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Abstract. In this work, we aim for temporally con-
sistent semantic segmentation throughout frames in a
video. Many semantic segmentation algorithms pro-
cess images individually which leads to an inconsis-
tent scene interpretation due to illumination changes,
occlusions and other variations over time. To achieve
a temporally consistent prediction, we train a con-
volutional neural network (CNN) which propagates
features through consecutive frames in a video us-
ing a convolutional long short term memory (ConvL-
STM) cell. Besides the temporal feature propagation,
we penalize inconsistencies in our loss function. We
show in our experiments that the performance im-
proves when utilizing video information compared to
single frame prediction. The mean intersection over
union (mIoU) metric on the Cityscapes validation set
increases from 45.2% for the single frames to 57.9%
for video data after implementing the ConvLSTM to
propagate features trough time on the ESPNet. Most
importantly, inconsistency decreases from 4.5% to
1.3% which is a reduction by 71.1%. Our results
indicate that the added temporal information pro-
duces a frame-to-frame consistent and more accurate
image understanding compared to single frame pro-
cessing.

1. Introduction

We address the task of semantic segmentation
which assigns a semantic class for each pixel in an
image. Our focus is on the computation of seman-
tic segmentation for multiple consecutive images, re-
ferred to as frames, in a video sequence. Consecutive
video frames contain similar information, because
they capture a scene which only changes slightly.
Therefore, the semantic segmentation of consecutive
frames is similar as long as motion between frames
does not increase significantly. For example, con-
sider a street scene recorded by a camera mounted
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Figure 1: Consistent Semantic Segmentation. The trained
ESPNet [19] model predicts temporally inconsistent se-
mantic segmentation on two consecutive frames of the
Cityscapes [6] video data set (second row). The semantic
segmentation is color encoded and large inconsistencies
are highlighted with orange boxes. The third row shows
consistent results predicted by our model. We reduce tem-
poral inconsistencies by 71%.

on a vehicle in which we observe a street sign. If the
frame rate is large enough, we will observe the street
sign in multiple images as the vehicle passes by. In
this example, the goal of this work would be to con-
sistently detect the street sign as such in all frames
in which the sign appears. Single frame algorithms
often fail at achieving this task. In general, we aim
for temporally consistent segmentation of all seman-
tic classes throughout a video sequence.

Many state of the art computer vision algorithms
process images individually [26, 17, 3] and hence are
not designed for video sequences. They do not con-
sider the temporal dependencies which occur when
segmenting a video semantically. If single frame
convolutional neural networks (CNNs) predict se-
mantic segmentation on video sequences, results can
become temporally inconsistent because of illumina-
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tion changes, occlusions and other variations. Fig-
ure 1 illustrates the differences between a temporally
inconsistent prediction of video frames by a trained
ESPNet [19] and our consistent model.

We address this issue by introducing methods
which alter existing single frame CNN architectures
such that their prediction accuracy benefits from hav-
ing multiple frames of the same scene. Our method
is designed such that it can be applied to any single
frame CNN architecture. Potential applications in-
clude robotics and autonomous vehicles where video
data can be recorded easily. Since we aim for a real-
life application scenario our method does not access
future frames. Instead, we only utilize information
from past frames to predict the current frame. We im-
plement our online method on the lightweight CNN
architecture ESPNet. We include a recurrent neural
network (RNN) layer into the ESPNet which allows
past image features to be combined with current im-
age features and thus computes consistent semantic
segmentation over time. To train the parameters of
our novel model for consistency, we introduce a in-
consistency error term to our objective function. We
verify our methods on a second architecture, which
we name Semantic Segmentation Network (SSNet).
The reason for the development of SSNet is to en-
sure that our methods do not only work on a specific
CNN. We train the parameters of the two models on
street scenes using supervised learning. The data is
provided by the Cityscapes sequence [6] and a syn-
thetic data set which we generate from the Carla [7]
simulator. To avoid the large effort required to manu-
ally label video data, we use the pre-trained Xception
model [3] to predict highly accurate video semantic
segmentation.

2. Related Work

The best performances on semantic segmentation
benchmark tasks such as PASCAL VOC [8] and
Cityscapes [6] are reached by CNN architectures.
Lightweight CNN architectures [19, 12, 29, 25, 27]
have been developed to achieve high accuracy with
low computational effort. We select the highly effi-
cient ESPNet [19] as a basis for our work because
it predicts semantic segmentation in real-time while
maintaining high prediction accuracy. It uses point-
wise convolutions together with a spatial pyramid
of dilated convolutions [28]. The dilated convolu-
tions allow the network to create a large receptive
field while maintaining a shallow architecture. Al-

though ESPNet processes images fast and accurately,
it lacks temporal consistency when predicting con-
secutive frames. Therefore, we extend the ESPNet
and enforce video consistency.

Video Consistency Kundu et al. [16] and Sid-
dhartha et al. [2] base their work on the traditional
graph cut [14, 15] approach towards semantic seg-
mentation. They extent the traditional 2D to a 3D
CRF by adding a temporal dimension which allows
them to predict temporally consistent semantic seg-
mentation on video. Compared to our approach addi-
tional optical flow information needs to be computed
and the size of the temporal dimension must be pre-
defined in advance. This results in additional com-
putation complexity and less flexibility when chang-
ing parameters such as the frame rate. Therefore, we
decided to implement RNNs [11, 23, 4] which offer
a more flexible approach towards processing video
data.

RNNs are trained to learn which features of past
frames are relevant for current [18, 21] or future [24,
22] frames. In general, it is not clear if LSTM, GRU
or any other RNN architecture is superior [5, 13, 10].
Depending on the application, one architecture might
perform slightly better than the other [5]. Variations
through modifying the proposed architectures might
work even better in some cases [13]. The work of
Jozefowicz et al. [13] shows the importance of the
elements inside an RNN cell.

Lu et al. [18] use the plain LSTM to associate ob-
jects in a video. To enforce a frame-to-frame con-
sistent prediction, they use an association loss during
the training of the LSTM. Similarly, we implement
a ConvLSTM and an inconsistency loss to tackle se-
mantic segmentation. We place the ConvLSTM on
different image feature levels in our architecture as
suggested by [22, 21].

3. Consistent Video Semantic Segmentation

In this section, we introduce our methods to-
wards frame-to-frame consistent semantic segmenta-
tion. We present different architecture to propagate
features through time. To train the architectures for
temporal consistency, we extend the cross entropy
loss function with a novel inconsistency error term.

3.1. Temporal Feature Propagation

The propagation of image features from the past
to the current time step allows the neural network to
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make predictions based on time sequences. We pre-
fer the ConvLSTM [23] cell for this dense predic-
tion task. Compared to the fully connected LSTM, it
removes unnecessary connections. For instance, the
connection of features from the top left corner of the
previous frame to features of the bottom right corner
of the current frame is not needed. We assume that
if we ensure consistency locally by the convolution
operator, we will generate overall results which are
consistent, as long as motion between frames can be
detect in the local window. Therefore, we need to
choose the filter size large enough to allow the Con-
vLSTM to detect local consistencies and motion be-
tween frames without explicit optical flow informa-
tion. Furthermore, the ConvLSTM allows us to pro-
cess images at different resolutions and reduces the
number of parameters significantly compared to the
fully connected LSTM. The definition of ConvLSTM
cell is shown in [23]. We use two different networks
in which we include the ConvLSTM cell. First,
we introduce the Video SSNet (VSSNet) architecture
which consists of six layers of 3×3 convolutions with
dilation rates {1, 1, 2, 2, 4, 4} and 64 channels. Com-
pared to the SSNet, we replace the last convolutional
layer with a ConvLSTM in the VSSNet. Second,
we also extend the ESPNet [19] with a ConvLSTM
layer. Although it would be reasonable to propagate
features at every layer of a CNN architecture this is
not feasible because of fast growing computational
complexity. Figure 2 shows the ESPNet architecture
with four possible positions for the ConvLSTM. The
proposed architectures are enumerated alphabetically
from ESPNet L1a to ESPNet L1d, starting with the
ConvLSTM at the highest feature level which means
that it is located closest to the output layer. Besides
the ConvLSTM layer, we implement two ESP mod-
ules at the first spatial level and three ESP modules
at the second spatial level, which is the simplest con-
figuration introduced in [19]. All other aspects of the
ESPNet architecture remain unchanged.

3.2. Temporal Consistency Loss

Our second building block to enforce consistency
is an additional error term in our loss function. The
resulting loss function L(·) is defined as

L(S,P) = λceLce(S,P) + λinconsLincons(S,P), (1)

where S ∈ ST×M×N contains the semantic ground
truth and P ∈ RT×M×N×|S| contains the predic-
tions. The set S contains all semantic labels. We
bound the dimensions by the sequence length T , the
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Figure 2: ESPNet with ConvLSTM. Four different posi-
tions for including a ConvLSTM (orange) into the existing
ESPNet architecture are depicted. Dashed boxes indicate
that only one ConvLSTM is present in a single architec-
ture. L1b, L1c and L1d replace 1 × 1 channel reduction
convolutions while L1a adds an additional layer to the ar-
chitecture of the original ESPNet. Red boxes indicate a
spatial dimensionality reduction by the factor two, while
green boxes indicate a spatial dimensionality increase of
two.

image dimensionsM ×N and the number of seman-
tic labels |S|. The function Lce(·) computes the cross
entropy loss and Lincons(·) penalizes inconsistencies.
The hyper-parameters λce and λincons are introduced
to influence the balance between training with focus
on prediction accuracy or consistency.

We define the inconsistency loss as

Lincons(S,P) =
1

ωnorm(S)

T−1,M,N∑

t,m,n=1

ωvcc(S,P, t,m, n)· (2)



|S|∑

s=1

δ(St,m,n = s) · (Pt,m,n,s −Pt+1,m,n,s)
2


 ,

where δ(·) refers to the indicator function defined as

δ(φ(·)) =
{
1 if φ(·) is true
0 else.

(3)

The inconsistency loss penalizes pixels with differ-
ent predictions in consecutive frames, which are al-
ready predicted correctly in at least one frame of the
consecutive pair. This ensures that all other incorrect
pixels are only affected by the cross-entropy loss.
Additionally, δ(St,m,n = s) selects only the correct
semantic class for consistency enforcement. We nor-
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malize by the sum of pixels which are valid and con-
sistent in the ground truth. This is achieved by

ωnorm(S) =

T−1,M,N∑

t,m,n=1

δ(St,m,n ∈ S) · δ(St,m,n = St+1,m,n),

(4)
where the first factor checks for validity and the sec-
ond one consistency in the ground truth. The boolean
function ωvcc(·) ensures that only valid, consistent
and correctly (vcc) predicted pixels are affected by
the following loss term.

ωvcc(S,P, t,m, n)= δ(St,m,n ∈ S) · (5)
δ(St,m,n = St+1,m,n) ·
ψ(St,m,n,Pt,m,n,St+1,m,n,Pt+1,m,n),

where the first factor ensures validity, the second
consistency and the third correct prediction in one of
two consecutive images. The third factor is given by
the boolean function ψ(·) which we define as

ψ(s1,p1, s2,p2) = min(δ(s1 = argmax(p1)) +

δ(s2 = argmax(p2)), 1). (6)

This function determines for a pixel at a certain po-
sition if at least one prediction in the consecutive im-
age pair is correct. The input parameters are given by
the two prediction vectors p1,p2 ∈ R|S| and the two
ground truth labels s1, s2 ∈ S for any pixel position.
All four parameters are retrieved from P and S.

In Figure 3 we point out pixels which are affected
by the inconsistency loss. In the bottom right of the
prediction, the road (purple) is labeled inconsistently.
For these pixels the function ωvcc(·) returns true and
they are penalized by the inconsistency loss.

4. Experiments

First, we explain the generation of semantic video
data with ground truth and show the impact of syn-
thetic data. Second, we evaluate our proposed meth-
ods, i.e. the feature propagation and the inconsis-
tency loss.

Architectures and data preparation We use two
models in our experiments, the ESPNet [19] and the
SSNet. We train the models on images with half
and quarter Cityscapes resolution to reduce compu-
tational complexity. Comparisons between different
configurations are always trained for the same num-
ber of epochs which is chosen high enough to allow
for convergence of the configurations. We generate
the pseudo ground truth for the sequence validation
set with the Deeplab Xception model [3].
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(a) Prediction inconsistency (b) Dilated GT scene change

Figure 3: Visualization of Inconsistencies. We compare
prediction and ground truth at two different time steps.
The white pixels in image (a) are inconsistently predicted.
Image (b) shows pixels which change their label because
of motion. Only black pixels in image (b) are affected by
our inconsistency loss.

Metrics and abbreviations The metrics which we
use to compare our experiments are mean intersec-
tion over union (mIoU ↑), the percentage of correctly
classified valid pixels (Acc ↑), the percentage of tem-
poral consistently classified pixels (Cons ↑) and the
percentage of pixels which are temporally consistent
but wrongly classified (ConsW ↓). The arrow point-
ing upwards ↑ indicates that a higher value is better,
whereas the arrow pointing downwards ↓ indicates
the opposite. Our Cons and ConsW metrics check all
pixels which need to have the same label according
to the ground truth, i.e. black pixels in Figure 3b.

4.1. Data Generation

An important part of our work is the generation of
ground truth for a video data set.We generate street
scene video data with a pre-trained Deeplab Xception
model [3] and the Carla simulator [7].

Real world data The semantic segmentation data
sets of CamVid [1], Kitti [9], Cityscapes [6] and
Mapillary [20] do not provide ground truth for video
data because of the large labeling effort required.
Therefore, we use the Deeplab Xception model pre-
trained on the Cityscapes data set to generate pseudo
ground truth labels for the Cityscapes sequence data
set. The reason why we prefer the Cityscapes dataset
for video processing is that every 20th image of each
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Category Experiment mIoU Acc Cons ConsW

ESPNet Single Frame 45.2 89.6 95.5 3.8
C

on
vL

ST
M

Convolution
Type

ESPNet L1a Std. 46.5 89.4 97.6 5.4
ESPNet L1a D.S. 45.2 89.0 97.2 5.5

Position with
Eq. Params.

ESPNet L1a 7×7 50.3 91.4 98.5 3.1
ESPNet L1b 3×3 52.0 91.5 98.7 3.2
ESPNet L1c 5×5 49.9 91.4 98.2 3.0
ESPNet L1d 9×9 50.1 91.5 98.3 2.9

Table 1: ConvLSTM on ESPNet. Results on Cityscapes
validation set. We compare the ESPNet trained with single
frame images to different ConvLSTM configurations.

sequence has annotated ground truth semantics. This
allows for comparability with single frame results.

Synthetic data Besides Cityscapes data, we also
generate synthetic data with the Carla simulator [7].
In total, we create 4680 scenes with 30 frames
each. We train the ESPNet L1b using different ra-
tios between Cityscapes and Carla data. After train-
ing we evaluate on the Cityscapes sequence valida-
tion set. The quantitative results indicate that using
about 10% synthetic data slightly improves frame-
to-frame consistency (Cons) from 98.4% to 98.5%
for Cityscapes only training while mIoU remains at
48.5%. When using more than 20% of synthetic data,
mIoU on the Cityscapes validation set declines sig-
nificantly. We assume the reason for the decline is
that only 9 of 19 semantic classes are covered by
Carla data. Nevertheless, we have shown that we can
improve consistency by accurately labeled video se-
mantic segmentation. For simplicity, we do not use
the synthetic data set in other experiments.

4.2. Feature Propagation Evaluation

First, we compare different ConvLSTM as well as
inconsistency loss configurations. Finally, we com-
bine the insights from the comparison to achieve the
highest performance.

ConvLSTM on VSSNet Training the VSSNet
with ConvLSTM and inconsistency loss results in
44.6% mIoU, 89.9% Acc, 97.7% Cons and 4.7%
ConsW. The results indicate that we are able to im-
prove accuracy and consistency significantly, com-
pared to the SSNet architecture trained with single
frames which only achieves 39.9% mIoU and 94.4%
Cons. After we have shown improvements on the
VSSNet, we implement the following experiments
on the ESPNet.

Category Experiment mIoU Acc Cons ConsW

In
co

ns
.L

os
s Inconsistency

Loss Func.
Sq Diff True 48.8 90.9 98.4 3.5
Abs Diff True 48.6 90.9 98.6 3.5

Inconsistency
λ

λincons = 0 49.0 90.9 98.0 3.4
λincons = 10 48.8 90.9 98.4 3.5
λincons = 100 46.3 90.4 98.6 3.7

Comb. Results
ESPNet L1b

On Val. Set 57.9 93.0 98.7 2.7
On Test Set 60.9 - - -

Table 2: Top: Inconsistency Loss. We vary parameters of
the loss function. Note that the inconsistency loss results
cannot be compared directly to Table 1 because we only
train the LSTM parameters for faster convergence. Bot-
tom: Combined Results. The last two rows show the best
results we are able to produce on Cityscapes validation
and test set by combining the insights of our experiments.

ConvLSTM configurations We test different con-
volution types and positions of the ConvLSTM as
proposed in Figure 2. Table 1 shows the quantitative
results of this comparison in the categories Convolu-
tion Types and Position with Equal Parameters. We
compare the standard convolution operation with the
depth-wise separable convolution inside the ConvL-
STM on the ESPNet L1a architecture. Results show
that the standard convolution inside the ConvLSTM
produces better results for all four metrics.

Furthermore, we evaluate the position of the Con-
vLSTM layer.We choose the filter size such that all
experiments have a similar number of parameters for
a fair comparison. This also ensures that the size of
the receptive field at the layer is large enough to de-
tect motion. The ESPNet L1b architecture clearly
outperforms all other architectures in both consis-
tency and accuracy. This suggests that it is more ef-
ficient to propagate high level image features. Addi-
tionally, we found that the Parametric ReLU (prelu)
performs better than the tanh activation function in-
side the ConvLSTM. Therefore, results are reported
implementing the prelu activation function.

Inconsistency loss We test different inconsistency
loss configurations on the ESPNet L1b architecture
because this model delivered the best results in pre-
vious experiments. Table 2 contains the quantitative
results. We only train the LSTM parameters to allow
for fast comparison of multiple models. The other
parameters of the model are pretrained, but do not
receive updates after the LSTM cell is added. Con-
sequently, the scores are slightly lower than in Ta-
ble 1. Substituting the squared difference loss inside
Equation (2) with the absolute difference produces
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Figure 4: Qualitative Results. A comparison between input data, DeepLab Xception ground-truth, single frame training
and LSTM training on the ESPNet (top to bottom). The horizontal axis represents the time steps. Areas with inconsistent
predictions are shown in detail and highlighted with green dashed boxes. Other inconsistencies are highlighted with
orange boxes. The ESPNet with single frame training (Sgl Train) produces inconsistencies in the right, left and on the
road segmentation. The ESPNet L1b predicts significantly more accurate and consistent results.

similar results. We observe that the hyper-parameter
λincons = 10 provides a good trade-off between ac-
curacy and consistency when using the squared dif-
ference loss function. The increase in consistency
by 0.4 percentage points is noticeable when compar-
ing the qualitative results. We set the other hyper-
parameter λce = 1 for all of our experiments.

Combining the findings In order to achieve the
best results with ESPNet L1b, we train the model in
multiple phases. We use the squared difference in-
consistency loss on correctly predicted classes with
λincons = 10 and a 5 × 5 convolution inside the
ConvLSTM. The quantitative results are shown at
the bottom of Table 2. When training with the
weighted cross entropy loss and data augmentations
as proposed in [19] the official Cityscapes server re-
ports 60.9% mIoU on the single frame test set. Our
method reaches slightly higher accuracy and signifi-
cantly better temporal consistency while using a sim-
ilar number of parameters as Metha et al. [19].

5. Conclusion

We have shown that we can improve temporal
consistency and accuracy of semantic segmentation

for two different single frame architectures by adding
feature propagation and a novel inconsistency loss.
On the ESPNet, consistency and mIoU improve from
95.5 to 98.7% and from 45.2 to 57.9%, respectively.
This is equal to a reduction of inconsistencies by
71.1% which can be observed immediately when
watching a video sequence.

Moreover, we found that it is best to forward fea-
tures at a high level with a standard convolution
within the ConvLSTM cell. The hyper-parameter
in our novel inconsistency loss function can be used
to prioritize between consistency and accuracy. We
also improve consistency slightly by adding synthetic
data generated by the Carla simulator.

In future experiments we are interested in com-
paring other methods of adding the information from
past frames to the current prediction. We also need to
generate synthetic data such that it contains seman-
tics of all validation classes to increase overall con-
sistency and accuracy.
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P. Kontschieder. The mapillary vistas dataset for se-
mantic understanding of street scenes. In IEEE In-
ternational Conference on Computer Vision (ICCV),
pages 5000–5009, 2017. 4

[21] C. Payer, D. Stern, M. Feiner, H. Bischof, and
M. Urschler. Segmenting and tracking cell instances
with cosine embeddings and recurrent hourglass net-
works. In International Conference on Medical Im-
age Computing and Computer-Assisted Intervention
(MICCAI), 2018. 2

[22] S. shahabeddin Nabavi, M. Rochan, and Y. Wang.
Future semantic segmentation with convolutional
lstm. In British Machine Vision Conference
(BMVC), 2018. 2

[23] X. Shi, Z. Chen, H. Wang, D.-Y. Yeung, W.-K.
Wong, and W.-C. Woo. Convolutional lstm network:
A machine learning approach for precipitation now-
casting. In Proceedings of Advances in Neural Infor-
mation Processing Systems, pages 802–810, 2015. 2,
3

[24] N. Srivastava, E. Mansimov, and R. R. Salakhutdi-
nov. Unsupervised learning of video representations
using lstms. In International Conference on Ma-
chine Learning (ICML), pages 843–852, 2015. 2

[25] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. Alemi.
Inception-v4, inception-resnet and the impact of
residual connections on learning. In AAAI Con-
ference on Artificial Intelligence, pages 4278–4284,
2016. 2

85



[26] H. Touvron, A. Vedaldi, M. Douze, and H. Jégou.
Fixing the train-test resolution discrepancy. ArXiv,
2019. 1

[27] S. Xie, R. B. Girshick, P. Dollár, Z. Tu, and K. He.
Aggregated residual transformations for deep neural
networks. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 5987–5995,
2016. 2

[28] F. Yu and V. Koltun. Multi-scale context aggregation
by dilated convolutions. ArXiv, 2016. 2

[29] X. Zhang, X. Zhou, M. Lin, and J. Sun. Shufflenet:
An extremely efficient convolutional neural network
for mobile devices. In IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages
6848–6856, 2018. 2

86


