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Abstract. Equivariance is a desired property for
feature spaces designed to make transformations be-
tween samples, such as object views, predictable.
Encoding this property in two dimensional feature
spaces for 3D transformations is beneficial for tasks
such as image synthesis and object pose refinement.
We propose the Trilinear Interpolation Layer that ap-
plies SO(3) transformations to the bottleneck feature
map of an encoder-decoder network. By employing a
3D grid to trilinearly interpolate in the feature map
we create models suited for view synthesis with three
degrees of rotational freedom. We quantitatively and
qualitatively evaluate on image synthesis in SO(3)
providing evidence of the suitability of our approach.

1. Introduction

Invariant feature spaces are agnostic to input trans-
formations in order to help models overcome vari-
ations in the data capturing process. Equivariant
feature spaces are exploitable with respect to image
space transformations, thus more suited for reason-
ing about changes in image space [9]. As a con-
sequence the property of equivariance is desired for
feature spaces that are used for predicting transfor-
mations of or in the image space. More precisely,
equivariant feature spaces can be exploited to pre-
dict unseen views based on known transformations
or to estimate relative transformations between two
inputs. Feature spaces that correlate an input with
a transformed output via observable transformation
parameters are desired for applications such as im-
age synthesis or object pose refinement.

In this work we study the equivariance of features
spaces of Convolutional Neural Networks (CNN) as
motivated by the task of object pose refinement. This
motivation arises from recent RGB-based object pose
refinement methods that use pairs of images [10, 21]:

Figure 1: Given an object view and a relative 3D ro-
tation, unseen views are synthesized.

One image represents the observation of the desired
object and the other image usually a rendering of the
object in a hypothesized pose. A network is trained to
predict the relative transformation between the input
pair. We study how to correlate such an image pair,
in feature space, in order to achieve predictability of
the relative object transformations.

The Spatial Transform Network (STN) [6] pro-
vides a mean to learn image space transformations
conditioned on the input to produce a transformed
output feature map. Studies such as [2, 13] apply
a sub part of the STN, known as the Spatial Trans-
former Layer (STL), to properly align the network’s
output with its input by applying image space trans-
lations. The authors of [19] wrap a projection func-
tion around the in- and outputs of the STL in order to
make image properties such as lighting and SO(3)
transformation in a limited range predictable. Al-
ternatively to their approach, we directly modify the
structure of the STL. We extend the STL to enable
trilinear interpolation of a feature map in order to in-
terpret transformations in all of SO(3). In the re-
mainder of the paper it is referred to as the Trilinear
Interpolation Layer (TIL).
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Our contributions are:

• We propose a Trilinear Interpolation Layer
suited for creating equivariant feature spaces in
SO(3).

• We provide quantitative and qualitative evi-
dence for the advantage of equivariant feature
spaces by predicting unseen views in SO(3) of
objects from the LineMOD dataset [4].

The remainder of the paper is structured as fol-
lows. Section 2 reviews related work. In Section 3
we describe our approach. Section 4 presents our ex-
perimental results. Finally, Section 5 concludes the
paper.

2. Related Work

Object pose refiners rely on the availability of
prior stages to produce pose hypotheses [7, 10, 12,
16, 18, 20, 21]. When depth data is available, the
Iterative-Closest-Point algorithm (ICP) can be used
to refine initial pose estimates [18, 7, 20]. Recent
RGB-based approaches do not rely on the availabil-
ity of depth data for pose refinement [7, 10, 12, 16,
21]. CNN-based object pose refinement architectures
such as [10, 12, 21] pass two input images to the
network in order to estimate the relative rotation be-
tween these. These images are an observation of the
object in the desired pose and a rendering of the pre-
diction. In [10] the authors base their network archi-
tecture on an approach for optical flow estimation [1]
and predict optical flow, mask and relative pose devi-
ation in SE(3). The authors of [21] use a similar ap-
proach with two encoders, one per input image. The
encoders’ outputs are subtracted and further encoded
to predict the refined pose in SE(3). We present
a concept suitable for enhancing such methods by
guiding the network to learn an equivariant feature
space.

The STN introduced by [6] is widely used for fea-
ture and image space transformation [2, 13, 14, 15,
19]. It consists of the combination of a localiza-
tion network, a grid generator and a sampler.. The
authors of [2] apply STL to properly align the fea-
tures to their inputs. In [13] the authors predict deep
heatmaps from randomly sampled object patches to
predict poses under occlusion. They apply the STL
to upsample their predictions. In [14, 15] an analog
of the localization network is used to produce feature
maps invariant to input transformations. The authors

Figure 2: Encoder-decoder architecture for image
synthesis.

of [11] leverage on the methodology of STN to gen-
erate realistic looking images from the intersection
of the natural image and geometric manifold, using
an adapted Generative Adversarial Network. Con-
versely to these approaches we modify the STL com-
ponent of STN to enable SO(3) transformations of
input feature maps with spatial dimension.

3. Approach

This section presents our approach for learning
equivarient features in SO(3) in order to synthesize
images from unseen viewpoints. We first give a prob-
lem definition, then describe the Trilinear Interpola-
tion Layer. Finally, we outline how the TIL is used in
an encoder-decoder architecture for image synthesis.

3.1. Problem Statement

Let X =
{
xc,
(
x̃0θ0 , ..., x̃

n
θi

)}
be a set of training

examples where xc refers to the projection
∏

of ob-
ject oc, in its canonical pose, to the image space I .
The set of x̃n

θi
are the projections of transformed

objects oθi where θi represent the transformation in
SO(3) for the projection into I . Our goal is to learn
the inverse of the mapping function

∏−1 in order to
produce transformed images. In other words, to learn
x̃n
θi

=
∏[∏−1 (xc

)
, θi
]

given an image of the ob-
ject in its canonical pose and transformation param-
eters.

In order to model the inversion of the mapping
function

∏
, we utilize a CNN due to their power to

encode statistical relationships from visual data into
feature spaces [8]. To provide information regarding
relative transformations θi in SO(3) between pairs
of images to our model, we modify the STL of [6].
An overview of the encoder-decoder architecture for
image synthesis using the modified STL is presented
in Figure 2.

3.2. Trilinear Interpolation

The STL [6] allows SE(2) transformations to be
applied to feature maps. This works well in image
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(a) Three dimensional grid.
The feature map are cen-
tered in D on initialization.

(b) Interpolation scheme of
P using adjacent grid cell
values.

Figure 3: Trilinear Interpolation Layer (TIL) compo-
nents.

space, however, requires adaptation for the SO(3)
domain [19]. The STL is composed of a grid genera-
tor and a sampler.

The grid generator is modified by adding a depth
dimension D. The input feature map of space
RH×W×C thus becomes RH×W×D×C , where H , W
and C are the height, width and number of channels,
respectively. The feature map is centered along D
as shown in Figure 3a. The sampler of the STL bi-
linearly interpolates between corner points using the
corresponding areas. For volumes, this scheme is
unsuitable. Therefore, trilinear interpolation is used
instead, as shown in Figure 3b. Feature maps are
interpolated channel-wise and projected back to 2D
by averaging along the depth dimension. In order
to guarantee proper interpolation in 3D, H and W
must be greater than 1. The proposed modification
enables transformations in SO(3) and only affects
non-trainable layers. Thus, the additional computa-
tional overhead compared to STL is negligible.

Since averaging over D is used for projecting the
grid back to 2D no feature map scaling can be ap-
plied while sampling. Thus, modifying the trilinear
interpolation by allowing scaling along depth would
enable transformations in SE(3), thus yielding full
6DoF. However, this is out of the scope in this paper.

3.3. Network Architecture

The network in Figure 2 is an encoder-decoder
architecture. The encoder consists of a truncated
ResNet18 [3], pretrained on ImageNet [17], for fea-
ture encoding. ResNet18 consists of five stages. In
order to preserve a larger spatial image dimension we
remove the fourth and the fifth stage and take the out-
puts of the last Rectified Linear Unit (ReLU) of stage
three. The final output is a tensor of size 8 × 8 with
128 feature maps.

The encoded image
∏−1 (xc

)
as well as the trans-

formation parameters θi are passed to the TIL. Fea-
ture maps are trilinearly interpolated to produce the
mapping of the encoded transformed image x̃n

θi
. The

transformed encoding is forwarded to the decoder
stage of the network.

The design of the decoder is rather ad-hoc to show
that the TIL is not restricted to a certain architec-
ture. A transposed convolution with ReLU activa-
tion is followed by stacks of deconvolution layers
with ReLU activation and upsampling layers. These
stacks are repeated two times and a final transposed
convolution layer with linear activation is added.
Feature channels are reduced gradually. Kernel sizes
of the transposed convolutional layers are 5−3−3−5
and upsampling kernel sizes of 3 × 3 are used. All
strides are set to 1. The output of the decoder is an
image of size 64× 64.

In each training iteration, the deviation of x̃θ to xθ
is minimized. The loss function to be optimized is
l2. The network is trained to correlate objects views
with its corresponding transformation in SO(3) in
the camera frame. Consequently, a feature space is
created that enables to synthesize views not included
in the training set.

4. Experiments

This section presents experiments for image syn-
thesis of unseen views of household objects with lit-
tle texture. These experiments show that the exten-
sion of an encoder-decoder network with the pro-
posed TIL reconstructs objects views in SO(3). In
addition, the method can also reconstruct views in
regions of SO(3) where no data was provided to the
network during training.

4.1. Dataset

Our experiments are conducted on a subset of the
LineMOD dataset [4]. We use the object models of
Benchvise, Cat, Glue, Camera and Lamp. These ob-
jects represent elongated and asymmetric shapes as
well as complex shapes with self occlusion. With this
subset we cover the representative challenges when
synthesizing views for objects.

4.2. Dataset Creation

Dataset images are rendered using the renderer
provided by [5]. For our purposes, the RGB images
are scaled to 64× 64 pixels. To each object’s canon-
ical pose, 45◦ are added to elevation in order to only
train on views of the upper hemisphere of the object.
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metric latent loss
space l1 l2 DSSIM DSSIM + l1 (δ = 0.85)

l1 2x2x512 0.03 ± 4.9e-04 0.03 ± 4.2e-04 0.028 ± 4.0e-04 0.031 ± 4.3e-04
l2 0.096 ± 2.1e-05 0.093 ± 1.6e-02 0.093 ± 1.8e-03 0.1 ± 1.2e-03
DSSIM 0.102 ± 3.5e-03 0.105 ± 2.6e-03 0.09 ± 3.0e-03 0.1 ± 3.4e-03
l1 4x4x256 0.018 ± 3.5e-04 0.02 ± 3.6e-04 0.0243 ± 4.0e-04 0.018 ± 3.2e-04
l2 0.065 ± 1.8e-05 0.0064 ± 1.7e-05 0.086 ± 2.5e-06 0.063 ± 1.7e-05
DSSIM 0.061 ± 3.0e-05 0.067 ± 3.6e-05 0.07 ± 2.8e-05 0.059 ± 3.2e-05
l1 8x8x128 0.016 ± 2.6e-04 0.017 ± 2.6e-04 0.017 ± 25e-05 0.017 ± 2.4e-04
l2 0.06 ± 1.6e-03 0.057 ± 1.7e-03 0.06 ± 1.7e-03 0.066 ± 1.6e-03
DSSIM 0.055 ± 3.0e-03 0.06 ± 3.0e-03 0.053 ± 2.9e-03 0.055 ± 2.6e-03

Table 1: Performance study for latent spatial dimension and loss function. We present the error and variance,
averaged over all objects, using l1, l2 and DSSIM respectively.

Based on the newly defined canonical pose, images
are rendered in a range of -43◦ to +43◦ azimuth and
elevation. This is similar to [19] but with approxi-
mately three times the range in azimuth angle.

For training, only views in a range of -37◦ to +37◦

azimuth and elevation are used. Of these 950 images,
43 images are exclusively used for testing. The se-
lected samples are distributed uniformly in the view-
ing cone. An additional 59 images are included in
the test set. These are in an angle range of negative
and positive 37◦ to 43◦ azimuth and elevation. Thus,
views in a range that are not shown to the network
during training.

4.3. Training Protocol

For training we use the Adam optimizer with the
learning rate set to 10−3. A batch size of 1 is used.
We train 40 epochs per object for quantitative ab-
lation studies. After 30 epochs, the learning rate
is decreased by one magnitude. Qualitative evalua-
tion is presented after 40 epochs of training. Dur-
ing training, Gaussian blur with uniformly sampled
σ = [0.0, 1.5] is used as online augmentation.

4.4. Hyperparameter Studies

We study the choice of loss function used for op-
timization and the optimal size of the bottleneck fea-
ture maps. Table 1 presents results averaging over the
test sets of all five objects. Presented are the Mean
Absolute Error (MAE), Root Mean Squared Error
(RMSE) and Structural Similarity Index (SSIM) as
well as their corresponding variances.

The loss functions compared are l1, l2, Structural
Disimilarity (DSSIM) and a combination of l1 and
DSSIM as used by [19], where δ is the weighting
parameter. The bottleneck tensor size is adjusted by

Tensor size 2x2x512 4x4x256 8x8x128
parameters 13,330,508 3,753,804 1,881,932

Table 2: Network parameters per bottleneck tensor
size.

truncating ResNet18. For a dimension of 4×4×256
we use the outputs of the fourth and upsample using
three stacks of transposed convolutions plus upsam-
pling layers. For 2 × 2 × 512 we use four stacks
starting with a 5× 5 transposed convolution.

Quantitative evaluation shows that the metric used
for evaluating the reconstruction quality correlates
with the loss function used, which is to be expected.
Using l2 is reasonable. However, when synthesiz-
ing views for a specific application more carefully
choosing the loss function will be obligatory. Sur-
prisingly, a bottleneck tensor size of 8 × 8 × 128
leads to image synthesis with the lowest error even
though this network has far fewer parameters than
the other spatial dimensions (see Table 2). This leads
to the conclusion that bigger spatial dimensions are
more important for synthesizing views than network
depth. Based on the chosen hyperparameters we fur-
ther present experiments for synthesizing views.

4.5. Studies on View Synthesis

Studies are presented to illustrate that the pro-
posed formulation generates feature spaces suited for
view synthesis in SO(3). Figure 4 shows views syn-
thesized from unseen transformations during training
time. Additionally, we present view predictions out-
side of the training range. Views inside the train-
ing range are reconstructed with sufficient quality
to visually verify the expected object orientations.
Despite the reconstruction quality being poor for
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Figure 4: View synthesis from SO(3) transformations unseen during training time. First row: reconstructed
Lamp with varying azimuth from -43◦ to 43◦. Second row: reconstructed Glue with elevation variation from -
43◦ to 43◦. Row three to five: objects Benchvise, Camera, Cat reconstructed with azimuth/elevation range from
(-43◦,-43◦) to (43◦,43◦). Object poses outside the green box are samples out of training distribution. Centered
images, in the red box, mark the canonical poses.
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Figure 5: Error values and its variance over azimuth
angle. The network was trained on its corresponding
loss function with a spatial bottleneck dimension of
8× 8× 128. The vertical line shows the training set
range.

some of the synthesized views outside of the train-
ing range, it is visible that views can be predicted
properly based on SO(3) transformations.

Figure 5 provides reconstruction error and vari-
ance over an extended azimuth and elevation angle
range of [0, 180◦]. The results in the figure are av-
eraged over all objects. The training dataset contains
images with azimuth angles up to 37◦. A sharp rise
in error and variance is observed at azimuth angle of
approximately 45◦. For angles above this value, error
and variance increase rapidly. As such, the network

cannot properly reconstruct these views.

These results show that our formulation for creat-
ing equivariant feature spaces has the desired prop-
erty to correlate spatial transformations with 2D
views of the transformed object. Thus, the pro-
posed Trilinear interpolation layer guides the net-
work towards learning an equivariant feature space
in SO(3).

5. Conclusion

We extend recent work for learning equivari-
ant feature spaces for synthesizing object views in
SO(3). The proposed extension of the Spatial Trans-
form Network [6], that we call the Trilinear interpo-
lation Layer, applies SO(3) transformations to fea-
ture maps from 2D data. Validity of the approach is
provided by training a simple encoder-decoder net-
work architecture. Our experiments show that our
formulation not only enables the prediction of views
unseen during training time but also in a small range
outside.

The current formulation enables control for 5DoF,
SO(3) and translations in image space. Future work
will tackle adapting the proposed layer to create ob-
ject view synthesis in all of SE(3). We then plan to
integrate this in a pose refinement strategy to improve
object pose estimation.
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