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Abstract. This paper presents several point-to-point
optimization tasks of humanoid arm motions. The fo-
cus lies on optimization of elementary arm motions.
Several cost functions for optimization tasks are de-
fined. Tasks in respect of time optimal control, mini-
mizing joint loads and maximizing the vertical torque
of the torso are presented. The dynamic optimal con-
trol problem is transformed into a static paramet-
ric optimization problem by using B-spline curves.
The optimization is carried out with the Sequential
Quadratic Programming algorithm.

1. Introduction

In general, robotic systems as humanoids are com-
plex structures which are able to interact with their
environment. The research on humanoid robots is a
major and challenging part in the field of robotics.
Various humanoid robotic systems have been de-
veloped in the past, see e.g. [5, 7]. Moreover, a
humanoid walking machine is developed at the Jo-
hannes Kepler University Linz [6]. Fig. 1 shows the
modular setup of the humanoid by means of submod-
ules. In this configuration, the system possesses of 6
degrees of freedom (DOFs) per leg and 1 DOF per
arm.

Figure 1: Schematic representation of the biped
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Figure 2: Schematic representation of the analyzed
arm system

Especially the arm plays an important role regard-
ing interaction or manipulation of an object. More-
over, arms are used to counterbalance the torque
about the vertical axis. In order to achieve a higher
degree of mobility of the arm submodule, a new arm
system is developed. The system consists of 3 actu-
ators and structural elements which are modeled as
rigid bodies. The shoulder is represented by 2 DOFs
and the elbow has 1 DOF. That setup is an approach
toward the 7 DOFs arm module as presented in [1].
In this paper the arm module shown in Fig. 2 is con-
sidered (which will replace the rigid arm in Fig. 1).
The paper focuses on optimization of elementary arm
motions with respect to various goals. Start and final
configurations of the arm system will be regarded as
known from the human gait. As shown in Fig. 2, the
arm system is spatial fixed for all further investiga-
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tions.

2. Dynamic Modeling

In general, a multibody model describes the full
dynamical behavior of a system. The equations of
motion can be developed by the Projection Equa-
tion [2]. This method is efficient to derive the dy-
namic of recurrent subsystems. A typical subsystem
in robotics consists of structural elements and actua-
tors.

2.1. Subsystem Modeling

As already mentioned, modeling by means of sub-
systems is useful for robotic systems. Moreover, con-
straint forces and torques Qc for coupling subsys-
tems can be determined without additionally effort.
The Projection Equation in subsystem representation
is given by

Nsub∑

n=1

(
∂ẏn

∂q̇

)⊤
{Mnÿn + Gnẏn − Qn}︸ ︷︷ ︸

Qc
n

= 0, (1)

Qc
n =

Nn∑

i=1

[(
∂vc
∂ẏn

)⊤(
∂ωc

∂ẏn

)⊤]

i

×
[

ṗ + ω̃R p − fe

L̇ + ω̃R L − Me

]

i

(2)

with Nsub subsystems and Nn bodies. The absolute
velocity of the center of mass and the angular veloc-
ity of the i-th body are represented by vc,i ∈ R3 and
ωc,i ∈ R3, ωR,i ∈ R3 is the angular velocity of a
chosen body fixed reference frame. The vector of
linear momentum and the vector of angular momen-
tum are given by pi = mivc,i and Li = Jciωc,i. Mass
and inertia tensor are denoted mi and Jci ∈ R3,3, re-
spectively. Impressed forces and torques are given
by f ei ∈ R3 and Me

i ∈ R3. The vector q ∈ RN rep-
resent the N minimal coordinates of the system. The
describing velocities of each subsystem are given by

ẏn =
(

v⊤0 ω⊤
F q̇

)⊤

n
∈ R7, (3)

where v0,n is the translational velocity of the cou-
pling point, ωF,n is the guidance rotational velocity
and q̇ is the relative joint velocity of the n-th sub-
system. In this paper, the 3 rotational coordinates
q = (q1 q2 q3)

⊤ are introduced as DOFs. Moreover,
3 subsystems are considered to derive the equations
of motion. The describing velocities of the second
subsystem can be seen in Fig. 2.

2.2. Joint Forces and Torques

As shown by 2.1, the occurring reaction forces and
torques of the n-th subsystem can be determined by

Qc
n = Mnÿn + Gnẏn − Qn, (4)

with the mass matrix of the subsystem Mn ∈ R7,7,
the matrix of centrifugal and Coriolis forces Gn ∈
R7,7 and the vector of forces on the subsystem Qn ∈
R7. Without projection into minimal coordinates,
joint forces and torques regarding the three subsys-
tems are given by




1Qc

2Qc

3Qc


 =




E T⊤
21 T⊤

31

0 E T⊤
32

0 0 E






Qc
1

Qc
2

Qc
3


 . (5)

The matrix

Tnp =




Rnp Rnp pr̃⊤pn Rnp pr̃⊤pneD
0 Rnp RnpeD
0 0 0


 (6)

maps a quantity from the predecessor frame p into the
frame of interest n. Rnp ∈ R3,3 is the rotation matrix
to transform coordinate vectors resolved in the frame
p into frame n, prpn ∈ R3 is the displacement vector
from the coupling point at the predecessor frame p to
that on frame n and the vector eD ∈ R3 is the axis of
rotation. The transformation matrix is a result of the
kinematical chain [4].

3. Problem Definition

This section reports on different optimization
tasks for point-to-point (PTP) trajectory planning.
In this paper, the optimal dynamic motion problem
is transformed into a static parametric optimization
problem. The joint trajectories are represented by B-
spline curves parameterized by a set of control points
d = (d1,1 · · · d1,n d2,1 · · · d2,n d3,1 · · · d3,n)⊤ ,
i.e. q = q(d) and thus q̇ = q̇(d) and q̈ = q̈(d).
For practical applications, several physical restric-
tions of the robotic system have to be considered. In
this paper, constraints regarding to initial and final
state, minimal and maximal joint angles as well as
maximal motor velocities and torques are regarded.
The mathematical formulation of the constraints are
given in Eq. (8)–(14). The task of trajectory opti-
mization leads to a non-linear optimization problem
(NLP). Different cost functions are presented in the
following.
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3.1. Time Optimal Control

The optimization problem for time optimal control
is defined as

min
tf ,d

∫ tf

0
1dt (7)

s.t.

q(0,d) = q0 (8)

q(tf ,d) = qtf
(9)

q̇(0,d) = 0 (10)

q̇(tf ,d) = 0 (11)

qmin ≤ q(d) ≤ qmax (12)

− q̇max ≤ q̇(d) ≤ q̇max (13)

− Qmax ≤ Q(d) ≤ Qmax (14)

Q(q(d)) = M(q(d))q̈(d) + g(q(d), q̇(d)). (15)

In this case, the final time tf and the set of control
points d to parameterize the B-splines are regarded
as optimization variables. Eq. (15) represents the
dynamical behavior of the robotic system in minimal
representation. M ∈ R3,3 is the global mass ma-
trix, g ∈ R3 includes non-linear terms and Q ∈ R3

is the global vector of generalized forces. The re-
strictions in Eq. (8)–(12) are associated to process
requirements and those in Eq. (13)–(14) are defined
by chosen motors. This equality and inequality con-
straints were used for all optimization tasks in the
following.

3.2. Minimizing Joint Loads

Aim of this optimization task is to minimize dy-
namic joint forces and torques between ground/torso
and arm of the humanoid walking machine. The final
time tf for the motion is predefined in this task. The
cost function is given by

min
d

1Qc⊤
1Qc. (16)

The set of control points d are regarded as optimiza-
tion variables. As mentioned above, the optimiza-
tion constraints are given by Eq. (8)–(14). Note, the
occurring joint forces and torques can be calculated
with Eq. (5).

3.3. Maximizing the Vertical Torque of the Torso

During gait, arms are used to counterbalance the
torque around the vertical axis. A momentum con-
trol approach with this quantity is presented in [6].
Hence, another optimization strategy is to find a

proper set of control points d such that the cost func-
tion

max
d

1Q
c⊤
6 1Q

c
6 (17)

is maximized. Once again, optimization constraints
are given by Eq. (8)–(14). The quantity 1Q

c
6 is the

sixth entry of 1Qc and describes the joint torque of
the first subsystem in the opposite direction of the
gravity vector.

4. Optimization Method

The Sequential Quadratic Programming (SQP) al-
gorithm was chosen to solve all considered optimiza-
tion problems. This approach is also used in [3] for
trajectory planning. The SQP method requires an
valid initial guess for trajectories. In this case, the
initial trajectories are defined as B-splines. Prop-
erties of B-splines can be found in [8]. An initial
guess for the arm angels q are found by interpolating
the initial and final position as well as some support
points with a B-spline of degree 4. Furthermore, ve-
locities and accelerations at the initial and final posi-
tion are set to zero. Twenty control points were cho-
sen to initialize each of the three polynomials. Fig. 3
shows exemplary an initial guess trajectory.
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Figure 3: Example of an initial guess trajectory

5. Simulation Results

In this section, relevant results of the optimiza-
tion tasks are presented. The typical arm mo-
tion during a step of the biped is defined by the
start configuration q0 =

(
−π

4 0 0
)⊤

rad and the

final configuration qtf
=

(
π
4 0 π

4

)⊤
rad of the

minimal coordinates. Moreover, limits regarding
joint angles are defined by qmin =

(
−π

2 0 0
)⊤

rad

and qmax =
(
π π 3π

4

)⊤
rad. Maximal mo-

tor rotational velocities and torques are given by
q̇max = (12.6 6.3 12.6)⊤ rads−1 and Qmax =
(415 480 165)⊤Nm. Note, that all motor torques
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and rotational velocities of the following figures are
normalized w.r.t. their physical limits.

5.1. Time Optimal Control

Fig. 4 shows the normalized motor torques and
rotational velocities of time optimal control problem.
For time optimal optimization tasks, it is obvious that
at least one motor restriction is active. The final time
is given by tf = 0.83 s. Moreover, all physical limits
of the motors are well considered. Occurring joint
forces and torques of the first subsystem are shown
in Fig. 5.
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Figure 4: Normalized motor torques and rotational
velocities of the time optimal control
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Figure 5: Joint forces and torques of the time optimal
control

M1
M2
M3

M
i/
M

i,
m

ax

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-1

-0.5

0

0.5

1

q̇1
q̇2
q̇3

t in s

q̇ i
/q̇

i,
m

ax

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-1

-0.5

0

0.5

1

Figure 6: Normalized motor torques and rotational
velocities of the joint load minimization
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Figure 7: Joint forces and torques of the joint load
minimization

5.2. Minimizing Joint Loads

In comparison to time optimal control, the final
time tf = 2 s of this optimal control is predefined
due to the walking speed of the analyzed biped. Fig.
6 and Fig. 7 shows the dynamical behavior of this
task. Motor restrictions are almost inactive and the
occurring joint forces and torques are reduced in
comparison to Fig. 5.

5.3. Maximizing the Vertical Torque of the Torso

As to the last subsection 5.2, the final time tf =
2 s is also predefined in this task. Optimization re-
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sults of the maximization task are shown in the fol-
lowing figures. Almost all motor torque restrictions
are active due to the maximization. As can be seen
in Fig. 8, the first arm moves at the start in the neg-
ative direction. The resulting motion performs as a
swing-up procedure.
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Figure 8: Normalized motor torques and rotational
velocities of the vertical torque maximization
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Figure 9: Joint forces and torques of the vertical
torque maximization

6. Conclusion

Arm systems of humanoids are used in different
ways, e.g. to counterbalance the torque around the
vertical axis. Motion planning in relation to var-
ious tasks becomes an important role. Therefore,

in this paper different optimization goals regarding
arm motions were analyzed. Cost functions with re-
spect to time optimal control, joint load minimiza-
tion and vertical torque maximization were consid-
ered. The dynamic optimization process has been
converted into a static optimization process by using
B-splines curves to formulate trajectories. The NLP
were solved with the SQP method.
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