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Abstract. Most Deep Reinforcement Learning (D-
RL) methods perform local search and therefore are
prone to get stuck in non-optimal solutions. To over-
come this issue, we exploit simulation models and
kinodynamic planners as exploration mechanism in
a model-based reinforcement learning method. We
show that, even on a simple toy domain, D-RL meth-
ods are not immune to local optima and require ad-
ditional exploration mechanisms. In contrast, our
planning-based exploration exhibits a better state
space coverage which turns into better policies than
the ones learned via standard D-RL methods.

1. Introduction

Deep-Reinforcement Learning (D-RL) has shown
promising results in challenging robotics domains
(e.g. [4]), but can be resource demanding and diffi-
cult to train. We assume that part of the difficulty of
learning good policies is related to insufficient ex-
ploration. Other D-RL methods like [1, 3, 6] par-
tially address the problem by increasing the number
of training steps, or by relying on the environment
implementation to provide exploring-starts to cover
a diverse enough state-space region. However, these
solutions are impractical and potentially dangerous
in robotics applications.

In the robotic context, directed exploration via
physically-based simulation appears more promising
to find good solutions more reliably and in less time.
Therefore, this work proposes the Planning for Pol-
icy Search (PPS) method that exploits a kinodynamic
planner in the exploration phase to collect data which
are then used to learn a policy, thereby eliminating
the planning time during execution. PPS is tested on
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Limits

u ∈ [−1; 1] x ∈ [−10; 10] ẋ ∈ [−2.5; 2.5]

Table 1. Description of the 1D double-integrator test en-
vironment: a point mass M can be moved in a one-
dimensional space position-velocity X = [x, ẋ] by apply-
ing a continuous-valued force. Reward is received based
on the distance to two possible goal locations (G1, G2).

Figure 1. Illustration of PPS Method

the point mass system described in Table 1 and com-
pared with D-RL approaches.

2. Planning for Policy Search

The presented PPS implementation (Figure 1)
consists of a Linear Quadratic Regulator (LQR)-
Rapidly Exploring Random Tree (RRT) [5] to cre-
ate a tree of data D = {(s, a, r, s′), . . .} from which
Soft-Actor Critic (SAC) [1] learns a policy. In
contrast to [5] quadratic programming-based finite-
horizon steering is used to extend the tree. In our
setup, all the environment interaction data created
by RRT are used as training data for the policy
rather than using only successful trajectories as ex-
pert demonstrations.

3. Evaluation

PPS is evaluated in the one-dimensional goal
reaching task presented in Table 1. The environment
contains two distinct goal locations. The agent re-
ceives a reward based on the distance to the goal
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Figure 2. The reward (heatmap) and reward distributions
(plots above and on the right of the heatmap) for the
double-integrator. The agent starts at x = 0 with ẋ = 0.
The reward is based on the distance of the agent to the
goal positions 1 and 2.

Alg. DDPG PPO SAC PPS (RRT)
Non-Ex. 15.5% 20.8% 20.4% 79.3%
Ex. 59.0% 60.9% 61.0% -

Table 2. Final coverage as percent of visited bins.

points. The goals (x1 = −2.5 and x2 = 6.0) are
chosen such that simply maximizing the reward from
the starting position leads to a suboptimal policy, i.e.
a local optimum (see Figure 2).

We compare the performance of PPS against the
prominent D-RL algorithms Proximal Policy Gradi-
ent (PPO) [6], Deep Deterministic Policy Gradient
(DDPG) [3], and SAC [1], using the implementation
in [2].The algorithms are run for 105 environment
steps; the D-RL algorithms use 100-step episodes.
To have a broader baseline we included an exploring-
starts mechanism where the initial state of the double
integrator is sampled uniformly. However, especially
in robotic tasks, exploring starts are impractical and
potentially dangerous and should be avoided.

We first compare the state-space coverage ob-
tained from data collected during the exploration
phase of the different D-RL approaches. The cov-
erage is calculated as the percentage of non-empty,
uniformly-shaped bins. The number of bins is set
to

√
105/5 in each dimension, i.e. we expect 5 data

points in each bin on average. See Table 2 for the
final coverages.

Second, Figure 3 depicts boxplots of the evalua-
tion returns achieved by the D-RL algorithms after
training for 105 steps. DDPG achieves higher re-
wards without exploring starts, while PPO and SAC
profits from exploring starts. Our PPS method shows
improved performance compared to non-exploring
starts methods. Moreover, the policies learned with
PPS achieve performance comparable to the directly-
trained SAC policy with exploring starts.
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Figure 3. Box plot of the return distributions (11 indepen-
dent runs); each run consists of the mean of 10 evalua-
tion runs. The evaluation runs are performed towards the
end of the training process, equally spaced 10 learning
episodes apart.

4. Discussion

In this work, we highlighted that standard D-RL
algorithms are not immune to getting stuck in sub-
optimal policies even in a toy problem with two lo-
cal optima. The agent controlled by PPS explores a
wider part of the state space than D-RL methods that
focus on reward accumulation, even with exploring
starts. The data gathered by RRT are not biased by
reward accumulation and is thus more representative
of the environment.
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