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1 INTRODUCTION

Motivation

The human heart has played an important role for understanding the body since antiquity.
In the fourth century B. C., the Greek philosopher Aristotle identified the heart as the most
important organ of the body. He characterized it as the seat of many human abilities, such
as intelligence, motion and sensation.

During the last millennium, the pursuit of knowledge of the human heart has gained
more importance, not only by a desire to understand the mechanical and electrochemical
processes, but also by the increasing clinical importance. According to the World Health
Organization (WHO) heart diseases are one of the top ten causes of death in western society,
see [137]. Thus, improving the understanding of the function of the human heart may lead
to new techniques for the diagnosis and treatment of heart problems.

Over the last decades, the amount of information about the mechanisms of the human heart
has rapidly increased. Now one is in the position to observe cellular and even sub-cellular
processes. Nevertheless there remain several unanswered questions. For example, it is still
not clear what happens in a human heart during defibrillation.

The most prominent and standard tool in cardiology is the electrocardiogram, abbreviated
ECG. It dates back to Wilhem Einthoven, see [59]. However, in the ECG one deals with
the human heart as a black-box and tries to reconstruct some dipole distribution. This
is known as the inverse problem of electrocardiography, see [94, 95, 175]. Furthermore,
one has no possibility to study complex arrhythmias in the human heart, by just using an
ECG. Nowadays one tries to model the human heart more detailed with sub-cellular to
macroscopic models as well as their coupled interaction. This reflects and is based upon
the increasing physiological knowledge about the human heart. These days it is known that
changes in the macroscopic scale of the heart, for example high blood pressure, acts down
to the sub-cellular and the genetic level but also vice versa. This is a quite new research
field know as epigenetics. For more information about epigenetics we refer to [132].

The newly developed models give the possibility for in silico simulations and enable studies
of heart diseases without harming a human patient. However, very few attention has been
payed to a strict mathematical formulation and to a numerical analysis. This marks the
starting point of this thesis. Our considerations will start with the state-of-the-art models
describing the electro-mechanical behavior of human heart tissue. Thus one arrives at
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2 1 Introduction

time-dependent essentially non-linear coupled systems of partial differential equations. This
serves us as motivation to consider space-time methods.

Space-Time Methods

A classic way of discretizing time-dependent problems is to discretize first in space with
finite elements and afterwards use suitable time stepping techniques. Seeing this procedure
in a space-time setting one obtains tensor product space-time elements. A schematic view
of such a discretization is depicted in Figure 1.1. Such kind of methods have been widely
used, see for example [34, 51, 52, 54, 91, 154, 155, 177, 185].

In this thesis we will use a different approach. Based on ideas developed in [129] we will
use a full space-time discontinuous Galerkin finite element method, abbreviated DGFEM.
Space-time discontinuous Galerkin finite element methods have already been used, see for
example [7, 31, 75, 87, 100, 130, 174, 182]. The origin of discontinuous Galerkin finite
element methods can be traced back to [149].

The idea behind the space-time methods is to think of the time variable t as an additional
spatial coordinate. This allows for rather general almost arbitrary discretizations of space-
time geometries, see Figure 1.2 for a schematic view. Thus one obtains, for example, a four
dimensional object for a time dependent problem over a three dimensional computational
geometry.

One major advantage of this space-time discretization is the possibility to rather easily apply
adaptive algorithms to resolve physical properties better in space and time simultaneously.
This idea has already been exploited in [2, 16, 53, 117, 150, 165]. Furthermore one can
apply ideas from domain decomposition, resulting in parallel space-time methods. This has
been already used in [129, Chapter 3].

Outline

Following on from this introduction, we give a brief overview of the relevant modeling
aspects for human heart tissue. This includes modeling of cardiac electric activity, passive
mechanical behavior as well as coupling of these two aspects. The first model will be
governed by the well-known Bidomain equations, while the second one will be described
by Cauchy’s equation of motion. Worth mentioning in this context is the strong anisotropic
nature of biological materials as well as their incompressibility. One needs to account for
those. Finally, we will describe possibilities of coupling the electric part of the models with
the passive mechanic part.
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Figure 1.2: Schematic view of possible arbitrary space-time discretizations with one spatial
dimension.



4 1 Introduction

In the subsequent Chapter 3 we will recollect basic mathematical tools needed to develop
a space-time discontinuous Galerkin method. This includes function spaces, abstract non-
conforming stability and error analysis as well as triangulations.

Continuing, in Chapter 4 we will apply the tools developed so far and derive a full space-
time formulation for the Bidomain equations. Consecutively, we will give a numerical
analysis based on a simpler linear problem. We will show boundedness and stability of the
resulting discretized problems and present convergence studies. After that, we will expand
our results to the non-linear case and present convergence studies, too.

In Chapter 5 we will present a discontinuous Galerkin finite element formulation based on
[138]. An overview of existing literature and a summary of the numerical analysis is given
and, furthermore, we will give details on the implementation of DGFEM for nonlinear
elasticity. The chapter will be closed with convergence studies.

Eventually, in Chapter 6 we will combine the two earlier developed building blocks and
apply them to a coupled problem of cardiac electro-mechanics. We will present the dis-
cretization with DGFEM as well as some numerical aspects and close this chapter with
numerical experiments.

We conclude in the last chapter with a short overview and an outlook to upcoming perspec-
tives and open questions.



2 MODELING

In this introductory chapter the basic facts about the underlying physiological and physical
problems will be recited. This part is inspired by and excerpted from [84, 94, 95, 167].

2.1 Physiological Background

The most studied organ in human physiology appears to be the heart, although its function
seems quite simple: it pumps blood through our body by contracting and expanding about
two and a half billion times during a normal lifetime of a human being. As a fact, heart
failure, either electrical or mechanical, is one of the most common causes of death in the
Western world, see [137].

The human heart is a muscular organ, weighing about 250 to 350 grams with a size compara-
ble to a fist, which, as denoted above, pumps the blood through the blood vessels, delivering
nutrients and removing waste from each organ, by repeated, rhythmic contractions. This
process, where the oxygen rich blood is delivered to the organs is called the systemic
circulation. Furthermore the human heart drives de-oxygenated blood through our lungs for
re-oxygenation (the so called pulmonary circulation). Figure 2.1 shows a schematic view of
the heart.

The coordination of the mechanical activity of the human heart is closely related to the
signal transportation in it. In order to develop the models one needs to understand the basic
underlying physiological principles. That is the goal of this section.

2.1.1 Facts & Figures

The location of the human heart is anterior to the vertebral column, i.e. the spine, and
posterior to the sternum, i.e. the chest. As one can see in Figure 2.1, the human heart
consists of four chambers: the right and left atria, which receive the blood from the body
acting as a large-volume low-pressure reservoir, and the left and right ventricles, which
actually do the predominant pumping of the blood through our body.

The mantle of the human heart consists of three layers. The outermost is referred to as
epicardium, which mainly consists of collagen fibers and serves as a protective layer. The
middle one is called the myocardium, consisting of muscle cells, called myocytes, which

5



6 2 Modeling

Figure 2.1: Schematic view of the human heart [190]

do the actual contraction of the heart, and innermost the endocardium, like the epicardium
consisting of mainly collagen which serves as an interface between the heart wall and the
human blood. For more details on the physiological background of contractile myocytes we
refer to [95, Chapter 15] or [167, pp. 60 sqq.].

The thickness of the epicardium, about 100 µm, and of the endocardium, about 100 µm, is
much less than the one of the myocardium. Although it is not uniform but it is always many
magnitudes thicker than epicardium and endocardium. Epicardium and endocardium being
considered as mere protective respectively interfacing layers it is justified to restrict one’s
attention and model to the myocardium itself. Following [84] we adopt the assumption, that
the myocardium can be described as a continuum composed of laminar sheets of parallel
myocytes arranged in fibers, see [72] for a discussion. Figure 2.2 shows the basic structure
of the left ventricle. It was extracted from [84]. As one can see the fiber direction of these
muscles rotates, in a mathematical positive sense, throughout the wall thickness from 50◦

to 70◦ near the epicardium to −50◦ to −70◦ near the endocardium. The organization of the
myocardial layers is characterized best by a right-handed orthonormal set of basis vectors
( f 0, s0,n0), denoted fiber direction, sheet direction and sheet normal direction respectively.
According to [84] we shall use the local index set { f , s,n} for referring to fiber, sheet and
normal direction. The idea behind this will be explained in Section 2.2.5. Furthermore we
will use the pairs f s, f n and sn when referring to the fiber-sheet, fiber-normal and sheet-
normal planes respectively. For a detailed overview on the structure of the myocardium
we refer to [68, 84, 109, 110, 111, 159] as a starting point. The passive mechanical model
of the myocardium is presented in Section 2.3.8. The mechanical response of the human
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Figure 2.2: Muscle structure in the human heart [84, p. 3448, Figure 1.].

(a) shows a schematic view of the left ventricle where a small block of myocardial tissue
has been cut out.

(b) shows the structure of the muscle from endocardium to epicardium.
(c) shows five special longitudinal-circumferential layers at varying thickness of the

myocardium, from 10 to 90 per cent of the wall thickness.
(d) shows the make-up of myocytes, with embedded collagen fibers and the local right-

handed orthonormal fiber coordinate system with the fiber axis f 0, sheet axis s0 and
sheet-normal axis n0.

(e) shows a cube of layered tissue with local coordinates (X1,X2,X3) which is used to
develop the mechanical models in [84].
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heart relies on a very complex electro-chemical signal conduction system which will be
discussed in the next section.

2.1.2 Signal Conduction & Overview of the Cardiac Cycle

For a more detailed description about the signal conduction of the human heart the reader is
referred to [115, 167].

Cardiac tissue is called a functional syncytium of myocytes. This means that cells are
separated morphologically but connected through so-called gap junctions. Gap junctions
enable the cells to exchange different ions and molecules, like e.g. Na+ or adenosine
triphosphate (ATP), with each other. See [103] for more details on the role of ATP. This
transfer between cells is one of the reasons why the heart muscle can contract so fast. For
more details on gap junctions the reader is referred to [167].

Myocytes have two very important abilities, namely they are excitable and contractile. The
first means, that they can transport electric potentials and these potentials cause the cells
to actually contract. For a detailed physiological overview the interested reader may refer
to [167, p. 60] and also [69, 79, 88] and for a detailed mathematical modeling overview
one should refer to [95, Chapter 15]. The excitability of the myocytes is fundamental for
understanding the functionality of the human heart and will be addressed in Section 2.2.5.
However, to ensure correctness of the complex process of pumping blood through our
body, there is an intense communication and synchronization between the cells, which is
controlled by the signal conduction system of the heart as depicted in Figure 2.3.

The electrical activity of the human heart starts in a bunch of cells known as the sinoatrial
node, short SA node, which is found just below the superior vena cava of the right atrium.
The cells in the SA node are very special cells, as they work as autonomous oscillators,
meaning that they can alter their electric potential without effects from outside. This change
of electric potential (known as action potential) is then mitigated through the heart, starting
by the atria. The atria and the ventricles are separated by a wall which consists of non-
excitable cells. Thus the action potential cannot pass directly this barrier. However there
exists one pathway through this barrier: another bunch of specialized cells, known as the
atrioventricular node, or short AV node, located at the bottom of the atria. An important
property of the AV node is, that its conductivity is much smaller than in usual heart cells,
so these action potentials travel quite slow through these cells. This happens not without
ulterior motive. If the signal would pass the AV node as fast as it travels through other cells,
the ventricles would start to contract before the atria have ejected all of the stored blood into
the ventricles. After the signal has passed the AV node it branches out through a specialized
collection of cells known as the bundle of His, which is composed of Purkinje fibers. This
Purkinje fiber network spreads out in a tree-like way into the left and right bundle branches
all over the inside of the ventricles. The Purkinje fibers are connected to the ventricular
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Figure 2.3: Schematic view of the signal conduction system of the human heart [186].

muscle cells through junctions. When an action potential reaches a muscle cell from a
Purkinje fiber it causes it to contract, and so the whole ventricle starts to contract. The end
of the propagation of the action potential lies in the epicardial surface. After the signal has
reached this point, the whole contraction is reversed and starts again from the SA node.

Summary

This was a very brief, and by no means complete, overview of the cardiac cycle in a human
heart. It should be evident from the above paragraph, that there is a multitude of features
of the myocardium to study. First of all one needs to know how the electric potentials of
cells can be altered and how the “communication” of cells works, the latter leading to
the so-called ionic currents. Bearing in mind the goal, of describing the myocardium as a
whole (provided it can be modeled as a continuum), it is also of great interest how one can
describe the propagation of action potentials in the whole human heart without focusing
on the cellular structure. This will lead to the well-known Bidomain equations. Apart from
the electric propagation in the human heart one wants to take a glance at the mechanic
contraction of the heart. As said before, the contractile properties of myocytes are out of the
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scope of this thesis. We will stick to a pure formulation of the mechanical models from a
continuum mechanical point of view. However, the mechanical and the electrical activities
are not self-contained. They depend on each other, thus one needs to account for that too,
which will lead to a coupled multi-physics problem.

2.2 Cardiac Electric Activity

The electric activation of the human heart is a very complex procedure and relies on various
different aspects. This chapter is by no means complete and many of the physiological and
physical topics will just be touched on. A very good and detailed physiological overview of
the electric activation in the human heart is found in [99, 146, 167, 175]. The mathematical
modeling in this chapter is largely taken from [94, 95]. To be able to understand the
processes of the electrical activation one needs to start at the cellular level. Nevertheless,
it occurred many times in history of science that a simple approach used to describe the
electrical activity of the human heart, was very successful. This was the electrocardiogram
dating back to 1877. This shall serve as a motivation for the time being.

2.2.1 Modeling the Human Heart as a Dipole

This part is derived from [95, Chapter 12]. One of the oldest attempts to model the myo-
cardial activity dates back to 1877, when the first electrocardiogram was recorded by
Einthoven. For a more detailed view on the historical background we refer to [19, 59]. It
has been known since then that the action potential — this is the potential difference across
the cardiac cell membrane and it is the actual signal in the human heart which is transported
— of the human heart generates an electrical potential field that could be measured on the
body surface. In a first approach, the human body was modeled as a volume conductor.
This means, when there is a current source somewhere in the body, currents will spread out
throughout the body. With those currents flowing, one can measure the potential differences
between any two points of the body’s surface, given a voltmeter which is sensitive enough.
Potential differences are observed whenever the current sources are sufficiently strong. There
are three of such occurrences. When the action potential is spreading across the atria, there
is a measurable signal, called the P-wave. When the action potential is propagating through
the wall of the ventricles, there is the largest of all deflections, called the QRS-complex. A
schematic view of a single ECG recording is depicted in Figure 2.4.

2.2.2 Cardiac Cells, Action Potentials and Ionic Currents

The volume conductor model, although very simple, is still the basis for the electrocardiog-
raphy in modern medicine. However, to get a more profound understanding of the electric
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Figure 2.4: Schematic view of the sinus rhythm of the heart [191].

activation of the human heart, and because of the evolving knowledge about epigenetics,
as mentioned in the introduction, one needs to take account of some physiological details.
First of all one needs to understand how cardiac cells can transport electric signals.

The Cell Membrane

From an electrical point of view, the most important part of a cell is its membrane. Therefore
details about the structure of a human cell will not be discussed here. The interested reader
may refer to [167]. For our end it is sufficient to know, that a human cell consists of a cell
membrane and the interior. Both the intracellular and extracellular space consist of, among
many other things, a dilute aqueous solution of dissolved salts, primarily NaCl and KCl,
which dissociate into Na+, K+ and Cl− ions. Outside the cell in the extracellular space one
also finds ions in a different concentration. Thus there is an electric imbalance and so cells
possess an electric potential, whose idle state is referred to as resting potential. Inside the
cell the electrical potential is denoted by ui outside with ue. The difference is denoted by
Vtm := ue − ui and is called the trans-membrane potential.

The cell membrane acts as a boundary separating the interior of the cell from its exterior.
More important, it is selectively permeable, meaning that it allows particles, among also ions,
to pass into and out the cell. It is composed of a double layer, or bi-layer, of phospho-lipid
— where lipid is specified by a category of water-insoluble, energy rich macromolecules,
like fats, waxes, and oils — molecules about 7.5nm thick. Figure 2.5 shows a schematic
view of a cell membrane.
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Exterior

Interior

Figure 2.5: Schematic view of the cell membrane [189]. For the thesis, the most important
part of the cell membrane are the channel proteins which have been marked red.

We will focus on a specific part of the cell membrane: the channel proteins, marked red in
Figure 2.5. These are protein-lined pores which actual regulate the passage of ions through
the cell membrane, thus maintaining concentration differences between the interior and the
exterior of a cell.

There are two possibilities to transport molecules through the cell membrane. The first one
is the so-called passive transport, by which a passive process which is solely driven by
concentration gradients is meant. The second possibility to transport molecules through
the cell membrane is by a so-called active transport. An active transportation process
involves the transportation of ions against their concentration gradient and thus is an energy
consuming action. The whole maintenance of the concentration differences are set up by
the active mechanisms of the cell. Also much of the metabolism of our body works due to
such transports. In literature it is also quite common to refer to those active processes as
pumps.

The most important of those pumps is the Na+–K+ ATPase, see [167], which uses the energy
stored in ATP molecules to pump Na+ out of the cell and K+ in. There are much more of
these pumps, and many of them use Calcium Ca2+. However, none of these processes will
be discussed here in detail as this would go beyond the scope of this thesis. The interested
reader may refer to [167] for physiological details and [94, 95] for modeling details. We
will stick to the fact, that the active and passive transport are essential for the health of a
cell itself and for the regulation of concentration differences.

2.2.3 Electric Circuit Model of the Cell Membrane

Since the cell membrane separates charges, it can be viewed as a capacitor, see [92] for
details. The capacitance Cm of any insulator is defined as the ratio of the charge Q across
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Figure 2.6: A simple circuit model of the cell membrane.

the capacitor to the voltage potential V necessary to hold that charge, and is denoted by

Cm =
Q
V
. (2.1)

From standard electrostatics, e.g. Coulomb’s law, see [92], one can derive the fact that for
two parallel conducting plates separated by an insulator of thickness d, the capacitance is
found to be

Cm =
kε0

d
,

where k is the dielectric constant for the insulator and ε0 is the permittivity of free space.
The capacitance of the cell membrane is typically 1.0 µF/cm2. Taking that ε0 = 10−9

36π
F/m one

calculates the dielectric constant of the cell membrane to be about 8.5.

We can think of the cell membrane as an electric circuit, as shown in Figure 2.6. It is
assumed that the membrane acts like a capacitor in parallel with a, not necessarily ohmic,
resistor. One knows that the current is d

dt Q, thus from (2.1) it follows that the current
flowing over the capacitor is given by Cm

d
dt Vtm, provided that Cm is constant. Finally using

Kirchoff’s law one obtains

Cm
d
dt

Vtm + Iion = 0.

The function Iion, called the ionic current, describes the current flowing through the resistor
depicted in Figure 2.6. Further, some external current sources are assumed to be applied
either on the inside, which are then called si, or on the outside of a cell which then are
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named se. So one obtains the following two equations:

Cm
d
dt

Vtm + Iion = se,

Cm
d
dt

Vtm + Iion = −si .

2.2.4 Functional Dependence of Iion

As written above the differences in ionic concentrations between the inside and outside of a
cell create a potential difference along the cell membrane. The trans-membrane potential
Vtm in particular drives a current flux between the interior and the exterior of a cell which
was denoted above as ionic current Iion. The physical details of the ionic currents are not to
be discussed here. The interested reader may refer to [95, Chapters 2, 3 and 5]. The most
important aspect for modeling is that the ionic current has a functional dependence on the
action potential Vtm, i.e. Iion = Iion(Vtm). The difficulties arise, when one tries to figure out
how this dependence may look like. In [95] one finds two possibilities how to describe the
functional dependence of the ionic current, a quasi-linear one reading

Iion(Vtm) =
∑
ions

gions(Vtm)(Vtm − Vions),

where ions stands for a list of ions of interest (like Na+, K+ and so on). The values gions
represent not necessarily constant conductivities. For each ion, Vions denotes the Nernst
potential, see [95, Chapter 3] for details. This model is quite popular, as one can divide
the dependence of the ionic current up to different ionic currents for each ion and then
lump all together to a so-called leakage current. The second possibility is to use a similar
decomposition of the ionic current into a current for each ion using the Goldman-Hodgkin-
Katz current equation reading

IS = PS
z2F2

RT
Vtm

ci − ce exp
(
−

zFVtm
RT

)
1 − exp

(
−

zFVtm
RT

) ,

where S stands for the type of ion, z is the valence of the ion S, ci and ce are the respective
concentrations in the intra and extra cellular regions, R is the universal gas constant, T is the
absolute temperature, PS is the permeability of the cell membrane to the specific ion S and
F is Faraday’s constant. In the next section we will see how we can describe the evolution
of the ionic current.

2.2.5 Excitability of Myocytes

Section 2.2.4 was devoted onto how the trans-membrane potential Vtm causes ionic currents
Iion to flow through the membrane. Regulation of this membrane potential by control of the
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Figure 2.7: Typical curve of an ventricular cell action potential [148].

ionic channels is one of the most important cellular functions. Myocytes, especially, use
this membrane potential, as discussed in Section 2.1 as a signal to control the contraction of
the myocardium. Thus, the contraction depends on the generation of electric signals. As
aforementioned, heart cells belong to a class of very special cells: they are excitable. This
means, that if a sufficiently strong current is applied, the membrane potential performs a
pronounced oscillation before eventually returning to the resting potential value. Figure 2.7
shows a schematic view of an action potential typical for ventricular heart cells.

It should be mentioned at this point that the shape of the action potentials differs from cell to
cell in the heart. This means, the models for the SA node will not be adequate for describing
the potential of the AV node and the other cell types in the myocardium respectively.

In Section 2.1 this change of potential was referred to as action potential. The most obvious
advantage of excitability is that an excitable cell either responds in full to a stimulus or
not at all, and thus a stimulus of sufficient amplitude may be reliably distinguished from
background noise. In this way, noise is filtered out, and a signal is reliably transmitted.

The studies on the generation and propagation of those signals have been made for nearly
hundred years. Although the generation and propagation of signals have been extensively
studied by physiologists for at least the past hundred years, the most important landmark in
these studies is the work of Alan Hodgkin and Andrew Huxley, see [83], who developed the
first quantitative model for the propagation of an electrical signal along a squid giant axon.
Their model was originally used to explain the action potential in the long giant axon of a
squid nerve cell, but the ideas have been extended and applied to a wide variety of excitable
cells.
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In the spirit of Hodgkin and Huxley many models have been developed. All those models
do share a common structure, see [120]. They are called Hodgkin-Huxley-type models, since
they are all based, mathematically, on the original model from Hodgkin and Huxley [83]. In
[120] one finds a very good summary of the various models for ionic currents. The models
are based on viewing the cell membrane as an electrical circuit and applying Kirchoff’s law
to it. This means that the membrane current model consists of a capacitive current term and
a variety of ionic current terms appropriate for a specific type of cell. The general form of
the spatially-independent model with n ionic currents is

Cm
d
dt

Vtm = −

n∑
i=1

ḡia
p
i bq

i (Vtm − Vi) + Iapp(t), (2.2)

d
dt

ai =
a∞i (Vtm) − ai

τai (Vtm)
, i = 1,2, . . . ,n, (2.3)

d
dt

bi =
b∞i (Vtm) − bi

τbi (Vtm)
, i = 1,2, . . . ,n, (2.4)

where Cm is the capacitance of the cell membrane, Vtm is the trans-membrane potential,
ḡi is the maximal conductance of the channel for ion i, ai and bi are the gating variables
taking values between 0 and 1, Vi is the Nernst potential for the ith ion, Iappl is the applied
stimulus current. The latter may consist of a signal coming from an adjacent cell or from
an external applied current. Further, a∞i and b∞i are the steady state values of the gating
variables at potential Vtm, τai and τbi are the relaxation time constants at potential Vtm and
finally p,q denote some arbitrary real exponents. Many of the excitability models known
throughout the literature can be written in this form. There is a huge collection of those
models available for simulation through the CellML-project, see [118]. Taking note, we
write the evolution equation for the ionic current Iion in the following abstract way as a
system of nonlinear ordinary differential equations:

Iion = g(Vtm,v),
d
dt
v = −H (Vtm,v), (2.5)

v(t = 0) = v0. (2.6)

With this notation one covers almost any possible shape of the ionic current appearing in
the literature.

2.2.6 Phenomenological Models

The complexity of ionic current models can be a challenge for numerical simulations and
also for mathematical analysis. Therefore many simplified models have been developed.
Although neglecting the physiological details, these models are capable of approximately
reproducing action potentials.
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FitzHugh-Nagumo Model

The most simple phenomenological model is the FitzHugh-Nagumo model, see [66, 123].
The model is governed by the relations

Iion(Vtm,v) := c1Vtm(Vtm − Vth)(1 − Vtm) + c2v, (2.7)
H (Vtm,v) := b(dv − Vtm). (2.8)

For this specific model the value of Vtm has been rescaled to the interval [0,1]. The constants
c1,c2,Vth,b,d can be looked up in [158, Figure 1].

Rogers-McCulloch Model

The second model we want to present is the Rogers-McCulloch model, see [158]. This
model is a modification of the original FitzHugh-Nagumo model. In this case we have

Iion(Vtm,v) := c1Vtm(Vtm − Vth)(1 − Vtm) + c2Vtmv, (2.9)
H (Vtm,v) := b(dv − Vtm). (2.10)

For this specific model the value of Vtm has been rescaled to the interval [0,1]. The constants
c1,c2,Vth,b,d can be looked up in [158, Figure 1].

Aliev-Panfilov Model

The third model we want to mention is the Aliev-Panfilov model, see [4]. The difference to
the Rogers-McCulloch model is the nonlinear behavior in the second equation. The model
reads as

Iion(Vtm,v) := c1Vtm(Vtm − Vth)(1 − Vtm) + c2Vtmv, (2.11)

H (Vtm,v) :=
(
ε0 +

µ1v

µ2 + Vtm

)
(v + kVtm (Vtm − Vth − 1)) . (2.12)

Again, this model works with a rescaled trans-membrane potential Vtm in the range of [0,1].
The constants c1,c2,Vth, ε0, µ1, µ2, k can be looked up in [4, p. 294].

There are many more phenomenological models. For a more detailed overview the reader
is referred to [65, 119]. Proceeding, the readers’ attention is switched to the mathematical
modeling of macroscopic signal propagation in the human heart.



18 2 Modeling

2.2.7 The Bidomain Equations

It would be possible to model the whole human heart on a cellular basis. However, this
would be computational very expensive. Furthermore one would need to develop a very
detailed cell model which would have to be applied to each cell and then coupled among
each other. The latter is for being able to describe the propagation of signals through the
cells. This coupling is complicated by the fact, that the signal which is transported is in fact
the trans-membrane potential Vtm, and thus the intra and extra cellular spaces have to be
continuously connected and intertwined, so that one can move continuously between any
two points within one space without traversing through the complementary space.

As aforementioned, it is yet not possible to write and solve equations that account for the
cellular structure and the details of the geometry of the human heart. In a first step, see
Section 2.2.1, it was described that modeling the human heart in a macroscopic sense as a
dipole suffices for some medical application but is not adequate for a complete description
of the electrical activation of the human heart. A more accurate description will be obtained
by the Bidomain model first introduced by L. Tung, see [179], as well as [82, 115] for
details.

For deriving an accurate model for the electric activation of the myocardium one applies
procedures from continuum mechanics, known as homogenization. With this one can write
equations in an averaged, or smoothed, sense which are adequate for the many computational
situations. In continuum mechanics, it is quite common to study averaged quantities, to
avoid modeling the molecular structure of solids and fluids, see e.g. [70, 90] but also [143]
and [95, Chapters 7 and 12] for mathematical details and a justification. In the setting of
myocardial tissue one starts from a microscopic description and, with a homogenization
argument derives averaged equations. These are known as the Bidomain equations. For
details on the homogenization approach and a precise derivation of the equations we refer
to [38, 128]. The Bidomain equations can be stated in different forms. We will use the
parabolic-elliptic form reading as: Given Ω ⊂ Rd with d > 1 find (Vtm,ue,v) such that

χCm
∂

∂t
Vtm + χIion(Vtm) − div

(
Mi grad Vtm

)
− div

(
Mi grad ue

)
= si, (2.13)

− div
(
Mi grad Vtm

)
− div

(
(Mi + Me) grad ue

)
= si + se, (2.14)

∂

∂t
v + H (Vtm,v) = 0 (2.15)

in Ω × (0,T ). The boundary conditions are assumed to be of Robin type and read as

n · (Mi grad Vtm + Mi grad ue) + αi (Vtm + ue) = gR,i, (2.16)
n · (Me grad ue) + αeue = gR,e (2.17)
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on ∂Ω × (0,T ). Finally we impose initial conditions on Vtm and v of the form

Vtm(0,x) = V 0
tm(x), (2.18)

v(0,x) = v0(x). (2.19)

The constant χ is the surface-to-volume ratio and results from the homogenization proce-
dure. The constant Cm is the capacitance of the cell membrane. The values for χ,Cm can be
looked up in Table 2.1. Next some basic facts about the conductivity tensors Mi and Me will
be recited.

Conductivity and Fiber Orientation

It is known, that the myocardium is the most important part, when describing the pumping
process of the human heart. For the electrochemical modeling the Bidomain model (2.13)–
(2.17) has been derived. Now one needs to establish the conductive properties of the
myocardium. One important fact is, that the conduction in the human heart is highly
anisotropic, and as said above, the quantities Mi and Me are tensor-valued functions. This
specific anisotropy comes from the structure of the myocardium as discussed in Section
2.1.1. There a local coordinate system spanned by f 0, s0 and n0 was introduced. It is well
known that the conductivity along the fiber axis f 0 is much higher than along s0,n0. This
means one may assume the conductivity tensor of the form

M(x) = m f f 0(x) ⊗ f 0(x) + mss0(x) ⊗ s0(x) + mnn0(x) ⊗ n0(x).

In real-life applications the distribution of the basis { f 0, s0,n0} is derived with diffusive
tensor imaging, see [98, 145] for details. For orthonormal f 0, s0,n0 one may interpret
m f ,ms,mn as the eigenvalues of M. Furthermore for orthonormal f 0, s0,n0 one may elimi-
nate one axis and write

M(x) = mnI + (m f − mn) f 0(x) ⊗ f 0(x) + (ms − mn)s0(x) ⊗ s0(x)

The values of the above discussed parameters are given in Table 2.1.

Summary

In this chapter the basic models for the electric part of the cardiac cycle have been developed
which eventually lead to the Bidomain equations. Furthermore the conductive properties of
the human heart with tensor-valued functions were described and the ionic currents were
taken account of, by modeling them in the most abstract way. Summarizing the complete
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Parameter Value Unit
Cm 1.0000e−2 F/m2

χ 2.0000e+5 1/m

mi
f 3.0000e−1 S/m

mi
s 1.0000e−1 S/m

mi
n 3.1525e−2 S/m

me
f 2.0000e−1 S/m

me
s 1.6500e−1 S/m

me
n 1.3514e−1 S/m

Table 2.1: Values of the parameters for the Bidomain model: the conductivity values, the
value for χ and the value for Cm are taken from [102],[81] and [147].

electronic model of the human heart in dimensional form reads to find (Vtm,ue,v) such
that:

χCm
∂Vtm

∂t
+ χIion(Vtm,v) − div(Mi grad Vtm) − div

(
Mi grad ue

)
= si, (2.20)

− div(Mi grad Vtm) − div((Mi + Me) grad ue) = si + se, (2.21)
∂v

∂t
+ H (Vtm,v) = 0 (2.22)

in Ω × (0,T ) and completed by the boundary and initial conditions(
Mi grad(Vtm + ue),n

)
+ αi (Vtm + ue) = gR.i on ∂Ω × (0,T], (2.23)(

Me grad ue,n
)

+ αeue = gR,e on ∂Ω × (0,T], (2.24)

Vtm(0,x) = V 0
tm in Ω, (2.25)

v(0,x) = v0 in Ω. (2.26)

Remark 2.1 Usually, one assumes that se = −si so that the right hand side of equation
(2.21) vanishes.

2.3 Passive Mechanical Behavior of Heart Tissue

In this section the models covering the pure mechanical deformation of human heart tissue
will be summarized. In contrast to modeling the electric activation of the human heart,
mechanic models are already established and well understood. Thus one can describe the
passive deformation of the human heart with standard tools from continuum mechanics.
For an introduction to continuum mechanics we refer to [35, 85, 135, 178] as well as [11,
Chapter 3]. For sake of completeness the most important facts from continuum mechanics
will subsequently be recited.
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2.3.1 Bodies and Configurations

Definition 2.2 (Body) A body B is a set whose elements can be put into a one-to-one
correspondence with points of a region Ω in a three-dimensional Euclidean point space.
The elements of B are called particles, or material points, and Ω is called a configuration
of B.

As a body moves the configuration B will change in time.

Definition 2.3 Let t ∈ I ⊂ R+. The family {Ω(t) : t ∈ I} of unique configurations of B at
time time t is called the motion of B.

Remark 2.4 It is assumed, that as B moves continuously also Ω(t) evolves continuously.

Further, it is quite convenient to identify a so-called reference configuration, Ωr say, which
is an arbitrarily chosen fixed configuration. Then any particle P of B may be labeled by its
position vector X ∈ Ωr , relative to a chosen origin O. It should be noted that the reference
configuration is not necessarily a configuration which is actually occupied by the body
B. Let further x be the position vector of P in the configuration Ω(t) at time t relative to
another chosen origin o. Again for sake of simplicity one may choose O = o. Similar to
that one says that B occupies the configuration Ω(t) at time t and call Ω(t) the current
configuration. Here we will choose Ωr = Ω(0). Since Ωr and Ω(t) are configurations of B
there exists a bijective mapping χ : Ωr → Ω(t) such that

x = χ(X , t) for all X ∈ Ωr , (2.27)

X = χ−1(x, t) for all x ∈ Ω(t). (2.28)

It can be seen from (2.27), that one can characterize either of the coordinates with its
counterpart. Figure 2.8 shows a schematic summary.

2.3.2 Material and Spatial Descriptions

In the development of the basic principles of continuum mechanics a body B is assigned
to various physical properties which are represented by scalar, vector and tensor fields
defined on either Ωr or Ω(t). In case of Ωr both the position vector X and the time t
serve as independent variables, the fields are said to be defined in referential, material or
Lagrangian description then. Alternatively, in the case of Ω(t), x and t serve as independent
variables. Here, one refers to the spatial or Eulerian description. The distinction between
these two descriptions is crucial. To make things clearer: In material description attention
is paid to a particle, and one observes what happens to the particle as it moves. Spatial
description puts attention to a specific point in space, and one studies what happens at the
point as time changes.
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Reference Configuration

Current Configuration

Figure 2.8: Reference configuration Ωr and current configuration Ωt with the position
vectors X and x of a material point P and the motion χ(X , t). The coordinate
system is spanned by an orthonormal basis {ei}

3
i=1.

For studying solid mechanics one needs to work with derivatives in Eulerian or Lagrangian
configurations and relate them to each other. Henceforth the Einstein summation convention
applies.

Definition 2.5 (Material Gradient, Spatial Gradient) The material gradient of a sufficiently
smooth material field Φ(X , t) is defined by

GradΦ(X , t) :=
∂

∂Xi
Φ(X , t)ei .

The spatial gradient of a sufficiently smooth spatial field φ(x, t) is defined as

grad φ(x, t) :=
∂

∂xi
φ(x, t)ei .
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In case of a vector-valued function u we define the material or spatial gradient as

gradu(x, t) := ∇x ⊗ u =
∂

∂xq
u ⊗ eq =

∂

∂xq
upep ⊗ eq,

GradU (X , t) := ∇X ⊗U =
∂

∂Xq
U ⊗ eq =

∂

∂Xq
Upep ⊗ eq.

Definition 2.6 (Material Divergence, Spatial Divergence) The material divergence of a
sufficiently smooth material field Φ(X , t) is defined as

DivΦ(X , t) :=
∂

∂Xi
Φi (X , t).

The spatial divergence of a sufficiently smooth spatial field φ(x, t) is defined as

divφ(x, t) :=
∂

∂xi
φi (x, t).

In case of tensor-valued functions a,A we define the spatial and material divergence as

div a(x, t) :=
∂

∂xp
apq(x, t)eq,

Div A(X , t) :=
∂

∂Xp
Apq(x, t)eq.

Definition 2.7 (Material Time Derivative of a Material Field) The material time derivative
of a material field Φ(X , t), either scalar or vector-valued, is defined as

Φ̇(X , t) =
∂

∂t
Φ(X , t) :=

(
∂

∂t
Φ(Y , t)

) ����Y=X
.

When dealing with multi-physics problems one often needs to switch between the Eulerian
and the Lagrangian description of a function. For example: Let φ be a scalar spatial field,
this means φ = φ(x, t). Since x = χ(X , t) one may define Φ(X , t) := φ(χ(X , t), t) and thus
one can switch between the two descriptions, provided χ is known. When one wants to
calculate the material time derivative of a spatial field one needs to apply the chain rule.
The connection of the two descriptions is given by

Lemma 2.8 Let φ(x, t) be a given sufficiently smooth function in spatial coordinates and
Φ(X , t) := φ(χ−1(x, t), t). Then it holds:

∂

∂t
Φ(X , t) =

d
dt
φ(x, t) =

∂

∂t
φ(x, t) +

(
grad φ(x, t),v(x, t)

)
.
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Proof. The proof follows by taking the total derivative d
dt of the equation

Φ(X , t) = φ(χ−1(x, t), t) = φ(x, t)

and apply the chain rule. �

Remark 2.9 An analogous result holds for vector-valued functions φ(x, t):

∂

∂t
Φ(X , t) =

d
dt
φ(x, t) =

∂

∂t
φ(x, t) + grad(φ(x, t))v(x, t).

2.3.3 Deformation Gradient and Displacement

The deformation gradient F is defined as

F(X , t) := Grad x(X , t) = Grad χ(X , t).

This spatial gradient is a Cartesian tensor of order two and can be expressed as

F =
∂

∂XA
xbeb ⊗ eA,

or in component form as

FbA =
∂

∂XA
xb

with xb = χb(X , t). Let us also define the Jacobian J as

J (X , t) := det F(X , t).

From the assumption that χ is bijective mapping it follows that J , 0. This is in accordance
with the physical behavior. Consider the equation F∆X = 0 for a small line element ∆X .
Provided ∆X , 0, J = 0 would imply that there is at least one line element whose length is
reduced to zero by the deformation, in other words, annihilated. This is physically unrealistic
and so one can exclude this from one’s consideration. Having that one can ensure that F is
nonsingular and so there exists the inverse F−1 given by

F−1(x, t) = grad X (x, t),

with the components

(F−1)Ba =
∂XB

∂xa
.
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From a numerical point of view it is convenient to introduce the displacement U (X , t) as

U (X , t) := x(X , t) − X .

This field relates the position X of a particle P in the undeformed configuration to its
position x in the deformed configuration at time t. The displacementU is a function of the
material coordinates X . One can also define the displacement field in spatial coordinates
as

u(x, t) = x − X (x, t).

Here the position x of a particle P at time t is specified by its position X (x, t) in the
reference configuration Ωr plus its displacement u(x, t) from that position. Due to the
correspondence between the reference and current configuration the two descriptionsU and
u are related by

u(x, t) : = U (χ−1(x, t), t).

It should be noted thatU and u need to have the same values. Further, when choosing the
reference configuration Ωr to coincide with the initial configuration Ω(0) one sees that the
displacement has to vanish in the reference configuration. This can be expressed as

U (X , t = 0) = u(x, t = 0) = 0.

Having defined the displacementU one immediately sees that

χ(X , t) = x(X , t) = X +U (X , t)

and

F(X , t) = I + GradU (X , t),

where Gradu is the displacement gradient. Similarly one obtains in spatial coordinates
that

gradu(x, t) = I − F−1(x, t).

Furthermore the left and right Cauchy tensors are introduced as

b := FF>,
C := F>F.

Subsequently, some basic results about the connection between spatial and material gradients
will be established. By the chain rule one can show
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Lemma 2.10 Let φ,u denote sufficiently smooth scalar and vector valued functions. Then
there holds

grad φ = F−>GradΦ, (2.29)

gradu = Grad(U )F−1. (2.30)

Next we will state the well-known Nanson’s Formula relating the normal vectors of reference
and current configuration. A proof can be found in [85, Section 2.4].

Lemma 2.11 (Nanson’s Formula) Let N be the almost everywhere defined normal vector
of ∂Ω(0) and n the respective normal vector to ∂Ω(t). Then there holds:

n = JF−>N .

A direct consequence of Nanson’s Formula is

Lemma 2.12 There holds:

Div(JF−>) = 0.

Finally we want to mention the following lemma, which is again a direct consequence of
Nanson’s Formula.

Lemma 2.13 Let u be a sufficiently smooth vector field. Then there holds:

div(u) = Div(JF−1U ), (2.31)

Div(U ) = div(J−1F>u). (2.32)

2.3.4 Governing Equations for Nonlinear Elasticity

The governing equations are consequences of the fundamental physical principles of mass
conservation and the balance of momentum. From these basic principles one can derive
the well know Cauchy’s stress theorem see [135, Chapter 3] for a precise derivation.
Briefly, Cauchy’s stress theorem states the existence and symmetry of a stress tensor σ, i.e.
σ(t,x) = (σ(t,x))>, and the balance law

ρ(t,x)
d2

dt2u(t,x) − divσ(t,x) = ρ(t,x) f (t,x) in Ω(t) for all t ∈ (0,T ),

d
dt
ρ(t,x) + ρ(t,x) div

(
d
dt
u(t,x)

)
= 0 in Ω(t) for all t ∈ (0,T ),

σ(t,x)n = gN (t,x) on ∂Ω(t) for all t ∈ (0,T ).
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Here ρ is the mass density, f are the body forces and gN are the surface traction forces.

With the introduction of the second Piola-Kirchoff stress tensor

S := JF−1σF−>

one can derive the balance equations of nonlinear elasticity in material coordinates:

ρ0(X )
∂2

∂t2U (t,X ) − Div(F(t,X )S(t,X )) = ρ0(X ) f (t,X ) in Ωr × (0,T ),

F(t,X )S(t,X )N = GN (t,X ) on ∂Ωr × (0,T ).

Remark 2.14 The connection between the initial mass density ρ0 and the current mass
density ρ is given by

ρ = ρ0(X )J (t,X ).

Remark 2.15 One needs to be careful with traction forces in material coordinates. Consider
the case of a pure constant pressure load

σn = −pn.

with a constant value p > 0. Then in material coordinates this transforms to

FSN = −pJF−>N .

Thus the boundary condition enters the system in a nonlinear way. See [35, Sections 2.6
and 5.1] as well as [166] for more details.

The equations given above are not complete. To complete the system one needs to impose
initial conditions of the form

u(0,x) = 0,(
d
dt
u(t,x)

)
t=0 = u1(x)

or

U (0,X ) = 0,
∂

∂t
U (0,X ) = U1(X ).
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Remark 2.16 Following [187] one may neglect the terms ρ d2

dt2u and ρ0
∂2

∂t2U as well as body
forces when modeling biological tissues. Then one obtains the quasi-stationary balance
laws

− divσ(t,x) = 0 in Ω(t) × (0,T ),
d
dt
ρ(t,x) + ρ(t,x) div

(
d
dt
u(t,x)

)
= 0 in Ω(t) × (0,T ),

σ(t,x) = (σ(t,x))>,
σ(t,x)n = gN (t,x) on ∂Ω(t) × (0,T ).

and

−Div(F(t,X )S(t,X )) = 0 in Ωr × (0,T ),
ρ = ρ0(X )J (t,X ),

F(t,X )S(t,X )N = GN (t,X ) on ∂Ωr × (0,T ).

Furthermore one needs to establish a connection between the tensor σ and the displacement
u and between S andU respectively. This is accomplished with constitutive equations.

2.3.5 Constitutive Equations

The aim of this part is to link the displacement of a body to the stress. A general treatment
is out of the scope of this thesis so only perfectly hyper-elastic materials will be considered.
This excludes plastic deformations as well as damaging or viscous mechanisms. See [11,
18, 85, 135, 178] for a more comprehensive introduction. For a hyper-elastic material one
has the existence of the Helmholtz free-energy function W = W (F). In addition, provided
the material is perfectly elastic one has the relation

S = F−1 ∂W
∂F

.

This equation links the displacementU to the stress S. Furthermore it is common to assume
a normalization condition, i.e.:

W (I) = 0.

If the normalization conditions are not satisfied one needs to account for residual stresses,
see [3, 39, 76, 136, 157] for more details in the context of myocardial tissue. Moreover,
from physical observations it is convenient to assert the following conditions:

W (F) ≥ 0, (2.33)
W (F(U )) < ∞ provided |U | < ∞, (2.34)

lim
|U |→∞

W (F(U )) = ∞. (2.35)
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If one assumes that the strain energy function should be invariant under translation and
rotation of the body B one obtains that

W (F) = Ψ(C).

Thus one in fact needs to find a constitutive relation that depends only on C. Together with
all the above stated assumptions one can conclude the following relations

S = 2
∂Ψ(C)
∂C

,

σ = 2J−1F
∂Ψ(C)
∂C

F>.

In the numerical treatment of nonlinear elastic materials one also needs the elasticity tensor
in material coordinates C defined by

C := 2
∂S(C)
∂C

= 4
∂2Ψ(C)
∂C∂C

.

This is a tensor of order four. One can show, see [85, Section 6.6], that this tensor possess
minor and major symmetries, i.e.

Ci j kl = Cjikl = Ci jlk ,

Ci j kl = Ckli j .

In spatial coordinates the elasticity tensor is defined by

(a,b,c,d) := J−1FaAFbBFcCFdDCABCD .

The spatial elasticity tensor inherits the properties of C.

Remark 2.17 The elasticity tensor C is convenient from a numerical point of view. Due
to its symmetry properties one can use Voigt’s notation and write C as a symmetric 6 × 6
matrix

CV :=

*.........
,

C1111 C1122 C1133 C1112 C1123 C1113
C2222 C2233 C2212 C2223 C2213

C3333 C3312 C3323 C3313
C1212 C1223 C1213

C2323 C2313
sym. C1313

+/////////
-

.

A symmetric second order tensor can also be written in Voigt notation as

SV := (S11,S22,S33,2S12,2S23,2S13)>.
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With this convention it holds that

CVSV = (C : S)V.

However the following does not hold(
CVSV

1 ,S
V
2

)
, S2 : C : S1.

A remedy is to use the Mandel notation. Here one defines

CM :=

*.........
,

C1111 C1122 C1133
√

2C1112
√

2C1123
√

2C1113

C2222 C2233
√

2C2212
√

2C2223
√

2C2213

C3333
√

2C3312
√

2C3323
√

2C3313
2C1212 2C1223 2C1213

2C2323 2C2313
sym. 2C1313

+/////////
-

and

SM := (S11,S22,S33,
√

2S12,
√

2S23,
√

2S13)>.

In this notation one has (
CMSM

1 ,S
M
2

)
= S2 : C : S1.

For more details on this topic we refer to [80].

2.3.6 Almost Incompressible Materials

Biological materials are treated as slightly incompressible materials. This means that
det(F) ≈ 1, see [184]. To account for this behavior one needs to adapt the constitutive
equations. An approach to handle nearly incompressible materials, with J = det F close to
one, is the decoupling of the deformation into a volumetric (i.e. volume changing) and an
isochoric (i.e. volume preserving) part, see [67, 85] for more details. This means that one
decomposes

F = (J
1
3 I)F

where det F = 1. This is called the Flory split. Thus one also has the splitting

C = (J
2
3 I)C

The Flory split allows to postulate an additive splitting of the strain energy function

Ψ(C) = U (J) + Ψ(C) (2.36)
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where U (J) is a strictly convex function called volumetric response function and attains its
unique minimum for J = 1. The function Ψ(C) is called isochoric response function. It is
required that

U (J) = 0⇔ J = 1,

Ψ(C) = 0⇔ C = I.

for fulfilling the normalization conditions.

Remark 2.18 (Specific volumetric response functions) The function U (J) can be inter-
preted as a penalization for the constraint det F = 1, see [24, Chapter 6]. There exist a
variety of possible choices for U (J). We will consider the choice

U (J) :=
κ

2
(J − 1)2

or

U (J) :=
κ

2
(ln J)2

with κ ∈ R+.

Example 2.19 (Almost incompressible neo-Hookean material). The simplest nonlinear
model is the so called almost incompressible neo-Hookean material model. There one has

Ψ(C) := U (J) +
µ

2

(
tr(C) − 3

)
,

where the material parameter µ may be interpreted as the shear modulus. By definition this
value is positive, i.e. µ > 0. For more examples we refer to [11, p. 33].

Before continuing, the deviatoric operators in material and spatial coordinates will be
introduced.

Definition 2.20 (Deviatoric operators) Let a and A be two tensor-valued functions in spatial
and material coordinates. Then the deviatoric operators are defined as

dev(a) := a −
1
3

tr(a)I,

Dev(A) := A −
1
3

[A : C] C−1.

Further the following result is needed:
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Lemma 2.21 There holds:

∂J
∂C

=
J
2

C−1,

∂J−
2
3

∂C
= −

1
3

J−
2
3 C−1.

Proof. See [85, p. 228]. �

With the help of these results one can prove that the Flory split (2.36) results in an additive
split of the stress tensor S as well as of the elasticity tensor C

S = Svol + Siso,

C = Cvol + Ciso.

see [85, Section 6.4] and [11, p. 29 and p. 45]. Here one has

Svol := JpC−1,

Siso := 2J−
2
3 Dev *

,

∂Ψ(C)

∂C
+
-
,

Cvol := J
(
p + J

d2U (J)
dJ2

)
C−1 ⊗ C−1 − 2JpC−1 � C−1,

Ciso := 2
∂Siso

∂C
where the hydrostatic pressure p is defined as

p :=
dU (J)

dJ
.

and the relation “�” is defined for a symmetric tensor A as

(A � A)i j kl :=
1
2

(
Aik A jl + Ail A j k

)
see [85, Equation (6.164)]. The same procedure can be applied in spatial coordinates and
one obtains

σ = σvol +σiso,

σvol := pI,

σiso := 2J−1dev *
,
F
∂Ψ(C)

∂C
F
>+

-
,

Cvol :=
(
p + J

d2U (J)
dJ2

)
I ⊗ I − 2pI.
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The decoupling of the stress tensors applied to the quasi-stationary equations of nonlinear
elasticity mentioned in Remark 2.16 leads to nonlinear saddle-point problems of the form

− div (σiso(u(t,x)) +σvol(p(t,x),u(t,x))) = 0, in Ω(t), (2.37)
dU (J (u(t,x))

dJ
− p(t,x) = 0 in Ω(t), (2.38)

and equivalently

−Div (F(U (t,X ) (Siso(U (t,X )) + Svol(P(t,X ),U (t,X )))) = 0, in Ωr , (2.39)
dU (J (U (t,X ))

dJ
− P(t,X ) = 0 in Ωr . (2.40)

The discretization of such a system may still suffer from locking phenomena, see [24,
Chapter 6]. One possible remedy is to interpret (U , J,P) as independent variables and
modify the system to

−Div (F(U ) (Siso(U , J) + Svol(U ,P, J))) = 0, in Ωr , (2.41)
dU (D)

dD D=J − P = 0 in Ωr , (2.42)

J − det F(U ) = 0 in Ωr . (2.43)

A discretization of such a three-field approach will lead to the mean dilatation technique,
see [24, Chapter 6].

2.3.7 Plain Strain Elasticity

In some cases it is justified to consider two-dimensional problems in elasticity. With the help
of an example the differences to the three dimensional case will be sketched. For a detailed
discussion we refer to [135, Section 5.2.6]. For the plain strain elastic case one has three
important assumptions. The first one is that the geometry has the shape Ωr = Ω2D

r × (−Z, Z )
with Z � diam(Ω2D

r ). The second assumption is that all exterior forces are orthogonal to
the z-axis and depend only on x and y. Finally it is assumed that the displacement has the
formU (X ) = (U1(X,Y ),U2(X,Y ),C) with C ∈ R. With this one has that the deformation
gradient is of the form

F =
*..
,

1 +
∂U1
∂X

∂U1
∂Y 0

∂U2
∂X 1 +

∂U2
∂Y 0

0 0 1

+//
-

=

(
F 0
0> 1

)
.

This implies first that det(F) = det(F) and that C = F>F and C−1 = F−1F−> have the same
structure, i.e.

C =

(
C 0
0> 1

)
, C−1 =

(
C−1 0
0> 1

)
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Now, consider the free energy function for an almost incompressible neo-Hookean solid

Ψ(C) =
κ

2
(ln J)2 +

µ

2

(
tr(C) − 3

)
where J = det F and C = J−

2
3 C. One may calculate the second Piola-Kirchoff tensor S as

S = 2 ∂Ψ(C)
∂C and obtain

S = κ ln(J)C−1 + µJ−
2
3

(
I −

1
3

(tr C)C−1
)
.

Inserting the special form of J = det F , C and C−1 one obtains

S =

(
S 0
0> S33

)
where

S = κ ln(J)C−1 + µJ−
2
3

(
I −

1
3

(tr (C) + 1)C−1
)
,

S33 = κ ln(J) + µJ−
2
3

(
2
3
−

1
3

tr(C)
)
.

Note that in general S33 , 0 but S33 = S33(X,Y ). Plugging this into the equilibrium
equations one gets that

−Div(F(U (X,Y ))S(U (X,Y )) = 0

where the divergence is taken only with respect to X and Y .

2.3.8 Constitutive Equations for Passive Myocardial Tissue

As discussed in Section 2.1.1, myocardial tissue is a strong anisotropic material. Hence
an appropriate constitutive equation needs to account for the specific anisotropy of the
underlying material. There have been several attempts to model myocardial tissue, we refer
to [40, 77, 89, 163, 164, 193] for more details. We will use a model recently introduced in
[55, 56, 84]. This model is based on an invariant-type formulation. For more details about
invariant type strain energy functions we refer to [85, 135, 171]. The strain energy function
is given by

Ψ(C) = U (J) +
a

2b

(
exp

[
b(I1 − d)

]
− 1

)
+

a f

2b f

(
exp

[
b f (I4 f − 1)2

]
− 1

)
+

as

2bs

(
exp

[
bs (I4s − 1)2

]
− 1

)
+

a f s

2b f s

(
exp

[
b f s I

2
8 f s

]
− 1

)
.
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The invariants are defined by

I1(C) := tr
(
C
)
,

I4 f (C) :=
(
Cf 0, f 0

)
, I4s (C) :=

(
Cs0, s0

)
,

I8 f s (C) :=
(
Cf 0, s0

)
.

It needs to be mentioned that the terms involving I4 f , I4s are only active if I4 f > 1 and
I4s > 1. All occurring parameters are assumed to be positive. We refer to [55, Section 4.2.4]
and [11, Section 3.15] for a specific choice of parameters and the explicit calculation of the
stress tensors Siso and Ciso.

2.4 Models for Coupled Electro-Mechanics

In this chapter the presented models for the electrical and mechanical response of the human
heart will be merged. This leads to a coupled multi-physics problem. There are different
approaches to couple the electrical and mechanical response in the human heart, hence we
try to give a summary on the models known in literature, see [43, 131, 134, 139, 187] and
the references therein for more details.

2.4.1 Mechano-electric Feedback

We start with coupling the Bidomain equations to the mechanical response. In literature
this is called the mechano-electric feedback (MEF), see [5, 6, 33, 104, 124, 126, 144]. As a
matter of fact, one has a moving body in the coupled setting. Thus one first needs to specify
the material and spatial description of these equations. From a physical point of view one
should state the Bidomain equations in a spatial description. Thus one needs to remodel
the equations with respect to moving domains. This includes the application of Reynold’s
transport theorem see [78, p. 78] and an energy balance equation. For more details we refer
to [6, 152, 153]. The Bidomain equations in spatial coordinates can be stated as

∂Vtm

∂t
+ div (u̇Vtm) + Iion(Vtm,v) − div(Mi grad Vtm) − div(Mi grad ue) = si,

− div(Mi grad Vtm) − div((Mi + Me) grad ue) = 0,
∂v

∂t
+ div (u̇ ⊗ v) + H (Vtm,v) = 0.

For the subsequent considerations we will restrict ourselves to ionic models where v = v

i.e. only one ionic variable. The mechanical coupling can be accomplished by two parts.
First one may consider the coupling induced by the change of geometry. The equations of
nonlinear elasticity are better suited for a material description so one transforms the spatial
formulation of the Bidomain equations to material coordinates.
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Lemma 2.22 There holds:

∂

∂t
J = J div(u̇).

Proof. See [78, p. 77]. �

Lemma 2.23 There holds:

∂Vtm

∂t
+ div (u̇Vtm) = J−1 ∂

∂t
(JVtm).

Proof. The proof follows by direct calculation and application of Lemma 2.22:

∂

∂t
(J (t,X )Vtm(t,x(t,X ))) =

∂J
∂t

Vtm(t,x) + J
[(
∂Vtm

∂x
,
∂x

∂t

)
+
∂Vtm

∂t

]

= J div(u̇) + J
[(

grad Vtm,
∂x

∂t

)
+
∂Vtm

∂t

]

= J
(
div(u̇Vtm) +

∂Vtm

∂t

)
.

�

Together with Lemmata 2.13 and 2.10 one obtains the Bidomain equations in material
coordinates as

∂

∂t
(JVtm) + JIion(Vtm,v)

− J Div
(
JF−1MiF−>Grad Vtm

)
− J Div

(
JF−1MiF−>Grad ue

)
= Jsi,

− J Div
(
JF−1MiF−>Grad Vtm

)
− J Div

(
JF−1Mi+eF−>Grad ue

)
= 0

and the equations for the ionic variables in material coordinates

∂

∂t
(Jv) + JH (Vtm,v) = 0.

In literature one usually sees that the term

Div
(
JF−1MiF−>Grad Vtm

)
is replaced by

Div
(
JMiC−1 Grad Vtm

)
.

To justify this one needs to pose an assumption on the tensors Mi,Me.
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Lemma 2.24 Provided Mi is symmetric, Mi (x)n = αn and Mi (X )N = αN where n and N
are the respective normal vectors to ∂Ω(t) and ∂Ωr , there holds:∫

Ω(t)

div(Mi grad u) dx =

∫
Ωr

Div(JMiC−1 Grad U) dx .

Proof. The proof follows by direct calculation:∫
Ω(t)

div(Mi grad u) dx =

∫
∂Ω(t)

(
Mi grad u,n

)
dsx =

∫
∂Ω(t)

(
grad u,Min

)
dsx

= α

∫
∂Ω(t)

(
grad u,n

)
dsx = α

∫
∂Ωr

(
F−>Grad U, JF−>N

)
dsx

= α

∫
∂Ωr

(
JF−1F−>Grad U ,N

)
dsx

=

∫
∂Ωr

(
JC−1 Grad U,MiN

)
dsx

=

∫
Ωr

Div(JMiC−1 Grad U) dx

�

It still remains to represent the tensors Mi,Me in spatial and material coordinates. To the
best of the authors knowledge there is no consensus in the existing literature about the
interplay between diffusion and deformation and it is an actual research topic. See [5, 6,
23, 44, 105, 126, 187] and references therein for an overview on the ongoing discussion.
We will assume that the orthonormal coordinate system { f 0, s0,n0} is given and fixed in
material coordinates. Therefore we may assume that the conductivity tensor in material
coordinates is given as

Mmat
i := m f

i f 0(X ) ⊗ f 0(X ) + ms
i s0(X ) ⊗ s0(X ) + mn

i n0(X ) ⊗ n0(X ).

If we take a smooth scalar function Φ in material coordinates we see that

Mmat
i GradΦ = m f

i
(
f 0,GradΦ

)
f 0 + ms

i (s0,GradΦ)s0 + mn
i (n0,GradΦ)n0.

This means we get a transport of m f
i
(
f 0,GradΦ

)
in the direction of f 0 and respectively for

the other vectors. This motivates the definition of the spatial diffusion tensor as

Mspace
i := m f

i Ff 0 ⊗ Ff 0 + ms
i Fs0 ⊗ Fs0 + mn

i Fn0 ⊗ Fn0.
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After applying basic rules for the “⊗”-product we obtain

Mspace
i = FMmat

i F>. (2.44)

The above transformation is referred to as a push-forward operation for a contravariant
second-order tensor. For a more detailed discussion on co- and contravariant tensors we
refer to [85, 116, 135]. For more on the contravariant nature of a conductivity tensor we
refer to [74]. Having fixed the relation between spatial and material form of the conductivity
tensors Mi, Me as in (2.44) one sees that

J Div
(
JF−1Mspace

i F−>Grad Vtm
)

= J Div
(
JMmat

i Grad Vtm
)
.

A different kind of coupling is achieved by modifying the ionic currents and include
deformation dependent variables. In general this means that one gets a new ionic current

Iion = Iion(Vtm,v) + IMEF(Vtm,w,U ).

Here w is a new set of additional ionic variables which are sensitive to deformation. There
are several models known in literature, for example [139, 140, 141, 151] and a lot more
to be found in the CellML database. To specify the explicit dependence onU one usually
assumes that the ionic current depends only on the stretch λ f :=

(
Cf 0, f 0

)
in the fiber

direction and on the stretch ratio ∂
∂t λ f . Two examples of models which depend on the

stretch can be found in [33] and [96]. The first one is given by

IMEF :=



gs (Vtm − Vs)(λ f − 1) if λ f > 1,
0 else ,

with defined constants gs, Vs. The second example is given by

IMEF := gs (Vtm − Vs)
1

1 + exp
(
−δ(λ f − 1)

) .
It is convenient to summarize such models in the form

IMEF := gs (Vtm − Vs)g(λ f ). (2.45)

2.4.2 Coupling Electrics to Mechanics

After discussing the coupling of the mechanical behavior to the electrical behavior we are
interested in the other direction. In literature, see for example [5] and references therein, one
may distinguish two popular approaches: the active strain, see [6, 33, 124, 125, 176], and
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the active stress approach, see [73, 96, 141, 170]. The first approach is based on a splitting
of the deformation gradient F

F = FpassFact

into an purely passive and an active deformation. In this case one obtains different governing
equations and needs to provide a suitable constitutive relation for the active deformation
Fact. For the second approach one fixes the macroscopic passive constitutive behavior of the
elastic material and then add a suitable active stress term

S = Spass + Sact.

We will focus on the active stress approach since it can be incorporated into existing solvers
for nonlinear elasticity without major recoding. We will use the active stress model proposed
in [5, Equation (4.10)]. There one has

Sact := Ta (Vtm,w)I4 f (C)−
1
2 ( f 0 ⊗ f 0). (2.46)

Here Ta (Vtm,w) is a function which describes the strength of active tension generated in the
direction of the fibers f 0. It may depend on additional internal variables w (for example the
internal calcium concentration). We will use the following form taken from [73, p. 329]:

∂

∂t
Ta = ε (Vtm) (ka (Vtm − Vr ) − Ta) ,

ε (Vtm) := ε0 + (ε∞ − ε0) exp
(
− exp

(
−ξ

(
Vtm − V

)))
.

The function ε (Vtm) is a smooth approximation of the Heaviside-function used in [126,
p. 511]. It is used to account for the delay of mechanical response to electric potentials. An
example of the function ε (Vtm) is depicted in Figure 2.9.

Remark 2.25 The elasticity tensor Cact can be calculated as

Cact = 2
∂Sact

∂C
= −Ta (Vtm,w)I4 f (C)−

3
2 f 0 ⊗ f 0 ⊗ f 0 ⊗ f 0.

Summary

Summarizing all the results from before one arrives at the fully coupled system of cardiac
electro-mechanics in material coordinates depicted in Formulation 2.1.
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Figure 2.9: An example for the function ε (Vtm). The parameters have been set to ε0 = 0.1,
ε∞ = 1.0, ξ = 70 and V = 0.1.

Find (Vtm,ue,v,Ta,U ) such that

∂

∂t
(JVtm) + JIion − J Div(JMi Grad Vtm) − J Div(JMi Grad ue) = Jsi,

−J Div(JMi Grad Vtm) − J Div(JMi+e Grad ue) = 0,
∂

∂t
(Jv) + JH (Vtm,v) = 0,

∂

∂t
(JTa) + Jε (Vtm) (Ta − ka (Vtm − Vr )) = 0,

−Div(F
(
Spas + Sact

)
) = 0

in Ωr × (0,T ) and the boundary and initial conditions

N · (Mi Grad Vtm + Mi Grad ue) + αi (Vtm + ue) = GR,i,

N · (Me Grad ue) + αeue = GR,e,

F(Spas + Sact)N = 0,
Vtm(0,X ) = V 0

tm(X ),

v(0,X ) = v0(X ),

Ta (0,X ) = T0
a (X ),

on ∂Ωr × (0,T ) and Ωr .

Formulation 2.1: System of coupled cardiac electro-mechanics



3 MATHEMATICAL PRELIMINARIES

In this chapter the mathematical tools needed for studying space-time methods will be
summarized.

3.1 Anisotropic Sobolev Spaces

In this section function spaces used in the studies of time-dependent partial differential
equations will be introduced. This part is mainly excerpted from [41, 112, 113]. Let Ω ⊂ Rd

be bounded with Lipschitz boundary ∂Ω. One assumes additionally that the domain Ω
does not change in time. For a given positive real number T one defines I := (0,T ), the
space-time cylinder Q := Ω × I and the space-time surface Σ := ∂Ω × I. Further one
defines the initial and end surfaces as Σ0 := Ω × {0}, ΣT := Ω × {T }. With this one has
∂Q = Σ ∪ Σ0 ∪ ΣT . Subsequently, the most important definitions in the context of Bochner
integrable functions will be recited.

Definition 3.1 Let X be a Banach space. Then a mapping f : I → X is called strongly
measurable iff there is a sequence { fn}n∈N of mappings of the form fn(t) :=

∑K
k=1 1Ak

(t)xk

with xk ∈ X and Ak ⊆ I Lebesgue-measurable sets such that

lim
n→∞
‖ fn(t) − f (t)‖X = 0 for almost all t ∈ I .

Definition 3.2 (Bochner function spaces) Let X be a Banach space. Let p ∈ [1,∞]. The
following function spaces will be defined:

1. The space Lp(I; X ) consists of all strongly measurable functions f : I → X such that

‖ f ‖Lp (I;X ) :=
*..
,

T∫
0

‖ f (t)‖p
X dt

+//
-

1
p

< ∞.

2. In the case p = ∞, L∞(I; X ) is defined as the space of all strongly measurable
functions f : I → X such that

‖ f ‖L∞(I;X ) := ess sup
t∈I

‖ f (t)‖X < ∞.

41
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3. The space W k,p(I; X ) consists of all strongly measurable functions f : I → X admit-
ting weak derivatives dk f

dtk up to the order k which are elements of Lp(I; X ).
4. The space C(I; X ) consists of all continuous mappings f : I → X with

‖ f ‖C(I;X ) := max
t∈I
‖ f (t)‖X < ∞.

The next class of spaces is important in the study of linear parabolic partial differential
equations.

Definition 3.3 Let r, s ≥ 0. Following [112] the anisotropic Bochner-Sobolev spaces are
defined as

Hr,s (Rd × R) := L2(R; Hr (Rd)) ∩ Hs (R; L2(Rd)).

Using the Fourier transform

û(τ,x) :=
1
√

2π

∫
R

e−itτu(t,x) dt

the space Hr,s (Rd × R) is equipped with the norm

‖u‖2Hr,s (Rd×R) :=
∫
R

(
‖û(τ, ·)‖2Hr (Rd ) + (1 + |τ |2)s‖û(τ, ·)‖2L2(Rd )

)
dτ.

For r, s < 0 one can define by duality Hr,s (Rd × R) := (H−r,−s (Rd × R))′.

One also needs to define the space

Hr,s (Q) :=
{
u Q : u ∈ Hr,s (Rd × R)

}

with the norm

‖u‖Hr,s (Q) := inf
w∈Hr,s (Rd×R)

w Q=u

‖w‖Hr,s (Rd×R) .

3.2 Tools from Functional Analysis

In this section the main tools needed for studying partial differential equations in a functional
analytical setting will be summarized. For more details on this topic we refer to [29, 36, 112,
172]. Let X and Y denote two Hilbert spaces. Many linear partial differential equations can
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be recast into variational formulations over Hilbert spaces. The prototype for such problems
looks like, given f ∈ Y ′ find u ∈ X such that

a(u,v) = 〈 f ,v〉 for all v ∈ Y. (3.1)

Here a(·, ·) : X × Y → R denotes a bilinear form and 〈·, ·〉 denotes the duality pairing
between Y and its dual space Y ′. The bilinear form a(·, ·) is said to be bounded if

|a(u,v) | ≤ cA
2 ‖u‖X ‖v‖Y for all u ∈ X, v ∈ Y.

Upon defining an operator,

A : X → Y ′

by

〈Au,v〉 := a(u,v)

which is possible due to the Fréchet-Riesz representation theorem see [172, Theorem 3.3],
Problem (3.1) is equivalent to the operator equation, find u ∈ X such that

Au = f in Y ′, (3.2)

see for example [172, Chapter 3]. Of course one wants to know whether such problems are
(uniquely) solvable. The problems (3.1) or (3.2) are said to be well-posed if they admit a
unique solution u ∈ X or equivalently the operator A is an isomorphism. The key ingredient
for checking well-posedness of an linear operator equation is the following theorem dating
back to [14, 15, 127].

Theorem 3.4 (Aziz-Babuška-Nečas) Let X,Y be Hilbert spaces and let

a(·, ·) : X × Y → R

be a bounded bilinear form and f ∈ Y ′. Then the problem (3.1) is well-posed iff

1. There is a cS > 0 such that

sup
v∈Y
‖v‖Y,0

a(u,v)
‖v‖Y

≥ cS‖u‖X for all u ∈ X. (3.3)

2. For each v ∈ Y, ‖v‖Y , 0 there exists a u ∈ X such that

a(u,v) , 0.

Equivalently, problem (3.2) is well-posed iff
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1. There is a cS > 0 such that

‖Au‖Y ′ ≥ cS‖u‖X for all u ∈ X.

2. The adjoint of A, A′ : Y → X ′ is injective.

Moreover there holds the stability result

‖u‖X ≤
1
cS
‖ f ‖Y ′ .

Proof. See for example [27, Theorem 3.6]. �

Remark 3.5 Condition (3.3) is called the inf-sup-condition. The name stems from the
following equivalent formulation:

inf
u∈X
‖u‖X,0

sup
v∈Y
‖v‖Y,0

a(u,v)
‖u‖X ‖v‖Y

≥ cS .

For more on the inf-sup-condition see for example [160] and references therein.

In the case of X = Y being a Hilbert space one can also rely on the well-known Lemma of
Lax-Milgram, see [108].

Theorem 3.6 (Lemma of Lax-Milgram) Let X be a Hilbert space. Let

a(·, ·) : X × X → R

be a bounded bilinear form and f ∈ X ′. Suppose that a(·, ·) is X-elliptic, i.e.: there exists a
cA

1 > 0 such that for all v ∈ X

a(v,v) ≥ cA
1 ‖v‖

2
X . (3.4)

Then problem (3.1) is well-posed. Moreover the following stability result holds:

‖u‖X ≤
1
cA

1

‖ f ‖X ′ .

Proof. For a proof consider [172, Theorem 3.4]. �
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3.3 Newton’s Method

In many physical problems one has to deal with nonlinear partial differential equations. This
leads to nonlinear operator equations which can be stated very generally as find u ∈ D ⊂ X
such that

F (u) = 0.

Here F : D ⊆ X → Y is a nonlinear operator between Banach spaces X,Y . To solve such
problems one may use the technique of successive linearization. For the formulation of
Newton’s Method in Banach spaces we need the following definitions

Definition 3.7 (Fréchet derivative) Let X and Y be Banach spaces and D ⊂ X be an open
subset of X. A function F : D → Y is called differentiable at ξ ∈ D if there exists a bounded
linear operator A : X → Y, such that for all h ∈ X

lim
‖h‖X→0

‖F (ξ + h) − F (ξ) − Ah‖Y
‖h‖X

= 0.

If the limit exists for every h ∈ X, then the operator A from above is called Fréchet
derivative of F at ξ and is usually denoted as F′(ξ).

Definition 3.8 (Gâteaux derivative) Let X and Y be Banach spaces and D ⊂ X be an open
subset of X. A function F : D → Y is called differentiable at ξ ∈ D in the direction of
h ∈ X if there exists a bounded linear operator A : X → Y, such that

A = lim
t→0

F (ξ + th) − F (ξ)
t

If the limit exists for every h ∈ X, then the operator A from above is called the Gâteaux
derivative of F at ξ and is usually denoted ad DF (ξ).h.

Given a starting value u0 ∈ D one solves

F′(uk )δu = −F (uk )

with the Fréchet-Derivative F′(uk ). Then the next iterate is obtained as

uk+1 = uk + δu.

This algorithm is also called Newton’s method. For more details on Newton’s method in
general we refer to [46, 49, 50]. The convergence of Newton’s method in Banach spaces is
governed by the following theorem:
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Theorem 3.9 (Newton-Kantorovich) Let X, Y be Banach spaces and D ⊂ X open and
convex. Let F : D → Y be a continuously Fréchet differentiable operator and let u0 ∈ D be
such that F′(u0) is invertible. Provided

F′(u0)−1F (u0)X
≤ α,

F′(u0)−1(F′(u) − F′(v)) ≤ ω0‖u − v‖X ,

the sequence uk obtained from Newton’s method is well-defined and converges to u∗ with
F (u∗) = 0. The convergence is of second order for h0 := αω0 <

1
2 and the sequence uk

stays in the ball B(u0,r0) where r0 := 1
ω0

(1 −
√

1 − 2h0).

Proof. See [46, Theorem 2.1]. �

3.4 Nonconforming Approximation Methods

In the previous section it was described how one can deal with operator equations over
Banach spaces. In general it is not possible to solve operator equations in Banach spaces
directly. Hence one relies on approximation methods to solve such kind of problems. Usually
one introduces finite dimensional subspaces Xh ⊆ X and Yh ⊆ Y and considers the discrete
variational problem to find uh ∈ Xh such that

a(uh,vh) = 〈 f ,vh〉 (3.5)

for all vh ∈ Yh. If X = Y and Xh = Yh this is called a conforming Galerkin-Bubnov method
otherwise conforming Galerkin-Petrov method. Due to conformity one also has the Galerkin
orthogonality

a(u − uh,vh) = 0

for all vh ∈ Yh. Since one deals with finite-dimensional spaces, any uh ∈ Xh can be expanded
into basis functions φl spanning Xh

uh =

M∑
l=1

ulφl

where M = dim Xh. Using the linearity of the bilinear form a(·, ·) one obtains

M∑
l=1

ul a(φl ,ψk ) = 〈 f ,ψk〉

for all k = 1, . . . ,N := dim Yh. Upon defining

Ah[k, l] := a(φl ,ψk )
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one sees, that an equivalent linear system can be obtained reading as

Ahu = f .

with the coefficient vector u = (u1, . . . ,uM )> ∈ RM . Conversely, for each w ∈ RM one can
construct a wh ∈ Xh by

wh :=
M∑

l=1

wlφl .

This is called the Galerkin isomorphism. In the case of a Galerkin-Bubnov method one
obtains a square matrix Ah. The unique solvability of the finite dimensional problem is
covered by the following theorem.

Theorem 3.10 Let a(·, ·) : X × Y → R fulfill the assumptions of Theorem 3.4. Let Xh ⊆ X
and Yh ⊆ Y additionally fulfill a discrete inf-sup condition. Then there exists a unique
solution uh ∈ Xh of the finite dimensional problem (3.5) and there holds the quasi-optimality
estimate

‖u − uh‖X ≤
*
,
1 +

cA
2

cS
+
-

inf
wh∈Xh

‖u − wh‖X .

Proof. See [27, Theorem 3.7], [172, Theorem 8.4] or [7, Theorem 4.1.4]. �

Sometimes it is more convenient to relax the conformity conditions and consider Xh *
X and Yh * Y . Salient examples are the treatment of convection diffusion equations
with dominant convection, see [37] and the numerical solution of compressible Navier-
Stokes equations, see [20]. The discontinuous Galerkin method is a typical example of
an nonconforming method. For more details on nonconforming methods in general we
refer to [27, Chapter 3] or [29, Chapter 10]. In the following the main tools for proving
discrete well-posedness (existence and uniqueness) as well as abstract error estimates will
be summarized, see [47, Section 1.3], [173] and [57, Section 2.3] for more details. The
three main properties are:

1. Discrete (inf-sup-)stability (also called the Ladyzhenskaja Babuška Brezzi condition
short LBB-condition),

2. Consistency,
3. Boundedness.

For sake of brevity we will now specify that f ∈ L2(Q). Let us consider a finite dimensional
subspace Vh ⊂ L2(Q) but Vh * X . The aim is to investigate the discrete problem, given
f ∈ L2(Q) find uh ∈ Vh s.t.:

ah(uh,vh) = ( f ,vh)L2(Ω) for all vh ∈ Vh. (3.6)
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Here the bilinear form ah : Vh × Vh → R. Since test and trial spaces are the same this
variational formulation is of Galerkin-Bubnov type. One can rewrite (3.6) as an operator
equation by introducing the linear operator Ah : Vh → Vh

(Ahuh,vh)L2(Ω) := ah(uh,vh)

and the right hand side as the L2(Q)-projection Qh onto Vh. This leads to the equivalent
discrete operator equation, given f ∈ L2(Q) find uh ∈ Vh s.t.:

Ahuh = Qh f in Vh.

Remark 3.11 It is common for discontinuous Galerkin methods in space to assume f ∈
L2(Ω). Thus one is able to define the right hand side of (3.6) with the L2(Ω)-scalar product.
In the case f ∈ Y ′ but f < L2(Ω) one may use other techniques for defining the right hand
side, see [47, Remark 4.9].

The next step is to formulate the concept of discrete stability. To this end the space Vh is
equipped with some norm �·�.

Definition 3.12 (Discrete stability) The bilinear form ah : Vh × Vh → R is called discrete
stable on Vh if there is a cS > 0 not depending on Vh such that

cS�uh� ≤ sup
vh∈Vh
�vh�,0

ah(uh,vh)
�vh�

for all uh ∈ Vh. (3.7)

Remark 3.13 Condition (3.7) is an discrete inf-sup-condition. This can be seen by rewriting
it as

cS ≤ inf
uh∈Vh
�vh�,0

sup
vh∈Vh
�vh�,0

ah(uh,vh)
�uh��vh�

.

The concept of discrete stability ensures the discrete well-posedness of (3.6):

Lemma 3.14 Let f ∈ L2(Q). Then the discrete variational problem (3.6) is well-posed iff
the bilinear form ah : Vh × Vh → R is discrete stable on Vh.

Proof. See [47, Lemma 1.30]. �

Remark 3.15 A sufficient condition for discrete stability is discrete ellipticity, i.e.: there
exists a cA

1 > 0 such that

cA
1 �vh�2 ≤ ah(vh,vh) for all vh ∈ Vh. (3.8)
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Up to now one has only considered the discrete setting. However, the goal is to link the
continuous problem (3.1) to the discrete problem. In conforming finite element analysis one
has Vh ⊂ X and thus may plug in the exact solution u into the discrete bilinear form ah(·, ·).
However, in the nonconforming setting this may not be possible in general since ah(·, ·) is
only defined on Vh × Vh. Therefore one assumes that there exists a subspace X∗ ⊂ X such
that u ∈ X∗ and such that the bilinear form ah(·, ·) can be extended to X∗ × Vh.

Definition 3.16 (Consistency) Let u ∈ X∗ be the exact solution to problem (3.1). The
bilinear form ah : Vh × Vh → R is called consistent if it can be extended to X∗ × Vh and

ah(u,vh) = ( f ,vh)L2(Ω) for all vh ∈ Vh. (3.9)

Remark 3.17 Condition (3.9) is equivalent to the Galerkin-orthogonality:

ah(u − uh,vh) = 0 for all vh ∈ Vh. (3.10)

The last property needed is boundedness of the bilinear form. To this end one introduces
the space

X∗h := X∗ + Vh.

This is motivated by the fact that the approximation error u − uh is an element of this space.
In general it is not possible to extend the norm �·� used in the discrete stability to the space
X∗h. Therefore one introduces a second norm �·�∗.
Definition 3.18 (Boundedness) The bilinear form ah : Vh × Vh → R is called bounded in
X∗h × Vh if there exists a constant cB

2 > 0 not depending on h such that

|ah(u,vh) | ≤ cB
2 �u�∗�vh�, (3.11)

where �·�∗ is a norm defined on X∗h such that for all u ∈ X∗h there holds �u� ≤ �u�∗.

With these three properties one is in the position to state an abstract nonconforming error
estimate [47, Theorem 1.35].

Theorem 3.19 (Abstract error estimate) Let u be the unique exact solution to (3.1) with
f ∈ L2(Ω). Let uh be the unique solution to (3.6). Let X∗ ⊂ X and assume that u ∈ X∗. Let
X∗h := X∗ + Vh and assume that the bilinear form ah(·, ·) : Vh × Vh → R can be extended
to X∗h × Vh and enjoys the properties of discrete stability, consistency and boundedness.
Further let there be two norms �·�, �·�∗ defined on X∗h such that for all v ∈ X∗h there
holds �v� ≤ �v�∗. Then

�u − uh� ≤ *
,
1 +

cB
2

cS
+
-

inf
zh∈Vh

�u − zh�∗.
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Proof. Take any zh ∈ Vh. Then thanks to discrete stability we have

cS�uh − zh� ≤ sup
vh∈Vh
�vh�,0

ah(uh − zh,vh)
�vh�

.

Next we observe that

sup
vh∈Vh
�vh�,0

ah(uh − zh,vh)
�vh�

= sup
vh∈Vh
�vh�,0

ah(uh − u − (zh − u),vh)
�vh�

= sup
vh∈Vh
�vh�,0

ah(u − zh,vh)
�vh�

due to consistency. Now we use the boundedness and obtain

sup
vh∈Vh
�vh�,0

ah(u − zh,vh)
�vh�

≤ cA
2 sup

vh∈Vh
�vh�,0

�u − zh�∗�vh�
�vh�

= cA
2 �u − zh�∗.

Hence we know that

�uh − zh� ≤
cA

2

cS
�u − zh�∗.

Finally we conclude the proof with the help of the triangle inequality

�u − uh� = �u − zh + zh − uh� ≤ �u − zh� + �uh − zh�

≤ �u − zh�∗ +
cA

2

cS
�u − zh�∗.

�

3.5 Tools for Discontinuous Galerkin Methods

For defining the discontinuous Galerkin finite element method one needs to introduce a few
basic concepts. This part is mainly taken from [47, Chapter 1] and also [129, Chapter 2].
We start by defining the space-time dimension dT := d + 1, where d is the dimension of the
spatial domain Ω. For simplification it is assumed that the computational domain Q ⊂ RdT

is a dT -polytope.

Definition 3.20 (Boundary and Outer Normal) The boundary of Q ⊂ Rd+1 is denoted by
∂Q. The almost everywhere defined outer normal is denoted by n. Furthermore the normal
vector admits the representation n = (nx ,nt ).
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Definition 3.21 (Simplex) Given dT + 1 vectors x1, . . . ,xdT+1 ∈ R
dT such that{

x2 − x1,x3 − x1, . . . ,xdT+1 − x1
}

are linear independent. Then the set

τ := conv
{
x1, . . . ,xdT+1

}
is called a dT -simplex. The vectors x1, . . . ,xdT+1 are called vertices of τ.

Remark 3.22 For more information about triangulations of domains with dimension dT ≥ 4
we refer to [129, 130]. For non-polygonal domains one needs to take care of the approx-
imation of the boundary curve ∂Q ⊂ RdT−1, see for example [29, Chapter 4.7] and [36,
Chapter 4.3].

Definition 3.23 (Simplicial Mesh) Let Q ⊂ RdT . Further, let there be given a set of N ∈ N
dT -dimensional non-overlapping simplex elements

T = {τ1, τ2, . . . , τN } , τi ∩ τj = ∅ for all τi, τj ∈ T .

Then T is called a simplical mesh of Q iff

Q =
⋃
τ∈T

τ.

Remark 3.24 The index N refers to the number of elements in the triangulation T . This
can be made explicit by using the notation TN .

Remark 3.25 We will restrict ourselves to simplical meshes only. Therefore, we will skip
the term simplical mesh and use the term mesh henceforth.

Definition 3.26 (Element characteristics) Given a triangulation T of Q. Then for each
τl ∈ T the volume is defined as

∆l :=
∫
τl

dq.

The local mesh-size is defined as hl := ∆
1
dT

l . Moreover the diameter is defined as

dl := sup
x,y∈τl

|x − y | .

The radius of the largest inscribed circle is denoted by rl . The global mesh-size is defined as

h := max
τl∈T

hl .
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Remark 3.27 One may use the notation Th for the triangulation TN with N elements of Q
with global mesh-size h.

A key ingredient to discontinuous Galerkin methods are interior and boundary facets.

Definition 3.28 (Interior and boundary facets) Let TN be a mesh. A subset F ⊂ Q is called
an interior facet if there are two distinct elements τk , τl ∈ TN such that

F = ∂τk ∩ ∂τl .

In this case we will use the notation Γkl := F. The subset F ⊂ Q is called a boundary facet
if there is a τl ∈ TN such that

F = ∂τl ∩ ∂Q.

For boundary facets we will use the notation Γl . The set of all interior facets will be denoted
by IN . The set of all boundary facets will be denoted by BN .

Definition 3.29 (Matching mesh) Let TN be a triangulation of Q. Then TN is called a
matching mesh if for any two distinct τk , τl ∈ TN there holds that the intersection τl ∩ τk is
always a sub-simplex of dimension {d,d − 1, . . . ,0}.

Remark 3.30 If dT = 3 this means, for example, that the intersection of two arbitrary
simplex elements of a triangulation TN is either a common vertex, a common edge or a
common face of the elements.

For the convergence proofs of discontinuous Galerkin Element Methods one needs to define
families of triangulations, see also [47, Chapter 1] and [30, 58].

Definition 3.31 (Family of triangulations) A family of triangulations is a sequence of
triangulations

{TN }N∈N

where N ⊆ N denotes a sequence of natural numbers having∞ as only accumulation point.
The shorthand notation TN will be used.

In contrast to standard conforming Galerkin finite element methods hanging nodes are
allowed within the mesh, see Figure 3.1 for an illustration of a typical interior facet. For
applying the standard theory it is not possible to work with complete arbitrary meshes with
arbitrary elements having hanging nodes. Instead it is necessary, that one can construct
sub-meshes of a given mesh without hanging nodes. This is collected in the following
definition, see [47, Definition 1.36] and also [30, Assumption 1].
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τk τl

Γkl

nk

nl

Figure 3.1: Illustration of an interior facet for dT = 2.

Definition 3.32 (Mesh quality) Let TN be a family of triangulations. The mesh family is
said to be a good family if it satisfies the following mesh quality conditions

(a) Shape regularity There exists a parameter cF > 0 such that for all τl ∈ TN

dl ≤ cFrl .

(b) Contact regularity There exists a constant c1 > 0 such that

c1hdT−1
l ≤ |e| for all τl ∈ TN , e ∈ IN ∪ BN , s.t. e ⊂ τl .

(c) Locally quasi-uniform Given any two elements τl , τk ∈ TN there exist a constant
c̃G ≥ 1 independent of h such that

c̃−1
G ≤

hk

hl
≤ c̃G

(d) Sub-mesh condition For each TN ∈ TN there exists a regular, matching submesh T̃N
such that

1. For each τ̃ ∈ T̃N there exists a τ ∈ TN such that τ̃ ⊂ τ.
2. The family induced by T̃N fulfills (a), (b) and (c).
3. There exists a constant c̃ such that, whenever τ̃p ⊂ τl then hp ≤ c̃hl .

Remark 3.33 The concept of matching sub-meshes was introduced in [28]



54 3 Mathematical Preliminaries

Remark 3.34 The contact regularity of TN implies the following bound on the measure of
the boundaries of the elements: There exist cR1 ,cR2 > 0 such that

cR1 hdT−1
l ≤ |∂τl | ≤ cR2 hdT−1

l . (3.12)

Given two neighboring elements τk , τl the local quasi-uniformity implies a bound on the
average mesh size hkl := 1

2 (hk + hl ): There exists a constant cG ≥ 1 independent of the
family TN such that

c−1
G ≤

hkl

hl
≤ cG c−1

G ≤
hkl

hk
≤ cG . (3.13)

See [129, Section 2.2] and [47, Section 1.4] for details.

Remark 3.35 (Boundary Discretization) When assuming that Ω has a polygonal boundary
one also has that Σ is polygonal. Furthermore a boundary discretization EM = E0 ∪ET ∪ER
such that EM = Σ is induced. Each element e j ∈ EM can then be uniquely associated to a
d-dimensional sub-simplex of an element τl ∈ Th. This means that for each τl ∈ TN with
∂τl ∩ Σ , ∅ there exists exactly one e j (l) ∈ EM and vice versa.

For the proofs in the subsequent sections the following technical assumption is needed, see
also [129].

Assumption 3.36 (Time Alignment) For all TN ∈ TN there holds:

min
Γkl∈IN

{��nk,x �� > 0: nk,x is normal vector of Γkl
}
≥ cn > 0. (3.14)

Remark 3.37 Condition (3.14) means that the minimum over all angles enclosed by the
interior facets which are neither parallel nor normal to the time axis are large enough.
Provided that the initial triangulation fulfills this condition and the family of meshes is
obtained by successive red refinements the alignment condition holds also. See Figure 3.2
for an illustration.

For the formulation of a discrete variational formulation the following standard definitions
are used:

Definition 3.38 Let Γkl ∈ IN be an interior facet with outer normal nk = (nx,k ,nt,k )> ∈ RdT

for τk and nl = −nk for τl . For a given function φ smooth enough restricted to either τk or
τl one defines :

• The jump across Γkl as

JφKkl := φ τknk + φ τlnl .
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Figure 3.2: Illustration of the alignment condition

• The space jump across Γkl as

JφKx,kl := φ τknx,k + φ τlnx,l .

• The time jump across Γkl as

JφKt,kl := φ τk nt,k + φ τl nt,l .

• The average of φ on Γkl as

〈φ〉kl :=
1
2

(
φ τk + φ τl

)
.

• Given ω1,ω2 ∈ [0,1] with ω1 +ω2 = 1 the weighted average of φ on Γkl is defined as

〈φ〉ω,kl := ω1φ τk + ω2φ τl .

• The upwind in time direction of φ is defined as

{φ}
up
kl :=




φ τk if nk,t > 0,
0 if nk,t = 0,
φ τl if nk,t < 0.

Remark 3.39 With this definition the jump of a scalar-valued function is independent of
the ordering of the finite elements τk , τl . It is a vector-valued function. Other definitions for
these terms are possible see for example [47, Section 1.2.3]. Given that φ is vector-valued
one defines the tensor valued jump as

JφK
kl

:= φ τk ⊗ nk + φ τl ⊗ nl .
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In Section 3.4 it was discussed that the discontinuous Galerkin method is nonconforming.
Next, the spaces that will be used for this method will be introduced.

Definition 3.40 (Broken Sobolev space) Let TN ∈ TN be an admissible triangulation of Q.
For s ≥ 0 we define the broken Sobolev space Hs (TN ) as

Hs (TN ) :=
{
v ∈ L2(Q) : v τl ∈ Hs (τl ) for all τl ∈ TN

}
.

Remark 3.41 It is easy to show, that provided u ∈ Hr,s (Q) one has that u ∈ Hmin{r,s} (Q).

For a given discretization TN ∈ TN one defines the discrete test and trial spaces

Sp
h (TN ) :=

{
vh ∈ L2(Q) : vh τl ∈ P(τl ) for all τl ∈ TN

}

where P(τl ) is the space of polynomials with degree less or equal p on τl .

Remark 3.42 In the case of Dirichlet boundary conditions one uses a slightly different
definition

Sp
h (TN ) :=

{
vh ∈ L2(Q) : vh τl ∈ P(τl ) for all τl ∈ TN and vh ΣD = 0

}
.

It is possible to use different polynomial degrees on each element τl as well as differ-
ent Sobolev spaces on each τl . For more on broken polynomial spaces we refer to [47,
Section 1.2.4 and A.2].

For the broken polynomial spaces the following trace and inverse inequalities are valid:

Lemma 3.43 (Inverse and trace inequalities) Let TN ∈ TN be a shape and contact regular
mesh sequence. Then, for all vh ∈ Sp

h (TN ) there holds:

‖vh‖L2(Γkl ) ≤ cI |Γkl |
1
2 |τl |

− 1
2 ‖vh‖L2(τl ), (3.15)

‖vh‖H1(Γkl ) ≤ cI h
−1
kl ‖vh‖L2(Γkl ), (3.16)

‖vh‖H1(τl ) ≤ cI h−1
l ‖vh‖L2(τl ) . (3.17)

Proof. See [47, Lemma 1.46] for a proof of (3.15). The proof for inequality (3.16) can be
found in [192, Section 4.2.4] and the proof of inequality (3.17) can be looked up in [47,
172]. �

Remark 3.44 From estimate (3.15) one obtains also the estimate

‖A∇xvh‖[L2(Γkl )]d ≤ cI |Γkl |
1
2 |τl |

− 1
2 ‖A∇xvh‖[L2(τl )]d , (3.18)
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for any symmetric positive definite piecewise constant matrix A. This can be seen by
observing that A∇xvh ∈ [Sp−1

h (TN )]d and applying estimate (3.15) component-wise. In the
case that A is not constant but in [L∞(TN )]d×d one can prove the following:

‖A∇xvh‖[L2(Γkl )]d ≤ ‖A‖[L∞(TN )]d×d ‖∇xvh‖[L2(Γkl )]d

≤ cI ‖A‖[L∞(TN )]d×d |Γkl |
1
2 |τl |

− 1
2

A−1A∇xvh
[L2(τl )]d

≤ cI max
x∈Q

�����
λmax(A(x))
λmin(A(x))

�����
|Γkl |

1
2 |τl |

− 1
2 ‖A∇xvh‖[L2(τl )]d .





4 SPACE-TIME DISCONTINUOUS GALERKIN FINITE
ELEMENT METHOD FOR THE BIDOMAIN EQUATIONS

In this chapter a space-time discontinuous Galerkin finite element method for the Bidomain
equations will be discussed. The first part of this chapter is devoted to existing results
on unique solvability and regularity for the Bidomain equations. Subsequently, the dis-
cretization of the Bidomain equations will be presented. Proceeding, we will start our
numerical considerations with a corresponding linear problem and then extend the results
to the nonlinear case. This chapter will be closed with some convergence studies.

4.1 Unique Solvability and Regularity Results

In this section existence and uniqueness results for the Bidomain equations will be sum-
marized which can be found in [25, 26, 38, 106, 183]. It is clear that the results can not be
independent of the chosen ionic model. The Bidomain equations will be considered in the
following form

∂

∂t
Vtm + Iion(Vtm,v) − div(Mi grad Vtm) − div(Mi grad ue) = si,

− div(Mi grad Vtm) − div((Mi + Me) grad ue) = 0,
∂

∂t
v + H (Vtm,v) = 0,

(4.1)

in Q := Ω × (0,T ). We will consider only phenomenological ionic models, i.e. with one
additional variable. The following initial and boundary conditions will be considered

n · Mi grad (Vtm + ue) + αi (Vtm + ue) = gi,R,

n · Me grad ue + αeue = ge,R,

Vtm(x,0) = V 0
tm(x),

v(x,0) = v0(x).

(4.2)

For the numerical analysis we will also consider the following linear problem, which is
derived by omitting all nonlinear terms and neglecting the ionic variables:

∂

∂t
Vtm − div(Mi grad Vtm) − div(Mi grad ue) = si,

− div(Mi grad Vtm) − div((Mi + Me) grad ue) = 0,
(4.3)

59
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in Q. Again we equip this problem with the following boundary and initial conditions

n · Mi grad (Vtm + ue) + αi (Vtm + ue) = gi,R,

n · Me grad ue + αeue = ge,R,

Vtm(x,0) = V 0
tm(x).

(4.4)

For the case of non-phenomenological ionic models we refer to [183]. One has to be
careful in the use of term “weak solutions” to the Bidomain equations as this term is
ambiguous. In literature, there arise different notions of solutions to the Bidomain equations,
each entitled “weak solution”. For example the definitions of weak solutions in [25, 26,
106, 107, 183] are different and in general not equivalent to those found in [8, 9]. For a
more general discussion on the various solution concepts in the context of time dependent
partial differential equations we refer to [7, Chapter 3]. We will try to emphasize this by
explicitly adding the first author to the various weak solution concepts. The most recent
result concerning existence and regularity of solutions to the Bidomain equations can be
found in [106, Theorems 2.5, 2.7, 2.8 and 3.3] and also [107]. The first concept of weak
solutions is the one of Kunisch et al. To this end we fix the following spaces

X := C(0,T ; L2(Ω)) ∩ L2(0,T ; H1(Ω)) ∩ Lp(QT ),

Y := L2(0,T ; H2(Ω)),

Z := C(0,T ; L2(Ω)),

where p ≥ 2 when Ω ⊂ R2 and 2 ≤ p ≤ 6 in the case Ω ⊂ R3. These are results for weak
solutions in the sense of Kunisch et al. The formulation is depicted in Formulation 4.1.
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Find (Vtm,ue,v) ∈ X × Y × Z such that∫
Ω

siφ1 dx =

∫
Ω

∂Vtm

∂t
φ1 dx +

∫
Ω

Iion(Vtm,v)φ1 dx

+

∫
Ω

Mi∇xVtm · ∇xφ dx +

∫
Ω

Mi∇xue · ∇xφ dx

+ αi

∫
ΓR

(Vtm + ue)φ1 dsx

for all φ1 ∈ H1(Ω) and almost all t ∈ (0,T ),∫
Ω

(si + se)φ2 dx =

∫
Ω

Mi∇xVtm∇xφ2 dx +

∫
Ω

Mi+e∇xue∇xφ2 dx

+ αi

∫
ΓR

(Vtm + ue)φ2 dsx +αe

∫
ΓR

ueφ2 dsx

for all φ2 ∈ H1(Ω) and almost all t ∈ (0,T ),

0 =

∫
Ω

∂v

∂t
φ3 dx +

∫
Ω

G(Vtm,v)φ3 dx

for all φ3 ∈ L2(Ω) and almost all t ∈ (0,T ).

Formulation 4.1: Weak formulation of the Bidomain equations as in [106, 107].

For the proof of existence, uniqueness and regularity of solutions to Formulation 4.1
one needs to rely on the following assumptions, cf. [106, Assumption 2.3] and [107,
Theorem 1.1].

Assumption 4.1 (Basic assumptions on the input data) We assume that

1. The space domain Ω ⊂ Rd is a bounded Lipschitz domain.
2. For the conductivity tensors there holds: Mi, Me ∈ [L∞(Ω)]d×d , Mi, Me are symmetric

and positive definite obeying the following uniform ellipticity estimates

0 ≤ µ1 |v |
2 ≤

(
M{i,e}v,v

)
≤ µ2 |v |

2

with µ1, µ2 > 0.
3. The initial values V 0

tm, v
0 belong to L2(Ω).
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4. The input data si, se belong to L∞(0,T ; H̃−1(Ω)). The boundary data gR,i,gR,e belongs
to L∞(0,T ; H−1/2(Γ))

Furthermore we recite the growth conditions to be imposed on the nonlinearities, see also
[26, pp. 470,471].

Assumption 4.2 (Growth conditions) We assume that

1. The nonlinearity Iion can be written as

Iion(Vtm,v) = f1(Vtm) + f2(Vtm)v,
G(Vtm,v) = g1(Vtm) + g2v

where f1 : R→ R, f2 : R→ R and g1 : R→ R are continuous functions and g2 ∈ R.
2. There exist non-negative constants {ci}

6
i=1 such that for any u ∈ R

| f1(u) | ≤ c1 + c2 |u|p−1 ,

| f2(u) | ≤ c3 + c4 |u|
p/2−1 ,

|g1(u) | ≤ c5 + c6 |u|
p/2 .

3. There exist constants a, λ > 0,b,c ≥ 0 such that for any (u,v) ∈ R2

λuIion(u,v) + vG(u,v) ≥ a |u|p − b(λ |u|2 + |v |2) − c.

Under these assumptions it is possible to show existence and uniqueness of the problem
posed in Formulation 4.1, see [107, Theorem 1.4]. Further the authors were able to show
additional regularity results, see [107, Propositions 2.5, 2.6, 2.7 and 2.8].

• Vtm ∈ L2(0,T ; L6(Ω)) ∩ Lq(0,T ; Lr (Ω)) ∩ L5(QT ) where 1 < q < ∞ and 4 ≤ r < 6,
• ue ∈ L2(0,T ; H2(Ω)),
• v ∈ C1([0,T],L1(Ω)),
• If 26/9 < r < 3 and v0 ∈ W 1,r/2(Ω) then v ∈ L1(0,T ; W 1,r/2(Ω)) ∩ C(0,T ; L8/3(Ω)).

The second concept of weak solutions we want to mention can be found in the works [8, 9].
For defining the weak solution concept one introduces the following spaces

X := L2(0,T ; H1(Ω)) ∩ L4(Q),

X ′ = L2(0,T ; H̃−1(Ω)) + L
4
3 (Q),

Y := L2(0,T ; H1(Ω)),

Z := C(0,T ; L2(Ω)),

W (Q) :=
{
v ∈ X :

∂

∂t
v ∈ X ′

}
,

V (Q) :=
{
v ∈ X :

∂

∂t
v ∈ L∞(Q)

}
.

The weak formulation in the sense of Andreianov et al. is depicted in Formulation 4.2.
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Find (Vtm,ue,v) ∈ W (Q) × Y × Z such that∫
Q

siφ1 dq +

∫
Σ0

V 0
tmφ1 dsq = −

∫
Q

Vtm
∂φ1

∂t
dq +

∫
Q

Iion(Vtm,v)φ1 dq

+

∫
Q

Mi∇xVtm · ∇xφ1 dq +

∫
Q

Mi∇xue · ∇xφ1 dq

+ αi

∫
ΣR

(Vtm + ue)φ1 dsq

for all φ1 ∈ V (Q),∫
Q

(si + se)φ2 dq =

∫
Q

Mi∇xVtm∇xφ2 dq +

∫
Q

Mi+e∇xue∇xφ2 dq

+ αi

∫
ΣR

(Vtm + ue)φ2 dsq +αe

∫
ΣR

ueφ2 dsq

for all φ2 ∈ L2(0,T ; H1(Ω)),∫
Σ0

v0φ3 dsq = −

∫
Q

v
∂φ3

∂t
dq +

∫
Q

G(Vtm,v)φ3 dq

for all φ3 ∈ L2(Q).

Formulation 4.2: Weak formulation of the Bidomain equations as in [8, 9].

The existence of a unique weak solution in the sense of Formulation 4.2 is shown in
[9, Section 3]. However higher regularity results for this formulation remain an open
problem, see [9, Section 4.2]. For defining the space-time discretization we will assume
that (Vtm,ue,v) ∈ [Hr,s (Q)]3 with min{r, s} > 3

2 .

4.2 Numerical Analysis

In this section we will derive a discrete space-time variational formulation of the Bidomain
equations (4.1)-(4.2). Following ideas from [129] the entire space-time cylinder Q =

Ω × (0,T ) will be used as computational domain. On top of the growth conditions specified
in Assumption 4.2 we will additionally pose the following assumptions:
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Assumption 4.3 (Additional assumptions on nonlinearities) We will assume that:

1. There holds

Iion(Vtm,v),G(Vtm,v) ∈ C1(Q).

2. Upon defining

A(u,w) := *.
,

∂Iion
∂Vtm

(u,w) ∂Iion
∂v (u,w)

∂G
∂Vtm

(u,w) ∂G
∂v (u,w)

+/
-

there holds

λmin(sym(A(uh,wh))) ≥ cnl > 0 for all (uh,vh) ∈ Sp1
h (TN ) × Sp2

h (TN ).

3. There holds ‖A(uh,wh))‖F ≤ cnl < ∞ for all (uh,vh) ∈ Sp1
h (TN ) × Sp2

h (TN ).

4. There holds (cnl )2

4cnl
< 1.

Let us define Zh := Sp1
h (TN ) × Sp2

h (TN ) × Sp3
h (TN ). The discrete variational problem reads:

Find (V h
tm,u

h
e ,v

h) ∈ Zh such that :

bDG
T (V h

tm, φ
h) + aDG

i (V h
tm, φ

h) + aDG
i (uh

e , φ
h) + IDG(V h

tm,v
h; φh) = l1(φh),

aDG
i (V h

tm,ψ
h) + aDG

i+e (uh
e ,ψ

h) = l2(ψh),

bDG
T (vh, ζ h) + GDG(V h

tm,v
h; ζ h) = l3(ζ h),

(4.5)

for all (φh,ψh, ζ h) ∈ Zh. The bilinear form aDG
{i,e} (•,•) is defined as

aDG
{i,e} (uh,vh) :=

N∑
l=1

∫
τl

M{i,e}∇xuh · ∇xvh dq

−
∑
Γkl∈IN

∫
Γkl

〈
M{i,e}∇xuh

〉
kl,ω · JvhKkl,x dsq

−
∑
Γkl∈IN

∫
Γkl

JuhKx,kl ·
〈
M{i,e}∇xvh

〉
kl,ω dsq

+
∑
Γkl∈IN

σγkl

hkl

∫
Γkl

JuhKx,kl · JvhKx,kl dsq

+ α{i,e}

∫
ΣR

uhvh dsq .

(4.6)
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Bilinear form (4.6) is the symmetric weighted interior penalty discretization of an ani-
sotropic Poisson operator see [47, Sections 4.5 and 4.5.6]. The weights for the averages
read:

ω1 :=
mk

ml + mk
, (4.7)

ω2 :=
ml

ml + mk
, (4.8)

γkl :=
2mk ml

mk + ml
, (4.9)

mk :=
(
M{i,e} τknk,x ,nk,x

)
, (4.10)

ml :=
(
M{i,e} τlnl,x ,nl,x

)
. (4.11)

The bilinear form bDG
T (•,•) is defined as

bDG
T (uh,vh) :=

N∑
l=1

−

∫
τl

uh
∂

∂t
vhdq +

∫
ΣT

uhvh dsq

+
∑
Γkl∈IN

∫
Γkl

{uh}
up
kl JvhKt,kl dsq .

(4.12)

Bilinear form (4.12) results from an upwind discretization of the time derivative as used in
[129, Section 2.1] and [47, Section 2.3].

Remark 4.4 Using integration by parts one may observe that

bDG
T (uh,vh) =

N∑
l=1

∫
τl

∂

∂t
uhvhdq +

∫
Σ0

uhvh dsq −
∑
Γkl∈IN

∫
Γkl

JuhKt,kl {vh}
down
kl dsq (4.13)

where the downwind is defined as

{φ}down
kl :=




φ τl if nk,t > 0,
0 if nk,t = 0,
φ τk if nk,t < 0.

The nonlinear forms are defined as

IDG(V h
tm,v

h; φh) :=
N∑

l=1

∫
τl

Iion(V h
tm,v

h)φhdq,

GDG(V h
tm,v

h; ζ h) :=
N∑

l=1

∫
τl

G(V h
tm,v

h)ζ hdq.
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Finally the linear forms on the right hand side of (4.5) read as:

l1(φh) :=
∫
Σ0

V 0
tmφ

h dsq +

∫
Q

siφ
hdq,

l2(ψh) :=
∫
ΣR

gRψ
h dsq,

l3(ζ h) :=
∫
Σ0

v0ζ h dsq .

Henceforth we will assert that p1 = p2 = p3 = p ≥ 1. Starting point for the numerical
analysis shall be the following linear problem: Find (V h

tm,u
h
e ) ∈ Sp

h (TN ) × Sp
h (TN ) such

that
bDG

T (V h
tm, φ

h) + aDG
i (V h

tm, φ
h) + aDG

i (uh
e , φ

h) = l1(φh),

aDG
i (V h

tm,ψ
h) + aDG

i+e (uh
e ,ψ

h) = l2(ψh),
(4.14)

for all (φh,ψh) ∈ Sp
h (TN ) × Sp

h (TN ). For later use we will also consider the following form
of problem (4.14)

cDG((V h
tm,u

h
e ), (φh,ψh)) :=

bDG
T (V h

tm, φ
h) + aDG

i (V h
tm + uh

e , φ
h + ψh) + aDG

e (uh
e ,ψ

h)

= l1(φh) + l2(ψh)

(4.15)

for all (φh,ψh) ∈ Sp
h (TN ) × Sp

h (TN ). For studying the bilinear form bDG
T (·, ·) we will

introduce the following norms for functions u ∈ Hs (TN ) with s ≥ 1:

�u�2
time :=

N∑
l=1

hl


∂

∂t
u



2

L2(τl )
+ ‖u‖2L2(Σ0) + ‖u‖2L2(ΣT ) +

∑
Γkl∈IN

JuKkl,t


2

L2(Γkl )
,

�u�2
time,∗ :=

N∑
l=1

h−1
l ‖u‖

2
L2(τl )

+ ‖u‖2L2(ΣT ) +
∑
Γkl∈IN

{u}
up
kl


2

L2(Γkl )
.

Having defined these norms one is able to prove the following results:

Lemma 4.5 The bilinear form bDG
T (·, ·) is bounded, i.e.:

bDG
T (u,vh) ≤ cB

2 �u�time�vh�time,∗

for all u ∈ u ∈ Hs (TN ) and vh ∈ Sp
h (TN ).

Proof. See [129, Lemma 2.2.8]. �
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Lemma 4.6 Let uh ∈ Sp
h (Th). Then there holds

bDG
T (uh,uh) ≥

1
2

*.
,
‖uh‖

2
L2(Σ0) + ‖uh‖

2
L2(ΣT ) +

∑
Γkl∈IN

JuhKt,kl


2

L2(Γkl )
+/
-
.

Proof. See [129, Lemma 2.2.11]. �

Lemma 4.7 For uh ∈ Sp
h (TN ) let wh be defined as

wh τl := hl
∂

∂t
uh.

Then there exists a constant cb
1 (δ) independent of uh such that

bDG
T (uh,uh + δwh) ≥ cb

1 (δ)�uh�2
time. (4.16)

The δ-dependent constant is given by

cb
1 (δ) =

1
2

min
{
1, δ,1 − 2c2

I cR2δ
}
.

Proof. See [129, Lemma 2.2.14]. �

Further we need to define the following norms for studying the bilinear forms aDG
{i,e} (·, ·)

�u�2
space,{i,e} :=

N∑
l=1

M
1
2
{i,e}∇xu


2

L2(τl )
+

∑
Γkl∈IN

γklσ

hkl

JuKkl,x


2

L2(Γkl )

+ α{i,e}

∫
ΣR

|u|2 dsq,

�u�2
space,{i,e},∗ := �u�2

space,{i,e} +
∑
Γkl∈IN

hkl

〈
M{i,e}∇xu

〉
ω,kl


2

L2(Γkl )
.

Remark 4.8 Since Mi,Me are symmetric positive definite it holds

�u�space,i ≤ χi�u�space,e, (4.17)
�u�space,e ≤ χe�u�space,i, (4.18)

where

χi :=
(
max

{
λmax(Mi)
λmin(Me)

,
αi

αe

}) 1
2

,

χe :=
(
max

{
λmax(Me)
λmin(Mi)

,
αe

αi

}) 1
2

.
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Lemma 4.9 Let S ∈ [L∞(Q)]d×d be a symmetric positive definite matrix. For all u ∈ Sp
h (TN )

there holds:

∑
Γkl∈IN

hkl
〈S∇xu〉ω,kl


2

L2(Γkl )
≤ cK

N∑
l=1

S
1
2∇xu


2

L2(τl )
(4.19)

where cK = cK ( λmax(S)
λmin(S) ,cI ,cG,cR2 ).

Proof. Since S is symmetric and positive definite there exists a unique decomposition
S = S

1
2 S

1
2 where S

1
2 is again symmetric and positive definite. Recall the Definitions (4.7)

and (4.8) of ω1,ω2. We first observe that due to positive definiteness

0 ≤ ω1 =

(
S τknk ,nk

)(
S τlnl ,nl

)
+

(
S τknk ,nk

) ≤ (
S τknk ,nk

)
+

(
S τlnl ,nl

)(
S τknk ,nk

)
+

(
S τlnl ,nl

) = 1.

The same holds for ω2. Next by using the definition of the weighted average we obtain∑
Γkl∈IN

hkl
〈S∇xuh〉ω,kl


2

L2(Γkl )
=

∑
Γkl∈IN

hkl
ω1S τk∇xuh τk + ω2S τl∇xuh τl


2

L2(Γkl )

≤
∑
Γkl∈IN

hkl2 max{ω1,ω2}︸         ︷︷         ︸
≤1

(S τk∇xuh τk


2

L2(Γkl )
+

S τl∇xuh τl


2

L2(Γkl )

)

≤ 2
∑
Γkl∈IN

hkl

*....
,

S τk∇xuh τk


2

L2(Γkl )︸                    ︷︷                    ︸
=:(a)

+
S τl∇xuh τl


2

L2(Γkl )︸                   ︷︷                   ︸
=:(b)

+////
-

=: 2(I)

Now we apply inequality (3.18) to (a) and (b). Thus

(I) ≤
∑
Γkl∈IN

hklc2
I |Γkl |

(
|τk |
−1 S τk∇xu τk


2

L2(τk )
+ |τl |

−1 S τl∇xu τl


2

L2(τl )

)
︸                                                                                ︷︷                                                                                ︸

=:(II)

.

Rewriting the above sum leads to

(II) = c2
I

N∑
l=1

∑
Γkl∈IN
Γkl⊂∂τl

hkl |Γkl | |τl |
−1 S τl∇xu τl


2

L2(τl )

= c2
I

N∑
l=1

|τl |
−1 S τl∇xu τl


2

L2(τl )

∑
Γkl∈IN
Γkl⊂∂τl

hkl |Γkl | .
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Using Assumption (3.13) we end up with

c2
I

N∑
l=1

|τl |
−1 S τl∇xu τl


2

L2(τl )

∑
Γkl∈IN
Γkl⊂∂τl

hkl |Γkl |

≤ c2
I

N∑
l=1

|τl |
−1 S τl∇xu τl


2

L2(τl )
cGhl

∑
Γkl∈IN
Γkl⊂∂τl

|Γkl |

≤ c2
I cG

N∑
l=1

hlλmax(S τl )
1
2 |τl |

−1 S
1
2 τl∇xu τl


2

L2(τl )
|∂τl | =: (III)

With Assumption (3.12) we can conclude that |τl |
−1 |∂τl | hl ≤ cR2 . Thus we conclude

(III) ≤ c2
I cGcR2 max

x∈Ω
(λmax(S))

N∑
l=1

S
1
2 τl∇xu τl


2

L2(τl )

= cK

N∑
l=1

S
1
2 τl∇xu τl


2

L2(τl )
.

�

Remark 4.10 With the results of Lemma 4.9 we may also estimate

�u�space,i,∗ ≤ (1 + cK (Mi))
1
2�u�space,i, (4.20)

�u�space,e,∗ ≤ (1 + cK (Me))
1
2�u�space,e. (4.21)

Remark 4.11 From the results one sees, that the constants derived in the proofs depend
on the quotient λmax(M{i,e })/λmin(M{i,e }). Hence, in the case of strongly anisotropic behavior,
the constants will deteriorate. A remedy to this, is to use techniques for anisotropic finite
elements, see [10].

Now we are able to prove a boundedness result for the symmetric weighted interior penalty
bilinear form. The techniques for proving such estimates are similar to those given in [129]
and also [47].

Lemma 4.12 Let TN ∈ TN with TN being an admissible good family of triangulations of
Q. For u ∈ Hs (TN ) with s > 3

2 and vh ∈ Sp
h (TN ) there holds:

aDG
{i,e} (u,vh) ≤ c{i,e}2 �u�space,{i,e},∗�vh�space,{i,e}

with h-independent constant c{i,e}2 depending on λmax(M{i,e })/λmin(M{i,e }),cn.
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Proof. It suffices to prove the assertion for one bilinear form. For given u ∈ Hs (TN ) with
s > 3

2 and vh ∈ Sp
h (TN ) we can apply the Cauchy-Schwarz inequality and obtain

aDG
i (u,vh) ≤

N∑
l=1

M
1
2
i ∇xu

L2(τl )

M
1
2
i ∇xvh

L2(τl )

+
∑
Γkl∈IN

〈Mi∇xu〉ω,kl
L2(Γkl )

JvhKx,kl
L2(Γkl )

+
∑
Γkl∈IN

JuKx,kl
L2(Γkl )

〈Mi∇xvh〉ω,kl
L2(Γkl )

+
∑
Γkl∈IN

σγkl

hkl

JuKx,kl
L2(Γkl )

JvhKx,kl
L2(Γkl )

+ αi‖u‖L2(ΣR ) ‖vh‖L2(ΣR ) .

We split the three summands over Γkl ∈ IN into a part where ��nx,k �� , 0 and a part where
��nx,k �� = 0. The part with ��nx,k �� = 0 vanishes due to the definition of the space jump J·Kx,kl .
This means that interior facets with ��nk,x �� = 0 do not contribute to the boundedness estimate.
Next we use Hölder’s inequality for sums and obtain

aDG
i (u,vh) ≤



N∑
l=1

M
1
2
i ∇xu


2

L2(τl )



1
2 

N∑
l=1

M
1
2
i ∇xvh


2

L2(τl )



1
2

+



∑
Γkl∈IN

hkl

σγkl

〈Mi∇xu〉ω,kl


2

L2(Γkl )



1
2 

∑
Γkl∈IN

γklσ

hkl

JvhKx,kl


2

L2(Γkl )



1
2

+



∑
Γkl∈IN

γklσ

hkl

JuKx,kl


2

L2(Γkl )



1
2 

∑
Γkl∈IN

hkl

σγkl

〈Mi∇xvh〉ω,kl


2

L2(Γkl )



1
2

+



∑
Γkl∈IN

σγkl

hkl

JuKx,kl


2

L2(Γkl )



1
2 

∑
Γkl∈IN

σγkl

hkl

JvhKx,kl


2

L2(Γkl )



1
2

+ αi‖u‖L2(ΣR ) ‖vh‖L2(ΣR ) .

Looking at this we see that we need to bound γkl from above and below. Recall the definition
of γkl (4.9). It holds

γkl = 2

(
Mi τknx,k ,nx,k

) (
Mi τlnx,l ,nx,l

)(
Mi τlnx,l ,nx,l

)
+

(
Mi τlnx,k ,nx,k

)
≤ 2 max

x∈Ω
(λmax(Mi)‖Mi‖

2
2) ��nx,k ��2

≤ 2 max
x∈Ω

(λmax(Mi)‖Mi‖
2
2) =: c1

γ .

(4.22)
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For the lower part we obtain

γkl = 2

(
Mi τknx,k ,nx,k

) (
Mi τlnx,l ,nx,l

)(
Mi τlnx,l ,nx,l

)
+

(
Mi τlnx,k ,nx,k

)
≥ 2 min

x∈Ω
(λmin(Mi)‖Mi‖

−2
2 ) ��nx,k ��2

≥ 2c2
n min

x∈Ω
(λmin(Mi)‖Mi‖

−2
2 ) =: c2

nc2
γ .

(4.23)

Using these estimates and Lemma 4.9 we can conclude the boundedness with the constant

c2
i := 2 max{1 + σ−

1
2 c

1
2
K c−1

n (c2
γ)−

1
2 ,σ−

1
2 c−1

n (c2
γ)−

1
2 }.

�

Lemma 4.13 Let TN ∈ TN with TN being an admissible good family of triangulations of
Q. Further let σ > cK

c2
nc2
γ
. Then the bilinear forms aDG

{i,e} (·, ·) can be bounded from below

aDG
{i,e} (uh,uh) ≥ �uh�2

space,{i,e} for all uh ∈ Sp
h (TN ).

Proof. Let uh ∈ Sp
h (TN ) be given. Again it suffices to prove the result only for one bilinear

form. By the definition of the bilinear form aDG
i (·, ·) we have

aDG
i (uh,uh) =

N∑
l=1

M
1
2
i ∇x


2

L2(τl )
− 2

∑
Γkl∈IN

∫
Γkl

〈Mi∇xuh〉ω,klJuhKx,kl dsq

+
∑
Γkl∈IN

σγkl

hkl

JuhKx,kl


2

L2(Γkl )
.

We again observe that we can restrict ourselves to those interior facets where ��nx,k �� > 0.
Next, we apply the Cauchy-Schwarz inequality followed by Hölder inequality and obtain

≥ �uh�2
space,i − 2

∑
Γkl∈IN

〈Mi∇xuh〉ω,kl
L2(Γkl )

JuhKx,kl
L2(Γkl )

≥ �uh�2
space,i

− 2


∑
Γkl∈IN

hkl

σγkl

〈Mi∇xuh〉ω,kl


2

L2(Γkl )



1
2 

∑
Γkl∈IN

σγkl

hkl

JuhKx,kl


2

L2(Γkl )



1
2

.
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Now we apply Lemma 4.9 together with the estimate (4.23). Hence

≥ �uh�2
space,i

− 2c
1
2
Kσ
− 1

2 c−1
n c−1

γ



N∑
l=1

M
1
2
i ∇x


2

L2(τl )



1
2 

∑
Γkl∈IN

σγkl

hkl

JuhKx,kl


2

L2(Γkl )



1
2

≥ �uh�2
space,i − c

1
2
Kσ
− 1

2 c−1
n c−1

γ



N∑
l=1

M
1
2
i ∇x


2

L2(τl )



− c
1
2
Kσ
− 1

2 c−1
n c−1

γ



∑
Γkl∈IN

σγkl

hkl

JuhKx,kl


2

L2(Γkl )


.

With σ > cK
c2
nc2
γ

we can conclude the assertion. �

Lemma 4.14 Let TN ∈ TN with TN being an admissible good family of triangulations of
Q. For uh ∈ Sp

h (TN ) define the function wh ∈ Sp
h (TN ) as

wh τl := hl
∂

∂t
uh.

Then there holds

�wh�space,e ≤ ce�uh�space,e.

Proof. The main ideas for proving such estimates were developed in [129, Lemma 2.2.19].
Exploiting the definition of the norm �·�space,i we see

�wh�2
space,e =

N∑
l=1

M
1
2
e∇xwh


2

L2(τl )
+

∑
Γkl∈IN

γklσ

hkl

JwhKkl,x


2

L2(Γkl )
+ αe‖wh‖

2
L2(ΣR )

= (I) + (II) + (III)

We will consider the terms (I), (II) and (III) separately. Beginning with (I) we see that

(I) ≤
N∑

l=1

h2
l


M

1
2
e∇x

(
∂

∂t
uh

)

2

L2(τl )
≤

N∑
l=1

h2
l λmax(Me τl )


∇x

(
∂

∂t
uh

)

2

L2(τl )

=

N∑
l=1

h2
l λmax(Me τl )


∂

∂t
∇xuh



2

L2(τl )
.
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Next, we use inverse inequality (3.17) and conclude

N∑
l=1

h2
l λmax(Me τl )


∂

∂t
∇xuh



2

L2(τl )
≤ c2

I

N∑
l=1

h2
l λmax(Me τl )h−2

l ‖∇xuh‖
2
L2(τl )

= c2
I

N∑
l=1

λmax(Me τl )
M−

1
2

e M
1
2
e∇xuh


2

L2(τl )
.

This can be estimated further as

≤ c2
I

N∑
l=1

λmax(Me τl )

λmin(Me τl )
M

1
2
e∇xuh


2

L2(τl )

≤ c2
I ‖Me‖[L∞(Q)]d×d︸               ︷︷               ︸

=:cIe

N∑
l=1

M
1
2
e∇xuh


2

L2(τl )
.

Secondly we will estimate (III). This term can be rewritten as

(III) =
∑
τl

∂τl∩ΣR,∅

∫
∂τl∩ΣR

|wh |
2 dsq .

Since Q is assumed to be polygonal bounded we know that ∂τl ∩ΣR = e j (l) ∈ ER. Therefore
we can rewrite the sum as∑

τl
∂τl∩ΣR,∅

∫
∂τl∩ΣR

|wh |
2 dsq =

∑
e j∈ER

h2
l ( j)

∫
e j

�����
∂

∂t
uh τl ( j )

�����

2

dsq .

Next we use an inverse inequality of the form

|uh |1,e j ≤ c̃I
���e j

���
− 1

d
‖uh‖L2(e j )

see [172, Lemma 10.7]. Due to shape regularity we know that there exists a constant cSR
such that

hl ( j)
���e j

���
− 1

d
≤ cSR.

Therefore we obtain∑
τl

∂τl∩ΣR,∅

∫
∂τl∩ΣR

|wh |
2 dsq ≤

∑
e j∈ER

c̃2
I h2

l ( j)
���e j

���
− 2

d

∂

∂t
uh τl ( j )



2

L2(e j )

≤ c2
SRc̃2

I

∑
e j∈ER

uh τl ( j )


2

L2(e j )

= c2
SRc̃2

I ‖uh‖
2
L2(ΣR ) .
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It remains to estimate (II). We observe that

JwhKx,kl = wh τknx,k + wh τlnx,l =

(
hk

∂

∂t
uh τk − hl

∂

∂t
uh τl

)
nx,k

=
∂

∂t

(
hkuh τk − hluh τl

)
nx,k

= hkl
∂

∂t
(uh τk − uh τl )nx,k +

1
2

(hk − hl )
∂

∂t
(uh τk − uh τl )nx,k .

Thus we obtain by setting zh := uh τk − uh τl

JwhKkl,x
L2(Γkl )

=

hkl

∂

∂t
zhnx,k +

1
2

(hk − hl )
∂

∂t
zhnx,k

L2(Γkl )

≤ hkl


∂

∂t
zhnx,k

L2(Γkl )
+

1
2
|hk − hl |


∂

∂t
zhnx,k

L2(Γkl )

≤ 2hkl


∂

∂t
zhnx,k

L2(Γkl )
.

We will distinguish three cases. First if ��nx,k �� = 1 (thus nk,t = 0) we obtain with inverse
inequality (3.17)

JwhKkl,x
L2(Γkl )

≤ 2hkl ��nx,k ��

∂

∂t
zh

L2(Γkl )
≤ 2cI ‖zh‖L2(Γkl ) = 2cI

JuhKkl,x
L2(Γkl )

.

Second if ��nx,k �� = 0 we trivially conclude that

0 =
JwhKkl,x

L2(Γkl )
= 2cI

JuhKkl,x
L2(Γkl )

.

The third case is the most challenging. For 0 < ��nx,k �� < 1 we will decompose the derivative
∂
∂t zhnx,k into a tangential part and a part containing only spatial derivatives. For a given
normal vector nk = (nx,k ,nt,k )> we define tangential vectors ti ∈ RdT i = 1, . . . ,d as

ti[s] :=




nxi ,k if s = dT ,

−nt,k if s = i,
0 else .

Since 0 < ��nx,k �� < 1 we know that nk,t , 0 and thus we can define the normalized tangential
vectors

t̃i :=
1√

n2
xi ,k

+ n2
t,k

ti .
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Now we can write the i-th tangential derivative of zh as

(∇zh, ti) = −nt,k
∂

∂xi
zh + nxi ,k

∂

∂t
zh

and thus

nxi ,k
∂

∂t
zh = (∇zh, ti) + nt,k

∂

∂xi
zh for all i = 1, . . . ,d.

With this relation we obtain

JwhKkl,x


2

L2(Γkl )
≤ 4h

2
kl


∂

∂t
zhnk,x



2

L2(Γkl )
= h

2
kl

d∑
i=1


nxi ,k

∂

∂t
zh



2

L2(Γkl )

= 4h
2
kl

d∑
i=1


(∇zh, ti) + nt,k

∂

∂xi
zh



2

L2(Γkl )

≤ 8h
2
kl

d∑
i=1

*......
,

‖(∇zh, ti)‖2L2(Γkl )︸               ︷︷               ︸
=:(a)

+

nt,k

∂

∂xi
zh



2

L2(Γkl )︸                ︷︷                ︸
=:(b)

+//////
-

.

For part (a) we get with the normalized tangential vectors t̃i and the inverse inequality
(3.17)

(a) ≤ c2
I h
−2
kl (n2

k,xi + n2
k,t )‖zh‖

2
L2(Γkl )

= c2
I h
−2
kl

n2
k,xi

+ n2
k,t

��nk,x ��2
JuhKk,x


2

L2(Γkl )
.

Hence by summing up we obtain for the first part

8h
2
kl

d∑
i=1

‖(∇zh, ti)‖2L2(Γkl )
≤ 8c2

I

d∑
i=1

n2
k,xi

+ n2
k,t

��nk,x ��2
JuhKk,x


2

L2(Γkl )

≤ 8c2
I

(
1 +

d
c2
n

)
JuhKk,x


2

L2(Γkl )

with the constant cn from Assumption (3.14). We proceed by estimating (b). We observe
that

d∑
i=1


nt,k

∂

∂xi
zh



2

L2(Γkl )
≤ ‖∇x zh‖

2
L2(Γkl )

≤ λmin(Me)−1M
1
2
e∇x zh


2

L2(Γkl )
.
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Hence collecting what has been proven so far we get for (I I)∑
Γkl∈IN

γklσ

hkl

JwhKkl,x


2

L2(Γkl )
≤ 8c2

I

(
1 +

d
c2
n

) ∑
Γkl∈IN

σγkl

hkl

JuhKkl,x


2

L2(Γkl )

+ 8σλmin(Me)−1
∑
Γkl∈IN

hkl
M

1
2
e∇x zh


2

L2(Γkl )
.

We still need to estimate∑
Γkl∈IN

hkl
M

1
2
e∇x zh


2

L2(Γkl )

≤ 2
∑
Γkl∈IN

hkl

(M
1
2
e∇xuh τk


2

L2(Γkl )
+

M
1
2
e∇xuh τl


2

L2(Γkl )

)
.

With the same arguments as in the proof of Lemma 4.9 we obtain

∑
Γkl∈IN

hkl
M

1
2
e∇x zh


2

L2(Γkl )
≤ cK

N∑
i=1

M
1
2
e∇xuh


2

L2(τl )
.

Therefore we conclude

�wh�2
space,i ≤ 8

(
cI

e + cKσλmin(Me)−1
) N∑

i=1

M
1
2
e∇xuh


2

L2(τl )

+ 8c2
I

(
1 +

d
c2
n

) ∑
Γkl∈IN

γklσ

hkl

JuhKkl,x


2

L2(Γkl )

+ c̃2
I c2

SRαe‖uh‖
2
L2(ΣR )

≤ ce�uh�2
space,i

with ce := 8 max{cI
e + cKσλmin(Me)−1,c2

I (1 + d
c2
n

), 1
8 c̃2

I c2
SRαe}. �

Before stating the stability result we define the following compound norms:

�(uh,vh)�2
DG := �uh�2

time + �uh�2
space,i + �uh�2

space,e,

�(uh,vh)�2
DG,∗ := �uh�2

time,∗ + �uh�2
space,i,∗ + �uh�2

space,e,∗.

Theorem 4.15 There holds:

���c
DG((u,v), (φh,ψh))��� ≤ cC

1 �(u,v)�DG,∗
��(φh,ψh)

��
DG.
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Proof. Using the boundedness of the individual components of the bilinear form cDG we
have

���c
DG((u,v), (φh,ψh))��� ≤ cB

2 �u�time,∗
��φh

��
time

+ ci
2�u + v�space,i,∗

��φh + ψh
��

space,i

+ ce
2�v�space,e,∗

��ψh
��

space,e.

Next, using triangle inequality we get

≤ cB
2 �u�time,∗

��φh
��

time

+ ci
2

(
�u�space,i,∗ + �v�space,i,∗

) (��φh
��

space,i +
��ψh

��
space,i

)
+ ce

2�v�space,e,∗
��ψh

��
space,e.

Now using the relations (4.17)-(4.21) we conclude the result with

cB
2 := max

{
cB

2 ,c
i
2(1 + cK (Mi))

1
2 χi,ce

2

}
.

�

Eventually, we can prove a stability estimate similar to the one in [129].

Theorem 4.16 Let (uh,vh) ∈ Sp
h (TN ) × Sp

h (TN ). Then there exists a constant cC
S > 0

independent of TN such that

sup
(φh ,ψh )∈Sp

h
(TN )×Sp

h
(TN )

(φh ,ψh ),0

cDG((uh,vh), (φh,ψh))��(φh,ψh)
��

DG
≥ cC

S �(uh,vh)�DG

for all (uh,vh) ∈ Sp
h (TN ) × Sp

h (TN ).

Proof. The proof is based on a special choice for (φh,ψh) namely

φh := uh + δwh,

ψh := vh − δwh

for δ > 0 to be defined later. Inserting this special test functions into the bilinear form
cDG((·, ·), (·, ·)) we obtain

bDG
T (uh,uh + δwh) + aDG

i (uh + vh,uh + vh) + aDG
e (vh,vh − δwh).

Next, we use Lemma 4.7 together with Lemma 4.13 and obtain

≥ cB
1 (δ)�uh�2

time + ci
1�uh + vh�2

i,space + ce
1�vh�e,space − δaDG

e (vh,wh).
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Proceeding with Lemma 4.12 we get

≥ cB
1 (δ)�uh�2

time + ci
1�uh + vh�2

i,space

+ ce
1�vh�2

e,space − δce
2�vh�e,space,∗�wh�e,space.

This can be further estimated by

≥ cB
1 (δ)�uh�2

time + min{ci
1,c

e
1}

(
�uh + vh�2

i,space + �vh�2
e,space

)
− δce

2�vh�e,space,∗�wh�e,space.

Now we use Young’s inequality together with the relations (4.17), (4.18) and (4.20) to
arrive at the estimate

≥ cB
1 (δ)�uh�2

time + min{ci
1,c

e
1}

(
χ−1

e �uh + vh�2
e,space + �vh�2

e,space

)
−
δce

2(1 + cK )
1
2

2
�vh�2

e,space −
δce

2

2
�wh�2

e,space.

Further estimates lead to

≥ cB
1 (δ)�uh�2

time + min{ci
1,c

e
1, χ

−1
e }

(
�uh + vh�2

e,space + �vh�2
e,space

)
−
δce

2(1 + cK )
1
2

2
�vh�2

e,space −
δce

2

2
�wh�2

e,space.

Now we use Lemma 4.14 together with the fact that ‖u + v‖2 + ‖v‖2 ≥ 1
4 ‖u‖

2 + 1
4 ‖v‖

2 and
obtain

≥ cB
1 (δ)�uh�2

time +
1
4

min{ci
1,c

e
1, χ

−1
e }

(
�uh�2

e,space + �vh�2
e,space

)
−
δce

2(1 + cK )
1
2

2
�vh�2

e,space −
δce

2ce

2
�uh�2

e,space.

This together with (4.17) finally leads to the estimate

≥ cB
1 (δ)�uh�2

time + *
,

χ−1
i

4
min{ci

1,c
e
1, χ

−1
e } −

δ χicece
2

2
+
-︸                                       ︷︷                                       ︸

=:c2(δ)

�uh�2
space,i

+
*.
,

1
4

min{ci
1,c

e
1, χ

−1
e } −

δce
2(1 + cK )

1
2

2
+/
-︸                                           ︷︷                                           ︸

=:c3(δ)

�vh�2
space,e.

Now we look at each of the constants. To get cB
1 (δ) > 0 we need to choose

δ ≤
1

1 + 2c2
I cR2

=: δ∗1 > 0.



4.2 Numerical Analysis 79

For having c2(δ) > 0 we need to choose

δ ≤
min{ci

1,c
e
1, χ

−1
e }

2χ2
i cece

2

=: δ∗2 > 0

Finally for getting c3(δ) > 0 we need to choose

δ ≤
min{ci

1,c
e
1, χ

−1
e }

2(1 + cK )
1
2 ce

2

=: δ∗3 > 0.

Thus we choose δ∗ := min{δ∗1, δ
∗
2, δ
∗
3} and obtain

≥ min{cB
1 (δ∗),c2(δ∗),c3(δ∗)}

(
�uh�2

time + �uh�2
space,i + �vh�2

space,e

)
,

= min{cB
1 (δ∗),c2(δ∗),c3(δ∗)}�(uh,vh)�2

DG.

With this we conclude the stability estimate with the stability constant

cC
S :=

min{cB
1 (δ∗),c2(δ∗),c3(δ∗)}√

max{1 + δ∗cB
I ,1 + δ∗(ci + χice),1}

> 0.

�

With the stability and boundedness estimate we can prove an error estimate in the energy
norm. The proof can be done analogously to the proof [129, Theorem 2.2.21] by replacing
the isotropic estimates with the revised estimates for the anisotropic diffusion behavior.

Theorem 4.17 Let TN ∈ TN be a good family of triangulations of Q. Let the exact solution
to the problem (4.3)-(4.4), (Vtm,ue) ∈ H s1,r1 (Q) × H s2,r2 (Q) for some s1, s2,r1,r2 with
min{s1,r1} >

3
2 and, min{s2,r2} >

3
2 . For σ > 4cK let (uh,vh) ∈ Sp

h (Th) × Sp
h (Th) be the

solutions to the discrete linear variational problem (4.14). Then there holds:

�(Vtm,ue) − (uh,vh)�DG ≤ inf
(zh ,qh )∈[Sp

h
(Th )]2

[��(Vtm,ue) − (zh,qh)
��

DG

+
cB

2

cC
S

��(Vtm,ue) − (zh,qh)
��

DG,∗



For proving bounds on the error estimate appearing in Theorem 4.17 one can apply the same
techniques as in the proofs of [129, Lemmata 2.2.22, 2.2.23, 2.2.24, 2.2.26 and Theorem
2.2.27]. By introducing local L2-projections and again replace the isotropic estimates with
the revised anisotropic ones one can prove the following:
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Theorem 4.18 Let TN ∈ TN be a good family of triangulations of Q. Let the exact solution
to the linear problem (4.3)-(4.4), (Vtm,ue) ∈ H s1,r1 (Q) × H s2,r2 (Q) with min{s1,r1} > 2
and, min{s2,r2} > 2 . Assume σ ≥ 4cK . For the solution to the discrete linear problem
(uh,vh) ∈ [Sp

h (Th)]2 for an Th ∈ TH there holds

�(Vtm,ue) − (uh,vh)�DG ≤ c(Mi,Me)


N∑
l=1

h2 min{s,p+1}−2
l |(Vtm,ue) |2[Hs (τl )]2



1
2

.

If TN is additionally quasi-uniform there holds

�(Vtm,ue) − (uh,vh)�DG ≤ c̃(Mi,Me)h2 min{s,p+1}−1 |(Vtm,ue) |[Hs (Q)]2 .

4.3 Convergence Studies

In this section convergence studies will be presented to support the theoretical results
given in Section 4.2. The approximation of two regular solutions Vtm and ue in different
space dimensions and different polynomial degrees for the approximation space will be
considered. The setup will be the same for all simulation studies. As space-time cylinder Q
the unit hyper-cube

Q := (0,1)dT , dT ≥ 3,

will be considered. In all examples given subsequently we will consider solutions to the
problem (4.14).

Example 4.19. As a first example we set dT = 3. The diffusion tensors are chosen as

Mi :=
( 3

4
3
20

3
20

3
4

)
, Me := *.

,

5
4

1
4

1
4

5
4

+/
-
.

On the boundary ΣR := ∂(0,1)2 × (0,1) we apply Robin boundary conditions with αi = 1
and αe = 1. The given data si,se,gi,R, ge,R and V 0

tm are chosen such that the exact solutions
of the linear Bidomain equations are given as

Vtm(x, t) = x(1 − x)y(1 − y)t(1 − t),
ue(x, t) = sin(πx) sin(πy) sin(πt).

For the stabilization parameter we chose σkl = 25. The resulting linear systems are solved
with a preconditioned GMRes method within Neshmet, see [129]. As preconditioner the
black-box algebraic multigrid BoomerAmg provided within the Hypre package was taken,
see [64]. The results for the polynomial degrees p = 1,2 are shown in Tables 4.1, 4.2, 4.3
and 4.4.
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level elements dof �z − zh�DG eoc
0 6 48 1.3723e+0 −

1 48 384 1.0833e+0 0.34
2 384 3072 6.6351e−1 0.71
3 3072 24576 3.5900e−1 0.89
4 24576 196608 1.8443e−1 0.96
5 196608 1572864 9.3071e−2 0.99
6 1572864 12582912 4.6690e−2 1.00

Theory: 1.00

Table 4.1: Energy error �z − zh�DG for p = 1. For reasons of brevity we have defined
z = (Vtm,ue) and zh = (V h

tm,u
h
e ).

Error Vtm Error ue

level elements dof error eoc error eoc
0 6 24 9.2459e−2 − 1.3692e+0 −

1 48 192 4.7700e−2 0.95 1.0823e+0 0.34
2 384 1536 2.2604e−2 1.08 6.6313e−1 0.71
3 3072 12288 1.0229e−2 1.14 3.5886e−1 0.89
4 24576 98304 4.7466e−3 1.11 1.8436e−1 0.96
5 196608 786432 2.2789e−3 1.06 9.3043e−2 0.99
6 1572864 6291456 1.1135e−3 1.03 4.6677e−2 1.00

Observed: 1.00 1.00

Table 4.2: Individual error components for p = 1.

level elements dof �z − zh�DG eoc
0 6 120 8.9235e−1 −

1 48 960 3.9336e−1 1.18
2 384 7680 1.2610e−1 1.64
3 3072 61440 3.4188e−2 1.88
4 24576 491520 8.8077e−3 1.96
5 196608 3932160 2.2279e−3 1.98

Theory: 2.00

Table 4.3: Energy error �z − zh�DG for p = 2. For reasons of brevity we have defined
z = (Vtm,ue) and zh = (V h

tm,u
h
e ).



82 4 Space-Time DGFEM for the Bidomain Equations

Error Vtm Error ue

level elements dof error eoc error eoc
0 6 60 2.7700e−2 − 8.9192e−1 −

1 48 480 1.2879e−2 1.10 3.9315e−2 1.18
2 384 3840 3.4286e−3 1.91 1.2605e−1 1.64
3 3072 30720 7.9743e−4 2.10 3.4179e−2 1.88
4 24576 245760 1.8905e−4 2.08 8.8056e−3 1.96
5 196608 1966080 4.5158e−5 2.07 2.2274e−3 1.98

Observed: 2.00 2.00

Table 4.4: Individual error components for p = 2.

Example 4.20. In the second example we consider dT = 4. Thus Q is the four dimensional
unit cube. For the discretization of four dimensional objects we refer to [130]. The diffusion
tensors are chosen as

Mi :=
*...
,

3
4

1
10

1
20

1
10

7
10

1
10

1
20

1
10

3
4

+///
-

Me :=
*...
,

23
12

1
6 − 7

12
1
6

7
6

1
6

− 7
12

1
6

23
12

+///
-

.

Again we apply Robin boundary conditions on ΣR := ∂(0,1)3 × (0,1) with αi = 1 and
αe = 1. The given data si,se,gi,R, ge,R and V 0

tm are chosen such that the exact solutions of
the linear Bidomain equations are given as

Vtm(x, t) = x(1 − x)y(1 − y)z(1 − z)t(1 − t),
ue(x, t) = sin(πx) sin(πy) sin(πz) sin(πt).

For the stabilization parameter we chose σkl = 25. The results are depicted in Table 4.5
and 4.6.

4.4 Extension to Bidomain Equations

In this section we will consider the nonlinear case. As stated earlier it is assumed that the
exact solution (Vtm,ue,v) ∈ [Hs (Q)]3 with s > 3

2 .
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level elements dof �z − zh�DG eoc
0 16 240 1.5223e+0 −

1 256 3840 1.3572e+0 0.17
2 4096 61440 9.5583e−1 0.51
3 65536 983040 6.0298e−1 0.66
4 1048576 15728640 3.2097e−1 0.91

Theory: 1.00

Table 4.5: Energy error �z − zh�DG for p = 1. For reasons of brevity we have defined
z = (Vtm,ue) and zh = (V h

tm,u
h
e ).

Error Vtm Error ue

level elements dof error eoc error eoc
0 16 240 1.5211e−1 − 1.5147e+0 −

1 256 3840 1.8473e−1 −0.28 1.3446e+0 0.17
2 4096 61440 1.3742e−1 0.43 9.4590e−1 0.51
3 65536 983040 8.2419e−2 0.74 5.9732e−1 0.66
4 1048576 15728640 4.1799e−2 0.98 3.1839e−1 0.91

Observed: 1.00 1.00

Table 4.6: Individual error components for p = 1.

4.4.1 Numerical Analysis of the Linearized Problem

The linearized problem of (4.5) reads as: Given (uh,ue
h,wh) find (δtm

h , δ
e
h, δ

v
h) ∈ [Sh(TN )]3

such that

cDG((uh,wh); (δtm
h , δ

e
h, δ

v
h), (φh,ψh, ζh)) :=

bDG
T (δtm

h , φh) + bDG
T (δvh, ζh) + ax,i (δtm

h + δe
h, φh + ψh) + ax,e(δe

h,ψh)
+ cnl ((uh,wh); (δtm

h , δ
v
h), (φh,ψh)) = rhs (4.24)

for all (φh,ψh, ζh) ∈ [Sh(TN ]3 where

cnl ((uh,wh); (δtm
h , δ

v
h), (φh,ψh)) :=

N∑
l=1

∫
τl

(
A(uh,wh)

(
δtm

h
δvh

)
,

(
φh
ψh

))
dq.
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For the numerical analysis we need to define appropriate norms :

�(u,v,w)�2
DG := �u�2

time + �w�2
time + �u�2

space,i + �v�2
space,e (4.25)

+ ‖u‖2L2(Q) + ‖w‖2L2(Q),

�(u,v,w)�2
DG,∗ := �u�2

time,∗ + �w�2
time,∗ + �u�2

space,i;∗ + �v�2
space,e,∗ (4.26)

+ ‖u‖2L2(Q) + ‖w‖2L2(Q) .

With the norms (4.25), (4.26) we can prove the following

Theorem 4.21 (Boundedness) Given (uh,vh) ∈ [Sp
h (TN )]2. Under the assumptions 4.1:1,

4.1:2 and 4.3 there holds for all (δtm
h , δ

e
h, δ

v
h) ∈ [Sp

h (TN )]3 and (φh,ψh, ζh) ∈ [Sp
h (TN )]3:

���c
DG((uh,vh); (δtm

h , δ
e
h, δ

v
h), (φh,ψh, ζh))���

≤ cB,nl
2 (uh,vh)

��(δtm
h , δ

e
h, δ

v
h)

��
DG,∗

��(φh,ψh, ζh)
��

DG.

Proof. The proof can be done similarly to Theorem 4.15. The changes appear in the
treatment of the term cnl (·; ·, ·). Examining the definition of cnl (·; ·, ·) we get

��������

N∑
l=1

∫
τl

(
A(uh,wh)

(
δtm

h
δvh

)
,

(
φh
ψh

))
dq

��������

≤

N∑
l=1

∫
τl

‖A(uh,vh)‖
�����

(
δtm

h
δvh

) �����

�����

(
φh
ψh

) �����
dq

≤ cnl(δtm
h , δ

v
h)L2(Q)

(φtm
h ,ψ

v
h)L2(Q)

.

Therefore collecting the constants from the proof of Theorem 4.15 and cnl we can conclude
the result. �

Further we can prove the following stability result.

Theorem 4.22 (Stability) Given (uh,vh) ∈ [Sp
h (TN )]2. Under the assumptions 4.1:1, 4.1:2

and 4.3 there holds: ∃cs > 0 not depending on h such that

cs
��(δtm

h , δ
e
h, δ

v
h)

��
DG ≤ sup

(φh ,ψh ,ζh )∈[Sp
h

(Th )]3

�(φh ,ψh ,ζh )�DG,0

cDG((uh,vh); (δtm
h , δ

e
h, δ

v
h), (φh,ψh, ζh))��(φh,ψh, ζh)
��

DG

for all (δtm
h , δ

e
h, δ

v
h) ∈ [Sp

h (TN )]3.
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Proof. For ease of notation we will write ah = δtm
h , bh = δe

h, ch = δvh, wh := hl
∂
∂t ah and

qh := hl
∂
∂t ch. As in the proof of Theorem 4.16 we will use special test functions, namely

φh τl := ah τl + ωwh τl ,

ψh τl := bh τl − ωwh τl ,

ζh τl := ch τl + ωqh τl

for a ω > 0 to be defined later. The crux of the proof is the estimation of

bDG
T (ah,ah + ωwh) + bDG

T (ch,ch + ωqh)
+ cnl ((uh,vh); (ah,ch), (ah + ωwh,ch + ωqh)).

The first step is to take a look at bDG
T (ah,wh). We follow the lines of the proof of [129,

Lemma 2.2.14]. Using the representation of bDG
T (·, ·) from Remark 4.4 we have

bDG
T (ah,wh) =

N∑
l=1

hl

∫
τl

�����
∂

∂t
ah

�����

2

dq +

∫
Σ0

ahwh dsq

−
∑
Γkl∈IN

∫
Γkl

JahKkl,t {wh}
down
kl dsq .

Using the Cauchy-Schwarz-inequality we get

≥

N∑
l=1

hl


∂

∂t
ah



2

L2(τl )
− ‖ah‖L2(Σ0) ‖wh‖L2(Σ0)

−
∑
Γkl∈IN

JahKkl,t
L2(Γkl )

{wh}
down
kl

L2(Γkl )
.

This can be estimated as

≥

N∑
l=1

hl


∂

∂t
ah



2

L2(τl )
− ‖ah‖L2(Σ0) ‖wh‖L2(Σ0)

−



∑
Γkl∈IN

JahKkl,t


2

L2(Γkl )



1
2 

∑
Γkl∈IN

{wh}
down
kl


2

L2(Γkl )



1
2

.

Next we estimate wh on Σ0. Using the inverse and trace inequalities (3.15)-(3.17) this can
be done as follows:

‖wh‖
2
L2(Σ0) =

∑
τl∈Th

∂τl∩Σ0,∅

‖wh‖
2
L2(∂τl∩Σ0) ≤ c2

I

∑
τl∈Th

∂τl∩Σ0,∅

|∂τl | |τl |
−1 ‖wh‖

2
L2(τl )

≤ c2
I

N∑
l=1

|∂τl | |τl |
−1 ‖wh‖

2
L2(τl )
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Plugging in the definition of wh using shape regularity and |τl | = hd+1
l we get

≤ c2
I cR2

N∑
l=1

h−1
l


hl
∂

∂t
ah



2

L2(τl )
= c2

I cR2

N∑
l=1

hl


∂

∂t
ah



2

L2(τl )
.

Second we will estimate the downwind of wh:

∑
Γkl∈IN

{wh}
down
kl


2

L2(Γkl )
≤

∑
Γkl∈IN

(wh τl


2

L2(Γkl )
+

wh τk


2

L2(Γkl )

)
.

The last term can be rewritten as a sum over elements:

∑
Γkl∈IN

(wh τl


2

L2(Γkl )
+

wh τk


2

L2(Γkl )

)
=

N∑
l=1

∑
Γkl∈IN
Γkl⊂∂τl

‖wh‖
2
L2(Γkl )

.

Again using shape regularity and the inverse and trace inequalities (3.15)-(3.17) we can
bound this by

≤ c2
I cR2

∑
l=1

hl


∂

∂t
ah



2

L2(τl )
.

Combing all those estimates we have shown that

bDG
T (ah,wh) ≥

N∑
l=1

hl


∂

∂t
ah



2

L2(τl )
− ‖ah‖L2(Σ0)


c2

I cR2

N∑
l=1

hl


∂

∂t
ah



2

L2(τl )



1
2

−



∑
Γkl∈IN

JahKkl,t


2

L2(Γkl )



1
2 

c2
I cR2

N∑
l=1

hl


∂

∂t
ah



2

L2(τl )



1
2

.

Now we use Young’s inequality twice with ε1, ε2 > 0 and obtain

≥

(
1 − c2

I cR2

ε1

2
− c2

I cR2

ε2

2

) N∑
l=1

hl


∂

∂t
ah



2

L2(τl )
−

1
2ε1
‖ah‖

2
L2(Σ0)

−
1

2ε2

∑
Γkl∈IN

JahKkl,t


2

L2(Γkl )
.
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The same estimate holds for bDG
T (ch,qh). At this point we will start to estimate cnl . There

holds

��������

N∑
l=1

∫
τl

(
A(uh,wh)

(
ah
ch

)
,

(
wh
qh

))
dq

��������

≥ −

N∑
l=1

∫
τl

‖A(uh,vh)‖
�����

(
ah
ch

) �����

�����

(
wh
qh

) �����
dq

≥ −cnl ‖(ah,ch)‖L2(Q) ‖(wh,qh)‖L2(Q)

≥ −
cnl

2ε3
‖(ah,ch)‖2L2(Q) −

ε3cnl

2
‖(wh,qh)‖2L2(Q)

for a ε3 > 0 to be chosen later. If we now plug in the definitions of wh and qh and use the
fact that h2

l ≤ hl for hl ∈ (0,1] we get that

��������

N∑
l=1

∫
τl

(
A(uh,wh)

(
ah
ch

)
,

(
hl

∂
∂t ah

hl
∂
∂t ch

))
dq

��������

≥ −
cnl

2ε3
‖(ah,ch)‖2L2(Q) −

ε3cnl

2

N∑
l=1

hl



(
∂

∂t
ah,

∂

∂t
ch

)

2

L2(Q)

= −
cnl

2ε3
‖ah‖

2
L2(Q) −

cnl

2ε3
‖ch‖

2
L2(Q) −

ε3cnl

2

N∑
l=1

hl


∂

∂t
ah



2

L2(Q)

−
ε3cnl

2

N∑
l=1

hl


∂

∂t
ch



2

L2(Q)
.

Next we look at the same term but with the test functions being chosen as (ah,ch). Then
using Assumptions 4.3 we get

��������

N∑
l=1

∫
τl

(
A(uh,wh)

(
ah
ch

)
,

(
ah
ch

))
dq

��������

=

��������

N∑
l=1

∫
τl

(
sym (A(uh,wh))

(
ah
ch

)
,

(
ah
ch

))
dq

��������
≥ cnl ‖(ah,ch)‖2L2(Q) = cnl ‖ah‖

2
L2(Q) + cnl ‖ch‖

2
L2(Q) .
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Hence we see that

��������

N∑
l=1

∫
τl

(
A(uh,wh)

(
ah
ch

)
,

(
ah + ωhl

∂
∂t ah

ch + ωhl
∂
∂t ch

))
dq

��������

≥

(
cnl −

cnl

2ε3

)
‖ah‖

2
L2(Q) +

(
cnl −

cnl

2ε3

)
‖ch‖

2
L2(Q)

− ω
ε3cnl

2

N∑
l=1

hl


∂

∂t
ah



2

L2(Q)
− ω

ε3cnl

2

N∑
l=1

hl


∂

∂t
ch



2

L2(Q)
.

Collecting all estimates we have shown that

bDG
T (ah,ah + ωwh) + bDG

T (ch,ch + ωqh)
+ cnl ((uh,vh); (ah,ch), (ah + ωwh,ch + ωqh))

≥ ω
(
1 − c2

I cR2

ε1

2
− c2

I cR2

ε2

2
− cnl ε3

2

) N∑
l=1

hl


∂

∂t
ah



2

L2(τl )

+

(
1
2
−

ω

2ε1

)
‖ah‖

2
L2(Σ0) +

(
1
2
−

ω

2ε2

) ∑
Γkl∈IN

JahKkl,t


2

L2(Γkl )

+

(
cnl −

cnl

2ε3

)
‖ah‖

2
L2(Q) +

(
1
2
−

ω

2ε1

)
‖ch‖

2
L2(Σ0)

+

(
1 − c2

I cR2

ε1

2
− c2

I cR2

ε2

2
− cnl ε3

2

) N∑
l=1

hl


∂

∂t
ch



2

L2(τl )

+

(
1
2
−

ω

2ε2

) ∑
Γkl∈IN

JchKkl,t


2

L2(Γkl )
+

(
cnl −

cnl

2ε3

)
‖ch‖

2
L2(Q) .

It remains to define ε1, ε2, ε3 appropriately. We observe that for a given α ∈ (0,1) we can
choose

ε1 = ε2 =
1 − α
c2

I cR2

.

Thus

1 − c2
I cR2

ε1

2
− c2

I cR2

ε2

2
= α.

Next consider the choice

ε3 =
cnl + ε

2cnl
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for ε > 0. Then

c2,∗(ε) := cnl −
cnl

2ε3
= cnl

(
1 −

cnl

cnl + ε

)
> 0.

With this we get the restriction

α −
(cnl )2

4cnl
−
εcnl

4cnl
> 0.

From this we see that for any ε∗ ∈ (0, 4(1−d)cnl
cnl ), where d := (cnl )2)

4cnl
∈ (0,1) we can choose

an α∗(ε∗) such that α∗(ε∗) ∈ (0,1) and

α∗(ε∗) −
(cnl )2

4cnl
−
ε∗cnl

4cnl
≥ c1,∗(ε∗) > 0.

Thus we arrive at the estimate

bDG
T (ah,ah + ωwh) + bDG

T (ch,ch + ωqh)
+ cnl ((uh,vh); (ah,ch), (ah + ωwh,ch + ωqh))

≥ ωc1,∗(ε∗)
N∑

l=1

hl


∂

∂t
ah



2

L2(τl )
+ *

,

1
2
−

ωc2
I cR2

2(1 − α∗(ε∗))
+
-
‖ah‖

2
L2(Σ0)

+ *
,

1
2
−

ωc2
I cR2

2(1 − α∗(ε∗))
+
-

∑
Γkl∈IN

JahKkl,t


2

L2(Γkl )
+ c2,∗(ε∗)‖ah‖

2
L2(Q)

+ ωc1,∗(ε∗)
N∑

l=1

hl


∂

∂t
ch



2

L2(τl )
+ *

,

1
2
−

ωc2
I cR2

2(1 − α∗(ε∗))
+
-
‖ch‖

2
L2(Σ0)

+ *
,

1
2
−

ωc2
I cR2

2(1 − α∗(ε∗))
+
-

∑
Γkl∈IN

JchKkl,t


2

L2(Γkl )
+ c2,∗(ε∗)‖ch‖

2
L2(Q) .
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At this point we can proceed as in the proof of Theorem 4.16. This means that

bDG
T (ah,ah + ωwh) + bDG

T (ch,ch + ωqh) + ax,i (ah + bh,ah + bh)
+ ax,e(bh,bh − ωwh) + cnl ((uh,vh); (ah,ch), (ah + ωwh,ch + ωqh))

≥ ωc1,∗(ε∗)
N∑

l=1

hl


∂

∂t
ah



2

L2(τl )
+ *

,

1
2
−

ωc2
I cR2

2(1 − α∗(ε∗))
+
-︸                     ︷︷                     ︸

=:c1(ω)

‖ah‖
2
L2(Σ0)

+ *
,

1
2
−

ωc2
I cR2

2(1 − α∗(ε∗))
+
-

∑
Γkl∈IN

JahKkl,t


2

L2(Γkl )
+ c2,∗(ε∗)‖ah‖

2
L2(Q)

+ ωc1,∗(ε∗)
N∑

l=1

hl


∂

∂t
ch



2

L2(τl )
+ *

,

1
2
−

ωc2
I cR2

2(1 − α∗(ε∗))
+
-
‖ch‖

2
L2(Σ0)

+ *
,

1
2
−

ωc2
I cR2

2(1 − α∗(ε∗))
+
-

∑
Γkl∈IN

JchKkl,t


2

L2(Γkl )
+ c2,∗(ε∗)‖ch‖

2
L2(Q)

+ *
,

χ−1
i

4
min{ci

1,c
e
1, χ

−1
e } −

ωχicece
2

2
+
-︸                                        ︷︷                                        ︸

=:c2(ω)

�ah�2
space,i

+
*.
,

1
4

min{ci
1,c

e
1, χ

−1
e } −

ωce
2(1 + cK )

1
2

2
+/
-︸                                           ︷︷                                           ︸

=:c3(ω)

�vh�2
space,e.

Now we need to find a suitable ω. For this purpose we will look at the constants c1(ω),
c2(ω) and c3(ω). A suitable choice is

0 < ω† < min



1 − α∗(ε∗)
c2

I cR2

,
min

{
ci

1,c
e
1, χ

−1
e

}

2χ2
i ce,ce

2

,
min

{
ci

1,c
e
1, χ

−1
e

}

2(1 + cK )
1
2 ce

2



.

Hence

bDG
T (ah,ah + ωwh) + bDG

T (ch,ch + ωqh) + ax,i (ah + bh,ah + bh)
+ ax,e(bh,bh − ωwh) + cnl ((uh,vh); (ah,ch), (ah + ωwh,ch + ωqh))

≥ c4(ω†)�(ah,bh,ch)�2
DG

with

c4(ω†) = min
{
ω†c1,∗(ε∗),c2,∗(ε∗),c1(ω†),c2(ω†),c3(ω†),

}
> 0.
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So we can conclude the proof and have found the stability constant

cS :=
c4(ω†)√

max
{
1 + ω†cB

1 ,1 + ω†(ci + χice),1
} .

�

Remark 4.23 Suppose that Assumption 4.3:(2) does not hold but there holds

λmin(sym(A)) ≥ −κ2 > −∞.

Then the result still holds. To see this one needs to make a change of variables

ũ(x, t) = exp(−(κ2 + 1)t)u(x, t).

Then one has that
∂

∂t
u = exp((κ2 + 1)t)

∂

∂t
ũ + (κ2 + 1) exp((κ2 + 1)t)ũ.

The additional mass term ensures the stability. The boundedness constant will be multiplied
by a factor of exp((κ2 + 1)T ). The boundedness constant influences the quality of the
approximation error. Thus the approximation quality will deteriorate when κ2 is large.

4.5 Convergence Study for a Nonlinear Problem

In this section a convergence study for a nonlinear problem will be given. The space-time
cylinder will be given again as Q := (0,1)3. The diffusion tensors are chosen as

Mi :=
( 3

4
3

20
3
20

3
4

)
, Me := *.

,

5
4

1
4

1
4

5
4

+/
-
.

As nonlinear model we choose the FitzHugh-Nagumo model (2.7), which fulfills the
Assumptions 4.3. On the boundary ΣR := ∂(0,1)2 × (0,1) we apply Robin boundary
conditions with αi = 1 and αe = 1. The given data si,se,gi,R, ge,R and V 0

tm are chosen such
that the exact solutions of the Bidomain equations are given as

Vtm(x, t) = x(1 − x)y(1 − y)t(1 − t),
ue(x, t) = sin(πx) sin(πy) sin(πt),
v(x, t) = cos(πx) cos(πy) cos(πt).

For the stabilization parameter we chose σkl = 25. We used the same solvers and precondi-
tioners as for the convergence studies for the linear problem discussed in Section 4.3. The
results which confirm our theoretical investigations can be looked up in Table 4.7 and Table
4.8. The convergence order of 1.50 for the approximation error of v is a well-known result
for the approximation of pure convection problems, see for example [47, Corollary 2.38].
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level elements dof �z − zh�DG eoc
0 6 72 1.6486e+0 −

1 48 576 1.1599e+0 0.51
2 384 4608 6.8151e−1 0.77
3 3072 36864 3.6315e−1 0.91
4 24576 294912 1.8540e−1 0.97
5 196608 2359296 9.3307e−2 0.99

Theory: 1.00

Table 4.7: Energy error �z − zh�DG for p = 1. For reasons of brevity we have set z :=
(Vtm,ue,v) and zh := (V h

tm,u
h
e ,v

h).

Error Vtm Error ue Error v
level elements dof error eoc error eoc error eoc

0 6 24 9.0116e−2 − 1.3691e+0 − 9.1390e−1 −

1 48 192 4.7239e−2 0.93 1.0823e+0 0.34 4.1441e−1 1.14
2 384 1536 2.2469e−2 1.07 6.6313e−1 0.71 1.5558e−1 1.41
3 3072 12288 1.0199e−2 1.14 3.5886e−1 0.89 5.4727e−2 1.51
4 24576 98304 4.7416e−3 1.10 1.8436e−1 0.96 1.8995e−2 1.53
5 196608 786432 2.2781e−3 1.06 9.3043e−2 0.99 6.6280e−3 1.52

Observed: 1.00 1.00 1.50

Table 4.8: Individual error components for p = 1.



5 DISCONTINOUS GALERKIN FINITE ELEMENT METHOD
FOR NONLINEAR ELASTICITY

In this chapter the results for the numerical treatment of nonlinear elasticity with the
discontinuous Galerkin finite element method will be summarized. Due to the fact, that a
discontinuous Galerkin method was already considered in the previous chapter the aim is
to use such a method for the treatment of nonlinear elasticity, too. For a more complete
treatment of discontinuous Galerkin methods for nonlinear elasticity we refer to [60, 61,
62, 63, 133, 138]. For general information on the treatment of nonlinear elasticity with the
finite element method we refer to [11, 12, 24]. Finally we refer to [17, 85, 135, 181] for
more general topics in the context of nonlinear elastic behavior.

5.1 Analytic Results

Recall the equilibrium equations of stationary hyper-elasticity in material coordinates:

−Div (F(U )S(U )) = 0 in Ωr ,

U = GD (X ) on ΓD,r , (5.1)
F(U )S(U )N = GN (U ) on ΓN,r .

The tensor S is given through the constitutive relation as S = 2 ∂Ψ(C)
∂C with the Helmholtz

free energy function Ψ(C). In this section known results for this nonlinear system of partial
differential equations will be recited. The weak formulation of system (5.1) reads: FindU
withU ΓD,r = GD smooth enough such that∫

Ωr

F(U )S(U ) : GradV dX −
∫
ΓN,r

(GN (U ),V ) dsX = 0

for all smooth enough V such that V ΓD,r = 0. This variational formulation is also known
as the principle of virtual work, see [85, Chapter 8.2] and [35, Chapter 2.6] for more details.
At this point no specification of the underlying function spaces for U ,V has been made.
We will comment on this later. It is well known (see [35, Theorems 4.1-1 and 4.1-2]) that,
for hyperelastic materials and conservative traction and body forces, the solution of the
principle of virtual work is formally equivalent to find infimizers of the functional

I (U ) :=
∫
Ωr

W (F(U )) dX −
∫
ΓN,r

(GN ,U ) dsX .

93



94 5 Discontinous Galerkin Finite Element Method for Nonlinear Elasticity

The infimum is taken over all smooth enough ψ : Ωr → R
d such that ψ ΓD,r = GD. One

of the major problems in studying the existence of infimizers is the lack of convexity of
the energy function W (F). Classical hyperelastic materials are however polyconvex. This
means that

W (F) = W̃ (F,adj(F),det(F))

and W̃ is convex in its arguments. For more details on the various convexity concepts
in nonlinear elasticity we refer to [35, 42]. Concerning the existence and regularity of
infimizers to the functional I (U ) a well known theorem from J. Ball will be cited:

Theorem 5.1 (J. Ball’s Existence Theorem for pure displacements) Let Ωr be a bounded
domain with Lipschitz boundary and ΓD,r = ∂Ωr . Let further p ≥ 2, q ≥ p

p−1 and s >
1. Assume that W (F) is polyconvex and fulfills the conditions (2.33)-(2.35). Let GD ∈

W 1,1− 1
p (∂Ωr ). Define the space

X :=
{
V ∈ W 1,p(Ωr ) : adj(F(V )) ∈ Lq(Ωr ), det(F(V )) ∈ Ls (Ωr ),

V ∂Ωr = GD and det(F(V )) > 0 a.e. in Ωr
}
.

Assume further that there exists aU0 ∈ X such that I (U0) < ∞. Then there exists at least
one functionU ∈ X such that

I (U ) = inf
V∈X

I (V ).

Proof. See [35, Theorem 7.7-1]. �

Remark 5.2 A similar theorem holds in the case of mixed boundary conditions and pure
Neumann boundary conditions, see [35, Theorem 7.7-2].

Remark 5.3 The theorem remains true in the case of almost incompressible materials,
however the proofs need to be adapted. See [32] for details.

The equivalence of the minimization problem and the principle of virtual work for hyper-
elastic materials together with the Theorem 5.1 justifies the following weak formulation.
Given GD ∈ W 1,1− 1

p (ΓD,r ) findU ∈ W 1,p
GD ,ΓD,r

(Ωr ) such that∫
Ωr

F(U )S(U ) : GradV dX = 0 (5.2)

for all V ∈ W 1,q
0,ΓD,r

(Ωr ) with 1/p + 1/q = 1.

Remark 5.4 The above concepts are only valid for hyperelastic materials. In general it
is still an open problem whether the equivalence of the minimization of the strain energy
function and the principle of virtual work holds. See [17] for more details.
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5.2 Discretization

In this section a discontinuous Galerkin discretization for the equations of stationary non-
linear elasticity with hyperelastic materials will be discussed. One may roughly distinguish
two approaches. The first approach is based on a discontinuous Galerkin discretization
of the energy functional and thus aims at minimizing a discrete energy functional. This
approach is used for example in [60, 63, 133]. However the convergence of discrete energy
minimizers to minimizers of the continuous functional is, in general, still an open question,
see [30]. In this thesis a different approach, first introduced in [138], will be considered.
Given the system (5.1) and assume that the Neumann boundary conditions do not depend
on the normal vector N , e.g.: dead loads or traction forces. One multiplies the first equation
with a test function V ∈ [H1

0(TN )]d and integrates over Ωr . This leads to

N∑
l=1

∫
τl

−(Div(F(U )S(U ))),V ) dX =

N∑
l=1

∫
τl

F(U )S(U ) : GradV dX

−

N∑
l=1

∫
∂τl

(F(U )S(U ),V ) dsX .

After rearranging the second sum one obtains

N∑
l=1

∫
τl

−(Div(F(U )S(U ))),V ) dX =

N∑
l=1

∫
τl

F(U )S(U ) : GradV dX

−
∑
Γkl∈IN

∫
Γkl

〈F(U )S(U )〉 : JVK
kl

dsX

−

∫
ΓN,r

(GN ,V ) dsX .

This motivates the definition of the following semi-linear form

b(U ,V ) :=
N∑

l=1

∫
τl

F(U )S(U ) : GradV dX −
∑
Γkl∈IN

∫
Γkl

〈F(U )S(U )〉 : JVK dsX

and the linear form

l (V ) :=
∫
ΓN,r

(GN ,V ) dsX
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for U ∈ C1(TN ) and V ∈ H1
0(TN ). For ensuring stability one needs to add a stabilization

bilinear form

s(U ,V ) :=
∑
Γkl∈IN

σkl

hkl

∫
Γkl

JUK
kl

: JVK
kl

dsX .

The discontinuous Galerkin formulation reads: FindUDG ∈ [Sp
h (TN )]d withUDG ΓD,r = GD

such that

b(UDG,V h) + s(UDG,V ) = l (V h) (5.3)

for all V h ∈ [Sp
h (TN )]d such that V h ΓD,r = 0. In the case of a linear problem this derivation

resembles the incomplete interior penalty method see [47, Section 5.3] and [45]. This is
still a nonlinear set of algebraic equations. The linearization is defined for φ ∈ [C1(TN )]d

andU ,V ∈ H1
0(TN ):

aDG(φ;U ,V ) := aDG
1 (φ;U ,V ) + aDG

2 (φ;U ,V ) + aDG
3 (φ;U ,V )

where

aDG
1 (φ;U ,V ) :=

∑
l=1

*..
,

∫
τl

GradUS(φ) : GradV dX

+

∫
τl

sym(F>(φ) GradU ) : C(φ) : sym(F>(φ) GradV ) dX
+//
-

and

aDG
2 (φ;U ,V ) :=

−
∑
Γkl∈IN

∫
Γkl

〈
F(φ)

(
C(φ) : sym(F>(φ) GradU

)〉
: JVK

kl
dsX

−
∑
Γkl∈IN

∫
Γkl

〈GradUS(φ)〉 : JVK
kl

dsX

+
∑
Γkl∈IN

σkl

hkl

∫
Γkl

JUK
kl

: JVK
kl

dsX .

The occurring tensors are evaluated as

F(φ) = I + Gradφ,

S(φ) = 2
∂Ψ(C)
∂C C=F>(φ)F(φ),

C(φ) = 4
∂2Ψ(C)
∂C2 C=F>(φ)F(φ) .
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For compatibility with the notation in [138] we want to mention that this formulation is
equivalent to

b(U ,V ) :=
N∑

l=1

∫
τl

P(U ) : GradV dX −
∑
Γkl∈IN

∫
Γkl

〈P(U )〉 : JVK
kl

dsX

and

aDG
1 (φ;U ,V ) :=

∑
l=1

∫
τl

GradU : A(φ) : GradV dX

as well as

aDG
2 (φ;U ,V ) := −

∑
Γkl∈IN

∫
Γkl

〈A(φ) : GradU〉 : JVK
kl

dsX

+
∑
Γkl∈IN

σkl

hkl

∫
Γkl

JUK
kl

: JVK
kl

dsX ,

where the first Piola-Kirchoff stress tensor is defined as

P := FS =
∂W (F)
∂F

and the elasticity tensor A is defined as

A :=
∂2W (F)
∂F∂F

.

The elasticity tensor A has only major symmetries.

5.3 Numerical Analysis

In this section the main convergence result to be found in [138] will be given. Throughout
this section it is assumed that the problem (5.2) has a solution

U ∈ [W 1,p(Ωr )]d ∩ [Hm+1(Ωr )]d ∩ [H1
ΓD,r ,GD

(Ωr )]d

with m > d
2 . With this regularity one has that GradU ∈ [L∞(Ωr )]d×d . One further needs to

assume that W (F) ∈ C4(Rd×d;R). Further one assumes that P and A are locally Lipschitz-
continuous. For the error analysis the following norm will be used:

�U�2
1,h :=

N∑
l=1

‖GradU ‖2L2(τl )
+

∑
Γkl∈IN

σkl

hkl

JUK
kl


2

L2(Γkl )
.
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With the assumptions made above one can show, that the discrete problem has a unique
solutionUDG provided σkl is large enough and for a quasi-uniform triangulation with mesh
size h fine enough there holds

�U −UDG�1,h ≤ chs‖U ‖Hs+1(Ωr ) (5.4)

for d
2 < s ≤ min{p,m}. We refer to [138, Section 5] for the proofs.

5.4 Additional Topics

In this section some additional technical topics which are of relevance in the implementation
of discontinuous Galerkin methods for nonlinear elasticity will be discussed.

5.4.1 Treatment of Pressure Boundary Conditions

It was shown, that for a pressure boundary condition of the form

σ(u)n = −pn

in spatial coordinates one obtains a nonlinear boundary condition in material coordinates

F(U )S(U ) = −pJ (U )F−>(U )N .

The linearization corresponding to such a boundary condition can be calculated as

aDG
3 (φ;U ,V ) := p

*..
,

∫
ΓN,r

J (φ)
(
F−>(φ)(GradU )>F−>(φ)N ,V

)
dsX

−

∫
ΓN,r

J (φ)
(
(F−>(φ) : GradU )F−>N ,V

)
dsX

+//
-
.

There are different approaches how to include pressure boundary conditions, see for example
[24, Section 6.5.2].
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5.4.2 Static Condensation for Almost Incompressible Materials

Recall that for almost incompressible materials one has to solve a block system of the
form

−Div (F(U ) (Siso(U , J) + Svol(U ,P, J))) = 0, in Ωr , (5.5)
dU (D)

dD D=J − P = 0 in Ωr , (5.6)

J − det F(U ) = 0 in Ωr . (5.7)

In the context of almost incompressible linear elasticity one encounters similar saddle point
problems as a remedy to prevent locking effects. See for example [27, Chapter VI §4].
When using a discontinuous Galerkin finite element method for discretizing the equations
of almost incompressible linear elasticity one can construct locking-free methods without
the need to solve a block system, see [48, 188] for details. This may serve as a motivation to
achieve the same for almost incompressible nonlinear elasticity. As a motivation consider
the conformal discretized variational formulation of the pure Dirichlet problem. Find
(Uh,Ph, Jh) ∈ Xh × Πh × Σh withUh ∂Ωr = gD such that

0 =

∫
Ωr

F(Uh)Siso(Uh, Jh) : GradV h dX +

∫
Ωr

F(Uh)Svol(Uh,Ph, Jh) : GradV h dX ,

0 =

∫
Ωr

dU (D)
dD D=JhQh dX −

∫
Ωr

PhQh dX ,

0 =

∫
Ωr

Jh Zh dX −
∫
Ωr

det F(Uh)Zh dX .

In conforming finite element methods one usually uses globally continuous ansatz spaces
for discretizing the variable U . For the variables P, J however, one may use globally
discontinuous ansatz functions, thus one may interpret this as a coupling of a continuous
Galerkin method coupled with a discontinuous Galerkin method. In the literature one usually
uses piecewise constant functions for discretizing (P, J). To solve such a nonlinear block
system one would apply for example Newton’s method. The solution of a three by three
nonlinear saddle point problem can be a demanding task. Therefore one uses an additional
approximation and treats the variable Jh explicitly, e.g.∫

Ωr

Jk+1
h Zh dX −

∫
Ωr

det F(U k
h)Zh dX = 0.
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Thus, in the case of piecewise constant test and ansatz functions one may deduce

Jk+1
h τl =

∫
τl

det F(U k
h) dX

|τl |
.

Hence one can also calculate the next iterate Pk+1
h as

Pk+1
h τl =

(
dU (D)

dD D=Jk+1
h

)
τl .

This procedure is called mean dilatation technique see [86, 122, 168, 169] and [101] for
more details.

5.4.3 Assembling of the Element Matrices

In this section the assembling of the stiffness matrices for the discontinuous Galerkin method
for nonlinear elasticity will be briefly discussed. To this end, consider the calculation of the
local element matrices. For more details on assembling global matrices in the context of
finite element methods in general we refer to [172, Chapter 11], [47, Appendix A] and [29].
The first element matrix to be investigated is given by

a1
h(W ;Uh,V h) :=

∫
τl

GradUhS(W ) : GradV h dX . (5.8)

On the element τl ∈ TN one has a set of scalar basis functions {φ j }
ndofs−1
j=0 where ndofs are

the degrees of freedom on the element τl . With this one has

Uh τl =

d−1∑
s=0

ndofs−1∑
t=0

U t
sφt (X )es .

This can be rewritten in a more compact form as

Uh τl = ΦU

where

Φ := I ⊗ φ,
φ := (φ0, φ1, . . . , φndofs−1),

U := (U0
0 ,U

1
0 , . . . ,U

ndofs−1
0 ,U0

1 ,U
1
1 , . . . ,U

ndofs−1
1 , . . . ,U0

d−1,U
1
d−1, . . . ,U

ndofs−1
d−1 ).

Here “⊗” denotes the Kronecker product. One can obtain a similar representation for the
vectorized gradient vec(GradUh). There holds:

vec(GradUh) τl = ∂ΦU
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where

∂Φ := I ⊗ ∂φ,

∂φ[i, j] :=
∂φ j

∂Xi
, i = 0, . . . ,d − 1, j = 0, . . . ,ndofs.

Remark 5.5 The vectorization of a matrix A ∈ Rn×m, vec(A) ∈ Rnm is defined as

vec(A) := (A[0,0], A[0,1], . . . , A[0,m − 1], A[1,0], A[1,1], . . . A[1,m − 1], . . . ,
A[n − 1,0], A[n − 1,1], . . . , A[n − 1,m − 1])> .

For two matrices A,B ∈ Rm×n there holds:

(vec(A),vec(B)) = A : B. (5.9)

The goal is to apply these techniques to derive a representation of the element matrix
corresponding to the bilinear form (5.8). It can be shown that

vec(GradUhS(W )) τl = (I ⊗ S(W )∂φ)U .

Therefore using (5.9), the symmetry S> = S and the rule

(A ⊗ B)> = A> ⊗ B>,

one deduces that the element matrix Al
1,h ∈ R

dndofs×dndofs can be represented as

Al
h(W ) =

∫
τl

(I ⊗ (∂φ)>S(W )∂φ) dX ,

=

∫
τl

(∂Φ)>(I ⊗ S(W ))∂Φ dX .

Due to the symmetry of S, the element matrix is also symmetric. In the engineering
community this representation is called a B>DB -integrator. The second bilinear form to be
investigated is given as

a2
h(W ;Uh,V h) :=

∫
τl

sym(F>(W ) GradUh) : C(W ) : sym(F>(W ) GradV h) dX .

(5.10)

Again one is interested in a representation with the help of a B>DB-integrator. First take
note that with the Mandel notation from Remark 2.17 one has

a2
h(W ;Uh,V h) =

∫
τl

(
symM (F>(W ) GradUh),CM (W )symM (F>(W ) GradV h)

)
dX
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where symM (F>GradUh) denotes the Mandel notation of sym(F>GradUh). After some
tedious calculations one can show that

symM (F>GradUh) =

(
F>D1Φ
FD2Φ

)
U

where

D1Φ =
*...
,

∂φ0
∂X0

∂φ1
∂X0

· · ·
∂φndofs−1
∂X0

0 0
0 ∂φ0

∂X1

∂φ1
∂X1

· · ·
∂φndofs−1
∂X1

0
0 0 ∂φ0

∂X2

∂φ1
∂X2

· · ·
∂φndofs−1
∂X2

+///
-

and

D2Φ =
√

2
2

*...
,

∂φ0
∂X1

∂φ1
∂X1

· · ·
∂φndofs−1
∂X1

0 ∂φ0
∂X2

∂φ1
∂X2

· · ·
∂φndofs−1
∂X2

∂φ0
∂X0

∂φ1
∂X0

· · ·
∂φndofs−1
∂X0

∂φ0
∂X2

∂φ1
∂X2

· · ·
∂φndofs−1
∂X2

0
0 ∂φ0

∂X1

∂φ1
∂X1

· · ·
∂φndofs−1
∂X1

∂φ0
∂X2

∂φ1
∂X2

· · ·
∂φndofs−1
∂X2

+///
-

in the case of d = 3. Thus again one can write the element matrix Al
2,h ∈ R

dndofs×dndofs as

Al
2,h =

∫
τl

(
(D1Φ)>F(W ) (D2Φ)>F>(W )

)
CM (W )

(
F>(W )D1Φ
F(W )D2Φ

)
dX . (5.11)

Due to the symmetry properties of the elasticity tensor C one obtains a symmetric element
matrix.

Remark 5.6 With similar considerations one can derive representations for the bilinear
forms

a3
h(W ;Uh,V h) =

∫
Γkl

〈
F(W )

(
C(W ) : sym(F>(W ) GradU

)〉
: JVKkl dsX

and

a4
h(W ;Uh,V h) =

∫
Γkl

〈GradUS(W )〉 : JVKkl dsX .

For the first bilinear form one observes that

a3
h(W ;Uh,V h) =

1
2



∫
Γkl

Ak : CM
τk : Bk,k dsX +

∫
Γkl

Al : CM
τl : Bl,k dsX

−

∫
Γkl

Ak : CM
τk : Bk,l dsX −

∫
Γkl

Al : CM
τl : Bl,l dsX
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where

Ak := symM
(
F>(W ) τk GradUh τk

)
,

Bk,l := symM
(
F>(W ) τk (V h τl ⊗ N )

)
.

Using this one can derive a similar representation as for (5.11). However the resulting
element matrices A3

h and A4
h are not symmetric. Thus the resulting global system matrix Ah

will be non symmetric. For a deeper discussion about the advantages and disadvantages of
this non symmetric formulation we refer to [114].

5.5 Convergence Studies

In this section convergence studies for the discontinuous Galerkin finite element method
for nonlinear elasticity for d = 2,3 will be presented. The reference geometry for the
convergence study is chosen as Ωr = (0,1)d . As nonlinear material models the modified
Saint-Venant Kirchoff model, see [85, p. 251], and the compressible neo-Hookean model are
chosen. The corresponding free energy functions are given as

Ψ
SV(C) :=

κ

2
(ln(J))2 +

µ

4
tr

(
C2 − 2C + I

)
,

Ψ
NH(C) :=

µ

2
(tr(C) − 3 − 2 ln(J)) +

κ

2
(J − 1)2.

Dirichlet boundary conditions are posed on ∂Ωr . The input data are chosen in such a way
that the exact solution to the equilibrium equations is given as

U3D
ex (X ) :=

1
2

*.
,

0
0

z2x(1 − x)y(1 − y)

+/
-
,

U2D
ex (X ) :=

1
2

(
0

y2x(1 − x)

)
.

We used Newton’s method and take the element-wise L2(Ωr )-projection onto [Sp
h (TN )]d

of U2D
ex or U3D

ex as initial guess. The error is measured in the norm �U�1,h and in the
L2(Ω)-norm.

Results for 2D

Here we present the numerical results for the two dimensional example. We note that the
plane strain approach discussed in Section 2.3.7 has been used. The numeric examples
were performed with the help of Neshmet and the arising linear systems were solved with
Pardiso, see [1, 161, 162].
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p = 1 p = 2
level elements dof

���U2D
ex −Uh

���
1,h

eoc dof
���U2D

ex −Uh

���
1,h

eoc

0 8 48 7.0349e−1 − 96 2.7602e−2 −

1 32 192 3.1882e−1 1.14 384 7.4107e−3 1.90
2 128 768 1.6791e−1 0.93 1536 1.9250e−3 1.94
3 512 3072 8.8748e−2 0.92 6144 4.9159e−4 1.97
4 2048 12288 4.5888e−2 0.95 24576 1.2431e−4 1.98
5 8192 49152 2.3360e−2 0.97 98304 3.1261e−5 1.99
6 32768 196608 1.1789e−2 0.99 393216 7.8389e−6 2.00
7 131072 786432 5.9223e−3 1.00 1572864 1.9627e−6 2.00

Observed: 1.00 2.00

Table 5.1: Energy error
���U2D

ex −Uh

���
1,h

for p = 1,2

Modified Saint-Venant Kirchoff Material

Our first example uses the modified Saint-Venant Kirchoff material. The material parameters
were chosen as µ = 50 and κ = 71.43. The stabilization parameter σkl was chosen as
σkl = 1000p2 where p is the polynomial degree. The results for p = 1,2 are depicted in
Table 5.1 and 5.2. For the polynomial degree p = 3 the results are depicted in Table 5.3.
The sup-optimal convergence order in the L2(Ω)-norm for odd polynomial degrees is a
well-known behavior for non-symmetric discontinuous Galerkin discretizations of linear
partial differential equations, see [156, Theorem 2.14]. It should be mentioned, that the
theory developed in [138] does not cover the case of polynomials with order less or equal d

2 .
However the results suggest, that the results are still valid for this case.

Compressible Neo-Hooke Material

In the second example we use the compressible neo-Hooke material. The material param-
eters were chosen as µ = 50 and κ = 333.3. The stabilization parameter σkl was again
chosen as σkl = 1000p2 where p is the polynomial degree. The results for p = 1,2 are
depicted in Table 5.4 and 5.5. For the polynomial degree p = 3 the results are depicted in
Table 5.6.
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p = 1 p = 2
level elements dof U

2D
ex −Uh

L2(Ω)
eoc dof U

2D
ex −Uh

L2(Ω)
eoc

0 8 48 9.2693e−3 − 96 1.7082e−3 −

1 32 192 2.5774e−3 1.85 384 2.0733e−4 3.04
2 128 768 6.1948e−4 2.06 1536 2.5019e−5 3.05
3 512 3072 1.4619e−4 2.08 6144 3.0989e−6 3.01
4 2048 12288 3.5113e−5 2.06 24576 3.9818e−7 2.96
5 8192 49152 8.5806e−6 2.03 98304 5.6068e−8 2.83
6 32768 196608 2.1179e−6 2.02 393216 9.6063e−9 2.55
7 131072 786432 5.2506e−7 2.01 1572864 2.0424e−9 2.23

Observed: 2.00 2.00

Table 5.2: L2(Ω)-error U
2D
ex −Uh

L2(Ω)
for p = 1,2

p = 3 p = 3
level elements dof

���U2D
ex −Uh

���
1,h

eoc U
2D
ex −Uh

L2(Ω)
eoc

0 8 160 2.5844e−3 − 1.2594e−04 −

1 32 640 3.1438e−4 3.04 7.2017e−06 4.13
2 128 2560 3.8495e−5 3.03 4.2444e−07 4.08
3 512 10240 4.7534e−6 3.02 2.5658e−08 4.05
4 2048 40960 5.9025e−7 3.01 1.5754e−09 4.03
5 8192 163840 7.3527e−8 3.00 9.7558e−11 4.01

Observed: 3.00 4.00

Table 5.3: Errors for p = 3
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p = 1 p = 2
level elements dof

���U2D
ex −Uh

���
1,h

eoc dof
���U2D

ex −Uh

���
1,h

eoc

0 8 48 8.6254e−1 − 96 6.4544e−2 −

1 32 192 4.1814e−1 1.04 384 2.1383e−2 1.59
2 128 768 2.1725e−1 0.94 1536 6.0322e−3 1.83
3 512 3072 1.1297e−1 0.94 6144 1.5892e−3 1.92
4 2048 12288 5.7916e−2 0.96 24576 4.0686e−4 1.97
5 8192 49152 2.9364e−2 0.98 98304 1.0287e−4 1.98
6 32768 196608 1.4790e−2 0.99 393216 2.5858e−5 1.99

Observed: 1.00 2.00

Table 5.4: Energy error
���U2D

ex −Uh

���
1,h

for p = 1,2

p = 1 p = 2
level elements dof U

2D
ex −Uh

L2(Ω)
eoc dof U

2D
ex −Uh

L2(Ω)
eoc

0 8 48 8.8312e−3 − 96 1.6559e−3 −

1 32 192 2.2734e−3 1.96 384 2.0597e−4 3.01
2 128 768 5.3146e−4 2.10 1536 2.8883e−5 2.83
3 512 3072 1.3061e−4 2.02 6144 5.3651e−6 2.43
4 2048 12288 3.3171e−5 1.98 24576 1.2403e−6 2.11
5 8192 49152 8.4487e−6 1.97 98304 3.0806e−7 2.01
6 32768 196608 2.1398e−6 1.98 393216 7.7441e−8 1.99

Observed: 2.00 2.00

Table 5.5: L2(Ω)-error U
2D
ex −Uh

L2(Ω)
for p = 1,2

p = 3 p = 3
level elements dof U

2D
ex −Uh

L2(Ω)
eoc

���U2D
ex −Uh

���
1,h

eoc

0 8 160 1.2643e−04 − 4.1520e−3 −

1 32 640 7.2299e−06 4.13 5.5930e−4 2.89
2 128 2560 4.2640e−07 4.08 7.2006e−5 2.96
3 512 10240 2.5802e−08 4.05 9.1199e−6 2.98
4 2048 40960 1.5853e−09 4.02 1.1471e−6 2.99
5 8192 163840 9.8215e−11 4.01 1.4382e−7 3.00

Observed: 4.00 3.00

Table 5.6: Errors for p = 3
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p = 1 p = 2
level elements dof

���U3D
ex −Uh

���
1,h

eoc dof
���U3D

ex −Uh

���
1,h

eoc

0 6 72 5.0490e−1 − 360 1.3927e−1 −

1 48 576 3.2654e−1 0.63 2880 3.6689e−2 1.92
2 384 4608 1.1957e−1 1.45 23040 7.7106e−3 2.25
3 768 36864 4.9867e−2 1.27 184320 1.6456e−3 2.23
4 6144 294912 2.2945e−2 1.11 1474560 3.6784e−4 2.16
5 49152 2359296 1.1077e−2 1.05 11796480 8.5969e−5 2.10

Observed: 1.00 2.00

Table 5.7: Energy error
���U3D

ex −Uh

���
1,h

for p = 1,2

p = 1 p = 2
level elements dof U

3D
ex −Uh

L2(Ωr )
eoc dof U

3D
ex −Uh

L2(Ωr )
eoc

0 6 72 4.1493e−3 − 360 8.7706e−4 −

1 48 576 2.2901e−3 0.86 2880 3.0963e−4 1.50
2 384 4608 1.0848e−3 1.08 23040 4.7439e−5 2.71
3 768 36864 3.4612e−4 1.65 184320 6.1847e−6 2.94
4 6144 294912 9.4153e−5 1.88 1474560 7.9445e−7 2.96
5 49152 2359296 2.4040e−5 1.97 11796480 1.1161e−7 2.83

Observed: 2.00 −

Table 5.8: L2(Ωr )-error U
3D
ex −Uh

L2(Ωr )
for p = 1,2

Results for 3D

In this section we present the convergence results for three-dimensional examples. The
resulting linear system were solved with a ILU(0) precondtioned GMRes method within
Neshmet.

Modified Saint-Venant Kirchoff material

As first example we use again the modified Saint-Venant Kirchoff material. The material
parameters were chosen as µ = 50 and κ = 71.43. The stabilization parameter σkl was
chosen as σkl = 1000p2 where p is the polynomial degree. The results for p = 1,2 are
depicted in Table 5.7 and 5.8.
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p = 1 p = 2
level elements dof

���U3D
ex −Uh

���
1,h

eoc dof
���U3D

ex −Uh

���
1,h

eoc

0 6 72 5.0494e−1 − 180 1.3055e−1 −

1 48 576 3.3506e−1 0.59 1440 4.3122e−2 1.60
2 384 4608 1.3274e−1 1.34 11520 1.0797e−2 2.00
3 768 36864 6.0195e−2 1.14 92160 2.6582e−3 2.02
4 6144 294912 2.9173e−2 1.04 737280 6.6578e−4 2.00
5 49152 2359296 1.4377e−2 1.02 5898240 1.6736e−4 1.99

Observed: 1.00 2.00

Table 5.9: Energy error
���U3D

ex −Uh

���
1,h

for p = 1,2

p = 1 p = 2
level elements dof U

3D
ex −Uh

L2(Ωr )
eoc dof U

3D
ex −Uh

L2(Ωr )
eoc

0 6 72 4.1523e−3 − 180 2.7040e−3 −

1 48 576 2.2726e−3 0.87 1440 9.9930e−4 1.44
2 384 4608 1.1157e−3 1.03 11520 1.4182e−4 2.82
3 768 36864 3.7026e−4 1.59 92160 1.6524e−5 3.10
4 6144 294912 1.0290e−4 1.85 737280 1.9582e−6 3.08
5 49152 2359296 2.6502e−5 1.96 5898240 2.7602e−7 2.83

Observed: 2.00 —

Table 5.10: L2(Ωr )-error U
3D
ex −Uh

L2(Ωr )
for p = 1,2

Comparing the results for the behavior of the L2(Ωr )-error in Table 5.8 with the two
dimensional case in Table 5.2, we see that in the three dimensional case we can not observe
a clear convergence order of two for p = 2.

Compressible Neo-Hooke material

In the second example we used the compressible neo-Hooke material. For this example we
used a different initial discretization of Ωr . The material parameters were chosen as µ = 50
and κ = 71.43. The stabilization parameter σkl was again chosen as σkl = 1000p2 where p
is the polynomial degree. The results for p = 1,2 are depicted in Table 5.9 and 5.5.

Again, by comparison of the two dimensional error behavior in Table 5.5 with the one in
Table 5.10 we see, that a clear convergence order of two can not be observed.



6 COUPLED ELECTRO-MECHANICS

In this chapter the application of the previously developed methods to the system of coupled
electro mechanics will be described. Recall the coupled system summarized in Formulation
2.1. Find (Vtm,ue,v,Ta,U ) such that

∂

∂t
(JVtm) + JIion − J Div(JMi Grad Vtm) − J Div(JMi Grad ue) = Jsi,

−J Div(JMi Grad Vtm) − J Div(JMi+e Grad ue) = 0,
∂

∂t
(Jv) + JH (Vtm,v) = 0,

∂

∂t
(JTa) + Jε (Vtm) (Ta − ka (Vtm − Vr )) = 0,

−Div(F
(
Spas + Sact

)
) = 0

in Ωr × (0,T ) and the boundary and initial conditions

N · (Mi Grad Vtm + Mi Grad ue) + αi (Vtm + ue) = GR,i,

N · (Me Grad ue) + αeue = GR,e,

F(Spas + Sact)N = 0,
Vtm(0,X ) = V 0

tm(X ),

v(0,X ) = v0(X ),

Ta (0,X ) = T0
a (X ),

on ∂Ωr × (0,T ) and Ωr × {0}. The following additional simplifications are made:

• From the almost incompressibility one has that J ≈ 1, hence one may drop this
dependence from the equations.
• It is assumed that ∂

∂t J ≈ 0. Hence one may neglect also those terms in the equations.

109



110 6 Coupled Electro-Mechanics

Using these assumptions one obtains the simplified, yet still coupled, system: Find Vtm,
ue,v,Ta,U such that

∂

∂t
Vtm + Iion(Vtm,v,U ) − Div(Mi Grad Vtm) − Div(Mi Grad ue) = si, (6.1)

−Div(Mi Grad Vtm) − Div(Mi+e Grad ue) = 0, (6.2)
∂

∂t
v + H (Vtm,v) = 0, (6.3)

∂

∂t
Ta + ε (Vtm) (Ta − ka (Vtm − Vr )) = 0, (6.4)

−Div(F
(
Spas + Sact

)
) = 0, (6.5)

in Q := Ωr × (0,T ) with the boundary and initial conditions

N · (Mi Grad Vtm + Mi Grad ue) + αi (Vtm + ue) = GR,i, (6.6)
N · (Me Grad ue) + αeue = GR,e, (6.7)

F(Spas + Sact)N = 0, (6.8)

Vtm(0,X ) = V 0
tm(X ), (6.9)

v(0,X ) = v0(X ), (6.10)

Ta (0,X ) = T0
a (X ). (6.11)

on Σ := ∂Ωr × (0,T ) and Σ0.

Remark 6.1 It is also possible to include Robin type boundary conditions for the equations
of nonlinear elasticity reading as

F(Spas + Sact)N + αU = GR (6.12)

on Σ.

6.1 Space-Time Discretization

We will apply the tools developed in Section 4.2 and Chapter 5. To this end we will define
the following discrete spaces: Fix p ∈ N0

Sp
h (TN ) :=

{
vh ∈ L2(Q) : vh τl ∈ P

p(τl ) for all τl ∈ TN
}
,

V p
h (TN ) :=

{
vh ∈ [L2(Q)]d : vh τl ∈ [Pp(τl )]d for all τl ∈ TN

}
.
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For the equations (6.1)-(6.4) we use the space-time discontinuous Galerkin discretization
derived in Section 4.2. Thus we get the following system

bDG
T (V h

tm, φ
h) + aDG

i (V h
tm, φ

h) + aDG
i (uh

e , φ
h) + I

DG
(V h

tm,v
h,Uh; φh) = lDG

1 (φh),

aDG
i (V h

tm,ψ
h) + aDG

i+e (uh
e ,ψ

h) = lDG
2 (ψh),

bDG
T (vh, ξh) + HDG(V h

tm,v
h; ξh) = lDG

3 (ξh),

bDG
T (T h

a , θ
h) + TDG(V h

tm,T
h
a ; θh) = lDG

4 (θh),

for all (φh,ψh, ξh, θh) ∈ Sp
h (TN ) × Sp

h (TN ) × Sp
h (TN ) × Sp

h (TN ). The bilinear form bDG
T (·, ·)

is taken as in (4.12). The bilinear forms aDG
i (·, ·), aDG

i+e (·, ·) are defined as in (4.6). The
nonlinear forms are treated in the most simple way and are defined as

I
DG

(V h
tm,v

h,Uh; φh) :=
N∑

l=1

∫
τl

Iion(V h
tm,v

h)φh dq +

∫
τl

IMEF(V h
tm,U

h)φh dq,

HDG(V h
tm,v

h; ξh) :=
N∑

l=1

∫
τl

H (V h
tm,v

h)ξh dq,

TDG(V h
tm,T

h
a ; θh) :=

N∑
l=1

∫
τl

T (V h
tm,T

h
a )θh dq.

The linear forms on the right hand side are defined as

lDG
1 (φh) :=

∫
Q

siφ
h dq +

∫
Σ0

V 0
tmφ

h dsq +

∫
Σr

GR,iφ
h dsq,

lDG
2 (ψh) :=

∫
Σr

(GR,i + GR,e)ψh dsq,

lDG
3 (ξh) :=

∫
Σ0

v0ξh dsq,

lDG
4 (θh) :=

∫
Σ0

T0
a θ

h dsq.

For the discretization of the equations of nonlinear elasticity (6.5) we will adapt the bilinear
form from (5.3) to the space-time setting. Thus we arrive at

aDG
elast(T

h
a ,U

h;V h) = l5(V h).
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where

aDG
elast(T

h
a ,U

h;V h) :=
N∑

l=1

∫
τl

F(Uh)
(
Spas(Uh) + Sact(T h

a ,U
h)

)
: GradV h dq

−
∑
Γkl∈IN

∫
Γkl

〈
F(Uh)

(
Spas(Uh) + Sact(T h

a ,U
h)

)〉
: JV hKX ,kl dsq,

+
∑
Γkl∈IN

σelast
kl

hkl

∫
Γkl

JUhKX ,kl : JV hKX ,kl dsq,

and

lDG
5 (V h) = 0.

Remark 6.2 In the case of Robin type boundary conditions we may add the term

α

∫
Σr

(
Uh,V h

)
dsq

to the nonlinear form aDG
elast(T

h
a ,U

h;V h) and∫
Σr

(
GR,V

h
)

dsq

to the right hand side.

Remark 6.3 For almost incompressible materials we will use the mean dilatation technique
described in Section (5.4.2). Thus the incompressibility constraint is eliminated locally on
each element.

Collecting the two building blocks together we arrive at the following nonlinear discretized
system: Find (V h

tm,u
h
e ,v

h,T h
a ,U

h) such that

bDG
T (V h

tm, φ
h) + aDG

i (V h
tm, φ

h) + aDG
i (uh

e , φ
h) + I

DG
(V h

tm,v
h,Uh; φh) = lDG

1 (φh),

aDG
i (V h

tm,ψ
h) + aDG

i+e (uh
e ,ψ

h) = lDG
2 (ψh),

bDG
T (vh, ξh) + HDG(V h

tm,v
h; ξh) = lDG

3 (ξh),

bDG
T (T h

a , θ
h) + TDG(V h

tm,T
h
a ; θh) = lDG

4 (θh),

aDG
elast(T

h
a ,U

h;V h) := lDG
5 (V h)

for all (φh,ψh, ξh, θh,V h). As the derived system is nonlinear we will apply Newton’s
method to solve it. To this end we need the linearization around given solutions V k,h

tm , uk,h
e ,
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vk,h, T k,h
a ,U k,h. After performing the linearization and using the Galerkin isomorphism we

can write the resulting Jacobian for Newton’s method in the form

DF :=

*.........
,

Vtm ue v Ta U

F11 F12 F13 0 F15

F21 F22 0 0 0
F31 0 F33 0 0
F41 0 0 F44 0
0 0 0 F54 F55

+/////////
-

.

Above the matrix definition we indicated the variables to which the derivatives correspond.
The individual blocks of the Jacobian are described in the following.

F11 corresponds to

bDG
T (δh, φh) + aDG

i (δh, φh) +

N∑
l=1

∫
τl

∂Iion

∂Vtm
(V k,h

tm ,vk,h)δhφh dq

+

N∑
l=1

∫
τl

∂IMEF

∂Vtm
(V k,h

tm ,U k,h)δhφh dq.

F12 corresponds to

aDG
i (δh, φh).

F13 corresponds to

N∑
l=1

∫
τl

∂Iion

∂v
(V k,h

tm ,vk,h)δhφh dq.

F15 corresponds to

N∑
l=1

∫
τl

∂IMEF

∂λ f
(V k,h

tm ,U k,h)(2( f 0 ⊗ f 0) : sym(F(U k,h)>Gradδh)φh dq.

F21 corresponds to

aDG
i (δh,ψh).

F22 corresponds to

aDG
i+e (δh,ψh).
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F31 corresponds to

N∑
l=1

∫
τl

∂H
∂Vtm

(V h,k
tm ,vh,k ).δhξh dq.

F33 corresponds to

bDG
T (δh, ξh) +

N∑
l=1

∫
τl

∂H
∂v

(V h,k
tm ,vh,k )δhξh dq.

F41 corresponds to

N∑
l=1

∫
τl

∂T
∂Vtm

(V h,k
tm ,T h,k

a )δhθh dq.

F44 corresponds to

bDG
T (δh, θh) +

N∑
l=1

∫
τl

∂T
∂Ta

(V h,k
tm ,T h,k

a )δhθh dq.

F54 corresponds to

N∑
l=1

∫
τl

δh

(
F(U k,h)

∂Sact

∂Ta
(T h,k

a ,Uh,k ) : GradV h
)

dq

−
∑
Γkl∈IN

∫
Γkl

〈
δh

(
F(U k,h)

∂Sact

∂Ta
(T h,k

a ,Uh,k )
)〉

:
q
V hy

X ,kl dsq.

F55 corresponds to

aDG
1 (T h,k

a ,Uh,k ;δh,V h) + aDG
2 (T h,k

a ,Uh,k ;δh,V h),

where

aDG
1 (T h,k

a ,Uh,k ;δh,V h) :=∑
l=1

∫
τl

GradδhSh,k : GradV h dq

+

∫
τl

sym(F>h,k Gradδh) : Ch,k : sym(F>h,k GradV h)dq,
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with

Fh,k := F(Uh,k ),

Sh,k := Spass(Uh,k ) + Sact(T h,k
a ,Uh,k ),

Ch,k := Cpas(Uh,k ) + Cact(T h,k
a ,Uh,k ).

The other bilinear forms are defined as

aDG
2 (φ;U ,V ) :=

−
∑
Γkl∈IN

∫
Γkl

〈
Fh,k

(
Ch,k : sym(F>h,k Gradδh)

)〉
:
q
V hy

X ,kl dsq

−
∑
Γkl∈IN

∫
Γkl

〈
GradδhSh,k

〉
:
q
V hy

X ,kl dsq

+
∑
Γkl∈IN

σelast
kl

hkl

∫
Γkl

JUKX ,kl : JVKX ,kl dsq .

Remark 6.4 For the special choice of Sact as in (2.46) we can calculate

∂Sact

∂Ta
= I
− 1

2
4 f f 0 ⊗ f 0.

For Newton’s method we also need to define the residual

F :=

*......
,

R1
R2
R3
R4
R5

+//////
-

where the vectors R1, . . . ,R5 are induced by the following linear forms:

R1 corresponds to

bDG
T (V h,k

tm , φh) + aDG
i (V h,k

tm , φh) + aDG
i (uh,k

e , φh)

+ I
DG

(V h,k
tm ,vh,k ,Uh,k ; φh) − lDG

1 (φh).

R2 corresponds to

aDG
i (V h,k

tm ,ψh) + aDG
i+e (uh,k

e ,ψh) − lDG
2 (ψh).
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R3 corresponds to

bDG
T (vh,k , ξh) + HDG(V h,k

tm ,vh,k ; ξh) − lDG
3 (ξh).

R4 corresponds to

bDG
T (T h,k

a , θh) + TDG(V h,k
tm ,T h,k

a ; θh) − lDG
3 (θh).

R5 corresponds to

aDG
elast(T

h,k
a ,Uh,k ;V h) − l5(V h).

Collecting all things we can write Newton’s method in our case as find ∆ such that

DF(X k )∆ = −F (X k ),X k+1 = X k + ∆.

6.2 Globalized Newton’s Method and Load-stepping

In the previous section we presented all building blocks for applying Newton’s method to
the system of cardiac electromechanics. However, for the convergence of Newton’s method
one needs to provide a good initial guess X0. In the case of time dependent nonlinear
problems which are discretized with time-stepping schemes one can always use the solution
from the previous time step as initial guess for Newton’s method. In a full space-time setting
one can no longer use this. Hence one needs to construct a good initial guess with other
techniques, such as globalization techniques. Furthermore, since the linear systems in such
problem are large one may also use inexact Newton methods. For more on this topic we
refer to [46, Chapter 3] and [49, 50]. For solving our nonlinear systems we will rely on the
inexact Newton backtracking method proposed in [50, Section 6]. The algorithm is depicted
in Algorithm 1.

For choosing ηk (Line 4 in Algorithm 1) we will use the following criterion proposed in
[49, Equation (2.6)]: Given γ ∈ (0,1), α ∈ (1,2] and η0 ∈ (0,1) we set

ηk := γ
*.
,

F (X k )
F (X k−1)

+/
-

α

.

Furthermore, as suggested in [49, Section 2.1] we will apply the following safeguarding
rule: If γηαk−1 > 0.1 we set

ηk = min(ηmax,max(ηk , γη
α
k−1)).
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Algorithm 1 Inexact Newton Backtracking Method, [50]

1: Let X0, ηmax ∈ [0,1), t ∈ (0,1), 0 < θmin < θmax < 1, ε > 0, nmax > 0 and kmax > 0
be given

2: for k = 0, . . . , kmax do
3: nbt = 0
4: Choose ηk ∈ [0, ηmax]
5: Find sk such that
6: DF(X k )sk + F (X k ) ≤ ηk

F (X k )
7: while F (X k + sk ) > (1 − t(1 − ηk ))F (X k ) and nbt < nmax do
8: Choose θ ∈ [θmin, θmax]
9: sk = θsk

10: ηk = 1 − θ(1 − ηk )
11: nbt = nbt + 1
12: end while
13: X k+1 = X k + sk

14: if F (X k+1) < ε
F (X0) then

15: break
16: end if
17: end for

It remains to choose θ (Line 8 in Algorithm 1). Here we will follow the suggestion made in
[22, Section 4.2] and also [97, 142]. We define the function

g(t) :=
1
2

F (X k + tsk )
2
.

Next we define a quadratic interpolant p(t) of g(t) such that

p(0) = g(0) =
1
2

F (X k )
2
,

p(1) = g(1) =
1
2

F (X k + sk )
2
,

p′(0) = g′(0) =
(
DF(X k )sk ,F (X k )

)
.

Having p(t) we choose θ as mint∈[θmin,θmax] p(t). Further, for our numerical examples we
will apply a load-stepping strategy. That means, we take a sequence {τk } ∈ (0,1] converging
to one and multiply each nonlinear contribution to our system by the factor τk .
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6.3 Schur Complement

We have seen that in the course of Newton’s method we need to solve the system

DF(X k )∆ = −F (X k )

with the help of an iterative method, like the GMRes. Recalling the block structure of the
Jacobian this means that in each Newton step we need to solve

*......
,

F11 F12 F13 0 F15
F21 F22 0 0 0
F31 0 F33 0 0
F41 0 0 F44 0
0 0 0 F54 F55

+//////
-

*......
,

δVtm
δue
δv
δTa
δU

+//////
-

=

*......
,

R1
R2
R3
R4
R5

+//////
-

.

Instead of solving the whole block system we will solve the following Schur complement
system

SC :=
(
SC1 F12
F21 F22

) (
δVtm
δue

)
=

(
R̃1
R2

)
where

SC1 := F11 − F13F−1
33 F31 + F15F−1

55 F54F−1
44 F41,

R̃1 := R1 − F13F−1
33 R3 − F15F−1

55 R5 + F15F−1
55 F54F−1

44 R4.

6.4 Numerical Examples

In this section we will present numeric examples for the coupled problem. In all the
presented examples we used the Aliev-Panfilov model for the ionic currents, see [4]. The
values of c1,c2,c3, ε0, µ1, µ2 can be looked up in Table 6.2.

Iion(Vtm,v) := c2Vtmv − c1Vtm(1 − Vtm)(Vtm − c3),

H (Vtm,v) :=
(
ε0 +

µ1v

µ2 + Vtm

)
(c1Vtm(1 + b − Vtm) − v) .

Further in all numerical examples we use the globalized inexact Newton backtracking
algorithm combined with twenty load-steps. The parameters can be looked up in Table 6.1.
The resulting linear systems were solved with Neshmet. The meshes were generated with
the help of Gmsh [71].
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Parameter Value
ηmax 0.9
θmin 0.1
θmax 0.5
ε 1e−4

nmax 5
kmax 100

Table 6.1: Values of the parameters for Newton’s method.

Parameter Value
c1 12.000
c2 1.000
c3 0.050
b 0.314
ε0 0.016
µ1 0.476
µ2 0.654

Table 6.2: Values of the parameters for the Aliev Panfilov model.

Example One

In our first example we consider the following space-time domain:

Q := (−2.5,2.5)2 × (0,12).

For the anisotropic tensors Mi,Me we choose the following values:

f 0 :=
(

3
√

10
,

1
√

10

)>
,

s0 :=
(
−

1
√

10
,

3
√

10

)>
,

m f
i := 0.2, ms

i := 0.3,

m f
e := 1.1, ms

e := 1.3.

On ∂(−2.5,2.5)2 we set Robin boundary conditions for Vtm,ue with αi = αe = 1e−6. For
the deformation we use homogeneous Dirichlet boundary conditions on X = −2.5 and
homogeneous Neumann boundary conditions elsewhere. The initial conditions were set
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Figure 6.1: The potential Vtm.

Figure 6.2: The absolute value of the displacementU .

to

V 0
tm(X ) := (X − 2.5)(X + 2.5)(Y − 2.5)(Y + 2.5),

v0(X ) := 0,

T0
a (X ) := 0.

We needed an average of 14.2 Newton steps per load-step for this example. The results are
depicted in Figures 6.1, 6.2, 6.3, 6.4 and 6.5. We can also calculate the resulting variables
at different times tk by slicing the space-time domain. The results are depicted in Figures
6.6 and 6.7.
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Figure 6.3: The potential ue.

Example Two

In the second example we consider the same geometry, conductivities and parameters for
the nonlinearities. The initial values are set to

V 0
tm(X ) := 0,

v0(X ) := 0,

T0
a (X ) := 0.

The boundary conditions for Vtm,ue are chosen in the same way as for example one. For the
deformationU we choose again homogeneous Dirichlet data on X = −2.5. However on the
boundary X = 2.5 we choose the following Neumann boundary condition

GN (X , t) :=




(0,0)> if t < [2,4],
1
2 (t − 2)(0,1)> if t ∈ [2,3),
1
2 (4 − t)(0,1)> if t ∈ [3,4].

We needed an average of 18.1 Newton steps per load-step for this example. The results
are depicted in Figures 6.8, 6.9, 6.10, 6.11 and 6.12. The results for the time evolution are
depicted in Figures 6.13 and 6.14.
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Figure 6.4: The ionic variable v.

Example Three

In our third example we consider a different spatial geometry. The geometry Ω is given by
the following ellipsoidal annulus: given a1 > a2 and b1 > b2 we define

Ω :=


X ∈ R2 :

X2

a2
1

+
Y 2

b2
1

< 1 and
X2

a2
2

+
Y 2

b2
2

> 1


,

Γ1 :=


X ∈ R2 :

X2

a2
1

+
Y 2

b2
1

= 1


,

Γ2 :=


X ∈ R2 :

X2

a2
2

+
Y 2

b2
2

= 1


,

ΓD,elast :=


X ∈ R2 :

X2

a2
1

+
Y 2

b2
1

= 1 and X > 0 and Y < 0


,

ΓN,elast := Γ1\ΓD,elast.

An example for Ω is depicted in Figure 6.15. The input parameters as well as the initial
data are chosen as in examples one and two. On the boundary Γ1 and Γ2 we chose Robin
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Figure 6.5: The active stress variable Ta.

type boundary conditions with αi = αe = 1e−6 for Vtm,ue. For the deformation we chose
homogeneous Neumann boundary conditions on Γ2 and ΓN,elast. On ΓD,elast we imposed
homogeneous Dirichlet boundary conditions. For this example we needed an average of
16.4 Newton steps per load step. The results are depicted in Figures 6.16, 6.17, 6.18 and
6.19. The results for the time evolution are depicted in Figures 6.20 and 6.21.

Example Four

In this example we consider the same geometry as in example three, as well as the input
parameters. The boundary conditions for Vtm,ue as well as the initial conditions for Vtm,v,Ta
are the same. For the deformationU we chose homogeneous Robin boundary conditions
on Γ1 and Γ2. Furthermore we used non-constant fields for f 0, s0. For the direction s0 we
chose

s0(X ) := Grad φ(X )
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t = 0.0 t = 0.5 t = 1.0

t = 1.5 t = 2.0 t = 2.5

t = 3.0 t = 3.5 t = 4.0

t = 4.5 t = 5.0 t = 5.5

Figure 6.6: Time evolution of Vtm. The geometry Ω is wrapped by 2U .
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t = 6.0 t = 6.5 t = 7.0

t = 7.5 t = 8.0 t = 8.5

t = 9.0 t = 9.5 t = 10.0

t = 10.5 t = 11.0 t = 11.5

Figure 6.7: Time evolution of Vtm. The geometry Ω is wrapped by 2U .
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Figure 6.8: The potential Vtm.

Figure 6.9: The absolute value of the displacementU .
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Figure 6.10: The potential ue.

Figure 6.11: The ionic variable v.



128 6 Coupled Electro-Mechanics

Figure 6.12: The active stress variable Ta.

where φ(X ) solves the following partial differential equation

−∆φ = 0 in Ω,
φ = 1 on Γ1,

φ = 0 on Γ2.

The direction f 0 was chosen orthogonal to s0. A schematic view of f 0 is depicted in Figure
6.22. For this example we used twenty load steps. We needed an average of 19.3 Newton
steps per load step. The results are depicted in Figures 6.23, 6.24, 6.25 and 6.26. The results
for the time evolution are depicted in Figures 6.27 and 6.28.
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t = 0.0 t = 0.5 t = 1.0

t = 1.5 t = 2.0 t = 2.5

t = 3.0 t = 3.5 t = 4.0

t = 4.5 t = 5.0 t = 5.5

Figure 6.13: Time evolution of Vtm. The geometry Ω is wrapped by 2U .
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t = 6.0 t = 6.5 t = 7.0

t = 7.5 t = 8.0 t = 8.5

t = 9.0 t = 9.5 t = 10.0

t = 10.5 t = 11.0 t = 11.5

Figure 6.14: Time evolution of Vtm. The geometry Ω is wrapped by 2U .
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Γ1, ΓN,elast

Γ2

ΓD,elast

Figure 6.15: The domain Ω for example three, a1 = 5, b1 = 3, a2 = 3, b2 = 9
5

Figure 6.16: The potential Vtm.
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Figure 6.17: The absolute value of the displacementU .

Figure 6.18: The ionic variable v.



6.4 Numerical Examples 133

Figure 6.19: The active stress variable Ta.
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t = 0.0 t = 0.5 t = 1.0

t = 1.5 t = 2.0 t = 2.5

t = 3.0 t = 3.5 t = 4.0

t = 4.5 t = 5.0 t = 5.5

Figure 6.20: Time evolution of Vtm. The geometry Ω is wrapped by 2U .
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t = 6.0 t = 6.5 t = 7.0

t = 7.5 t = 8.0 t = 8.5

t = 9.0 t = 9.5 t = 10.0

t = 10.5 t = 11.0 t = 11.5

Figure 6.21: Time evolution of Vtm. The geometry Ω is wrapped by 2U .
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Figure 6.22: Schematic view of the direction f 0 used in example four.

Figure 6.23: The potential Vtm.
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Figure 6.24: The absolute value of the displacementU .

Figure 6.25: The ionic variable v.
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Figure 6.26: The active stress variable Ta.
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t = 0.0 t = 0.5 t = 1.0

t = 1.5 t = 2.0 t = 2.5

t = 3.0 t = 3.5 t = 4.0

t = 4.5 t = 5.0 t = 5.5

Figure 6.27: Time evolution of Vtm. The geometry Ω is wrapped by 2U .
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t = 6.0 t = 6.5 t = 7.0

t = 7.5 t = 8.0 t = 8.5

t = 9.0 t = 9.5 t = 10.0

t = 10.5 t = 11.0 t = 11.5

Figure 6.28: Time evolution of Vtm. The geometry Ω is wrapped by 10U .



7 CONCLUSIONS AND OUTLOOK

In this thesis we presented a novel approach to solve the governing equations of cardiac
electro-mechanics. The main difference to other approaches is, that we considered the whole
space-time cylinder Q as computational domain and we also allowed for rather general
discretizations of those domains.

Starting in Chapter 2 we recalled the main modeling aspects for deriving the governing
equations of cardiac electro-mechanics.

In particular, for discretizing the Bidomain equations in Chapter 4 we used a space-time
symmetric weighted interior penalty discontinuous Galerkin finite element method to ac-
count for the anisotropic nature of conductivities in biological materials. This was combined
with an upwind discretization for the time derivative. Subsequently, we analyzed the corre-
sponding linear problem and extended the results under some assumptions to the nonlinear
case. Finally we gave some convergence studies which support our theoretical results.

In the Chapter 5 we presented an existing, see [138], discontinuous Galerkin discretization
for the equations of nonlinear quasi-stationary hyper-elasticity. We recalled the existing
results and discussed some aspects worth mentioning for implementation. We supported the
theoretical results developed in [138] with convergence studies.

Eventually, in Chapter 6 we presented a full space-time discontinuous Galerkin approach for
solving the coupled system of cardiac electro-mechanics. We gave the discretized system of
equations, discussed the use of globalized Newton’s method and presented four numerical
examples.

Outlook and Open Problems

With this thesis we have just scratched on the surface of possibilities such space-time
methods may offer. It is clear, that with the use of unstructured discretizations of space-time
domains one has the possibility to apply standard adaptive mesh refinement techniques
to resolve complex phenomena in space and time simultaneously. For example, the sharp
upstroke of the transmembrane potential Vtm could be resolved much more accurate with
such techniques. Still, the development of reliable and efficient error estimators for the
proposed space-time setting remains an open question. Since in the case of cardiac electro-
mechanics one has to deal with systems of nonlinear time-dependent equations one may

141
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also think about the use of different error estimators for each variable and also the use of
different meshes for each variable of interest.

Furthermore, for being able to handle more realistic problems one needs to think about
unstructured triangulations for arbitrary four dimensional objects. First steps towards this
have been made in [21, 93, 121, 130, 180].

Going hand in hand with this topic one needs to think about a parallelization of such space-
time methods as the degrees of freedom in four dimensional discretizations grow rather
rapidly. The use of unstructured grids suggests to use ideas from domain decomposition
methods. First steps towards this have already been investigated for the Navier-Stokes
equations in [129, Chapter 5]. One may also think of hybrid discontinuous Galerkin methods
as well as the use of the Mortar finite element method or the finite element tearing and
interconnecting approach discussed for example in [11, 12, 13].

Nevertheless, the constructions of suitable preconditioners in the fully unstructured space-
time setting remains an open question. For more structured discretizations a space-time
multigrid was developed in [129].

Finally, for being able to solve nonlinear time-dependent problems one needs to construct
good initial guesses for Newton’s method. It would be interesting, whether it is possible to
do so and not being bound to the use of globalization techniques.

There are also a lot of open questions concerning the existence and regularity of solutions
to the fully coupled system of cardiac electro-mechanics. Especially, the interplay and
influence of the spatial and material formulation of the individual governing equations, and
here in particular the relation between the conductivity tensors Mi,Me from the Bidomain
equations in material and spatial description.
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