
Evaluating Counter Measures against SIFT Keypoint Forensics

Muhammad Salman, Andreas Uhl
Department of Computer Sciences, University of Salzburg

uhl@cs.sbg.ac.at

Abstract. Forensic analysis is used to detect image
forgeries e.g. the copy move forgery and the object
removal forgery. Counter forensic techniques (meth-
ods to fool the forensic analyst by concealing traces
of manipulation) have become popular in the game
of cat and mouse between the analyst and the at-
tacker. Methods to counter forensic techniques based
on SIFT keypoints are being analysed in this paper
(aka anti-forensic techniques), with particular em-
phasis on keypoint removal in the context of copy
move forgery detection. Local smoothing is sug-
gested in this paper and turns out to be a highly at-
tractive alternative to techniques investigated in lit-
erature so far.

1. Introduction

In the past, images were considered as an authen-
tic source of information – with increasing popularity
and the availability of low-cost image editing soft-
ware such as Adobe photoshop, corel paint shop and
GIMP the truthfulness of an image can no longer
be taken for granted. Among other forgery types,
copy move forgery and object removal forgery are
the most prominent ones. In a copy move forgery,
a part of the image itself is copied and pasted into
another part of the same image to conceal an impor-
tant object or information, or to conceal that an ob-
ject has been removed from the image in an object
removal forgery. In most cases of image forgery, it is
extremely difficult to distinguish between an original
image and the forged one. Therefore, it is required to
develop methods/techniques to assess the authentic-
ity of an image – Digital Image Forensics (DIF [19])
has served this purpose to a large extent. Whenever
an image is forged, there are some traces which are
left behind in the forged image. These traces are use-
ful for the forensic researcher to detect a forgery.

A wide range of DIF forgery detection techniques

have been established in the recent years [4, 6, 21].
Besides recent deep learning based schemes, tech-
niques relying on Scale Invariance Feature Trans-
form (SIFT) keypoints have been shown to be effec-
tive. In particular, SIFT keypoints [12] have been
proposed to reveal copy move forgeries [6] and im-
age cloning [17], as well as to detect copyrighted ma-
terial using CBIR techniques [9].

Attackers are making it difficult to apply these
techniques by developing counter forensic tech-
niques, i.e. by minimising those traces left behind
in forged images. In the context of SIFT keypoint
forensics, this is done by manipulating SIFT key-
points, e.g. removing existing ones or injecting fake
key points to fool the forensic techniques. This paper
is a contribution to such counter forensic approaches
against SIFT-keypoint forensic techniques. In partic-
ular, we focus on SIFT keypoint removal techniques.
Section 2 reviews corresponding techniques as pro-
posed in literature and suggest a new approach. Sec-
tion 3 is devoted to an extensive empirical evalua-
tion, looking at the tradeoff among image quality,
keypoint removal effectiveness as well as the gener-
ation of new keypoints. In the conclusion we discuss
results obtained and give an outlook to further work
in this direction.

2. SIFT Keypoint Removal Techniques

The simplest approach, global smoothing (GS),
reduces the potential keypoints at the level of dif-
ference of Gaussian (DoG) by Gaussian smoothing
(which flattens the pixel values of an image), e.g. [1]
applies a Gaussian filter with σ = 0.7 and window
size 3 × 3 as a good compromise between amount
of deleted keypoints and overall visual quality of an
image. A more sophisticated approach is to first ap-
ply GS (the original paper [9] suggests to employ
σ = 1.3), detect remaining keypoints, and apply lo-
cal smoothing (LS) in patches around detected key-
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points, with size 3 × 3 to 7 × 7 pixels (denoted as
GS+LS).

Another strategy to remove SIFT keypoints is the
collage attack (CA) [10], which substitutes an orig-
inal image patch (patch containing a keypoint) with
another patch (containing no keypoint) of the same
size contained in a pre-computed patch dictionary.
The new patch must not contain SIFT keypoints and
should be as similar as possible to the original one
according to some similarity criteria (e.g., [1] cre-
ated a dictionary of about 120,000 patches and chose
histogram intersection distance, widely used in im-
age retrieval applications [22], as a patch similarity
measure. The same approach is used in experiments
of [3].

Removal with minimum distortion (RMD) [9]
adaptively calculates a small image patch and adds
it to the neighbourhood of the key point such that the
overall operation results in a minimum least-square
distortion in the keypoint neighbourhood under the
condition that the keypoint is removed. Finally, the
classification based attack (CLBA) presented by [1]
arranges GS+LS, CA, and RMD into an iterative pro-
cedure which first detects SIFT keypoints, classifies
them into distinct classes, and subsequently applies
one of the three individual removal techniques to the
suited classes.

For all these techniques, [2] suggested to remove
only one of the matching keypoints from each match-
ing keypoints pair in case of preventing to detect
copy move forgeries. There are also forensic tech-
niques to counter those anti-forensic keypoint re-
moval methods (see e.g. [7, 16].

As GS has significant impact on image quality (as
we shall see as well in the next section), also the
combination with LS (i.e. GS+LS) is affected by this
quality impact. Therefore, we introduce a new tech-
nique to remove SIFT keypoints called local smooth-
ing (LS), and compare the various performance indi-
cators to already existing (smoothing) techniques i.e.
GS, GS+LS, and CA.

3. Experiments

3.1. Experimental Settings

With respect to software and tools, we mainly used
Matlab 2014a [14] (on Windows 7 64bit) with some
internal toolboxes (parallel toolbox for fast computa-
tion, image processing toolbox) and the external li-
brary vl_feat [20] (the latter to smooth images and
to compute SIFT keypoints; we have chosen Edge

Thresh = 12 to control the number of keypoints
used). For the computation of image quality metrics
(IQM) (PSNR, VSNR, UQI, SSIM), we used the Ma-
Trix MuX visual quality assessment package [15].
As experimental data, we used the first 100 images
(i.e. from ucid00001.tif to ucid000100.tif ) from the
Uncompressed Image Database (UCID) [18] for ex-
periments for keypoint removal methods assessment.
For the CA, we created a keypoint-free patch dictio-
nary from all images using overlapping patches.

For experiments with respect to detecting actual
copy move attacks, we combined two datasets to re-
sult in 100 images (50 actually forged images and
50 original images). Forged images are taken from
a public dataset for assessing forensic techniques
[5] (see Fig. 5 for examples), which contain sim-
ple translated copies of objects/regions, while the
“original” images are taken from the RAISE dataset
[8] from the BUILDING PHOTO category (see Fig.
6). The latter data has been included to determine
the methods’ robustness against indicating false pos-
itives1. In keypoint removal for countering copy
move detection, we removed only one keypoint from
each matching pair of keypoints as suggested.

3.2. Experimental Results

In order to assess the quality of the image af-
ter removing keypoints, we used different IQM, i.e.
PSNR, SSIM, VSNR, and UQI. Fig. 1 com-
pares three different techniques, i.e. GS, GS+LS,
and LS. In GS+LS, an image is smoothed first glob-
ally with σ = 1.3 as suggested in literature and af-
terwards patches containing keypoints (of different
sizes) are smoothed locally. In the plots, different
smoothing strength (different σ values) is depicted
on the X axis, while the Y axis represents the output
value for a specific image quality measure.

Fig. 1 reveals that the quality of a locally
smoothed (LS) image is better in comparison to the
other two smoothing techniques (i.e. GS and GS+LS)
for all IQM. GS deteriorates image quality quickly
for increasing smoothing strength. Also for the com-
bined method GS+LS the quality is found to be rather
low due to the impact of GS. The quality of the LS
images is better because we are smoothing only the
patches around SIFT keypoints while other pixels are
left untouched. As expected, when increasing the
patch size in LS and GS+LS, the quality of the pro-

1Similar looking structures within an image may lead to an
image incorrectly being classified as copy move forged image.
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Figure 1: IQM Comparison among GS vs LS vs
GS+LS

cessed images decreases.
Table 1 displays IQM values for the CA.

Patch Sizes PSNR VSNR UQI SSIM
3x3 Patch 64.80 32.78 0.99 0.99
5x5 Patch 51.95 32.23 0.99 0.99
7x7 Patch 47.10 47.58 0.99 0.99
9x9 Patch 42.86 40.89 0.98 0.99

Table 1: IQM for CA.

For UQI as well as SSIM we notice almost no
quality degradation by the CA, no matter which patch
size is being used. For PSNR, CA is superior to all
GS+LS variants and for almost all other settings ex-
cept for extremely low smoothing strength. Finally,
for VSNR, CA is again superior to all GS+LS vari-
ants and for all other techniques but LS with patch-
size 3 for low smoothing strength. Overall, the qual-
ity obtained with the CA is very good, and only com-
parable to LS with patchsize 3, however, with all
patch sizes considered.

But how effective are the smoothing-based meth-
ods in actually removing keypoints ? Contrasting to
CA, in which all present keypoints are replaced by
keypoint-free patches, smoothing does not guarantee
that keypoints are actually removed. Fig. 2 illus-
trates the percentage of original keypoints which are

still present after smoothing for increasing smooth-
ing strength.
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(a) Patch Size 3× 3
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(b) Patch Size 5× 5
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(c) Patch Size 7× 7
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(d) Patch Size 9× 9

Figure 2: Share of retained keypoints: GS vs LS vs
GS+LS

For larger patch sizes, GS and LS perform al-
most identically (which is clear considering the def-
inition), while GS+LS is most effective in removing
keypoints. For smaller patch sizes, GS is most ef-
fective for high smoothing strength, while GS+LS is
best for low smoothing strength. LS is not very ef-
fective under these conditions.

When applying techniques for keypoint removal,
new keypoints are being created, e.g. at the edge of
the patches in CA, LS, and GS+LS. This is not de-
sired, as these new keypoints might match to exist-
ing ones and thus aid the forensic analyst. Fig. 3
illustrates the creation of new, additional keypoints
by showing the percentage of newly created ones.
LS clearly introduces the lowest number of addi-
tional keypoints, and if the size of the smoothing
patch is increased then also the number of new key-
points is also increased. The smoothing strength also
plays a certain role: For weak smoothing, increasing
the strength leads to more new keypoints, while af-
ter reaching a peak, a further increase of smoothing
strength decreases the number of newly created key-
points. This effect is expected and most obvious for
GS.

In Table 2, the percentage of newly created key-
points for CA is shown. Only LS with patchsize 3
gives better results, for all other techniques we notice
higher percentages of newly created keypoints when
comparing Fig. 3 to the values in Table 2.
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Figure 3: Creation of New Keypoints.

3x3 Patch 5x5 Patch 7x7 Patch 9x9 Patch
43.01% 39.76% 34.43% 32.21%

Table 2: Newly Generated Keypoints in CA.

When new keypoints are being generated, it is not
their number that is most important. The aim of re-
moving keypoints is compromised, if the newly gen-
erated ones are similar to the removed ones in terms
of their SIFT descriptors. In this case, attacks might
still be recovered by the forensic analyst even though
keypoints have been removed. In Fig. 4 we plot the
distance (squared Euclidean distance (SED)) of the
SIFT descriptors describing removed and newly cre-
ated ones. In particular, we compute SED between
removed keypoints and their closest newly generated
keypoints in terms of their descriptors. To avoid bias,
we divide the result by the number of removed key-
points, as we display results in terms of increasing
percentage of removed keypoints.

For the patch-based techniques, an increase of the
patch size leads to higher SED, which is expected
and desired. When increasing the percentage of re-
moved keypoints, there is a tendency for increasing
SED, except for LS and CA with smaller patch sizes.
The largest SED values (which is the aim when re-
moving keypoints) are seen for techniques involving
GS (not shown) when a large share of all keypoints
is being removed. CA clearly exhibits the lowest
values, which means that the advantage of this ap-
proach in removing all keypoints is endangered by
the creation of new keypoints which are close to the
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Figure 4: Distance to newly created keypoints.

removed ones in terms of their SIFT descriptors.
After having analysed four different SIFT key-

point removal techniques with respect to different
properties, we tested these methods in an actual copy
move forgery scenario. The following definitions are
employed:

• TruePositive(TP ): A true positive test result
for a forged image is one that detects at least τ
matching keypoint pairs.

• FalseNegative(FN): A false negative test re-
sult for a forged image is one that detects at most
τ − 1 matching keypoint pairs.

• TrueNegative(TN): A true negative test re-
sult for an image from the BUILDING PHOTO
category is one that detects at most τ−1 match-
ing keypoint pairs.
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• FalsePositive(FP ): A false positive test re-
sult for an image from the BUILDING PHOTO
category is one that detects at least τ matching
keypoint pairs.

Based on these definitions, we are able to com-
pute precision, recall, and F1-score. Recall, that the
aim of the attacker is to disable the techniques of the
forensic analyst. Thus, the attacker developing these
techniques to counter SIFT keypoint based forensic
techniques by removing keypoints aims for low TP
(and low TN), as high FN makes the forensic analyst
miss forged images and high FP confuses the analyst
as many genuine images are determined as forgeries.

First, we computed SIFT keypoints and then for
each keypoint we found the two nearest neighbours
from all remaining keypoints using a K-d tree based
on Euclidean distance d1 and d2 (where d1 and d2
are distances and d1 corresponds to the closest neigh-
bour), T ∈ (0, 1). [13] and [11] suggested that there
is a match only if d1

d2
< T holds. In these papers

T = 0.6 but we looked into results for T = 0.4,
T = 0.5, T = 0.6 and T = 0.7.

Figure 5: Forged Images

Figure 6: Original Images

Fig. 7 shows confusion matrices (i.e. the number
of TP, FN, TN, FP) for using 50 keypoints, τ = 1,
for four different values of T , comparing copy move
forgery detection without manipulating images, and
with applying keypoint removal techniques LS, CA,
and GS+LS. Patch size is set to 9x9 pixels in all
patch-based techniques.

Overall, we observe that all three SIFT keypoint
removal strategies work, i.e. they reduce signifi-
cantly the number of TP. However, they increase also
the number of TN, thus, the number of false posi-
tives is also reduced (which is not desired). When we

(a) SIFT Matching (b) LS

(c) CA (d) GS+LS

Figure 7: Copy Move Forgery Detection

compare the three removal strategies, GS+LS clearly
has a higher number of TP, thus is least efficient and
does not need to be considered further in this com-
parison. LS and CA are close, with slight advantages
for LS, however, difficult to confirm in this visual
representation.

When looking into recall and precision values for
τ = 1, 2, 3 and T = 0.4, 0.5, 0.6, 0.7 using 50, 100,
and 200 keypoints (overall 36 configurations), we
find precision(LS) < precision(CA) in 33/36 cases,
while recall(LS)< recall(CA) in 20/36 cases. There-
fore, overall, LS is clearly more effective in prevent-
ing to detect a copy move forgery as CA is. In terms
of F1-score F1(LS) ≤ F1(CA) in 27/36 cases, which
confirms the trend.

Table 3 shows precision, recall and F1-scores of
the confusion matrices shown in Fig. 7. The cases in
which LS delivers the best (lowest) results are under-
lined - we notice that this is also the clear majority
within these result subsets.

CA LS GS+LS
τ T Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

1 0.4 0.81 0.42 0.55 0.69 0.36 0.47 0.86 0.60 0.71
1 0.5 0.76 0.44 0.56 0.68 0.42 0.52 0.81 0.62 0.70
1 0.6 0.72 0.46 0.56 0.71 0.50 0.57 0.84 0.74 0.79
1 0.7 0.69 0.58 0.63 0.65 0.56 0.60 0.84 0.86 0.85

Table 3: Comparison of keypoint removal techniques
in terms of precision, recall, and F1-score.

4. Conclusion

Local smoothing (LS), as proposed in this paper,
turns out to be more effective in preventing a detec-
tion of a copy move attack as compared to the col-
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lage attack (CA). For the patch-size chosen in the
comparison, the image quality is slightly superior for
CA. GS and GS+LS as also proposed in literature
are neither competitive in terms of maintained image
quality nor in terms of preventing the copy move at-
tack detection capability. When considering the ease
of application, LS is clearly preferable, as CA re-
quires the generation of a keypoint-free dictionary
and a vector-quantisation like patch selection pro-
cess, while LS only applies a local Gaussian smooth-
ing. Overall, LS turns out to be a highly attractive
alternative to SIFT keypoint removal techniques ap-
plied so far in literature.
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