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Abstract. To provide a complete 2D scene segmen-
tation, panoptic segmentation unifies the tasks of se-
mantic and instance segmentation. For this purpose,
existing approaches independently address semantic
and instance segmentation and merge their outputs
in a heuristic fashion. However, this simple fusion
has two limitations in practice. First, the system is
not optimized for the final objective in an end-to-end
manner. Second, the mutual information between the
semantic and instance segmentation tasks is not fully
exploited. To overcome these limitations, we present
a novel end-to-end trainable architecture that gen-
erates a full pixel-wise image labeling with resolved
instance information. Additionally, we introduce in-
terrelations between the two subtasks by providing
instance segmentation predictions as feature input to
our semantic segmentation branch. This inter-task
link eases the semantic segmentation task and in-
creases the overall panoptic performance by provid-
ing segmentation priors. We evaluate our method on
the challenging Cityscapes dataset and show signif-
icant improvements compared to previous panoptic
segmentation architectures.

1. Introduction

Panoptic segmentation [12] addresses the problem
of complete 2D scene segmentation by not only as-
signing a class label to each pixel of an image but
also differentiating between instances within a com-
mon class. Thus, it can be seen as a unification of
semantic segmentation [22, 24, 3] and instance seg-
mentation [8, 13, 20, 16]. Panoptic segmentation
is a new and active research area with applications
in augmented reality, robotics, and medical imag-
ing [5, 23, 30].

To predict a panoptic segmentation of an image,
recent approaches perform three tasks. First, they

Figure 1: Illustration of our proposed panoptic seg-
mentation network with task interrelations. We pro-
vide instance segmentation predictions as additional
feature input to our semantic segmentation branch.
In this way, we exploit a segmentation prior which
increases the overall panoptic performance.

perform semantic segmentation to identify regions of
uncountable stuff classes like sky. Second, they per-
form instance segmentation to detect individual in-
stances of countable things classes like cars. Third,
they merge the outputs of these two tasks into a sin-
gle panoptic prediction.

However, this strategy has two limitations in prac-
tice. First, because the panoptic output is generated
using heuristics, the system cannot be optimized for
the final objective in an end-to-end manner. Second,
semantic and instance segmentation share mutual in-
formation and similarities but the relation between
the two tasks is not exploited because they are ad-
dressed independently.

To overcome these limitations, we propose a holis-
tic end-to-end trainable network for panoptic seg-
mentation (HPS) with interrelations between the se-
mantic and the instance segmentation branches, as
shown in Figure 1. Our network directly generates
a full pixel-wise image labeling with resolved in-
stance information by using differentiable operations
instead of heuristics to combine individual results.
Moreover, to take advantage of mutual information
between the semantic and the instance segmentation
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tasks, we provide instance segmentation predictions
as additional feature input to our semantic segmen-
tation branch. In particular, we gather predicted in-
stance masks into an initial segmentation image (ISI)
which represents a coarse semantic segmentation for
things classes. In this way, we exploit a segmenta-
tion prior which increases the overall panoptic per-
formance of our system by leveraging similarities be-
tween the two previously disjoint subtasks.

We evaluate our method on the challenging
Cityscapes dataset [4] for semantic understanding
of urban street scenes using the recently introduced
panoptic quality [11] metric. We provide an unbiased
evaluation and compare four different approaches
with an increasing level of entanglement between se-
mantic and instance segmentation. Our experiments
show that both end-to-end training and inter-task re-
lations improve panoptic performance in practice.

2. Related Work

Fusing semantic and instance information has a
rich history in computer vision [25, 26]. However,
only recently [12] formalized the task of panoptic
segmentation and introduced a panoptic quality (PQ)
metric to assess the performance of complete 2D
scene segmentation in an interpretable and unified
manner. This formalization and the availability of
large datasets with corresponding annotations [19]
motivated research on panoptic segmentation.

Early approaches to panoptic segmentation use
two highly specialized networks for semantic seg-
mentation [22, 24, 3] and instance segmentation [21,
8, 17, 27] and combine their predictions heuristi-
cally [1]. Instead, recent methods address the two
segmentation tasks with a single network by train-
ing a multi-task system that performs semantic and
instance segmentation on top of a shared feature rep-
resentation [11]. This reduces the number of param-
eters, the computational complexity, and the time re-
quired for training. To improve the panoptic qual-
ity, newer approaches propose a differentiable fusion
of semantic and instance segmentation instead of a
heuristic combination. In this way, they learn to com-
bine the individual predictions and optimize directly
for the final objective in an end-to-end manner. For
example, UPSNet [28] introduces a parameter-free
merging technique to generate panoptic predictions
using a single network.

Another strategy to improve accuracy is to exploit
mutual information and similarities between seman-

tic and instance segmentation network branches. In
this context, AUNet [15] incorporates region pro-
posal information as an attention mechanism in the
semantic segmentation branch. In this way, the se-
mantic segmentation focuses more on stuff classes
and less on things classes, which are eventually re-
placed by predicted instance masks. TASCNet [14]
enforces L2-consistency between predicted semantic
and instance segmentation masks to exploit mutual
information. SOGNet [29] addresses the overlapping
issue of instances using a scene graph representation
which computes a relational embedding for each ob-
ject based on geometry and appearance.

Similar to our approach, IMP [6] which has been
developed at the same time uses predicted instance
segmentation masks as additional input for the se-
mantic segmentation branch. Compared to our ap-
proach, a different normalization technique is used
and the instance masks are combined using the max
operator instead of averaging.

3. Holistic End-to-End Panoptic Segmenta-
tion Network with Interrelations

An overview of our end-to-end trainable panop-
tic segmentation network with inter-task relations is
shown in Figure 1. We first present our end-to-end
trainable architecture which combines semantic and
instance segmentation predictions in a differentiable
way in Sec. 3.1. Then, we introduce our interrela-
tions module which provides instance segmentation
predictions as additional feature input to our seman-
tic segmentation branch in Sec. 3.2.

3.1. End-to-End Panoptic Architecture

Our network architecture builds upon Panoptic
Feature Pyramid Networks [11]. Like many recent
panoptic segmentation methods, this approach ex-
tends the generalized Mask R-CNN framework [8]
with a semantic segmentation branch. This results
in a multi-task network that predicts a dense seman-
tic segmentation in addition to sparse instance seg-
mentation masks. For our implementation, we use
a shared ResNet-101 [9] feature extraction backbone
with a Feature Pyramid Network [18] architecture to
obtain combined low- and high-level features. These
features serve as shared input to our semantic and in-
stance segmentation branches, as shown in Figure 2.

For the semantic segmentation branch, we process
each stage of the feature pyramid {P2, . . . , P5} by a
series of upsampling modules. These modules con-
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Figure 2: Detailed illustration of our end-to-end
panoptic segmentation network with task interrela-
tions. We internally merge predictions from our se-
mantic and instance segmentation branches in a dif-
ferentiable way. In particular, we concatenate stuff
class predictions from our semantic segmentation
branch with things class predictions in the form of
canvas collections from our instance segmentation
branch. Our instance canvas collections can also be
transformed into an initial segmentation image (ISI)
which serves as additional feature input for our se-
mantic segmentation branch.

sists of 3× 3 convolutions, batch normalization [10],
ReLU [7], and 2× bilinear upsampling. Because the
individual stages have different spatial dimensions,
we process each stage by a different number of up-
sampling modules to generate H/4 × W/4 × 128
feature maps, where H and W are the input image
dimensions. The resulting outputs of all stages are
concatenated and processed using a final 1×1 convo-
lution to reduce the channel dimension to the desired
number of classes.

For the instance segmentation branch, we imple-
mented a Mask R-CNN [8]. We use a region pro-
posal network to detect regions of interest, perform
non-maximum suppression, execute ROI alignment,

and predict 28 × 28 binary masks as well as class
probabilities for each detected instance.

In order to combine the semantic and instance seg-
mentation outputs, we use an internal differentiable
fusion instead of external heuristics. For this pur-
pose, we first select the most likely class label for
each detected instance using a differentiable

soft argmax =

N∑

i

b ezi·β
∑N

k e
zk·β
e · i (1)

operation [2], where N is the number of things
classes, β is a large constant, and z is the predicted
class logit. Using β in the exponent in combination
with the round function allows us to squash all non-
maxium values to zero. In this way, we approximate
the non-differentiable argmax function, allowing us
to backpropagate gradients.

We then resize the predicted 28 × 28 mask logits
for each detected instance according to its predicted
2D bounding box size and place them in empty can-
vas layers at the predicted 2D location, as shown in
Figure 2 (top right). Additionally, we merge the can-
vas layers for regions of interest with the same class
id and high mask IOU. The resulting canvas collec-
tion from the instance segmentation branch is then
concatenated with the stuff class logits of the seman-
tic segmentation branch to generate our panoptic out-
put, as illustrated in Figure 2 (bottom). The pixel-
wise panoptic segmentation output is attained by ap-
plying a softmax layer on top of the stacked semantic
and instance segmentation information. The shape
of the final output is H × W × (# stuff classes +
# detected instances). For stuff classes, the output
is a class ID. For things classes, the output is an in-
stance ID. The corresponding class ID for each in-
stance can be gathered from our semantic or instance
segmentation output.

During training, it is important to reorder the de-
tected instances to match the order of the ground
truth instances. For this purpose, we use a ground
truth instance ID lookup table. All parameters of our
network are optimized jointly.

3.2. Inter-task Relations

Our differentiable fusion of semantic and instance
segmentation predictions allows us to join the out-
puts of our two branches internally for end-to-end
training. However, it also allows us to provide in-
stance predictions as additional feature input to our
semantic segmentation branch, as shown in Figure 3.

73



For this purpose, we first evaluate our instance
segmentation branch and build an instance canvas
collection as described in Sec. 3.1. Next, we merge
canvas layers of instances that belong to the same
class using weighted average and insert empty can-
vas layers for missing or undetected classes. In this
way, we generate an initial segmentation image (ISI)
which represents a coarse semantic segmentation for
things classes.

To exploit this segmentation prior in our seman-
tic segmentation branch, we downsample our ISI to
H/4×W/4×# things classes and concatenate it with
the output of our semantic segmentation upsampling
modules, as shown in Figure 3. Next, we apply four
network blocks consisting of 3×3 convolution, batch
normalization, and ReLU followed by a single 1× 1
convolution, batch normalization, and ReLU block
to reduce the channel dimension to the number of
classes. Finally, we use bilinear upsampling to ob-
tain semantic segmentation logits at the original input
image dimensions and apply a softmax non-linearity.

By exploiting the segmentation prior given by ISI,
the upsampling modules of our semantic segmen-
tation branch focus more on the prediction of stuff
classes and boundaries between individual classes in-
stead of things classes. This is a huge advantage
compared to disjoint semantic and instance segmen-
tation branches where redundant predictions are per-
formed in the semantic segmentation branch. As a
consequence, this link between the individual tasks
increases the panoptic performance of our system.

4. Experimental Results

To demonstrate the benefits of our end-to-end
panoptic architecture with interrelations, we evalu-
ate it on the challenging Cityscapes dataset [4] for
semantic understanding of urban street scenes. We
follow the protocol of [4] and train and evaluate on
19 classes (11 stuff and 8 things). We use the recently
introduced panoptic quality [11] metric to assess the
segmentation performance.

4.1. Experimental Setup

Due to our limited computational resources, we
limited the maximum number of instances per im-
age to 30 and excluded samples with more instances
from the evaluation. In this way, we use 2649 of
2975 training images (≈ 89%) and 415 of 500 pub-
licly available validation images (≈ 83%). Addi-
tionally, we reduce the spatial image resolution from

Figure 3: Illustration of our proposed semantic and
instance segmentation branches with inter-task re-
lations. We first run the instance segmentation
branch and then provide instance segmentation pre-
dictions as additional feature input to the seman-
tic segmentation branch via an initial segmentation
image (ISI). Finally, we evaluate the semantic seg-
mentation branch and exploit the segmentation prior
given by ISI to improve the overall panoptic perfor-
mance.

2048 × 1024 to 1024 × 512. For this reason, we
cannot not benchmark against other state-of-the-art
approaches. To provide an unbiased evaluation, we
compare four different approaches with an increasing
level of entanglement between semantic and instance
segmentation. All methods use the same backbone,
training protocol, and hyper-parameters:

Semantic + Instance. This approach uses two dif-
ferent networks based on a ResNet-101 [9] backbone
which independently perform semantic and instance
segmentation. A heuristic is used to combine the in-
dividual results.

Panoptic FPN. This method is a reimplementa-
tion of Panoptic Feature Pyramid Networks [11] with
a ResNet-101 [9] backbone. In contrast to Semantic
+ Instance, the semantic and instance segmenation
branches use a single shared feature representation.
The results, however, are still merged heuristically.

HPS. Our holistic panoptic segmentation net-
work (HPS) extends Panoptic FPN as described in
Sec. 3.1. Our network internally builds the panoptic
segmentation output using differentiable operations
which enables us to optimize for the final objective.

HPS + ISI. This method augments our HPS with
inter-task relations between the semantic and in-
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Method PQ SQ RQ PQTh SQTh RQTh PQSt SQSt RQSt

Semantic + Instance 40.6 70.9 51.3 40.3 75.4 53.0 40.9 67.6 50.0
Panoptic FPN 41.9 73.7 53.4 43.0 75.2 56.6 41.2 72.5 51.1
HPS 42.9 74.5 54.3 43.4 75.7 56.7 42.6 73.6 52.5
HPS + ISI 44.0 74.8 55.5 44.4 76.4 57.5 43.7 73.6 54.1

Table 1: Quantitative results on the Cityscapes dataset. The results show that a shared feature backbone reduces
overfitting compared to two disjoint networks (Semantic + Instance vs Panoptic FPN). Also, generating the
final panoptic output internally and training the system end-to-end increases the performance (Panoptic FPN vs
HPS). Finally, using inter-task relations in the form of an initial segmentation image (ISI) provides an effective
segmentation prior and increases the overall panoptic quality as well as all other metrics (HPS vs HPS + ISI).

stance segmentation branches by using an initial seg-
mentation image (ISI), as introduced in Sec. 3.2.

4.2. Results

The thus obtained results of the four methods de-
scribed above on the Cityscapes dataset are summa-
rized in Table 1. In addition, to the panoptic quality
(PQ), we show the segmentation quality (SQ) and the
recognition quality (RQ) for all classes, things (Th)
classes only, and stuff (St) classes only. Since PQ is
a measurement of semantic (SQ) and instance (RQ)
segmentation quality an improvement in either part
will increase the accuracy of the overall system.

Interestingly, Semantic + Instance performs worse
than Panoptic FPN. We hypothesize that this is be-
cause the number of training images in Cityscapes is
low. Thus, the shared feature backbone of Panoptic
FPN acts as a regularizer which reduces overfitting
compared to training two individual networks with-
out shared features on this dataset.

Next, HPS improves upon Panoptic FPN across
all metrics and classes, because we optimize for the
final panoptic segmentation output. Our system min-
imizes a panoptic loss in addition to the semantic and
instance segmentation losses which provides better
guidance for the network. In this way, we do not rely
on the heuristic merging of subtask predictions but
directly generate the desired output internally which
results in improved accuracy in practice.

Finally, HPS + ISI significantly outperforms all
other methods because it additionally leverages inter-
task relations. Compared to Panoptic FPN, HPS +
ISI improves PQ by +5% relative from 41.9 to 44.0.
Providing instance segmentation predictions as ad-
ditional feature input for the semantic segmentation
branch gives a segmentation prior. By exploiting this
prior, the semantic segmentation branch can focus

more on the prediction of stuff classes and bound-
aries between individual classes which results in im-
proved accuracy across all metrics. Additionally, our
architectural advances only add a neglible computa-
tional overhead during both training and inference
compared to Panoptic FPN.

This quantitative improvement is also reflected
qualitatively, as shown in Figure 4. We observe
that HPS + ISI handles occlusions more accurately
(1st row) and resolves overlapping issues on its own
while being less sensitive to speckle noise in semanti-
cally coherent regions (2nd row). Thanks to our end-
to-end training and inter-task relations, we predict
more accurate semantic label transitions (3rd row)
and reduce confusion between classes with similar
semantic meaning like bus and car (4th row).

5. Conclusion

Panoptic segmentation is a challenging but impor-
tant and practically highly relevant problem. As ap-
proaching panoptic segmentation by independently
addressing semantic and instance segmentation has
several limitations, we propose a single end-to-end
trainable network architecture that directly optimizes
for the final objective. Moreover, we present a way
to share mutual information between the tasks by
providing instance segmentation predictions as ad-
ditional feature input for our semantic segmentation
branch. This inter-task link allows us to exploit a
segmentation prior and improves the overall panoptic
quality. In this way, our work is a first step towards
fully entangled panoptic segmentation.

Acknowledgment. This work was partially sup-
ported by the Christian Doppler Laboratory for Se-
mantic 3D Computer Vision, funded in part by Qual-
comm Inc.

75



Panoptic Segmentation

Semantic Segmentation

Image Ground truth Panoptic FPN HPS + ISI

Figure 4: Qualitative results on the Cityscapes dataset. Compared to Panoptic FPN, HPS + ISI handles oc-
clusions more accurately (1st row) and is less sensitive to speckle noise in semantically coherent regions (2nd

row). Additionally, we predict more accurate semantic label transitions (3rd row) and reduce confusion between
classes with similar semantic meaning like rider and person or bus and car (4th row). Both our end-to-end train-
ing as well as inter-task relations increase panoptic quality. Best viewed in digital zoom.

76



References
[1] COCO 2018 Panoptic Segmentation Task.

http://cocodataset.org/index.htm#panoptic-
leaderboard. Accessed: 2020-01-31.

[2] E. Brachmann, A. Krull, S. Nowozin, J. Shotton,
F. Michel, S. Gumhold, and C. Rother. Dsac-
differentiable ransac for camera localization. In
Conference on Computer Vision and Pattern Recog-
nition, pages 6684–6692, 2017.

[3] L.-C. Chen, G. Papandreou, F. Schroff, and
H. Adam. Rethinking Atrous Convolution for Se-
mantic Image Segmentation. arXiv:1706.05587,
2017.

[4] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. En-
zweiler, R. Benenson, U. Franke, S. Roth, and
B. Schiele. The Cityscapes Dataset for Semantic Ur-
ban Scene Understanding. In Conference on Com-
puter Vision and Pattern Recognition, pages 3213–
3223, 2016.

[5] D. Feng, C. Haase-Schuetz, L. Rosenbaum,
H. Hertlein, F. Duffhauss, C. Glaeser, W. Wies-
beck, and K. Dietmayer. Deep Multi-Modal Ob-
ject Detection and Semantic Segmentation for Au-
tonomous Driving: Datasets, Methods, and Chal-
lenges. arXiv:1902.07830, 2019.

[6] C.-Y. Fu, T. L. Berg, and A. C. Berg. IMP: Instance
Mask Projection for High Accuracy Semantic Seg-
mentation of Things. In International Conference
on Computer Vision, pages 5178–5187, 2019.

[7] R. H. Hahnloser, R. Sarpeshkar, M. A. Mahowald,
R. J. Douglas, and S. H. Seung. Digital Selection
and Analogue Amplification Coexist in a Cortex-
Inspired Silicon Circuit. Nature, 405(6789):947–
951, 2000.

[8] K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask
R-CNN. In International Conference on Computer
Vision, pages 2961–2969, 2017.

[9] K. He, X. Zhang, S. Ren, and J. Sun. Deep Resid-
ual Learning for Image Recognition. In Conference
on Computer Vision and Pattern Recognition, pages
770–778, 2016.

[10] S. Ioffe and C. Szegedy. Batch normalization: Ac-
celerating deep network training by reducing inter-
nal covariate shift. arXiv:1502.03167, 2015.

[11] A. Kirillov, R. Girshick, K. He, and P. Dollár. Panop-
tic Feature Pyramid Networks. In Conference on
Computer Vision and Pattern Recognition, pages
6399–6408, 2019.

[12] A. Kirillov, K. He, R. Girshick, C. Rother, and
P. Dollár. Panoptic Segmentation. In Conference
on Computer Vision and Pattern Recognition, pages
9404–9413, 2019.

[13] A. Kirillov, E. Levinkov, B. Andres, B. Savchyn-
skyy, and C. Rother. Instancecut: From Edges to In-
stances with Multicut. In Conference on Computer

Vision and Pattern Recognition, pages 5008–5017,
2017.

[14] J. Li, A. Raventos, A. Bhargava, T. Tagawa, and
A. Gaidon. Learning to Fuse Things and Stuff.
arXiv:1812.01192, 2018.

[15] Y. Li, X. Chen, Z. Zhu, L. Xie, G. Huang, D. Du,
and X. Wang. Attention-Guided Unified Network
for Panoptic Segmentation. In Conference on Com-
puter Vision and Pattern Recognition, pages 7026–
7035, 2019.

[16] Y. Li, H. Qi, J. Dai, X. Ji, and Y. Wei. Fully Convo-
lutional Instance-Aware Semantic Segmentation. In
Conference on Computer Vision and Pattern Recog-
nition, pages 2359–2367, 2017.

[17] X. Liang, L. Lin, Y. Wei, X. Shen, J. Yang, and
S. Yan. Proposal-Free Network for Instance-Level
Object Segmentation. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 40(12):2978–
2991, 2017.

[18] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hari-
haran, and S. Belongie. Feature Pyramid Networks
for Object Detection. In Conference on Computer
Vision and Pattern Recognition, pages 2117–2125,
2017.

[19] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Per-
ona, D. Ramanan, P. Dollár, and C. L. Zitnick. Mi-
crosoft COCO: Common Objects in Context. In Eu-
ropean Conference on Computer Vision, pages 740–
755, 2014.

[20] S. Liu, J. Jia, S. Fidler, and R. Urtasun. SGN: Se-
quential Grouping Networks for Instance Segmenta-
tion. In International Conference on Computer Vi-
sion, pages 3496–3504, 2017.

[21] S. Liu, L. Qi, H. Qin, J. Shi, and J. Jia. Path Aggrega-
tion Network for Instance Segmentation. In Confer-
ence on Computer Vision and Pattern Recognition,
pages 8759–8768, 2018.

[22] J. Long, E. Shelhamer, and T. Darrell. Fully Con-
volutional Networks for Semantic Segmentation. In
Conference on Computer Vision and Pattern Recog-
nition, pages 3431–3440, 2015.

[23] A. Petrovai and S. Nedevschi. Multi-Task Network
for Panoptic Segmentation in Automated Driving.
In Intelligent Transportation Systems Conference,
pages 2394–2401, 2019.

[24] O. Ronneberger, P. Fischer, and T. Brox. U-
Net: Convolutional Networks for Biomedical Im-
age Segmentation. In Medical Image Computing
and Computer-Assisted Intervention, pages 234–
241, 2015.

[25] J. Tighe, M. Niethammer, and S. Lazebnik. Scene
Parsing with Object Instances and Occlusion Order-
ing. In Conference on Computer Vision and Pattern
Recognition, pages 3748–3755, 2014.

77



[26] Z. Tu, X. Chen, A. L. Yuille, and S.-C. Zhu. Im-
age Parsing: Unifying Segmentation, Detection, and
Recognition. International Journal of Computer Vi-
sion, 63(2):113–140, 2005.

[27] J. Uhrig, M. Cordts, U. Franke, and T. Brox. Pixel-
Level Encoding and Depth Layering for Instance-
Level Semantic Labeling. In German Conference
on Pattern Recognition, pages 14–25, 2016.

[28] Y. Xiong, R. Liao, H. Zhao, R. Hu, M. Bai,
E. Yumer, and R. Urtasun. Upsnet: A Unified Panop-
tic Segmentation Network. In Conference on Com-
puter Vision and Pattern Recognition, pages 8818–
8826, 2019.

[29] Y. Yang, H. Li, X. Li, Q. Zhao, J. Wu, and Z. Lin.
SOGNet: Scene Overlap Graph Network for Panop-
tic Segmentation. arXiv:1911.07527, 2019.

[30] D. Zhang, Y. Song, D. Liu, H. Jia, S. Liu, Y. Xia,
H. Huang, and W. Cai. Panoptic Segmentation
with an End-to-End Cell R-CNN for Pathology
Image Analysis. In Medical Image Computing
and Computer-Assisted Intervention, pages 237–
244, 2018.

78


