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Chapter 1

Introduction

Since March 2020 life in Europe changed drastically. Countries decided one after the
other to close their borders, to ask for social distancing and finally to impose a lockdown.
This change of life was all due to the global spread of a virus called COVID-19. The
virus was newly discovered in Wuhan (China) in December 2019. Quickly, it spread over
whole Europe and North America and by now causes thousands of deaths all over the
world. While writing this chapter the number of infected people is sharply decreasing in
Austria. Fortunately, it looks like the political actions taken by the Austrian government
were effective, but in other parts of the world, the virus is still spreading rapidly. All
these political decisions would not have been possible without the use of mathematical
models. Mainly, the effective reproduction rate re was used to measure the effictiveness of
the actions taken, and much discussed in popular media formats. The reproduction rate
is defined as the expected number of individuals infected by one infected individual. It
may vary during the development of the pandemic due to interventions, mutations of the
virus, the immunization of the population, seasonality and many other factors. The aim
set by politicians was always to achieve a reproduction rate below one. One stochastic
process, which is heavily used in this thesis bears a likeness to a basic version of simulating
the spread of a virus, while being too simplistic as a proper model for a real-world virus.
It is called the Galton–Watson process. Here, the starting point is one individual; this
individual gives birth to a random number of further individuals with a certain probability.
These individuals again give birth to a random number of new individuals independently of
each other and the generation before. Moreover, every individual bears a certain random
number of further indivudals with the same probability as the first ever existing indivual
did. One realization of the Galton–Watson process simulates one potential development
of a population. The process continues from generation to generation until there is either
no new individual in the next generation (i.e. the process dies out), or it repeats itself
infinitely often. The Galton–Watson process was established by the British scientists
Francis Galton and Henry William Watson in 1873 studying the extinction of Aristocratic
surnames. They invented a model about how many male children an Aristocrat has.
Together they published a paper ”On the probability of the extinction of families” see [66].
There, they prove the basic result about the extinction of the process described above: if

1



2 CHAPTER 1. INTRODUCTION

one individual always gives birth to at least one other individual, the process will survive
in any case. Therefore we assume, that with a certain probability, one individual bears
zero other individuals. Then, the process will die out almost surely, i.e. there are no new
individuals in the next generation if the expected number of newly born individuals is at
most one. On the other side, if this expected number is greater than one, the process will
die out only with a probability strictly less than one.

The Galton–Watson process itself is the basic model for so-called branching processes.
It can be modified, for example, by allowing immigration in some generations or creating
dependence of some kind in between individuals. But we will continue with the classical
model, which will be an essential part of the thesis. A realization of the Galton–Watson
process may be visualized by its family tree, see Figure 1.1. The tree has one root o, which

the first ndividual: root o

Figure 1.1: The first four generations of a realization of a Galton–Watson process, where
one individual gives birth to between 0 and 5 other individuals.

represents the first existing individual. This individual gives birth to k other individuals,
visualized by k vertices connected to the root. These individuals again bear children
resulting in vertices, connected to their corresponding vertex. We speak of mother vertices
– the vertices giving birth in the generation before – and their children. These trees might
be finite or infinite, according to the distribution of how many new individuals will appear.
Although they are randomly generated, they have a sort of ”symmetry”: looking from one
vertex into the subtree starting at this vertex, the subtree looks in distribution the same as
the whole tree. It is a consequence of the fact that each individual gives birth independently
of the others to a number of individuals, which is always distributed the same. We call the
family trees of a Galton–Watson process Galton–Watson trees. Let us think about these
trees now as a graph. We have mother vertices connected to their children. The number
of children of each vertex is equally distributed according to a given distribution. Let v
be a vertex other than the root with k children. Then, the vertex itself has degree k + 1,
as it is also connected to its mother vertex. The root has no mother vertex. Therefore,
it is only connected to its children. Such a Galton–Watson tree is one example for the
class of graphs, called trees. These are graphs consisting of vertices and edges, which are
connected and do not contain cycles. A cycle would imply that we can reach a vertex
from our starting point over two different paths. Not having cycles yields the important
property, that we have unique paths connecting two vertices. Another example of trees
are homogeneous trees. These are infinite trees, where every vertex has the same degree,
see Figure 1.2. In contrast to Galton–Watson trees, the tree in Figure 1.2 does not have
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a dedicated root, which has no mother vertex. Nevertheless, we can choose a root here as
well, which would have one child more than all other vertices.

o

Figure 1.2: The homogeneous tree with degree 3.

On these trees, we might imagine a particle wandering around. The vertices are junc-
tions and the edges are roads connecting the junctions. At every junction, the particle
chooses randomly one of the roads with the same probability. If a vertex has degree k,
the particle wanders to one of its neighboring vertices with probability 1/k. Observing this
particle, we can track its path, the areas it is visiting or the speed, with which it is walking
away from its starting point. Such a particle randomly wandering around on the tree is
another random process, called ”Simple Random Walk”. The statistician Karl Pearson
first mentioned the name random walk in 1905, see [51]. Such random walks can be ob-
served on many different graphs. The most common ones are the infinite ray or the higher
dimensional integer lattices. The starting point of the intense study of random walks was
set by the Hungarian mathematician George Pólya in 1919, see [55], studying whether a
random walk will return to its starting point again almost surely. This property is called
recurrence. If the random walk returns to its starting point with probability smaller than
one, then we call the random walk transient. Another equivalent definition of recurrence is
that the random walk visits its starting point infinitely often almost surely. Equivalently,
it is called transient, if it visits its starting point only finitely many times, almost surely.
In his famous theorem Pólya proved that a simple random walk is recurrent if and only if
the dimension of the lattice is at most 2. This means that a random walk will reach its
starting point on the infinite ray and the two-dimensional grid again almost surely. How
is a random walk behaving on trees concerning recurrence and transience?
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A simple random walk is always transient on any homogenous tree with degree greater
than three, see [68]. On finite trees, the simple random walk is always recurrent. Condi-
tioning a Galton–Watson tree to be infinite and assuming that a vertex does not have only
one child with probability one, the simple random walk is always transient as well. There
are many modifications to the simple random walk for achieving recurrence on trees. For
example, one can put a certain drift towards the root of a tree. Then, choosing the drift
properly according to the degree of the tree, we can assure that a random walk starting
at the root will visit the root almost surely, again.

Another option to achieve that the starting point of a random walk will be revisited
again is putting more particles than one onto a tree. From now on, we assume that the
first particle always starts at the root. We imagine that once a random walk particle
started walking to a neighboring vertex, the particle will split into a random number of
new particles. These particles will choose their next step according to a simple random
walk independently of each other. Reaching the next vertex, they will split independently
of each other into a random number of particles while each of these random numbers is
equally distributed. This continues in each step. The number of particles walking around
on the tree is increasing with each time step. Therefore, the probability of the root being
reached is increasing, as well. Such a process is called recurrent if the root is visited
infinitely often by some particles almost surely. The branching behaviour is exactly the
same as that of a Galton–Watson process. The process just described is one example of
a branching Markov chain. The underlying graph, to which the process is adapted is a
tree, the branching evolves according to a Galton–Watson process, and the particles move
according to a simple random walk. For this specific branching Markov chain, it is well
known that the process is transient if and only if the expected reproduction number is less
than or equal to the reciprocal of the spectral radius, see [18]. The spectral radius, one
might say, is a measure of how branched a tree is. The branching Markov chain can vary
in all three aspects of its definition: the underlying graph, how the particles move along
the graph and the branching behaviour.

We could also increase the number of particles walking on the tree differently than
by creating a branching Markov chain. Let us begin by putting on each vertex of the
tree a random and equally distributed number of sleeping particles. Then, the random
walk starts at the root and chooses randomly one of the neighboring vertices. As soon
as the random walk steps on that chosen vertex it will wake up the sleeping particles
and these particles will start moving around independently of each other according to a
simple random walk and wake up particles by itself. Telcs and Wormald firstly studied
this process in [63] under the name ”Egg model”. Later Rick Durrett established the name
”frog model” and refers to the particles as frogs. We notice the difference to the branching
Markov chain: if a vertex is visited for the first time, we can choose the distribution of the
frogs and the branching of the branching Markov chain in a way, such that both branch
into the same number of particles. But if a vertex is revisited, then the branching Markov
chain will continue to produce new particles, while the frog model will not wake up new
frogs. This ends up in more particles moving around in the branching Markov chain than
frogs in the frog model. Moreover, we notice a certain dependence between the frogs,
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as it is important to know whether a vertex was already visited or not. The recurrence
and transience of the frog model on trees have been studied only very recently. For the
homogeneous tree of degree three, it was shown that one sleeping frog per vertex is enough
to make the model recurrent. For higher degrees, we can always choose a distribution of
the number of sleeping frogs, such that the process is recurrent or transient. For the frog
model on Galton–Watson trees, Michelen and Rosenberg have shown very recently that
there are a recurrence and transience phase on Galton–Watson trees where every vertex
has at least two successors.

In the second chapter of this thesis, we fill this gap: we prove that there is a transient
phase for the frog model on Galton–Watson trees, also allowing vertices with one or no
child. The main tool for proving this is the comparison of the frog model to the branching
Markov chain. As mentioned before, in a proper branching Markov chain, more particles
are walking around than frogs in the frog model. Hence, using a proper coupling of
the two processes, the transience of the frog model follows from the transience of the
coupled branching Markov chain. In all the processes of this chapter, the reproduction
rate plays an important role for our results; on one side the reproduction rate of the
underlying Galton–Watson tree, on the other side the reproduction rate of the particles
in the branching Markov chain. We observe in which cases we can guarantee a threshold
for the reproduction rate of the particles in the branching Markov chain, such that the
process is transient and can be coupled with the frog model, implying a transient phase
of the frog model. This chapter is based on joint work with Sebastian Müller.

For the third chapter of the thesis we go from the frog model back to a single simple
random walk without any branching, but we modify it in a different way. Here, we let
the random walk face a random risk of dying at every vertex of the tree. Only after
surviving this risk, the random walk chooses one of its neighbors with equal probability.
Facing the risk of dying at each vertex, we might ask, if the random walk will ever reach
vertices very far away. Therefore, we observe the so-called Lyapunov exponents which
describe the decay of the probability of reaching vertices far away, while prolonging the
distance. There are two different ways of treating the random risk. On one side, we can
freeze the potential risk of dying at each vertex. This is the so-called quenched setting.
On the other side, we can average the risk, which is called annealed. The chapter states
a variational formula giving the annealed Lyapunov exponent as a minimization problem
involving quenched exponents and entropy. The entropy can be understood more or less
as the distance between two probability measures. The first part of this chapter about
the variational formula on the integers is the discrete analogue of a result by Alain-Sol
Sznitman. The second part of this chapter gives its generalization to trees. This chapter
is an extension to my Master thesis under the supervision of Martin Zerner.

In the last part of the thesis we drop having random walks on graphs and look at
the graphs themselves. More precisely, we consider only regular graphs of degree three
and with the property that all vertices look the same in a special way. These graphs are
vertex-transitive and cubic. We have seen already one example for such graphs in Figure
1.2. Looking the same can be imagined like this: we can grab any two vertices of a graph,
a and c in Figure 1.3. Then we exchange them including all connected edges and vertices,
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but the look of the graph does not change. The obtained graph is still a tetrahedron, see
Figure 1.3. Now, we would like to modify the graph such that we cannot find any two

a b

c

d a

c

b

d

b

d

c

a

Figure 1.3: Exchanging vertices a and c in a tetrahedron.

vertices that can be exchanged without changing the look of the graph. We will do this
by coloring the vertices in different colors and postulate that only vertices with the same
color can be exchanged. We will need two or more colors, see Figure 1.4: having one black
vertex, we can still exchange the other three vertices; also another one or two black vertices
would not fix all vertices; we need at least one more color. Now, we could still exchange
the two white vertices. Adding another red vertex, we could exchange the two red vertices.
Therefore, we need four colors. Using this coloring, we cannot exchange any two vertices

b

d

a

c

a b

c

d

a b

c

d

Figure 1.4: The coloring of a tetraeder, such that every vertex is distinguishable.

without changing the coloring of the graph. All vertices are distinguishable. We call
such a graph 4-distinguishable, as four colors suffice to make all vertices distinguishable.
We are mainly interested in 2-distinguishable graphs. For example, coloring a hexagon
as shown in Figure 1.5, we notice that we cannot exchange any two vertices: the black
vertices have either one or no black neighbor or a different number of white neighbors; the
same holds for the white vertices with respect to black vertices. Looking at the graphs,
where we only need two colors to make all vertices distinguishable, we call the set of black
vertices an asymmetrizing set. Such a set can be infinite or finite. If the number of black
vertices is finite, we refer to it as asymmetrizing cost. If it is infinite, we look at the ratio
of the size of the asymmetrizing set to the size of the graph and take its infimum. This
is called asymmetrizing density. We will show for vertex transitive cubic graphs with an
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Figure 1.5: The hexagon is a 2-distinguishable graph.

asymmetrizing set, that the cost is less than five or the density is either zero or strictly
positive between zero and one, unless the graph is especially highly symmetrical and finite.
Moreover, we will present the first known class of graphs with strictly positive density,
namely the SPX(2,n) graphs, see Figure 1.6. This part is based on joint work with Wilfried

Figure 1.6: The SPX(2,1) with an asymmetrizing coloring. In any other quadrangle, we
need to color one vertex black.

Imrich and Thomas Lachmann. The project started in a course for doctoral students by
Wilfried Imrich.

The purpose of this introduction has been to give an overview of the contents of the
thesis for a large audience. For this reason and better readability, many possible citations
were skipped but can be found to a wide extent in the introductory part of each chapter.
The mathematical definitions of the introduced concepts can be found in the preliminaries
and the corresponding chapters.

We continue with basic concepts before closing the introductory part with an overview
of the upcoming chapters.

1.1 Preliminaries

We start by defining a Galton–Watson process. The definitions and results are taken from
[37]. Let X be a nonnegative, integer valued random variable and let pk := P[X = k].
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Moreover, let (X
(n)
i )i,n∈N be independently and identically distributed random variables

with the same distribution as X.

Definition 1.1.1 (Galton–Watson process) The sequence of random variables (Zn)n≥0

defined by Z0 = 1 and

Zn :=

Zn−1∑
i=1

X
(n)
i

for n ∈ N is called a Galton–Watson process with offspring distribution (pk)k∈N.

Recalling the description of the process from the introduction, Zn represents the number

of individuals in generation n and X
(n)
i is the number of children of the ith individual of

generation n. The mean offspring of each individual is

m :=
∑
k≥0

k pk .

We define by q := limn→∞ P[Zn = 0] the probability that the Galton–Watson process will
die out. Then, we have the following important result:

Theorem 1.1.2 We assume that p1 6= 1. Then, the Galton–Watson process (Zn)n≥0 will
die out almost surely, i.e. q = 1, if and only if m ≤ 1.

Galton–Watson trees are the family trees of a Galton–Watson process. The individuals are
represented by vertices. Each vertex is connected by an edge to its ancestor. According
to Theorem 1.1.2, the tree is finite almost surely if and only if m ≤ 1. Trees are special
types of graphs.

Definition 1.1.3 (Graph) A graph is a pair G := (V,E), where V is the set of vertices
and E is the set of edges. An edge is any set {v, w} of two vertices v, w ∈ V .

We will only consider undirected, finite or countable graphs. Most of the time, we denote
the edges by e. The degree of a vertex deg(v), v ∈ V , is defined as the number of neighbors
of v. The neighbors of v are the vertices w ∈ V , where {v, w} is an edge in E. A graph is
called regular, if every vertex has the same degree.

Definition 1.1.4 (Path) A path of length n in a graph is a sequence of edges e1, . . . , en,
with a corresponding sequence of vertices v1, . . . , vn+1, such that ei = {vi, vi+1} for all
i = 1, . . . , n, and all vertices vi are distinct.

We want to mention that we will speak of paths later in the context of Markov chains, as
well. There, following the standard terminology in probability theory, a path is defined as
above but skipping the assumption of distinct vertices. In the context of random walks
the path is the trajectory of a realization of the simple random walk. As we are only
dealing with Markov chains on trees in this thesis, the path defined as above will be called
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shortest path. This is the unique shortest path at the same time. For now, we stick to
the definition as in Definition 1.1.4.

The distance d(v, w) between two vertices v, w ∈ V is then defined as the length of
the shortest path between the two vertices. With the help of paths, we give the precise
definition of trees.

Definition 1.1.5 (Tree) A tree T is a graph, where every two vertices are connected by
a unique path.

We notice that the unique path is also the unique shortest path. This is equivalent to
the fact that a tree does not contain any cycles. We can also choose one vertex of a tree
and label it as the root of the tree. This defines in relation to the root for every vertex
one neighbor closer to the root and none, one or multiple neighbors further away from the
root. We call these vertices the predecessor or ancestor and the successors. An infinite tree
T is called homogeneous of degree k + 1 if all vertices v ∈ T have degree deg(v) = k + 1.
We denote it by Tk+1. If there is a dedicated root in the tree, then we can determine the
successors of each vertex. In Tk+1 every vertex apart from the root has k successors.

The property of having a unique path between any pair of distinct vertices is essential
in studying random walks and the frog model on trees and will be heavily used in the
corresponding chapters.

A random walk is a stochastic process describing the movement of a particle in a defined
state space. These can be a graph, the integers or also the real line. In this thesis we
will only consider random walks in discrete time and with countable state space. Random
walks are a special case of time homogeneous denumerable Markov chains. Especially, the
so-called Markov property will be important in Chapter 2 and 3. We will now give a short
introduction to Markov chains and some of their properties in the form we will need later
on. All definitions and properties with their proofs can be found in [69].

Definition 1.1.6 (Time homogeneous denumerable Markov chain) LetX be a de-
numerable set, the state space, and Z := (Zn)n≥0 a sequence of X-valued random vari-
ables. We call Z a denumerable time homogeneous Markov chain if it has the following
two properties:

1. Markov property: For all i0, . . . , in+1 ∈ X which satisfy P[Z0 = i0, . . . , Zn = in] > 0
it holds

P[Zn+1 = in+1|Zn = in, . . . , Z0 = i0] = P[Zn+1 = in+1|Zn = in] .

2. Time homogeneity: For all n,m ∈ N and i, j ∈ X it holds

P[Zn+1 = j|Zn = i] = P[Zm+1 = j|Zm = i] .

In other words, only the current state is important for predicting the future step of a
Markov chain. Using the time homogeneity we can define p(i, j) := P[Zn+1 = j|Zn = i]
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independent of n, assuming that P[Zn = i] > 0 and we denote by P = (p(i, j))i,j∈X the
transition matrix of the Markov chain. A denumerable time homogeneous Markov chain
is also very often denoted by (X,P ). The initial distribution of the Markov chain is given
by the probability measure ν defined by ν(i) = P[Z0 = i]. Given an initial distribution,
we write Pi[Zn = j] for P[Zn = j|Z0 = i]. This is the probability of reaching j in n steps
after starting in i, and we shorten the notation further to p(n)(i, j) := Pi[Zn = j].

As an example of a Markov chain we present the simple random walk on the integers
and the simple random walk on trees. Actually, Z is isomorphic to the homogeneous tree
T2 and we give only the definition of simple random walk on trees, following [68].

Definition 1.1.7 (Simple random walk) Let T be a tree with root. The simple (sym-
metric) random walk on T is the Markov chain with state space T and transition proba-
bilities

p(x, y) =

{
1

deg(x) if x ∼ y
0 else

where x ∼ y denotes that x and y are neighbors.

This is an example for a Markov chain adapted to a graph. The graph takes the role of
the state space and the transition probabilities follow the neighbor-relation of the graph.
One realization of the movement of a random walk is a trajectory [v0, v1 . . . , vn, . . .] with
vi ∈ T . Hence, we call the distribution according to the random walk moves also the path
measure P, which is given by

Pv0 [v1, v2, . . . , vn] = p(v0, v1)p(v1, v2) · . . . p(vn−1, vn)

for all finite paths. One main point of interest in studying Markov chains is the property
of recurrence and transience.

Definition 1.1.8 (Recurrence, transience) Let x ∈ X be a state of the Markov chain
Z. We call x recurrent if

Px[ ∃n > 0 : Zn = x ] = 1 .

If this is not the case x is called transient.

There are many equivalent definitions of recurrence, for example, a state x is recurrent
if

Px[Zn returns tox infinitely many times ] = 1 .

Moreover, if every state can be reached from any state, either all states are recurrent, or
all states are transient. Such Markov chains are called irreducible. All our Markov chains
will be irreducible. An important tool for studying recurrence and transience is the Green
function, a special generating function.
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Definition 1.1.9 (Green function) Let (X,P ) be a Markov chain. Then, we define its
Green function by

G(x, y|z) :=
∞∑
n=0

p(n)(x, y)zn

for x, y ∈ X and z ∈ C.

We observe that

G(x, y|1) =
∞∑
n=0

p(n)(x, y) = Ex[ number of visits to y]

which is the expected number of visits of the Markov chain starting in x to state y and
Ex denotes the expected value conditioned on the Markov chain starting in x. Using
the Green function we obtain another equivalent definition of recurrence. A state x is
recurrent if G(x, x|1) = ∞, see Theorem 3.4 in [69]. The radius of convergence for the
Green function is given by

r(x, y) :=

(
lim sup

n

(
p(n)(x, y)

) 1
n

)−1

≥ 1 .

On the other hand, r(x, y)−1 describes the exponential decay of (p(n)(x, y))n≥0 for n tending
to infinity. For an irreducible Markov chain, this decay is independent of x and y and we
can define:

Definition 1.1.10 (Spectral radius) Let (X,P ) be an irreducible Markov chain. Then
we call

ρ(P ) := lim sup
n

(
p(n)(x, y)

) 1
n
, x, y ∈ X

the spectral radius of P .

In the case of the simple random walk, where the transition matrix is directly associated
with the underlying tree T , we might also write ρ(T ). Having a spectral radius ρ(T ) < 1
yields that G(x, x|1) converges, and therefore the simple random walk is transient. The
homogeneous tree Td+1 for d ≥ 1 has spectral radius

ρ(Td+1) =
2
√
d

d+ 1
.

Hence, the simple random walk is recurrent for d = 1 (then X is isomorphic to the
integers) and transient for d ≥ 2. More results about the spectral radius of different trees
are presented in Section 2.6.

Combining the two first main stochastic processes – a Galton–Watson process and a
Markov chain – we obtain a branching Markov chain. We follow the definitions in [18]
and state their result about the transience of branching Markov chains. Let (X,P ) be a
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Markov chain as above. Additionally, let µk be the probability that the Galton– Watson
process has k children satisfying∑

k≥1

µk = 1 and m :=
∑
k≥1

kµk <∞ ,

and let µ := (µk)k≥1.

Definition 1.1.11 (Branching Markov chain) A branching Markov chain with con-
stant mean offspring is the triple BMC(X,P, µ) defined as the particle system evolving as
follows: at time 0 we start with one particle in the initial state x ∈ X. Then, the particle
moves according to P to another state of X, generates k particles with probability µk and
dies. These k particles move, independently of each other and the history of the process,
according to P to a next state of X, and branch independently of each other according to
µ and die again. In this way the process continues. In each time step the particles move
and branch independently of each other and independently of the history of the process.

Since we assume that the number of offsprings is bigger than 1, the number of particles
is increasing over time. Constant mean offspring means that in each state the branching of
the particles follows the same rule. This could be modified, such that the branching of the
particles is different in each state of X, but we will only need constant mean offspring. If
the Markov chain (X,P ) is recurrent by itself, we know that also infinitely many particles
return to each state in the BMC. If the Markov chain is transient, then the probability
that a single particle returns to its origin is smaller than one. But having more than
one particle performing the Markov chain, we might ask, in which case we can guarantee
that infinitely many particles reach the starting point of the initial particle. Therefore, let
M(n) be the total number of particles at time n and let x1(n), . . . , xM(n)(n) denote the
position of the particles at time n. Then, we call BMC(X,P, µ) transient if

P

 ∞∑
n=1

M(n)∑
i=1

1{xi(n)=x} =∞

 = 0

for all x ∈ X. Otherwise, we call the branching Markov chain recurrent. The criterion
from [18], which states in which case a branching Markov chain will be transient, will be
one of our key tools.

Theorem 1.1.12 Let BMC(X,P, µ) be a branching Markov chain with an irreducible
Markov chain (X,P ) and constant mean offspring m > 1. Then, the BMC(X,P, µ) is
transient if and only if

m ≤ 1

ρ(P )
.

Let us consider now the simple random walk on a homogeneous tree Td+1 as the Markov
chain in the branching Markov chain. We want to determine how we have to choose the
distribution µ of the branching mechanism such that BMC(X,P, µ) is recurrent. We recall
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that the spectral radius of a homogeneous tree is ρ(Td+1) = (2
√
d) (d+ 1)−1 and that the

random walk is transient if and only if d ≥ 2. Then the BMC is recurrent if and only if
the mean offspring satisfies

m >
d+ 1

2
√
d
.

In the branching Markov chain we have the useful property that all particles branch
and move independently of each other. Now, we modify the model in the following way.
At every state of the Markov chain only once a particle generates new particles according
to a given distribution and the particle itself survives. Future visits of particles to an
already visited state do not generate new particles. This model is called frog model.

Definition 1.1.13 (Frog model) Let X be a graph with a dedicated origin o, P the
path measure of the particles moving on X and η := (ηx)x∈X a sequence of identically
distributed, non-negative and integer-valued random variables. Then, we call the random
interacting particle system evolving in the following way the frog model FM(X,P, η):
there is one awake particle at time 0 at the origin o. On all the other vertices, there are
ηx sleeping particles placed. Now, the awake particle moves to another vertex according
to P and wakes up the sleeping particles at this vertex. These particles start moving
independently of each other according to P. As soon as sleeping particles are encountered,
they wake up and start moving independently according to P.

In a zoomorphic way, it is common to refer to the particles in this model as frogs.
They jump on the graph and wake up sleeping frogs. The frog model is called transient
if, almost surely with respect to the frog distribution and the path measure, only a finite
number of particles return to the origin o.

Stepping away from probability theory but sticking to observing graphs, we will give
some basic definitions related to graphs, which will be helpful for the last chapter of the
thesis. We already know the definition of a graph G and of its degree, see Definition 1.1.3.
If every vertex has the same degree, we call the graph regular. If the graph is 3-regular,
we call it cubic. A graph is connected, if we find for any two vertices v, w ∈ G a path
connecting v, w. Now, we define when two graphs are isomorphic and give the definition of
graph automorphisms. Then, we introduce vertex-transitivity and the coloring of graphs.

Definition 1.1.14 (Isomorphic, automorphism) Let G1 = (V1, E1), G2 = (V2, E2)
be two graphs. The two graphs are isomorphic if there exists a bijection γ : V1 7→ V2 such
that for any two vertices v1, v2 ∈ V1 it holds

v1 ∼ v2 ⇐⇒ γ(v1) ∼ γ(v2) .

The bijection γ is called an isomorphism. An automorphism is an isomorphism from a
graph G to itself.

The set of all automorphisms of a graph G forms a group with respect to concatenation
of mappings. Indeed, the identity v → v for all v ∈ V represents the neutral element. The
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concatenation of two automorphisms is again an automorphism and we can find for each
automorphism an inverse automorphism, such that their concatenation is the identity. We
call the set of all automorphism Aut(G).

Definition 1.1.15 (Vertex-transitivity) A graph G is called vertex-transitive if for
any two vertices v, w ∈ G there is an automorphism γ : V 7→ V such that

γ(v) = w .

We call a graph edge transitive if for any two edges {v, w}, {v′, w′} ∈ E there exists an
automorphism γ : V 7→ V , such that

{γ(v), γ(w)} = {v′, w′} .

We are interested in the question on how many vertices we have to mark as ”different” in
a suitable sense, such that the only automorphism mapping ”different” vertices only onto
”different” vertices is the identity. We call this breaking all automorphisms. This will be
done by assigning colors to the vertices of the graph. In a second step, we consider only
graphs, where two colors are enough to achieve the breaking of all automorphisms, and
determine how many vertices we have to color in the second color.

Definition 1.1.16 (coloring, distinguishing number) A d-coloring is a map c : V 7→
{1, 2, . . . , d}. Each number refers to a color. Then, we define the distinguishing number
D(G) as the smallest d to which there exists a d-coloring such that the only automorphism
mapping vertices onto vertices of the same color is the identity. In this case we say that
the identity is the only color-preserving automorphism.

We call the distinguishing number also the asymmetrizing coloring number. If the
distinguishing number of a graph G is 2, then there exists a 2-coloring such that the only
color-preserving automorphism is the identity. We refer to the colors as black and white.
The two sets of vertices colored in different colors are called asymmetrizing sets. The
smallest possible size of such a set is the asymmetrizing cost of G

1.2 Overview

The second chapter of the thesis concerns the transience of the frog model on Galton–
Watson trees. It is based on the joint work On transience of frogs on Galton-Watson trees
with Sebastian Müller.

The third chapter contains the study of quenched and annealed Lyapunov exponents on
trees. This is based on my paper The relation between quenched and annealed Lyapunov
exponents in random potential on trees, which is published in Stochastic Processes and
their Applications, see [67].

The last part deals with the cost of coloring vertex-transitive cubic graphs. It is based
on the joint work The cost of asymmetrizing vertex-transitive cubic graphs with Wilfried
Imrich and Thomas Lachmann.



Chapter 2

On transience of frogs on
Galton-Watson trees

We consider a random interacting particle system, known as the frog model, on infinite
Galton–Watson trees allowing offspring 0 and 1. The system starts with one awake particle
(frog) at the root of the tree and a random number of sleeping particles at the other
vertices. Awake frogs move according to simple random walk on the tree and as soon
as they encounter sleeping frogs, those will wake up and move independently according
to simple random walk. The frog model is called transient if there are almost surely
only finitely many particles returning to the root. In this chapter we prove a 0–1-law for
transience of the frog model and show the existence of a transient phase for certain classes
of Galton–Watson trees.

2.1 The frog model

The frog model FM(X, η,P) is a random interacting particle system, consisting of three
parts: a graph X with a dedicated root, a (random) configuration (η(x))x∈X of sleeping
frogs on each vertex described by a sequence of independent and identically distributed
nonnegative random variables with common measure η and the path measure P describing
the movement of the particles – also called frogs. We denote the common mean of each
η(x), x ∈ X, by η̄ and assume throughout the entire chapter that

η̄ <∞ .

The model starts by definition with one awake frog at the root o of the graphX and sleeping
particles according to η at the other vertices. The awake frogs move independently on the
graph with respect to P. When a vertex with sleeping frogs is visited for the first time,
the sleeping frogs at this vertex wake up and start to move according to P independently
of the other frogs. The different frog models can vary in the underlying graph, the initial
distribution of the sleeping frogs (deterministic or random) and the path measure of the
awake frogs. Unless it is not specified otherwise, we assume that the frogs move according

15
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to simple random walk, write from now on SRW instead of P, and shorten the notation
from FM(X, η, SRW) to FM(X, η). More precisely, for v, w ∈ X we consider the transition
probabilities p(v, w) = 1

deg(v) if v is a neighbour of w, and 0, otherwise.

In 1999 the frog model was originally introduced as ”egg model” in [63] and later on
Rick Durrett established the name ”frog model”. One main point of interest since its
introduction was studying the recurrence and transience of the frog model. Let FM :=
FMX := SRW × η denote the probability measure on paths of all frogs (following the
dynamics of a SRW) given by choosing an independent and identically distributed initial
frog configuration according to η on the graph X. Moreover, we define the random variable

ν := # of frogs returning to the root ,

which is the number of visits to the root in the frog model. Then, we define recurrence
and transience in the following way:

Definition 2.1.1 Let X be a graph with a dedicated root o. The frog model FM(X, η)
is called transient if

FM[ν <∞] = 1 ,

that is, there are FM-almost surely only finitely many frogs returning to the root. Other-
wise the frog model is called recurrent.

Studying transience and recurrence of the frog model is only interesting when the single
random walk is transient. The first result concerning the question about recurrence was in
the aforementioned article [63], where Telcs and Wormald showed that FM(Zd, δ1, SRW)
is recurrent for all d ∈ N. Later Gantert and Schmidt showed conditions for recurrence for
the frog model with drift on the integers in [19]. This was generalized to higher dimensions
and a drift in the direction of one axis by Döbler and Pfeifroth [15] and Döbler et al. [14].

In 2002, Alves, Machado and Popov [2] studied the frog model on trees with the
modification, that the frogs can die with a certain probability p in each step. Let pc
denote the smallest p such that the frog model survives with positive probability. In [2]
they are proving in which cases there exists a phase transition, that is 0 < pc < 1, on
homogeneous trees and integer lattices. Moreover, they have proven phase transitions
between transience and recurrence with respect to the survival probability. In 2005 there
was the first improvement of the upper bound of pc by Lebensztayn, Machado and Popov
[40]. Recently, Lebensztayn and Utria improved the result again in [42] and proved an
upper bound for pc on biregular trees in [41]. Another modification of the frog model was
considered by Deijfen, Hirscher and Lopes in [10] and by Deijfen and Rosengren in [11].
These two papers work on a two-type frog model performing lazy random walk. They
show that two populations of frogs on Zd can coexist under certain conditions on the path
measure of the frogs. Moreover, the coexistence of the frog model does not depend on the
shape of the initially activated sets and their frog configuration.

The question if FM(Td+1, δ1,SRW) on the homogeneous tree Td+1 is recurrent or tran-
sient remained open for quite some time. In 2017 Hoffmann, Johnson and Junge could
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show in [25], that FM(Td+1, δ1, SRW) is recurrent for d = 2 and transient for d ≥ 5. This
result was extended by Rosenberg [59] showing that the alternating tree T3,2 with offspring
3 and 2 is recurrent. Studying the frog model on trees was continued by modifying the
frog configuration (η(x))x∈Td+1

to pois(µ)-distributed frogs. Hoffmann, Johnson and Junge
proved in [24] the existence of a critical parameter µc, bounded by Cd < µc(d) < C ′d log d
with C,C ′ constants, such that FM(Td+1, pois(µ), SRW) is recurrent for µ > µc, and tran-
sient for µ < µc. Johnson and Junge improved the bounds to 0.24d ≤ µc(d) ≤ 2.28d for
sufficiently large d in [34].

The subtlety of the question of recurrence and transience is also reflected in the result
by Johnson and Rolla [35]. In fact, transience and recurrence are sensitive not just to the
expectation of the frogs but to the entire distribution of the frogs. This is in contrast to
closely related models like branching random walk and activated random walk.

Very recently, Michelen and Rosenberg proved in [47] the existence of a phase transition
between transience and recurrence on Galton–Watson trees. This was done for trees of at
least offspring two. In this chapter we want to answer an open question which appeared
in [47], and extend their result. We will prove the existence of a transient phase for
supercritical Galton–Watson trees with bounded offspring but also allowing offspring 0
and 1. As in the references above we assume that the initial distribution is random
according to a distribution η with finite first moment. We start with showing a 0–1-law
for transience.

Theorem 2.1.2 Let GW be the measure of a Galton–Watson tree and T a realization.
Then it holds

GW[ FM(T, η) is transient |T is infinite] ∈ {0, 1}.

Michelen and Rosenberg recently proved a stronger 0–1-law for recurrence and transience
in [47]. We learned about their proof after writing our first version. While both proofs rely
on the stationarity of the augmented Galton-Watson measure, our proof differs in the con-
nection between the ordinary Galton–Watson measure and the augmented Galton–Watson
measure. In [39] Kosygina and Zerner proved a 0–1-law for transience and recurrence of
the frog model on quasi-transitive graphs.

The main result of the chapter is the existence of a transient phase while allowing
offspring 0 and 1:

Theorem 2.1.3 Let GW be a Galton–Watson measure defined by (pi)i≥0. We assume that
dmax = max{i : pi > 0} < ∞ and set dmin := min{i ≥ 2 : pi > 0}. Then, for any choice
of p0 and p1 there exist some constants cd = cd(p0, p1) and cη = (p0, p1, dmax) such that
for dmin ≥ cd the frog model FM(T, η,SRW) is transient GW-almost surely (conditioned
on T to be infinite) if η̄ < cη.

We recall that η̄ is the expected value of the number of sleeping frogs at each vertex.
The assumption of finite maximum offspring is needed to control the possible number of
attached bushes in a Galton–Watson tree allowing offspring 0. The proof of Theorem 2.1.3
gives bounds on the constants. These bounds can certainly be improved in refining the
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Figure 2.1: The minimal dmin = cd for each p1, such that there exists a transient phase of
the frog model; with p0 = 0. The mesh size for p1 is 0.01.

involved estimates, see Figure 2.1 for some explicit values. We believe that a different
approach or a new perspective is needed to prove the following conjecture.

Conjecture 2.1.4 For every supercritical Galton–Watson measure there exists a tran-
sient regime.

For proving Thorem 2.1.3 we compare the frog model with a branching Markov chain
(BMC). In contrast to the frog model, the particles in the BMC branch at every vertex,
regardless if they visited the vertex already or not. Therefore, there are more particles in
the BMC than in the frog model and we can couple the two models. In this way, transience
of the BMC implies transience of the frog model. The same kind of approach was already
used for example in the proofs of transience in [24] and [34].

While on homogeneous trees the existence of a transient branching Markov chain is
guaranteed, this is no longer true in general for Galton–Watson trees. Namely, allowing
the particle to have 0 and 1 offspring creates stretches and finite bushes in the family tree.
Such trees have a spectral radius equal to 1 and therefore the branching Markov chain
is always recurrent on such trees, see [18]. To tackle this problem, we first modify the
Galton–Watson trees and then adapt the branching Markov chain to get a dominating
process. Firstly, we start with dealing with arbitrary long stretches. This turns out
to be more difficult than expected, since a direct coupling of the frog model and the
branching Markov chain is not possible. For this reason we compare the expected number
of returns to the root of the frog model with the expected number of returns of annother,
appropriate branching Markov chain. Next, we treat the case of appearing bushes and
possible stretches. This part is essentially a rather straightforward generalization of the
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first part. The main idea is to control the bushes and the “backbone” (the tree without
bushes) separately. The backbone is essentially a Galton–Watson tree with stretches and
the bushes just increase the number of frogs per vertex.

The chapter is structured in the following way. In Section 2.2 we give an introduction
to Galton–Watson trees and state some useful structural results. Then, we recall the
definition of a branching Markov chain together with the above stated transience criterion
in Section 2.3. The 0–1-law is proved in Section 2.5. The proof of Theorem 2.1.3 will be
split in three parts. In Subsection 2.5.1 we treat the case of no bushes and no stretches
(p1 = 0, p0 = 0), in Subsection 2.5.2 the case when there are no bushes, but stretches
(p1 > 0, p0 = 0), and in Subsection 2.5.3 the case when we have bushes and possibly also
stretches (p0 > 0).

2.2 Galton–Watson trees

The Galton–Watson tree (GW-tree) is the family tree of a Galton–Watson process. This
latter process starts with one particle at time 0 and at each discrete time step every particle
generates new particles independently of the previous history and the other particles of the
same generation. More formally, let Y be a non-negative integer valued random variable
with pk := P[Y = k] for each k ∈ N and let m :=

∑
k≥0 k pk be the mean of Y . Moreover,

let Y
(n)
i , i, n ∈ N, be independent and identically distributed random variables with the

same distribution as Y . Then, the Galton–Watson process is defined by Z0 := 1 and

Zn :=

Zn−1∑
i=1

Y
(n)
i

for n ≥ 1. The random variable Zn represents the number of particles in the n-th
generation. A GW-process with p0 > 0 will survive with positive probability, that is
P[Zn > 0 for all n > 0] > 0, if and only if m > 1. We introduce T as the random variable
for the family tree of the GW-process and its corresponding measure by GW. Moreover,
we denote by T := T(ω) a fixed realization of T. In the remaining chapter we only con-
sider GW-trees with bounded number of offspring: There exists a dmax ∈ N, such that∑dmax

k=0 pk = 1. For a more detailed introduction to GW-processes and trees we refer to
Chapter 5 in [45].

In the case where p0 > 0 the GW-tree contains a.s. finite bushes. We will distinguish
between two types of vertices.

Definition 2.2.1 We call a vertex v ∈ T of type g if it lies on an infinite geodesic starting
from the root. Otherwise we call vertex v of type b.

If a vertex of type b is the descendant of a type g vertex we call it of type br and speak of
it as the root of the finite bush that consists of its descendants.

We set
f(r) := E

[
rZ
]

=
∑
k≥0

rkpk
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the generating function of the GW-process and q the smallest solution of f(r) = r.

Let us consider the case where p0 > 0. Conditioned on nonextinction the tree T is
distributed as a tree T̄ generated as follows, e.g. see Proposition 5.28 in [45]: We start
with a tree T∗ generated according to the generating function

f∗(s) :=
f(q + (1− q)s)− q

1− q
.

This tree will serve as the backbone of T̄ and looks like a supercritical GW-tree without
leaves. All vertices in this tree are of type g. To each of the vertices of T∗ we attach a
random number of independent copies of a sub-critical GW-tree generated according to

f̃(s) :=
f(qs)

q
.

These are finite bushes consisting of vertices of type b. The resulting tree T̄ has the same
law as T, conditioned on nonextiction and is a multitype GW-tree with vertices of type b
and g. We denote the measure generating T̄ by GWmult .

Let (Zsubn )n≥0 denote the subcritical Galton–Watson process with probability generat-
ing function f̃ and Tsub its family tree. We know that E[Zsub1 ] < 1 and moreover it holds,
e.g., Theorem 2.6.1 in [33] that

lim
n→∞

P[Zsubn > 0]

E[Zsub1 ]n
= c and E

[
|Tsub|

]
<∞ . (2.1)

Now, if we assume that p1 > 0 the resulting GW-tree may contain arbitrary long
stretches. We want to show that this tree generated by GW is equivalent to a tree generated
in three steps where firstly the tree without stretches is generated, secondly the location
of the stretch is determined and thirdly the stretches are inserted. Therefore we define a
new GW-measure using the modified offspring distribution

p̂k :=
pk

1− p1

for k = 0, 2, . . . , N and let GWbg be the measure generating a tree with this distribution.
Let us denote a tree generated by GWbg with Tbg. In the next step every vertex will be
independently labeled with bs with probability p1, which denotes the starting point of a
stretch. If such a vertex has no offspring we attach one vertex, otherwise insert a vertex
with offspring one in between the vertex and its descendants, see Figure 2.2. We write for
such a tree Tp×bg. In the next step, the length of the stretch attached to a vertex with
label bs will be distributed according to L were L is geometrically distributed geo(p1) and
we obtain a tree Ts×p×bg. This yields 1 + geo(p1) distributed vertices with offspring one
in a row. The length of the stretches will be determined for each stretch starting point
independently and identically distributed. We will call this measure of selecting a stretch
point PER and the one of choosing the length of the stretch by ST. We denote by Ts×p×bg
the tree constructed in the three steps according to ST×PER×GWbg. The resulting tree
has the same distribution as the tree constructed as follows: We start with a root and
proceed inductively. Every new vertex
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Tbg
Tp×bg

bsbs

Ts×p×bg

bsbs

Figure 2.2: Realizations of Ts×p×bg by ST× PER× GWbg step by step.

• has 0 descendants (new vertices) with probability p̂0(1− p1) = p0,

• has k ≥ 2 descendants with probability p̂k(1− p1) = pk,

• is the starting point of a stretch with length ` + 1 and the end of the stretch has
k = 0, 2, . . . , N descendants with probability p1p

`
1(1− p1)p̂k = p1p

l
1pk.

Moreover, it holds for any finite tree T, that GW(T′) = ST×PER×GWbg(T′′) where T′ and
T′′ are GW-trees starting with T. Therefore the two measures GW and ST×PER×GWbg

are equivalent on the space of all rooted locally finite trees.

2.3 Branching Markov chain

One method for proving transience of the frog model relies on the comparison of the frog
model to a branching Markov chain (BMC). This is a labelled Galton–Watson process
or tree-indexed Markov chain, [4], where the labels correspond to the position of the
particles. In our setting the particles will move on a tree T according to the transition
operator P = (p(v, w))v,w∈T of a simple random walk (SRW). We note p(n)(v, w) for the
n-step probabilities. If T is connected, the SRW is irreducible and the spectral radius

ρ(P ) := lim sup
n→∞

(
p(n)(v, w)

) 1
n
, v, w ∈ T

is well-defined and takes values in (0, 1].

We add the branching mechanism that in every vertex v ∈ T a particle arriving at
v branches according to a branching distribution µ(v); i.e. each µ(v) is a measure on N.
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We denote by µ the whole sequence (µ(v))v∈T . The expected value of each branching
distribution is

µ̄(v) =
∑
k∈N

kµk(v)

for all v ∈ T where µk(v) is the probability that a particle jumping in v branches into
k ∈ N particles. We set BMC(T, P, µ) for this branching Markov chain.

Similarly to the frog model, the BMC is called transient if the root will be visited almost
surely only by finitely many particles. Otherwise it is called recurrent. A particular case
of the transience criterion for BMC given in [18] is the following.

Theorem 2.3.1 Let T be a locally finite tree and P the transition of the SRW on T . We
assume that all branching distributions µ(v), v ∈ T , have the same mean µ̄ > 1. Then the
BMC(T, P, µ) is transient if and only if

µ̄ ≤ 1

ρ(P )
.

2.4 0–1-law for transience

Before proving the existence of a transient phase for the frog model we want to show
that the existence of a transient phase does not depend on the specific realization of the
GW-tree. In other words, we show that the frog model is either transient for GW-almost
all infinite trees or recurrent for GW-almost all infinite trees.

The proof of this 0–1-law, Theorem 2.1.2, relies on the concept of the environment
viewed by the particle. We prove that the events of transience and recurrence are invariant
under re-rooting and hence the 0–1-law follows from the ergodicity of the augmented GW-
measure.

The augmented Galton–Watson measure, denoted by AGW, is a stationary version
of the usual Galton–Watson measure. This measure is defined just like GW except that
the number of children of the root has the law of Y + 1; i.e. the root has k + 1 children
with probability pk. The measure AGW can also be constructed as follows: choose two
independent copies T1 and T2 with roots o1 and o2 according to GW and connect the two
roots by one edge to obtain the tree T with the root o1. We write T = T1 •−• T2.

We consider the Markov chain on the state space of rooted trees. If we change the
root of a tree T to a vertex v ∈ T , we denote the new rooted tree by MoveRoot(T, v). We
define a Markov chain on the space of rooted trees as:

pSRW((T, v), (T ′, w)) =

{
1

deg(v) , if v ∼ w and (T ′, w) = MoveRoot(T,w),

0, otherwise.

By Theorem 3.1 and Theorem 8.1 in [44] it holds that this Markov chain with transition
probabilities pSRW and the initial distribution AGW is stationary and ergodic conditioned
on non-extinction of the Galton–Watson tree.
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Lemma 2.4.1 The events of transience and recurrence of the frog model are invariant
under changing the root of the underlying rooted tree T = (T, o), i.e. FM(T, η) is transient
if and only if FM(MoveRoot(T, v), η) is transient for some (all) v ∈ T .

Proof As the case of finite trees is trivial we consider an infinite rooted tree (T, o) and
let v ∼ o. We proof that transience of (T, o) implies transience of (T, v) by assuming the
opposite. If FM(MoveRoot((T, v), η) is recurrent, then there exists some k ∈ N such that
with positive probability infinitely many frogs visit v conditioned on η(o) = k. In the
frog model FM((T, o), η) conditioned on η(v) = k, the starting frog in o jumps to v with
positive probability. Again with positive probability at the second step all frogs awaken
in v jump back to o while the frog that came from o is assumed to stay in v for one time
step. Note that this has no influence on transience or recurrence of the process. This
recreates the same initial configuration of FM((T, v), η) conditioned on η(o) = k with the
difference that more frogs are already woken up. By assumption in this process infinitely
many particles visit v with positive probability, and hence, by the Borel–Cantelli Lemma,
also o is visited infinitely many times with positive probability. A contradiction. The
claim for arbitrary v now follows by induction and connectedness of the tree. �

Proof (Theorem 2.1.2) By the ergodicity of the Markov chain with transition proba-
bilities pSRW and Lemma 2.4.1, it holds that

AGW[FM(T, η) transient |T infinite] ∈ {0, 1} .

We prove first that
GW[FM(T, η) is transient] > 0

implies
AGW[FM(T, η) transient] > 0 .

Let T1 be a realization on which the frog model is transient. Then, there exists some ball
B around the root o1 such that no frog awaken outside this ball B will visit the origin o1.
Let T2 be an independent realization according to GW and let T := T1 •−• T2.

In the frog model on (T, o1) the starting frog jumps into T1 at time n = 1 with pos-
itive probability. Now, since every frog is transient, with positive probability all frogs
in the set B that are woken up will never cross the additional edge (o1, o2) and we ob-
tain that AGW[FM(T, η) transient] > 0. We write AGW∞[·] := AGW[· |T infinite] and
define GW∞ similarly. The 0–1-law gives that AGW∞[FM(T, η) transient] = 0 implies
GW∞[FM(T, η) transient] = 0.

It remains to show that

GW∞[FM(T, η) recurrent] > 0

implies that
AGW∞[FM(T, η) recurrent] > 0 .

Let T1 and T2 be two recurrent realizations of GW∞ and let T := T1 •−• T2. Each copy
Ti, i ∈ {1, 2}, is recurrent with positive probability. Hence, we have to verify that the
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possibility that frogs can change from one Ti to the other does not change this property.
Let us say that every frog originally in T1 wears a red T-shirt and every frog in T2 wears
a blue T-shirt. Now, every frog that jumps from o1 to o2 leaves its red T-shirt in a stack
in o1. In the same way every frog leaving o1 to o2 leaves its blue T-shirt in a stack in o2.
A frog arriving from o1 to o2 takes a blue T-shirt from the stack. If the stack is empty,
the frog “creates” a new blue shirt. We proceed similarly for the frogs that arrive in o1

coming from o2. The frog model FM(T, η) starts with one awoken frog in a red T-shirt in
o1. Once a frog visits o2, the blue frog model FM(T2, η) is started and a red shirt is left
in o1. Conditioned on the event that FM(T2, η) is recurrent a blue frog will eventually
jump from o2 to o1 and put on the red shirt. In this way, every red shirt is finally put
on and the distribution of the red frogs in FM(T, η) equals the distribution of the frogs
in FM(T1, η) with possible additional frogs. In other words, FM(T, η) is recurrent with
positive probability.

Finally, we can conclude

GW[FM(T, η) is transient |T is infinite] ∈ {0, 1} . �

2.5 Transience of the frog model

2.5.1 No bushes, no stretches

We start with considering GW-trees T with p0 + p1 = 0. By Lemma 2.6.5 we know that
ρ(T) < 1 and hence Theorem 2.3.1 guarantees a transient phase for BMC on such GW-
trees T. Coupling the frog model with an appropriate branching Markov chain implies a
transient phase for the frog model.

Lemma 2.5.1 Consider a Galton–Watson measure GW with p0 + p1 = 0 and m > 1.
Then, for GW-almost all trees T the frog model with η distributed number of frogs per
vertex is transient if mean η̄ ≤ d+1

2
√
d
− 1 where d := min{k : pk > 0}.

Proof The proof relies on the fact that the BMC(T, P, µ), where µ(v) fulfills µk(v) =
P[η(v) + 1 = k] for each k ≥ 1 and v ∈ T, stochastically dominates the frog model. We
use a coupling of the frog model with a BMC such that at most as many frogs (in the frog
model) as particles (in the BMC) visit the root. More precisely, in both models we start
with one frog, respectively particle, at the root and couple them. A particle of the BMC
that is coupled to a frog x in the frog model is denoted by x′. The “additional” particles
in the BMC, in the meaning that they have no counterpart in the frog model, will move
and branch without having any influence on the coupling. Let (fv)v∈T be a realization of
the sleeping frogs. If a first coupled particle arrives at v it branches into fv + 1 particles.
The awakened frogs and newly created particles are coupled. If more than one coupled
particle arrives at v for the first time at the same moment, we choose (randomly) one of
these, let it have fv +1 offspring and couple the resulting particles with the frogs as above.
The offspring of the other particles (those that are coupled to the remaining frogs arriving
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at v) are chosen i.i.d. according to µ(v) and one of them (randomly chosen) is coupled
to each corresponding frog. Similarly, if a vertex v ∈ T will be visited a second time by
a frog, no new frogs will wake up but the particle will branch again into a random µ(v)
distributed number of particles and we couple the frog arriving at v with one (randomly
chosen) of the particles. In this way every awake frog is coupled with a particle of the
BMC. Hence if the BMC is transient, then also the frog model is transient. The mean
offspring µ̄ of BMC(T, P, µ) is constant

µ̄ := µ̄(v) = E[η(v)] + 1 = η̄ + 1

for any v ∈ T as η(v) are independent and identically distributed. Using Theorem 2.3.1 it
follows that the BMC is transient if and only if

η̄ + 1 ≤ 1

ρ(T)
.

By Lemma 2.6.5 it holds that ρ(T) = ρ(Td+1) = 2
√
d

d+1 , where d := min{k : pk > 0} and
Td+1 is the homogeneous degree with offspring d. Hence, FM(T, η) is transient if we choose
η such that it holds

η̄ ≤ 1

ρ(T)
− 1 .

�

Throughout this section, we shall make frequent use of several known results which we
have assembled in Section 2.6 below in the form of an appendix.

2.5.2 No bushes, but stretches

In the case p0 + p1 > 0 a direct coupling as in the proof of Lemma 2.5.1 does not allow to
prove transience since every non-trivial BMC is recurrent. This is due to the existence of
bushes or stretches in the Galton–Watson tree and the fact that the spectral radius of such
trees is a.s. equal to 1, see Lemma 2.6.5. We will start with dealing with stretches and
then continue with treating bushes and stretches at the same time. The case of stretches
uses a different method than in Lemma 2.5.1. We modify the model, such that we wake
up all frogs in a stretch, if the beginning of a stretch is visited for the first time. The
awoken frogs are placed according to the first exit measures (of a SRW) at the ends of this
stretch. Moreover we send every frog entering a stretch immediately to one of the ends
of the stretch; again according to the exit measures. This makes it possible to consider
the stretch as one vertex. However, the original length of the stretch is important for the
path measure. We treat the path measure by introducing two step probabilities. Since a
direct coupling between the frog model and a BMC is no longer possible, we compare the
expected number of returns to the root of the frog model with those in a suitable, different
BMC.

Proposition 2.5.2 Consider a Galton–Watson measure GW with 0 < p1 < 1, p0 = 0 and
mean m > 1. We assume that dmax = max{i : pi > 0} < ∞ and set dmin := min{i ≥ 2 :
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pi > 0}. Then, for any choice of p1 there exist constants cd = cd(p1) and cη = (cd, dmax)
such that for dmin > cd the frog model FM(T, η,SRW) is transient GW-almost surely
(conditioned on T to be infinite) if η̄ < cη.

Proof Let T be an infinite realization of GW. As 0 < p1 < 1 we can consider T constructed
according to ST×PER×GWbg, see Section 2.2. Using this construction we label its vertices
in the following way, see also Figure 2.3:

• label bs: a vertex of degree 2 with a mother vertex of degree strictly larger than 2;

• label es: a vertex of degree 2 with a child of degree strictly larger than 2;

• label s: a vertex of degree 2 with all two neighbours of degree 2;

• label n: a vertex of degree higher than 2.

These labels help us to identify the stretches and their starting and end points. More
precisely, a stretch is a path [v1, . . . , vn] where v1 has label bs and vn has label es and
all vertices vi, i ∈ {2, . . . , n − 1}, are labeled with s. As mentioned above a BMC on a
GW-tree with 0 < p1 < 1 would a.s. be recurrent. To find a dominating BMC, which has
a transient phase, we consider two modified state spaces T′ and T′N .

Construction of a dominating frog model FM′ on T and T′

We modify the frog model in the following way. Frogs in the new FM′ behave as in FM on
vertices that are not in stretches. Once a frog enters a stretch we add more particles in the
following way. Let [v1, . . . , v`] be a stretch of length ` = `v1 and u the mother vertex of v1

and w the child of v`, see Figure 2.3. Here, v1 is the first vertex in a stretch, i.e. a vertex
with label bs. Now, if a first frog jumps on v1, all frogs from the stretch are activated and
placed on u and v, respectively, according to their exit measures. For any later visit any
frog entering the stretch is immediately placed on u or v according to the exit measure
of the stretch. The exit measures are solutions of a ruin problem. Similar to the proof of
Lemma 2.5.1, we can couple FM and FM′ such that

ν 4 ν ′

where ν ′ is the number of visits to the root in FM′ and conclude that transience of FM′

implies transience of FM.

Concerning the stretches, in the definition of FM′ only their “exit measures” play a
role. The model FM′ can therefore live on the tree T′ but has to incorporate the length of
each stretch. The modified frog model then evolves on a new state space T′, constructed
as follows: Let [v1, . . . , v`] ⊂ T be a stretch and w ∈ T the child of vl. Then, we merge the
stretch into the vertex v1 (with label bs). Hence, there is a single vertex of degree 2 left in
between vertices with higher degree, see Figure 2.3. We identify each vertex v′ ∈ T′ with
its corresponding vertex v ∈ T due to this construction. We can distinguish the vertices
of T′ into Vn := {v′ ∈ T′ | v′with label n} and Vs := {v′ ∈ T′ | v′with label bs}. This
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Figure 2.3: A stretch [v1, . . . , v`] and its transformation to one vertex v′1 in T′.

modified state space T′ corresponds to the first two stages, namely PER × GWbg, in the
construction of ST×PER×GWbg. In other words, it has the same law as Tp×bg. Moreover,
the third step, i.e. ST, in the construction of the measure is encoded in the length of each
stretch.

We introduce the following quantities. Let ν ′(w′) be the number of visits to w′ and
ν ′n(w′) the number of particles in w′ at time n. Then, for a fixed realization T′ let ET′

v′ [ν(w′)]
be the expected number of visits to w′ ∈ T′, when the frog started in v′ ∈ T′. We also
denote this as

mT′

FM′(v
′, w′) := ET′

v′ [ν(w′)].

The expected number mT′

FM′
(v′, w′) depends on the state space T′ and we can look at the

expected value

mST
FM′(v

′, w′) := EST[mT′

FM′(v
′, w′)]

with respect to ST for v′, w′ ∈ T′. Note here, that the measure ST has no impact on the
underlying tree but only on the number of frogs and the exit measure from the stretches.
Moreover, it holds that

mST
FM′(o

′, o′) <∞ (2.2)
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implies

mT′

FM′(o
′, o′) <∞. (2.3)

Construction of dominating BMC′ on T′

In the next step we are going to define a branching Markov chain BMC′ on T′ such that

E[νBMC′ ] <∞ ⇒ EFM′ [ν
′] <∞ , (2.4)

where νBMC′ is the number of returns to the root of the BMC′.

We recall that the length L of a stretch in the original tree T is geometrically dis-
tributed; L ∼ geo(p1). Let Lv, v ∈ T, denote this random stretch attached to a vertex v
with label bs. The presence of arbitrarily long stretches prevents the existence of transient
BMC on T, see Lemma 2.6.4. For this reason, let N ∈ N (to be chosen later) and define the
tree TN as a copy of T where each stretch of length larger than N is replaced by a stretch
of length N . We define a BMC, called BMCN , on TN , with driving measure SRW and the
offspring distribution µ fulfills that µk(v) = P[η(v) + 1 = k] for each v ∈ TN . The BMCN

defined on TN defines naturally a branching Markov chain BMC ′N on T′, where once a
particle enters a stretch, it produces offspring particles according to the exit-measures.
This quantity is given by F`+1(1, 0|µ) and F`+1(1, `+ 1|µ) defined as in Lemma 2.6.1 and
2.6.7, where ` is the length of the stretch. The aim is now to find some N such that BMC′N
is still transient and dominates (in ST-expectation) the frog model FM′.

In order to find such a domination we compare the mean number of returns “path-
wise” in FM′ and BMC′N . More precisely, we want to express the quantity ν ′n(o′) in terms
of frogs following a specific path. Let p′ be a path starting and ending at o′. A path of
length n ∈ N looks like p′ = [o′, p′1, p

′
2, . . . , p

′
n−1, o

′] with p′i ∈ T′ and p′i ∼ p′i+1 for each i.
Let θk denote the k-th cut of a path, that is θk(p′) := [p′k, . . . , o

′]. We call a frog sleeping
at some pi, 1 ≤ i ≤ n − 1, activated by frogs following the path p′ (affbp′), if inductively
the frog was activated from a frog in pi−1 that was activated by frogs following the path
p′ or started at p1 and followed p′. We denote by affbp′(v

′, i) for the event that the ith
frog in v′ is affbp′ . Additionally, for i, j ∈ N let Sj(v

′, i) denote the position of the i-th
frog initially placed at v′ ∈ T′ after j time steps after waking up. (Here we assume an
arbitrary enumeration of the frogs at each vertex.) Using this, ν ′n(o′) is equal to∣∣∣∣∣∣

⋃
|p′|=n

⋃
p′i∈p′

⋃
r∈N

A(p′i, r, p)

∣∣∣∣∣∣ .
where

A(p′i, r, p
′) :=

{
∃k : {Sj(p′i, r)}n−kj=0 = θk(p′) and affbp′(p

′
i, r)

}
.

Now, we can rewrite

mST
FM′(o

′, o′) = EST

[
ET′
o′
[
ν ′
]]

= EST

[
ET′
o′

[ ∞∑
n=1

ν ′n(o′)

]]
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=

∞∑
n=1

EST

ET′
o′

[ ∑
|p′|=n

∣∣∣∣{⋃
p′i∈p

⋃
r∈N

A(p′i, r, p
′)

}∣∣∣∣
]

=

∞∑
n=1

∑
|p′|=n

EST

ET′
o′

[ ∣∣∣∣{ ⋃
p′i∈p′

⋃
r∈N

A(p′i, r, p
′)

}∣∣∣∣
] (2.5)

by using the monotone convergence theorem. For a given path p′ the term

ν ′ST(p′) := EST

ET′
o′

[ ∣∣∣∣{ ⋃
p′i∈p′

⋃
r∈N

A(p′i, r, p
′)

}∣∣∣∣
]

equals the expected number of frogs that were activated following the path and that follow
the paths after their activation. In the same way as for the frog process we can define the
expected number of particles νBMC(p′) for a BMC following a path p′. In the remaining
part of the proof we construct a branching Markov chain BMC′ such that

ν ′ST(p′) ≤ E
[
νBMC′(p′)

]
(2.6)

for all paths p′. Transience of the BMC then implies transiences of the frog model. The
paths p′ are concatenations of three different types of vertex sequences. Type 1 is a
sequence that does not see any stretches. A sequence of type 2 traverses a stretch, whereas
a sequence of type 3 visits a stretch but does not traverse it. We will split each path p′ into
these three types and give upper bounds for (2.5) for each type separately. We have to
take into account that multiple visits of the same sequence of vertices are not independent
from each other. Here the frogs face in every visit the same length of a stretch. Hence,
while taking the expectation over the length of the stretches, multiple visits of the same
vertices have to be considered at the same time. Therefore we give upper bounds of (2.5)
for each combination of multiple visits. Then we combine the results for a final upper
bound of a mixed path.

For this purpose we consider for the BMC the mean number of particles created in
stretches in TN . We consider the situation described in Figure 2.3. Let ` be the length
of a stretch generated according to ST. Such a stretch appears in TN with probability
p`−1

1 (1 − p1) if ` < N − 1 and with probability pN−1 if ` = N − 1. We denote by
mT′

BMC′
(p′i, p

′
i+1) the expected number of particles arriving in p′i+1 while starting in p′i.

Again we can look at the expectation with respect to ST

mST
BMC′(p

′
i, p
′
i+1) = EST

[
mT′

BMC′(p
′
i, p
′
i+1)

]
,

where ST impacts only the number of created particles and not the underlying tree. We
define the vertices u and w as absorbing and denote by ηN (u) (resp. ηN (w)) the number
of particles absorbed in u (resp. in w), see also Section 2.6.1.

Only visits of type 1: We assume that p′ = [p′0, p
′
1, p
′
2, . . . , p

′
n−1, p

′
n] only consists of

sequences of type 1. Using the Markov property we can bound

ν ′(p′) ≤
n−1∏
i=0

mST
FM′(p

′
i, p
′
i+1) =

n−1∏
i=0

mST
BMC′(p

′
i, p
′
i+1), (2.7)
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due to the choice of the BMC′, see the paragraph after Equation (2.4).

Multiple visits of a stretch in sequences of type 2: We assume that the path
also has some sequences of type 2, see Figure 2.4. An important observation is that every
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Figure 2.4: A typical path with a sequence of type 2.

path from o′ to o′ that traverses a stretch in one direction has to traverse it in the other
direction as well. Hence, such a path in T′ of length n has for example the form

p′ = [o′, p′1, . . . , p
′
i, u
′︸ ︷︷ ︸

degree≥3

, v′, w′, p′i+4, . . . , p
′
j , w

′︸ ︷︷ ︸
degree≥3

, v′, u′, p′j+4, . . . , p
′
n−1︸ ︷︷ ︸

degree≥3

, o′],

where v′ has degree 2. We start with the case that a sequence of vertices is visited only
twice. The case of more visits will be an immediate consequence.

In order to bound the expected number of frogs along this path we define mT′

FM′
(u′ →

v′ → w′) as the expected number of frogs that follow the path [u′, v′, w′] in FM′ starting
with one frog in u′. The modified frog model FM′ is defined such that all frogs in the
stretch are woken up and distributed at the end of the stretches if the starting vertex of
the stretch is visited. In the case of traversing a stretch, this is dominated by the following
modification: if the frog jumps on v1 from u the first time we start a BMC in v1 with
offspring distribution η + 1 and absorbing states u and w. The mean number of frogs
absorbed in u and w can be calculated using Lemmata 2.6.1 and 2.6.7. This dominates
FM′ since we consider a path traversing the stretch. This means that all vertices in the
stretch were visited in the new model, since some particles arrived in w′ and we can couple
the sleeping frogs in FM′ with the created particles in the stretch. We conclude by Lemma
2.6.1 that

mT′

FM′(u
′ → v′ → w′) ≤ 1

deg(u′)
F`+1(1, `+ 1 | η̄ + 1), (2.8)

where ` = `v′ + 1 is the length of the total stretch (including the initial point of the
stretch). To take into account that at the second traversal of the stretch no sleeping frogs
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are left in the stretch we define mT′,2+
FM′

(w′ → v′ → u′) as the expected number of particles
following [w′, v′, u′] with no frogs between w′ und u′. Hence,

mT′

FM′(u
′ → v′ → w′)mT′,2+

FM′
(w′ → v′ → u′) ≤ 1

deg(u′)
F`+1(1, `+ 1 | η̄ + 1)

1

deg(w′)

1

`+ 1

≤ 1

deg(u′)
F`+1(1, `+ 1 | η̄ + 1)2 1

deg(w′)
.

Note that the last term equals the mean number of particles in BMC′` along the path
[u′, v′, w′, v′, u′]. Let ϕ such that (η̄ + 1)−1 = cosϕ, then the function

f(`) = F`(1, ` | µ̄)
1

`
=

sinϕ

` sin `ϕ

is monotone decreasing in `. We can now integrate with respect to ST to obtain:

EST

[
mT′

FM′(u
′ → v′ → w′)mT′,2+

FM′
(w′ → v′ → u′)

∣∣∣ L ≤ N]
≤ 1

deg(u′)
EST

[
FL+1(1, L+ 1 | η̄ + 1)2

∣∣∣ L ≤ N] 1

deg(w′)

and

EST

[
mT′

FM′(u
′ → v′ → w′)mT′,2+

FM′
(w′ → v′ → u′)

∣∣∣ L > N
]

≤ 1

deg(u′)
f(N + 1)

1

deg(w′)

≤ 1

deg(u′)
FN+1 (1, N + 1 | η̄ + 1)2 1

deg(w′)
.

If we have more visits of type 2, there are no new frogs waking up and we have as
transition probability through the stretch 1

`+1 for each visit. In the case of k visits we
obtain

mT′

FM′(u
′ → v′ → w′)mT′,2+

FM′
(w′ → v′ → u′)kmT′,2+

FM′
(u′ → v′ → w′)k−1

=

(
1

deg(u′)

)k
F`+1(1, `+ 1 | η̄ + 1)

(
1

deg(w′)

)k ( 1

`+ 1

)2k−1

≤
(

1

deg(u′)

)k
F`+1(1, `+ 1 | η̄ + 1)2k

(
1

deg(w′)

)k
(2.9)

We notice again that fk(`) := F`(1, ` | η̄+ 1) (1/`)2k−1 is monotone decreasing in ` and we
can integrate with respect to ST in the same manner as above.

Define mST
BMC′

(u′ → v′ → w′) as the expected number of particles that follow the path
[u′, v′, w′] in BMC′ starting with one particle in u′. Using the aforegoing estimate, we

can bound EST[mT′

FM′
(u′ → v′ → w′)mT′,2+

FM′
(w′ → v′ → u′)kmT′,2+

FM′
(u′ → v′ → w′)k−1] by
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EST[mT′

BMC′
(u′, w′)kmT′

BMC′
(w′, u′)k]. Moreover the stretches are independently generated.

We obtain by induction for different sequences of type 2 that:

ν ′(p′) ≤
n−1∏
i=0

mST
BMC′(p

′
i, p
′
i+1). (2.10)

Multiple visits of a stretch in sequences of type 2 and 3: We handle this
situation in three steps. In the first we assume, that a sequence of vertices is only visited
once in the manner of type 3. Secondly, we treat a sequence of a path which visits a
stretch more than once in the manner of type 3. Lastly, we study sequences which are
visited by type 2 and type 3 sequences. There, we have to distinguish between the type
of the first visit of the sequence.

We start with the first part. We assume that the path p of length n contains a sequence
of type 3, that is p′ij = v′,ij ∈ {1, . . . , n}, of degree 2 and pij−1 = pij+1 = u′, see Figure

2.5. This means that the frogs in FM′ did not pass the stretch completely. We call these

u
′

v
′

w
′

1

2

3

4

5

6 7

8

9

10

type 3

type 2

type 1

Figure 2.5: A typical path with sequences of type 1,2 and 3.

parts of the path stretchbits. A typical path p in this case can be for example

p′ = [o′, p′1, . . . , p
′
i1−2︸ ︷︷ ︸

type 1,2

,

type 3︷ ︸︸ ︷
u′, v′, u′, p′i1+2, . . . , p

′
n−1︸ ︷︷ ︸

type 1,2

, o′] .

We define mT′

FM′
(u′ → v′ → u′) as the expected number of frogs that follow the path

[u′, v′, u′] in FM′ starting with one frog in u′. Then

mT′

FM′(u
′ → v′ → u′) ≤ 1

deg(u′)

(
`η̄

2
+

`

`+ 1

)
. (2.11)
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Recall that the distribution of the total stretch length L = `v1 + 1 is exponential:

P(L = `) = p`−1
1 (1− p1), ∀ ` ≥ 1.

Hence, integrating (2.11) with respect to ST yields

mST
FM′(u

′ → v′ → u′) ≤ 1

deg(u′)

∞∑
`=1

(
`η̄

2
+

`

`+ 1

)
p`−1

1 (1− p1)

=
1

deg(u′)

(
η̄

2(1− p1)
+

∞∑
`=1

(
`

`+ 1

)
p`−1

1 (1− p1)

)
.

Let d = min{i ≥ 2 : pi > 0}. A stretch of length ` is equivalent to an unbranched path
of length `+ 1 in Section 2.6.2. As we only allow a maximum stretch length N in case of
BMCN , we obtain at maximum an unbranched path of length N + 1. Then, using Lemma
2.6.5, Theorem 2.6.6, and Lemma 2.6.3 the spectral radius ρ(PN+1) on the absorbing
stretch piece of length N + 1 satisfies

ρ(PN+1) < cos

arccos
(

2
√
d

d+1

)
N + 1

 . (2.12)

Furthermore,

mT′

BMC′(u
′ → v′ → u′) =

1

deg(u′)
F`+1(1, 0|µ̄) (2.13)

We now choose

µ̄ = cos

arccos
(

2
√
d

d+1

)
N + 1

− ε

−1

for some sufficiently small ε > 0 and define

g(`) = F` (1, 0|µ̄) <∞.

Observe here that, since µ̄ < 1
ρ(T′) , the BMC′ with mean offspring µ̄ is not only transient

but it also holds that EBMC′ [ν] < ∞, see Chapter 5.C in [69]. Now, integrating equation
(2.13) with respect to ST yields

mST
BMC′(u

′ → v′ → u′) =
1

deg(u′)

N−1∑
`=1

g(`+ 1)p`−1
1 (1− p1) + g(N + 1)pN−1

1

We now look for η̄ sufficiently small and N sufficiently large such that(
η̄

2

(
1

1− p1

)
+

∞∑
`=1

(
`

`+ 1

)
p`−1

1 (1− p1)

)
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<

N−1∑
`=1

g(`+ 1)p`−1
1 (1− p1) + g(N + 1)pN−1

1 . (2.14)

In order to achieve this last inequality, it suffices to find an N such that

∞∑
`=1

(
`

`+ 1

)
p`−1

1 (1− p1) <

N−1∑
`=1

g(`+ 1)p`−1
1 (1− p1) + g(N + 1)pN−1

1 . (2.15)

By Lemma 2.6.8 we can bound the right hand side from below by

N−1∑
`=1

`

`+ 1

(
1 +

(1 + 2`)ϕ2

3!

)
p`−1

1 (1− p1) + g(N + 1)pN1

where ϕ = arccos(1/µ̄). This reduces (2.15) to:

∞∑
`=N

(
`

`+ 1

)
p`−1

1 (1− p1) <
N−1∑
`=1

`

`+ 1

(
(1 + 2`)ϕ2

3!

)
p`−1

1 (1− p1) + g(N + 1)pN−1
1 .

(2.16)

The left hand side of (2.16) decays exponentially in N while the first part of the right
hand side has polynomial decay in N having the choice of ϕ in mind. Therefore, there
exists some N such that (2.16) is verified.

We continue with the second part, where a sequence of the path faces multiple type
3 visits. If a frog makes a second type 3 visit to an already woken up stretch, this frog
encounters no new frogs and returns to u′ almost surely. This follows for every other
visit of type 3. Hence, conditioning the frog upon not making another type 3 visit to a
stretch has no influence on the possible frogs returning to the root and consequently on
transience and recurrence. We will call this model FM′′. But we notice that the path
measure changes when we change to FM′′:

P[u′ → y′ | no visit to v′] =
1

deg(u′)− 1

where y′ is any neighbour of u′ apart from v′. Since the path measure of BMCN is
unchanged we have to compare

mT′

BMC′(u
′, y′) =

µ̄

deg(u′)

and

mT′

FM′′(u
′, y′) =

1

deg(u′)− 1

as u′ was visited already by assumption and obtain

1

deg(u′)− 1
≤ µ̄

deg(u′)
⇐⇒ deg(u′)

deg(u′)− 1
≤ µ̄ .
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We conclude for the mean offspring µ̄ of BMCN that a necessary condition for our ma-
jorization is

dmin + 1

dmin
≤ µ̄ (2.17)

with dmin := min{k ≥ 2 : pk > 0} is a necessary condition for our majorization. Using the
new model FM′′ we are left with only the first visit of type 3 to the stretch. As we have
seen before, there is a N such that (2.16) holds.

Now, we will treat the third part, where we allow multiple visits of type 2 and 3 to
a sequence of vertices. We want to erase again multiple visits of type 3 of a stretch and
assume, that (2.17) holds, such that the BMCN dominates the conditioned path. Then
it remains to deal with either a first visit of type 2 or a first visit of type 3 and multiple
visits of type 2. If the first visit is of type 2, we can bound the frog model by using (2.9)
additionally to (2.17).

If the first visit is of type 3, and we have apart from other visits of type 3 (which will
be erased and bounded using (2.17)) k visits and returns of type 2, we obtain

EST

[
mT′

FM′(u
′ → v′ → u′)mT′,2+

FM′
(w′ → v′ → u′)kmT′,2+

FM′
(u′ → v′ → w′)k

]
=

(
1

deg(u′)

)k+1

EST

[(
`η̄

2
+

(
`

`+ 1

))(
1

`+ 1

)2k
](

1

deg(w′)

)k
.

For the upcoming equations we omit the factors of the transitions probabilities from u′ to
v′ and from w′ to v′. These probabilities are the same for the BMC and do not play a role
for the comparison with the frog model. Then we get:

∞∑
`=1

`η̄

2

(
1

`+ 1

)2k

p`−1
1 (1− p1) +

∞∑
`=1

(
`

`+ 1

)(
1

`+ 1

)2k

p`−1
1 (1− p1)

≤ η̄

2

(
1− p1

p2
1

) ∞∑
`=1

p`+1
1

(`+ 1)2k−1
+

∞∑
`=1

(
`

`+ 1

)(
1

`+ 1

)2k

p`1(1− p1). (2.18)

For the BMC we have the following identities as before:

EST

[
mT′

BMC′(u
′ → v′ → u′)mT′

BMC′(u
′ → v′ → w′)kmT′

BMC′(w
′ → v′ → u′)k

]
=

(
1

deg(u′)

)k+1

EST

[
F`+1(1, 0|µ̄)2F`+1(`, `+ 1|µ̄)2k

]( 1

deg(w′)

)k
By Lemma 2.6.8 (and again omitting the transitions probabilities) this is greater or equal
to

N−1∑
`=1

`

`+ 1

(
1

`+ 1

)2k (
1 +

(1 + 2`)ϕ2

3!

)
p`−1

1 (1− p1)
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+
N

N + 1

(
1

N + 1

)2k (
1 +

(1 + 2N)ϕ2

3!

)
pN1 . (2.19)

We want to show that we can choose for each p1 and N an η such that the following holds
for all k ≥ 1:

η̄

2

(
1− p1

p2
1

)(N−1∑
`=1

p`+1
1

(`+ 1)2k−1
+

∞∑
`=N

p`+1
1

(`+ 1)2k−1

)
(2.20)

+
N−1∑
`=1

(
`

`+ 1

)(
1

`+ 1

)2k

p`−1
1 (1− p1) (2.21)

+

∞∑
`=N

(
`

`+ 1

)(
1

`+ 1

)2k

p`−1
1 (1− p1) (2.22)

≤
N−1∑
`=1

`

`+ 1

(
1

`+ 1

)2k

p`−1
1 (1− p1) (2.23)

+

N−1∑
`=1

`

`+ 1

(
1

`+ 1

)2k ((1 + 2`)ϕ2

3!

)
p`−1

1 (1− p1) (2.24)

+
N

N + 1

(
1

N + 1

)2k

pN−1
1 +

N

N + 1

(
1

N + 1

)2k ((1 + 2N)ϕ2

3!

)
pN−1

1 . (2.25)

The second part of the left hand side, (2.21), is equal to the first part, (2.23), on the right
hand side. Next we compare the third part of the left, (2.22), to the third part on the

right, (2.25). We notice that the function
(

`
`+1

)(
1
`+1

)2k
is monotonously decreasing in `

and thus

∞∑
`=N

(
`

`+ 1

)(
1

`+ 1

)2k

p`−1
1 (1− p1) ≤

(
N

(N + 1)2k+1

) ∞∑
`=N

p`−1
1 (1− p1)

=

(
N

(N + 1)2k+1

)
pN−1

1 .

Now, we consider the remaining term on the left hand side, (2.20), and the second of the
right hand side, (2.24). We start with giving an upper bound for the second sum in (2.20):

∞∑
`=N

p`+1
1

(`+ 1)2k−1
≤
(

1

N + 1

)2k−1 ∞∑
`=N−1

p`1
(1− p1)

=

(
1

N + 1

)2k−1 pN−1
1

(1− p1)
.

The second term of the right hand side, (2.24), can be transformed into

N−1∑
`=1

`

`+ 1

(
1

`+ 1

)2k ((1 + 2`)ϕ2

3!

)
p`−1

1 (1− p1)
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≥ 1− p1

p2
1

(
ϕ2

3!(N + 1)2

)N−1∑
l=1

(
2`2

(`+ 1)2

)(
p`+1

1

(`+ 1)2k−1

)

≥ 1− p1

p2
1

(
(arccos(1/µ̄))2

3!(N + 1)2

)
1

2

N−1∑
`=1

(
p`+1

1

(`+ 1)2k−1

)
.

We have that (2.20) < (2.24) if

η̄

2

(
1− p1

p2
1

)(N−1∑
`=1

p`+1
1

(`+ 1)2k−1
+

(
1

N + 1

)2k−1 pN−1
1

(1− p1)

)

≤
(

1− p1

p2
1

)(
(arccos(1/µ̄))2

3!(N + 1)2

)
1

2

N−1∑
`=1

(
p`+1

1

(`+ 1)2k−1

)
.

For all choices of p1 and N ∈ N we can now find η̄ sufficiently small such that the latter
inequality is verified for all k ∈ N.

Summary

We summarize all the conditions on η and µ̄ such that we can find a dominating transient
BMC for a given frog model FM in the case when stretches come up:

1. 1 + η̄ < µ̄;

2. dmin+1
dmin

≤ µ̄;

3. Choosing η such that η̄ is small enough such that there exists a N such that (2.14)
holds;

4. Choosing η such that for given p1 and the previously selected N the inequality (2.20)-
(2.25) holds;

5. µ̄ <

cos
arccos

(
2
√
dmin

dmin+1

)
N+1

−1

.

In other words, for every p1 > 0 there exists some N such that if

dmin + 1

dmin
<

cos
arccos

(
2
√
dmin

dmin+1

)
N + 1

−1

(2.26)

there exists some small η̄ > 0 and some BMC′ with mean offspring larger than 1 such that
E[νBMC′ ] <∞ and

ν ′ST(p′) ≤ E[νBMC′(p′)] (2.27)
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for all paths p′ and GW-a.a. trees T′. Finally, we found that ν ′ < ∞ FM-a.s. for GW-
a.a. trees and hence ν < ∞ FM-a.s. for GW-a.a. trees. The existence of the constant cη
follows from the 0–1-law of transience.

The existence of a transient phase is guaranteed since for all N there exists dmin
fulfilling (2.26) as (2.26) is equal to

N + 1 <
arccos

(
2
√
dmin

dmin+1

)
arccos

(
dmin
dmin+1

)
and the right hand side converges to ∞ for dmin →∞. �

2.5.3 Bushes and possible stretches

It is left to prove the main theorem of this chapter where we allow p0 > 0. The proof starts
with the following modification: Once a frog visits a vertex v ∈ T with bushes attached,
all frogs in the bushes are woken up and placed at v. This is equivalent to changing the
number of frogs in v and conditioning the frogs not to enter the bush. The erasure of the
bushes does not change the transience behaviour of the process. Following this procedure,
we end up with trees with stretches and without bushes and we can then apply the proof
of Proposition 2.5.2.

Proof (Theorem 2.1.3) We assume that p0 > 0 and start with explaining how we re-
move the bushes.

Removing bushes from T

Every infinite GW-tree can be seen as a multitype GW-tree T̄ with types g and b, see
Section 2.2. We denote by T a realization of GW conditioned to be infinite. Moreover
we recall that our GW-tree has bounded offspring: there is a K = dmax < ∞ such that

Y
(n)
i ≤ dmax for all i, n ∈ N. Therefore, every vertex which is part of a geodesic stretch

can have at most K − 1 finite bushes attached.

To start with, we modify the original frog model FM. If a frog visits a vertex v ∈ T with
attached bushes for the first time, then immediately all frogs from the bushes attached to
v wake up and are placed at v. As K + 1 is the maximum degree of the tree, we know
that there are at most K − 1 bushes attached to a vertex of type g. More formally, let
vi, i ∈ {1, . . . , k} and k ≤ K−1, the vertices of type b adjacent to v and let Gvi denote the
random bush starting with root vi ∈ T. Then, there will be η∗(v) :=

∑k
i=1

∑
w∈Gvi

η(w)

frogs in vertex v with attached bushes and η∗(u) := ηu frogs in a vertex of type g with no
attached bushes. The bushes Gvi are i.i.d. distributed like a subcritical GW-process with
generating function f̃ , see Section 2.2, and the expected size of Gvi is finite. Conditioning
the frog model on not entering bushes we obtain different transition probabilities for each
frog. Let v be a vertex with neighboured bushes, v1, . . . , vk, k ≤ K − 1 the attached roots
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of bushes and w1, . . . , wd, d ≤ K + 1− k its neighbours of type g. Then we obtain

P[v → wi| not entering a bush] =
1

d
(2.28)

as new transition probabilities. This coincides with the probability of the first exit towards
a neighbour wi of type g starting in v. The new model actually lives on a new state space
T̂ that arises from T by erasing all bushes, see also Figure 2.6. Then, we identify the frog

finite bush

finite bush

v

y w

T

v̂

ŵ

T̂

Figure 2.6: Construction of T̂ from T by deleting all bushes.

configuration by η∗(v̂) = η∗(v) of the two models on T and T̂ and obtain the new frog
model FM((η∗(v̂))

v̂∈T̂, T̂). We keep here the whole sequence of random variables in the
frog configuration to point out that the random variables are not identically distributed.

We denote by ν the number of visits to the root in FM and by ν̂ the number of
visits to the root in FM((η∗(v̂))

v̂∈T̂, T̂). Coupling the frog configuration at each vertex as

in Lemma 2.5.1 we find for each frog in FM a corresponding frog in FM((η∗(v̂))
v̂∈T̂, T̂).

Using a coupling as in the proof of Lemma 2.5.1 we obtain that

ν̂ � ν. (2.29)

Thus transience of FM((η∗(v̂))
v̂∈T̂, T̂) implies transience of FM.

Construction of a dominating BMC

Removing all bushes, we have to be aware that a sequence of vertices with only one child
of type g will create new stretches, see Figure 2.7. Hence, we need to go on by using
Proposition 2.5.2. But the newly appeared stretches can be unbalanced in the sense that
some vertices were former neighbours to bushes and have the corresponding offspring and
some not. This would inhibit the number of frogs emerging to the ends of the stretch to
be equally distributed. Therefore, we modify the frog model in the following way: a vertex
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v

w

T

v̂

ŵ

T̂

Figure 2.7: Creating a stretch during the modification from T to T̂.

can have an offspring of at most K. Therefore, every vertex which is part of a stretch
could have at most K−1 finite bushes attached. We set η̂(v̂) :=

∑K−1
i=1

∑
ŵ∈Gv̂i

η(ŵ) with

Gv̂i being finite bushes generated according to Tsub for each vertex v̂ ∈ T̂ and notice that
(η̂(v̂))

v̂∈T̂ is a sequence of i.i.d. random variables and we call their common measure η̂.

Then, the model FM((η∗(v̂))
v̂∈T̂, T̂) is dominated by F̂M := FM(T̂, η̂), as there are only

more particles in the new model and we can couple the two processes such that every visit
in FM((η∗(v̂))

v̂∈T̂, T̂) has a corresponding visit in F̂M.

v

w

T
′

Figure 2.8: The modification of the stretch in Figure 2.7 in the step from T̂ to T′.

In the same manner as in Proposition 2.5.2 we want to couple F̂M with a modified
model FM′ doing the same steps as in Proposition 2.5.2: if a frog enters a stretch all frogs
from the stretch are woken up and placed according to their exit measures at the two ends
of the stretch. This results in the modified state space T′ by merging the stretches into
one vertex like in Proposition 2.5.2, see Figure 2.8. As there are

∑K−1
i=1

∑
ŵ∈Gv̂i

η(ŵ) frogs
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placed on each vertex, from a stretch of length `v̂ leave on average

ET′
v′ [Fu′ ] =

`v̂E[G](K − 1)η̄

2
+

`v̂
`v̂ + 1

,

ET′
v′ [Fw′ ] =

`v̂(K − 1)E[G]η̄

2
+

1

`v̂ + 1

frogs to the two ends of the stretch. Here, the length ` of the stretch is distributed
according to geo(p̂1) + 1, where p̂1 is the probability of having only one child of type g.
For the construction of a dominating BMC let again N ∈ N and define the tree T̂N as a
copy of T̂, where each stretch of length larger than N is replaced by a stretch of length N .
On this tree we define again B̂MCN , on T̂N , with driving measure SRW and the offspring
distribution µ is equal to the distribution which fulfills

µk(v̂) = P

K−1∑
i=1

∑
ŵ∈Gŷi

η(ŵ) + 1 = k


for any v̂ ∈ T̂N . Its mean offspring is denoted by µ̄. We recall that T′ is the tree, where the
stretches of maximum length N are compressed to a single vertex (similar to Proposition

2.5.2). Then B̂MCN defines naturally a BMC′ = B̂MC
′
N on T′: Once a particle enters a

former stretch, it produces offspring particles according to the exit-measures.

To find an N ∈ N such that BMC′ is dominating for FM′ we proceed like in the proof
of Proposition 2.5.2 with the difference that in average to both sides of a geodesic stretch
of length ` exit

`E[G](K − 1)η̄

2

frogs instead of η̄`
2 frogs. The frog which is waking up the stretch leaves the stretch to

each side with the same probability as before. Moreover the length of the stretch is now
distributed according to geo(p̂1) + 1 and the probability that a vertex is dedicated as a
starting vertex of a stretch is ber(p̂1)-distributed, as well.

The BMC′ has to fulfill the transience criterion Theorem 2.3.1, as well. We notice,
that T̂N corresponds to the tree TN from the construction of the dominating Branching
Markov chain in the proof of Proposition 2.5.2 and

ρ(T̂N ) =

cos
arccos

(
2
√
dmin

dmin+1

)
N + 1


with dmin = min{k ≥ 2 : pk > 0}. All together, using the same line of arguments as in
Proposition 2.5.2, we have the following conditions on η and µ̄ such that there exists a
dominating BMC′:

1. 1 + E[G]η̄(K − 1) < µ̄;
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2. dmin+1
dmin

≤ µ̄ where dmin = min{k ≥ 2 : p̂k > 0};

3. Choosing η such that η̄ is small enough such that there exists an N such that(
η̄ E[G](K − 1)

2

(
1

1− p̂1
+ 1

)
+

∞∑
`=1

(
`

`+ 1

)
p̂`−1

1 (1− p̂1)

)

<
N−1∑
`=1

g(`+ 1)p̂`−1
1 (1− p̂1) + g(N)p̂N1 .

4. Choosing η such that for given p̂1 and the previously selected N equation

η̄ E[G](K − 1)

(
3!(N + 1)2

(arccos(1/µ̄)2

)(N−1∑
`=1

p̂`+1
1

(l + 1)2k−1
+

(
1

N + 1

)
p̂N−1

1

(1− p̂1)

)

≤
N−1∑
l=1

(
p̂l+1

1

(l + 1)2k−1

)
holds;

5. µ̄ <

cos
arccos

(
2
√
dmin

dmin+1

)
N+1

−1

. �

We can conclude similar to Proposition 2.5.2.

2.6 Some properties of Galton–Watson trees and branching
random walks

2.6.1 The relation with generating functions

At various places we have used generating functions. They are a crucial tool in the study
of BMC, e.g., see [5], [7], [26], [46], and [69]. Let M be a subset of the state space and
modify the BMC in a way such that particles are absorbed in M and once they have
arrived in M , they keep on producing one offspring a.s. In other words, particles arriving
in M are frozen. Set Z∞(M) ∈ N ∪ {∞} as the total number of frozen particles in M at
time “∞”. For M ⊆ Γ, we define the first visiting generating function:

F (x,M |z) :=
∑
n≥0

P
[
Zn ∈M, ∀m ≤ n− 1 : Zm /∈M | X0 = x

]
zn,

where Zn is the original SRW and P its corresponding probability measure The following
lemma will be used several times in our proofs; a short proof can be found for example in
[7, Lemma 4.2].

Lemma 2.6.1 Let µ̄ be the mean offspring of the BMC. For any M ⊆ Γ, we have

E
[
Z∞(M)

]
= F (e,M |µ̄) .
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2.6.2 Spectral radius of trees

In order to study recurrence and transience of a BMC it is essential to understand the
spectral radius of the underlying Markov chain. In this section, we collect several results
on the spectral radius of SRW on trees.

Definition 2.6.2 The isoperimetric constant ι(T ) of a tree with edges E and vertices V
is defined by

ι(T ) := inf

{
| δEF |
V ol(F )

: F ⊂ X finite

}
where δEF = E(F,X \ F ) is the set of edges connecting F with T \ F and V ol(F ) =∑

x∈F deg(x).

For the isoperimetric constant it holds that, ι(T ) = 0 if and only if the spectral radius
ρ(T ) of the simple random walk equal to 1, see Theorem 10.3 in [68].

There is a more precise statement on finite approximation of the spectral radius,
e.g., see [4] and [50]. Consider an infinite irreducible Markov chain (X,P ) and write
ρ(P ) for its spectral radius. A subset Y ⊂ X is called irreducible if the sub-stochastic
operator

PY = (pY (x, y))x,y∈Y

defined by pY (x, y) := p(x, y) for all x, y ∈ Y is irreducible. It is rather straightforward to
show the next characterization.

Lemma 2.6.3 Let (X,P ) be an irreducible Markov chain. Then,

ρ(P ) = sup
Y
ρ(PY ), (2.30)

where the supremum is over finite and irreducible subsets Y ⊂ X. Furthermore, ρ(PF ) <
ρ(PG) if F ( G.

We compare this also to the Perron-Frobenius theorem, see for example [60], especially
for the last inequality. A first observation is the following result, see [69, Lemma 9.86]. We
say that a stretch (or unbranched path) of length N in a tree T is a path [v0, v1, . . . , vN ]
of distinct vertices such that deg(vk) = 2 for k = 1, . . . , N − 1.

Lemma 2.6.4 Let T be a locally finite tree T . If T contains stretches of arbitrary length,
then ρ(T ) = 1.

Moreover, we can give a precise characterization of the spectral radius of a simple
random walk on a GW-tree

Lemma 2.6.5 Let ρ(T) be the spectral radius of the simple random walk on a Galton–
Watson tree T with offspring distribution (pi)i≥0. Then,

• if p0 + p1 > 0 we have ρ(T) = 1 for GW-a.a. realizations T;
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• if p0 + p1 = 0 we have ρ(T) = ρ(Td+1) = 2
√
d

d+1 < 1 for GW-a.a. infinite realizations
T,

where d = min{i : pi > 0} and Td+1 is the homogeneous tree with offspring d.

Proof If T is finite, the simple random walk is recurrent and it holds that ρ(T) = 1, see
Section 1 in [68]. Now, let us assume that T is infinite. In the case where p1 > 0 the tree
contains, for every choice of N ∈ N, GW-a.s. a stretch of length N ; this is a consequence
of the lemma of Borel–Cantelli. Using Lemma 2.6.4 we conclude that ρ(T) = 1. Now,
we assume that p1 = 0 but p0 > 0. In this case the tree T contains, for every choice of
N ∈ N, a finite bush of N generations, which we call bush BN . For such a bush BN it
holds that |δEBN |

V ol(BN ) ≤
1

2N . Again, by finding an arbitrary large bush we obtain ι(T) = 0

and consequently using Theorem 10.3 in [68] we conclude ρ(T) = 1. In the case p0 +p1 = 0

Corollary 9.85 in [69] implies that ρ(T) ≤ ρ(Td+1) = 2
√
d

d+1 where d is the smallest offspring
of the Galton–Watson tree and Td+1 denotes the homogeneous tree with offspring d. The
remaining equality follows by finding arbitrarily large balls of Td+1 as copies in T as above
and applying Lemma 2.6.3. �

We construct a new tree T̃ by replacing each edge e of T with a stretch of length
k = k(e). We call T̃ a subdivision of T and maxe{k(e)} the maximal subdivision length of
T̃ . We write T(N) for the subdivision of T where k(e) = N for all edges e in T . We state
a particular case of Theorem 9.89 in [69].

Theorem 2.6.6 Let T be a locally finite tree and denote ρ(T ) (resp. ρ(T(N))) the spectral
radius of the SRW on T (resp. T(N)). Then,

a)

ρ(T(N)) = cos
arccos ρ(T )

N
; (2.31)

b) if T̃ is an arbitrary subdivision of T of maximal subdivision length N then

ρ(T ) ≤ ρ(T̃ ) ≤ ρ(T(N)). (2.32)

2.6.3 Absorbing BMC on finite paths

We consider the SRW, (Zn)n≥0, on an unbranched path of length N with absorbing states
v0 and vN . In other words, we consider the ruin problem (or birth-death chain) on [N ] :=
{0, 1, . . . , N} defined through the transition kernel PN = (pN (x, y))x,y∈[N ]: pN (0, 0) =
pN (0, N) = 1 and pN (x, x+ 1) = pN (x, x− 1) = 1/2 for 1 ≤ x ≤ N − 1. We set ρ(PN ) for
the spectral radius of the reducible class {1, . . . , N − 1}. Let

f
(n)
N (x, y) := P[Zn = y, Zk 6= y ∀ 0 ≤ k < n|Z0 = x] (2.33)
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and define the first visit generating function

FN (x, y|z) :=
∞∑
n=0

f
(n)
N (x, y)zn. (2.34)

The convergence radius of the power series equals RN = 1/ρ(PN ).

We give the following expressions of the generating function FN for two particular
pairs of values of x and y, see Example 5.6 in [69].

Lemma 2.6.7 Let 1 ≤ z ≤ RN and ϕ such that 1/z = cosϕ. Then,

FN

(
1, N

∣∣∣∣ 1

cosϕ

)
=

sinϕ

sinNϕ
and FN

(
N − 1, N

∣∣∣∣ 1

cosϕ

)
=

sin(N − 1)ϕ

sinNϕ
. (2.35)

We present lower bounds of these generating functions; the index shift is done to
improve the presentation of the proofs in the main part.

Lemma 2.6.8 Let 1 ≤ z ≤ RN and ϕ such that 1/z = cosϕ. Then,

FN+1

(
N,N + 1

∣∣∣∣ 1

cosϕ

)
≥ N

N + 1

(
1 +

(1 + 2N)ϕ2

3!

)
(2.36)

FN+1

(
1, N + 1

∣∣∣∣ 1

cosϕ

)
≥ 1

N + 1

(
1 +

(
2N +N2

)
ϕ2

3!

)
(2.37)

Proof For proving the above approximations we will use the infinite product expansion

sin(z) = z
∞∏
n=1

(
1− z2

n2π2

)
, z ∈ C

and the power series expansion

sin(z) =
∞∑
n=0

(−1)nz2n+1

(2n+ 1)!
, z ∈ C

of the sine. Now,

FN

(
N,N + 1

∣∣∣∣ 1

cosϕ

)
=

sin(N)ϕ

sin(N + 1)ϕ
=

Nϕ

(N + 1)ϕ

∏∞
n=1

(
1− (Nϕ)2

n2π2

)
∏∞
n=1

(
1− ((N+1)ϕ)2

n2π2

) (2.38)

=
N

N + 1

∏∞
n=1

(
1− N2ϕ2+2Nϕ2+ϕ2

n2π2 + 2Nϕ2+ϕ2

n2π2

)
∏∞
n=1

(
1− N2ϕ2+2Nϕ2+ϕ2

n2π2

) (2.39)

≥ N

N + 1

( ∞∏
n=1

(
1 +

2Nϕ2 + ϕ2

n2π2

))
. (2.40)
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Defining z = iϕ
√

1 + 2N we obtain by using the product expansion and afterwards the
power series expansion, that

N

N + 1

( ∞∏
n=1

(
1 +

2Nϕ2 + ϕ2

n2π2

))
=

N

N + 1

sin(z)

z

≥ N

N + 1

(
1 +

ϕ2(1 + 2N)

3!

)
.

The second part follows the exact same line as the first part of the proof. �



Chapter 3

The relation between quenched
and annealed Lyapunov exponents
in random potential on trees

Our subject of interest is a simple symmetric random walk on the integers which faces a
random risk to be killed. This risk is described by random potentials, which are defined by
a sequence of independent and identically distributed non-negative random variables. To
determine the risk of taking a walk in these potentials we consider the decay of the Green
function. There are two possible tools to describe this decay: The quenched Lyapunov
exponent and the annealed Lyapunov exponent. It turns out that on the integers and on
regular trees we can state a precise relation between these two.

3.1 Random walks with random killing

We consider a simple random walk (Sn)n≥0 on the integers Z with starting point x. At
each point of time it jumps independently of all the steps before with probability 1

2 to
the right or to the left. The path measure of the random walk will be denoted by Px and
the expectation value with respect to Px by Ex. The simple symmetric random walk is a
Markov process. Moreover, it is spatially homogeneous.

Furthermore, we attach to each site x ∈ Z a so called random potential ω(x) which influ-
ences the movement of the random walk. We assume that ω := (ω(x))x∈Z is a sequence of
nonnegative random variables which are independently and identically distributed (i.i.d.)
by the common measure ν on [0,∞). From this we obtain the canonical probability space
(Ω,F ,P) described by

Ω := [0,∞)Z

with its usual Borelian product σ-algebra F and the product measure

P :=
⊗
x∈Z

ν .

47
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The expectation value derived with respect to P will be denoted by E. We assume that the
potentials are not concentrated at 0, that is ν 6= δ0, to avoid the trivial case. Considering
the standard shift Ti : Ω → Ω, (ω(x))x∈Z 7→ ((ω(x − i)x∈Z) for i ∈ Z it is clear that P is
shift invariant.

The random potentials represent a certain risk of dying for the random walk. For a
fixed realization of the environment ω = (ω(x))x∈Z the random walk dies with probability

q(x) := 1− exp(−ω(x))

at each site x ∈ Z it reaches. If the random walk survives the site, it will uniformly choose
the next site of its journey. Thus, the random walk will jump with probability (1−q)/2 to
the right or to the left, see Figure 3.1. So, given the potentials, it becomes dangerous to
take a walk in these environments.

• ••

(1−q)/2

q

(1−q)/2

d

Z

Figure 3.1: Simple random walk with random killing where q(x) := 1− exp(−ω(x)) for a
fixed realization of the potentials ω.

One measurement for the risk is the Green function. For x, y ∈ Z and a realization of
the potential ω we define it for the random walk with random killing by

g(x, y, ω) :=
∑
m>0

Ex

[
exp

(
−

m∑
i=0

ω(Si)

)
1{Sm=y}

]
.

This is the expected number of visits in y before the random walk starting at x dies. We
want to study the decay of g. In other words: how risky is it to walk around in this
environment over long distances, that is if |x − y| → ∞? Moreover g is still a random
variable in ω and we may ask the same for the averaged Green function with respect to P.

3.2 Quenched and annealed Lyapunov exponents

The Lyapunov exponents give us a precise description of the decay of Green’s function.
We start by shortly introducing them. Therefore we are in need of another two-point
function, which is closely related to g.
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First of all we define the stopping times τy, y ∈ Z, given by

τy := inf{n ≥ 0 : Sn = y}

for each y ∈ Z. This is the first point of time where the original random walk (Sn)n≥0 hits
y ∈ Z.

Definition 3.2.1 For any realization of the potentials ω ∈ Ω and x, y ∈ Z we define the
two-point-functions

e(x, y, ω) :=Ex

exp

− τy−1∑
k=0

ω(Sk)

 , τy <∞

 ,
a(x, y, ω) :=− ln e(x, y, ω) .

The quantity e(x, y, ω) represents the probability of the random walk reaching y after it
started at x and before it dies due to a fixed potential ω. As before, e(x, y, ·) is a random
variable in ω. Consequently, the expected probability of surviving a journey from x to
y will be of interest to us hereafter. This procedure of taking the average is also called
annealing the environment.

Definition 3.2.2 Let x, y ∈ Z. We define

f(x, y) :=E[e(x, y, ω)] ,

b(x, y) :=− ln f(x, y) .

To answer the above stated question we observe the behaviour of e and f in the long-
run, that is when the distance of x and y tends to infinity. Looking for a precise description
we turn to Lyapunov exponents. There are two ways of dealing with the random potential
– the quenched and the annealed case.

In the quenched case we look at the exponential decay of the survival rate for a frozen
realization of the potentials.

Proposition 3.2.3 We suppose that ν has finite expectation. Then, for all x ∈ Z there
exists the limit

α(x) := lim
n→∞

1

n
a(0, nx, ω) = lim

n→∞

1

n
E[a(0, nx, ω)] = inf

n∈N

1

n
E[a(0, nx, ω)]

P-almost surely and in L1. Moreover, it holds that

α(x) = E[a(0, x, ω)] = |x|E[a(0, 1, ω)] (3.1)

so that α(x) is a non-random norm.
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The limit α(x) for x ∈ Z is called quenched Lyapunov exponent. The proof of the
existence we find in [70, Proposition 4]. In this paper Zerner introduced the quenched
Lyapunov exponents for simple symmetric random walks on Zd, d ≥ 1. Just representation
(3.1) is special on the integers, see [70, Proposition 10]. On the integers the function a is
not only subadditive, but also additive. This property has its origin in the path properties
of the simple symmetric random walk on the integers. The random walk can step just one
site to the right or to the left at once (without involving the random potentials). That is,
it cannot jump across a site, which implies

{τz <∞} ⊆ {τy <∞} (3.2)

for all sites y between x and z. As this property is essential to the upcoming part we
sketch the proof according to [70, Proposition 10].

Lemma 3.2.4 Let ω be a realization of the potential and x, y, z ∈ Z, with y between x
and z. Then a(x, z, ω) = a(x, y, ω) + a(y, z, ω).

Proof Let ω ∈ Ω be a realization and without loss of generality x ≤ y ≤ z ∈ Z. By (3.2)
we can modify function e in the following way:

e(x, z, ω) = Ex

[
exp

(
−
τz−1∑
i=0

ω(Si)

)
· 1{τz<∞}

]

= Ex

[
exp

(
−
τz−1∑
n=0

ω(Si)

)
· 1{τz<∞} · 1{τy<∞}

]
.

This, together with the tower property and the strong Markov property for the stopping
time τy yields

e(x, z, ω) = e(x, y, ω) e(y, z, ω) (3.3)

which implies the additivity of a. �

The additivity of a allows to use Birkhoff’s and Neumann’s ergodic theorems in the
proof of Propostion 3.2.3 instead of the subadditive limit theorem in higher dimensions.
This provides formula (3.1) and proves Proposition 3.2.3.

In a so called shape-theorem [70, Theorem 8] Zerner proved that the quenched Lya-
punov exponents describe the exponential decay of the Green function as follows:

lim
|x|→∞

− ln g(0, x, ω)

α(x)
= lim
|x|→∞

− ln e(0, x, ω)

α(x)
= 1

for P almost all ω ∈ Ω and in L1(P). This is just the basic result concerning the decay of
g, respectively e. For further reading we refer again to [70] and to [49] and [38].

In the case of the annealed Lyapunov exponents we have similar results. Here the
expectation of the survival rate with respect to the potentials is taken before looking at
its decay in the long run.
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Proposition 3.2.5 We suppose that ν has finite expectation. Then for all x ∈ Z there
exists the limit

β(x) := lim
n→∞

1

n
b(0, nx) = inf

n∈N

1

n
b(0, nx)

and β is a norm.

We call β(x) for each x ∈ Z the annealed Lyapunov exponent. Flury has proven the
existence of β also on higher dimensional lattices in [16]. We find there analogue shape
theorems for the averaged Green function, for example

lim
|x|→∞

− lnE[g(0, x, ω)]

β(x)
= 1 .

Indeed, in [16] a slightly more general case is treated, allowing other influences of the
random potential on the random walk besides the extinction probability 1 − exp(−ω(x))
at each site x ∈ Z.

3.3 Main results of Chapter 3

The main result of this chapter is Theorem 3.4.2. It is a variational formula giving the
annealed exponent as a minimization problem involving quenched exponents and entropy.
This is the discrete analogon of Theorem 1.9 in [61]. The main tool for proving it is the
additivity of a, see Lemma 3.2.4. Thus, this formula does not hold for random walks on
Zd where d > 1. Moreover, one bound in the proof comes by a change-of-measure argu-
ment and the other by Varadhan’s Theorem. In section 3.5 we will introduce Lyapunov
exponents on infinite regular trees. We will see that there – as a corollary of the aforego-
ing Section – the variational formula holds as well. Additionally, we will see that we can
generalize the result for non-symmetric simple random walks.

In addition to the aforementioned literature we recommend [62] for a general overview
and the background on Lyapunov exponents to the reader. There, mainly Lyapunov ex-
ponents for Brownian Motion moving in Poissonian Potential are treated. Some further
current results related to Lyapunov exponents appear in [58] and [56]. Instead of Lya-
punov exponents the authors observe quenched free energy and quenched point-to-point
free energy in a more general situation in random environment. More precisely it is a
generalization of random walks in random potential and random walk in random environ-
ment. As a result they develop a variational formula for the quenched free energy also
using entropy.

Furthermore there are lots of related results for random walks in random environment.
Zerner provides an introduction to Lyapunov exponents for RWRE in [71]. In [9] random
walks in random environment especially on the integers are discussed and they provide a
relation of some rate functions for the quenched to the annealed random environment.
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3.4 The relation between quenched and annealed Lyapunov
exponents on the integers

We have already seen that quenched and annealed Lyapunov exponents differ in their
treatment of the random potential. Using the quenched approach, we observe the expo-
nential decay for a typical realization of the random potentials. While using the annealed
approach, we look at the environment as averaged. We now aim to describe this differ-
ence in greater detail. By applying Jensen’s inequality it is easy to conclude that for the
quenched and annealed Lyapunov exponents it holds

α(x) ≥ β(x)

for each x ∈ Z. This relation also holds for simple symmetric random walks on Zd with
d ≥ 2. But it turns out that in the case of a random walk on the integers we can prove an
explicit formula using entropy for this relation. Before stating the main result we recall
some definitions concerning entropy.

We consider the canonical projection πI : Ω → ΩI where I is a finite subset of Z and
ΩI := [0,∞)I . The corresponding product σ-algebra is denoted by FI . For any probability
measure Q on Ω we consider its restriction QI to FI . Now let Q̃ be a second probability
measure on Ω, which is absolutely continuous with respect to Q on FI for a given finite
intervall I ⊂ Z. Hence we can define the Radon-Nikodym derivative fI on FI which is a
positive and FI -measurable function.

Definition 3.4.1 (Relative Entropy) Let Q and Q̃ be two probability measures on Ω
and I ⊂ Z a finite intervall. Then we call

HI(Q̃|Q) :=

{∫
Ω fI ln fI dQ if Q̃� Q on FI
∞ else

the relative entropy of Q̃I with respect to QI where fI := dQ̃I
dQI denotes the Radon-

Nikodym derivative.

In most of the literature on Information Theory, the relative entropy is denoted D(Q̃‖Q)
and also known as the Kullback-Leibler divergence. Equivalently, if Q̃ � Q on FI the
relative entropy can be expressed by HI(Q̃|Q) =

∫
Ω ln fI dQ̃. As the function x lnx is

strictly convex we see by Jensen’s inequality that HI is nonnegative and zero if and only if
the two measures coincide. If Q̃ and Q are shift invariant for (Ti)i∈Z, the relative entropy
HI(Q̃|Q) is shift invariant as well. We denote by Mt

1(Ω) all shift invariant probability
measures on Ω. Furthermore, under the additional assumption that Q is a product measure
on Ω, the relative entropy becomes strongly superadditive, see [20, Proposition 15.10].
Thus under these assumptions the subadditive limit theorem guarantees the existence of

H(Q̃|Q) := lim
n→∞

1

|In|
HIn(Q̃|Q) = sup

In

1

|In|
HIn(Q̃|Q) (3.4)
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with (In)n∈N a sequence of intervals satisfying In ⊆ In+1 for each n ∈ N and |In|→∞
when n → ∞. We call H(Q̃|Q) the specific relative entropy of Q̃ with respect to Q. The
distribution of the random potentials P fulfills all the above assumptions and the specific
relative entropy H(Q|P) is well-defined for any shift invariant probability measure Q on
Ω.

Additionally, in relation with the quenched Lyapunov exponent, we define for r < 0
the functions Fr : Ω→ [0,∞] by

Fr(ω) := − ln E0

[
exp

(
−
τ1−1∑
i=0

ω(Si)

)
, τ1 < τr, τ1 <∞

]

and their counterpart F by omitting the inequality τ1 < τr. It is easy to see that F (ω) =
− ln e(0, 1, ω) = a(0, 1, ω) and 0 ≤ F ≤ ω(0) + ln 2. Consequently we have

α(1) = E[F (ω)] . (3.5)

Keeping in mind that H(P|P) = 0 and formula (3.5), the description of the relation
between annealed and quenched Lyapunov exponents is the next variational formula:

Theorem 3.4.2 Let (Ω,F ,P) be the probability space defined above where P = ⊗x∈Zν.
Moreover, we assume that ν has finite expectation. Then

β(1) = inf
Q
{EQ[F (ω)] +H(Q|P)}

and the infimum runs over all shift invariant probability measures Q on Ω.

There is the following interpretation of this formula: When the environment is averaged
out, the walk will most of the time experience a typical configuration. But with an
exponentially small probability a large deviation event occurs and the walk goes through
a more favorable environment that allows it to survive longer. The rate of survival in this
configuration is then given by the quenched Lyapunov exponents (corresponding to the
distribution of the rare event), but one has to pay the cost of benefiting from a favorable
landscape, and this is given by the specific entropy (of the new distribution relative to the
original one).

A similar relation for Brownian motion moving in Poissonian potential was proven in
[61, Theorem 1.9]. We will follow Sznitman’s ideas and split our proof in two parts proving
the upper and lower bound

β(1) ≤ inf
Q∈Mt

1(Ω)
{EQ[F (ω)] +H(Q|P)} (3.6)

β(1) ≥ inf
Q∈Mt

1(Ω)
{EQ[F (ω)] +H(Q|P)} (3.7)

separately as well.
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3.4.1 Proof of the upper bound

Proof Upper bound As a consequence of the multiplication property (3.3) of e and the
spatial homogeneousity we connect the definition of f with F . The latter follows from the
observation that {τ1 < τr, τ1 <∞} ⊆ {τ1 <∞}.

f(0, n+ 1) = E

[
n∏
k=0

e(k, k + 1, ω)

]
= E

[
n∏
k=0

e (0, 1, T−k(ω))

]

= E

[
exp

(
n∑
k=0

−F ◦ T−k(ω)

)]
(3.8)

≥ E

[
exp

(
n∑
k=0

−Fr ◦ T−k(ω)

)]
. (3.9)

Now let us consider an arbitrary shift invariant probability measure Q ∈ Mt
1(Ω). Thus

H(Q|P) is well defined and we assume additionally

H(Q|P) <∞ and EQ[F ] <∞ .

This implies that Q � P on FI for each finite intervall I ⊂ Z and we define the corre-
sponding Radon-Nikodym derivatives fI on FI , I ⊂ Z. It is easy to see that each fI is
strictly positive Q-almost surely and for each finite I ⊂ Z it holds that∫

Ω
g dP =

∫
Ω

g

fI
dQ (3.10)

for any FI measurable function g : Ω→ R. The movement of the random walk in (3.9) is re-
stricted by the definition of Fr toA := [r+1, n+1] and the function exp (

∑n
k=0−Fr ◦ T−k(ω))

is FA-measurable. Then, by (3.9),(3.10) and Jensen’s inequality we obtain:

f(0, n+ 1) ≥ E

[
exp

(
n∑
k=0

−Fr ◦ T−k(ω)

)]

= EQ

[
exp

(
n∑
k=0

−Fr ◦ T−k(ω)

)
· 1

fA

]

≥ exp

(
EQ

[
n∑
k=0

−Fr ◦ T−k − ln fA

])

= exp

(
EQ

[
n∑
k=0

−Fr ◦ T−k

]
−HA(Q|P)

)
.

Taking the n+ 1-th root, the negative logarithm and the limit n to infinity on both sides
yields

β(1) ≤ EQ[Fr] +H(Q|P) .
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Obviously, 1τ1<τr converges monotonously from below to 1 for r → −∞ and we can replace
Fr by F . Because of the finite expectation of ν there is at least P such that the right side
of the last inequality is finite and we may deduce

β(1) ≤ inf
Q∈Mt

1(Ω)
{EQ[F (ω)] +H(Q|P)} .

�

3.4.2 Proof of the lower bound

In order to prove the lower bound (3.7) we need to make use of some statements from the
theory of large deviations, more specifically from process level large deviations theory. A
sequence {µn}n∈N of probability measures on a Polish space E satisfies a large deviation
principle with rate function J and normalization rn if the following two inequalities hold:

lim sup
n→∞

1

rn
logµn(F ) ≤ − inf

x∈F
J(x) ∀F ⊂ E closed (3.11)

lim inf
n→∞

1

rn
logµn(G) ≥ − inf

x∈G
J(x) ∀G ⊂ E open (3.12)

where J : E → [0,∞] is a lower semi-continuous function and {rn}n∈N ⊂ R+ is a sequence
of positive real numbers with rn ↗∞. We abreviate by writing that LDP(µn, rn, J) holds
if all these requirements are satisfied. When the sets {x ∈ E : J(x) ≤ c} are compact for
all c ∈ [0;∞) the rate function J is said to be good. Process level large deviations theory is
concerned with the asymptotics of the distributions of the empirical measures of a whole
process. Therefore we consider the random potentials (ω(i))i∈Z as a process with state
space [0,∞). For this process the n-th empirical measure Rn : Ω→M1(Ω) is defined by

Rn(ω) :=
1

|In|
∑
i∈In

δT−i(ω)

with the normalizing sequence of intervalls (In)n∈N in Z given by In := {i ∈ Z : −n <
i < n} for each n ∈ N. Every probability measure Q on Ω induces a distribution µn ∈
M1(M1(Ω)) of the empirical measure Rn. The distributions of the empirical measures
(Rn)n∈N satisfy the LDP with good rate function J :M1(Ω)→ [0,∞] defined by

J(Q) :=

{
H(Q|P) if Q ∈Mt

1(Ω)

∞ else
(3.13)

and the normalizing sequence (|In|)n∈N, see [57, Theorem 6.13].

Basically the following proof is an application of a version of Varadhan’s theorem.

Proof Lower bound Let Φ :M1(Ω)→ [−∞, 0] be the function defined by

Φ(Q) := EQ[−F ] .



56 CHAPTER 3. LYAPUNOV EXPONENTS ON TREES

We have already seen that F is a positive function. Hence −F is bounded from above.
Moreover, F is a continuous function with respect to the product topology on Ω. This is
a consequence of the continuity of parameter dependent integrals. Recall that the weak
convergence topology on M1(Ω) is the coarsest topology such that for each bounded and
continuous f ∈ Cb(Ω) the map M1(Ω) → R, ρ 7→

∫
Ω fdρ is continuous. Let ρ ∈ M1(Ω)

and let (ρn)n∈N ∈ M1(Ω) be a sequence in M1(Ω) which converges weakly to ρ. Then it
holds that

lim sup
n→∞

Eρn [−F ] ≤ Eρ[−F ]

as−F is continuous and bounded from above. Consequently Φ is an upper-semi-continuous
function with respect to the weak convergence topology.

By (3.13) we know that LDP (µn, |In|, J) holds with rate function J and as −F is
negative, the set {Q ∈M1(Ω) : Φ(Q) ≥ L} is empty for L > 0.

Thus applying [12, Lemma 2.1.8] we conclude

lim sup
n→∞

1

|In|
ln

∫
M1(Ω)

exp
[
|In|Φ(Q)

]
dµn(Q)

≤ sup
{Q∈M1(Ω)}

[
Φ(Q)− J(Q)

]
and by some transformations and the shift invariance of P we obtain∫

M1(Ω)

exp
(
|In|Φ(Q)

)
dµn(Q) = EP [exp

(
(2n− 1)ERn [−F ]

)]
= EP

exp

− n−1∑
i=−(n−1)

F ◦ T−i(ω)


= EP

[
exp

(
−

2n−1∑
i=0

F ◦ T−i(ω)

)]
.

Moreover, by (3.8) it holds that

β(1) ≥ lim inf
n→∞

− 1

2n− 1
lnEP

[
exp

(
−

2n−1∑
k=0

F ◦ T−k(ω)

)]
and we summarize for the annealed Lyapunov exponent:

β(1) ≥ inf
{Q∈M1(Ω)}

[
EQ[F ] + J(Q)

]
.

Due to the positivity of F we see that EQ[F ] ≥ 0 for all Q ∈M1(Ω). By the definition of
J and the finite expectation of ν the infimum will not be reached for a not shift invariant
measure. We conclude

β(1) ≥ inf
{Q∈Mt

1(Ω)}

[
EQ[F ] +H(Q|P)

]
. �
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3.5 Lyapunov exponents on trees

The aforegoing result could be proven mainly because of the additivity of a. This additivity
property does not hold for simple symmetric random walks on the higher dimensional
lattices Zd with d ≥ 2. Could there nevertheless be other structures on which the random
walk moves, where we gain again the additivity of a? One possible answer is a d-regular
tree.
In this section we will see how we can apply our main result to Lyapunov exponents on a
d-regular tree. First of all we give a short introduction to regular trees and random walks
on trees. For a more precise introduction in the context of random walks, see e.g. [69].
Second we will introduce Lyapunov exponents on an infinite tree.

3.5.1 Random walk with random killing on infinite d-regular trees

Let d ≥ 2 and let Td denote the d-regular infinite tree. We call V (Td) the set of vertices
of the tree and E(Td) the set of edges. Then we define a symmetric nearest neighbour
random walk (Zn)n∈N on Td by choosing a starting point

Z0 = v

for v ∈ V (Td) and the transition probabilities given by

p(x, y) =

{
1/d if x ∼ y
0 else .

(3.14)

The relation x ∼ y for x, y ∈ V (Td) means that these two vertices are neighbours, i.e. [x, y]
is an edge in E(Td). Thus (Zn)n∈N is a spatially homogeneous Markov chain adapted to
Td. We will denote its path measure by PTv and the corresponding expectation value by
ETv .

As we have done before on the integers we attach to each vertex x ∈ V (Td) a random
potential ω(x) and assume that ω := (ω(x))x∈V (Td) is a family of nonnegative random vari-
ables which are i.i.d. by ν on [0,∞). From this we obtain again the canonical probability
space (Ω,F ,P) described by

Ω := [0,∞)V (Td)

with its usual product σ-algebra F and the product measure

P :=
⊗

x∈V (Td)

ν .

The expectation value with respect to P will be denoted by EP. We assume again that ν
has finite expectation.

As Td is a tree, it contains no cycles and we have for each v, z ∈ V (Td) a unique
shortest path π = [v, ..., z] from v to z. The distance between two vertices is defined as
the length of this shortest path:

d(x, z) := |[x, ..., z]| .
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We call a sequence of distinct vertices π = [. . . , x−2, x−1, x0, x1, x2, . . .] ⊂ V (Td) which
satisfy xj ∼ xj+1 for all j ∈ Z a geodesic. If we have an one-sided infinite sequence
π = [x0, x1, x2, . . .] ⊂ V (Td) with xj ∼ xj+1 for all j ≥ 1 we call it ray.

Now we are interested in the riskiness of walking around on this tree equipped with the
random potentials. More precisely we want to observe how risky journeys along a fixed
geodesic are. Here τx, x ∈ V (Td), is defined by

τx := inf{n ≥ 0 : Zn = x}

for each x ∈ V (Td).

The two-point-functions defined in the following section are the counterparts to our
well know functions e, f, a and b from the first part of the chapter.

Definition 3.5.1 Let x, y ∈ V (Td) be two vertices of the tree and ω a realization of the
random potentials. We define:

Fq(x, y, ω) := ETx

exp

− τy−1∑
k=0

ω(Zk)

 , τy <∞


A(x, y, ω) := − lnFq(x, y, ω)

Fa(x, y) := EP

ETx

exp

− τy−1∑
k=0

ω(Zk)

 , τy <∞


B(x, y) := − lnFa(x, y) .

The two functions Fq and Fa denote the probability that the random walk reaches
y after starting at x, for the quenched environment where the potentials are frozen and
the averaged environment. In contrast to e and f the random walk here is driven by the
different path measure PTx on the tree.

Let us now fix a geodesic π∗ = [. . . , x−2, x−1, x0, x1, x2, . . .] and look at the behaviour
of Fq(x0, xi, ω) and Fa(x0, xi) in the long run, that is if d(x0, xi) → ∞. Having a closer
look on the structure of the tree we see that each trajectory of the random walk from xi
to xj contains the path [xi, xj ] ⊂ π∗. That is, the random walk has to pass all these points
on its journey at least once. Only the excursions to the branches beside the geodesic vary.
For each x, y ∈ V (Td) a branch Tx,y of the tree is defined by

Tx,y := {v ∈ V (Td) : y ∈ π(x, v)} .

This allows a modification of the model in the following way: We can combine all the risk,
which the random walk has to face during its excursions into a modified potential for each
point of the geodesic and in the end we identify the geodesic with the integers. For the
latter let x0 ∈ V (Td) be a fixed starting point of the random walk on the geodesic. Then
we can split π∗ into two rays

π+ = [x0, x1, x2, . . .] and π− = [x0, x−1, x−2, . . .] .
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We identify the geodesic with the integers via

λ : π∗ → Z, xi 7→

{
d(xi, x0) if xi ∈ π+

−d(xi, x0) if xi ∈ π−
(3.15)

and vice versa. For modifying the potential we have to spend more effort. Moving on
an infinite tree contains, besides the given potentials, the additional risk of leaving the
geodesic and getting lost in the corresponding branch of the tree. Getting lost is under-
stood as the random walk not returning to π∗ again in finite time and disappearing at
infinity of the tree within such a branch.

• ••

• ••

. . . . . .

...
...

...
...

...
...

x0

∞

Figure 3.2: A 3-regular tree oriented on a fixed geodesic (black).

Consequently there are three possibilities how the random walk can die at a point xi
of the geodesic: Firstly due to the given potential ω(xi), secondly due to the potentials on
the way of a finite excursion into a branch, thirdly because the random walk can disappear
to infinity. We want to combine these three risks in a new sequence of potentials. To do
so we define for xi ∈ π∗ the new stopping time

σxi := inf{n ≥ 1 : Zn = xi+1 or Zn = xi−1} . (3.16)

This is the first time the random walk on the tree hits the left or right neighbour of vertex
xi on the geodesic. This stopping time is finite with a positive probability: Using the
generating function technique described in [69, Chapter 9], it holds

L(z) :=

∞∑
n=1

PTxi [σxi = n] zn

=
2

d
z +

d− 2

d
z F (z)L(z)

where F (z) :=
∑∞

k=1 PTx [τy = k] zk for each x, y ∈ V (Td) with y ∼ x. As the tree is regular
and the random walk is space homogeneous, F (z) is equal for each pair of neighbours.
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F (1) is the probability that the random walk reaches a given neighbour of the starting
point in finite time. It is well known, that F (1) = 1

d−1 and we conclude that

0 < PTxi [σxi <∞] = L(1) =
2(d− 1)

(d− 1)2 + 1
≤ 1 .

Furthermore we define for each xi ∈ π∗ the new random variable

h(xi, ω) := ETxi

exp

− σxi−1∑
k=0

ω(Zk)

 , σxi <∞

 ,
which is the expected probability that the random walk starting at xi survives its finite
excursions to some branches before proceeding along the fixed geodesic π∗. Thus the
probability to die at a vertex xi, namely 1−h(xi, ω), comprises the three types of possible
risks outlined above. In order to use the aforegoing theory we perform a slight modification
of h to obtain the final new random potentials on the geodesic.

Proposition 3.5.2 Let π∗ ⊂ V (Td) be a fixed geodesic. At each vertex xi ∈ π∗ the
random walk moving along π∗ survives with probability e−ρ(xi,ω) where ρ = (ρ(xi, ω))xi∈π∗

are positive i.i.d. random variables on Ω given by

ρ(xi, ω) := − lnh(xi, ω) . (3.17)

Moreover, each ρ(xi, ω) has finite expectation w.r.t. P.

Proof We have seen before that the random walk survives each site on its journey with
probability e−ρ(xi,ω). As h(xi, ω) is (0, 1]-valued, ρ is nonnegative. Additionally, ω 7→
ρ(xi, ω) is for each xi ∈ π∗ a continuous function with respect to the product topology on
Ω and consequently measurable. Due to the definition of σxi the movement of the random
walk within the event which defines h(xi, ω) is restricted to the union of {xi} with the
branches Txi,y with y 6= {xi+1, xi−1}. This, together with the identical distribution of
(ω(i))i∈Td , implies that (ρ(xi, ω))xi∈π are i.i.d. by the image measure ν̃ defined by

ν̃[B] = ν [{ω : ρ(xi, ω) ∈ B}] (3.18)

for all Borel-sets B ∈ B([0,∞)). For the last statement we observe that
{
σxi = 1

}
⊆{

σxi <∞
}

which implies

EP[ρ(xi, ω)] = EP

− ln ETxi

exp

− σxi−1∑
k=0

ω(Zk)

1{σxi<∞}


≤ EP

− ln ETxi

exp

− σxi−1∑
k=0

ω(Zk)

1{σxi=1}


= EP

[
− ln ETxi

[
exp (−ω(xi)) 1{σxi=1}

]]
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= EP[ω(xi)]− ln

(
2

d

)
.

As the random potentials ω are supposed to have finite expectation, this holds for ρ as
well. �

We obtain for the new potentials ρ the slightly modified probability space (Ω̃ := [0,∞)Z, F̃ , P̃ :=
⊗Zν̃) where F̃ is the usual borelian product-σ-algebra and ν̃ defined as in (3.18). If ρ is
given, we just have to know how often the random walk visits the different sites of the
geodesic. As the random walk (Zn)n∈N is a symmetric random walk, it holds that

PTxi [Zσxi = xi+1|σxi <∞] =
1

2
= PTxi [Zσxi = xi−1|σxi <∞] .

Therefore conditionally upon the events [σxi < ∞] the sequence of random variables
(S̃n)n∈N defined by

S̃0 := x0 and S̃n := ZσS̃n−1

is a simple symmetric random walk on the geodesic π∗ with starting point x0. This,
together with (3.15) enables us to define the Lyapunov exponents along a geodesic in the
well-known manner for the random walk (S̃n)n∈N and the random potentials ρ(ω). Always
(3.15) in mind, we will still denote the sites of the geodesic by its original name instead of
integer numbers. Let ã and b̃ be defined as in Definitions 3.2.1 and 3.2.2 but for (S̃n)n∈N
and ρ. Then the finite expectation of ρ guarantees the existence of the Lyapunov exponents
α̃ and β̃ as in Propositions 3.2.3 and 3.2.5. Moreover we see the following identity where
τ̃x denotes the first point of time where the random walk (S̃n)n≥0 hits x ∈ π∗:

ã(x0, xi, ρ) := − ln ES̃x0

exp

− τ̃xi−1∑
k=0

ρ(S̃k)

 , τ̃xi <∞



= − ln ES̃x0

τ̃xi−1∏
k=0

ET
S̃k

exp

− σS̃k
−1∑

m=0

ω(Zm)

1σS̃k<∞}

1{τ̃xi<∞}



= − ln ES̃x0

ETx0

exp

−
σS̃τ̃xi−1

−1∑
m=0

ω(Zm)

1{σS̃τ̃xi−1
<∞}

1τ̃xi<∞}



= − ln ES̃x0

ETx0

exp

− σxi−1−1∑
m=0

ω(Zm)

1{σxi−1<∞}1{Zσxi−1
=xi}


+ ETx0

exp

− σxi+1−1∑
m=0

ω(Zm)1{σxi+1<∞}1{Zσxi+1
=xi}

1τ̃xi<∞}
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= − ln ES̃x0

ETx0

exp

− τxi−1∑
m=0

ω(Zm)

1{τxi<∞}

1{τ̃xi<∞}



= − ln ETx0

exp

− τxi−1∑
m=0

ω(Zm)

 , τxi <∞


= A(x0, xi, ω)

for all xi ∈ π∗. The same holds for b̃ and B. This provides the existence of the Lyapunov
exponents along π∗: Let xi ∈ π∗, then

α̃(xi) = lim
n→∞

1

n
A(x0, xni, ω) = lim

n→∞

1

n
E[A(x0, xni, ω)]

= inf
n∈N

1

n
E[A(x0, xni, ρ)]

exists P̃-a.s. and L1(P̃) and furthermore we have

β̃(xi) = lim
n→∞

1

n
B(x0, xni) = inf

n∈N

1

n
B(x0, xni) .

Due to the properties of ρ in Proposition 3.5.2 we can apply Theorem 3.4.2 as well and
see that our proven relation does hold for Lyapunov exponents on d-regular trees:

β̃(x1) = inf
Q
{E [A(x0, x1, ρ)] +H(Q|P̃)} ,

where the infimum runs over all shift invariant probability measures on Ω̃.

3.5.2 Non-symmetric random walk on trees

Let us go back to the integers for a moment. From now on we consider a nearest neighbour
walk which is not symmetric. That is, in each step it jumps independently of all the steps
before with probability p to the right and with probability 1− p to the left. It is easy to
see that Propostion 3.2.3, Proposition 3.2.5 and Theorem 3.4 hold for this non-symmetric
nearest neighbour random walk as well.

There is also a non-symmetric random walk counterpart on infinite regular trees. To
define this we fix a root o ∈ V (Td) and a geodesic Θ and consider a particular representa-
tion of infinite regular trees (see Figure 3.3). This representation displays the generations
Hi, i ∈ Z, of a tree. We write

h(x) := i if x ∈ Hi

for each vertex x ∈ V (Td). For two vertices x, y ∈ V (Td) we call y a predecessor of x if
h(y) = h(x)− 1 and a child if h(y) = h(x) + 1. Note that each Hi is infinite.
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H1

H0

H−1

o

Θ

p

1−p
2

1−p
2

•

•

• •

• • • •

• • • • • • • •

• • • • • • • • • • • • • •• • •

Figure 3.3: A 3-regular infinite tree.

Then we define the random walk with drift (Zn)n∈N in the following way: The random
walk jumps from its current position to the predecessor with probability p and to a child
with probability 1− p. This yields the following transition probabilities for u, v ∈ V (Td)

Pp[Zn+1 = v | Zn = u] =


p if u ∼ v and h(v) = h(u)− 1
1−p
d−1 if u ∼ v and h(v) = h(u) + 1

0 else

(3.19)

for each n ∈ N. The second line is due to the fact that one vertex has d − 1 children in
the next generation.

There are two kinds of infinite geodesics: the first has two ends downwards (like the
thick geodesic in Figure 3.4), the second has one vertex in each generation (like the thick
geodesic in Figure 3.5).

Firstly we take a geodesic π = [. . . , x−1, x0, x1, . . .] of the latter form, that is h(xi+1) =
h(xi) + 1 for each i ∈ Z. Then it holds that

Ppxi [Zσxi = xi+1|σxi <∞] =
p

p+ 1−p
d−1

= 1− Ppxi [Zσxi = xi−1|σxi <∞]
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where Ppxi is the path measure of the non-symmetric random walk induced by (3.19) with
starting point xi, and the stopping times σxi are defined as in (3.16) with respect to Pp.
Consequently the new sequence of random variables (S̃n)n∈N defined by S̃0 := x0 and
S̃n := ZσS̃n−1

is a non-symmetric random walk on π. This together with Proposition 3.5.2

provides again the existence of the quenched and annealed Lyapunov exponents and also
their relation using relative entropy.

Let us consider now a geodesic π = [. . . , x−1, x0, x1, . . .] whose two ends point down-
wards. Such a geodesic has an highest point xk ∈ π like in Figure 3.4 and it holds

h(xi+1) =

{
h(xi) + 1 if i ≥ k
h(xi)− 1 if i < k .

Looking at the transition probabilities of the random walk at xk we see

Pp[Zi+1 = xk+1 | Zi = xk] =
1− p
d− 1

= Pp[Zi+1 = xk−1 | Zi = xk]

respectively

Pp[Zi+1 = xk | Zi = xk+1] = p = Pp[Zi+1 = xk | Zi = xk−1]

for the two different neighbours of xk (see Figure 3.4). At this vertex the direction of the
drift changes and the immediate identification with the integers does not work. We need
a slight modification of the aforegoing setting. Let the starting point of the random walk
be x0. We observe the travelling risk in the direction of xi ∈ π for i > 0.

If k ≤ 0 the vertex xk is equal to x0 or not on the path [x0, xi] for any i > 0 and we
perform the following modification: Firstly we cut the geodesic at xk and take the ray
which includes xi. Then we add to the ray the predecessor of xk, which we call x̃k−1.
Adding the predecessor of x̃k−1 and successively all the next predecessors, we obtain the
modified geodesic π′ = [. . . , x̃k−2, x̃k−1, xk, xk+1, . . .] like in Figure 3.5. This modification
doesn’t change A(x0, xni, ω) and B(x0, xni) for all n ∈ N but the new geodesic π′ can be
identified with the integers as before.

If k > 0 the point xk is on the path [x0, xmi] for a m ∈ N. But we know that it holds
for each n ≥ m

Fq(x0, xni, ω) = Fq(x0, xk, ω)Fq(xk, xni, ω)

=: C(ω) · Fq(xk, xni, ω)

Fa(x0, xni) ≥ E[C(ω)] · Fa(xk, xni)

using the additivity property (Lemma 3.2.4) and the FKG-inequality. Consequently, we
see

A(x0, xni, ω) = − lnC(ω) +A(xk, xni, ω) (3.20)

B(x0, xni) ≤ − lnE[C(ω)] +B(xk, xni) . (3.21)
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Figure 3.4: Original geodesic π
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Figure 3.5: Modified geodesic π′

But because it is more probable to survive shorter journeys, it holds

B(x0, xni) ≥ B(xk, xni) (3.22)

as well. In A(xk, xni, ω) and B(xk, xni) the random walk starts at xk and travels to the
direction of xni. Hence we are in the aforegoing case of an uniform drift on the direct path
from xk to xni and we can identify the geodesic with the integers by cutting it and adding
the predecessors. Thus, the Lyapunov exponents with starting point xk

α̃(xi) := lim
n→∞

1

n
A(xk, xni, ω)

β̃(xi) := lim
n→∞

1

n
B(xk, xni)

exist due to the same arguments as in Section 3.5.1. This, together with (3.20),(3.21) and
(3.22) implies

α̃(xi) = lim
n→∞

1

n
A(x0, xni, ω)

β̃(xi) = lim
n→∞

1

n
B(x0, xni)

and by coincidence of the limits it also holds that

β̃(x1) = inf
Q
{E [A(x0, x1, ρ)] +H(Q|P̃)} ,
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where the infimum runs over all shift invariant probability measures on Ω̃.

Now we have seen, how we can apply the variational formula for a random walk on the
integers to a random walk on homogeneous trees. It may be of interest to observe other
structures apart from lattices and homogenous trees and look for similar variational for-
mulas. One subject of interest could be the infinite ladder: here the random walk has to
pass at least one out of two vertices for reaching the next rung. Hence, the stopping time
of reaching one of these two vertices is finite if the random walk is at the next rung. This
could lead to a helpful multidimensional variation of the additivity of a.



Chapter 4

The cost of asymmetrizing
vertex-transitive cubic graphs

A set S of vertices in a graph G with nontrivial automorphism group is called asymmetriz-
ing if the identity mapping is the only automorphism of G that preserves S as a set. If
such sets exist, then their minimum cardinality is the asymmetrizing cost ρ(G) of G. We
show that the cost is at most 5 for finite connected, cubic vertex-transitive graphs G that
are different from K4, K3,3, the cube and the Petersen graph, unless G is a so-called split
graph or highly symmetrically connected. For infinite connected graphs G the cost is fi-
nite if the automorphism group of G is countable, otherwise infinite. If it is infinite, then
one can define the density of asymmetrizing colorings. For vertex-transitive graphs it is
well-known that it can be zero or one half. Here we show that it can be strictly between
0 and one half for vertex-transitive graphs with two ends.

4.1 Automorphism breaking

All our graphs are undirected. If they are infinite we will require that their vertices have
finite degrees. Such graphs are called locally finite. Evidently connected, locally finite
infinite graphs are countable. Nonetheless, their automorphism groups can be uncountable,
as the example of the 3-regular tree shows.

A vertex coloring of a graph G is asymmetric if the identity is the only automorphism
of G that preserves it. The smallest number of colors needed is the asymmetrizing number
or distinguishing number D(G) of G. One says such a coloring breaks the automorphisms
of G. When D(G) = 2 each of the two colors induces a set of vertices which is preserved
only by the identity automorphism. Such sets are called asymmetrizing.

Asymmetric colorings go back at least to 1977, when Babai [3] showed that every k-
regular tree, where k ≥ 2 is an arbitrary cardinal, has an asymmetric 2-coloring. In 1991
the asymmetrization of trees was taken up again by Polat and Sabidussi [54], and Polat
[52, 53]. The first paper considers trees of any cardinality, but also contains an algorithm
that determines the number of inequivalent asymmetrizing sets of finite trees. The other

67
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two papers extend, and in some sense complete, the investigation. Polat and Sabidussi do
not consider motion, which means that we cannot directly use their results.

Independently Albertson and Collins [1] introduced the term distinguishing coloring
for an asymmetrizing coloring. Their paper spawned numerous other publications on the
subject, for example [8, 29, 32, 43].

The asymmetrizing coloring number of connected, finite or infinite graphs of maximal
degree 3 was investigated in [27]. It was shown that the asymmetrizing coloring number
of these graphs is at most 3, and all graphs with asymmetrizing coloring number 3 were
characterized. They consist of five infinite classes of tree like graphs that are not vertex-
transitive and four finite vertex-transitive graphs, namely K4, K3,3, the cube and the
Petersen graph.

The subject of our investigations are connected vertex-transitive cubic graphs of asym-
metrizing coloring number 2. For graphs G with finite asymmetrizing sets we are interested
in the smallest size of such sets, if all asymmetrizing sets are infinite, then we look for
asymmetrizing sets that are sparse in a certain sense. The methods we use are quite dif-
ferent from those of [27]. In fact, for arc-regular cubic graphs we rely heavily on results
of Tutte [64, 65] and Djoković and Miller [13].

4.2 Cost, density and summary of results of Chapter 4

If a graph G has asymmetrizing coloring number 2, then its set V (G) of vertices can be
partitioned into two sets V (G) = V1∪V2, V1∩V2 = ∅, such that the stabilizer of either one
is the trivial automorphism. In other words, if α ∈ Aut(G) and α(Vi) = Vi for i ∈ {1, 2},
then α = id. Either of the sets V1 or V2 is an asymmetrizing set in the sense that the
identity is the only automorphism that preserves it as a set. The smallest possible size of
such a set is the asymmetrizing cost of G. It was introduced in [6] as 2-distinguishing cost
and is also called Boutin-Imrich cost. We denote it by ρ(G).

If we use only the colors black and white, and always black for a minimum asym-
metrizing set, then ρ(G) is the minimal number of black vertices needed to break all
automorphisms. ρ(G) is our main topic of investigation.

Note that ρ(G) can be finite for infinite graphs. In fact, in [6] it was shown that ρ(G)
is finite for connected, locally finite infinite graphs G if and only if Aut(G) is countable.
If ρ is infinite one can still try to choose sparse asymmetrizing sets. This leads to the
introduction of the density of sets of vertices. It was first introduced in [30].

Let S be a set of vertices of a graph G, v ∈ G, and let B(v, n) := {w ∈ G : d(v, w) ≤ n}
denote the ball of radius n with center v, then

δv(S) := lim sup
n→∞

| B(v, n) ∩ S |
| B(v, n) |

is the density of S at v. If δv(S) exists for all vertices, which is the case for locally finite
graphs, then the density of S is defined as δ(S) = sup{δv(S) : v ∈ V (G)}.
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The infimum of δ(S) over all asymmetrizing sets S is then the asymmetrizing density
δ(G) of G.

For finite G the density δ(G) is the quotient of the size of a smallest asymmetrizing
set by |V (G)|.

4.2.1 Summary of results of Chapter 4

Our investigations take into account several graph parameters. One of them is the mini-
mum length of the cycles of a graph G. It is called the girth of G and denoted by g(G).
In particular graphs of girth 4 play an important role.

Another parameter is the number of arc orbits. The orbit of an arc vw with v, w ∈ G
under the action of Aut(G) is the set

O(vw) = {xy |x = α(v), y = α(w), α ∈ Aut(G)}.

By vertex-transitivity every vertex has to be incident to at least one edge from every arc
orbit, hence the number of arc orbits in a vertex-transitive cubic graph is 1,2 or 3.

If it is 3, and if we fix a vertex v, then all neighbors of v are also fixed. For a connected
graph this implies that all vertices are fixed if one is fixed. If we color one vertex of such
a graph black and leave all others white, then this is an asymmetrizing coloring.

If the number of arc orbits is 2, then one orbit consists of isolated edges that meet
every vertex, and thus form a so-called matching, whereas the edges of the other orbit
form a subgraph where every vertex has degree two. By vertex-transitivity such an orbit
consists of cycles of the same lengths or of double rays.

An intriguing subcase occurs when the cycles that are not in the matching orbit form
characteristic cycles by themselves, in a way that will be explained in detail in Section 4.4.3,
such that each cycle in a characteristic cycle allows an automorphism of order 2 that leaves
the other cycles of this characteristic cycle fixed. Such graphs are called symmetrically
connected in Definition 4.4.15. A special case are the SPX graphs SPX(2, n,m) defined
in Definition 4.4.6.

A simple example is depicted in Figure 4.1. It is clear how the quadrangles in the
figure can be arranged in cyclic order or on a double ray, and that each quadrangle allows
an automorphism of order 2 that leaves all other vertices fixed. It the arrangement is a
double ray, we speak of a chain of quadrangles.

Figure 4.1: A chain of quadrangles with an asymmetrizing coloring.

The next theorem summarizes our results for finite graphs.

Theorem 4.2.1 Let G be a finite connected, cubic, vertex-transitive graph different from
K4, K3,3, the cube and the Petersen graph.
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1. G has one arc orbit. Then 1 ≤ ρ(G) ≤ 5.

2. G has two arc orbits. If it is an SPX graph SPX(2, n,m), then its
2-distinguishing density is max(3, dmn e).
If G is symmetrically connected, then its 2-distinguishing density
δ(G) is at most 1/16.

In all other cases the 2-distinguishing cost ρ(G) is at most 4.

3. G has three arc orbits. Then ρ(G) = 1.

Before we state our results for infinite graphs we define what we mean by polynomial
growth. We say a connected, infinite locally finite graph G has polynomial growth with
growth rate k, if there is a vertex v and a polynomial p of degree k such that

|B(v, n)| < p(n)

for all natural numbers n. It is easily seen that this implies that all functions |B(w, n)| are
bounded by polynomials of degree k, independent of the choice of w ∈ V (G). We say that
the growth of G is linear if k = 1, and quadratic if k = 2 . A one- or two-sided infinite
path has linear growth, planar grids have quadratic growth.

Now our result for infinite graphs.

Theorem 4.2.2 Let G be an infinite connected, cubic, vertex-transitive graph. Then we
can show:

1. g(G) = 3 or 5. Then 1 ≤ ρ(G) ≤ 3.

2. g(G) = 4. If G is an SPX graph SPX(2, n), then ρ(G) is infinite and
δ(G) = (n2n+1)−1. In this case G has linear growth.

If G is not an SPX graph, then 1 ≤ ρ(G) ≤ 3, or ρ(G) is infinite and
0 ≤ δ(G) ≤ 1/16.

3. g(G) > 5. If G is not symmetrically connected, then 1 ≤ ρ(G) ≤ 3,
otherwise ρ(G) is infinite and δ(G) ≤ 1/16.

4.2.2 Structure of the chapter

The sections cover the cases of one and two arc orbits, and are subdivided according to
girth. An overview of the structure is presented by the diagram in Figure 4.2.

For the case of three arc orbits we recall that it is trivial and therefore does not need
a separate section.

In the case of two arc orbits girth 4 plays a special role, both for finite and infinite
graphs. Graphs with this property have such a high symmetry that in several cases we
obtain a density that is greater than zero. To show this we use a method, which we call
folding and de-folding of a graph. This is basically a reduction of quadrangles to edges
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△ = 3 and vertex transitive

3 arc orbits

2 arc orbits

1 arc orbit

girth at most 6 girth at least 7

girth 3 or 5 girth 4 girth at least 6

symmetrically connectednot symmetrically connected

finite infinite

→ Subsection 4.2.2

→ Lemma 4.3.2 → Lemma 4.3.5

→ Proposition 4.4.3

→ Theorem 4.4.14, 4.4.18→ Theorem 4.4.19

open

→ Subsection 4.4.2

Corollary 4.4.16

Theorem 4.4.18

Figure 4.2: An overview of Sections 4.2, 4.3 and 4.4.

and the other way round. The arguments are quite different from those of the other parts
of the chapter and presented in Section 4.4.2.

At the end of the chapter we present an alternative way to [21] to showing that every
connected, vertex-transitive cubic graph with girth 5 is either 2-distinguishable or the
Petersen graph. This section will be heavily based on structural observations of such
graphs.

We conclude this section with remarks about density, growth, ends of graphs, the size
of the automorphism group and related results. They are relevant for infinite graphs and
can be skipped initially.

4.2.3 Density

The last two parts of the section deal with the relationship between the density of a graph,
its growth rate and its end-structure.

We defined the density of a graph as the infimum of δ(S) taken over all asymmetrizing
sets S, where δ(S) = sup{δv(S) : v ∈ V (G)}. We shall show that for certain classes of
graphs δv(S) is independent of the choice of v.

We begin with a result from [30] about connected graphs G for which there exists a
constant c such that

|B(v, n+ 1)| ≤ c · |B(v, n)| for all n ∈ N. (4.1)

For connected graphs G satisfying Equation 4.1 it was shown in [30, Lemma 1] that a set
S has zero density δv(S) at each vertex v, if δw(S) = 0 for some w ∈ V (G).
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Clearly connected vertex-transitive graphs satisfy Equation 4.1, when they are cubic
we can take c = 3. Hence, such a graph has zero asymmetrizing density zero if there exists
an asymmetrizing set S with zero density at some vertex v.

In [30] it was further shown that large classes of graphs have asymmetrizing density
zero, among then infinite trees without leaves and so called tree-like graphs.

For vertex-transitive graphs of polynomial growth we can make similar observations
also for strictly positive density.

Lemma 4.2.3 Let G be a vertex-transitive graph of polynomial growth with growth rate
k and S an asymmetrizing set. If |B(v, n)|∼ cnk for a constant c, each v ∈ V (G) and all
n ∈ N, then δv(S) = a ≥ 0 implies that δw(S) = a for all w ∈ V (G).

Proof The assumption |B(v, n)|∼ cnk is equivalent to

lim
n→∞

|B(v, n)|
cnk

= 1. (4.2)

Let δv(S) = a, w ∈ G, and d := d(v, w). Clearly

|B(v, n) ∩ S| ≤ |B(w, d+ n) ∩ S| ≤ |B(v, n+ 2d) ∩ S|,

which is equivalent to

|B(v, n) ∩ S| |B(v, n)|
|B(v, n)| |B(v, n+ 2d)|

≤ |B(w, n+ d) ∩ S| |B(w, n+ d)|
|B(w, n+ d)| |B(v, n+ 2d)|

≤ |B(v, n+ 2d) ∩ S|
|B(v, n+ 2d)|

.

By (4.2) we know that the left and right sides of the inequality converge to a, because
|B(w, n+d)|/|B(v, n+2d)|, respectively |B(v, n)|/|B(v, n+2d)|, converge to 1 as n→∞.
Hence

δw(S) = lim
n→∞

|B(w, n) ∩ S|
|B(w, n)|

= a .

We shall apply Lemma 4.2.3 to vertex transitive graphs of linear growth.

4.2.4 Ends of graphs and exponential growth

We now introduce ends of graphs. Ends are an important concept in the investigation of
infinite graphs. Our definition follows Halin [22], but the concept is due to Freudenthal
[17]. Ends are equivalence classes of rays, also known as rays. One says two rays R1, R2

are equivalent if there is a third ray R3 that meets both R1 and R2 infinitely often. It is
easily checked that this is an equivalence relation, and the classes of equivalent rays are
called ends.

A finite graph has no ends, a ray has one end, a double ray, that is, a two-sided infinite
path, has two ends, planar grids one end, and the infinite regular trees Td of degree d > 2
infinitely many ends.
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It is also well known and follows from [23] that the number of ends of a connected,
vertex-transitive graph is 0, 1, 2, or infinite.

Vertex transitive graphs with infinitely many ends do not have polynomial growth,
their growth is exponential. One says a graph G has exponential growth, if there is a
constant c such that

|B(v, n)| > cn

for a vertex v ∈ V (G) and all n ∈ N. In connected, locally finite graphs exponential growth
does not depend on the choice of v even if G is not vertex-transitive, although the value
of c may depend on the choice of v.

At this point a few words about the infinite regular tree T3 of degree 3 are appropriate.
It is cubic, vertex-transitive, has exponential growth, and uncountable automorphism
group. Its asymmetrizing coloring number is 2. As we already mentioned this was shown
1977 by Babai [3]. Later it was reproved numerous times.

Let us recall that ρ(T3) cannot be finite by a result of Boutin, Imrich [6], because
Aut(T3) is uncountable. That δ(T3) = 0 was shown in [30]. In the latter paper large
classes of graphs with asymmetrizing density zero are exhibited. All of these graphs have
infinite motion, that is, every non-identity automorphism moves infinitely many vertices.
Vertex transitivity does not play a role in these considerations.

As shown in [30] it is relatively easy to construct graphs with nonzero asymmetrizing
density. These examples are not vertex-transitive.

It is much more involved to construct vertex-transitive graphs with nonzero asym-
metrizing density. The present thesis seems to be the first that exhibits such graphs.
The examples have linear growth, two ends, uncountable automorphism group and finite
motion, that is, each non-identity automorphism moves only finitely many vertices.

4.3 Graphs with one arc orbit

If there is only one arc orbit it is easy to see that there exists an automorphism ϕ to any
two arbitrarily chosen edges uv and xy such that ϕ(u) = x and ϕ(v) = y. Such graphs are
called arc-transitive. We shall prove the following theorem.

Theorem 4.3.1 Let G be an arc transitive cubic graph. If it has finite girth, then ρ(G) ≤
4, otherwise it is the T3, which has infinite asymmetrizing cost and asymmetrizing density
0.

If a cubic graph has no cycles, then it is the infinite tree T3 with infinite cost and
density zero, see [30].

It thus remains to prove the theorem for graphs with finite girth. In order to do this
we divide the theorem into two parts, namely Lemma 4.3.2 for girth at most 6 and Lemma
4.3.5 for girth at least 7. The methods of proof are entirely different.

Lemma 4.3.2 Let G be an arc transitive cubic graph of girth at most 6. Then ρ(G) ≤ 4.
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Proof Because we forbid multiple edges the smallest girth is 3. If a symmetric graph G
has a triangle and v ∈ V (G) with neighbors x, y, z, then there must be an edge between
any two of them and G is the K4, which has no asymmetric 2-coloring.

For girth 4, let G be a symmetric graph of girth 4 and v ∈ V (G) with the neighbors
x, y, z. Clearly, any two of the edges vx, vy, vz must span a square. Let the squares be
vxay, vybz and vzcx. If, say, a = b, then x is in the two squares vxay and vxaz. Let u be
the third neighbor of y.

If u = c, then every vertex is in three squares, has three neighbors, and G is the K3,3

spanned by {x, y, z, v, a, c} and has no asymmetric 2-coloring.

If u 6= c, then it cannot be in a square with v, because the other 2 neighbors of y,
namely v, a, have degree 3. Hence we can assume that a,b,c are pairwise distinct.

We know, that y has to be in three squares. By construction it is in the squares vxay
and vybz, hence the edges ya and yb must be in a square. Let w be the third neighbor to
a. The third square containing y clearly must contain the edges by, ya and aw. Thus w
is adjacent to b. By the same argument w is also adjacent to c. Therefore G is the cube,
which has no asymmetric 2-coloring.

For girth 5 we invoke a result of Glover and Marušić [21], who showed that there
are only two edge-transitive cubic graphs of girth 5, namely the Petersen graph and the
pentagon dodecahedron. The Petersen graph does not have an asymmetric 2-coloring, and
the asymmetrizing cost for the pentagon dodecahedron is 3, as is easily seen.

We conclude the proof with the observation that the Heawood graph is the only finite
or infinite cubic graph of girth 6, see [28, Theorem 27]. It is the dual of the triangulation
of the torus with underlying graph K7. As shown in [28] its asymmetrizing cost is 5.

The Heawood graph is also known as Tutte’s 6-cage [64]. Tutte showed that it is the
only finite 4-arc regular graph of girth 6. The cited paper is the first on arc-transitive
cubic graphs.

For girth ≥ 7 we will heavily rely on Tutte’s results in [64, 65], as well as on those of
Djokovic and Miller [13], who extended them to infinite graphs.

Following Tutte [64] we call a sequence of vertices v0, v1, . . . , vs ∈ V (G) an s-arc if
vivi−1 ∈ E(G) for 1 ≤ i ≤ s, but vi−1 6= vi+1 for 1 ≤ i < s. Then G is s-arc-transitive
if Aut(G) is transitive on the set of all s-arcs on G. A 1-arc-transitive graph is also
called symmetric. Moreover, we call G s-arc-regular if for any two s-arcs v0v1 . . . vs and
w0w1 . . . ws there is a unique automorphism ϕ which maps v0v1 . . . vs into w0w1 . . . ws,
respecting the order of the vertices.

For symmetric cubic finite graphs Tutte [65] proved the following theorem.

Theorem 4.3.3 (Tutte 1959) Let G be a finite connected, symmetric cubic graph. Then
G is s-arc-regular for some s ≤ 5.

Djokovic and Miller [13] extended it to infinite graphs.

Theorem 4.3.4 (Djokovic and Miller 1980) Every infinite connected symmetric cu-
bic graph is s-arc-regular for some 1 ≤ s ≤ 5 with the exception of the infinite cubic
tree.
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For the girth of s-arc-regular cubic graphs we will use the bound

2s ≤ g(G) + 2 (4.3)

from [64].

Lemma 4.3.5 Let G be an arc transitive cubic graph of girth at least 7. Then ρ(G) ≤ 4.

Proof By symmetry we can invoke Theorems 4.3.3 and 4.3.4. They imply that our graphs
are s-arc-regular for some s ≤ 5.

If s = 0, then G is vertex-regular. It therefore suffices to color exactly one vertex black
to break all automorphisms, and thus ρ(G) = 1.

If s = 1, 2 or 3 we choose a path uxvw in G. This is possible because the girth is > 6.
We color u, v, w black as visualized in Figure 4.3. Each color preserving automorphism ϕ
either fixes u, because it is the only black vertex without black neighbors. As v and w
have different distances from u, they are also fixed. Hence ϕ fixes the s-arcs ux, uxv and
uxvw, where s = 1, 2, 3, respectively. By s-arc regularity ϕ is the identity.

u x v w
s=1,2,3

u x y v w
s=4

u x y z v w
s=5

Figure 4.3: Colorings of s-arcs.

Now, let s = 4. For girth g > 7 we choose a path uxyvw and color u, v and w black
as in Figure 4.3. Then we argue as before to prove that the 4-arc uxyvw is fixed by all
color preserving automorphisms. If the girth is 7 this coloring allows that both v and w
have distance 3 from u. In this case it suffices to color y black to fix the 4-arc uxyvw by
all color preserving automorphisms.

For s = 5 we first observe that the girth is at least 8 by Equation 4.3. We choose a
path uxyzvw of length 5 and color u, v and w black. If the girth is different from 9 this
coloring fixes the 5-arc uxyzvw. If the girth is 9, then v, w could be interchanged by color
preserving automorphisms. To avoid this we also color z black. This fixes uxyzvw by the
same arguments as before. By 5-arc regularity this is an asymmetrizing coloring.

Clearly the cost of our colorings is at most 4, which proves the lemma. Together with
Theorem 4.3.4 and Lemma 4.3.2 this completes the proof of Theorem 4.3.1.

4.4 Graphs with two arc orbits

It is left to consider vertex-transitive cubic graphs with two arc orbits. Here every vertex
has two edges in the same orbit C and one in the other orbit D. We can assume that the
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edges in orbit C form cycles which are connected by edges in D. Let g be the girth of
these cycles in C. By the vertex-transitivity, two of those cycles can be either connected
by g edges (and the graph will be finite) orconnected by k edges, where k|g, see Figure
4.4.

Figure 4.4: Possible connections of hexagons.

If k = g the graph is a prism. In this case, and if k > 2, we notice, that fixing one
cycle is enough to fix the whole graph, as moving a cycle that is not fixed influences the
fixed cycle, as well. The smallest girth for which there exists a k ∈ N such that 2 < k < g,
is g ≥ 6. In this case the so called standard coloring of Figure 4.13, with three vertices
suffices to break all automorphisms. The only interesting cases left are k = 1, 2. Here, the
cycles can either be connected like a tree, or form cycles of girth m by themselves.

Definition 4.4.1 An (m, g)-cycle is a cycle consisting ofm cycles with girth g. Moreover,
we define a path formed by cycles of girth g a g-cycle-path.

The graphs where two g-cycles are connected by either 1 or 2 edges are interesting.
Here it is not enough to fix only one cycle. Every cycle connected to the fixed cycle can
still be flipped. Firstly, we treat the case, where the g-cycles form a tree. Afterwards we
have to distinguish with respect to the size of the girth. We start with girth g = 3, 5 and
continue with girth g = 4. In this case we will find graphs with positive density. Then,
we finish with g ≥ 6. Now, we start with g-cycles forming a tree.

Theorem 4.4.2 Let G be an infinite vertex-transitive cubic graph with girth g ≥ 3 where
the g-cycles are connected by one or two edges. If there is no (m, g)-cycle for any m and
if every g-cycle is connected to more than two g-cycles, then δ(G) = 0.

Proof Let G be a graph fulfilling the assumptions. We select one g-cycle as a root and
call it R. We observe that a coloring which fixes vertices up to a certain distance to R,
does not fix the cycles which are further away, like in a tree. Indeed, contracting the
g-cycles to one vertex we obtain either a tree G′ of degree g or g

2 . Here, we can use the
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tree-coloring of [30] such that only the identity preserves the coloring, and translate this
to G, by coloring one vertex in a g-cycle which corresponds to a colored vertex in G′. This
yields δ(G) = 0.

The condition, that every g-cycle has at least 3 neighboring g-cycles guarantees, that the
contracted graph G′ is not a double ray. This can happen in the case of quadrangles
connected by two edges and will be discussed later on.

4.4.1 Girth 3 and 5

Now, let g = 3, 5. Due to the fact of having two arc orbits, these are graphs, where
triangles resp. pentagons are connected by one edge.

Figure 4.5: Distinguishing colorings of selected graphs consisting of triangles that are
connected by one edge.

Proposition 4.4.3 A vertex-transitive cubic graph G which consists of triangles con-
nected by one edge has at most ρ(G) = 3 or δ(G) = 0.
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Proof Let G be a graph fulfilling the assumptions. This graph has two arc orbits namely
orbit E1 with two edges at each vertex forming the triangles and orbit E2 of the edges
connecting the triangles. Firstly, we contract every triangle to a single vertex. This yields
again a cubic graph G′. The edges of G′ are all edges from E2. Hence, all edges are
in the same arc orbit and G′ is symmetric, as well. The only symmetric cubic graphs
allowing girth at most 5 are the K4, K3,3, the cube, the Petersen graph and the pentagon
dodecahedron. For these special cases we present the coloring with 2 and 3 black vertices
in Figure 4.5.

Moreover, we know by Theorem 4.3.3 and 4.3.4 that G′ is s-arc-regular with s ≤ 5
apart from the infinite cubic tree. In case of the tree, we use Theorem 4.4.2. Next, we
will treat the cases of girth 6 and girth at least 7, separately. Allowing only girth at least
7, we observe that for each s the coloring from Figure 4.6 allows only the identity as an
automorphism which preserves the coloring and projects the s-arc onto itself.

0 1 0

1

2

0

1

5

2 3 4

Figure 4.6: Distinguishing colorings of a 1,2 and 5-arc in a graph of triangles connected
by one edge and m-girth at least 7.

0

1

5

2 3

4

Figure 4.7: Distinguishing coloring of a 5-arc in a graph of triangles connected by one
edge and m-girth 6.



4.4. GRAPHS WITH TWO ARC ORBITS 79

In the case of m-girth 6 and s = 5 it could happen that the neighboring triangles to
the colored triangles are part of a hexagon. Hence, there would be two paths connecting
the colored triangles which can be mapped onto each other and preserve the coloring at
the same time. Therefore, we need to color a triangle adjacent to one of the other colored
triangles along the arc, see Figure 4.7. For s ≤ 4 forming a hexagon is not a problem and
two vertices are sufficient to break all automorphisms.

Graphs with girth g = 5, where the g-cycles are connected by one edge, will be discussed
in the last section, as a reduction of 10-cycles connected by two edges in Theorem 4.4.18.

4.4.2 Girth 4

Here our subject of investigation are graphs with two arc orbits, one of which consists of
quadrangles, and the other of disjoint edges, which form a matching. We first consider the
case when there are two edges from the set of matching edges between pairs of adjacent
quadrangles. Suppose the quadrangles abcd and uvwz are adjacent, and the edges between
them are ax and by, where x, y ∈ {u, v, w, z}. If x, y are not adjacent, then the other two
matching edges originating in uvwz cannot originate from adjacent vertices, but this means
that abcd cannot be mapped into uvwz, which contradicts the transitivity assumption.
Hence xy is an edge. Then the only possible graphs are the cube, the prism, the Moebius
ladder, or the infinite ladder. None of these graphs has two arc orbits, where one consists
of quadrangles and the other of a matching.

Hence, we can assume that the edges between abcd and uvwz are between opposite
vertices of the quadrangles. It is easy to see that the only possible graphs in this case
are the ring of at least three quadrangles, see Figure 4.8, or the chain of quadrangles of
Figure 4.1. As the colorings in the figures indicate, the asymmetrization cost for the ring
is the number of quadrangles, and for the chain of quadrangles, which has uncountable
automorphism group, the asymmetrizing density is 1

4 .

Figure 4.8: Chain of three quadrangles

Therefore we can assume from now on that there is at most one edge between two
quadrangles. For such graphs, and for the chains or rings of quadrangles from above, we
define a transformation, which we call folding, that reduces them to a smaller graphs. If G
folds ontoG′ we wish to use the information aboutG′ for the construction of asymmetrizing
colorings of G.
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Given a graph G that is either a chain or ring of quadrangles or a graph with at
most one edge between adjacent quadrangles, we partition V (G) into the sets of opposite
vertices in the quadrangles, and then form the quotient graph G′ of G with respect to this
partition. The new vertices are connected by an edge if there is at least one edge between
their preimages in G. We call this a folding, because it can be envisaged as an operation
on the squares, where we first identify a pair of opposite vertices in each square. This folds
the squares into a paths of length 2. Then the paths are folded into single edges. These
new edges are disjoint and form a matching.

The edges incident to opposite vertices of the squares remain distinct after folding,
but share one endpoint in G′, compare Figure 4.9. It means that they form a subgraph
where each vertex has degree 2, that is, a subgraph of cycles of equal lengths. Here we
also admit cycles of length 2, that is, double edges, and cycles of infinite length, that is,
double rays.

Cycles of length 2 occur when we fold a ring or chain of quadrangles, see Figure 4.10.
Double rays appear when G consists of graphs arranged in a tree-like manner.

b1

b2 a2

a1

b1

b2 a2

a1

Figure 4.9: Folding of quadrangles

Figure 4.10: Chain of single and double edges.

Lemma 4.4.4 Let G be a cubic vertex-transitive graph with exactly two arc orbits, one
consisting of quadrangles and the other of isolated edges, and G′ the corresponding graph
after folding. Then G′ is vertex-transitive as well and the subgroup of the automorphism
group of G′ that is induced by Aut(G) contains two arc orbits, one consisting of a matching,
and the other one of cycles or double rays.

Proof G′ is formed from G by identifying opposite vertices of each quadrangle and by
replacing the four edges between the identified vertices by a single edge. Clearly each
automorphism α of G induces an automorphism of G′, say ϕ(α), because it preserves
pairs of opposite vertices of quadrangles. As Aut(G) acts transitively on the pairs of
opposite vertices of the quadrangles the group ϕ(Aut(G)) ⊆ Aut(G′) acts transitively on
G′.
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Clearly ϕ(Aut(G)) acts transitively on the images of the quadrangles and transitively
on the images of the matching edges in G, but ϕ(Aut(G)) does not map images of quad-
rangles into images of matching edges.

If G consists of quadrangles that are arranged in a tree like manner, then G′ has only
one arc orbit, despite the fact that ϕ(Aut(G)) has two arc orbits. Clearly G′ cannot be
folded again.

To find a condition when G′ can be folded again, let us consider the case when the
images of the matching edges of G form quadrangles. Then no edge of the matching edges
of G′ can be in a four-cycle, because then there would have to be two edges between two
neighboring quadrangles of G, and the origins of the edges would have to be adjacent.
But this case we have already excluded earlier. Hence, the matching edges of G′ form an
orbit under Aut(G′) if the images of the matching edges of G consist of quadrangles. In
this case we can also fold G′.

Now we show that asymmetrizing colorings of G′ induce asymmetrizing colorings of G.

Lemma 4.4.5 Let G be a cubic vertex-transitive graph with an arc orbit consisting of
quadrangles, and G′ be its corresponding graph after folding. Then any asymmetrizing
coloring of G′ induces an asymmetrizing coloring of G of the same cost or density.

Proof First we clarify how an asymmetrizing coloring c′ of G′ induces one of G. Let
v′ ∈ G′ be a colored vertex and v1, v2 be its its preimages in G. Then we choose randomly
one of the preimages and color it. Let c be this coloring of G.

Suppose an automorphism α of G preseves c. As α preserves the set of opposite
vertices of the quadrangles in G, which are the preimages of the vertices in G′, it induces
an automorphism ϕ(α) of G′. Moreover, if a preimage v1, v2 is mapped into u1, u2 by
α, then either both pairs contain exactly one colored vertex, or both pairs contain only
uncolored vertices. But then ϕ(α) preserves c′ and must be the identity mapping, which
means that all pairs of vertices of G are stabilized by α and that pairs that have just one
colored vertex are fixed pointwise.

This means that we have to consider the possible interchange of the two uncolored
opposite vertices u1, u2 in a quadrangle. Let u′ be the image of {u1, u2} under folding.
Clearly an interchange of u1,u2 would induce an interchange of the two edges incident
with u′, that is, the images of the matching edges incident with u1, resp. u2 in G. But
this is prohibited as G′ as c′ is asymmetrizing.

The assertion about the cost is trivial, the one about the density follows easily.

As a simple application let us have a look at the graph G consisting of quadrangles
that are arranged in a tree-like manner. By folding we obtain an infinite cubic tree G′. We
know that such trees have asymmetrizing 2-colorings of density zero. Any such coloring
induces an asymmetrizing 2-coloring of G, and it is easy to see that the density is still
zero.

Another, maybe more direct way to prove this will be followed in similar cases in
Section 4.4.3.
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Finite Graphs with two arc orbits consisting of a set of squares and a matching

We first consider graphs with two arc orbits consisting of a set of squares and a matching
that can be reduced to a ring of m single and double edges. As we do not allow triple edges,
m ≥ 2. If G can be folded onto such a ring by n foldings, we denote it by P (n,m). As
the processes of folding and defolding yield unique graphs, up to isomorphisms, P (n,m)
is uniquely defined. Also, the graphs P (1,m) are the rings of m quadrangles.

P (1, 2) is the cube and not 2-distinguishable, P (2, 2) is the Cartesian product of a
C8 by and edge, it has two arc orbits, one consisting of two cycles of length 8, so it is
not in the class of graphs considered here, but it has 2-distinguishing cost 3. We can
still apply defolding and all defolded graphs, that is, all P (n, 2), where n ≥ 2, will have
2-distinguishing cost 3.

Hence we are only interested in the case when m ≥ 3. In the sequel we will show that
the P (n,m) graphs with m ≥ 3 and 1 ≤ n ≤ m− 1 are so called Split Praeger–Xu graphs,
SPX–graphs for short. We will define them now and determine their 2-distinguishing costs.

For the graphs P (m,m), m > 2, we will show that they have 2-distinguishing cost 1,
and hence three arc orbits.

Definition 4.4.6 Let n and m be positive integers with m > 3 and 1 ≤ n ≤ m− 1. The
graph SPX(2, n,m) has vertex-set Zn2 × Zm × {+,−} and edge-set

{{(i0, i1, . . . , in−1, x,+), (i1, i2, . . . , in, x+ 1,−)} | ij ∈ Z2, x ∈ Zm}
∪ {{(i0, i1, . . . , in−1, x,+), (i0, i1, . . . , in−1, x,−)} | ij ∈ Z2, x ∈ Zm} .

These are cubic, bipartite graphs. For SPX(2, 2,m), where m is large, compare Figure
4.11.

(0, 0, 0,+)

(0, 1, 0,+)

(1, 0, 0,+)

(1, 1, 0,+)

(0, 0, 1,−)

(0, 1, 1,−)

(1, 0, 1,−)

(1, 1, 1,−)

(0, 0, 1,+)

(0, 1, 1,+)

(1, 0, 1,+)

(1, 1, 1,+)

(0, 0, 2,−)

(0, 1, 2,−)

(1, 0, 2,−)

(1, 1, 2,−)

(0, 0, 2,+)

(0, 1, 2,+)

(1, 0, 2,+)

(1, 1, 2,+)

(0, 0, 3,−)

(0, 1, 3,−)

(1, 0, 3,−)

(1, 1, 3,−)

(0, 0, 3,+)

(0, 1, 3,+)

(1, 0, 3,+)

(1, 1, 3,+)

(0, 0, 4,−)

(0, 1, 4,−)

(1, 0, 4,−)

(1, 1, 4,−)

Figure 4.11: Part of SPX(2, 2,m) for large m

In [48] it is shown that the wreath product W = Zm2 oDm acts on the vertex set of
SPX(2, n,m), that is, on V (SPX(2, n,m) = Zn2 × Zm × {+,−} via the following action:
for g = (g0, . . . , gm−1, h) ∈W , with g0, . . . , gm−1 ∈ Z2 and h ∈ Dr, set

(v0, v1, . . . , vn−1, x,±)g =

{
(v0 + gx, v1 + gx+1, . . . , vn−1 + gx+n−1, x

h,±) if h ∈ Zm,

(v0 + gx, v1 + gx+1, . . . , vn−1 + gx+n−1, x
h,∓) otherwise,
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where the subscripts are to be understood modulo m and where xh denotes the image of
x under h. Clearly the action is vertex transitive and faithful, that is, any two different
group elements act differently on V (SPX(2, n,m).

In fact, by [48, Lemma 2.8] W is the full group of automorphisms of SPX(2, n,m) if
m ≥ 5 and 1 ≤ n ≤ m− 1.

If we choose g such that g0, g1, . . . , gn−2, gn, . . . , gm−1 and h are equal to 0, then

(v0, v1, . . . , vn−1, x,±)g = (v0, v1, . . . , vn−1, x,±)

for n ≤ x ≤ m. Calling the subgraph of SPX(2, n,m) that is spanned be the vertices with
the same x the x-th column, this means that g fixes all vertices in the last m−n columns.
Because n ≤ m − 1, at least one column is fixed pointwise. In other words, at least one
vertex is moved in columns 0 to n − 1, and all vertices in the other columns are fixed
pointwise.

In [48] it is observed that the subgraphs spanned by the vertices whose n+ 1-st coor-
dinates are x and x+ 1 consist of disjoint quadrangles. We call these subgraphs columns
of quadrangles, not to be confused with the columns of matching edges. If we fold an
SPX(2, n,m) graph, where n ≥ 2, then we obtain an SPX(2, n − 1,m) graph. Clearly
SPX(2, 1,m) is a ring of quadrangles and, folding SPX(2, 1,m), we reach a ring consisting
of m double and m single edges. Because defolding is unique, the Split Praeger–Xu graphs
SPX(2, n,m) are exactly our P (n,m) graphs.

Theorem 4.4.7 Let G be an SPX(2, n,m) graph where m ≥ 5 and 1 ≤ n ≤ m− 1. Then
G admits an asymmetrizing 2-coloring with ρ(G) = dmn e, unless dmn e = 2. Then ρ(G) = 3.

Proof By [48, Lemma 2.8] the group W defined above is Aut(SPX(2, n,m)). Its action
on the columns is that of Dm. We choose a vertex v−0 in the half column (0,−) and its
images under the action of n, 2n, . . . , (bmn c − 1)n ∈ Zm < Dm. We color these vertices
black, together with the vertex v+

0 that is adjacent to v−0 in column (0,−). Notice that
v−0 is fixed when v+

0 is fixed, and that setting v+
0 black prevents shifting and switching of

the columns by an element of order 2 in Dm, if ρ(G) = dmn e 6= 2.

The only color preserving automorphisms stabilize the columns (and half columns).
Suppose g is an automorphism moving a vertex in half column (x,±). We can assume
that 0 ≤ x < dmn e.

It is of the form g = (g0, . . . , gm−1, 0) and its action is

(v0, v1, . . . , vn−1, x,±)g = (v0 + gx, v1 + gx+1, . . . , vn−1 + gx+n−1, x,±).

Hence there is an i such that vi 6= vi + gx+i, which means that gx+i 6= 0. But then
g(x+j)+i−j = gx+i 6= 0 for −i ≤ j < n − i and g(j) = (g0, . . . , gm−1, j) moves (x,±) into
(x+ j,±) for −i ≤ j < n− i.

If x = 0 we can thus find a j such that g(j) moves (0,±) into a column that has no
colored vertex, which is not possible, because (0,±) contains v0. If x 6= 0 there is a g(j)
that moves (x,±), which contains a colored vertex, into (0,±), which is also not possible.

Hence our coloring breaks Aut(SPX(2, n,m)).
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Proposition 4.4.8 The 2-distinguishing cost of the SPX(2, n,m) graphs that are not cov-
ered by Theorem 4.4.7 is 3.

Proof We have to treat the cases m = 3 and 4.

SPX(2, 1, 3) has distinguishing cost 3, as depicted in Figure 4.8. By Lemma 4.4.5
this implies that ρ(SPX(2, 2, 3) ≤ 3. As we know that it cannot be 2, we infer that it is
ρ(SPX(2, 2, 3) = 3.

SPX(2, 1, 4) has distinguishing cost 4, as is easily seen by extending the argument for
SPX(2, 1, 3). ρ(SPX(2, 2, 4) = 3, which can be checked directly. Then ρ(SPX(2, 3, 4) = 3
by the same arguments as before.

Proposition 4.4.9 The distinguishing cost of the P (n,m) graphs for n ≥ m ≥ 3 is 1.

Proof P (m,m), m ≥ 3, is obtained from SPX(2,m− 1,m) by defolding. It has the same
structure as SPX(2,m,m) if we relax the condition that n ≤ m − 1 in the definition of
SPX graphs. Also W acts on SPX(2,m,m).

Let us consider the case m = 3 first. Suppose we color (1, 1, 1, 0,+) in G = SPX(2, 3, 3)
black. Since G has two arc orbits there must be an automorphism that maps (1, 1, 1, 1,−)
into (1, 1, 0, 1,−), and (1, 1, 1, 1,+) into (1, 1, 0, 1,+). Thus the set of neighbors of the
vertex (1, 1, 1, 1,+) into the set of neighbors (1, 1, 0, 1,+), that is the set of vertices
{(1, 1, 1, 2,−), (1, 1, 0, 2,−)} into {(1, 0, 1, 2,−), (1, 0, 0, 2,−)}, and hence mapping the set
{(1, 1, 1, 2,+), (1, 1, 0, 2,+)} into {(1, 0, 1, 2,+, (1, 0, 0, 2,+)} . But this is not possible,
because (1, 1, 1, 2,+) = (1, 1, 1, 0,+), and (1, 1, 1, 0,+) is fixed.

But then P (3, 3) has three arc orbits, 2-distinguishing cost 1, and thus all P (n, 3)
graphs for n > 3 by Lemma 4.4.5.

Similarly we show that γ(P (m,m)) = 1 for m > 3, and hence this also holds for all
P (n,m) with n ≥ m > 3.

We wish to point out the argument for P (3, 3) does not work for P (2, 2), because
SPX(2, 2, 2) has quadrangles that are not in the columns of quadrangles.

This covers all finite graphs with two arc orbits, one of which consisting of quadrangles,
that can be reduced to a ring of double and single edges. However, such a sequence of
foldings can also end in other graphs. And this is what we will discuss now.

The sequence of foldings could end in graphs of girth 3 or 5. If it is 3, then it is easy
to show that between two triangles in the reduced graph there can be at most one edge.
By Proposition 4.4.3 these graphs have 2-distinguishing cost at most 3, and thus also all
the graphs reached by sequences of defoldings.

If the girth is 5, then it can be the Petersen graph, the pentagondodecahedron, or a
graph where there is at most one edge between two pentagons. The Petersen graph has
distinguishing number 3. By [28] it can be distinguished by coloring one vertex red and
two selected other vertices black. But the preimage of the Petersen graph, and a fortiori,
for all graphs reached by a sequence of unfoldings, have distinguishing number 2 and cost
1, see Figure 4.12. For the pentagondodecahedron we have shown that its 2-distinguishing
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Figure 4.12: The preimage of a Petersen graph under folding.

cost is 3. Similar to the Petersen graph, preimages of the pentagpentagondodecahedron
have distinguishing cost 1.

If the sequence of foldings ends in a graph of girth at least 6 we invoke Theorem 4.4.19
to see that they have 2-distinguishing cost 2, unless the graph reached is symmetrically
connected, see Definition 4.4.15. We have no examples of finite symmetrically connected
graphs, but if they do exist they have an orbit of cycles of at least length 8, with two
edges between any two connected ones, compare Figure 4.16. If we distinguish one cycle
with three black vertices, then the neighboring cycles can be fixed by one black vertex
each. We continue this way until only one cycle in the orbit remains. It must be fixed,
because all of its neighbors in other cycles are fixed. Thus the density of this coloring is at
most 1

8 , and that of any graph folded to it at most 1
16 . Of course this extends to infinite

symmetrically connected graphs.

For the finite case we have thus shown:

Theorem 4.4.10 Let G be a finite graph with two arc orbits, where one induces a set
of squares and the other a matching. If G is an SPX-graph SPX(2, n,m), then its 2-
distinguishing density is max(3, dmn e). If G is symmetrically connected, then its 2-distin-
guishing cost is at most 1

16 , and in all other cases ρ(G) is at most 3.

Infinite Split Praeger–Xu graphs

We now extend the definition of Split Praeger–Xu graphs to infinite graphs, show that they
have uncountable automorphism groups, and determine their 2-distinguishing density.

If we replace Zm in Definition 4.4.6 by Z, the we obtain infinite graphs, for which we
introduce the notation SPX(2, n). Their vertex sets are Zn2 × Z× {+,−}.

Theorem 4.4.11 Each SPX(2, n) graph admits an asymmetrizing 2-coloring of density
δ(G) = 1

n2n+1 .
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Proof Let W be the group Z∞2 o D∞ with the following action on V (SPX(2, n)): for
g = (. . . , g−1, g0, g1, . . . , h) ∈W , with . . . , g−1, g0, g1, . . . ∈ Z2 and h ∈ D∞, let

(v0, v1, . . . , vn−1, x,±)g =

{
(v0 + gx, v1 + gx+1, . . . , vn−1 + gx+n−1, x

h,±) if h ∈ Z∞,

(v0 + gx, v1 + gx+1, . . . , vn−1 + gx+n−1, x
h,∓) otherwise.

As in the finite case one sees that the action is faithful, vertex transitive, and that
the set of columns is stabilized. By the same arguments as before one also sees that
there are group elements that move at least one vertex in columns 0 to n− 1, but fix all
other vertices. Hence there are automorphisms that move at least one vertex in columns
kn to (k + 1)n − 1 and fix all other vertices. Let A be the set of these automorphism.
A has infinitely many elements, the product of the elements in any subset of A is well
defined, and different subsets yield different products. Hence the number of automorphism
of SPX(2, n) is uncountable. By a result of [6] this means that SPX(2, n) has no finite
asymmetrizing set.

Although W stabilizes the set of columns, we have not shown this for Aut(SPX(2, n))
yet. To see this, we first observe that folding SPX(2, n) results in SPX(2, n− 1), and that
the folding preserves columns. Furthermore, any automorphism of SPX(2, n) induces an
automorphism of SPX(2, n − 1) by Lemma 4.4.4. Hence, if columns are not preserved in
SPX(2, n), then they are not preserved in SPX(2, n−1), and consequently not in SPX(2, 1),
which is not the case. Therefore the set of columns is preserved.

We now choose an integer k that is a multiple of n larger than 5 and consider the
columns (ik,±), i ∈ N. There are 2n edges in each column, that is, a finite number, and
there are only 2n! ways to order them. By the vertex transitivity of SPX(2, n) there are
automorphism ϕi that map column (0,±) into column (ik,±) at least two of them preserve
the order of the edges in the columns, say ϕr and ϕs, where r < s. But then ϕsϕ

−1
r maps

(0,±) into (s − r,±). We now identify the half column (s − r,+) with the half column
(0,−) to obtain a graph H isomorphic to SPX(2, n, (s− r)n).

Clearly the action of the vertex stabilizer of v0 on the first n columns of SPX(2, n) is
the same as that of the vertex stabilizer of v0 in H on its first n columns. And, for this
case we have shown, that fixing v0 (and the order of the columns) fixes each element of
the first n columns.

Similarly, using vertex transitivity, that fixing a vertex in the half column (jn,+) fixes
all vertices in the n columns (jn,+), . . . , ((j + 1)n − 1,+). Coloring v0 and one vertex
each in the half columns (jn,+), where n 6= 0, prevents translation of the columns and
inverting their order, so all the black vertices remain fixed, and by the above remark also
all vertices in their columns and the following n − 1 columns. This fixes all vertices of
SPX(2, n).

Because the number of vertices in n columns is n2n+1, the density of this coloring is
1

n2n+1 .

If one folds an SPX(2, n) graph, where n > 1, one obtains the graph SPX(2, n − 1),
and if one folds SPX(2, 1) the result is a chain of single and double edges. The SPX(2, n)
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are thus exactly the graphs with two arc orbits consisting of a set of quadrangles and a
matching that can be reduced to a chain of single and double edges by a finite number of
foldings.

Ends of graphs

An infinite vertex-transitive graph can have either 1, 2 of infinitely many ends. The ones
with two ends are exactly those with linear growth.

We show now that infinite vertex-transitive graphs with two ends that consists of a
set of quadrangles and a matching either have finite cost, or are SPX(2, n) graphs with
strictly positive density.

Theorem 4.4.12 Let G be an infinite graph with two ends consisting of quadrangles con-
nected by one edge. Then ρ(G) = 3, δ(G) = 0, or δ(G) = 1

n2n+1 for some n ≥ 1.

Proof If G has two ends, we know by [31] that the graph has the structure of finitely
many layers of infinite paths. Such graphs are called strips by Jung and Watkins [36].
Hence, performing the folding we reach in finitely many steps either a graph with girth
not equal to 4, or the infinite chain with alternating single and double edges.

If we reach an infinite chain with alternating single and double edges, then G =
SPX(2, n), for some n ≥ 1, and the asymmetrizing density of G is 1

n2n+1 .

Otherwise, let H be the graph obtained after a finite number of foldings. From Sub-
sections 4.4.1 and 4.4.3, where we discuss graphs with girth 3 or at least girth 5 we infer
that they have 2-distinguishing cost at most 3 or 2-distinguishing density 0. By Lemma
4.4.5 these colorings can be extended to asymmetrizing colorings of G with the same cost
or density.

If the graph has 1 or infinitely many ends, we cannot assure that the sequence of
foldings will stop in finitely many steps. This leads to the following problem:

Open Problem: Are there other graphs consisting of quadrangles connected by one
edge with strictly positive density?

By observations about the edge transitivity of the contracted graph, where we contract
all quadrangles to a single vertex, we tend to assume that the only cubic graphs with
positive density are the SPX(2, n) graphs.

4.4.3 Girth at least 6

Now we assume that the minimal cycle has length at least six. In general it is possible to
distinguish every vertex in a cycle with girth g ≥ 6 by three vertices with the following
coloring: Take two adjacent vertices v, w of the cycle and color them black. Additionally
color a third vertex z with d(v, z) = 2 or d(w, z) = 2 and z 6= w 6= v black (Figure 4.13).
It is easy to see, that only the identity preserves this labeling. But we will prove that in
some cases taking into account the whole structure of the graph it is enough to color just
two vertices to make all vertices distinguishable.
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Figure 4.13: The standard coloring for fixing a cycle with g ≥ 6.

Firstly, we will consider graphs, where the g-cycles are connected by two edges. In
the second step, we show, how we get from the coloring in this case to graphs where the
g-cycles are connected by one edge. As the g-cycles are connected by two edges, g has to
be of the form 4n+ 2 resp. 4n for n ≥ 2. We are separating the cases 4n and 4n+ 2 and
start with the case 4n + 2, which will be a bit easier to handle, because the 4n case will
show some problems caused by possibly too much symmetry. Moreover, we assume that
we have (m, 4n+ 2)-cycles. Otherwise, we can apply Theorem 4.4.2.

The basic situation is now that we have 4n+2 big cycles connected with each other by
edges starting at opposite sites. These cycles form (m, 4n + 2)-cycles. We want to color
only 2 vertices to achieve symmetry breaking. We do this as follows:

P a

Q

R

S

T
b

e

f

g

P

Q

R

S

T

Figure 4.14: A part of an (m, 10)-cycle of decagons with its asymmetrizing coloring and
the corresponding part after the contraction of the decagons.



4.4. GRAPHS WITH TWO ARC ORBITS 89

Coloring 1: Choose one of the (m, 4n+2)-cycles and look only onto the participating
(4n+ 2)-cycles and the connections between them. Now choose one of the (4n+ 2)-cycles
and color a vertex next to a vertex which has an edge e to the next (4n+ 2)-cycle in
the (m, 4n + 2)-cycle. We call this vertex a. From a we choose the (4n+ 2)-cycle that
has a distance of bm/2c − 1 in terms of cycles and going into the direction of e. In this
(4n+ 2)-cycle we color a vertex that has a distance of 2 to one of the edges f, g which
lead back to a, see Figure 4.14.

In the following we will show that this coloring is sufficient to fix the whole graph.
The proof will be split into two parts. Firstly, we prove that the chosen (m, 4n+ 2)-cycle
with all its vertices is fixed. Then, we show that the whole graph is fixed if there is one
fixed (m, 4n+2)-cycle. One important tool for showing this, is looking at the contracted
graph, where we contract all (4n+2)-cycles to a single vertex. Double edges will be merged
to one edge and the resulting graph has degree 2n+ 1, is edge- and vertex-transitive and
has girth m. The case of (4n+2)-cycles is less complex than treating 4n-cycles as 2n+1 is
always odd and gives a certain amount of asymmetry which allows to use the uniqueness
of shortest paths.

Girth equal to 4n+ 2 for n ≥ 2

Lemma 4.4.13 Using Coloring 1 there is no automorphism which preserves the coloring
and moves a vertex in the colored (m, 4n+ 2)-cycle.

Proof We choose an (m, 4n + 2)-cycle and apply Coloring 1. We call the two colored
vertices a and b. Now, we consider all the paths between a and b which run through the
least amount of (4n+ 2)-cycles. We immediately see that all these paths run through
exactly the same (4n+ 2)-cycles by the following argument. We consider the contracted
graph, where all (4n + 2)-cycles are contracted to one vertex. In this graph this path is
unique. This contracted path has length bm/2c − 1 by construction. If there would be
another path with this length between the two points we would find a cycle with fewer than
m vertices – a contradiction to m being minimal. We conclude that all the (4n+ 2)-cycles
containing these paths can be at most mapped onto one another and to none else.

a and b cannot be mapped to each other, because the start and end of the paths have
different length in their corresponding (4n+ 2)-cycle. Thus, the order of the (4n+ 2)-
cycles stays the same in the graph and can at most be mapped onto itself. The only
possibility for one of these (4n+ 2)-cycles is to be reflected along the axis fixing a pair of
vertices that have edges to one of the other (4n+ 2)-cycles in the m-cycle while the other
pair of vertices to the other (4n+ 2)-cycle gets mapped to each other. But by the fact
that we have (4n+ 2)-cycles it follows that this is not possible, because the paths passing
to the next cycle have always different lengths if one wants the path to start at the two
different incoming edges and leave at the same one – (4n+ 2) /2 is always odd.

It follows now that all the paths between a and b have to be fixed completely as well,
and that all the bm/2c involved (4n+ 2)-cycles are fixed.

Let X and Y be the two neighboring (4n+ 2)-cycles of the ends of the fixed (4n+ 2)-
cycle-path along the m-cycle. Those two cycles can only be reflected on the axis given
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by the two vertices connected to the fixed (4n + 2)-cycle-path. But this reflection would
imply that the (4n + 2)-cycle-path between X and Y of length bm/2c − 2 would have
to be mapped to another path of this length between X and Y . This would yield a
(m′, 4n+ 2)-cycle including X and Y of size

m′ = 2
(
bm

2
c − 2

)
+ 2 = 2bm

2
c − 2 < m,

a contradiction. Thus, this reflection is not possible and it follows that there is no automor-
phism which preserves Coloring 1 and moves one of the other vertices in the (m, 4n+ 2)-
cycle.

For the next proof, we need the following observation. For now, we have one (m, 4n+2)-
cycle completely fixed. Consequently, all the neighboring (4n+ 2)-cycles are fixed in their
position and only reflection along the axis of the connecting edges to the fixed (m, 4n+2)-
cycle is possible. As (4n + 2)/2 is always odd, the reflection results in pairwise changing
of the other edge-pairs. Looking at the contracted graph, this corresponds to the pairwise
exchange of edges. We call this the property of joint edges.

Theorem 4.4.14 Using Coloring 1 the only remaining color-preserving automorphism of
a vertex-transitive graph containing an (m, 4n+ 2)-cycle is the identity.

Proof By the preceding lemma we have one (m, 4n+ 2)-cycle, which is completely fixed.
Now, we look at the contracted graph, which is edge-transitive. All the neighbors of
the m-cycle in the contracted graph are fixed as well with the possibility of exchanging
pairwise the adjacent edges (property of joint edges).

Now, we want to show that such edge exchanging is actually not possible. We are
going to look at m-cycles that have to pass through these adjacent edges, and see that a
possible pairwise exchange of the edges will lead to a contradiction.

Call one of the vertices of the fixed m-cycle c and one of the neighbors outside the cycle
f . We assume that the mentioned pairwise exchange of adjacent edges can be done at f .
Due to the edge-transitivity there has to pass an m-cycle through the edge cf which passes
through another edge adjacent to f , call this edge e1. By the fact that cf is fixed we get
through the assumed possible exchange that there has to pass another m-cycle through
the joint edge e2 of e1 and cf . Both these mentioned m-cycles have to pass through the
same edge at c since all the edges at c are fixed. All of this implies that there are actually
at least 2 of these m-cycles passing through every edge, in fact the amount of m-cycles
always has to be even by repeating this argument whenever one finds an odd number of
m-cycle running through an edge. Now we have two adjacent edges contributing to two
different cycles and we even get, by extending above argument, that if there passes a single
m-cycles through two adjacent edges it has to be actually two such m-cycles and these
cycles are joint in the way of joint edges, see Figure 4.15. We now get back to our already
fixed m-cycle. Starting from there we will see that there are infinitely many different
m-cycles in a bounded area, leading to a contradiction.

So far we only know of a single m-cycle passing through all the edges of our fixed
m-cycle. Hence, we can choose two adjacent edges of the cycle and see that through these
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cycle 1 cycle 2

Figure 4.15: Cycles induced by the property of joint edges.

there has to pass at least another m-cycle. Since our starting m-cycle is fixed, one of
these new m-cycles has to be completely fixed, as well, with all its vertices even in the not
contracted graph.

By the fact that we assume that the joint edges at f can be exchanged we know that
this newly selected m-cycle cannot pass through the edge cf , otherwise all the edges at f
would be fixed, leading to a contradiction.

But this m-cycle we are looking at right now still has to leave our starting cycle at
some vertex through an edge that is not part of the starting m-cycle. Call the two edges
at this vertex x1 and x2. There is now only one m-cycle going through x1 and x2. By the
observations above there has to pass another m-cycle through these. Now we can continue
infinitely many times like this and always find a new fixed m-cycle. This happens since
none of these can run through cf and we always have an edge adjacent to the starting
m-cycle that has an odd number off m-cycles running through it. Ultimately we obtain
a contradiction by finding infinitely many different m-cycles on a bounded ball of size m

2
around the starting m-cycle. Thus, the edges at f are actually fixed and this holds for all
neighbors of the m-cycle, as well.

Using similar argumentation of joint edges and infinitely many m-cycles we get the
same result for all the neighbors of our newly fixed vertices.

Finally, by continuing in this way inductively, sphere by sphere around the starting
m-cycle, we can fix the entire graph.

Girth 4n for n ≥ 2

Now, we continue with the more difficult case of (m, 4n)-cycles. Here we have two subcases
depending on the connections inbetween the 4n-cycles. The first subcase follows the same
argumentation as the 4n+ 2 case. The other subcase of symmetrically connected graphs
will turn out to be more difficult and will not be treated fully in this dissertation. We will
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give an example, where we obtain a graph with nonzero density and explain our conjecture.
Now, we will explain what symmetrically connected means.

Definition 4.4.15 The 4n-cycles in an (m, 4n)-cycle are connected symmetrically if
one pair of opposite vertices is connected to one neighboring 4n-cycle and the pair of
edges with distance n to the first pair is connected to the other neighboring 4n-cycle.

Figure 4.16: Symmetrically connected 8-cycles with the demonstration of a flip without
influence to the other 8-cycles.

Corollary 4.4.16 Assume that the smallest cycle is of size 4n with n ≥ 2 and that the
4n-cycles are not symmetrically connected inside the corresponding (m, 4n)-cycle. Then,
using Coloring 1, the identity is the only remaining color-preserving automorphism.

Proof Since there are no symmetrical connections, we can find again a unique 4n-cycle-
path as in Lemma 4.4.13 after applying Coloring 1. Continuing with the same arguments
as in Theorem 4.4.14, we obtain a completely fixed graph.

In the case of symmetrical connections, the 4n-cycles in the interior of the mentioned
4n-cycle-path in the aforegoing proof can be flipped along the axis of their incoming
and outgoing edges without influencing the other cycles. Hence, the uniqueness of the
connecting path between the colored vertices is lost.

If there are two cycles in the graph, which are symmetrically connected, then there is
at least one (m, 4n)-cycle, where all cycles are symmetrically connected.

Lemma 4.4.17 Let there be an (m, 4n)-cycle where every 4n-cycles can be mapped to each
other by rotating the (m, 4n)-cycle, and let there be one 4n-cycle S that is symmetrically
connected to its neighboring 4n-cycles R and T inside the (m, 4n)-cycle. Then all 4n-cycles
in the (m, 4n)-cycle are symmetrically connected to each other.
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Figure 4.17: The symmetrcial connection of S induces the symmetrical connection of T
and the existence of such edges f1 and f2 connecting T to R′.

Proof Let s be a vertex with an edge from S to T and let t be the corresponding vertex
in T . By mapping s to t, we see that S and T get exchanged as cycles, and R gets mapped
to the other neighbor R′ of T , see Figure 4.17. Since S has symmetrical connections in
the (m, 4n)-cycle by our assumption, this gets inherited to its image, which is T . Thus,
the connections of T inside this (m, 4n)-cycle are also symmetrical and T is symmetrically
connected to R′. By induction this holds for the whole (m, 4n)-cycle.

The smallest possible girth of such graphs is 8. For breaking all automorphisms in one
(m, 8)-cycle it suffices to color in every other 8-cycle one vertex black to prohibit the
flipping of the 8-cycles. This yield a density of at most 1

16 . For bigger girthes we obtain
similarly a density of less than 1

16 . One symmetrically connected graph with positive
density is depicted in Figure 4.18. This graph arises from the SPX(2, 2) by substituting
every quadrangle by an 8-cycle and choose the connecting edges such that the 8-cycles are
symmetrically connected. Using Theorem 4.4.11 and identifying opposite edges with each
other we see that the density of this graph is 1

32 . We strongly believe that all symmetrically
connected graphs with positive density are constructed in a similar way and form a sort
of stripe. As soon as the graphs are more intertwined or form a cactus graph, we could
show in many cases that the graph has distinguishing density 0. But we will leave this as
an open problem to the reader.

Open problem: Are there any other symmetrically connected graphs with girth at
least 8 and connected by double edges with positive density?

One connecting edge

After studying (m, 4n)-cycles where the cycles were connected by two edges, we turn to
(m, 2n)-cycles, resp. (m, 2n + 1)-cycles, where the cycles are connected by one edge. We
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Figure 4.18: Replacing each quadrangle by an symmetrically connected 8-cycle in a
SPX(2, 2) graph.

assume n > 2 in the even case and n ≥ 2 in the odd. Similarly to the two edge cases we
get costs of 2 in the case of (m, 2n + 1)-cycles and in the even case if the cycles are not
symmetrically connected, see Figure 4.19. This is an immediate consequence of the two

Figure 4.19: The non symmetrical and symmetrical connection in the even case and the
standard colorings on the case of ρ = 2.

edge cases, as it uses the same arguments. The problematic feature of the symmetrical
connections is again, that the reflection along the axis in one 2n-cycle does not influence
the rest of the cycle and a path entering and exiting the cycle through these edges keeps
the same length under reflection. We believe here as well, that we need an infinite number
of colored vertices to break all automorphisms. This will follow from the open problem in
the last section and we leave this as well as an open problem.

For the remaining cases of single edges we go along the line of the case 4n + 2 for
double connections Theorem 4.4.14.

Theorem 4.4.18 Let G be a graph with (m, 2n + 1)-cycles with n ≥ 2, or without sym-
metrically connected (m, 2n)-cycles. Then, the only automorphism that preserves Coloring
1 is the identity.
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Proof The proof goes along the case of (m, 4n+ 2)-cycles respectively without symmet-
rically connected (m, 2n)-cycles. The path between the colored vertices of Coloring 1 is
unique and this fixes the whole m-cycle. There is again the property of joint edges, which
yields inductively that the whole graph is fixed by Coloring 1, as in the proof of Theorem
4.4.14.

Finite graphs

We can now determine the 2-distinguishing cost for finite graphs with two arc orbits and
girth at least six were the g-cycles are not symmetrically connected.

Theorem 4.4.19 Let G be a finite graph, with two arc orbits, g(G) ≥ 6 and the g-cycles
are not symmetrically connected. Then ρ(G) = 2.

Proof Let G be a finite graph which consists of one of the following structures: (m, 4n+
2)-cycles with double connections, (m, 2n + 1)-cycles with single connections, (m, 4n)-
cycles with not symmetrically connected double connections or (m, 2n)-cycles with not
symmetrically connected single edges. Then G has ρ(G) = 2 using the standard coloring
as for infinite graphs. This follows immediately with the same arguments as for its infinite
versions.

If G is a finite graph with two arc orbits where the (m, 2n)- resp. (m, 4n)-cycles are
symmetrically connected, we cannot state a precise asymmetrizing cost. We conjecture,
that the cost is related to the size of the graph itself.

Open problem: What is the 2-asymmetrizing cost of a finite graph with two arc
orbits where the cycles are symmetrically connected?

4.5 A classification of vertex-transitive cubic graphs with
girth 5 and their 2-distinguishability

We conclude with a direct proof that every connected, vertex-transitive cubic graph with
girth equal to 5 is either 2-distinguishable or the Petersen graph. The proof is different
from the proof in [21] and also covers infinite graphs. This will be done by observing
special structural properties of vertex-transitive graphs with girth equal to 5.

Lemma 4.5.1 Let G be a connected, vertex-transitive, cubic graph that contains a pen-
tagon, but neither squares nor triangles. Then it is the Petersen graph, the pentagondo-
decahedron or consists of distinct pentagons that are joined by at most one edge. Apart
from the Petersen graph, these graphs are 2-distinguishable.

Proof In the first case let G be a graph which contains two pentagons having two joint
edges, see Figure 4.20. As no shorter cycles are permitted, vertices a,c and d have at
least one neighbour, which is not part of the original two pentagons. Now, we see the
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Figure 4.20: Illustration of Property 1.

following property in Figure 4.20: The neighbours of each neighbour of a, namely b and
e, are pairwise connected. We call this property Property 1.

Due to vertex-transitivity, this property of a has to be true for all other vertices of
the graph. But each vertex has 3 neighbours and we cannot be sure for which pair of
neighbours of the other vertex Property 1 holds. Therefore we have to consider three
cases, see Figure 4.21: In case one a and e are already connected. Moreover b has already
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Figure 4.21: Three possibilities of applying Property 1.

three neighbours. Hence 2 and 4 have to be connected as well. In the second situation
a has to be connected to one neighbour of a neighbour of 3. But a has already three
neighbours. This together with the fact that e is already of degree three, as well, we
obtain the edge from 3 to 1. The same considerations yield the edge from 3 to 5 in the
third case. More edges can not be drawn immediately as the situation in Figure 4.22 can’t
be excluded.
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e
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Figure 4.22: This edge satisfies Property 1, as well.

All these graphs are isomorphic to two different graphs, see Figure 4.23. Choosing in
the left graph of Figure 4.23 vertex e to observe Property 1 and in the right graph vertex
d, we see again two possible outcomes, see Figure 4.24.
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Figure 4.23: One edge more after applying Property 1 once.
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Figure 4.24: Two edges more after applying Property 1 twice.

Having a closer look at a in the left graph we see a new property. We know b and e are
the neighbours of a which fulfill Property 1. Then the neighbours of the third neighbour
of a (1), namely 3 and 4, have to be connected to at least one connected pair of neighbours
of b and e. We call this property Property 2. In the right graph Property 2 must be
valid for all vertices, as well. Choosing b as a new central point in the left graph we obtain
the edge 24 and choosing e in the right graph, we obtain the edge 14, as the neighbor b of
a has already degree 3 and determines the connecting edge for Property 2. These graphs
are again isomorphic to one and the same graph, see Figure 4.25.
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Figure 4.25: Applying Property 2.
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Figure 4.26: The Petersen Graph

Applying here Property 1 and Property 2 to vertex a, we obtain the Petersen Graph.
This graph is not 2-distinguishable, see [28].

Secondly, let G be a graph which contains two pentagons with one joint edge. This
yields by vertex transitivity, that every vertex has to be part of two pentagons. As it is not
allowed that the graph contains shorter cycles then cycles of length 5 we can determine
all the vertices and edges, like in Figure 4.27. Our aim is to show that not just the edge
cd is a edge in between two pentagons, but all incident edges to d have to be joint edges
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of two pentagons.

a
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e

g
f h

i

Figure 4.27: Two incident pentagons.

Assume that cd is the only double edge, so dh and de are just contained in one pentagon.
Then, by vertex transitivity, this holds for every other vertex. But again, we do not know
which incident edge of another vertex will be a double-edge. Considering e we have two
possibilities, see Figure 4.28: Either ae is a double edge or ei. By our assumption, all the
other incident edges of e and a respectively i cannot be double-edges. Looking at the right
graph in Figure 4.28, we notice that this leads to a contradiction as the neighbors of i
have to be connected either to a neighbor of h or a, such that ei would be a double edge of
two pentagons. In the left graph we imagine the possible pentagon formed out of a, e and
i and their two neighbors. By vertex transitivity, b has to be part of two pentagons, as
well. Therefore, the third edge attached to b has to be a double edge. But all neighboring
vertices of b have already degree 3 and we would need the pentagon going through the
neighbor of a or f . But this yields more than one double edge incident to a or c and
contradicts our assumption that a vertex can have only one double edge attached.
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Figure 4.28: Contradiction in assuming just one incident double-edge

We conclude, that d cannot have only one incident double-edge and we assume, that
d has two incident double-edges. Applying vertex transitivity, this holds for every other
vertex. With very similar arguments as in the case of one double-edge a contradiction
to vertex transitivity will show up and we conclude, that d, and so every vertex, has
three incident double-edges and is part of three different pentagons. Excluding the case
of the Peterson graph we obtain immediately two new edges, see Figure 4.29. Completing
this observation with all vertices, we obtain the pentagondodecahedron and this is 2-
distinguishable using the coloring in Figure 4.29.

This leaves the case where our graph consists of pentagons which are connected by at



4.5. VERTEX-TRANSITIVE GRAPHS WITH GIRTH 5 99

a

b

c d

e

g
f h

i

Figure 4.29: Two more edges.

most one edge. A connection via two edges is not possible. If we assume that two pentagons
are connected by two edges, every vertex of a pentagon needs a partner vertex which is
connected to the same pentagon but two is not a divisor of five. The asymmetrizing
coloring and the cost of asymmetrizing of these graphs is presented in Section 4.4.1.
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