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Abstract. Monitoring of patients after Endovascu-
lar aortic repair (EVAR) is a clinical necessity due
to the high re-intervention rate associated with the
treatment. The risk assessment could be greatly en-
hanced by the inclusion of metrics based on the aor-
tic blood-flow and stent-graft changes. A preliminary
step to this endeavour is, however, the automatic re-
construction of the relevant structures: aortic blood-
lumen and the stent-graft wire frame. In this paper
we present a centerline-guided approach that lever-
ages knowledge about the target structures through
a combination of two 3D U-Nets for efficient auto-
mated segmentation of both structures. We evaluate
our approach on a real-world clinical dataset yield-
ing Dice similarity coefficients of 0.942 and 0.841 for
the blood lumen and stent-graft metal wire, respec-
tively.

1. Introduction

The abdominal aorta is the largest artery in the
human body, with the descending branch supply-
ing the lower body with about 4 liters of blood per
minute [2]. Abdominal Aortic Aneurysms (AAAs)
are critical as a rupture causes massive blood loss
that quickly leads to death at a mortality rate of 85%
to 90% [11], with half of the patients succumbing
before they reach a hospital [1]. Overall, AAAs ac-
count for 175000 deaths per year globally [7]. In
contrast to open surgery, endovascular aortic repair
(EVAR) poses a minimally invasive alternative that
significantly reduces the intraoperative stress on the
patients, who in turn experience shorter periods of
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Figure 1. An abdominal CT-A scan (a) and a close-
up view of imaging artifacts caused by the stent-graft
wire frame (b). The wire frame of the Medtronic Endurant
stent-graft encompasses the blood lumen in the two iliac
bifurcations and is itself surrounded by the thrombosis.

convalescence. As a result, EVAR is the treatment
of choice for 60% of patients [3]. These advantages
come, however, at the cost of a high re-intervention
rate of 20% [18], necessitating post-operative mon-
itoring of the patients. We seek to aid monitoring
by automatically calculating risk factors from blood
flow simulations, which require prior segmentation
of the target structures. In this paper, we present a
novel method for segmenting the aortic blood lumen
and the stent graft wire frame from post-operative ab-
dominal CT-A scans.

2. Related Work

Blood vessel segmentation is an active field in re-
search [19] and the variety of approaches reflects
the diversity of both the targeted anatomical regions
and the available imaging modalities. For clinical
monitoring of the abdominal aorta after EVAR, CT-
A is the modality of choice [22]. However, unique
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Figure 2. Outline of our method: The top branch shows the centerline extraction step (model A/;) and the bottom branch
the patchwise segmentation step (model M5).

challenges arise due to considerable imaging arti- mentation of blood lumen and stent graft wire frame
facts caused by the stent-graft wire frame and the we will therefore likewise rely on the (3D) U-Net
distinct boundaries between blood lumen and throm- architecture. The distinguishing challenge to other
bus. While there are a number of publications on the segmentation tasks is in our case the fine structure of
segmentation of the abdominal aorta, very few have the stent-graft, with a diameter as small as 0.4 mm
focused on stent segmentation. Klein ez al. [12] used [24], which requires an exceptionally high resolution
a graph-based method to create a geometric model of for accurate reconstruction, pushing the limitations
the stent-graft, disregarding the aorta entirely. To the of modern hardware.

best of our knowledge, there is not a single approach

segmenting both structures simultaneously. For the 3. Dataset

segmentation of the abdominal aorta, traditional ap-
proaches include graph-based methods [6, 4, 23] and
deformable-models [13, 14] which require user in-
teraction to varying degrees and have predominantly
been evaluated on pre-operative scans. A common
problem with graph- and deformable-model-based
approaches is the introduction of many parameters
optimized for the respective dataset, limiting the ro-
bustness and applicability of the methods in clinical
settings [17]. With the introduction of the convolu-
tional neural network (CNN) the field of medical im-
age analysis changed significantly. Today the U-Net
[21] and its 3D equivalent [8] are the most widely
models used for medical image segmentation. Both
models have been applied to the task of the abdom-
inal aorta segmentation, Zheng et al. [26] reporting
a Dice similarity coefficient (DSC) of 0.82 for the () (b) o
aneurysm thrombus and Li ef al. [16] reporting a igure 3. Examples of two ground truth segmentations:

Medtronic Endurant (a) and Anaconda (b). In total the
DSC of 0.92 for the aorta blood lumen. For the seg- dataset contains 5 different types of stent-grafts.

Our dataset consists of 76 abdominal CTA scans
of 36 patients treated with EVAR that we received
from the Kepler University Hospital Linz. Each scan
consists of 155 to 873 axial slices with 512 x 512
voxels. There are large differences in the resolu-
tion with a minimum voxel spacing ranging from
0.404 mm frontal/sagittal and 0.8 mm longitudinal
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to 0.977mm frontal/sagittal and 3mm longitudi-
nal. We used the Active-Contour/Snake-Mode of the
Software ITK-Snap [25] to semi-automatically cre-
ate the initial ground truth segmentation of the aor-
tic blood lumen from below the heart to the second
iliac bifurcation. The stent-graft segmentation was
further added by applying a threshold to a region of
interest around the blood lumen. The segmentation
was then revised using the Paintbrush Mode of ITK-
Snap. Figure 3 shows examples of the final ground
truth segmentations used for training and validation.
The dataset was split into 5-folds using a grouping
criterion on the patient number to avoid having mul-
tiple scans of the same patients assigned to different
folds.

4. Method

We use a two step approach in our segmentation
method that is outlined in Figure 2. First we extract
the aortic centerlines from a coarse blood-lumen seg-
mentation and subsequently use them to extract high
resolution patches along the entire span of the aorta.
In the second step we segment the blood lumen and
the stent-graft wire frame for each patch and merge
the results to a final segmentation. The entire setup is
tuned to work with an NVIDIA GeForce 1080 Ti (11
GB RAM).

4.1. Centerline Extraction

We use a full-image segmentation model M7 to
create a low resolution segmentation of the aortic
blood-lumen. We resample the scans and ground
truth to a voxel spacing of 1 mm frontal/sagittal
and 3 mm longitudinal and crop them to a large re-
gion of interest of 192 x 192 voxels and 128 slices
(i.e., a physical extent of 192 mm frontal/sagittal and
384 mm longitudinal). The largest connected region
of blood lumen voxels in the resulting segmentation
is then selected and skeletonized using homotopic
thinning [15]. Using the python library Skan [20] we
extract the centerline graph from the skeletonized im-
ages, which is essential for the patchwise segmenta-
tion step. Figure 4 outlines the intermediate results of
the centerline extraction step and an example patch.

4.2. Patchwise Segmentation

A patchwise segmentation model M> is used to
segment the aortic blood lumen and the stent-graft
wire frame in high resolution patches. We resam-
ple the scans and ground truth to a voxel spacing
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Figure 4. Extracting patches along the segmented aorta lu-
men: (a) coarse low resolution segmentation of the aor-
tic blood lumen, (b) centerlines approximated via skele-
tonization of the blood-lumen, (c) ground-truth segmen-
tation for a patch sampled along the centerlines, (d) axial
slice of the same patch (scan overlayed with the ground-
truth segmentation).

of 0.35mm frontal/sagittal and 0.75mm longitu-
dinal before extracting patches of size 160 x 160
voxels and 128 slices. Choosing a high resolution
(i.e., small voxel spacing) significantly reduces the
amount of distortion introduced by resampling, es-
pecially considering the varying voxel spacing in the
dataset. However, this results in a rather small phys-
ical extent of 56 mm frontal/sagittal and 96 mm lon-
gitudinal that we seek to use as efficiently as possible
by centering the patches at equally distributed loca-
tions along the entire centerline graph. In our exper-
iments 100 patches per scan proved more than suf-
ficient to cover the aorta and introduce a significant
overlap between the patches. The patches are merged
into a final segmentation using a Gaussian-weighted
kernel that attenuates voxels at the patch boundaries,
where the segmentation results are less reliable.

5. Implementation

In this section we discuss the implementation de-
tails, i.e., the operations used for preprocessing the
dataset, the model architecture and configuration and
the training routine.

5.1. Preprocessing

Preprocessing of the dataset consists, in addition
to the resampling mentioned in Section 4, of clip-
ping and normalization. As the voxel spacing varies



between the models, the entire preprocessing is done
separately for each model. First of all, the dataset
is resampled to the respective voxel spacing using
a third order B-spline interpolation for the scans
and a label-linear interpolation for the ground truth.
Next, the intensity values are clipped to the 0.5th and
99.5th percentile over the entire training dataset of
the fold. Furthermore, the scans are normalized by
subtracting the mean and the standard deviation over
the clipped training dataset.

5.2. Architecture

We use the architecture described by
Isensee et al. [9] and implemented in the Github
project 3DUnetCNN [5] as a basis for our experi-
ments. We adjusted the following model parameters:
input size, model-depth (number of layers), number
of segmentation levels (used for deep supervision)
and base-filters (filters in the first convolution
kernel). For M; (input size of 192 x 192 x 128)
we selected a model-depth of 5 with 3 segmentation
levels and base-filters set to 8. For M5 on the other
hand (input size of 160 x 160 x 128), we chose
an increased model-depth of 6 with 4 segmentation
levels and base-filters set to 16. The changes to Mo
were made in order to account for the larger patch
size (compared to 1283 used by Isensee et al.) and
increase the receptive field of the model. These
changes were omitted for M;, which encompasses
a simpler segmentation task, creating only a coarse
segmentation of the blood lumen label, while Mo,
segments both the blood lumen and the stent-graft
wire frame.

5.3. Training

We trained both models using a weighted multi-
class Dice loss [9] in combination with an Adam op-
timizer. The initial learning rate was set to ng =
5 - 10~ with a learning rate drop criterion and early
stopping after 50 epochs. The training ran for 70
to 120 epochs with 200 training samples per epoch.
Due to the 5-fold cross validation used for evaluation,
the following statistics are averaged over all folds,
where for each fold both models M; and M5y were
trained as follows. M was trained first for blood
lumen segmentation on the low resolution large re-
gions. The training reached a DSC of 0.978 and
0.898, on average, for the training and validation
items, respectively. M7 was then used to create the
blood lumen segmentations for centerline extraction.
The resulting centerline graphs were subsequently
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used during the training of My as the high resolution
patches were extracted at random positions along the
graph. The average training and validation DSCs for
the blood lumen are 0.954 and 0.943, respectively,
and 0.843 and 0.841 for the stent-graft.

6. Evaluation

Having trained two models M; and M5 for each
fold, we use our method to create high resolution
segmentations. Just like during training, M is used
to segment the blood lumen used for centerline
extraction. The resulting centerline graph is again
used to place patches at, however, not randomly
but rather at equally distributed positions along the
entire span of the graph, as described in Section
4.2. In a post-processing step, the largest connected
region of non-background voxels was selected.
To compare the results to the ground truth, the
segmentations where furthermore resampled to their
original voxel-spacing. The last step may be skipped
when using the results for further processing rather
than evaluation (e.g., mesh generation for blood-flow
simulations). Using our method, the cross validation
yields an average DSC of 0.961 for the blood lumen
and 0.841 for the stent-graft label. Two examples
are shown in Figure 5.

To evaluate the effectiveness of our patch extraction
method, we further conducted an experiment using
only Mo, which was trained using a traditional patch
extraction method (see Isensee et al. [10]). Rather
than placing the patches along the aorta centerlines,
they where placed in a sliding-window fashion,
where the patches are aligned in a regular grid of
overlapping tiles. The overlap was set to 32 voxels
in each dimension (corresponding to 11.2mm
frontal/sagittal and 24 mm longitudinal). While
this technique was used both during training and
inference, the remaining setup (including pre- and
post-processing) was left unchanged. We evaluated
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Figure 5. Evaluation results for the two scans shown in
Figure 3.



the experiment on the first fold and compared the
results to those of our method for the same fold:
Although the blood-lumen segmentation is with
a DSC of 0.963 slightly better than our method,
yielding 0.951 for the same fold, the more complex
stent-graft segmentation does not compare well, with
a DSC of 0.785 versus our method’s score of 0.852.

7. Discussion

The strength of our method is the centerline-
guided segmentation method using the aortic center-
lines to optimize the patch locations during training
and inference. While our method yields better results
than a comparable model using a traditional sam-
pling setup, it also reduces the computational cost
significantly. For traditional patching using a grid
of overlapping tiles (when not allowing the patches
to contain regions outside the image) the number of
patches calculates as follows:

’P’d_ed

d=1

ey

Npatches

where n4 is the number of dimensions, |I|, the size
of an image, |P|,; the size of a patch and 6, the
overlap in dimension d. For our setup and a cho-
sen overlap of 32 voxels this results in 343 patches
on average per scan (|I| = (990,990,678), |P| =
(160, 160, 128), 64 (32,32,32)). Increasing
this overlap to improve the model’s performance
quickly raises this number, e.g., an overlap of half
the patch size (as used by Isensee er al. [10])
would result in 1440 patches on average per scan
(Z (80, 80, 64)). The majority of the patches are
irrelevant for the result, as they do not intersect with
the target structure. By using the aorta centerline in-
formation, our method is able to greatly reduce the
number of patches, while also optimizing their con-
tent for training and inference. As a result, we can
target a smaller voxel spacing (which effectively re-
duces the physical extent of the patches) without the
disadvantages of excessive computational costs and
poor model performance.

Conclusions

We presented a novel centerline-guided method
for fully automated segmentation of the aortic blood-
lumen and the stent graft wire frame in abdominal
CT-A scans. Using our method, both training and in-
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ference can be conducted more efficiently. The eval-
uated DSC of 0.961 for the blood lumen and 0.841
for the stent graft wire frame suggest results that are
suitable for medical analysis. In the future, we plan
to use the results of our method for the analysis of
risk factors for post-EVAR patients. Futhermore, we
plan to extend the use of our method to other medical
segmentation tasks.
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