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Abstract. We present and evaluate a particle fil-
ter based approach to predict the location and emis-
sion intensity of an arbitrary and unknown number of
stationary nuclear radiation sources from measure-
ment data taken by an autonomously navigating un-
manned ground vehicle (UGV).

1. Introduction

Due to the threat for humans caused by radiation
and the associated difficulties after a nuclear disas-
ter it is crucial to establish save methods of estimat-
ing the radiation distribution in certain affected ar-
eas. For this purpose we suggest to record radia-
tion measurement using an autonomous UGV. These
measurements are then processed by an adapted par-
ticle filter to generate a detailed radiation distribu-
tion model of the affected area. The approach pre-
sented in this paper has been successfully tested in
realistic conditions at the ENRICH 2019 — European
Robotics Hackathon, where live radiation sources
had to be detected inside the nuclear power plant in
Zwentendorf, Austria.

2. Related Research

In [1] Eric T. Brewer used an autonomously fly-
ing aerial platform to detect and locate a single ra-
dioactive point source using a particle filter. In [2]
M. Morelande et al. compare the performances of a
maximum likelihood estimator and a Bayesian esti-
mator approach to deal with an unknown number of
sources. D. Shah et al. present a particle filter in [3]
that manages to locate multiple radiation sources.

3. Problem Description

The setting is represented by a set Θ of unknown
radiation sources s and a set Γ of radiation measure-
mentsm. The goal is to generate a set Ψ of estimated

sources ŝ, that fits the number and intensities of the
real sources accurately. Each set holds elements de-
fined by a certain location xi and yi and an equivalent
radiation dose rate αi in Sv s−1 that either represents
the actual measurement for the set Γ or the theoret-
ical dose rate that would be measured at the exact
position of a source for the sets Θ and Ψ. In general
for modelling the radiation intensity at a certain loca-
tion l based on a set of sources Θ, we assume that the
radiation follows the principle of superposition and
the inverse-square-law which has been shown to be
applicable by multiple former approaches. [1, 2]:

α(l) = αbgr +
∑

s∈Θ

αs

4 · π · ds(l)2
(1)

where αbgr denotes the known background radiation
and ds(l) the euclidean distance between the location
l and the source s.

4. Particle Filter

In contrast to common particle filter use cases in
robotics (e.g., estimating a robots position), it is now
necessary to detect multiple sources that can co-exist
at the same time at different positions. In this context
particles are predictions of potential sources [3] with
each particle p ∈ P being represented similar to real
sources by p =< xp, yp, αp, wp > with an additional
weight wp that is related to the probability that a cer-
tain particle has the parameters of a real source. At
first the particles are initialized uniformly distributed
on the plane where the measurements took place and
given a random intensity within the same range of the
measurement results. The algorithm then iteratively
performs the two steps of weighting and re-sampling
and adds estimated sources ŝ to the growing set Ψ
until a maximum number of iterations T is reached
and Ψ represents a consistent estimation for Θ based
on the measurements Γ.
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4.1. Weighting

First an intensity estimation α̂m for a certain mea-
surement m is calculated based on the single particle
p ∈ P to be weighted and the influence of all already
defined sources ŝ ∈ Ψ assuming the model presented
in Equation 1:

α̂(m) = αbgr +
αp

4 · π · dp(m)2
+
∑

ŝ∈Ψ

αs

4 · π · ds(m)2

(2)

Using Equation 2 the relative mean square error con-
sidering all measurements is calculated like:

ermse =
1

|Γ|
∑

m∈Γ

(
α̂m − αm

α̂m

)2

(3)

where |Γ| is the number of measurements. The
weight for a single particle is then calculated like:

wp =
1

1 + ermse
(4)

After all particle weights have been updated the
weights are normalized such that

∑
p∈P wp = 1.

4.2. Re-Sampling and Clustering

During re-sampling a certain percentage of parti-
cles with the highest weights stay the same, while
another percentage of particles with the smallest
weights are omitted and newly drawn from a uniform
distribution over the search space. The remaining
particles are re-sampled by adding Gaussian Noise
to the intensity αp and position based on the parti-
cles weight:

[x′p, y
′
p, α

′
p]T ∼ N

(
[xp, yp, αp]T ,

diag(σpos, σpos, σint)

1 + wp

)

(5)

The total number of particles stays the same. After a
defined number of iterations k the particles are clus-
tered using the mean shift algorithm as suggested by
[3]. The cluster centroids have the same structure as
a single particle and are then evaluated by the weight-
ing algorithm described in section 4.1. If the weight
of a cluster surpasses a defined threshold ϕ the cen-
troid is believed to be a real source and added to the
growing set of predicted sources Ψ.

5. Experimental Evaluation - ENRICH 2019

As part of the TU Graz Robotics Team TEDUSAR
we participated in the European Robotics Hackathon

Total Particles 2000
Random New Particles 10 %
Sustain Particles 10 %
Max Iterations T 1000
Confidence Threshold ϕ 0.9
Clustering Interval k 20 iter
Position Deviation σpos 0.5
Intensity Deviation σint 0.4

Table 1: Hyper-parameters used for the ENRICH
2019

Figure 1: Source estimation based on live measure-
ment data during the ENRICH 2019 in Zwentendorf.

- ENRICH 2019 at the nuclear power plant Zwen-
tendorf, Austria1 and were able to test our particle
filter approach under real world conditions. An au-
tonomous robot created a 3D map of the interior
while our approach created the mathematical model
of the real radiation sources and the radiation con-
tamination. The parameters used are shown in Table
1.

An experimental result can be observed in Figure
1. In this experiment two sources were placed in a
larger room. After traversing the room and collecting
radiation measurements our approach correctly pre-
dicted the location and intensity of the two sources.

6. Conclusion and Future Work

In this paper we presented the adaptation of an ap-
proach based on a particle filter to determine the loca-
tion and intensity for an arbitrary and unknown num-
ber of stationary radiation sources. This approach
has been successfully tested and proven to be appli-
cable in real world scenarios, like an accident in a
nuclear facility. Future work will focus on reducing
the number of hyper-parameters.

1www.enrich.european-robotics.eu
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