = eλτ ~ψ . (3.11)

Using this, equation 3.1 yields the eigenvalue equation

λeλτ ~ψ = âeλτ ~ψ , (3.12)

where â denotes matrix ail, λ the associated eigenvalues and ψ the eigenvectors,
respectively. Therefore, the general solution to the homogeneous differential equation
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can be written as

~x(h)(τ) = C1e
λ1τ ~ψ1 + C2e

λ2τ ~ψ2 + C3e
λ3τ ~ψ3. (3.13)

Here, the Cl denote a vector of arbitrary constants given by initial conditions of the
problem. Equation 3.13 can be rewritten using index notation

xi(h)(τ) = ψilC
leλ

lτ , (3.14)

where ψil is a matrix with eigenvectors ~ψl as columns, each corresponding to the
respective eigenvalues λl.

3.1.3 Particular solution: variation of constants

Next, the particular solution to the inhomogeneous ordinary differential equation set
3.1 will be derived. In order to do this, the method of variation of constants is applied.
With this approach, the coefficients C̃l are treated as functions of τ

~x(p)(τ) = C̃1(τ)eλ1τ ~c1 + C̃2(τ)eλ2τ ~c2 + C̃3(τ)eλ3τ ~c3, (3.15)

which again can be denoted in index notation

xi(p)(τ) = ψil C̃
l(τ)eλ

lτ . (3.16)

Calculating the derivative of this equation yields

d~x

dτ
= C̃ ′1(τ)eλ1τ ~ψ1 + C̃1(τ)λ1e

λ1τ ~ψ1

+ C̃ ′2(τ)eλ2τ ~ψ2 + C̃2(τ)λ2e
λ2τ ~ψ2

+ C̃ ′3(τ)eλ3τ ~ψ3 + C̃3(τ)λ3e
λ3τ ~ψ3 .

(3.17)

The expression is subsequently inserted into equation 3.7, this leads to

~q(τ) = C̃ ′1(τ)eλ1τ ~ψ1 + C̃ ′2(τ)eλ2τ ~ψ2 + C̃ ′3(τ)eλ3τ ~ψ3, (3.18)

which can be compactly rewritten as

qi(τ) = ψil C̃
′l(τ)eλ

lτ (3.19)
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using index notation. The next step in calculating the coefficients C̃ l(τ) is to multiply
the eigenvectors ψil with the inverse matrix ψ̄ji , where ψ̄

j
iψ

i
l = ψji ψ̄

i
l = δjl

ψ̄ji q
i(τ) = ψ̄jiψ

i
l︸︷︷︸

δjl

C̃
′l(τ)eλ

lτ . (3.20)

C̃
′l(τ) = ψ̄liq

i(τ)e−λ
lτ (3.21)

One can now integrate this expression from 0 to τ since the initial conditions will be
given for τ = 0:

C̃ l(τ) =

∫ τ

0

ψ̄liq
i(τ ′)e−λ

lτ ′dτ ′ (3.22)

By inserting this into equation 3.15, the particular solution to the inhomogeneous
differential equation 3.1 is obtained,

xi(p)(τ) = ψile
λlτ

∫ τ

0

ψ̄lkq
k(τ ′)e−λ

lτ ′dτ ′ . (3.23)

The general solution to this equation is the superposition of the homogeneous solution
with a particular solution, which in this case can be written as

xig(τ) = ψile
λlτ

(
C l +

∫ τ

0

ψ̄lkq
k(τ ′)e−λ

lτ ′dτ ′
)

(3.24)

Next, one can derive an integratable expression for qk. This can be achieved by
inserting equation 3.5 into equation 3.10

qk(τ) = (eaτη − θ)αk + (eaτη − θ)2 βk + γk. (3.25)

It should be noted that a is in fact equal to the negative of one of the eigenvalues λl.
The expression above can be re-written collecting powers of eaτ . It is also convenient
to abbreviate this further as

qk(τ) = eaτ (ηαk − 2ηθβk︸ ︷︷ ︸
Dk

) + e2aτ (η2βk︸︷︷︸
Fk

) + (θ2βk − θαk + γk︸ ︷︷ ︸
Ek

), (3.26)

which leads to
qk(τ) = eaτDk + e2aτF k + Ek. (3.27)
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Now, one can put this expression into equation 3.24 and thereby obtains

xi(τ) = ψile
λlτ

(
C l +

∫ τ

0

(
e(a−λ

l)τ ′ψ̄lkD
k + e(2a−λ

l)τ ′ψ̄lkF
k + e−λ

lτ ′ψ̄lkE
k
)
dτ ′
)
.

(3.28)
The individual integrals over τ ′ yield∫ τ

0

e(a−λ
l)τ ′dτ ′ =

1

a− λl
(e(a−λ

l)τ − 1) (3.29)∫ τ

0

e(2a−λ
l)τ ′dτ ′ =

1

2a− λl
(e(2a−λ

l)τ − 1) (3.30)∫ τ

0

e−λ
lτ ′dτ ′ = − 1

λl
(e−λ

lτ − 1) (3.31)

Using these results, equation 3.28 can be re-written as

xi(τ) = ψil

(
C leλ

lτ +
ψ̄lkD

k

a− λl
(eaτ − eλlτ ) +

ψ̄lkF
k

2a− λl
(e2aτ − eλlτ )− ψ̄lkE

k

λl
(1− eλlτ )

)
.

(3.32)
Next, the components of C l need to be determined for given initial conditions

xi(τ = 0) = xi(0). (3.33)

Setting τ = 0 in equation 3.32 yields

xi(0) = ψilC
l + 0 + 0− 0 = ψilC

l. (3.34)

By multiplying with the inverse matrix ψ̄li, the coefficients are given by

C l = ψ̄lix
i
(0). (3.35)

Therefore, formula 3.32 can be rewritten and yields the formal solution of eq. (3.7)

xi(τ) = ψil

(
ψ̄lkx

k
(0)e

λlτ +
ψ̄lkD

k

a− λl
(eaτ − eλlτ ) +

ψ̄lkF
k

2a− λl
(e2aτ − eλlτ )

− ψ̄
l
kE

k

λl
(1− eλlτ )

)
,

(3.36)

with Dk, Ek and F k being constant within the linearized field.
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3.1.4 Axisymmetric case

In the previous section the analytical solution for the particle coordinates as functions
of time was derived. In the derivation the eigenvalues λl and eigenvectors ψil of the
(3x3) matrix ãil played an essential role in calculating the coordinates xi(τ). From
the form of the elements of ãil one can deduce that for a general non-axisymmetric
system one eigenvalue will always be equal to zero. This is however not problematic
as long as the eigenvalue corresponds to a non-trivial eigenvector, which is the case.
If one is interested in calculating the analytical solution for the coordinates in an
axisymmetric (symmetric in ϕ) configuration, the additional symmetry will reduce the
problem to a two-dimensional system and furthermore not allow the use of the same
derivation shown in the previous section. This occurs since the matrix ail then has two
zero-valued eigenvalues which no longer have two linearly independent eigenvectors.
In the derivation above the inverse of the matrix containing the eigenvectors ψil was
needed but since this matrix becomes singular when the eigenvectors are no longer
linearly independent, a new approach is necessary. In the upcoming sub-sections an
analogous solution for the axisymmetric case will be derived.

3.1.5 Axisymmetric homogeneous solution

This section presents the derivation of the analytical solution to the homogeneous part
of equation 3.1 for the toroidally axisymmetric case. Here, all derivatives with respect
to ϕ are 0 and it is furthermore assumed that no electric field is present. The matrix
ail can then be written in the following notation omitting all zero-valued elements and
introducing the abbreviations dij = ∂hi

∂xj
and ui = ∂U

∂xi
, where hk denotes the direction

of the magnetic field with hk = Bk/B and the factor cm/e arises from substituting
for the cyclotron frequency ωc = eB/cm.

ail =
cm

e

 −d21u3 0 −d23u3
d31u1 + d11u3 0 −d33u1 + d13u3

d21u1 0 d23u1


Due to the linearization of the electromagnetic fields, the values for dij and ui remain
constant within a given tetrahedron. From the form of matrix ail can be deduced that
the values for dx2

dτ do not depend on x2, the system of differential equations therefore
reduces to a two-dimensional system, where the x2-component can be calculated
independently from the solutions for x1 and x2. The two-dimensional system of
equations for the x1 and x3 component can be formulated using a reduced matrix
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ã∗,il =
cm

e

(
−d21u3 −d23u3
d21u1 d23u1

)
such that

(
ẋ1(τ)

ẋ3(τ)

)
=
cm

e

(
−d21u3 −d23u3
d21u1 d23u1

)
·

(
x1(τ)

x3(τ)

)
+

(
q1(τ)

q3(τ)

)
. (3.37)

In this reduced system of equations, the Ansatz

~x = eλτ ~ψ (3.38)

will be used in order to construct the homogeneous solution, where λ denotes the
eigenvalues of ã∗,il and ~ψ the corresponding eigenvector.
Using this, the homogeneous part of equation 3.1 yields the eigenvalue equation

λeλτ ~ψ = â∗eλτ ~ψ (3.39)

The general solution to the homogeneous differential equation can then be written as

xi(h)(τ) = C1e
λ1τψi1 + C2e

λ2τψi2. (3.40)

Explicit calculation of the eigenvalues and corresponding eigenvectors of a∗,il yields

λ1 = 0 (3.41)

λ2 = λ =
cm

e
(d23u1 − d21u3) (3.42)

ψi1 =

(
−d23
d21

1

)
(3.43)

ψi2 =

(
−u3
u1

1

)
(3.44)

and the general solution to the homogeneous system therefore becomes

xi(h)(τ) = C1

(
−d23
d21

1

)
+ C2e

cm
e
(d23u1−d21u3)τ

(
−u3
u1

1

)
(3.45)

with the Ci denoting arbitrary constants given by initial conditions of the problem.
The eigenvectors furthermore need not be normalized since any normalization constant
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could be pulled into the Ci.

3.1.6 Axisymmetric particular solution: variation of constants

Now that the solution to the homogeneous part has been found, one is interested
in a particular solution to the inhomogeneous differential equation 3.1 to construct
the general solution. In order to do this, one can once more apply the method of
variation of constants where coefficients Ci of the homogeneous solution are treated
as functions of τ :

xi(p)(τ) = C1(τ)ψi1 + C2(τ)eλτψi2 (3.46)

Calculating the derivative of this equation yields:

dxi(p)
dτ

= C1
′(τ)ψi1 + C2

′(τ)eλτψi2 + C2(τ)λeλτψi2 (3.47)

Inserting this expression into equation 3.37 results in

qi(τ) = C1
′(τ)ψi1 + C2

′(τ)eλτψi2. (3.48)

It is convenient to write this expression as a matrix vector product, explicitly given as(
q1(τ)

q3(τ)

)
=
[
ψi1, e

λτψi2

]
︸ ︷︷ ︸

M

·

(
C1
′(τ)

C2
′(τ)

)
=

(
−d23
d21

−u3
u1
eλτ

1 eλτ

)
·

(
C1
′(τ)

C2
′(τ)

)
. (3.49)

By inverting M and multiplying by this inverse matrix from the left one obtains the
explicit expression

(
C1
′(τ)

C2
′(τ)

)
= M−1 ·

(
q1(τ)

q3(τ)

)
=
cm

eλ

(
−d21u1 −d21u3
d21u1e−λτ d23u1e

−λτ

)
·

(
q1(τ)

q3(τ)

)
(3.50)

for Ci′(τ).
One can now formally replace τ by τ ′ and integrate this expression from 0 to τ since
the initial conditions will be given for τ = 0:(

C1(τ)

C2(τ)

)
=
cm

eλ

∫ τ

0

dτ ′

(
−d21u1 −d21u3

d21u1e
−λτ ′ d23u1e

−λτ ′

)
·

(
q1(τ ′)

q3(τ ′)

)
(3.51)

Next, one can continue by using the explicit expression for qi, given in equation 3.27.
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Using the fact that a = −λ simplifies this result to

qk(τ) = e−λτDk + e−2λτF k + Ek (3.52)

where each vectorial quantity consists only of the x1 and x3 components.
The results for Ci(τ) can then be written as

C1(τ) =
cm

e
d21uk

[
e−2λτ − 1

2λ2
F k +

e−λτ − 1

λ2
Dk − τ

λ
Ek

]
(3.53)

C2(τ) =
cm

e
u1d2k

[
1− e−3λτ

3λ2
F k +

1− e−2λτ

2λ2
Dk +

1− e−λτ

λ2
Ek

]
(3.54)

with uk and d2k being

uk =

(
u1

u3

)
, d2k =

(
d21

d23

)
. (3.55)

These expressions for Ci(τ) can now be put into equation 3.46 to calculate the
particular solution. Superposition of particular and homogeneous solution constructs
the general solution of the ODE set.

xi(g)(τ) = xi(h) + xi(p) = (C̃1 + C1(τ))ψi1 + (C̃2 + C2(τ))eλτψi2 (3.56)

Since the Ci(τ) were integrated from τ ′ = 0 to τ ′ = τ they vanish for τ = 0, whereby
initial conditions require that

xi(g)(τ = 0) = xi(0) = C̃1ψ
i
1 + C̃2ψ

i
2 . (3.57)

Explicitly, this gives two equations for C̃i, namely

x1(0) = −d23
d21

C̃1 −
u3
u1
C̃2, (3.58)

x3(0) = C̃1 + C̃2. (3.59)

Using cm
e
λ = (d23u1 − d21u3), the C̃i are therefore

C̃1 = −cm
e
d21

uix
i
(0)

λ
, (3.60)

C̃2 =
cm

e
u1
d2ix

i
(0)

λ
. (3.61)
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Inserting this into equation 3.56 yields the analytical result for the coordinates x1, x3:

x1(τ) =
cm

eλ

[
xk(0)

(
d23uk − u3d2keλτ

)
− d23uk

(
e−2λτ − 1

2λ
F k +

e−λτ − 1

λ
Dk − τEk

)
− u3d2k

(
eλτ − e−2λτ

3λ
F k +

eλτ − e−λτ

2λ
Dk +

eλτ − 1

λ
Ek

)]
(3.62)

x3(τ) =
cm

eλ

[
xk(0)

(
−d21uk + u1d2ke

λτ
)

+ d21uk

(
e−2λτ − 1

2λ
F k +

e−λτ − 1

λ
Dk − τEk

)
+ u1d2k

(
eλτ − e−2λτ

3λ
F k +

eλτ − e−λτ

2λ
Dk +

eλτ − 1

λ
Ek

)]
(3.63)

Now that x1 and x3 have been found, x2 can be calculated via the second component
of the differential equation set 3.7, yielding

ẋ2(τ) = a∗,21 x1(τ) + a∗,23 x3(τ) + q2(τ) , (3.64)

which explicitly evaluated reads

ẋ2(τ) =
cm

e
(d31u1 + d11u3)x

1(τ) +
cm

e
(−d33u1 + d13u3)x

3(τ)

+ e−λτD2 + e−2λτF 2 + E2 .
(3.65)

Formally replacing τ by τ ′ and subsequent integration over τ ′ from 0 to τ yields
the result for x2(τ). Since this equation depends only on ẋ2(τ) and not on x2(τ),
an arbitrary constant C can be added to x2(τ) which will be determined by initial
conditions. Since the integral over τ ′ starts at 0, this constant will be given by
C = x2(0).
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For clarity, one can define that

X1(τ) =

∫ τ

0

x1(τ ′)dτ ′ (3.66)

=
cm

eλ

[
xk(0)

(
d23ukτ − u3d2k

eλτ − 1

λ

)
− d23uk

(
e−2λτ + 2λτ − 1

4λ2
F k − e−λτ + λτ − 1

λ2
Dk − τ 2

2
Ek

)
− u3d2k

(
2eλτ + e−2λτ − 3

6λ2
F k +

eλτ + e−λτ − 2

2λ2
Dk +

eλτ − λτ − 1

λ2
Ek

)]
,

X3(τ) =

∫ τ

0

x3(τ ′)dτ ′ (3.67)

=
cm

eλ

[
xk(0)

(
−d21ukτ + u1d2k

eλτ − 1

λ

)
+ d21uk

(
e−2λτ + 2λτ − 1

4λ2
F k − e−λτ + λτ − 1

λ2
Dk − τ 2

2
Ek

)
+ u1d2k

(
2eλτ + e−2λτ − 3

6λ2
F k +

eλτ + e−λτ − 2

2λ2
Dk +

eλτ − λτ − 1

λ2
Ek

)]
,

Q2(τ) =

∫ τ

0

q2(τ ′)dτ ′ (3.68)

=
1− e−λτ

λ
D2 +

1− e−λτ

2λ
F 2 + τE2 .

The solution for x2(τ) can then be compactly written as

x2(τ) =
cm

e
(d31u1 + d11u3)X1(τ) +

cm

e
(−d33u1 + d13u3)X3(τ) + Q2(τ) + C︸︷︷︸

=x2
(0)

.

(3.69)

3.2 Integration of equations of motion with RK4

3.2.1 Derivation of the RK4-Error for GORILLA

In the previous section, the analytical derivation of zi(τ) has been found for both the
general and the axisymmetric case. While such an explicit expression yields valuable
information about the properties of the solution, for numerics it is not necessarily
optimal to evaluate this analytic expression directly. On the one hand, the form of
the solution can introduce strong numerical cancellations which drastically limits
the accuracy of the evaluated solution (especially terms of the form (eaτ − 1) can
introduce massive errors for small steps in τ). On the other hand, it can be very
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inefficient to separately evaluate all quantities occuring in the analytical expression.
The alternative approach is to ignore the analytical information about components
of ail and bi as they remain invariant for a given tetrahedron and initial conditions
anyway. Finding an expression in the form of a power series as function of the already
evaluated components holds the advantage that the solution up to a specific order
can be computed more efficiently, as well as that the accuracy of the solution can
be tuned by choosing up to which order one computes the series. However, other
parameters like the coarseness of the grid might be more optimal to change in this
regard. Furthermore, since the exact solution inserted into the Hesse normal form of
a face of a given tetrahedron represents a transcendental equation for τ , a low order
polynomial representation brings the advantage that approximate solutions can in
fact be algebraically computed by finding the smallest positive root of this polynomial.
This briefly described problem is the fundamental problem which will be solved in
the later described pusher_tetra_orbit subroutine, therefore it is of high interest
to find alternative, hopefully more efficient, ways to solve for τ .
As previously discussed, within each tetrahedron the set of four linear ODE for zi is
given by

dzi

dτ
= ailz

l + bi, (3.70)

where i = 1, .., 4 and the components of ail and bi are constant. It is convenient to
use the vector notation of writing non-scalar quantities in bold and labeling matrices
with a hat, i.e. z, â and b, also, ” · ” is used to denote matrix multiplications.

dz
dτ

= â · z + b. (3.71)

Firstly, the initial conditions for z(τ) are denoted z(0) = z0. Next, one is interested
in the solution of z(τ) in the form of a power series

z = z0 + τz1 + τ 2z2 + ... =
∞∑
k=0

τ kzk, (3.72)

where the zk are held constant. Substituting this expression into (3.71) one obtains

∞∑
k=0

(k + 1)τ kzk+1 = b +
∞∑
k=0

τ kâ · zk. (3.73)
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Independently equating the different powers of τ yields an infinite series with elements

z1 = b + â · z0,

2z2 = â · z1,

3z3 = â · z2,

. . . ,

kzk = â · zk−1,

. . . (3.74)

which is solved by

zk =
1

k!
âk−1 · z1.

Thus, series (3.72) is explicitly given by

z = z0 +
∞∑
k=1

τ k

k!

(
ˆak−1 · b + âk · z0

)
. (3.75)

This series converges for all values of â and τ , due to the factorial in the denominator.
It is here convenient to introduce a more general notation for sets of equations with
solely implicit time dependence

dz
dτ

= f(z), (3.76)

where f(z) is generally a nonlinear vector function only of z. However, in the present
application using the linear set (3.71) this function is

f(z) = b + â · z. (3.77)

Denoting now zRK4 the result of a single 4-th order Runge Kutta step from 0 to τ
with initial values z0. As shown in appendix B, this result is explicitly evaluated to

zRK4 = z0 +
τ

6
f(z0) +

τ

3
f
(
z0 +

τ

2
f(z0)

)
+
τ

3
f
(
z0 +

τ

2
f
(
z0 +

τ

2
f(z0)

))
+

τ

6
f
(
z0 + τ f

(
z0 +

τ

2
f
(
z0 +

τ

2
f(z0)

)))
. (3.78)

By now denoting f0 = f(z0), for an arbitrary displacement ∆z, one further obtains in
accordance with (3.77)

f(z0 + ∆z) = f0 + â ·∆z. (3.79)

Applying this formula to (3.78) yields the explicit expression for the approximative
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RK4 -solution

zRK4 = z0 + τ f0 +
τ 2

2
â · f0 +

τ 3

6
â · â · f0 +

τ 4

24
â · â · â · f0 = z0 +

4∑
k=1

τ k

k!
âk−1 · f0 . (3.80)

By using the same notation f0 = b + â · z0 in (3.75), the exact solution for z reads

z = z0 +
∞∑
k=1

τ k

k!
âk−1 · f0, (3.81)

with the RK4 -error being explicitly given by

∆zRK4 =
∞∑
k=5

τ k

k!
âk−1 · f0. (3.82)

Thus, the 4-th order Runge Kutta solution (3.80) differs from the exact solution (3.81)
by terms of the order τ 5â4 and higher. Moreover, due to the parabolic time dependence
of the motion along the field line in the linearized system, the truncated solution
zRK4 resolves this motion exactly, thus, discrepancies arise only due to FLR (finite
larmor radius) effects and, hence, depend on particle species and initial conditions.
For instance, electrons have a larmor radius which is roughly 40 times smaller than the
larmor radius of ions, therefore, the Runge-Kutta error for ions is therefore expected
to be much larger for ions than for electrons.

3.2.2 Taylor expansion of the analytical solution

The analytical solution for the non-axisymmetric case can be written as

xi(τ) = ψil ψ̄
l
k

(
xk(0)e

λlτ +
Dk

a− λl
(eaτ − eλlτ ) +

F k

2a− λl
(e2aτ − eλlτ ) +

Ek

λl
(eλ

lτ − 1)

)
,

(3.83)
whereas the fourth order Runge-Kutta method (RK4 ) computes the solution exactly
up to the fourth order of the corresponding Taylor expansion [6]:
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xiRK4 =ψil ψ̄
l
k

[
xk(0) + τ

(
λlxk(0) +Dk + F k + Ek

)
+
τ 2

2

(
(λl)2xk(0) + (a+ λl)Dk + (2a+ λl)F k + λlEk

)
+
τ 3

6

(
(λl)3xk(0) + (a2 + λl(a+ λl))Dk + (4a2 + λl(2a+ λl))F k + (λl)2Ek

)
+
τ 4

24

(
(λl)4xk(0) + (a+ λl)(a2 + (λl)2)Dk + (2a+ λl)(4a2 + (λl)2)F k + (λl)3Ek

) ]
(3.84)

By substituting Dk, Ek and F k with their original values in terms of αk, βk and γk,
respectively, one can reduce the numerical cancelation, which unfortunately is quite
strong in this representation. Equation 3.84 can then be rewritten as

xiRK4 =ψil ψ̄
l
k

[
xk(0) + τ

(
λlxk(0) + qk(0)

)
+
τ 2

2

(
(λl)2xk(0) + λlqk(0) + (v‖,0 +

b

a
)(aαk + 2v‖,0β

k)

)
+
τ 3

6

(
(λl)3xk(0) + (λl)2qk(0) + (av‖,0 + b)(a+ λl)αk

+ (−2b(a+ λl)(v‖,0 +
b

a
) + 2a(2a+ λl)(v‖,0 +

b

a
)2)βk

)
+
τ 4

24

(
(λl)4xk(0) + (λl)3qk(0) + a(a2 + λla+ λ2)(v‖,0 +

b

a
)αk

+ (−2
b

a
(v‖,0 +

b

a
) + a(8a2 + 4λla+ 2(λl)2)(v‖,0 +

b

a
)2)βk

)]

(3.85)

To calculate the absolute error of this method, further terms of the Taylor expansion
of xiRK4 can be computed, only the leading order is usually of interest, though.

∆xi(5) = ψil

3∑
l=1

∞∑
j=5

(
(λlτ)j

j!

(
ψ̄lix

i
(0) −

ψ̄lkD
k

a− λl
− ψ̄lkF

k

2a− λl

)
+

(aτ)j

j!

ψ̄lkD
k

a− λl
+

(2aτ)j

j!

ψ̄lkF
k

2a− λl
− (−λl)j−1τ j

j!
ψ̄lkE

k

) (3.86)

An expression for the Runge-Kutta error of position as function of initial conditions,
eigenvalues and of eigenvectors of â has thereby been found.
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3.3 Measurement of the RK4 error

In this section numerical experiments are performed to measure the RK4 errors during
orbit integration in GORILLA. The idea is here to evaluate orbits for given initial
conditions (given by the 4D-vector zi(0) = [xi0, v‖,0] and the perpendicular adiabatic
invariant denoted perpinv = −J⊥ = −1

2
v2⊥,0/B(xi0), upon entering a tetrahedron),

where for each tetrahedral transition of the particle, the associated value of the orbit
parameter τ is computed. Here, two independent integration steps of step length τ
are then computed for these initial conditions, once with a single RK4 step and once
with the adaptive RK4/5 scheme for a relative accuracy of 10−17 (a short introduction
to Runge-Kutta integration can be found in appendix B). Subsequently, the obtained
results for the first component of zi(τ) are subtracted from one another and the
absolute value of the difference is saved, constituting the measured error. Next, the
leading order term (O(τ 5)) of equation (3.82) is evaluated independently, allowing
for an analytic estimation of the error associated with the RK4 method, which is
therefore denoted the analytic error. The idea is here that for sufficiently smooth
functions and for negligible numerical inaccuracies, the leading order contribution
should in fact give a very good estimation for the measured error, thus, plotting the
analytic error over the measured error is expected to result in a directly proportional
behavior with slope 1. As previously discussed, contributions to the RK4 -error in
the linearized electromagnetic field arise strictly from finite larmor radius effects,
hence, the accuracy depends both on particle species and on initial conditions zi

and perpinv. Since particles with higher mass also have larger larmor radii for a
given kinetic energy, the computations of errors are performed for α-particles. For
initial conditions, a starting position at (s, ϑ, ϕ) = (0.8, 0, 0) is defined in symmetry
flux coordinates, furthermore, a kinetic energy of 3 keV and a pitch parameter of
0.8 are chosen. Since calculations are performed in both cylindrical coordinates
and symmetry flux coordinates, starting positions are transformed if necessary by
using the subroutine magdata_in_symfluxcoord_ext that was previously introduced
in chapter 2. Because the average tetrahedral flight time of the particle scales
proportionally to the size of the tetrahedron, the grid size was furthermore chosen
to be (NR, Nϕ, NZ) = (Ns, Nϑ, Nϕ) = (5, 5, 5) and for a second calculation to be
(12, 12, 12), both configurations resembling a very coarse grid on which the RK4 -error
should be much larger than for a typical grid configuration (e.g. (100, 100, 100)) used
for orbit computation. The obtained results of the errors for the first 1000 tetrahedral
pushings using these starting conditions are presented in figure 3.1 to 3.4.
The main information that one can take from these figures is that the analytical error
does in fact coincide exceptionally well with the measured error for larger errors, while
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for smaller errors the deviation can reach several orders of magnitude which seems to
be quite large. To get a qualitative measure of the numerical errors, that occur in the
computations, the analytical error was computed in two ways. Once, by computing
the series expansion up to fourth and fifth order and taking the difference between the
two solutions and once by directly evaluating the fifth order contribution. These two
results are analytically completely equivalent, however, as one can see in the figures,
the two variations behave quite different for small errors. This leads to the conclusion,
that the observable discrepancies for small errors might actually have a non-negligible
numerical error contribution. The results from these regions are, therefore, not to
be misinterpreted to poorly resemble the validity of eq. (3.82), but rather, that the
scale of the differences is of the order of the numerical accuracy and, thus, no further
information can be gathered from this regime. Another observation, that can be
deduced from the figures is that the grid size does in fact have an important influence
on the magnitude of the errors, however, given that for alpha particles the errors are
so small even for an extremely coarse grid, one can safely assume that with more
realistic grid configurations (i.e. (100,100,100)) the Runge-Kutta error does not have a
noteworthy influence on the results of guiding center orbits, obtained by the GORILLA
code.
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Figure 3.1: Double-logarithmic plot of two versions for the analytic error (difference of
fourth and fifth order solution (x), direct computation of fifth order contribution (o))
are hereby plotted as function of the measured error for a grid size of (NR, Nϕ, NZ) =
(5, 5, 5), calculations were performed using cylindrical coordinates
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Figure 3.2: Double-logarithmic plot of two versions for the analytic error (difference of
fourth and fifth order solution (x), direct computation of fifth order contribution (o))
are hereby plotted as function of the measured error for a grid size of (NR, Nϕ, NZ) =
(12, 12, 12), calculations were performed using cylindrical coordinates
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Figure 3.3: Double-logarithmic plot of two versions for the analytic error (difference of
fourth and fifth order solution (x), direct computation of fifth order contribution (o))
are hereby plotted as function of the measured error for a grid size of (Ns, Nϑ, Nϕ) =
(5, 5, 5), calculations were performed using symmetry flux coordinates
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Figure 3.4: Double-logarithmic plot of two versions for the analytic error (difference of
fourth and fifth order solution (x), direct computation of fifth order contribution (o))
are hereby plotted as function of the measured error for a grid size of (Ns, Nϑ, Nϕ) =
(12, 12, 12), calculations were performed using symmetry flux coordinates
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Chapter 4

Pusher algorithms for particle orbits

This chapter is dedicated to the implemented algorithms for finding the first intersection
of particle orbits with the tetrahedral cell boundaries in the grids that were previously
introduced. Here, a particle can either start at an arbitrary position inside a given
tetrahedron or directly at a face of a tetrahedron through which it enters. These
routines efficiently compute the next exiting position of the particle through the
tetrahedron and the associated flight time of the trajectory. To illustrate, a schematic
figure of a particle orbit intersecting with the tetrahedral cell boundaries, taken from
[1], is shown in Fig. 4.1.

Figure 4.1: Intersections of the particle orbit xi(τ) with planes confining the cell are
displayed. For demonstrative purposes, the tetrahedral cell is depicted as a
two-dimensional triangle. The particle enters the cell at xi(τ0) and exits again at
1©. This figure is taken from [1].

In this figure, one can see the particle orbit xi(τ) intersects with the planes lying at
the cell boundaries several times. Here, only the first intersection is of interest, as the
particle leaves the tetrahedron at this position. This first intersection must now be
efficiently found by the algorithm. Since such an algorithm can be thought of as a
pushing of the particle orbit through the tetrahedron from one cell boundary to the
next, the implemented routines are denoted pusher-routines. On a sidenote, the fact
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that both position and time are obtained directly by the approaches used in the pusher
routines, a box counting scheme can easily be implemented for future applications,
allowing for a very efficient approximation of particle distribution functions, which in
turn are a necessary part for possible future computations of kinetic plasma equilibria.
The focus of the pusher routines lies, however, not only on the computation of
the trajectory and the calculation of the next intersection but rather on finding a
numerically inexpensive scheme that allows to save computational cost while reliably
yielding accurate results for the exiting position. In the diploma thesis of M. Eder
[1], a prior version of the presented pusher routine was discussed in great detail, this
routine was named pusher_tetra_orb. Due to new insights and structural limiations
of the previous code, this code was refactored and extended in cooperation with M.
Eder. The resulting code was named pusher_tetra_rk, an overview of the code is
given below, however, due to large similarities with the previous approach discussed
in [1], the new routine will be presented in less detail. Apart from this routine, a
second routine named pusher_tetra_poly was implemented based on the previously
derived polynomial expansion of the particle orbit. While the results are in theory
equivalent for both pushing routines, the approaches are completely independent and
thus may vary in both computational efficiency and numerical accuracy, depending
on up to which polynomial order of (3.75) the analytical expansion of the orbit is
computed. Furthermore, for starting a particle at a given position without knowing
to which tetrahedron it belongs, an additional routine find_tetra was constructed
for efficiently finding the corresponding tetrahedron index to start a calculation.

4.1 Pusher routine pusher_tetra_rk

As discussed, the pusher subroutine pusher_tetra_rk computes the position and
time where the particle trajectory first exits a given current tetrahedron. In reality,
however, the occurring problem is not only to directly compute the orbit of a single
tetrahedron passing, but rather to let a particle start at a position in space and trace
its orbit for a defined time. For such a problem one can construct a wrapping routine
orbit_timestep_gorilla which is given the initial conditions of the particle and
iteratively calls the pusher subroutine pusher_tetra_rk until the set time is reached,
meaning that the particle is pushed consecutively through each cell. Since generally the
set flight time of the particle will lead to an orbit position inside the final tetrahedron,
the remaining time of the trajectory to reach the set time must also be given to the
pusher routine. The pusher routine then computes the time it takes until the particle
exits the current tetrahedron and compares this value to the remaining time of the

68



CHAPTER 4. PUSHER ALGORITHMS FOR PARTICLE ORBITS

orbit integration step which was given to the wrapper routine. In case the time it takes
to leave the tetrahedron is smaller than the remaining time, the pushing is computed,
then the remaining time is reduced by this value and the next pushing through the
adjacent tetrahedron is started. In case there is not sufficient time to complete the
pushing, the orbit is instead integrated up to the value of the orbit parameter tau
corresponding to the remaining time, leading to an arbitrary final position inside the
tetrahedron. The code structure of the wrapping routine orbit_timestep_gorilla
and the components of the module pusher_tetra_orbit_mod is given in figure 4.2.

orbit_timestep_gorilla

initialize_const_motion

pusher_tetra_orbit_mod

pusher_tetra_rk

integration_step

find_tetra

quad_analytic_approx analytic_coeff

newton_face_convergence

last_line_defense

bisection_face_convergence

final_processing

pusher_handover2neighbour

initialize_pusher_tetra_orbit_mod

Figure 4.2: Code structure of pusher_tetra_orbit_mod and associated subroutine

Due to this wrapping routine, one can directly start the computation of a single particle
orbit for a given flight time by calling subroutine orbit_timestep_gorilla with ar-
guments (x,vpar,vperp,t_step,boole_initialized,ind_tetr,iface). This list
of parameters is explained in tab. 4.1.
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Table 4.1: Parameter overview for wrapper subroutine orbit_timestep_gorilla,
defines initial conditions and duration of particle motion, orientations of velocities are
taken with respect to the orientation of the magnetic field ~B.

Data type Name Description
double precision, x particle position
dimension(3),intent(inout)

double precision, vpar parallel velocity
intent(inout)

double precision, vperp perpendicular velocity
intent(inout)

double precision,intent(in) t_step defined flight time
logical,intent(inout) boole_initialized sets initialization of

constants of motion
integer,intent(inout) ind_tetr tetrahedron index

at position x

integer,intent(inout) iface index of face if x lies
on face, 0 otherwise

4.1.1 Initializing constants of motion

In figure 4.2, one can see the code diagram which gives an overview of the differ-
ent subroutines. When starting a calculation in orbit_timestep_gorilla for a
defined step length, the subroutine that is called first is initialize_const_motion
which sets the constants of motion for the given initial conditions. These constants
of motion are E_tot, perpinv and perinv2 which denote the total energy E, the
negative perpendicular adiabatic invariant −J⊥ and the squared value thereof, re-
spectively. Since these quantities are saved with attributes public,protected, the
subroutine initialize_const_motion must be saved within the current module
pusher_tetra_orbit_mod, otherwise it would not be allowed to set the values. The
constants of motion will retain their set values for a number of tetrahedral pushings
until the next time step is executed. Usually, between time steps collision events will
occur when performing Monte Carlo simulations, as a consequence the constants of
motion may change and have to be defined anew.

4.1.2 Particle pushing algorithm

For a given time step, after initializing the constants of motion, the subroutine
pusher_tetra_rk is called with the initial conditions of the current pushing. At the
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end of the subroutine execution it returns the new starting conditions for the next
pushing as well as the remaining time of the current step. An overview of the call
parameters of the subroutine is given in tab. 4.2.

Table 4.2: Parameter overview for pusher_tetra_rk

Data type Name Description
integer, ind_tetr_inout current tetrahedron index
intent(inout)

integer, iface current face index of tetrahedron
intent(inout) where orbit converged, 0 if not converged
double precision, x current particle position in global
dimension(3), coordinates, i.e. not with respect
intent(inout) to the first node of a tetrahedron
double precision, vpar parallel velocity of the
intent(inout) particle with respect to B
double precision, z_final final particle position in local coordinates,
dimension(3), needed for calculation of the flux tube
intent(out) volume used in another application
double precision, t_remain_in remaining time of the current integration
intent(in) step, which consists of many pushings
double precision, t_pass flight time of the current pushing step
intent(out)

logical, boole_t_finished boolean stating if the remaining step time
intent(out) has been reached in the current pushing
integer, iper_phi +1,-1 if the particle travels through the
intent(out) ϕ = 0-plane in −ϕ,+ϕ direction,

0 otherwise

Initialize pusher

In the pusher_tetra_orbit subroutine, first an initializer subroutine initialize_pu
sher_tetra_orbit_mod is called. Here, the initial conditions are used to compute
the coefficients ail, bi for the ordinary differential equation set 3.1, representing the
equations of motion [1]. One should emphasize here, that this ode set is solved within
a shifted coordinate system, where the coordinate origin z0 lies on the first vertex of
a given tetrahedron. By convention in this project, when referring to a position in
the global coordinate system one denotes the variable x, when referring to a position
inside the local shifted coordinate system one uses z instead.
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Initial guess of exit plane

Now, that the necessary components of the ODE set 3.1 have been initialized, the next
occurring orbit intersection needs to be computed by the pusher routine. Since this
must be done efficiently, a numerically inexpensive approximative quadratic solution
is first evaluated by subroutine quad_analytic_approx to compute the guess for
the orbit parameter tau at the first intersection of the particle trajectory with the
cell boundary. Based on the result for the orbit parameter tau, an integration step
is performed for the given step length using an RK4 solver, this integrator type is
explained in more detail in appendix B. The RK4 integrator subsequently returns the
evaluated position for the specified value for tau. In general, due to inaccuracies in
the approximation, this value does not correspond to a converged orbit position. In
the context of the pusher routine, converged simply means that the particle position
is within a defined convergence distance to a given tetrahedral plane. This distance is
given by 10−10 times the normal distance of the first vertex within a given tetrahedron
to its opposing cell boundary spanned by vertices 2,3 and 4 of the given tetrahedron.
In addition, the normal velocity, which can also be computed from the output of the
RK4 step, must have a negative sign in order for the convergence to be valid. The
negative sign assures here, that only outflowing particles (i.e. with negative normal
velocity) are accepted as a solution. Now, since the orbit position is generally not
yet converged after the quadratic approximation, one next applies Newton’s method
for the face convergence by calling the subroutine newton_face_convergence. A
detailed description of this approach is given by M. Eder et al [1].

4.1.3 Convergence and validation loop conv_val_loop

What one has obtained so far is a proposal for the exit plane and a converged orbit
position on this plane. There may still be some problems, however, since for example
Newton’s method can fail if the orbit in fact turns before it intersects with the plane.
Furthermore, it might happen that it does converge on the suggested plane but at
the point of convergence it had already left the tetrahedron through another plane
which is not allowed as it would be the actually correct exit plane instead of the
proposed one. Such cases need to be checked and handled appropriately. For this
purpose, the convergence and validation loop conv_val_loop was implemented. This
loop starts directly after the above mentioned quadratic approximation just before the
convergence using Newton’s method. Here, in each iteration of the loop, the algorithm
tries to converge the particle orbit position on the currently proposed intersection
face. Next, if convergence is reached the algorithm checks for the remaining planes
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if the particle lies outside the tetrahedron. If this is not the case furthermore the
normal velocity is checked to see if the particle flies outside. In case this is also correct,
the particle is considered converged and accepted. In any case, where an error is
detected, an appropriate approach is suggested. In most cases this involves using
the quadratic approximation to suggest a different face, however, in some special
cases this is not sufficient. Therefore, one calls inside the loop conv_val_loop an
additional convergence routine last_line_defense, which no longer opts for high
computational efficiency but rather for a reliable way of finding the intersection point.
This subroutine is very comprehensive, but a central piece of it is a bisection scheme.
For a short overview, in this scheme one computes the relative particle positions to
all four faces and furthermore checks the normal velocities. Here, if the particle is
inside the tetrahedron, the current step length is doubled and an integration step is
performed. If the particle is now outside the tetrahedron, the last integration step
is halved and integrated back in negative τ -direction. This is done in an iterative
scheme until a converged particle position has been found and albeit computationally
expensive, the last line of defense solver remains an indispensable element of the
algorithm due to its high reliability. This effect on performance remains small, however,
as only a small portion of particle pushings actually need to be solved by the last line
of defense solver.
The structure of the loop conv_val_loop is presented in pseudo-code below.

conv_val_loop: do i = 1,5

boole_converged = .true.

call newton_face_convergence(z,tau,iface_new,..)

if (Newton’s method failed) then

allowed_faces(iface_new)=.false.

if (all allowed_faces forbidden) then

call last_line_defense(z,tau,iface_new,..)

cycle conv_val_loop

endif

call quad_analytic_approx(z,allowed_faces,dtau,..)

if (quadratic approximation failed) then

call last_line_defense(z,tau,iface_new,..)
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boole_converged = .false.

cycle conv_val_loop

endif

call integration_step(z,dtau,..)

tau = tau + dtau

boole_converged = .false.

cycle conv_val_loop

endif

three_planes_loop: do j=1,3

k = modulo(iface_new+j-1,4)+1

if (particle is outside face k) then

allowed_faces(iface_new)=.false.

if (all allowed_faces forbidden) then

call last_line_defense(z,tau,iface_new,..)

boole_converged = .false.

cycle conv_val_loop

endif

if (face k is not forbidden in allowed_faces) then

iface_new = k

boole_converged = .false.

cycle conv_val_loop

endif

endif

enddo three_planes_loop

if (normal velocity at iface_new points inwards) then

allowed_faces(iface_new)=.false.

if (all allowed_faces forbidden) then

call last_line_defense(z,tau,iface_new,..)

boole_converged = .false.

cycle conv_val_loop

endif

call quad_analytic_approx(z,allowed_faces,dtau,..)
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if (quadratic approximation failed) then

call last_line_defense(z,tau,iface_new,..)

boole_converged = .false.

cycle conv_val_loop

endif

call integration_step(z,dtau,..)

tau = tau + dtau

boole_converged = .false.

cycle conv_val_loop

endif

if (tau is negative) then

allowed_faces(iface_new)=.false.

z = z_init

tau = 0.d0

if (all allowed_faces forbidden)

call last_line_defense(z,tau,iface_new,..)

boole_converged = .false.

cycle conv_val_loop

endif

call quad_analytic_approx(z,allowed_faces,dtau,..)

if (quadratic approximation failed) then

call last_line_defense(z,tau,iface_new,..)

boole_converged = .false.

cycle conv_val_loop

endif

call integration_step(z,dtau,..)

tau = tau + dtau

boole_converged = .false.

cycle conv_val_loop

endif

exit conv_val_loop

enddo conv_val_loop
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From the pseudo-code one can see, that a lot of thought has gone into efficiently
computing the next intersection. However, due to the used approach of guessing the
exit face with an approximation instead of computing all intersections with all four
planes, which would be computationally much more expensive, many special cases of
particle trajectories had to be taken into account such that the logic deals with them
correctly.

4.1.4 Final processing

The last steps of the orbit integration are to first check if the computed time is in fact
smaller than the remaining flight time. If this is not the case, instead of the converged
orbit position, the corresponding position at the remaining time is evaluated and
assumed. In this case the current tetrahedron index will be returned with iface_new

being set to 0. If the computed time is smaller than the remaining time, the remaining
time is reduced by the current value and the tetrahedron index adjacent to iface_new

will be returned by calling the subroutine pusher_handover2neighbour. Furthermore,
iface_new is changed to neighbour_face(iface_new) of the adjacent tetrahedron
to mark the new entry face. Now, one must check if the intersection face is at a
periodic boundary of the coordinate system. In this case the corresponding value of
i_per_theta/phi times 2π is added to the respective coordinate component. Finally,
the values for the current position z in local coordinates are converted to x in global
coordinates, then the output values are returned and the orbit pushing is completed.

4.2 Pusher routine pusher_tetra_poly

In chapter 3.1, the analytical solution to the linearized equations of motion was
derived. There, a power series expansion of the solution was presented in equation
(3.75), where the RK4 method corresponded to the same expansion, only up to fourth
order. With this analytical expansion, one actually has many new possibilities in
computing the next orbit intersection. Unlike with the RK4 method, one has here
an explicit expression of the orbit in orders of τ . This allows to use the expansion
for the position in the Hesse normal form of the tetrahedral planes. By doing this,
one obtains a polynomial of τ for each plane, where the smallest positive value of τ
corresponds to the next exiting position. Up to the fourth polynomial order, one can
in fact use analytical formulas to find the solutions for τ . On this working principle,
an alternative pushing routine pusher_tetra_poly is therefore implemented. Due to
the stringent requirements on computational efficiency, however, this subroutine uses
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a similar approach as the above described subroutine pusher_tetra_orbit. A short
overview of the analytical approach is given below.
Using equation (3.75), one can write the expansion of the solution as a polynomial of
a defined order.

zpoly(τ) = z0 + aτ + bτ 2 + . . .

The three spatial components (first three components) of zpoly can now be inserted
into the plane equations of the four tetrahedral faces. The plane equations are hereby
given by the Hesse normal form using the normal vectors of the plane and the normal
distance of the first vertex with respect to the current plane. Since the first vertex of
a given tetrahedron lies by convention on the tetrahedral planes {2,3,4} but not on
plane 1, one can write this explicitly as

Plane 1: 0 = d⊥ + ~n1 · zpoly(τ),

Planes i={2,3,4}: 0 = ~ni · zpoly(τ).

Here, d⊥ denotes the normal distance of the first tetrahedron vertex to the first plane.
The normal vectors of the respective planes i are given by ni. Since zpoly(τ) is in the
local coordinate system, with the first vertex representing the coordinate origin, the
coordinates of the first vertex do not appear in these equations.
Using this form, one obtains a polynomial of the same order as zpoly(τ). Here, the roots
of the polynomial represent the intersection points of the orbit with the given plane.
The task is now, to efficiently find the smallest positive root τexit of all four equations.
This value of the orbit parameter τ corresponds to the exit position of the particle
through the tetrahedral cell boundary. In order to obtain the same level of accuracy as
with RK4, one must furthermore compute orbits with a Taylor expansion of order four.
This is the highest order of a polynomial for which analytical solutions for the roots
of a polynomial exist, based on case differentiations of the parameters. Higher order
polynomials are therefore not suggested nor currently supported. Moreover, lower
order polynomial roots are much more efficiently solvable, for this reason additional
logics is implemented for the polynomial pusher, as computational efficiency remains
a key criterion and computing all possible intersections does slow down the algorithm.
The current approach is therefore to first evaluate the polynomial coefficients of the
Taylor expansion for the desired order. Using this solution up to only the quadratic
order, one can evaluate a guess for the exit plane of the particle by computing the roots
of the polynomial obtained by the Hesse normal form for all planes and taking the
smallest positive root corresponding to the guess for the exit position. The value for
τ corresponding to the smallest positive root is then used to compute the positions of

77



CHAPTER 4. PUSHER ALGORITHMS FOR PARTICLE ORBITS

the particle using the expansion coefficients of the desired order to check convergence
more accurately and to be able to take measures to reach convergence. Based on this
principle, additional logics is implemented for the subroutine pusher_tetra_poly,
like for the subroutine pusher_tetra_rk, however, this is very comprehensive and
therefore not within the scope of this thesis.

4.3 Search routine for tetrahedra

Since generally, a user defines a particle starting position x in global coordinates,
rather than specifying a tetrahedron index and a local position, the search routine
find_tetra is implemented for finding the corresponding tetrahedron index. For this,
moreover, a function is_inside is implemented which allows to check if the particle
position lies inside a proposed tetrahedron. This function uses the Hesse normal
form to compute the distances to all tetrahedral planes. The necessary quantities
are the coordinate position of the first vertex, the normal distance of this vertex to
the opposing plane and the four normal vectors of the planes, these are all accessable
in module tetra_grid_mod. Next, due to the axisymmetry of the grid, based on
the current phi position one can vastly reduce the number of possible tetrahedra
by allowing only tetrahedra of the current ϕ-slice. Now, a loop over all possible
tetrahedron indices is implemented to check if the particle lies inside. Once the correct
tetrahedron has been found, the distances to the four planes need to be checked for
random convergence on a plane. If this is the case, also the normal velocity with
respect to that plane must be evaluated, since the pusher always assumes that a given
particle flies inwards which could lead to errors in the logics. If the particle, however,
is converged on a plane and flies outwards, instead of the current tetrahedron index
the adjacent neighbor at this face index is returned with the corresponding value for
iface_new.
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Chapter 5

Monte Carlo simulation of particle
transport using GORILLA

This chapter is taken without change from [9], as the author of this thesis has made
contributions to this publication, appearing therefore as co-author. The content is
furthermore relevant to this thesis as it gives valuable insights in the application of
the code GORILLA.

5.1 Monte Carlo evaluation of neoclassical transport

coefficients, performance benchmark

Evaluation of neoclassical transport coefficients using the Monte Carlo method [10, 11]
is widely used for stellarators and tokamaks with 3D perturbations of the magnetic
field [12, 13, 14, 15, 16, 17, 18]. An advantage of this method in its original, full-f form
is the use of test particle guiding-center orbits without requiring model simplifications
needed in (more efficient) local approaches. Therefore Monte Carlo methods provide
an unbiased reference point in cases where those simplifications affect the transport
such as for regimes with significant role of the tangential magnetic drift [19, 20].
An obvious disadvantage is that for realistic magnetic configurations Monte Carlo
methods are CPU-intensive with most of the CPU time spent for the integration of
the guiding-center motion. The application of the proposed geometric integration
method for this purpose instead of the usual Runge-Kutta method results in a visible
speed-up of the computations without significantly biasing the results. Here, this
application is made for benchmarking purposes assuming that the inaccuracies in
orbit integration which are tolerable in computations of transport coefficients are also
tolerable in global modelling of macroscopic plasma parameters.
The proposed orbit integration method is applied within a standard Monte Carlo
algorithm [10] using the Lorentz collision model for the evaluation of the mono-
energetic radial diffusion coefficient D11. The latter is determined via the average
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square deviation of the normalized toroidal flux s from its starting value s0 as follows,

D11 =
1

2t
〈(s(t)− s0)2〉. (5.1)

Here, angle brackets 〈. . . 〉 denote an ensemble average, s(0) = s0, and the test particle
tracing time t is chosen to be larger than the local distribution function relaxation time
τrel and smaller than the radial transport time, t = 10τrel. A Monte Carlo collision
operator identical to that of Ref. [10] is applied here in-between constant collisionless
orbit integration steps ∆t. These steps are small enough compared to the typical
bounce time τb and collision time τc,

∆t = min
( τb

20
,
τc
20

)
. (5.2)

Here, τc = 1/ν and τb = 2πR0/(vNtor.) with ν, R0, v and Ntor denoting collisional
deflection frequency, major radius, particle velocity and number of toroidal field
periods, respectively. The relaxation time τrel is determined as the largest of τc and
τ 2b/τc.
In the present example, the mono-energetic radial diffusion coefficient has been evalu-
ated for the quasi-isodynamic stellarator configuration [21] used also for collisionless
orbits in section III B of [9]. Guiding-center orbits were computed with the geometric
integration method in symmetry flux coordinates using polynomial series solutions
of various orders K. The grid size Ns × Nϑ × Nϕ = 100 × 60 × 60 was selected to
be appropriate to minimize the numerical diffusion (see the previous section.) In a
reference computation, guiding-center equations (3.1) in symmetry flux variables with
electromagnetic fields interpolated by 3D cubic splines were integrated by an adaptive
RK4/5 integrator. In order to minimize statistical errors, computations have been
performed for a large ensemble size of 10000 particles.
The results for D11 computed for 3 keV electrons and ions at s0 = 0.6 are presented
in Fig. 5.1. Values of radial electric field Er and deflection frequency ν, which
determine transport regimes, are respectively characterized here by two dimensionless
parameters [22], Mach number v∗E = cEr/(vB0) and collisionality ν∗ = (R0ν)/(ιv),
where ι is the rotational transform. For the ions, in addition to the E×B rotation,
also the tangential magnetic drift plays a significant role which can be seen from the
shift of the D11 maximum on v∗E dependence. The results of geometric integration
stay in agreement with the reference computation within the 95 % confidence interval
in all cases even for the lowest order polynomial solution K = 2. Therefore, as shown
below, a significant gain in the computation time can be obtained in this kind of
calculations.
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Figure 5.1: Mono-energetic radial diffusion coefficients D11 for electrons (top) and deuterium ions
(bottom) as functions of (a) normalized collisionality ν∗ and (b) Mach number v∗E . Lines of various
styles (see the legends) - reference computation, markers - results of geometric integration with
polynomial solution of the order K for K = 2 (♦), K = 3 (�) and K = 4 (O). Error bars indicate
95 % confidence interval.

Moreover, we compare the performance and scaling for parallel computation of
guiding-center orbits using the geometric orbit integration method with computations
using standard reference integrators (RK4 and adaptive RK4/5). For this, different
integrators have been used within D11 computation described above for a particular
choice of dimensionless parameters, v∗E = 10−3 and ν∗ = 10−3, and an increased
ensemble size of 30000 test particles. The numerical experiment has been performed
on a single node of the COBRA cluster of MPCDF with 40 CPU cores (Intel Xeon
Gold 6126) running 80 concurrent threads with hyperthreading.
The reference value for the transport coefficient, D11,ref , and the reference CPU
time are obtained by orbit integration with an adaptive RK4/5 integrator with
a relative tolerance of 10−9. The accuracy of the D11 evaluation using different
computation parameter settings is represented by the relative error δD11/D11,ref where
δD11 = |D11 −D11,ref |. The CPU time purely used for orbit integration serves as a
measure for the computational effort of the methods. This given CPU time does
not contain any overhead operations, e.g. the construction of the grid, generation
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Figure 5.2: Relative error of mono-energetic radial transport coefficient D11 of electrons (top) and
D ions (bottom) vs. relative CPU time. Compared orbit integration methods are: Runge-Kutta 4
(?), Adaptive RK4/5 with various relative errors indicated in the plot (×), geometric integration
with polynomial solution (GORILLA Poly) of the order K = 2 (♦), K = 3 (�) and K = 4 (O), and
with RK4 solution (GORILLA RK4, 4). Fits of results are depicted with lines according to the
legend. Random error of the reference result, D11,ref , is depicted as a horizontal line limiting its
95 % confidence interval.

of random numbers for pitch-angle scattering and computation of D11 by evaluating
Eq. 5.1 with the help of a least-squares regression.
Fig. 5.2 shows the relative error of the mono-energetic radial transport coefficient versus
the relative CPU time of computations using the geometric orbit integration method
with the polynomial series solution of various orders, GORILLA Poly, and the iterative
scheme with RK4 integration and Newton steps, GORILLA RK4. Accuracy and CPU
time of geometric orbit integrations have been varied by mutually changing the angular
grid size Nϑ ×Nϕ from 8× 8 to 60× 60 while keeping the radial grid size constant
at Ns = 100. In the stellarator configuration of Ref. [21] used here, the number of
toroidal harmonic modes per field period is 14, leading to a minimum toroidal grid size
Nϕ = 28 in order to satisfy the Nyquist-Shannon sampling theorem [23, 24]. Therefore,
regression lines are drawn for the range of data points with grid sizes from 8× 8 until
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28× 28, clearly showing a convergent behavior of D11 with increasing grid refinement.
Furthermore, the adaptive RK4/5 integration is additionally performed with relative
tolerances of 10−3, 10−6, 10−7 and 10−8, respectively. Note that the computational
speed of the adaptive RK4/5 integration with a relative tolerance of 10−6 cannot
be increased by higher relative tolerances, e.g. 10−3, since the macroscopic Monte
Carlo time step, ∆t Eq. (5.2), is already elapsed within a single RK4/5 step with
sufficient accuracy. Hence, also the non-adaptive Runge-Kutta 4 method is tested,
which naturally needs one field evaluation less per time step than RK4/5. In all cases,
the relative error of RK4/5 and Runge-Kutta 4 results is determined here mainly by
statistical deviations, with a random error dominating the bias.
Besides statistical errors due to Monte Carlo sampling, a limit for capturing all
toroidal and poloidal field harmonics is given by a minimum grid size of two points
per period due to the Nyquist–Shannon sampling theorem. Fig. 5.2 visibly shows
that statistical fluctuations already dominate the bias of all variants of the geometric
integration method above this sampling threshold, despite the large ensemble size of
30000 particles. To avoid possible sampling artifacts at even higher higher particle
count, we consider the geometric orbit integration method at the toroidal grid size Nϕ

of at minimum twice the number of toroidal modes in the magnetic field configurations.
The variant with the polynomial series solution truncated at K = 2 (GORILLA Poly
2 ) at this grid resolution can be considered the fastest sufficiently accurate tested
method to compute D11 for thermal ions and electrons. In case of D ions with an
energy of 3 keV this method is one order of magnitude faster than the Runge-Kutta 4
integrator which is the fastest reference method.
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Conclusion and outlook

In this thesis, numerous contributions and continued code implementations for the
guiding center code GORILLA have been presented. The goal was here to provide a
detailed insight into the working principles of these developments, such that possible
future contributors have additional documentation allowing for an easier understanding
of the approach. Since guiding-center codes remain a key component for computing
kinetic equilibria as well as quasi-steady plasma parameters in toroidal fusion devices,
they underlie stringent requirements, namely, computational efficiency, low sensitivity
to noise and physically correct long time orbit dynamics. In order to meet the
requirements, the guiding center code GORILLA has been initially developed and
implemented by M. Eder in cooperation with S.V. Kasilov and C.G. Albert under
supervision of W. Kernbichler [1]. There, an approach of locally linearizing field
quantities on a spatial grid and subsequently integrating the guiding center equations
of motion in an iterative Runge Kutta scheme using cylindrical coordinates was chosen.
In addition to the cylindrical contour grid which had been originally implemented,
in this thesis a field-aligned grid has been introduced which is suitable for guiding-
center orbit integration in symmetry flux coordinates. The use of these coordinates
exhibits major advantages with respect to orbit shape and interpolation accuracy of
the magnetic vector potential. Furthermore, an analytical treatment of the linearized
guiding center equations of motion has been presented. On the one hand, this has
allowed to derive an analytical expression for the Runge Kutta 4 error, which has
been analyzed and identified as negligible to the accuracy of results obtained by
GORILLA. On the other hand, this has enabled the implementation of a completely
new approach to computing the intersections of the guiding center orbit with the
tetrahedral cell boundaries of a given grid element. Here, extensive work has gone into
redesign and further development of the previous implementation of the subroutine
pusher_tetra_RK and also into implementing the new approach based on a polynomial
expansion of the analytic solution in subroutine pusher_tetra_poly.
Finally, an evaluation of the quality of results obtained by the code GORILLA and an
analysis of its computational efficiency were given. Here, the expected physical results
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have been reproduced by GORILLA to great accuracy showing that the relevant
physics is in fact preserved by the method. Furthermore, computational efficiency of
GORILLA has been shown to be superior by one order of magnitude when compared
to a standard RK4/5 integrator with non-linearized fields. These features are of great
importance for the viability of using GORILLA in future projects, such as kinetic
modeling of plasma equilibria.
Lastly, it should be mentioned that a paper (Geometric integration of guiding-center
orbits in piecewise linear toroidal fields) on the developed integrator has been written
and submitted to Physics of Plasmas, with the author of this thesis appearing as
co-author. At the time of writing up this thesis, this paper is in the review process.
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Appendix A

Lagrange polynomial interpolation

A.1 Introduction

In this chapter, a short introduction to Lagrange polynomial interpolation is presented.
This writeup is based on the NIST Library of Mathematical Functions [3].
The nodes zk are real or complex valued, the function values are fk = f(zk). Given
(n+ 1) distinct points zk with their corresponding function values fk, the Lagrange
interpolation polynomial is the unique polynomial Pn(z) satisfying P (zk) = fk while
not exceeding order n, with k = 0, 1, ..., n. The Lagrange polynomial is given by

Pn(z) =
n∑
k=0

Lk(z)fk

with Lagrange coefficients

Lk(z) =
n∏

j=0,j 6=k

z − zj
zk − zj

where the factor for j = k is omitted in the product. The Lagrange coefficients are
again polynomials with the property

Lk(zj) = δk,j,

thus, each Lk(z) has a weight of 1 if z = zk or 0 if z = zj with j 6= k. For this
property, Pn(z) goes exactly through all data points (zk, fk).

A.2 Application for a simple exponential

In practice one applies a low order polynomial interpolation for a small set of points
lying close to the target position, this approach guarantees smoothness of the interpo-
lated curve even for non-smooth data, thus effectively reducing high order polynomial
oscillations. For demonstrative purposes, some Lagrange polynomials (line style: solid,
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black) for a basic exponential function (line style: dotted, blue) are depicted below.
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Figure A.1: Lagrange polynomials of order n with equidistant zk for f(z) = ez
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Appendix B

Runge-Kutta integration

B.1 General formulation

In this chapter, a brief summary of Runge-Kutta integration is presented, based
on the comprehensive summary by E. Hairer in [6]. In numerical analysis, efficient
integration methods for solving initial value problems of the form y′ = f(x, y) were
initially implemented by Euler (1768), although later further methods based on his
work were developed by Runge (1895) and Kutta (1905). The most widely known
algorithm is the so-called fourth order Runge-Kutta solver (commonly abbreviated
RK4 ), however, an entire generalized class of integrators has since been derived.
Such an integrating scheme is fully described by the coefficients of the corresponding
Butcher tableau given in B.1:

Table B.1: Butcher tableau for a general s-stage Runge-Kutta method

0

c2 a21

c3 a31 a32
...

...
... . . .

cs as1 as2 . . . as,s−1

b1 b2 . . . bs−1 bs

Generally, the condition

ci =
i−1∑
j=1

aij (B.1)

is further imposed, which greatly simplifies the problem of deriving order conditions
for higher order methods.
Using the coefficients of B.1 one can explicitly calculate the approximate solution to
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the initial value problem for a single step ∆x = h by computing

y1 = y0 + h(b1k1 + . . .+ bsks)

(B.2)

with

k1 = f(x0, y0)

k2 = f(x0 + c2h, y0 + ha21k1) (B.3)

k3 = f(x0 + c3h, y0 + h(a31k1 + a32k2))

. . .

ks = f(x0 + csh, y0 + h(as1k1 + . . .+ as,s−1ks−1)).

B.2 RK4 with application

For the specific case of the RK4 -method, which is also implemented in the GORILLA
code, the corresponding Butcher tableau is given in B.2.

Table B.2: Butcher tableau for the RK4 -method

0
1
2

1
2

1
2

0 1
2

1 0 0 1
1
6

1
3

1
3

1
6

One is especially interested in the application of this scheme to an ODE system of
the shape

f(τ, z(τ)) = f(z(τ)) =
dz(τ)

dτ
= â · z(τ) + b (B.4)

with initial conditions z(0) = z0. Note that f(τ, z(τ)) does not explicitly depend on τ ,
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thus, (B.2) and (B.3) yield for a single RK4 step with h = τ

zRK4 = z0 + τ

(
1

3
k1 +

1

6
k2 +

1

6
k3 +

1

3
k4

)
k1 = f(z0)

k2 = f
(
z0 +

τ

2
f(z0)

)
(B.5)

k3 = f
(
z0 +

τ

2
f
(
z0 +

τ

2
f(z0)

))
k4 = f

(
z0 + τ f

(
z0 +

τ

2
f
(
z0 +

τ

2
f(z0)

)))
,

which allows to explicitly write the approximate RK4 -solution for this ODE system as

zRK4(τ) = z0 +
τ

6
f(z0) +

τ

3
f
(
z0 +

τ

2
f(z0)

)
+
τ

3
f
(
z0 +

τ

2
f
(
z0 +

τ

2
f(z0)

))
+

τ

6
f
(
z0 + τ f

(
z0 +

τ

2
f
(
z0 +

τ

2
f(z0)

)))
. (B.6)

It is important to note that the RK4 -method has the property that for sufficiently
smooth functions, the approximate RK4 -solution zRK4(τ) coincides with the fourth
order Taylor expansion of the analytical solution for z(τ). The associated errors are
therefore of order O(τ 5).
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B.3 Runge-Kutta-Fehlberg - RK45

Although the introduced RK4 -method is a very useful tool, its accuracy greatly
depends on the chosen step size h, while the routine generally does not yield an
estimate for the error, if not computed separately. A clever way to circumvent this
problem was introduced by E. Fehlberg (1969), namely, to evaluate a given step
successively with proposed fourth-order and fifth-order routines and then compute
the difference of these two results. If the difference is smaller than a set tolerance, the
step is accepted, if not, the step is discarded and the previous step size h is halved for
the next attempt. The Butcher tableau for the RK45 method is given by

Table B.3: Butcher tableau for the RK45 -method

0
1
4

1
4

3
8

3
32

9
32

12
13

1932
2197

−7200
2197

1 439
216

−8 3680
513

− 845
4104

1
2
− 8

27
2 −3544

2565
1859
4104

−11
40

16
135

0 6656
12825

28561
56430

− 9
50

2
55

25
216

0 1408
2565

2197
4104

−1
5

0

Here, the first row at the bottom gives the coefficients for the fifth order method, the
second row gives the coefficients for the fourth order method.
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