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Abstract. For mobile robots to be considered au-
tonomous they must reach target locations in re-
quired pose, a procedure referred to as docking. Pop-
ular current solutions use LiDARs combined with
sizeable docking stations but these systems struggle
by incorrectly detecting dynamic obstacles. This pa-
per instead proposes a vision-based framework for
docking a mobile robot. Faster R-CNN is used for
detecting arbitrary visual markers. The pose of the
robot is estimated using the solvePnP algorithm re-
lating 2D-3D point pairs. Following exhaustive ex-
periments, it is shown that solvePnP gives systemati-
cally inaccurate pose estimates in the x-axis pointing
to the side. Pose estimates are off by ten to fifty cen-
timeters and could therefore not be used for docking
the robot. Insights are provided to circumvent similar
problems in future applications.

1. INTRODUCTION

Docking can be understood as the localization and
navigation of a robot towards a target location [1].
In contrast to path-planning across larger distances,
docking does not require obstacle avoidance meth-
ods but instead seeks highly accurate pose estimates
[28]. As long as the pose of the robot and the target
location are known in a reference coordinate system
path planning algorithms can easily generate control
commands. In the xy ground-plane, the pose ~x con-
sists of three degrees of freedom, x, y, and θ as the
rotation about its own axis z, and is described using
the state at time t

~xt =
(
x ẋ y ẏ θ θ̇

)T
t

(1)

where ẋ, ẏ and θ̇ describe the speed of the robot in
x and y and its rotation respectively. As Thrun et
al. [32] write outlining the motion model and mea-
surement model, taking multiple control steps ~ut
with only an initial measurement or observation ~zt

Figure 1. The visual target used for docking. The target
location is on the ground infront. The origin for the PnP
solvers is in the upper left corner. The logos are roughly
9x3 centimeters in size. The upper right logo was raised
during experiments to remove coplanarity.

leads to large uncertainties about its pose, they pro-
pose a measurement step after every control to re-
store confidence in the belief bel(~x). These measure-
ments can be non-vision methods such as evaluat-
ing detections from LiDAR-scans [22] or can come
from a camera setup providing visual feedback [6].
Yurtsever et al. [34] show in their survey on auto-
mated driving systems (ADS) that computer vision
(CV) based approaches to navigation have become
increasingly popular. Artificial landmark detection
as described by Luo et al. [19] and gradient based
optical flow [20] rival modern non-vision solutions.
Classical non-vision systems typically employ Li-
DAR technology, indoor GPS or wireless fingerprint-
ing [17]. While LiDARs are still widely used com-
mercially (such as MiRs and Robotinos) recent ad-
vances in deep learning and their application in the
ADS domain are of more scientific interest. Deep
Convolutional Neural Networks (CNNs) have proven
successful at tackling a variety of perception prob-
lems, including object detection [26] and pose esti-
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mation [30]. Open source implementations for dif-
ferent learning tasks are plentiful and can be used
to provide perception for a robotics system. Due to
the strong capabilities of CNNs as general feature ex-
tractors, it is possible to learn multiple visual targets
which can be different depending on the environ-
ment or application. This relaxes the constraint of us-
ing specifically designed visual markers that classical
CV methods pose. The learning task of the object de-
tector in this work is comparatively simple (only one
class of logos exist and they are easily distinguish-
able from the rest of the target, see Fig.1).
In previous work the LiDAR of the mobile robot,
a robotino, was used to create a map of the envi-
ronment and localization was implemented with the
amcl package. While this pipeline in combination
with obstacle avoidance methods has been useful for
path-planning across the room, only employing the
AMCL the robot arrives at the target position with
great inaccuracy (10cm to 20cm). Therefore, for this
project an entirely vision-based solution for docking
was developed which is bound to take over the task
of generating pose-estimates from the AMCL once
the robot comes close to the docking target.
The aim of this work therefore is to approach and
dock onto desired targets in a semi industrial environ-
ment with sufficiently high accuracy. To contribute
to the transition of state-of-the-art CNNs from public
datasets to real world problems an appropriate com-
bination of old and new algorithms is presented in
this work. A CNN based object detectors is used
for image processing and object detection, followed
by a camera pose estimation algorithm using point
correspondences from the detections. The presented
method could be easily adapted to learn new target
positions outfitted with a visual marker with minimal
setup requirements.

2. STATE OF THE ART

The problem of estimating the pose of a calibrated
camera, assuming a known 3D scene, is known as the
PnP-problem [29]. The idea is to use a feature detec-
tor such as SIFT [16] or SURF [2] to extract features
from multiple sequential images. Since an image of
a known 3D point gives two nonlinear constraints on
camera pose and calibration, using three points (or
more precisely three image-object point pairs) would
give all 6 pose parameters. As [33] point out, such
minimal cases lead to polynomial systems with mul-
tiple solutions, hence one additional point is used.

This leads to four necessary points for estimating the
pose (and one intrinsic parameter) and six points for
estimation of 3D pose and five additional calibration
parameters. The problem is formulated diffently for
the planar two-dimensional or the general, aforemen-
tioned three dimensional case. Direct Linear Trans-
formation (DLT, [9]) allows the estimation of the ho-
mography matrix H for the planar problem, requir-
ing at least four 2D-3D point correspondences. For
the general case, DLT estimates the projection ma-
trix P and requires at least six such correspondences.
In either case, H or P can be expressed with a set
A~x = 0 of multiple pairs of independent equations.
Since individual pixels are generally noisy, no exact
solution can be obtained using DLT, only an approx-
imate solution by obtaining the SVD of A. It should
be noted, that for the noisy and overconstrained case,
only the eigenvector of ATA, corresponding to the
smallest eigenvalue, should be computed. A contin-
uation to DLT is the family of PnP algorithms. Effi-
cient PnP or EPnP [14] uses the notion that each of
the n 3D-2D point pairs are expressed as weighted
sum of four virtual control points, and solves the
pose problem from these control points. Perspective-
Three-Point or P3P is a method applicable if only
three correspondences are obtained, and in turn re-
turns four real, possible solutions, the newest imple-
mentation being Lambda Twist P3P [25]. A fourth
point pair can be used to remove this four-solution
ambiguity.
Kartoun et al. [12] were able to achieve docking
times averaging 85 seconds but attributed the success
of their method to the unique hardware on the robot
and a generously large docking station. Burschka et
al. [3] take the aforementioned approach to the out-
doors, using a Kanade-Lucas tracker [18] to track
points in image sequences, followed by RANSAC
and DLT. They achieve good results for rotation, but
struggle with estimating translation. In the work
of Mehralian et al. [21] an Extended Kalman Filter
(EKF, [11]) is combined with PnP algorithms to cre-
ate EKFPnP. They achieve better robustness against
noisy features, although no details are given regard-
ing the feature tracker.

In the field of deep learning, pose estimation is
a well researched problem [23], camera pose estima-
tion is less so [13] and no architectures or datasets ex-
ists specifically designed for docking a mobile robot.
The dataset would need to include the complete pose
of the robot for every captured image to allow end-
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to-end training. Instead, Shalnov et al. [30] were able
to create a deep model using a CNN for camera pose
estimation via object detections of human heads. In
the work of Pavlakos et al. [24] a geometric approach
to object pose estimation using semantic keypoints
is taken but their published dataset only uses out-
door objects and is thus not applicable to docking.
Lastly, as part of Zhou et al. [35]’s Centernet, they
are proposing to regress from centerpoints to other
object properties including pose but their framework
is unnecessarily complex for the task at hand.

While the methods are numerous, no single frame-
work exists that combines deep learning for object
detections with a PnP-solver, all for the application
of mobile robot docking. This work shows the hes-
itation of using CNNs for robot docking is unwar-
ranted, as long as the learning task is managable in
complexity.

3. METHODS AND IMPLEMENTATION

The robotino mobile robot used in this project was
equipped with a Logitech C920 USB webcam. A re-
mote desktop with an NVIDIA GTX 1080 GPU runs
ROS to control the robot and process the images.

To showcase the flexibility of the pipeline regard-
ing the visual target, no QR-tags or ARUCO markers
[8, 27] were used. Three small paper printouts of a
logo were instead fixed on a board roughly 20 by 15
centimeters in size and this board was used for train-
ing the detector. Video data was collected while ar-
bitrarily moving the robot around close to the target.
From the roughly 4500 recorded images 100 were
selected to form the training set. The chosen images
show the target from different viewing angles, dis-
tances, lighting conditions while a few images do not
show the target at all to control for false positives.
The bounding box coordinates of the three logos in
all 100 images were manually annotated. Creating
annotations took around three hours to complete. Re-
sizing the images to 512x512 RGB-images allows
the usage of Che et al. [4]’s toolbox with many dif-
ferent object detectors implemented.

Accuracy of the detector is important, since wrong
detections would lead to wrong pose estimates and
erroneous controls, while inference speed is impor-
tant to enable a smooth docking, although inference
times below 70 milliseconds are unnecessary, due
to the bottleneck imposed by transporting 960x720
images from the camera to the remote desktop via
Wi-Fi using the ROS image transport package for

compressed transfer. Looking at various speed-
accuracy tradeoff comparisons between object detec-
tors, Faster R-CNN [26] with pretrained ResNet [10]
backbones seems to be a sweet spot, ResNet50 was
chosen for this implementation. Faster R-CNN be-
longs to the class of detectors using a separate region
proposal network to generate bounding box propos-
als. For the optimizer the default stochastic gradient
descent with momentum of 0.9 was used and learn-
ing rate was kept default at 0.01 with a linear step
learning rate scheduler and warmup. Other parame-
ters and image augementation steps were kept default
to Che et al. [4]’s configuration of Faster R-CNN for
PascalVOC [5], including a 50 percent chance of a
random horizontal flip. From the infered bounding
boxes, image coordinates of the upper-left and lower-
right corners of all three logos are saved for the PnP-
solver. The Faster R-CNN network was trained for
fifty epochs which amounted to 37 minutes training
time on a GTX 1080 graphics card. GPU memory us-
age was 2GB showing a weaker graphics unit would
suffice. Both bounding box and classification loss
plateued after training for ten epochs.

The required pose estimate at timestep t for path
planning can be described with the transformation
matrix Ttargetbase,t ∈ R4x4 from the base link of the robot
to the target position near the station

Ttargetbase,t =

[
R ~t
~0 1

]

t

(2)

with R ∈ R3x3 and ~t ∈ R3x1 being the rotation ma-
trix and translation vector to be estimated at sam-
pling time t respectively. Physically measuring the
transformation from the base link of the robot to
the camera sensor as well as relating the logos at
Klogo to the target location allows an estimated cam-
era pose from a reference coordinate system on the
logo-board Tcameralogo to be linearly tranformed into
Ttargetbase . Getting the transformation Tcameralogo with a
calibrated camera and assuming the pinhole camera
model means solving correspondences of points in
2D image space and those same points in the 3D real
world. After calibrating the camera using the ROS
camera calibration package, the measured points in
the object frame and saved image coordinates are
combined in the Open-CV solvePnP algorithm using
the intrinsic camera parameters. Available variations
of the algorithm are iterative, which is the default
method based on Levenberg-Marquardt optimization
[15] to find a pose which minimizes reprojection er-
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ror (sum of squared distances), P3P based on [7]
which requires only four of the six point pairs and
EPnP mentioned earlier. All three variations were
tried and tested. The estimated rotation and trans-
lation vectors, after using Rodrigues to transform
the rotation vector into the rotation matrix R, form
Tcameralogo and therefore finally Ttargetbase,t . As Siegwart et
al. [31, p. 81ff] write, desired velocity can then eas-
ily be generated using estimated parameters kρ and
kα for a linear controller.

The entire pipeline can be quickly summarized as
follows:

1. Create the visual target with arbitrary logos.
Physically measure the logo corners and their
position in relation to Tlogo. Relate Tlogo to
Ttarget and on the robot Tcamera to Tbase.

2. To avoid bias in data collection, implement a
random-walk in logo vicinity but constrain θ to
enable the camera to face the logo most of the
time. Annotate bounding-box coordinates of the
logos for select images.

3. Train the Faster-RCNN object detector with this
dataset. For docking, load the model and obtain
bounding-boxes using ROS image-callbacks.

4. Use the inferred coordinates together with the
measurements and intrinsic parameters of the
camera in SolvePnP to obtain T targetbase,t at every
timestep t.

5. Use a simple linear controller to generate ROS
motion control commands to guide the robot to-
wards the docking target.

4. RESULTS AND DISCUSSION

During inference, processing a single image
within the ROS pipeline takes the detector approx-
imately 35ms. On average the detection would re-
sult in five bounding box proposals, sorting by con-
fidence and extracting the top three boxes gives six
image coordinates close to the ground thruth typi-
cally within one to four pixels. Evaluating the mIoU
gives 96.3% for thirteen test images. Object de-
tection results are therefore both accurate and con-
fident. The PnP-solver, the second major compo-
nent of the framework, proved to be more trouble-
some producing inaccurate results. All three im-
plementations of the solvePnP algorithm express the

translation vector ~tcameralogo using the right-hand co-
ordinate system Klogo. Preliminary results quickly
showed that all methods are accurate in estimating
y and z translation, but struggle with the x coordi-
nate. To get a better understanding of the pose esti-
mates, in particularly the estimated translation vec-
tor, an extensive field study was conducted. The
robot was steered towards six points and the ground
truth translation and rotation were noted. These
poses are described by Kidx in Fig 2 where idx ∈
{dock, amcl, left close, left far, right close,
right far}. At each point fifteen images were cap-
tured, supplied to the Faster-RCNN model and the
obtained image coordinates from bounding boxes,
specifically six points per image, given to the PnP-
solvers. After first results were analyzed, showing
again large errors in x, changes were made in hopes
of achieving more accurate pose results. In particu-
lar, the following major changes were made:

1. The upper right logo was raised from the plastic
board to remove the coplanarity of all six points.
By removing the coplanarity more information
is available for estimating the camera pose [9].

2. Since solvePnP, unlike regular DLT, does not es-
timate intrinsics, they are a possible cause of er-
ror. The camera was recalibrated and the new
parameters used. The focal lengths and distor-
tion coefficients differed slightly.

3. The autofocus of the camera was turned off.
Captured images were still sharp and logos
clearly visible nonetheless.

Afterwards, the same study was undertaken, captur-
ing sequences of fifteen images at six locations, and
using the detector followed by solvePnP to obtain
camera pose estimates again. The translation vectors
were than saved and subsequently plotted to give a
visual representation of the results. Figure 2 shows
the results of this experiment in a 3D plot. The most
notable thing here is the iterative algorithm flipped
the signs for all three axis in almost all estimates. Its
results are therefore point-symmetrical about the ori-
gin, a known issue when using solvePnP. Also of note
is that the large error in the x direction still persists.
This error occurs throughout all experiments and is
not intuitive; the estimates in x are strangely placed.
All points lie on the negative (right) half plane (with
exception of some iterative estimates), but the es-
timates for the locations with ground-truth in the
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Figure 2. Pose estimates using the OpenCV solvePnP algorithm, for images captured at described six locations. Different
colours are for different methods with black being ground truth locations. Different symbols mark the six different
locations. Units are in centimeters. The 6 coordinate systems give the pose of the robot. The accuracy in estimating y and
errors in x are similar as with the previous experiment. The point symmetry about the origin for the iterative algorithm is
visible, having incorrectly flipped all three axis signs. Variance stays largely the same even with larger z.

left half are not simply mirrored across the z-axis.
The distance gets consistently underestimated yet it
seems with larger absolute value of x in ground-truth
the absolute estimates in x also seem to increase. The
estimates for the location Kleft far break this pattern,
being very close to the estimates for Kamcl, the loca-
tion where the vision based navigation is supposed to
take over after using amcl localization. It can also be

observed that variance only slightly increases about
the estimates in z with increasing z distance. Clus-
ters are very compact, an improvement compared to
the first experiment. This can be attributed to using
more precise intrinsic camera parameters. It is also
visible that all algorithms are accurate for estimating
the small offset in y.

Unfortunately, the reason for this seemingly sys-
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tematic error in x could not be determined as of yet
but considering the flipped signs for almost all esti-
mates made by the iterative method, numeric insta-
bility is likely to contribute to the fragile nature of
the solvePnP class.

5. SUMMARY AND OUTLOOK

In this work a novel framework for docking a mo-
bile robot using only vision-based sensors and algo-
rithms was developed. A CNN based object detector
yielded bounding boxes of logos with high accuracy
and confidence. Measurements of the logos were
taken and related in a coordinate system. The fam-
ily of solvePnP algorithms implemented in OpenCV
was used to estimate the camera pose using the de-
tector results and intrinsic parameters. All methods
consistently estimated wrong distances in one of the
directions, namely the x-axis. Following preliminary
experiments, changes were made, in particular the
coplanarity of the object points was removed and re-
calibration of the camera undertaken, and the same
experiments run again. Unfortunately the errors per-
sisted, although improvements regarding the scatter-
ness of the pose estimates could be made. Conse-
quently, no control commands were generated and
docking of the robot could not take place in this in-
stance. For future reference, it is important to note
the fragility of the solvePnP algorithms. The source
of the errors is unclear and while additional point
pairs could improve results regarding compactness,
it seems unlikely they could alleviate the large errors
in predicting the x coordinates.
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