

Master Thesis

Dissimilar welding of alloy 625 (casted) and alloy 617 (forged) using Electron Beam Welding

Author

Christof Großegger

Field of Study

Production Science and Management

Supervisors

Dipl.-Ing. Dr. techn. Rudolf Vallant (TU-Graz) Dipl.-Ing. Dr. Ing. Claus Lochbichler (voestalpine Gießerei Traisen)

Head of Institute

Univ.-Prof. Dipl.-Ing. Dr. techn. Christof Sommitsch

Institute of Material Science and Management Graz University of Technology, Austria

Graz, July 2014

Acknowledgement

An dieser Stelle möchte ich mich bei allen bedanken, die mich bei der Erstellung meiner Diplomarbeit unterstützt haben.

Als erstes beim Vorstand des Institutes für Werkstoffkunde und Schweißtechnik Univ.-Prof. Dipl.-Ing. Dr. techn. Christof Sommitsch, der mir das Schreiben meiner Diplomarbeit überhaupt erst ermöglicht hat.

Als nächstes bei meinen beiden Betreuern:

Dipl.-Ing. Dr. Ing. Claus Lochbichler von der voestalpine Gießerei Traisen, welcher mir neben dem gesamten Probenmaterial auch seine fachliche Unterstützung zukommen ließ.

Dipl.-Ing. Dr. techn. Rudolf Vallant vom Institut für Werkstoffkunde und Schweißtechnik der TU Graz, welcher mir in vielen Momenten mit Rat und Tat zur Seite stand. Die vielen Diskussionen haben einen großen Anteil zum Entstehen dieser Arbeit beigetragen.

Ein großer Dank gilt auch dem Schweißtechnologen der voestalpine Gießerei Traisen (VAGT), Herrn Ing. Michael Messerer.

Ebenfalls bedanken möchte ich mich beim Laborpersonal des Institutes für die Unterstützung bei meiner Labortätigkeit.

Ich möchte mich auch bei allen weiteren Mitarbeiter des Institutes bedanken, die in irgendeiner Form zum Entstehen meiner Diplomarbeit beigetragen haben.

Abschließend bedanke ich mich bei den Menschen die mir dieses Studium überhaupt erst ermöglicht haben, meiner Familie. Ohne Ihre Unterstützung und den Rückhalt den Sie mir speziell in schwierigen Zeiten meines Studiums gegeben haben, wäre dieses nicht möglich gewesen.

DANKE

Christof Großegger

Statutory Declaration

EIDESSTATTLICHE ERKLÄRUNG

AFFIDAVIT

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als die angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtlich und inhaltlich entnommenen Stellen als solche kenntlich gemacht habe. Das in TUGRAZonline hochgeladene Textdokument ist mit der vorliegenden Masterarbeit identisch.

I declare that I have authored this thesis independently, that I have not used other than the declared sources/resources, and that I have explicitly indicated all material which has been quoted either literally or by content from the sources used. The text document uploaded to TUGRAZonline is identical to the present master's thesis.

Child lotage

Graz, 28.07.2014 Datum / date

Unterschrift / signature

Nowadays the CO_2 emission problem and the global warming get more and more important. The main goal has to be to lower this down as much as possible.

The increase of fossil running power plants' efficiency is an important topic. To achieve this, it is necessary to increase steam pressure and temperature. For the used materials this is very challenging. At these high temperatures the only applicable materials due to the required creep resistance are the so-called nickel based alloys. Due to their high price, they are only used in those parts of the power plant, where they are really necessary.

The scope of this thesis was to investigate the weldability of a dissimilar weld joint, using electron beam welding (EBW). The two base materials were casted nickel based alloy 625 with forged nickel based alloy 617. For comparison another welding process was used. This was done using shielded metal arc welding (SMAW).

To investigate the joints strength, some mechanical tests were performed (tensile-, hardness-, notched-bar-impact test). The investigations on the microstructure were done using light optical microscope as well as scanning electron microscopy.

All the tests were done according to the standards ÖNORM EN ISO 15614-1 and ÖNORM EN ISO 15614-11.

The welding experiments stated out, that the EBW process is better suited for joining this dissimilar weld as the SMAW process. Nevertheless both processes would have passed all tests according to the welding procedure specification (WPS).

Kurzfassung

Heutzutage wird das CO_2 Problem und der globale Temperaturanstieg immer wichtiger. Das Hauptziel muss es sein diese Problematiken so weit als möglich zu reduzieren.

Die Erhöhung des Wirkungsgrades der mit fossilen Brennstoffen betriebenen Kraftwerke ist ein sehr wichtiges Thema. Um das zu erreichen ist es unabdingbar den Dampfdruck und die Dampftemperatur zu erhöhen. Für die verwendeten Materialien ist das aber sehr problematisch. Die einzigen Werkstoffe, die bei solchen Temperaturen hinsichtlich der erforderlichen Kriechfestigkeit noch eingesetzt werden können sind die sogenannten Nickel-Basis Werkstoffe. Aufgrund ihres hohen Preises werden sie aber lediglich in solchen Teilen des Kraftwerkes genutzt, wo sie auch wirklich gebraucht werden.

Das Ziel dieser Arbeit ist die Untersuchung der Schweißbarkeit der artfremden Schweißverbindung mittels Elektronenstrahlschweißen. Die beiden Grundmaterialien sind ein Nibas 625 Gußteil und ein Nibas 617 Schmiedeteil. Zum Vergleich wurde auch ein zweiter Schweißprozess untersucht. Dieser ist der konventionelle Elektrodenschweißprozess.

Zum Untersuchen der Festigkeit der Schweißverbindung wurden einige mechanische Untersuchungen durchgeführt. Diese waren Zug-, Härte- und Kerbschlagbiegeprüfung. Die Untersuchung der Mikrostruktur wurde mittels Licht- und zusätzlich mittels Rasterelektronenmikroskop durchgeführt.

Alle Untersuchungen wurden angelehnt an die Normen ÖNORM EN ISO 15614-1 und ÖNORM EN ISO 15614-11 durchgeführt.

Die Schweißversuche ergaben, dass zum Fügen dieser artfremden Verbindung der EBW Prozess besser geeignet ist, als der Elektrodenschweißprozess. Nichtsdestotrotz haben beide Prozesse die Anforderungen der Schweißprozess-Spezifikation (WPS) erfüllt.

Table of Content

<u>ACK</u>	NOWLEDGEMENT	I
<u>STA'</u>	TUTORY DECLARATIONI	I
<u>ABS'</u>	TRACTII	I
<u>KUR</u>	ZFASSUNGI	V
<u>TAB</u>	LE OF CONTENT	V
<u>1</u> <u>L</u>	IST OF ABBREVIATIONS	<u>1</u>
<u>2</u> <u>I</u>	NTRODUCTION	<u>2</u>
<u>3</u> <u>A</u>	IM OF THE PROJECT	<u>3</u>
<u>4</u> <u>I</u>	ITERATURE REVIEW	<u>4</u>
4.1	CREEP BEHAVIOUR	4
4.1.1	CREEP TEST	5
4.1.2	PRIMARY CREEP	7
4.1.3	SECONDARY CREEP	7
4.1.4	Tertiary Creep	7
4.2	RELAXATION CRACKS (STRESS RELIEF CRACKING)	8
4.2.1	Occurrence	9
4.2.2	AVOIDANCE	9
4.3	ALLOY 6171	0
4.3.1	ALLOYING ELEMENTS	0
4.3.2	Post Weld Heat Treatment (PWHT) alloy 6171	1
4.4	ALLOY 6251	2
4.4.1	Alloying elements	2
4.4.2	Precipitates and Phases	3
4.4.3	Post Welding Heat Treatment (PWHT) alloy 6251	5
4.4.4	Machining and Welding behaviour1	6
4.5	ARC WELDING / SMAW1	7
4.5.1	Equipment1	8

4.5.2	FILLER METAL NIBAS 625	19
4.5.3	FILLER METAL NIBAS 617	
4.6	ELECTRON BEAM WELDING (EBW)	21
4.6.1	History	21
4.6.2	Equipment	
4.6.3	BEAM GENERATION	23
4.6.4	ADVANTAGES	
4.6.5	DISADVANTAGES	
4.6.6	LIMITATIONS	
4.7	DISSIMILAR WELDING	
4.7.1	WELDING PROCEDURE SPECIFICATION (WPS)	
4.7.2	Welding Procedure Testing	
4.7.3	WELDING PROCEDURE QUALIFICATION RECORD (WPQR)	
5 N	AETHODS	32
<u>5</u> <u>1</u>		<u></u>
5.1	WELDING EQUIPMENT	32
5.2	MATERIALS	
5.2.1	CHARACTERISTICS ALLOY 617 – FORGED ALLOY	
5.2.2	CHARACTERISTICS ALLOY 625 – CASTED ALLOY	
5.2.3	CHARACTERISTICS WELD METAL 625 – ELECTRODES FOR SMAW	
5.2.4	CHARACTERISTICS WELD METAL 625 – RODS FOR TIG	
5.3	WELDING OF TEST PIECE AND JOINT PREPARATION AT VAGT	
5.4	WELDING PROCEDURE TESTING	
5.5	TEST LAYOUT	
5.5.1	TENSILE TEST	
5.5.2	NOTCHED-BAR IMPACT-BENDING TEST (CHARPY-V TEST)	
5.5.3	SIDE BENDING TEST	
5.5.4	Hardness Test / Hardness line	
5.5.5	MACROSCOPY AND ETCHING	
5.5.6	MICROSCOPY	
5.6	MATCALC CALCULATIONS	49
5.6.1	EQUILIBRIUM CALCULATION ALLOY 617	51
5.6.2	EQUILIBRIUM CALCULATION ALLOY 625	
5.6.3	EQUILIBRIUM CALCULATION WELD METAL ALLOY 625	
<u>6</u> <u>F</u>	RESULTS AND DISCUSSION	57
6.1	TENSILE TEST RESULTS	57

6.2	NOTCHED BAR IMPACT TEST RESULTS	60
6.3	MACROSCOPY AND HARDNESS TEST RESULTS	63
6.4	LIGHT OPTICAL MICROSCOPY (LOM) ANALYSES	66
6.4.1	1 EBW-AW	66
6.4.2	2 SMAW-AW	
6.4.3	3 SMAW-PWHT	73
6.5	SCANNING ELECTRON MICROSCOPE (SEM) AND EDX ANALYSES	76
6.5.1	1 SEM SMAW-AW ALLOY 617 BASE METAL	77
6.5.2	2 SEM SMAW-AW WELD METAL	79
6.5.3	3 SEM SMAW-AW ALLOY 625 BASE METAL	
<u>7</u>	SUMMARY AND CONCLUSION	83
<u>8</u>	OUTLOOK	84
<u>9</u>	LIST OF FIGURES	<u>85</u>
<u>10</u>	LIST OF TABLES	89
<u>11</u>	REFERENCES	91
<u>12</u>	APPENDIX	95

1 LIST OF ABBREVIATIONS

A617	alloy 617 (Nibas 617)
A625	alloy 625 (Nibas 625)
AEG	Allgemeine Elektrizitäts-Gesellschaft
AW	as welded
BE-mode	backscattered electron - mode
CALPHAD	CALculation of PHAse Diagrams
CCD	charged coupled device
CEA	Commissariat à l'énergie atomique
EBW	electron beam welding
EDX	energy dispersive X-ray spectroscopy
HAZ	heat affected zone
HTGR	high-temperature gas-cooled reactor
HV	hardness Vickers
LOM	light optical microscopy
MATCALC	MATerials CALCulator
РТ	penetration testing
PWHT	post weld heat treatment
pWPS	preliminary Welding procedure specification
RT	radiographic testing
SEM	scanning electron microscope
SMAW	shielded metal arc welding (arc welding by hand)
ТСР	Topologically Close Packed
UT	ultrasonic testing
VAGT	voestalpine Gießerei Traisen
VT	visual testing
WPQR	Welding procedure qualification record
WPS	Welding procedure specification

2 INTRODUCTION

The use of advanced steam cycles in the future Advanced Ultra Super Critical (A-USC) coal-fired power plants, with steam temperatures up to 730°C, which will provide increase in efficiency and reduction of CO2 emission, has modified the profile of the materials utilized. In Figure 1: CO2 Emissions in power plants [2] the increase of efficiency and decrease of CO2 emissions can be seen. As temperatures in the hottest part of the steam cycle in the range of 700°C are above the designed temperature range for creep resistant steels, Ni-base alloys are considered as candidate materials for the most severely exposed components of the new generation of power plants. Due to their excellent long-term high temperatures (engine parts in airplanes and gas turbines). However, production of large, thick walled components, needed for very thick steam piping connected to the steam turbine of A-USC power plants, is a very challenging task for both, the manufacturing technology and the material performance assurance.[1]

FIGURE 1: CO2 EMISSIONS IN POWER PLANTS [2]

The most critical parameter regarding the lifetime of the materials used in such power plants is the creep resistance.

3 AIM OF THE PROJECT

The demand for higher and higher operating temperatures of modern power plants can only be fulfilled by the use of especially creep resistance materials. Due to this requirement the use of nickel base alloys seems to be mandatory. These alloys guarantee also above 700° C an adequate creep resistance. Figure 2: Valve-body [3] shows exemplarily the part, where the material is used in the power plant.

FIGURE 2: VALVE-BODY [3]

Welding will stay the decisive joining technology in power plant production. The "voestalpine Gießerei Traisen" (VAGT) has already some experience with welding of nickel base alloys. In this thesis the focus is on the dissimilar welding of two different nickel base alloys. The first is the alloy 617, which is a forged part and the second is the alloy 625, which is a cast material. The alloy 617 for this investigation was purchased from the company ENPAR. The alloy 625 was produced at VAGT.

As part of this project two different sample welds had been performed. One was done via electron beam welding at the company probeam in Germany and the other one was done via shielded metal arc welding at VAGT. The goal is a characterization of the weld-ability based on the standard of EN ISO 15614-1.

4 LITERATURE REVIEW

This chapter provides a short theoretical background about the topics this thesis deals with.

4.1 CREEP BEHAVIOUR

Materials under stress behave different dependent on the present temperatures. Whereas the deformation at low temperatures is a function just of stress (e=f(s)), the deformation at high temperatures is a function of stress, time and temperature (e=f(s, t, T)). This is due to thermally activated processes during the deformation.

At temperatures above 0,3 - 0,4 T_s [K] (T_s melting temperature) for calculations the timedependent deformation and time-dependent cracking behavior have to be taken into account. In many cases, e.g. for gas turbines, the materials creep behavior limits the working temperature and therefor the efficiency. This is a motivation for the development of new alloys with a high creep resistance.

Two mechanisms of creep are distinguished. First the dislocations creep and second the diffusion creep.

The creep rate for both mechanism is limited due to the diffusion processes, whereas for both the Arrhenius-law is valid. [4]

$$k = A * e^{-\frac{E_A}{R * T}}$$

The mechanism for increasing of creep resistance and the underlying metal physics principles (prevention of dislocation movement and reduction of lattice diffusion) are nowadays well known. In the following the most important mechanisms for a creep resistance increase are listed:

- Reduction of diffusion in the matrix
- Solid solution hardening
- Carbide hardening
- Precipitation hardening
- Reduction of grain boundaries, e.g. coarse grains, directed solidification, single crystal

The lower the diffusion speed, i.e. the movability of atoms in the matrix, the higher the creep resistance. Due to their low diffusion coefficients nickel base alloys have an advantage in comparison to ferritic alloys. [5]

Increasing of creep resistance due to carbide hardening is often done via chromium carbides from the type M23C6 or via niobium, tungsten or molybdenum carbides from type M6C. Carbides in nickel base alloys can still be thermodynamic stable at temperatures above 1000°C, thus the strength increase is also available at high temperatures. Alloy 617 (2.4663) is a typical example for carbide-hardened material. [5]

4.1.1 CREEP TEST

According to DIN 50118

During creep testing a tensile test specimen is stressed at constant temperature and constant load. The observed strain is measured within a certain period. Figure 3: Creep test set-up shows the layout of a creep test facility.

FIGURE 3: CREEP TEST SET-UP

The results of such tests are the creep rates. The curves show three distinguished areas: primary or transitional creep (first range); secondary or stationary creep (second range); and tertiary creep (third range). Figure 4 exhibits a typical creep curve.

FIGURE 4: CLASSICAL CREEP CURVE

The first range, the primary creep, occurs at the beginning of the test. The creep rate in this range is not yet constant. The resistance against strain is increasing until the beginning of the second range. At the secondary creep range the creep rate is more or less constant. Therefor this area is called stationary creep. At the tertiary creep range the creep rate increases, whereas the specimens' cross-section decreases, due to the necking. If the test is progressed the specimen would break. The creep test is normally performed, to determine the minimum creep rate at secondary creep. This deformation has to be considered for the design face of constructions. Similar to a creep test, a stress rupture test is performed. It is also done on a tensile test specimen under constant load and constant temperature. The difference is just the level of the load and the loading time. A stress rupture test is performed at higher loads and short times. Furthermore this test is always done till the rupture. It is used to determine the time until the rupture and strain.

4.1.2 PRIMARY CREEP

In the primary zone, the so-called primary transitional creep, the deformation speed is decreasing. This is due to the fact that the strain hardening outweighs the recovery. In solid solution hardened materials sometimes the opposite case can be observed, because the dislocation concentration increases without a decrease of the dislocation speed. Gradually a steady dislocation structure is built. Therefor the deformation speed has to be also steady.

The dislocations in the specimen are moving, so that no constant dislocation structure can be formed. Overall the parameters like dislocation structure; dislocation concentration and sub grain size remain constant.

The configuration of dislocations to each other does not belong to dislocation structure, because such a definition is senseless. A specimen dislocation structure would be different at any given moment. On the contrary it is a major role if sub grain boundaries are formed, or if the dislocations are homogenous distributed. Therefor these physical values are called parameters. [6]

4.1.3 SECONDARY CREEP

In the secondary zone the deformation rate is constant. If the experiment would not end due to inhomogeneous processes inside the sample, this could not lead to endless strains. Such processes are for example the building of creep pores. Every model, which is able to describe the stationary deformation speed, is also able to describe high strains. Due to the fact that micro-structurally there is no real stationary area, it is questionable if a model even has to describe high strains. [6]

4.1.4 TERTIARY CREEP

In the tertiary zone the creep rate -, in other words - the deformation rate is increasing. This increase is dependent on the specimens necking due to pore creation. Especially at tertiary creep the time is not directly influencing the creep curve. The range of tertiary creep occurs relatively fast, because of high deformation rates and therefor fast reached strains. For the creep curve the tertiary range can represent one third of the whole curve. In terms of lifetime the tertiary range will still just cover $1/20^{\text{th}}$ of the whole lifetime. The position of the creep curves is influenced by the modification of temperature and stress. Both a temperature increase and a stress increase move the curve to a higher level. The shape stays the same, but the fracture strain decreases. [6]

4.2 RELAXATION CRACKS (STRESS RELIEF CRACKING)

In alloys having grain boundaries without precipitations, loads can primarily be reduced through local sliding at areas of particle-free grain boundary seams. The plastically deformation, which occurs before the fracture, is limited to areas of relatively simple deformable grain boundaries. The grains inside are hardened due to precipitation processes. At the environmental area of grain boundaries high stress-concentrations can occur, because the amount of grain boundaries at the total volume is low. The interaction between stress-concentrations and simple deformable grain boundaries leads to inter-crystalline separation. This appears brittle under macroscopic investigations, because the macroscopic deformations are low. Under microscopic investigations these segregations look like ductile along the grain boundaries. The reason for this is a structure with different local deformation abilities. The crack initiation starts, if the deformation resources of the particle-free grain boundary seams are varying. Therefor not the grain boundaries in comparison to the grains' inside. Figure 5 shows a typical fracture surface of a relaxation cracking damaged specimen. [7]

FIGURE 5: RELAXATION CRACK - FRACTURE SURFACE [7]

4.2.1 Occurrence

Relaxation cracks occur at the coarse grain area of the HAZ after stresses relieve annealing. Sometimes damages occur during annealing between hot forming processes. In any case they are constrained to technological processes. By adequate temperature control at first precipitates are solved and due to reheating again precipitate. For this reason the cracking occurs.

To explain this phenomenon it has to be assumed, that during the pre-heating a stress reduction starts due to conversion from elastic to plastic deformation at creep conditions. This takes place in a matrix, where precipitates exist, providing a high thermal stability of the matrix (inside the grains). The grain boundaries crack already at macroscopic strains at levels of 0.2% due to high concentration of slide-processes. The level of heat treatment or welding residual stresses can be high enough to cause relaxation cracks. The main factor is the difference in strength of the grain boundaries and the matrix (grain inside). [7]

4.2.2 Avoidance

Reduction of residual stresses due to welding: (no cross section or shape variation, no material mass accumulation, no excess weld material, low stresses due to heat). Regarding the materials structure a coarse grain size is detrimental for stress relief cracking. Annealing as a heat treatment reduces the susceptibility to cracking. Short delay time in the critical temperature range and high heating rates are also reducing the danger of crack initiation. As far as possible an crack-inspection (using magnetic particle inspection or dye penetrant testing) has to be done after welding such susceptible materials. [7]

4.3 Alloy 617

Alloy 617, also designated as Inconel 617, UNS N06617, or W. Nr. 2.4663a, was initially developed for high temperature applications above 800°C. It is often considered for use in aircraft and land-based gas turbines, chemical manufacturing components, metallurgical processing facilities, and power generation structures. The alloy was also considered and investigated for the high-temperature gas-cooled reactor (HTGR) programs in the United States and Germany in the late 1970s and early 1980s. Alloy 617 retains some creep strength at temperatures above 870°C, the alloy has good cyclic oxidation and carburization resistance, and good weldability. It also exhibits lower thermal expansion than the most austenitic stainless steels and shows high thermal conductivity if compared to other alloy. It retains toughness after long-time exposure at elevated temperatures and does not form complex intermetallic phases that can cause embrittlement. [7]

4.3.1 Alloying elements

In Table 1: chemical nominal composition of A617 (in weight%) [8], the nominal composition of alloy 617 between the min. and max. limits can be seen.

С	Si	Mn	В	S	Cr	Mo
0.05-0.15	<1	<1	< 0.006	< 0.015	20-24	8-10
Ni	Со	Ti	Fe	Al	Cu	

TABLE 1: CHEMICAL NOMINAL COMPOSITION OF A617 (IN WEIGHT%) [8]

The required combination of creep resistance, corrosion resistance and stability restricts the possible options of alloys for high temperature energy systems to high-chromium, nickel-based solid solution alloys with relatively large and stable grain sizes. In nickel-based alloy 617, solution strengthening is primarily based on Co and Mo, while oxidation resistance is provided predominantly by Cr and Al. Under oxidizing conditions, Cr forms a dense oxide scale that protects the alloy from significant environmental degradation. In addition, the grain structure of 617 is stabilized after long-term exposure to elevated temperature by the formation of both intergranular and intra-granular carbides Cr23C6 and Mo6C. The presence of carbides on the grain

boundaries prevents boundary migration and contributes to creep resistance. The Cr-rich carbides are thought to precipitate primarily on the grain boundaries, while the Mo-rich precipitates are usually found within the grains matrix. Both inter-granular and intra-granular carbides are believed to affect the mechanical, creep and fatigue properties of the alloy. [9]

4.3.2 POST WELD HEAT TREATMENT (PWHT) ALLOY 617

In Figure 6: Time-temperature-transformation-diagram alloy 617 [10] it can be seen, which phases or precipitates can occur at different temperatures after certain time.

FIGURE 6: TIME-TEMPERATURE-TRANSFORMATION-DIAGRAM ALLOY 617 [10]

It is evident from the TTT diagram that various types of carbides formed in this alloy depend on various factors, like history of solidification, carbon concentration and heat treatment temperature, e.g. MC ('M' is mainly Ti), $M_{23}C_6$, ('M' is mainly Cr) and M_6C ('M' is mainly Mo). Some alloys are classified as precipitation hardening. If a precipitation-hardening alloy is quenched, its alloying elements will be kept in solution, resulting in a soft metal. Aging an oversaturated alloy will allow the alloying elements to diffuse through the microstructure and form intermetallic particles. These intermetallic particles will nucleate and precipitate out of solution and act as a re-enforcing phase, thereby increasing the strength of the alloy. Alloys may age "naturally" meaning that the precipitates are formed at room temperature, or they may age "artificially" if precipitates are only formed at elevated temperatures.

4.4 Alloy 625

The alloy 625 (A625) is a nickel-based super alloy with good mechanical properties, superior corrosion behavior and outstanding creep resistance. The microstructure of this material is cubic face centered and there are no phase transitions in the solid state. A625 is strengthened mainly by carbon, chromium, molybdenum and niobium. The high strength is achieved by solid solution hardening (Mo, Nb) and by precipitation hardening which is mainly derived from the metastable γ " phase [Ni3 (Nb, Al, Ti)]. Depending on the application of this material (high corrosion resistance or high creep resistance) different heat treatment is performed. For high temperature applications (T>600°C), where higher strength and better creep properties are required, the material is solution annealed at 1120°C to form Ni3 (Nb, Mo) phases. [11]

4.4.1 Alloying elements

In Table 2: chemical nominal composition of A625 (in weight%) [12], the nominal composition of alloy 625 between the min. and max. limits can be seen.

С	Si	Mn	Р	S	Ni	Мо
<0.1	< 0.5	<0.5	< 0.015	< 0.015	>58	8-10
Al	Cr	Nb, Ta	Со		Ti	Fe
<0.4	20-23	3.15-4.15	<1		<0.4	<5

TABLE 2: CHEMICAL NOMINAL COMPOSITION OF A625 (IN WEIGHT%) [12]

4.4.2 PRECIPITATES AND PHASES

γ^{\prime} - phase

This intermetallic phase (Ni3Al) is present in many nickel base alloys and is used as precipitation hardener. In the alloy 625 the γ ' - phase plays a minor role, since the Al and Ti contents are low and the A625 tends to form the Nb-rich γ " - phase. [11]

γ " - phase

This γ " body-centered tetragonal phase (Ni3Nb) is metastable; it starts to be dissolve at 650°C. The precipitation kinetic of this phase is very slow, and results in a better weldability and a higher resistance against strain-age cracking during heat treatment. [11]

The γ " – phase in cast alloy 625 was analyzed in the Master Thesis of B. Bezzola (see [13]).

δ – phase

After some time the γ " - phase is transformed into the stable, orthorhombic ordered δ - phase. The δ -phase is undesirable because it is incoherent with the Ni matrix and therefore not an effective strengthener. In addition, it leads to embrittlement. This behavior results in a reduced creep resistance. [11]

The δ – phase in cast alloy 625 was analyzed in the Master Thesis of B. Bezzola (see [13]).

Laves phase

This is a TCP (Topologically Close Packed) phase with a nominal stoichiometry of A2B ((Cr, Fe, Ni) 2 (Si, Ti, Nb, Mo)), which is hard and brittle. This phase causes a reduction of the solid solution hardening elements Cr, Mo and Fe in the matrix and leads to a reduction in mechanical strength. In further consequence the reduction of Cr and Mo in the matrix can reduce the corrosion resistance drastically. Therefor the formation of the Laves phase should be avoided. [14]

MX

The MX particles have a cubic face centered crystallite structure and are primary precipitates from the melting. Two sorts of this primary precipitates exist, the Ti- rich carbon-nitrides and the Nb- rich carbides. The Ti- rich carbon-nitrides precipitate soon from the melting. Considering the high diffusion speed at this temperature level, less big and blocky particles are built. The Nbrich carbides are formed at the end of the solidification and can be found in inter dendritic regions along grain boundaries. [14]

M₂₃C₆

This carbide has a complex cubic structure. Its main component is Cr, but it can be substituted by Fe, Ni, Co and Mo by approximately 30%. $M_{23}C_6$ carbides normally precipitate during a post weld heat treatment or during service operations between 760 and 980 °C. The precipitates are formed at grain boundaries, twin boundaries or stacking faults. Fine, single $M_{23}C_6$ precipitates at grain boundaries improve the creep resistance, due to the prevention of grain boundary sliding. [14]

M_6C

The M_6C carbides are mostly built at Mo- rich areas. Considering the distinct segregation behavior of Mo, this carbides can be formed at Mo- rich inter dendritic areas as well as at grain boundaries during the solidification. In the solid state this M_6C carbides precipitate at temperatures between 815 and 980°C. Above 1000°C the carbides are not stable anymore and turn into MX particles. [14]

M_3B_2

Boron as alloying element increases the creep resistance. In combination with other elements like Mo, Nb, Ti, Cr, Ni or Co, it forms borides called M_3B_2 at the grain boundaries. These borides are hard and are building a grain boundary solidification. Boron tends to segregate, thus the M_3B_2 precipitate at low temperatures. Boron increases the grain boundaries wetting so that the risk of hot cracking increases, too. In alloy 625 the boron concentration is low, but due to weld penetration and dilution a little amount of boron in the weld metal is possible. [15]

4.4.3 Post Welding Heat Treatment (PWHT) alloy 625

In Figure 7: Time-temperature-transformation-diagram alloy 625 [16] it can be seen, which phases or precipitates can be formed at different temperatures after certain time.

FIGURE 7: TIME-TEMPERATURE-TRANSFORMATION-DIAGRAM ALLOY 625 [16]

It is apparent from the TTT diagram that various types of carbides, such as MC ('M' is mainly Nb and Ti), $M_{23}C_6$, ('M' is mainly Cr) and M_6C ('M' is mainly Ni, Nb and Mo) are formed in this alloy. These precipitations1 depend upon various factors, including history of solidification, carbon concentration and head treatment temperature. Apart from the carbides and Laves phases, mostly formed during the solidification process, several other ordered phases, such as γ' (Ni₃ [Ti,Al]), γ'' (Ni₃Nb), δ (Ni₃[Nb,Mo]), Ni₂(Cr,Mo) also precipitate in Alloy 625. The TTT diagram however does not show the Ni₂ (Cr,Mo) phase that is formed after aging below 873 K and is known to dissolve if heated above this temperature. [16]

4.4.4 MACHINING AND WELDING BEHAVIOUR

Due to the high ductility and work hardening of the A625, machining is costly. For machining, a low cutting speed and a low feed rate should be selected; an adequate machining depth is important in order to undercut the work-hardened zone. [17]

Precipitation hardened nickel-base super alloys are susceptible to hot cracking in conventional welding processes, because of the formation of low melting eutectics. Furthermore, the creep resistance of these alloys decreases if the welding process leads to a reduction in grain size. The rapid temperature cycle and the concentrated heat input during EBW counteract here. Because A625 has no phase transformation in the solid state, there is only grain growth to be expected in the HAZ; starting from the melting zone, the grain size decreases continuously. Working with nickel requires a maximum of cleanliness; Sulphur (comprised in oil, grease, ...) can form the low melting Ni-Ni3-S2 eutectic (melting temperature 637°C). [17]

4.5 Arc welding / SMAW

In this thesis the shielded metal arc welding (SMAW) process was used for experimental investigation (see chapter 6).

At SMAW the electric arc is burning between a coated melting electrode and the work-piece. This welding circuit can be seen in Figure 8. Basically it consists of a welding machine, an electrode and ground cable, the electrode holder and an electrode.

The welding arc and the molten base material are protected from air by the shielding gas out of the coating and the slag. This process is shown in Figure 9.

This welding process is versatile useable at all welding positions and especially in the field. The machines for welding are relatively simple and cheap.

With this process different engineering materials can be welded. Theses are ferrous materials, nickel and nickel-alloys, copper and aluminum materials.

It is possible to weld thin metal sheets (1,5mm) with single layer technique, or thicker sheets (up to 50mm) with multi layer technique. [18]

<u>Advantages</u>

- Possibility of welding at construction site
- Welding devices not as expensive as for EBW
- No vacuum chamber needed

Disadvantages

- Long welding time for thicker metal sheets (e.g. multi layers)
- Welding joint preparation (different groove types)
- Atmospheric influences (e.g. Dust, humidity, Oxygen)
- Higher total heat input per unit length of weld (low welding speed)

4.5.1 Equipment

In Figure 8 the equipment for manual arc welding is shown. Basically it consists of a power source, ground and electrode cable and the electrode holder.

FIGURE 8: WELDING CIRCUIT FOR A SHIELDED METAL ARC WELDING (SMAW) [19]

Figure 9 shows the detailed welding process. It can be seen, how the electrode is melting and the weld pool is formed.

FIGURE 9: WELDING PROCESS FOR SMAW [19]

Filler Materials

Due to different welding processes the industry provides different types of filler materials for nickel-base alloys. The following chapter gives a short overview about the possibilities and differences.

4.5.2 FILLER METAL NIBAS 625

GMAW solid wires GMAW flux cored wires SMAW electrodes

For gas or shielded metal arc welding (GMAW / SMAW) of high-quality joints, filler metals of Nibas 625 for alloy 625, alloy 825 as well as Cr-Ni-Mo stainless alloys with high Mo-content are applied. Furthermore theses alloys are recommended for high-temperature materials (creep and heat resistant) and cryogenic materials as well as for joining of dissimilar steels and also for difficult to weld steels.

Nibas 625 filler materials can be used for pressure vessel fabrication for service temperatures range -196 °C to 550 °C as well as for high-temperature applications for scaling resistance limits up to 1200°C (S-free atmosphere). Due to the weld metal embrittlement between 600 - 850°C, this temperature range should be avoided. Highly resistant to hot cracking; furthermore, C-diffusion at high service temperatures or during post weld heat treatment of dissimilar steels is largely inhibited.

Further advantages of Nibas 625 filler materials are the extreme resistance to stress corrosion cracking and pitting, the thermal shock resistance of the fully austenitic microstructure, the low coefficient of thermal expansion (in between C-steels and austenitic Cr-Ni (Mo) steels). Wire and weld metal satisfy highest quality standards.

The electrodes have excellent welding characteristics in all positions except vertical-down, easy slag removal, high resistance to porosity. Electrodes and weld metal meet highest quality requirements. [20], [21]

FIGURE 10: FILLER MATERIAL NIBAS 625

Figure 10 shows the packaging of the filler material used for the experiments.

4.5.3 FILLER METAL NIBAS 617

GMAW solid wires SMAW electrodes

These filler materials are suitable for joining high-temperature and similar nickel-base alloys, heat resistant austenitic and cast alloys, such as 2.4663 (NiCr21Co12Mo), 2.4851 (NiCr23Fe), 1.4876 (X10NiCrAlTi3220), 1.4859 (GX10NiCrNb3220). The weld metal is resistant to hot cracking and is used for service temperatures up to 1100°C due to its high scale and temperature resistance Furthermore this weld metal has high resistance to hot gases in oxidizing and carburized atmospheres, e.g. gas turbines, ethylene production plants.

The electrodes can be welded in all positions except vertical-down. It has a stable arc and easy slag removal. [20], [21]
4.6 ELECTRON BEAM WELDING (EBW)

For the generation of the electron beam a tungsten cathode is heated to enable a thermal emission of electrons out of the cathode surface. Between cathode and anode a high voltage (60-150kV) is applied. This voltage accelerates the electrons to 2/3 a speed of light and they impact towards the work piece, whereby they are focused via magnetic lens. Due to this focusing to a minimum beam diameter of 0,1 - 0,2mm a very high energy densities of $> 10^6 W/cm^2$ is achieved. If the electrons impact on the work piece, they convert the kinetic energy into thermal energy. As a consequence the work piece is heated, partially melted or vaporized. During the conversion x-rays are formed and absorbed by a plumb lining of the vacuum chamber.

To avoid an oxidation of the cathode and an deflection of the beam (due to collision with gas particles), the whole process is performed in vacuum. The vacuum level is about 10⁻⁵-10⁻⁶ mbar in the beam generator and about 10⁻⁴-10⁻⁵ mbar in the working chamber. For the generation of this high vacuum, pumps (piston, diffusion and turbo pumps) are necessary. They have a high amount on the whole investment for EBW equipment. [18]

4.6.1 HISTORY

Electron beams apply the principles of electro-optics, which have been well defined and explored since the beginning of 1920s. The use of electron beams in welding was discovered a few decades later by Dr. Karl-Heinz Steigerwald and Dr. Jacques-André Stohr. They both worked independently on this topic. Steigerwald experimented with electron microscopes for the Allgemeine Elektrizitäts-Gesellschaft (AEG), a German producer of electrical equipment. He discovered the potential of electron microscopes for drilling and welding. Steigerwald found a solution and was looking for applications. Stohr who worked for the Commissariat à l' énergie atomique (CEA) and had to solve the problem of welding reactive materials. He discovered the use of electron beams in welding accidentally during manipulations on X-ray tubes. [22]

In Germany AEG considered this technique uninteresting. Fortunately the American patent broker, Mr. Irving Rossi, realized the potential of this technology and funded Steigerwalds research. In 1952 he built the first electron beam machine. Finally, in 1958, the first deep penetration welds in a zircaloy plate were performed. [23]

The availability of capital in nuclear- and aerospace industries in the early 1960's was of essential importance for the development of this technology. Just shortly after the pioneering work of Steigerwald, electron beam welding started to be used industrially.

- welding of synchronizing rings to gears; Volkswagen (1961)
- welding of artificial hip joints (1963)
- welding of water-cooled aluminum pistons for car engines (1969) [24]

4.6.2 Equipment

All EBW systems are constructed of the same basic modules, as shown in Figure 11: EBW machine layout.

FIGURE 11: EBW MACHINE LAYOUT [25]

The High-voltage generator provides the electric power needed in the EB generator (or EB gun) to generate the electron beam. Moreover, the magnetic lenses for beam focusing, adjusting and deflecting are located inside the generator. The EB generator is separated from the working chamber by a valve. A constant high vacuum in the generator can be maintained, while venting the working chamber. The manipulation system (e.g. rotary table) can perform a macroscopic movement of the work piece. The generator vacuum unit and the chamber vacuum unit contain several different vacuum pumps to create the required vacuum (generator $p_{gen} \approx 10^{-5}$ mbar; chamber $p_{cham} \approx 10^{-3}$ mbar). The cooling system regulates the temperature of the worker whole system can be controlled and monitored by the machine control. [26]

4.6.3 BEAM GENERATION

The beam generation takes place in the EB generator. Its main components are shown in Figure 12: EB generator.

FIGURE 12: EB GENERATOR [27]

The cathode is the electron source. It is a flat ribbon filament usually made of tungsten. By heating up the cathode, electrons gain enough thermal energy to release the material surface. They gather around the filament and form an electron cloud. The number of the emitted electrons correlates with the temperature of the filament, as shown in Figure 13: Emission current density over cathode temperature. [22]

FIGURE 13: EMISSION CURRENT DENSITY OVER CATHODE TEMPERATURE [28]

The dashed lines represent the current density as a result of the auxiliary voltage of the bias. The bias (or Wehnelt-cylinder) is needed to control the beam current; a negative voltage in the bias reduces the beam current and the beam is pinched. By pinching the beam the bias also adjusts the location of the first real beam crossover. The position of the beam crossover is important for the divergence of the beam, which influences the focal position. Figure 14: Triode system shows schematically the build-up of this so called triode system. [22]

FIGURE 14: TRIODE SYSTEM [28]

The bottom part of the triode system is the anode, which is contrary to the cathode at ground potential. The electric field between these two components is responsible for the acceleration of the electrons. The acceleration voltage is constant during welding. The power of the beam is adjusted by the beam current, which is equivalent to the number of electrons in the beam per unit time. [22]

Behind the anode, a set of lenses is required to shape the electron beam and to position it accurately. This section in the EB gun is called beam optics. The magnetic lenses use the Lorentz force to manipulate the path of the electrons. The lenses consist of copper coil inside the iron pole pieces. The first lens is called centering coil (Figure 15: Centering coil). It is used to keep the electrons in the center of the gun to minimize lens errors. The stigmator (Figure 16: Stigmator) controls the beam shape by correcting the astigmatism. [22]

The then following focal lens, alters the focus of the beam, which is important to place the crossover in the right position related to the workpiece surface. Furthermore the focal lens is responsible for the divergence of the beam; thereby for the minimum beam diameter on the surface of the workpiece too, which is equal to beam intensity in this spot. [22]

FIGURE 16: STIGMATOR [27]

The deflector is the bottom part of the EB generator. The working principle of this lens is equal to the centering coil. Beam deflection is performed direct to the beam across the work piece. Deflection can be done very rapidly because the beam has marginal inertia. Because of this, several special welding techniques can be applied (beam oscillation, simultaneous welding and beam wobbling).

In addition to the beam optics a light-optical viewing system and an electron-optical viewing system are installed. Both systems are made for controlling the welding process. The light-optical system is a charge-coupled device (CCD) camera. The electron-optical system uses the backscattered electrons and the secondary electrons to create an image; the same principle as used in a scanning electron microscope (SEM). [22]

4.6.4 ADVANTAGES

- Accurately controllable energy density and the small beam size makes it possible to control dilution and to weld with high precision and thus weld both very thin and very thick metals, i.e. from 0.025- 300 mm.
- Possible accurate beam alignment at any position allows the two base metals to melt selectively for a better setting of the metallurgical behavior.
- Low total heat input per unit length of weld produces narrow weld bead and HAZ, resulting in low residual stresses and minimum distortion, which can cause serious problems for conventional fusion welding processes.
- It is possible to solve problems associated with metallurgical incompatibility more accurately with EBW when using a suitable filler material, although this can also be a possible solution for arc welding, too.
- High purity environment (vacuum) for welding minimizes surface contaminations like oxygen, nitrogen and hydrogen, what is particularly beneficial for reactive and refractory alloys.
- Dissimilar-metal combination involving high thermal conductivity metals such as copper can be welded without preheating. [29]

4.6.5 DISADVANTAGES

- Expensive welding equipment
- Size of weldable work-piece depend on the vacuum chamber size

4.6.6 LIMITATIONS

- Problems related to melting and mixing of dissimilar metals during fusion welding still exist.
- Possible beam deflection by electrostatic and magnetic fields when welding dissimilar alloys.
- Vacuum environment normally necessary, i.e. welding alloys with a high vapor pressure is not possible
- High accuracy requirement in groove preparation.

- Rapid solidification may result in brittleness or high hardness of the weld and many welding defects, e.g. porosity.
- Use of vacuum chamber may reduce product size and limit the product design.
- Although beam oscillation can minimize the groove preparation requirement, it may cause problems for dissimilar-metal joining due to the possible uncontrollable fusion ratio of the two metals.
- High equipment and running cost. [29]

4.7 DISSIMILAR WELDING

Dissimilar-metal joints are characterized particularly by compositional gradients and microstructural changes, which yield large variations in chemical, physical, and mechanical properties across the joint. Therefore the joining of dissimilar alloys is normally far more complex than the joining of similar alloys. [29]

4.7.1 WELDING PROCEDURE SPECIFICATION (WPS)

According to ISO 15609-1:2004 (specification and qualification of welding procedures for metallic materials – Welding procedure specification – Part 1: Arc welding) [30]

A WPS is a document that describes how welding has to be carried out in production. They are recommended for all welding operations and many application codes and standards make them mandatory.

At first a preliminary Welding Procedure Specification (pWPS) has to be generated. If the welded specimen passes all the tests regarding to ISO 15614 the pWPS turns into a WPS. In Figure 17: pWPS DA_Grossegger the pWPS for the welding joint of that thesis can be seen.

In this case two different materials had to be welded: Alloy 617 forged and alloy 625 cast material. The butt weld joint preparation was a double 'V'-shaped groove of 30° angle to the vertical at the root and 15° angle at the top. The root face was 3mm and the welding gap was about 2mm. The angle presetting was approximately about 3° to compensate the distortion due to weld metal shrinkage (see Figure 24, Chapter 5.3). Here two welding procedures are applied. The Tungsten Inert Gas Procedure (TIG 141) for the root runs and the Shielded Metal Arc Welding Procedure (SMAW 111) for the filler and the cover runs. After the root was weld, the backside was grinded out and a sealing run was performed. This was also done using the TIG process. The sealing run was examined by penetration testing (PT) to guarantee a crack free welding. As filler material the Nibas 625 instead the Nibas 617 was used, because of better experience on VAGT side. The interpass temperature had to be below 150°C to avoid the danger of hot cracking. The control of the welding machine regarding current and voltage was done by the welder's preferences inside the limits from the pWPS.

preliminary Welding Procedure Specification (pWPS)							
Client:		voest alpi	ne Traisen	Project:	C	DA Großegge	er
Procedure D	escription:	50mm	n weld	Number:	рW	PS_2013100)7-2
Material:		alloy 617 & alloy 625			•		
Position:		Р	A	1			
Preheat [°C]	:	20)°C	1			
		ro	ot	fil	ler	CO	ver
Welding Pro	cess:	Т	G	SM	AW	SM	AW
Filler:		FOX Niba	as 625-IG	FOX Ni	bas 625	FOX Ni	bas 625
Polarity:		=	/-	=	/+	=	/+
Shielding Ga	IS:	ceramic	backing		-		-
Purge Gas:		100%	Argon		-		-
				Į			
		Filler size			Interpass	Current /	Heat input
Pass No.	Process	[mm]	Amps	Volts	Temp. [°C]	Polarity	[kJ/cm]
1-3	141	2.4	180-190	12-18	<150	=/-	8.4
4	111	3.2	65-95	22-24	<150	=/+	3.7
5-14	111	4	90-120	24-26	<150	=/+	4.4
15-v	111	5	140-160	24-28	<150	=/+	6.5
/						,	-/-
	Design of	the joint		welding sequence			
50 50 50 50 50 50 50 50				grind out roc	t / weld a sea	Iing run from	ISB the backside
Internation Engineer	al Welding Approved	Christof GROßEGGER / Michael MESSERER					
Approved	for Client			voest	alpine		

FIGURE 17: PWPS DA_GROSSEGGER (TRAISEN, MARCH 10, 2014)

4.7.2 Welding Procedure Testing

According to ISO 15614-1:2004 (Specification and qualification of welding procedures for metallic materials - Welding procedure test - Part 1: Arc and gas welding of steels and arc welding of nickel and nickel alloys). It is necessary to do a Welding Procedure testing to prove the qualification for performing this welding joint for customers. This Welding Procedure Testing has to be done according to the standards of ISO 15614.

4.7.3 WELDING PROCEDURE QUALIFICATION RECORD (WPQR)

The WPQR is a representation of the specimens testing results. The tester has to date, stamp and sign them. It is recommended to use a WPQR template for a consistent design of the results. Figure 18: Specimen Layout Pipe Weld for mechanical and metallographic testing [31] and Figure 19: Specimen Layout Butt Weld for mechanical and metallographic testing [31] shows the areas, where the test specimens are machined out from the welded part.

FIGURE 18: SPECIMEN LAYOUT PIPE WELD FOR MECHANICAL AND METALLOGRAPHIC TESTING [31]

- Area 1 tensile test specimen, bending specimen, side-bending specimen
- Area 2 notched specimen
- Area 3 tensile test specimen, bending specimen, side-bending specimen
- Area 4 metallographic specimen, hardness test specimen
- Area 5 metallographic specimen
- Area 6 metallographic specimen

FIGURE 19: SPECIMEN LAYOUT BUTT WELD FOR MECHANICAL AND METALLOGRAPHIC TESTING [31]

- Area 1 cross tensile test specimen, bending specimen, side-bending specimen
- Area 2 notched specimen
- Area 3 cross tensile test specimen, bending specimen, side-bending specimen
- Area 4 metallographic specimen, hardness test specimen
- Area 5 waster: if t>25mm, waster=50mm width
- Area 6 welding direction

The specimen layout in Figure 19 was applied for the present investigation, see chapter 6.

5 Methods

This chapter provides an overview about the materials used and the required tests for performing a welding procedure test.

Due to a lack of material it was not possible to perform all demanded tests according to ISO 15614-1 (Specification and qualification of welding procedures for metallic materials - Welding procedure test - Part 1: Arc and gas welding of steels and arc welding of nickel and nickel alloys) [32] and 15614-11 (Specification and qualification of welding procedures for metallic materials-Welding procedure test- Part 11: Electron and Laser beam welding) [31]. So the side-bending test (see 5.5.3) was not performed.

5.1 WELDING EQUIPMENT

The welding machine used for TIG and SMAW welding was a Fronius MagicWave 3000. Fehler! Verweisquelle konnte nicht gefunden werden. shows this welding machine. It is a fully digital controlled AC/DC power source, useable for both welding processes. It provides a maximum welding current of 300A and a highly stable arc due to its digital welding process control. Fehler! Verweisquelle konnte nicht gefunden werden. shows the characteristics of the power source. This is the reason for the stable arc. The vertical characteristic of current and voltage enables a nearly constant arc-power (P=U*I) in case of variations of the arc-length. This variation cannot be avoided, due to the manual handling. [18], [33]

FIGURE 20: FRONIUS MAGICWAVE 3000

FIGURE 21: POWER SOURCE CHARACTERISTICS [18]

5.2 MATERIALS

The materials investigated in this thesis were provided by the voestalpine Gießerei Traisen (VAGT).

The materials were investigated at two different conditions: "As welded" (AW) and after a heat treatment, called "post welding heat treatment" (PWHT).

The heat treatment was done at VAGT as followed:

Heating rate:	50°C/h
Temperature:	800°C
Holding period:	4h
Cooling:	at air environment

5.2.1 Characteristics Alloy 617 – Forged Alloy

The labeling of the alloy 617 is NiCr22Co12Mo and the DIN standard materials number is 2.4663. The composition of the lot is listed in Table 3: Chemical composition of forged alloy A617 (in weight %) and the mechanical properties are shown in Table 4: Mechanical properties of forged alloy A617.

С	Si	Mn	Р	S	Cr	Мо
0.065	0.04	0.02	0.002	0.002	21.99	8.72
Ni	Со	Cu	Ti	Fe	Al	В
55.31	11.61	0.02	0.41	0.59	1.14	0.001

TABLE 3: CHEMICAL COMPOSITION OF FORGED ALLOY A617 (IN WEIGHT %) - (COMPANY ENPAR 73467/214158)

 TABLE 4: MECHANICAL PROPERTIES OF FORGED ALLOY A617 – (COMPANY ENPAR 73467/214158)

Rp 0.2%	Rm	A	Z	hardness
[N/mm ²]	[N/mm ²]	[%]	[%]	[HB]
376	771	60	65	225

5.2.2 Characteristics Alloy 625 – Casted Alloy

The labeling of the alloy 625 is NiCr22Mo9Nb and the DIN standard materials number is 2.4856. The composition is listed in Table 5: Chemical composition of casted alloy A625 (in weight %) and the mechanical properties are shown in Table 6: Mechanical properties of casted alloy A625.

С	Si	Mn	Р	S	Cr	Ni	Mo	Cu	V	Ti
0.028	0.314	0.250	0.007	0.003	21.594	61.994	8.264	0.045	0.009	0.248
Al	Mg	Nb	Со	Pb	В	Ta	Zr	Ν	Fe	W
0.212	0.002	3.337	0.020	0.004	0.002	0.001	0.002	0.004	3.653	0.003

TABLE 5: CHEMICAL COMPOSITION OF CASTED ALLOY A625 (IN WEIGHT %) - (VAGT:505326-SP-NIBAS-625-SA-MEL)

TABLE 6: MECHANICAL PROPERTIES OF CASTED ALLOY A625 – ((VAGT:505326-SP-NIBAS-625-SA-MEL)

Rp 0.2%	Rm	Α	Z	Ak1	Ak2	Ak3
$[N/mm^2]$	$[N/mm^2]$	[%]	[%]	[J]	[J]	[J]
265	549	52.7	46	300	278	316

$5.2.3 \quad \text{Characteristics weld metal } 625-\text{Electrodes for SMAW}$

The type of the weld metal is produced by welding BÖHLER FOX NIBAS 625 stick electrodes for SMAW. The labeling according to ISO 14172 is E Ni 6625 (NiCr22Mo9Nb).

TABLE 7: CHEMICAL COMPOSITION OF THE MMA WELD METAL NIBAS 625 - (BÖHLER WELDING-GUIDE 2013)

С	Si	Mn	Мо	Cr
0.025	0.4	0.7	9	22
Nb	Со	Ni	Fe	Al
3.3	0.05	63.625	0.5	0.4

TABLE 8: MECHANICAL PROPERTIES OF THE MMA	WELD METAL NIBAS 625 – (BÖHLER WELDING-GUIDE 2013)
---	--

Rp 0.2%	$\frac{\mathbf{Rm}}{[\text{N/mm}^2]}$	A	Ak1
[N/mm ²]		[%]	[J]
530	800	40	80

$5.2.4 \quad \text{Characteristics weld metal } 625-\text{Rods for TIG}$

The type of the weld metal is produced by welding BÖHLER FOX NIBAS 625-IG rods for GTAW. The labeling according to ISO 18274 is S Ni 6625 (NiCr22Mo9Nb).

 TABLE 9: CHEMICAL COMPOSITION OF THE TIG WELD METAL NIBAS 625-IG – (BÖHLER WELDING-GUIDE 2013)

С	Si	Mn	Мо	Cr
0.02	0.1	0.1	9.0	22
	·	·	·	•
Nb	Ti	Ni	Fe	-
3.6	+	64.68	0.5	-

TABLE 10: MECHANICAL PROPERTIES OF THE MMA WELD METAL NIBAS 625 - (BÖHLER WELDING-GUIDE 2013)

Rp 0.2%	$\frac{\mathbf{Rm}}{[\text{N/mm}^2]}$	A	Ak1
[N/mm ²]		[%]	[J]
540	800	38	160

5.3 Welding of test piece and joint preparation at VAGT

In Figure 22: Design of Welding Joint the cross section of the prepared joint can be seen. The reason for this design is that in comparison to a normal chamfer (U- or V-joint), less weld material is needed for the joint, because of the smaller angle of 10° from the middle to the top. The welding was done by a certificated welder of VAGT according to the pWPS (see 4.7.1, Figure 17: pWPS DA_Grossegger). In Figure 23: Welding Sequence, the runs and passes according to the pWPS can be seen.

FIGURE 22: DESIGN OF WELDING JOINT

FIGURE 23: WELDING SEQUENCE TIG/SMAW

In Figure 24: Test-piece layout the real test-piece can be seen. It is the state just before the welding. To compensate the angular shrinkage due to welding, the test pieces do have an angle presetting of approximately 3-5° (dependent on the welders experience). After some welded layers the welding specimen became even. See Figure 25: Even Test-piece after TIG-welding of the root layers.

In Figure 26: Test-piece TIG Welding at VAGT, the welding process of the certified welder at work can be seen.

FIGURE 24: TEST-PIECE LAYOUT TACK WELDED (ANGLE PRESETTING 3-5° AND CERAMIC BACKING)

FIGURE 25: EVEN TEST-PIECE AFTER TIG-WELDING OF THE ROOT LAYERS

FIGURE 26: TEST-PIECE TIG WELDING AT VAGT

5.4 Welding Procedure Testing

The performed welding procedure testing according to EN ISO 15614-1 is necessary for the qualification of a welding method for metallic materials. Within this test a test piece is welded in strict accordance to the preliminary welding procedure specification (pWPS). In case of a positive result of following destructive and non-destructive tests, a report about the qualification of the welding procedure is created (WPQR). Thereby the pWPS turns into a WPS and as a consequence to homologation for production.

The destructive and non-destructive tests according to the standard for a butt joint are listed in Table 11: non-destructive tests according to EN 15614-1 and Table 12: destructive test according to EN 15614-1.

Test-method	Test-range
Visual testing (VT)	100%
Radiographic (RT) or ultrasonic testing (UT)	100%
Penetration testing (PT)	100%

TABLE 11: NON-DESTRUCTIVE TESTS ACCORDING TO EN 15614-1

Test-method	Test-range
Tensile test	2 samples
Side bending test	4 samples
Notched-bar impact test	2 sets
Hardness test	Necessary
Macroscopy	1 sample

Remark: Due to a lack of material it was not possible to perform all tests according to the standard. Furthermore the welded test piece does not fulfill the minimum dimensions according to the standard (Figure 27: Dimensions Test sample). Figure 28: Dimensions Test sample DA_Grossegger shows the test piece, which was used for the welding procedure qualification tests.

FIGURE 27: DIMENSIONS TEST SAMPLE ACCORDING TO EN 15614-1 [32]

The dimension of the test sample according to the standard, should be at least:a: min. 150mmb: min. 350mmt: depth (50mm)

FIGURE 28: DIMENSIONS TEST SAMPLE DA_GROSSEGGER

The actual dimensions of the test sample are shown in Figure 28:

a: 84mm b: 210mm t: depth (50mm)

5.5 Test layout

According to the standard ISO 15614-1 [32] and ISO 15614-11 [31] the following test specimen layout was chosen:

tensile test	TT-B		TT-T
hardness / metallography		HM	
notched bar impact test HAZ 625	NBIT625-B	NBIT625-M	NBIT625-T
notched bar impact test HAZ 617	NBIT617-B	NBIT617-M	NBIT617-T
notched bar impact test weld	NBITW-B	NBITW-M	NBITW-T

FIGURE 29: SPECIMEN LAYOUT EBW WELD

Abbreviations:

TT-B:		tensile test – bottom		
TT-T: tensile		tensile test - top		
HM:		hardness / metallography		
NBIT	:	notched bar impact test		
	-B:	bottom	617:	alloy 617
	-M:	middle	625:	alloy 625
	-T:	top	W:	weld

Abbreviations:

TT-B	:	tensile test – bottom			
TT-T	:	tensile test - top			
HM:		hardness / metallography			
NBIT	1 .	notched bar impact t	est		
	-B:	bottom	617:	alloy 617	
	-M:	middle	625:	alloy 625	
	-T:	top	W:	weld	
AW:		as welded			
PWHT: post weld heat treatment					

5.5.1 TENSILE TEST

In DIN 50125 [34] the machining of the test specimen is defined. It is distinguished between A, B, C, D, E, F, G types of specimen. Figure 31: Specimen Tensile Test Type A [34] shows the layout of a tensile test specimen type A according to the standard.

FIGURE 31: SPECIMEN TENSILE TEST TYPE A [34]

\mathbf{d}_0	specimen diameter	12mm
d_1	head diameter	18mm
h	head height	55mm
L_0	starting length	60mm
L_{c}	test length	72mm
L_t	overall length	200mm

5.5.2 NOTCHED-BAR IMPACT-BENDING TEST (CHARPY-V TEST)

According to ÖNORM EN 10045-1 [35] specimens are distinguished between Charpy-V and the Charpy-U type. The test specimen geometry is machined as shown in Figure 32: Specimen Charpy-V Test – positions of the notch [11]. The Charpy-V tests were performed for the weld metal (a) and for the heat affected zone (b).

For this test a specimen notched in the middle, which is inserted between two supports and is broken through by a pendulum hammer. The impact energy absorbed (in Joule) is a measure for the materials toughness against instable crack propagation. As shown in Figure 33: Test Layout Notched-Bar Impact Test [4].

FIGURE 32: SPECIMEN CHARPY-V TEST – POSITIONS OF THE NOTCH [11]

FIGURE 33: TEST LAYOUT NOTCHED-BAR IMPACT TEST [4]

5.5.3 SIDE BENDING TEST

According to DIN EN 910 [36] the side bend test is used for testing the deformability of butt welded joints. The specimen is mounted on rollers (diameter of 50mm) and is bended via a bending bolt. The deformation value is the bending angle at which the first crack can be identified.

Beside the bending angle the strain of the outside fiber can be determined. The welding joint design has a major influence on the achievable bending angle. Therefor defects like pores, slag

inclusions, lack of fusions and cracks, are responsible in the case, that the claimed bending angle is not accomplished.

The bending angle is dependent on following factors:

- Quality of the specimen, specimen geometry, surface condition, ratio between tensile strength of weld deposit and base material (under-, even- or over-matched).
- Test assembly and execution, position of the root, support width, bending bolt diameter and deformation speed. [18]

The testing layout is shown in Figure 34: Side Bend Test Layout.

FIGURE 34: SIDE BEND TEST LAYOUT

The test specimen geometry is machined as shown in Figure 35: Specimen Side Bend Test [11].

FIGURE 35: SPECIMEN SIDE BEND TEST [11]

5.5.4 HARDNESS TEST / HARDNESS LINE

According to ISO 15614-1 [32] and ISO 15614-11 [31] a hardness test for every weld is required. In general hardness tests at welded joints are performed after Vickers (DIN EN ISO 6507) with load forces of 49N or 98N (HV5 or HV10). The choice of the hardness load is mainly dependent on the material type. For hardness tests of welded joints the determinations according to DIN EN 1043 are mandatory. The tests can be executed as in-line or single imprints.[18]

The hardness test has to be done according to EN 1043-1 [37]. The applied test method was Vickers with a test mass of 10kg (HV 10). The hardness tests have to consist of three individual imprints in the weld zone, in the heat-affected zone and in both base materials. For specimen thicknesses over 5mm, two hardness lines have to be performed, at a position of 2mm below the top- and bottom-layer of the surface. In addition to the HAZ there should be hardness imprints as close as possible to the fusion line.

Figure 36: Hardness test layout and Figure 37: Hardness test layout EBW shows the layout of the hardness lines.

FIGURE 36: HARDNESS TEST LAYOUT TIG/SMAW

FIGURE 37: HARDNESS TEST LAYOUT EBW

5.5.5 MACROSCOPY AND ETCHING

According to OENORM EN 1321 [38] for macroscopy the specimen was machined in the way that the whole weld is visible in one picture. Subsequently the specimen was grinded manually using sandpaper with a grain size of 320, 500, 800, 1200, 2400 and 4000 per inch and finally polished using diamante dispersion. Considering the dissimilar weld and the generally bad etching behavior of alloy 617 and 625, the best etchant out of history (V2A) was used. The composition of the etchant is shown in Table 13: Etchant composition.

Name	Composition	Etching-procedure	Characteristic
V2A	100ml water 100ml muriatic-acid 10ml nitric acid 2ml pickling-inhibitor	temperature: 50-70°C Macro: wipe Micro: immerse for some minutes	Macro: weld layer structure Micro: grain boundaries

TABLE 13: ETCHANT COMPOSITION AND ETCHING PROCEDURE

5.5.6 MICROSCOPY

Normally microscopy is done with small specimen polished, etched and embedded in artificial resin. The maximum outer diameter of these specimens is 50mm.

According to OENORM EN 1321 [38] the specimen for macroscopy has to be stored after investigation, it is not allowed to cut these into smaller specimen suitable for microscopy. Therefor the whole macroscopy specimen was used for microscopy. This is not the best way for doing microscopy, because of the bad manipulation, but the only way possible. Figure 38 shows the used specimen for the investigations.

FIGURE 38: MACROSCOPY AND MICROSCOPY SPECIMEN TIG/SMAW

5.6 MATCALC CALCULATIONS

The aim of this chapter was just to get a feeling, which different phases can be formed after solidification (under thermodynamic equilibrium conditions) for the materials used.

The thermodynamic equilibrium calculation was done using the software MatCalc 5.52. For the calculations the database "mc_ni_v2.009.tdb" was used.

What is MatCalc? - MatCalc is an ongoing project, which was initiated in 1993, with a PhD thesis of Ernst Kozeschnik [39] addressing the simulation of precipitation kinetics in steel. Over the years it has developed to a software project for computer simulation of phase transformations in metallic systems. The topics covered by the software MatCalc project include:

- Constrained and unconstrained phase equilibriums
- Precipitation kinetics
- Long-range diffusion
- Simultaneous diffusion and precipitation
- Phase transformations / moving phase boundaries
- Lattice Metropolis and kinetic Monte Carlo

The thermodynamic foundation of MatCalc is the CALPHAD method and (uncoded) CALPHAD-type databases. The kinetic modules of MatCalc are developed within the framework of solid-state phase transformations, with particular focus on computational efficiency and applicability to multi-component systems. [40]

Figure 39: MatCalc element selection shows the interface for selection of material elements and possible phases. The elements, which are contained in the material, have to be chosen, as well as the phases, which can appear. Subsequently the materials element composition as shown in Figure 40: MatCalc nominal material composition, has to be defined. After that the equilibrium calculations can be performed.

1				
dynamics	/Users/CHG17/Documents/TU	JGraz/Studium_Master_	PSM/Diplomarbeit/06	_MatCalc/aa_Stojan_database/mc_ni_v2.009.tdb
	Elements	Phases		show all available phases
ion data	El. A Ref.state	phase	constituents 1	comment
cal data	B BETA_RHOMBO_B C HER_A9 CO HCP_A3 CH BCC_A2 CU FCC_A1 FE BCC_A2 MF HCP_A3 LA DOUBLE_HCP(ABAC) MN BCC_A2 NI 1/2_MOLE_LN2(G) NB BCC_A2 NI FC_A1 O 1/2_MOLE_L02(GAS) RE HCP_A3 S FC_ORTHORH SI DIA_A4 TA BCC_A2 V BCC_A2 V BCC_A2 Y HCP_A3 ZR HCP_A3	PCC_A1 GAMMA_PRIME LIQUID DELTA GAMMA_DP LAV_C14 LAVES M23C6 M6C MU_PHASE SIGMA BCC_B2 G_PHASE M7C3 NI2CR NI3TI NIATI3 P_PHASE B19_PRIME HCP_A3 NI3TI2 NIAL NIAL NITI2 NIAL NIT12 BCC_A2 CEMENTITE CHI_A12 GRAPHITE	ALCOUCH 6 AL%CO.C 6 ALB,CCO.C 6 ALB,CCO.C 5 ALC,RFE 5 FE,NI,TI:F 4 CO,CR,FE 3 CO,CR,FE 3 CO,CR,FE	 Face-centered cubic phase with Va on interstitial sublattice; V- and/or W-rich MC C Cubic NISAI-type, L12-structure; simplified description as solid solution phase cons Orthorhombic NISNb-base, D0a structure Gamma''; metastable body-centered tetragonal NISNb-type phase. Important preci can form as topologically close-packed structure in superalloys; affecting brittleness Face-centered cubic Cr-rich carbide, can contain significant amounts of W, Mo, V, Face-centered cubic Cr-rich carbide, can contain significant amounts of Cr and V. Has a large unit c can form as topologically close-packed structure in superalloys; affecting brittleness Intermetalic transition elements compound with broad solid solubility range. Tetrag Boc, base ordered NITI Matrix phase in shape memory alloys. 2 substitutional sub Silicide precipitate in some Nb-Si-containing Ni-base superalloys; Trigonal Cr-rich carbide, and Cr-containing Ni-base superalloys Hexagonal NIST-type, D24 structure Metastable precipitate in shape memory Ni-Ti alloys closely related to Sigma and Mu-phase. Can form as topologically close-packed structure in super closely related to Sigma and Mu-phase. Can form as topologically close-packed structure. Hexagonal close-packed. M2C, denoted "htp:/fu'in the MatCad databases, with Matastable low-temperature Ni-Ti martensite below 80°C. Hexagonal close-packed eled with simple 2-substitutional sublatices model. Cubic, importance as precipitate in high Ni-Ti alloys Sid-base B2-Phase, modeled with simple 2-substitutional sublatices model. Cubic, conthermodule phase. Mortaga onthorhombic. Unit cell consists of four formula units. In particular Cr an Apate-M nstructure closely related to topologically close-packed sigma, Mu, and R

FIGURE 39: MATCALC ELEMENT SELECTION AND POSSIBLE PHASES (SCREENSHOT)

			Set reference elemen
Element	Ref.Elem.	Amount	
AL	-	0.212	
С	-	0.028	
CO	-	0.02	Change (F2)
CR	-	21.594	
CU	-	0.045	
FE	-	3.653	
MN	-	0.25	
MO	-	8.264	
NB	-	3.337	
NI	yes	62.035	
SI	-	0.314	
	-	0.248	
			Save to file
	e fraction	O u-fraction	Open file
🔵 weig	ht fraction	 weight percent 	
			View file
			ОК

FIGURE 40: MATCALC NOMINAL MATERIAL COMPOSITION OF ALLOY 625 (SCREENSHOT)

5.6.1 Equilibrium Calculation Alloy 617

Figure 41: Phase fraction plot alloy 617 shows the equilibrium calculation for the alloy 617. It can be seen which phases can appear at a dedicated temperature under the circumstance of infinitely time.

The main phase fraction down to approximately 300°C is the Gamma (FCC_A1), followed by the μ -Phase (MU) consisting mainly of Cr and Mo and γ' (Gamma-Prime), which appear at 900°C. Common precipitates are M23C6 carbides, which consists mainly of Cr-rich carbides and are stable up to 1279°C. The Ni2Cr carbides consist of Cr and Mo. The G-Phase consists of Cr and Ti. Other phases, which are only thermodynamic stable at temperatures below 200°C are not that important. Solidus temperature is 1279°C, liquids temperature is 1351°C.

FIGURE 41: PHASE FRACTION PLOT ALLOY 617

The final equilibrium phase fractions of alloy 617 at 200°C are calculated by MatCalc as Table 14 shows.

Phases	Phase fraction [%]
MU	26
HCP_A3	13
Gamma_prime	12
M23C6	1,5
BCC_A2	1
G_phase	0,3
Matrix	rest

TABLE 14: EQUILIBRIUM COMPOSITION MATCALC ALLOY 617 (AT 200°C)

Table 15 shows the calculated phase transition temperatures by MatCalc for alloy 617.

Phase transition	Temperature [°C]
Solidus	1279
Liquids	1351

TABLE 15: EQUILIBRIUM PHASE TRANSITION TEMPERATURES ALLOY 617

5.6.2 Equilibrium Calculation Alloy 625

Figure 42: Phase fraction Plot alloy 625 shows the equilibrium calculation for the alloy 625. It can be seen which phases can appear at a dedicated temperature under the circumstance of infinitely time. [41]

The most phase fraction for a temperature 200°C is the Gamma-phase (FCC_A1), followed by the MU-Phase (appears at 870°C) and Delta-Phase (appears at 940°C). The fourth one is Gamma-Prime, which is only thermodynamic stable up to 700°C. The Sigma-Phase is only stable in a very small range around 900°C and below 250°C. M23C6 carbides consists mainly of Cr-rich and a little bit of Mo-rich carbides and begin to precipitate below 1200°C. Solidus temperature is 1271°C, liquids temperature is 1352°C.

FIGURE 42: PHASE FRACTION PLOT ALLOY 625

The final equilibrium phase fraction of alloy 625 at 200°C are calculated by MatCalc as Table 16 shows.

Phases	Phase fraction [%]
MU	33
Delta	10
Gamma_prime	3,7
Sigma	2,4
M23C6	0,6
Matrix	rest

TABLE 16: EQUILIBRIUM COMPOSITION MATCALC ALLOY 625 (AT 200°C)

Table 17 shows the calculated phase transition temperatures by MatCalc for alloy 625.

Phase transition	Temperature [°C]
Solidus	1271
Liquids	1352

 TABLE 17: EQUILIBRIUM PHASE TRANSITION TEMPERATURES ALLOY 625

5.6.3 Equilibrium Calculation weld metal alloy 625

Figure 43: Phase fraction plot weld metal 625 shows the equilibrium calculation for the weld metal material 625. It can be seen which phases can appear at a dedicated temperature under the circumstance of infinitely time. [41]

The phase with most phase fraction at 500°C is the Gamma-Phase (FCC_A1), followed by MU-Phase (appears at 930°C) and Delta-Phase (appears below 918°C). M23C6 carbides are formed below a temperature of 1200°C. They are not stable any more between 900°C and 950°C in favor of M6C carbides, which are formed in this temperature range. Both, the M23C6 and the M6C consists mainly of Cr and Mo carbides. Solidus-temperature is 1262°C, liquids-temperature is 1348°C.

FIGURE 43: PHASE FRACTION PLOT WELD METAL 625

The weld metal alloy 625 of the performed weld test will differ from this calculation, due to a high cooling rate, which is not taken into consideration for this equilibrium calculations. It can be assumed, that maybe not all phases or precipitates will appear during solidification. For example to form the delta-phase it needs some hours at a dedicated temperature (see 4.4.3).

The final equilibrium phase fraction of weld metal 625 at 200°C are calculated by MatCalc as Table 18 shows.

Phases	Phase fraction [%]
MU	31
FCC_A1	14
Delta	8
Gamma_prime	4,5
G_phase	1,6
M23C6	0,6
Matrix	rest

TABLE 18: EQUILIBRIUM COMPOSITION MATCALC WELD METAL 625 (AT 200°C)

Table 19 shows the calculated phase transition temperatures by MatCalc.

	TABLE 19: EQUILIBRI	UM PHASE TRANSITIO	N TEMPERATURES W	ELD METAL 625
--	---------------------	--------------------	------------------	---------------

Phase transition	Temperature [°C]
Solidus	1262
Liquids	1348
6 RESULTS AND DISCUSSION

In this chapter all results from the destructive and non-destructive tests are listed and discussed.

6.1 TENSILE TEST RESULTS

Figure 44: Layout tensile test specimen TIG/SMAW and Figure 45: Layout tensile test specimen EBW shows the layout of the tensile test specimen cut-out position rectangular to the weld. The specimens are machined as defined in DIN 50125 (see chapter 5.5.1 Tensile Test).

FIGURE 44: LAYOUT TENSILE TEST SPECIMEN TIG/SMAW – TOP AND ROOT OF THE WELD

FIGURE 45: LAYOUT TENSILE TEST SPECIMEN EBW – TOP AND ROOT OF THE WELD

In Table 20: Tensile test results - tensile strength [MPa] are shown. EBW joint shows better results than TIG/SMAW joint. PWHT condition results are lower as AW condition results. The fracture position of the tensile test specimen is in the base material of alloy 617. Nevertheless all different specimens passed the welding procedure testing, as the required minimum tensile strength is 400 MPa.

	EBW-aw	EBW-pwht	SMAW-aw	SMAW-pwht
top	609	414	581	475
middle	-	451	-	-
bottom	685	489	565	400

TABLE 20: TENSILE TEST RESULTS - TENSILE STRENGTH [MPA]

In Figure 46: Tensile-test specimen TIG/SMAW overview, the fractured specimens are shown. The fracture is in the area of the alloy 617 base metal, which shows a ductile behavior, due to the high necking, which is irregular.

FIGURE 46: TENSILE-TEST SPECIMEN TIG/SMAW OVERVIEW – FRACTURE IN THE ALLOY 617 BASE METAL

FIGURE 47: TENSILE-TEST SPECIMEN TIG/SMAW DETAIL

In Figure 47: Tensile-test specimen TIG/SMAW detail, the fracture surface can be seen in more detail.

6.2 NOTCHED BAR IMPACT TEST RESULTS

The specimens are machined as defined in ÖNORM EN 10045-1 (see chapter 5.5.2 Notched-bar impact-bending Test (Charpy-V Test)). They were taken out from the fusion line of alloy 617 and alloy 625 as well as from the weld metal alloy 625 and the EBW fusion zone, see Figure 48: Layout specimen cut-out Charpy-V TIG/SMAW and Figure 49: Layout specimen cut-out Charpy-V EBW.

FIGURE 48: LAYOUT SPECIMEN CUT-OUT CHARPY-V TIG/SMAW

FIGURE 49: LAYOUT SPECIMEN CUT-OUT CHARPY-V EBW

In the following tables (Table 21 to Table 24) the results of the notched bar impact tests are listed for as welded (aw) and post weld heat treatment (pwht).

	EBW-aw	EBW-pwht	SMAW-aw	SMAW-pwht
top	214	-	75	50
middle	232	-	75	47
bottom	208	_	134	91

TABLE 21: CHARPY-V TEST RESULTS WELD METAL [J]

	EBW-aw	EBW-pwht	SMAW-aw	SMAW-pwht
top	338	-	200	97
middle	372	-	148	105
bottom	357	-	205	86

TABLE 22: CHARPY-V TEST RESULTS ALLOY625 [J]

	EBW-aw	EBW-pwht	SMAW-aw	SMAW-pwht
top	300	-	40	40
middle	289	-	38	33
bottom	321	-	61	37

In Table 24: Charpy-V test results average values [J], of the particular tests are listed. The average value is the arithmetic mean value of top, middle and bottom values of each result set. Not all the tests passed the required minimum value of 50 J as it is demanded from customer for this application. Similar to the tensile tests, in this case the EBW specimens show better results too.

TABLE 24: CHARPY-V TEST RESULTS AVERAGE VALUES [J]

	EBW-aw	EBW-pwht	SMAW-aw	SMAW-pwht
weld metal	218	-	95	63
alloy 625	355	-	184	96
alloy 617	303	-	46	36

In Figure 50: Charpy-V test specimen fracture surfaces are shown. The fractures are either brittle fractures (e.g. SMAW alloy 617) as seen on the right side or ductile fractures (e.g. EBW specimen) as seen on the left side.

FIGURE 50: CHARPY-V TEST SPECIMEN FRACTURE SURFACES

6.3 MACROSCOPY AND HARDNESS TEST RESULTS

In this chapter an overview of the hardness test results is given. All detailed results can be found in the appendix.

The Vickers hardness HV10 was performed on weld cross sections. At the top and the middle of the EBW aw fusion zone a hardness increase from approx. 160 to 220HV10 appears. The bottom of the weld shows not that increase in hardness. The hardness lines can be seen in Figure 51.

FIGURE 51: HARDNESS LINE EBW-AW

In Figure 52 the Vickers Hardness HV10 of the TIG / SMAW is shown. In the alloy 625 weld metal the hardness increases from approximately 160 to 280 HV10. The hardness in the base alloy 625 is below the weld metal 625. The hardness in the base alloy 617 is as well below the hardness of weld metal 625. The maximum hardness level of approximately 280 HV10 is for the three different hardness lines almost the same.

FIGURE 52: HARDNESS LINE SMAW-AW

After PWHT the hardness for weld metal alloy 625 decreases slightly (280 to 260 HV10) in comparison to "as-welded" state. The hardness in the base alloy 625 is below the hardness in the weld metal 625. The hardness in base alloy 617 is higher than the hardness in base alloy 625. The maximum hardness level of approximately 260 HV10 inside the weld metal is for the three different hardness lines almost the same. See Figure 53 for the Vickers Hardness HV10 of TIG / SMAW for PWHT state.

FIGURE 53: HARDNESS LINE SMAW-PWHT

In Table 25: hardness test average values [HV10] it can be seen, that hardness values differs between EBW and SMAW. The average values of EBW are around 180 HV10; whereat average values of SMAW are around 230 HV10. Nevertheless hardness differences between as welded and post weld heat treatment are quite small.

	EBW-aw	EBW-pwht	SMAW-aw	SMAW-pwht
top	179	-	236	232
middle	175	-	229	239
bottom	186	-	232	239

TABLE 25: H	ARDNESS TI	EST AVERAG	E VALUES	[HV10]

6.4 LIGHT OPTICAL MICROSCOPY (LOM) ANALYSES

This chapter gives an overview about the microstructure of the different welding specimens in Light Optical Microscopy (LOM). It is divided into the results of EBW-aw (as welded) test specimen and SMAW-aw and SMAW-pwht (post weld heat treatment) test specimen.

6.4.1 EBW-AW

At the following pages some exemplarily figures shows occurrences in the microstructure. In Figure 54 the fusion line of the welding joint at the side of alloy 625 base metal can be seen. The blue frames mark two precipitates. According to literature [14] these could be Cr, Mo or Ti precipitates, like Carbides, Nitrides or Carbo-Nitrides; see SEM analysis in chapter 6.5. The weld metal shows dendritic structure (dark and bright phase) and a thin, dark emerging layer at the fusion line.

FIGURE 54: LOM IMAGE EBW-AW 625 FUSION LINE (V2A ETCHANT)

In Figure 55 the welding joint fusion line at the side of base metal alloy 617 is shown. The blue frame again marks some precipitates, which again can contain (according to literature [42]) Cr, Mo or Ti.; see chapter 6.5. The weld metal shows a dendritic structure and a white emerging thin layer at the fusion line.

FIGURE 55: LOM IMAGE EBW-AW 617 FUSION LINE AND PRECIPITATES (V2A ETCHANT)

6.4.2 SMAW-AW

In Figure 56 a cross-section of the weld metal alloy 625 of SMAW can be seen. Here dendritic structures in different orientations appear and every layer of the welding joint is visible.

FIGURE 56: LOM IMAGE SMAW-AW WELD METAL ALLOY 625 (V2A ETCHANT)

In Figure 57 the fusion line of base metal alloy 625 and the weld metal alloy 625 can be seen. On the right side the coarse grain size and the primary structure of casted alloy 625 is visible as well as some flow lines. On the left side the layers of the weld metal are observable.

FIGURE 57: LOM IMAGE SMAW-AW FUSION LINE ALLOY 625 – WELD METAL (V2A ETCHANT)

In Figure 58 the fusion line between alloy 625 and the weld metal is exhibited in detail. It shows, that there are some precipitates (analyzed in chapter 6.5.) in the base material of alloy 625 (blue frames).

FIGURE 58: LOM IMAGE SMAW-AW FUSION LINE ALLOY 625 - WELD METAL (V2A-ETCHANT) - DETAIL

In Figure 59 the fusion line between alloy 617 and the weld metal is shown. Here the fine grain size of forged alloy 617 and the dendritic structure of the weld metal can be observed.

FIGURE 59: LOM IMAGE SMAW-AW FUSION LINE ALLOY 617 – WELD METAL

In Figure 60 the fusion line between alloy 617 and weld metal is shown in detail. Again there are some precipitates marked with blue frames, which will be analyzed in chapter 6.5.

FIGURE 60: LOM IMAGE SMAW-AW FUSION LINE ALLOY 617 – WELD METAL - DETAIL

6.4.3 SMAW-PWHT

The heat treatment was done at VAGT as followed:

Heating rate:	50°C/h
Temperature:	800°C
Holding period:	4h
Cooling:	at air environment

In the post weld heat treatment (PWHT) state it is apparent that there are less precipitates in the base metal alloy 625 than in the as welded (AW) state. This is due to the diffusion through microstructure during the heat treatment.

FIGURE 61: LOM IMAGE SMAW-PWHT FUSION LINE ALLOY 625 - WELD METAL – DETAIL (ETCHANT V2A)

In Figure 62 the fusion line between alloy 617 and the weld material after PWHT can be seen. Again, the fine grain size of forged alloy 617 and the dendritic microstructure of the weld metal are well visible. No change of the microstructure due to the PWHT can be found in LOM.

FIGURE 62: LOM IMAGE SMAW-PWHT FUSION LINE ALLOY 617 – WELD METAL – DETAIL (ETCHANT V2A)

In Figure 63 the fusion line of alloy 617 and the weld material is shown. It is apparent that there are less precipitates after PWHT due to the diffusion through microstructure during heat treatment.

FIGURE 63: LOM IMAGE SMAW-PWHT FUSION LINE ALLOY 617 – WELD METAL – DETAIL (ETCHANT V2A)

6.5 Scanning electron microscope (SEM) and EDX analyses

This chapter deals with the SEM analyses of the precipitates in the base materials and the weld metal. The SEM allows the determination of different elements by energy dispersive X-ray analyses (EDX), i.e. elements with different atomic numbers create different amount of characteristic x-ray radiation due to electron jumps between atomic orbitals caused by the incident electron beam of the SEM. Hence element distributions can be visualized a by a so-called mapping, as the intensity of the x-rays is proportional to the element concentrations.

This SEM examination was only done for the SMAW-aw specimen, because of time and cost matters. Moreover for the other specimens the SEM investigation was not highly required, as a qualitative prediction of the type of precipitates is also possible with the performed LOM analyses (see chapter 6.4).

6.5.1 SEM SMAW-AW ALLOY 617 BASE METAL

In Figure 64 the precipitates in the base metal of alloy 617 can be seen as overview in the SEM backscattered electron-imaging mode (BE mode). The blue frame marks the area, which was investigated in detail. In Figure 65 the details at higher magnification in BE mode is shown.

FIGURE 64: SEM IMAGE (BE MODE) - FUSION LINE ALLOY 617-WELD METAL OVERVIEW

FIGURE 65: [L] SEM IMAGE (BE MODE) FUSION LINE ALLOY 617 - WELD METAL, [R] BASE METAL

On the left side in Figure 66 the SEM image of alloy 617 base metal at a magnification of 1000x is shown, whereat white, gray and black appearing precipitates can be seen. The mapping on the ride hand side show that the polygonal precipitate contain Ti (Ti-Carbides or Ti-Carbo-nitrides, blue colored) and the rounded precipitates contain Cr and Mo (probably intermetallic, red and green colored).

FIGURE 66: [L] SEM IMAGE (BE MODE) BASE METAL ALLOY 617, [R] CR-MO-TI MAPPING

In Figure 67 a so-called line-scan is shown. The peaks verify that the polygonal precipitate contain just Ti (C and N can not be detected with the present EDX system), i.e. probably Ti-Carbides or Ti-Carbo-nitrides. The rounded precipitates contain just Cr and Mo, i.e. probably Cr-Carbides (or Nitrides) and Mo-Carbides.

FIGURE 67: [L] SEM IMAGE (BE MODE) BASE METAL ALLOY 617, [R] LINE SCAN

6.5.2 SEM SMAW-AW WELD METAL

In Figure 68 an overview of the microstructure at the fusion line – the weld metal alloy 625 and the base metal alloy 617 can be seen. The blue frame marks the area of the weld metal, which is investigated in detail, see Figure 69, whereat a typical orientated dendritic structures with low contrast differences are visible.

FIGURE 68: SEM IMAGE (BE MODE) - FUSION LINE ALLOY 617-WELD METAL OVERVIEW

In Figure 70 on the left hand side many black appearing micro pores and micro slag inclusion as well as white appearing sub-micron precipitates can be observed in the dendritic microstructure. The mapping shows a homogenous distribution of Cr and Mo, i.e. no precipitations of this type exist.

FIGURE 69: SEM IMAGES (BE MODE) WELD METAL DETAILS – DENDRITIC STRUCTURE

FIGURE 70: [L] SEM IMAGE (BE MODE) WELD METAL ALLOY 625, [R] CR-MO MAPPING

6.5.3 SEM SMAW-AW ALLOY 625 BASE METAL

In Figure 71 an overview of the microstructure at the fusion line - the weld metal alloy 625 and the base metal alloy 625 is exhibited. The dendritic structure of the weld metal and the precipitation-free zone in the base metal besides micro pores and micro inclusions impurities from the casting process is visible. The blue frame marks the area, which is investigated in detail, see Figure 72, whereat nothing conspicuous could be found.

FIGURE 71: SEM IMAGE (BE MODE) – FUSION LINE ALLOY 625 - WELD METAL OVERVIEW

Figure 73 shows the fusion line in detail of alloy 625 and the similar weld metal alloy 625, whereat no Cr or Mo precipitates could be found, as can be seen in the mapping.

FIGURE 72: [L] SEM IMAGE (BE MODE) DENDRITIC STRUCTURE IN WELD METAL, [R] PRECIPITATION FREE ZONE IN BASE METAL

FIGURE 73: [L] SEM IMAGE (BE-MODE) FUSION ZONE, [R] CR-MO MAPPING

7 SUMMARY AND CONCLUSION

The dissimilar welding of alloy 625 and alloy 617 was successfully performed. Nevertheless only the electron beam welding (EBW) process achieved the required criteria for Welding procedure testing (ISO 15614-1, ISO 15614-11).

The shielded metal arc welding (SMAW) process - using TIG filler alloy 625 for the root passes and SMAW electrode alloy 625 for the filler and top passes – did not achieve all of the required criteria stated in the standards for Welding procedure testing. The values for notched bar impact test for alloy 617 were below the required limits.

Due to the SMAW heat in the base metal alloy 617 Cr and Mo as well as Ti precipitations are formed close to the fusion line. However their size and amount are supposed to be uncritical.

Nevertheless the EBW-process is favorable by means of mechanical properties and time. If the correct welding parameters are found for the EBW-process it is the more reliable and reproducible process, because there is no influence of the welder and of dusty welding environment. Another advantage of EBW is the welding without the usage of filler material. On the other hand the biggest disadvantage of EBW is the requirement of a high-vacuum. So the

On the other hand the biggest disadvantage of EBW is the requirement of a high-vacuum. So the work piece size is limited dependent on the size of the vacuum chamber.

MatCalc equilibrium calculations provide a good overview of phases and precipitates, which can occur in general for the every alloy. Furthermore for an exact simulation of phases and precipitates after welding (or during solidification) it would be necessary to perform a Scheil-Gulliver calculation instead an equilibrium calculation.

The post weld heat treatment (800°C for 4 hours) on the SMAW does not improve the material properties, so it is not necessary to conduct it.

8 OUTLOOK

The focus of this project was the weldability and especially the fulfillment of the welding procedure qualification record. Thus this thesis has no claim to completeness and there exist still open questions concerning the applicability for steam power plants with 700°C technology.

There was no investigation on the operational capability of this alloy 617 / alloy 625 welding joint by means of long-term creep tests. The evolution of the microstructure during exposure to high temperatures must be investigated. The next steps should be to perform some creep tests to gain some experience on the creep behavior.

9 LIST OF FIGURES

Figure 1: CO2 Emissions in power plants [2]	2
Figure 2: Valve-body [3]	
Figure 3: Creep test set-up	5
Figure 4: Classical Creep curve	6
Figure 5: Relaxation crack - Fracture surface [7]	
Figure 6: Time-temperature-transformation-diagram alloy 617 [10]	11
Figure 7: Time-temperature-transformation-diagram alloy 625 [16]	15
Figure 8: Welding circuit for a shielded metal arc welding (SMAW) [19]	
Figure 9: Welding process for SMAW [19]	
Figure 10: Filler material Nibas 625	
Figure 11: EBW machine layout [25]	
Figure 12: EB generator [27]	
Figure 13: Emission current density over cathode temperature [28]	
Figure 14: Triode system [28]	24
Figure 15: Centering coil [27]	25
Figure 16: Stigmator [27]	25
Figure 17: pWPS DA_Grossegger (Traisen, March 10, 2014)	
Figure 18: Specimen Layout Pipe Weld for mechanical and metallographic testing [31]	
Figure 19: Specimen Layout Butt Weld for mechanical and metallographic testing [31]	
Figure 20: Fronius MagicWave 3000	
Figure 21: power source characteristics [18]	
Figure 22: Design of Welding Joint	
Figure 23: Welding Sequence TIG/SMAW	
Figure 24: Test-piece layout tack welded (angle presetting 3-5° and ceramic backing)	
Figure 25: Even Test-piece after TIG-welding of the root layers	
Figure 26: Test-piece TIG Welding at VAGT	
Figure 27: Dimensions Test sample according to EN 15614-1 [32]	40
Figure 28: Dimensions Test sample DA_Grossegger	40
Figure 29: Specimen layout EBW weld	41
Figure 30: Specimen layout TIG/SMAW weld	42
Figure 31: Specimen Tensile Test Type A [34]	

Figure 32: Specimen Charpy-V Test – positions of the notch [11]	. 44
Figure 33: Test Layout Notched-Bar Impact Test [4]	. 44
Figure 34: Side Bend Test Layout	. 45
Figure 35: Specimen Side Bend Test [11]	. 45
Figure 36: Hardness test layout TIG/SMAW	. 46
Figure 37: Hardness test layout EBW	. 46
Figure 38: Macroscopy and microscopy specimen TIG/SMAW	. 48
Figure 39: MatCalc element selection and possible phases (Screenshot)	. 50
Figure 40: MatCalc nominal material composition of alloy 625 (Screenshot)	. 50
Figure 41: Phase fraction plot alloy 617	. 51
Figure 42: Phase fraction Plot alloy 625	. 53
Figure 43: Phase fraction plot weld metal 625	. 55
Figure 44: Layout tensile test specimen TIG/SMAW - top and root of the weld	. 57
Figure 45: Layout tensile test specimen EBW - top and root of the weld	. 57
Figure 46: Tensile-test specimen TIG/SMAW overview - Fracture in the alloy 617 base metal.	. 58
Figure 47: Tensile-test specimen TIG/SMAW detail	. 59
Figure 48: Layout specimen cut-out Charpy-V TIG/SMAW	. 60
Figure 49: Layout specimen cut-out Charpy-V EBW	. 60
Figure 50: Charpy-V test specimen fracture surfaces	. 62
Figure 51: hardness line EBW-aw	. 63
Figure 52: hardness line SMAW-aw	. 64
Figure 53: hardness line SMAW-pwht	. 65
Figure 54: LOM Image EBW-aw 625 fusion line (V2A Etchant)	. 66
Figure 55: LOM Image EBW-aw 617 Fusion line and precipitates (V2A Etchant)	. 67
Figure 56: LOM Image SMAW-aw weld metal alloy 625 (V2A Etchant)	. 68
Figure 57: LOM Image SMAW-aw fusion line alloy 625 - weld metal (V2A Etchant)	. 69
Figure 58: LOM Image SMAW-aw fusion line alloy 625 - weld Metal (V2A-Etchant) - detail	.70
Figure 59: LOM Image SMAW-aw fusion line alloy 617 – weld metal	.71
Figure 60: LOM Image SMAW-aw fusion line alloy 617 - weld metal - detail	.72
Figure 61: LOM Image SMAW-pwht fusion line alloy 625 - weld metal - detail (Etchant V2A)	73
Figure 62: LOM Image SMAW-pwht fusion line alloy 617 – weld metal – detail (Etchant V2A))74
Figure 63: LOM Image SMAW-pwht fusion line alloy 617 – weld metal – detail (Etchant V2A)) 75
Figure 64: SEM image (BE mode) – Fusion line alloy 617-Weld metal overview	.77
Figure 65: [L] sEM image (BE Mode) Fusion Line alloy 617 - Weld metal, [R] base metal	.77

Figure 66: [L] SEM image (BE mode) base metal alloy 617, [R] Cr-Mo-Ti mapping	78
Figure 67: [L] SEM image (BE mode) base metal alloy 617, [R] line scan	78
Figure 68: SEM image (BE mode) – Fusion line alloy 617-Weld metal overview	79
Figure 69: SEM images (BE Mode) Weld metal details – dendritic structure	80
Figure 70: [L] SEM image (BE mode) Weld metal alloy 625, [R] Cr-Mo mapping	80
Figure 71: SEM image (BE mode) – Fusion line alloy 625 - Weld metal overview	81
Figure 72: [L] SEM image (BE Mode) dendritic structure in weld metal, [R] precipitation	free
zone in base metal	82
Figure 73: [L] SEM Image (BE-Mode) Fusion Zone, [R] Cr-Mo Mapping	82
Figure 74: Inspection Report Pro-Beam [43]	95
Figure 75: WPQR Pro-Beam [43]	96
Figure 76: WPQT Pro-Beam Page 1/2 [43]	97
Figure 77: WPQT Pro-Beam Page 2/2 [43]	98
Figure 78: pWPS Pro-Beam Page 1/2 [43]	99
Figure 79: pWPS Pro-Beam Page 2/2 [43]	.100
Figure 80: Tensile Test Pro-Beam [43]	.101
Figure 81: Hardness Test Pro-Beam [43]	.102
Figure 82: Microscopy Pro-Beam [43]	.103
Figure 83: Macroscopy Pro-Beam [43]	.104
Figure 84: Visual Test Pro-Beam [43]	.105
Figure 85: Penetration Test Pro-Beam [43]	.106
Figure 86: Radiographic Test Pro-Beam Page 1/2 [43]	.107
Figure 87: Radiographic Test Pro-Beam Page 2/2 [43]	.108
Figure 88: PQR Pro-Beam Page 1/2 [43]	. 109
Figure 89: PQR Pro-Beam Page 2/2 [43]	.110
Figure 91: Material Certificate - alloy 617 - EBW	.112
Figure 92: Material Certificate – alloy 617 - SMAW	.113
Figure 93: Welding Record - SMAW - Page 1	.114
Figure 94: Welding Record - SMAW - Page 2	.115
Figure 95: Welding Record - SMAW - Page 3	.116
Figure 96: Tensile Test - SMAW - as welded - Top	.117
Figure 97: Tensile Test - SMAW - as welded - Bottom	.118
Figure 98: Tensile Test - SMAW - PWHT - Top	.119
Figure 99: Tensile Test - SMAW - PWHT - Bottom	.120

Figure 100: hardness line EBW-aw bottom	121
Figure 101: hardness line EBW-aw middle	121
Figure 102: hardness line EBW-aw top	121
Figure 103: hardness line SMAW-aw bottom	122
Figure 104: hardness line SMAW-aw middle	122
Figure 105: hardness line SMAW-aw top	122
Figure 106: hardness line SMAW-pwht bottom	123
Figure 107: hardness line SMAW-pwht middle	123
Figure 108: hardness line SMAW-pwht top	123

10 LIST OF TABLES

Table 1: chemical nominal composition of A617 (in weight%) [8]10
Table 2: chemical nominal composition of A625 (in weight%) [12] 12
Table 3: Chemical composition of forged alloy A617 (in weight %) - (company ENPAR
73467/214158)
Table 4: Mechanical properties of forged alloy A617 - (company ENPAR 73467/214158) 33
Table 5: Chemical composition of casted alloy A625 (in weight %) - (VAGT:505326-SP-NIBAS-
625-SA-MEL)
Table 6: Mechanical properties of casted alloy A625 – (VAGT:505326-SP-NIBAS-625-SA-MEL) 34
Table 7: Chemical composition of the MMA weld metal Nibas 625 - (Böhler Welding-guide
2013)
Table 8: Mechanical properties of the MMA weld metal Nibas 625 - (Böhler Welding-guide
2013)
Table 9: Chemical composition of the TIG weld metal Nibas 625-IG - (Böhler Welding-guide
2013)
Table 10: Mechanical properties of the MMA weld metal Nibas 625 - (Böhler Welding-guide
2013)
Table 11: non-destructive tests according to EN 15614-1
Table 12: destructive test according to EN 15614-1
Table 13: Etchant composition and etching procedure 47
Table 14: Equilibrium Composition MatCalc alloy 617 (at 200°C)
Table 15: Equilibrium phase transition temperatures alloy 617
Table 16: Equilibrium Composition MatCalc alloy 625 (at 200°C)
Table 17: Equilibrium phase transition temperatures alloy 625
Table 18: Equilibrium Composition MatCalc weld metal 625 (at 200°C)
Table 19: Equilibrium phase transition temperatures weld metal 625
Table 20: Tensile test results - tensile strength [MPa] 58
Table 21: Charpy-V test results weld metal [J]
Table 22: Charpy-V test results alloy625 [J] 61
Table 23: Charpy-V test results alloy617 [J] 61
Table 24: Charpy-V test results average values [J]

Table 25: hardness test average values [HV	/10]
--	------

11 REFERENCES

- V. Knezevic, a. Schneider, and C. Landier, "Creep Behaviour of Thick-Wall Alloy 617 Seamless Pipes for 700°C Power Plant Technology," *Procedia Eng.*, vol. 55, pp. 240–245, Jan. 2013.
- [2] B. Müller, "Preparing for a Fiery Future," pp. 33–34, 2008.
- [3] voestalpine Böhler Welding, "Welding Solutions for Thermal Power Generation," 2013.
- [4] C. Sommitsch, "Werkstoffkunde." TU-Graz, 2012.
- [5] U. Heubner and J. Klöwer, Nickelwerkstoffe und hochlegierte Sonderstähle. 2009.
- [6] F. Vollertsen and W. Blum, Werkstoffeigenschaften und Mikrostruktur. Carl Hanser Verlag München Wien, 1989.
- [7] M. Prüfer, M. Möser, and N. Hütte, "Vorzeitiges Bauteilversagen durch lokalisiertes Korngrenzengleiten und duktile interkristalline Rissbildung – Relaxationsrissigkeit," vol. 25, pp. 1–13, 1980.
- [8] C. EDUPACK, "Inconel 617," 2005.
- [9] S. Schlegel, S. Hopkins, E. Young, J. Cole, T. Lillo, and M. Frary, "Precipitate Redistribution during Creep of Alloy 617," *Metall. Mater. Trans. A*, vol. 40, no. 12, pp. 2812–2823, Sep. 2009.
- [10] J. Benz, "Aging of Alloy 617 at 650 and 750 ° C," no. January. 2013.
- [11] C. Wiednig, "Electron Beam Welding Alloy 625." Master thesis TU-Graz, 2013.
- [12] S. Metals, "INCONEL alloy 625," vol. 625, no. 2, pp. 1–18, 2013.
- [13] B. Bezzola, "Mechanical and microscopic characterization of short term aged cast alloy 625." Master thesis Politecnico di Milano, TU-Graz, 2014.
- [14] B. Berger, "Dissimilar Schweißen von (Konstruktionsschweißungen) NIBAS 625 mit warmfestem Cr-Stahl COST CB2," vol. Master the. Master thesis TU-Graz, 2011.

- [15] J. N. D. J. C. Lippold, S. D. Kiser, Welding Metallurgy and Weldability of Nickel-Base Alloys. New Jersey: John Wiley & Sons, 2009.
- [16] J. Mittra, S. Banerjee, R. Tewari, and G. K. Dey, "Fracture behavior of Alloy 625 with different precipitate microstructures," *Mater. Sci. Eng. A*, vol. 574, pp. 86–93, Jul. 2013.
- [17] ThyssenKrupp, "Nicrofer 6020 hMo alloy 625," no. 4118, 2007.
- [18] DVS, Internationaler Schweißfachingenieurlehrgang. Gesellschaft für Schweißtechnik International mbH, 2008.
- [19] O. T. L. Maurice Stewart, "Fabrication, Welding, and In-Shop Inspection," pp. 217–345, 2013.
- [20] B. S. Austria, Boehler Welding guide, 09/2010 ed. Böhler Schweißtechnik Austria GmbH, 2010.
- [21] Böhler, Schweisszusätze für thermische Kraftwerke. Böhler welding, 2010.
- [22] and D. W. D. Dobeneck v., K. H. Steigerwald, S. G., B. R., D. Powers, O. K. Nazarenko,
 W. A. Dietrich, H. Irie, *An International History of Electron Beam Welding*. 2007.
- [23] S. S. SST, "Geschichte der EB-Technik," 2014. [Online]. Available: http://www.steigerwald-eb.de/de/eb-technik/geschichte-der-eb-technik.html.
- [24] D. Dobeneck, Elektronenstrahlschweißen Anwendungsbeispiele aus 30 Jahren Lohnschweißpraxis, 2.
 Auflage. 2007.
- [25] and S. J. U. Reisgen, S. Olschok, "A comparison of electron beam welding with laser beam welding in vacuum," in *International Electron Beam Welding Conference*, 2012, pp. 119–127.
- [26] K. R. Schulze, "Immer dasselbe und doch jedes Mal anders," in DVS Schweißen und Schneiden, Vol. 7., 2011, pp. 392–397.
- [27] V. Adam, U. Clauß, D. Dobeneck, T. Krussel, and T. Lower, "Electron beam welding -The fundamentals of a fascinating technology." Germany: pro-beam AG & Co. KGaA, 2011.
- [28] H. Schultz, *Elektronenstrahlschweißen*, 2nd ed. Düsseldorf, 2000.
- [29] Z. Sun and R. Karppi, "The application of electron beam welding for the joining of dissimilar metals: an overview," J. Mater. Process. Technol., vol. 59, no. 3, pp. 257–267, May 1996.
- [30] ISO 15609-1, "Anforderung und Qualifizierung von schweißverfahren für metallische Werkstoffe - Schweißanweisung - Teil 1: Lichtbogenschweißen.".
- [31] DIN EN ISO 15614-11, "Anforderung und Qualifizierung von Schweißverfahren für metallische Werkstoffe - Schweißverfahrensprüfung, Teil 11: Elektronen- und Laserstrahlschweißen," 2002.
- [32] DIN EN ISO 15614-1, "Anforderung und Qualifizierung von Schweißverfahren für metallische Werkstoffe - Schweißverfahrensprüfung, Teil 1: Lichtbogen- und Gasschweißen von Stählen und Lichtbogenschweißen von Nickel und Nickellegierungen," 2004.
- [33] Fronius, "Magicwave 3000," Fronius Oper. Man., 2013.
- [34] DIN 50125, "Prüfung metallischer Werkstoffe Zugproben." 2004.
- [35] EN 10045-1, "Kerbschlagbiegeversuch nach Charpy Prüfverfahren," 1990.
- [36] ÖNORM EN 910, "Zerstörende Prüfung von Schweißnähten an metallischen Werkstoffen - Biegeprüfung," 1996.
- [37] ÖNORM EN 1043-1, "Zerstörende Prüfung an Schweißnähten an metallischen Werkstoffen - Härteprüfung, Teil 1: Härteprüfung für Lichtbogenschweißverbindungen," 1996.
- [38] ÖNORM EN 1321, "Zerstörende Prüfung von Schweißverbindungen an metallischen Werkstoffen - Makroskopische und mikroskopische Untersuchungen von Schweißnähten," 1996.
- [39] K. Ernst, Thermodynamische Berechnung der Phasengleichgewichte und der Ausscheidungskinetik in metallischen Werkstoffen. TU-Graz, 1997.

- [40] "http://matcalc.tuwien.ac.at." 2014.
- [41] C. Ramskogler, "GA06911_Gefügecharakterisierung Nibas625," 2013.
- [42] Y. Guo, B. Wang, and S. Hou, "Aging precipitation behavior and mechanical properties of Inconel 617 superalloy," *Acta Metall. Sin. (English Lett.*, vol. 26, no. 3, pp. 307–312, May 2013.
- [43] TÜV Nord Systems GmbH & Co. KG, "Prüfbericht über die Durchführung einer Schweißverfahrensprüfung," 2013.

12 APPENDIX

TÜV Nord Systems GmbH & Zertifizierungsstelle für Druckg Region Magdeburg Adelheidring 16, 39108 Magdebur Tel.: 0391/7366-0 • Fax: 0391/7366-3	Co. KG eräte g 33
	Prüfbericht (Inspection report)
übe	r die Durchführung einer (of a welding)
Sch	1weißverfahrensprüfung (production qualifikation test)
gemäß (acc)	DGRL 97/23 EG, DIN EN ISO 15614-11
Auftraggeber: (customer)	pro-beam AG & Co. KGaA Lindenallee 22 39221 Burg
Bezeichnung: (characteristic)	VP-0049-0104/13/V
Abmessungen: (Welding specimen)	Ø220 x 50 mm
Werkstoff: (material)	Inconel A625 (NiCr22Mo9Nb) + Inconel A617 (NiCr22Co12Mo9)
Schweißprozess: (welding process)	511 (Elektronenstrahlschweißen)
Schweißposition: (welding position)	PC
Nahtart: (type of seam)	BW
Zu diesem Bericht gehören: (This report covers:)	
 Blatt (page) Zertifikat Nr. Blatt (page) Prüfbericht (re Blatt (page) Schweißanwe Blatt (pages) Laborbericht Blatt (pages) Durchstrahlun Blatt (pages) Protokoll PT- Blatt (pages) Protokoll Sich 	07 202 1001 Z 0104/13/V/0049 port)Überwachung der Probeschweißung (Supervision of test welding) sisung (WPS-Nr. VA_IN625-617_50_PC) ZLS (Laboratory report) - Nr. 13-07373 ngsprüfprotokoll (radiographic test report) - Nr. 76263/1-13 .Prüfung (Report of penetrant testing) - Nr. 76263/3-13 htprüfung (Report on visual examination) - Nr. 76263/7-13

FIGURE 74: INSPECTION REPORT PRO-BEAM [43]

				\square
				TIN NORD
	1 QUALIFI	ZIERUNG EINES SCHWE QUALIFICATION OF A WELDING	ISSVERFA PROCEDURE (HRENS (WPQR)
:	2 ZERTI	FIKAT 07 202 1001 Z 010	04/13/V/004	19
:	3		Della de lles	
4	4 5 WPS-Nr.: VA_IN625-617_ wPS-No.:	50_PC	Examining Body: Akte Nr.:	TÜV NORD Systems GmbH & Co. KG 8110565063 Rev.: 0
6	6 Hersteller: pro-beam AG &	Co. KGaA	WPQR-Nr.:	1001 Z 0104/13/V/0049
1	7 Anschrift: Lindenallee 22	, 39221 Burg	Bauteil: Component part:	Stumpfnaht am Rohr
8	B Anorderungen. Requirements:	DRG 97/23/EG, DIN EN ISO 1561	4-11, AD 2000	-HP2/1
ş	9 GELTUNGSBEREICH RANGE OF QUALIFICATION			
1	10 Schweißprozess(e): Welding Process(es):	DIN EN ISO 4063 - 511 (autor	matisch)	
1	11 Stoßart(en) / Nahtart(en): Type(s) of joint / Type(s) of weld:	Umfangsstumpfschweißnaht /	durchgeschw	eißt / einlagig / mit Überlappung
1	12 Fugenform(en): Joint preparation(s):	I-Naht , Wurzelspalt: ≤ 0,3 mm	, Kantenvers	atz: ≤ 2,0 mm
1	13 Grundwerkstoffgruppe(n): Parent material and group(s):	Inconel A625 (NiCr22Mo9Nb) Gr. 43 - ISO/TR 15608 / Gr. Ni	+ Inconel A6 2 - AD2000-F	17 (NiCr22Co12Mo9) / HP0
1	14 Grundwerkstoffdicke: Parent material thickness:	(50 mm) 45 – 55 mm		
1	15 Rohraußendurchmesser: Pipe outside diameter:	(220 mm) ≥ 165 mm		
1	16 Zusatzwerkstoff(e): Filler material(s) type / Designation:	-		
1	17 Elektronenstrahlgerät:	Pro-beam K6000		
1	18 Schweißparameter:	siehe WPS: VA_IN625-617_50	PC	
1	19 Schweißbadsicherung:	ohne Schweißbadsicherung		
2	20 Schweißposition(en):	PC (2G)		
2	Halte-/Spannvorrichtung:	siehe WPS: VA_IN625-617_50	PC	
2	fixture seating: Vorwärmtemperatur:	≥ 15°C		
2	Wärmenachbehandlung:			
2	24 TEMPERATUR-	Die Kerbschlagzähigkeit wurde bei +20°C n	achgewiesen. Es g	elten die jeweiligen Temperaturbegrenzungen der
	BEGRENZUNG TEMPERATURE LIMITS/RESTRICTIONS	verwendeten Grund- bzw. Zusatzwerkstoffe eingesetzten Zusatzwerkstoffe). Impact stren filler materials being used have to be considered (s	(siehe AD 2000 M glh has been proven see AD 2000 Merkblät	erkblätter W und VdTÜV-Kennblätter der at +20°C Temperature restrictions depending on parent and ter W and VdTÜV-data sheets of filler materials).
2	25 ERWEITERUNG / ABGRENZUNG SCOPE EXTENSION/ LIMITS/RESTRICTIONS			
2	26 BESONDERE HINWEISE FÜR DIE FERTIGUNG SPECIAL ADVICE FOR FARRICATION	Siehe auch DIN EN 1011-7 "Empfehlungen see also DIN EN 1011-7 "Recommendations for we Siehe auch WPS: VA_IN625-617_50_PC	zum Schweißen m elding of metallic mate	etallischer Werkstoffe - Elektronenstrahlschweißen". rials"
2	NACHWEISE ZUR QUALITÄTSSICHERUNG	Beim Einsatz für niedrigere Betriebstempera zusätzliche Arbeitsprüfungen zu erbringen. Die Festlegungen zum Geltungsbereich des	aturen ist ggf. der 2 Schweißverfehren	ähigkeitsnachweis der Schweißverbindungen über
	EVIDENCE FOR QUALITY ASSURANCE Hinweis: Ergänzung und Wiederholung	Bewertungsgruppe B gemäß DIN EN ISO 1	3919-1. arkblatt HP 2/1 7iff	er 8 geregelt und separat nachzuweisen. Bei
-	wesentlichen Änderungen der festgeleg durchgeführt werden. Wird die Fertigun erforderlichen Verfahrensprüfungen dur	en Bedingungen ist eine Ergänzungsprüfung von Druckbehältern oder Druckbehälterteiler chzuführen. Note: Supplementary testing and repetitio	erforderlich. Die E n länger als ein Jai n of procedure test are	rgånzungsprüfung kann als Arbeitsprüfung rrunterbrochen, so sind die für die neue Fertigung specified in AD 2000-Merkblatt HP 2/1 chapter 8 and has to
,	event of the production of pressure vessels or pre-	are altered to any appreciable extent, a supplementary to sure vessel components being discontinued for a period	of excess of one year, j	plementary test can be performed as a production test. In the procedure testing shall be repeated.
4	und geprüft wurden. Die gestellten Anfo aforementioned specifications. The requirement	derungen sind erfüllt. This is to certify that the te its are fulfilled.	st welds were prepare	welded and tested in accordance with the terms of the
3	30 Magdeburg, 18.11.2013 31		100	
-	32 Anlagen: 1. WPS Nr. des Herstellers: Enclosure: WPS No. of the manufacturer:	VA_IN625-617_50_PC vom 01.10.2	THE TIN NOT	ELC CV
2_0_0	 Überwachung Probeschwi Supervision of the test wold, Welding in Prüfer / Inspector: 	elfSung - Nr.: VA_IN625-617_50_PC vom 07.10.2 port No.: Dr. Hanse Date		differungsstelle für Druckgeräte
S_30_02	 Ergebnisse der Untersuch Results of Examination No.: Prüfer / Inspector: 	ung - Nr.: ZLS 13-07373 vom 22.10.: H. Baumert (TÜV4) Date	2013 VANDR	NORD Systems GmbH & Co. KG Kennnummer 0045
8	TÜV NORD Systems Gm	bH & Co. KG • Technikzentrum • Comp	etence Center V	/erkstoff- und Schweißtechnik
	Telefon (040)	8557-2368 • Fax (040) 8557-2710 • E-n	namburg nail: technikzenti	um@tuev-nord.de

FIGURE 75: WPQR PRO-BEAM [43]

								engester tot	/ .//	
								10	y NOK	
1			PRÜFBE	RICHT REPORT O Überwa	ÜBER EI DF A WELDING PI chung de Supervisi	NE VERI ROCEDURE QUA or Probest on of test welding	SChwei	NSPRÜFUNG IBung	3	
2	Horstollor	Schwoiß	anweicung			Dritt	fetalla		Seite / Pag	ge 1 von / of 2
4	pWPS-No.:	VA_	dure Specification IN625-617_50_F	°C		Exam WP WPQ	QR-Nr.:	TUV NORD Syst VP-0049-0104/13	ems GmbH & B/V Re	Co. KG
5	Hersteller:	pro-l	beam AG & Co.	KGaA		Akte	e Nr.:	8110565063		
6	Anschrift : Address:	Lind	enallee 22, 3922	1 Burg		Bau	iteil: ponent part:	Stumpfnaht am F	Rohr	
7	PRUFDET	AILS DE	TAILS OF WELDING			Orte		_		
0	Date of welding:	Schweißt	ung: 07.10.	2013		Location:		Burg		
9	Prüfstückke	ennzeichr	nung: wie W	PS		Name	des Schw	veißers: Torst	en Glüsing	
10	Schweißpro	zess:	511			Schwe	eißposition	n: PC		
11	Grundwerks	stoff 1:	A625	NiCr22Mo	9Nb)	Grund	werkstoff	2: 4617	(NiCr22Co12	(8oM
12	Parent material D	Designation 1:	7.020	NOIZZINO	0110)	Parent m	aterial Designa	ition 2:	(1101220012	-11100)
12	Parent material T	hickness 1:	50 mm	1		Parent m	aterial Thickne	ss 2: 50 mi	n	
13	Außendurch	messer	1: 220 m	m		Außen Pipe Outs	side Diameter	sser 2: 220 n	ากา	
14	FUGENVO	ORBERE	EITUNG JOINT PR	EPARATION						
15	Nahtart:	I-Na	ht (durchgeschw	eißt)			Öffnung	jswinkel:	≤ 0,3 mm	
16	Steghöhe:	obne	Schweißbads	icherung			Stegabs	stand: r	nav 2 mm	
17	Depth of root face			MEISSEN			Root gap:			
18	Schweiß-	Prozess	Durchmesser	Strom	Spannung	Stromart/	Draht-	Schweißge-	Wärme-	Zwischen-
	raupe Run	Process	Schweißzusatz Diameter of filler material [mm]	Current [A]	Voltage [V]	Polung Type of current / Polarity	vorschub Wire feed [m/min]	schwindigkeit Travel speed [cm/min]	einbringung Heat input [kJ/cm]	lagentemp. Interpass temp. [°C]
	Anriss	511	sieh	e WPS-Nr	. VA_IN625-	617_50_PC	;	20	-	-
	Heftnaht	511	sieh	e WPS-Nr	. VA_IN625-	617_50_PC	;	10	-	-
	SN	511	sieh	e WPS-Nr	. VA_IN625-	617_50_PC	2	8	-	< 150
10	Glätten	abours 7	sieh	e WPS-Nr	. VA_IN625-	617_50_PC	;	8	-	< 150
19	Standard designa	ation of filler m	naterial:		-					
20	Bezeichnun	ng / Herst	eller / Kennblatt-	Nr.:	-					
21	Sondervors	chriften f	ür Trocknung:		-					
22	Any special bakin	ng or drying: Iver Norm	nbezeichnung.							
00	Standard designa	ation of weldin	ng flux:	hle i	-					
23	Trade name / Ma	nufacturer / D	eller / Kennblatt- Datasheet No.:	INF.:	-					
24	Schutzgasa Shielding and L	art / Gasd	lurchflussmenge	:	V	akuum				
25	Art der Sch	weißeinri	ichtung:		Т	vp: K6000				
26	Schmelztiet	fe:			5	0 mm				
27	Einzelheiter	n Ausfuge	en / Schweißbad	lsicherung	: 0	hne Schwe	ißbadsic	heruna		
28	Vorwärmter	mperatur	:	0	>	15°C				
	Preheat temperat									
29	POST-WELD HE	AT TREATM	ENT				_			
30	Zeit, Temperature	eratur, Ve	erfahren:		-		No	\bigcirc	~	
31	Erwärmung	s- und Al	bkühlungsrate:			2	150 1	all'a	7/	
32	Prüfstücke	ing rate: deschwe	ißt in Anwesenh	eit von:	Dr. Hanse	1	tifie	BOBRE EL	MA	
30	The test pieces w	vere welded in	n the presence of:			1	5 100	1045 A. 1	12000	
23	Mandeburg	den 18	11 2013				Va.	Pint -Ing	A Behrens	7
34	magaebarg	, чон то.					der 1	TÜV NORD Syst Kennnum	n für Druckg ems GmbH imer 0045	eräte & Co. KG
34										
34	2022									
34	ΤÜ\	/ NORD S	Systems GmbH & C	Co. KG • Teo	chnikzentrum	Competence 22525 Harm	e Center W	erkstoff- und Schwe	ißtechnik	

FIGURE 76: WPQT PRO-BEAM PAGE 1/2 [43]

									4	
1		PI	RÜFBEI	RICHT Ü REPORT OF Ergebi) BER F A WELDIN nisse	EINE V IG PROCEDU der Un	ERFA	HRENSF	PRÜF	UNG
2				0.000	Res	ults of Exami	nations			Seite / Page 2 von /
3	Hersteller - So Manufacturer's Weld	chweißanweis	ification				Prüfste	Body: TÜV	NORD	Systems GmbH & Co. KG
4	pWPS-Nr.:	VA_IN625-	617_50_P	С			WPQR-NO	-Nr.: VP-0	0049-01	104/13/V Rev.: 0
5	Hersteller: Manufacturer:	pro-beam A	AG & Co. K	GaA			Akte N File No.:	r.: 8110	056506	3
6	Anschrift : Address:	Lindenallee	e 22, 3922	I Burg			Bauteil	l: Stun	npfnaht	t am Rohr
7	SICHTPRÜF	UNG: Visual exan	nination:		е	DUR	CHSTR	AHLUNGSF	RÜFU	NG*): Radiographic examination*):
8	FARBEINDRIN		Penetrant testing)	e	ULI	KASURI	ALLPROFU	NG): 0	litrasonic examination"):
9 10	Pos. / Nr.	Temp. R	SO 4136) / 1 le/Rp0.2	Rm	A5 [%	6] Z	[%]	Bruchlage	ə ¹⁾	Bemerkungen
11	Anforderung	[°C] [N/mm ²]	[N/mm ²]				Fracture location	on ')	Remarks
	Requirement	RT		609				G*	In	iconel 617
	VP VOE-2	RT		584				G*	In	conel 617
12	BIEGEPRÜF	UNG (DIN EN	ISO 5173)	SBB-Se	itenbiege	probe	Biege	dorn-Durchme	esser: 4	xt
13	Pos. / Nr.	Art Type	Biegewink Bend angle	kel Dehr	nung ^{*)}	Ergebni	S			
14	Anforderung									Bilddokumentation
15	VP VOE-3	SBB	180			е	MACRO		e	Anlage-Nr.: 13-07373
	VP VOE-4 VP VOE-5	SBB	180			e	MIKR	OSCHLIFF	е	Anlage-Nr.: 13-07373
	VP VOE-6	SBB	180			е	MICRO	EXAMINATION:		Appendix No.:
16	KERBSCHLA	AGBIEGEPRU	JFUNG (DI	N EN ISO 9	016)	Art:	Type: KV	2 / Abmessur	igen: Din	nensions:
17	Pos. / Bez. Pos. / Des.	Kerblage Notch location	Tempera Temperatu [°C]	re K	1 1	Verte ^{Values} K2	K3	Mittelwert Average	Beme Remarks	rkungen / Bruchaussehen ² / / Type of fracture ² /
18	Anforderung Requirement							50		
	VP VOE-7 VP VOE-8 VP VOE-9	VWT (SG) VHT (WEZ) VHT (WEZ)	RT RT RT	21 33 30	4 8 0	232 372 289	208 357 321	218 356 303	zum lı zum lı	nconel 625 nconel 617
19	HÄRTEPRÜF		ISO 6507)			Bilddoki	umentati	on Anlage-N	l Ir.: 13-0	07373
20	Art / Last:	HV 5	A	nforderung	Ba	hn I	Bahn I	I Bahr		Bemerkungen
21	max. Werte:	Grundwerk	stoff:	Requirement	≤ '	154	≤ 133	≤ 13	32	Netliarka
22	Wax, values:	WEZ:			≤ .	160	≤ 162	≤ 14	15	
23		Schweißgu	t:		≤ 1	136	≤ 147	≤ 15	53	
24	SONSTIGE F	RÜFUNGEN	OTHER TESTS	: VT-Prü	fung (76	263/7-13), PT-Pri	ifung (76263	3/3-13)	, RT-Prüfung (76263/1-13)
25 26	BEMERKUNG Die Prüfunge Tests were carried o	GEN REMARKS: n wurden aus put in accordance wi	geführt in (h the requireme	Übereinstin	nmung n	nit den Ar	nforderur	ngen von:	DRG 97	7/23/EG, DIN EN ISO 15614- 00-HP2/1
27	Laborbericht-	Nr.: Laboratory R	eport No.:	13-073	73 (Zent	trallabor S	Siegerlan		0	17
28	Die Prutanfo Test results were a	acceptable.	ina ertuilt.				Soon		SOL	Q/n
20							othe	1901		Ulle
30	Magdeburg, d	den 18.11.201	3				E 100	Prüflabak	atoriun	A. Behrens n für Druckgeräte
31	*) falls geford	lert					Ver	NORPOR	D Syst	tems GmbH & Co. KG
32 33	if required e: erfüllt / acce 1) G: Grundw	eptable ne: verkstoff / Ü: Üb	nicht erfüllt / ergang / S:	not acceptable Schweißgut	2)	V: Verfor	mungsbr	Ke uch / M: Misc	hbruch /	nmer 0045 1 T: Trennbruch / N: nicht gebroc
	G: Parent m	NORD Systems	GmbH & C	o. KG • Tecl	hnikzentru	um • Comp	etence C	enter Werksto	off- und	Schweißtechnik

FIGURE 77: WPQT PRO-BEAM PAGE 2/2 [43]

pro - beam AG & Co. KG Lindenallee 22 D - 39288 Burg	A	WPS gemäl	B EN15609-3:2004, EN15614-11: 19 to EN15609-3:2004, EN15614-1	2002, RCC-MR:2007 5	Sec. 4 - RS3560 7 Sec. 4 - RS356	p	oro-k	beam	
Name der WPS:	Voes	t Alpine	N625-617 4	50mm PC	,	1	vom:	Blatt 1 vo	013
Gültig nach PQR:	(in P	rograss		Schweißproz	ess:	Floctr	from hor	22.10.2	1
EB-Anlage:	Kenn	nogiess	~/	Welding proc Kunde:	ess	Veeet	Alaia	am / 51	
Type equipment Bauteil:	1000	0		Customer		voest	Alpin	e	
Unit	Arbeit	sprobe zu	ur Verfahrensprüf	fung (work s	ample we	Iding proc	edure q	ualificatio	n)
Drawing-no.									
Components									
Benennung: Name of Part			Tube 1			Т	ube 2		
Zeichnungsnummer:				- An Oak In Contraction (1994), and an oral					
Werkstoff:	A62	25 (Wst.N	Ir. 2.4856) NiCr22	2Mo9Nb		A617 NiC	Cr22Co1	2Mo9	
Dicke:	50	mm		Schweißtiefe	· · · · · · · · · · · · · · · · · · ·	50	mm	2000	
Thickness Durchmesser:	220			Welding dept Badstütze	th		11111		
<i>Diameter</i> Lage der Naht:	220	mm		Backing Rezeßdicke:		no			
Orientation of welding	Radial			Backing thick	iness	0	mm		
Groove design	Butt jo	int		Penetration t	ype	full pene	etration		
Backing	no			Schweißposi Welding posi	tion: tion	PC (2G)		
Vorwärmung: Preheat	15-30	°C		Wärmenachb Postweld hea	ehandlung: at treatment	No			
Zulässiger Spalt:	0.3	mm		Zusatzdraht:		No			
Aubeu und Vorrichlungen Sel-up and jigs 1. kleine Drehach Adjust weiding part to be 4 2. Strahlfänger im	se. Baute executed in the	eil mittig e ne middie of th des Rohr	einrichten. he rotating axis res	Filler wire					
Autseu und Vorrichtungen Sel-up and jigs 1. kleine Drehach Adjust weiding part to be 2. Strahlfänger im beam catcher inside the to 3. mit Zuganker b contract with both tie rod t 4. Strahlgenerato	se. Baute executed in the Inneren be eide Roh ubes muss ho	eil mittig e ^{ne middie of th} des Rohr re zusam prizontal e	einrichten. ^{he rotating axis} res nmenziehen eingerichtet sein.	Filler wire					
Autsau und Vorrichlungen Sel-up and jigs 1. kleine Drehach Adjust weiding part to be of 2. Strahlfänger im beam catcher inside the to 3. mit Zuganker b contract with both tie rod t 4. Strahlgenerator beam genarator must be a Schweißenweisung ist übe	se. Baute executed in th Inneren be eide Roh ubes muss ho djusted horiz	eil mittig e ^{le middie of th} des Rohr re zusam prizontal e contaly	einrichten. ^{he rotating axis} res amenziehen eingerichtet sein.	Filler wire					
Autsau und Vorrichlungen Sel-up and jigs 1. kleine Drehach Adjust weiding part to be o 2. Strahlfänger im beam catcher inside the to 3. mit Zuganker b contract with both tie rod t 4. Strahlgenerator beam genarator must be a Schweißanweisung ist übt Welding procudure is base pre WPS vom 1 1	se. Baute executed in th Inneren be eide Roh des "muss ho djusted horiz djusted horiz mommen vo d on 0.2013	eil mittig e ^{ne middle of th} des Rohr re zusam prizontal e rontaly n:	einrichten. ^{he rotating axis} res menziehen eingerichtet sein.	Filler wire					
Autsau und Vorrichlungen Sel-up and jigs 1. kleine Drehach Adjust weiding part to be e 2. Strahlfänger im beam catcher Inside ihe to 3. mit Zuganker b contract with both tie rod I 4. Strahlgenerator beam genarator must be a Schweißanweisung ist übe Welding procudure is bass pre WPS vom 1.1 Mitgellende Dokumente:	se. Baute executed in th Inneren be eide Roh ubes muss ho djusted horiz	eil mittig e ne middle of th des Rohr are zusam prizontal e contaly	einrichten. he rolating axis res amenziehen eingerichtet sein.	Filler wire					
Autseu und Vorrichtungen Sel-up and jigs 1. kleine Drehach Adjust weiding part to be e 2. Strahlfänger im beam catcher inside lihe it 3. mit Zuganker b contract with both tie rod t 4. Strahlgenerator beam genarator must be a Schweißanweisung ist übb Welding procudure is base pre WPS vom 1.1 Witgeltende Dokumente: Co-applicable documents Zeichbaure, Schweiß	se. Baute executed in th Inneren be eide Roh ubes muss ho djusted horiz mommen vo d on 0.2013	eil mittig e le middle of th des Rohr are zusam prizontal e contaly n:	einrichten. he rolating axis res umenziehen eingerichtet sein.	Filler wire					
Autseu und Vorrichtungen Sel-up and jigs 1. kleine Drehach Adjust weiding part to be e 2. Strahlfänger im beam catcher inside the tr 3. mit Zuganker b contract with both tie rod t 4. Strahlgeneration beam genarator must be a Schweißanweisung ist übe Welding procudure is base pre WPS vom 1.1 Witgelende Dokuments: Co-applicable documents Zeichnung, Schwei	se. Baute xecuted in th Inneren be eide Roh ubes muss ho don 0.2013	eil mittig e e middle of th des Rohr re zusam prizontal e contaly n: las, Kontu	einrichten. he rotating axis rres nmenziehen eingerichtet sein. rollplan, Fertigung	gsprotokolle					
Autseu und Vorrichtungen Sel-up and jigs 1. kleine Drehach Adjust weiding part to be e 2. Strahlfänger im beam catcher inside the tr 3. mit Zuganker b contract with both tie rod t 4. Strahlgeneration beam genarator must be a Schweißanweisung ist übe Welding procudure is base pre WPS vom 1.1 Witgeltende Dokumente: Co-applicable documents Zeichnung, Schwei Orawing, welding map, co Vorbereitung und Reinigun	se. Baute vecuted in th Inneren be eide Roh vbes muss ho djusted horiz mommen vo d on 0.2013 eißnahtat trol plan, pro- g der Fügest	eil mittig e e middie of th des Rohr re zusam prizontal e contaly n: ilas, Kontr duction report telle:	einrichten. he rotating axis res umenziehen eingerichtet sein. rollplan, Fertigung	gsprotokolle					
Autsau und Vorrichlungen Sel-up and jigs 1. kleine Drehach Adjust weiding part to be e 2. Strahlfänger im beam catcher inside lihe tt 3. mit Zuganker b contract with both tie rod I 4. Strahlgenerator beam genarator must be a Schweißanweisung ist übb Welding procudure is base pre WPS vom 1.1 Witgeltende Dokumente: Co-apilicable documents Zeichnung, welding map, co Vorbereitung und Reinigu Preparation and cleaning. das Bauteil mit W Anschweißklötze	se. Baute executed in th Inneren ibe eide Roh ubes muss ho don 0.2013 eißnahtat droi plan, pro g der Fügest f joint //G Hefte anheften	eil mittig e le middle of th des Rohr are zusam prizontal e prizontal e in: tlas, Kontr bduction report telle: ar auf beid	einrichten. he rotating axis res menziehen eingerichtet sein. rollplan, Fertigung rs	gsprotokolle	weißnah	tatlas) =>	> Von W	ЛТО.	
Aubau und Vorrichlungen Sel-up and jigs 1. kleine Drehach Adjust weiding part to be v 2. Strahlfänger im beam catcher inside lihe it 3. mit Zuganker b contract with both lie rod it 4. Strahlgeneration beam genarator must be a Schweißanweisung ist übb Welding procudure is base pre WPS vom 1.1 Mitgeliende Dokumente: Co-applicable dowcenter: Co-applicable dowcenter: C	se. Baute xecuted in th Inneren be eide Roh ubes muss ho don 0.2013 eißnahtat hrof plan, pro- ig der Fügest f joint //G Hefte anheften back side of j	eil mittig e le middle of th des Rohr are zusam prizontal e prizontal e n: contaly n: clas, Kontr bduction report ielle: er auf beid	einrichten. he rotating axis res umenziehen eingerichtet sein. rollplan, Fertigung ts den Seiten fixierer ding mep) => by WTO. At	gsprotokolle n (siehe Sch	nweißnah	tatias) =>	> Von W	ЛО.	
Autsau und Vorrichlungen Sel-up and jigs 1. kleine Drehach Adjust weiding part to be 4 2. Strahlfänger im beam catcher inside the tt 3. mit Zuganker b contract with both tie rod tt 4. Strahlgeneration beam genarator must be a Schweißanweisung ist übe Welding procudure is base pre WPS vom 1.1 Witgeltende Dokumente: Co-applicable documents Zeichnung, Schwei Oraving, welding map, co Vorbereitung und Reinigur Preparation and cleaning das Bauteil mit W Anschweißklötze TiG-tack-welding at frontu Erstellt: Created	se. Baute vecuted in th Inneren be eide Roh ubes muss ho don 0.2013 eißnahtat trol plan, pro- g der Fügest f joint //G Hefte anheften back side of J	eil mittig e ae middle of th des Rohr re zusam prizontal e prizontal e n: tlas, Kontr duction report telle: er auf beid	einrichten. he rotating axis res amenziehen eingerichtet sein. rollplan, Fertigung ts den Seiten fixierer ding map) => by WTO. Att [Geändert: Changed	gsprotokolle n (siehe Sch	hweißnah	tatlas) => ngly Geprüft und Checked ar	> Von M	/TO.	
Autseu und Vorrichtungen Sel-up and jigs 1. kleine Drehach Adjust weiding part to be 4 2. Strahlfänger im beam catcher Inside the tt 3. mit Zuganker b contract with both tie rod tt 4. Strahlgeneration beam genarator must be a Schweißanweisung ist übb Welding procudure is base pre WPS vom 1.1 Wilgeltende Dokumente: Co-applicable documents Zeichnung, Schw. Drawing, welding map, co Vorbereitung und Reinigu Preparation and cleaning i das Bauteil mit W Anschweißklötze TiG-tack-welding at front Erstellt: Created Name: Torste	se. Baute xecuted in th Inneren be eide Roh ubes muss ho djusted horiz mommen vo d on 0.2013 eißnahtat trol plan, pro- g der Fügest d joint //G Hefte anheften back side of // n Glüsing	eil mittig e e middie of th des Rohr re zusam prizontal e contaly n: clas, Kontr pduction report telle: r auf beid term (see wela	einrichten. he rolating axis res amenziehen eingerichtet sein. rollplan, Fertigung ts den Seiten fixierer ding map) => by WTO. Att Geändert: Changed Name: Name	gsprotokolle n (siehe Sch	hweißnah	tatlas) => ngly Geprüft und Checked ar Name: Name:	> Von W genehmig ad approved Frank Hau	/TO.	
Autseu und Vorrichtungen Sel-up and jigs 1. kleine Drehach Adjust weiding part to be 4 2. Strahlfänger im beam catcher inside the to 3. mit Zuganker b contract with both tie rod t 4. Strahlgeneration beam genarator must be a Schweißanweisung ist übe Welding procudure is base pre WPS vom 1.1 Mitgeltende Dokumente: Co-applicable documents Zeichnung, Schwei Drawing, welding map, co Vorbereitung und Reinigur Preparation and cleaning das Bauteil mit W Anschweißklötze TIG-tack-welding at front Erstellt: Created Name: Torste Datum: 01.10	se. Baute executed in th Inneren be eide Roh des muss he djusted horiz disted horiz disted horiz in on.2013 eißnahtat tred plan, pre- ig der Fügest d joint //G Hefte anheften back side of / n Glüsing 2013	eil mittig e le middie of th des Rohr re zusam prizontal e contaly n: clas, Kontr duction report telle: r auf beid item (see wela	einrichten. he rotating axis res amenziehen eingerichtet sein. rollplan, Fertigung ts den Seiten fixierer ding map) => by WTO. At Geändert: Changed Name Datum: October	gsprotokolle n (siehe Sch	weißnah	tatlas) => ngly Geprüft und Checked ar Name Datum: Datum:	> Von W genehmig di approvec Frank Hau 22 - 0.20	лто.	

FIGURE 78: PWPS PRO-BEAM PAGE 1/2 [43]

pro - beam AG Lindenallee 22 D - 39288 Burg	& Co. KGaA		WPS gema WPS accordin	IB EN15809-3/2 og to EN15609-3	004. EN15614-11:200 2:2004. EN 15614-11:20	2, RCC-MR:2007 2002, RCC-MR:2007	Sec. 4 - RS3560 17 Sec. 4 - RS3560	F	oro-	bea Blatt	2 von 2
Name der WPS	S:	Voes	t Alpin	e_IN62	5-617_50	mm_PC	2		vom:	22.1	0.2013
Gültig nach PC	R:	(in P	rogress	;)		Schweißproz	Zess:	Elect	ron be	eam / s	511
EB-Anlage:		K600	0	,		Kunde:		Voest	Alpi	ne	
Bauteil:		Arbeit	sprobe z	ur Verfal	rensprüfu	na (work s	ample wel	ding pro	cedure	qualifica	tion)
Zeichnungsnun	nmer:				n on opraida	.9 (ampio nei	ang pro	ocuare	quannet	
Prüfungen und	Maßnahmen	vor dem S	chweißen:								
Vor Fertigi Kantenver Fokus bei Trial weld and o current with 200	ungsbegi satz mes 20mA i cross section mA on the ite	nn eine sen, pr mmer a before pro ms gap an	Arbeitsp otokollier uf Baute duction, mea d adopt in pro	robe sch en und h surement of ogram!!!	weißen un bei Freigab t) bestimm gap and misalig	d Kontroll e fortfahre en und ir nment, fill-out	schliff anf an. ns Progra the reports, co	ertigen. Imm ein	Spaltn Igeben	naß und IIII Determine	the lens
				3	Welding para	meters					
Beschleunigung Acceleration vo	gsspannung: Itage		80	kV	Linsenstrom an Focusing lens	uf Oberfläche: current on sur	face			2140	mA
Strahlerzeugert	yp / System: /stem		80-40-1		Strahlstrom be	i Linsenstrom	Bestimmung:			20	mA
Kathode:			St'wald 35	-95 (70um)	Höhe über Tisc	ch	Surdin			500	mm
Außerhalb Dreh	achse:			(Kalibrierwert fü	ground ir Strahlablenk	ung:			40000	
Welding Positio	Velding Position out of rotation axis - MITT wheelsdruck Strahlerzeuger:					ue for beam de	ellection			12600	
Vork pressure gun ≤ 10-4 mbar				Work pressure	chamber				≤ 3*10-3	mbar	
Strahl gepulst o Beam pulse or o	der cw: cw		CW		Strahlknick: Angle of beam	axis				-	mA
Pulsen Frequer	Pulse frequenz Pulse frequenz Pulse frequenz				Pulse did cover a second					%	
	Strahl-	Linsen-	Schweiß-	Umlauf-	5	Strahloszillatio	n	Sio	pe	Strahl-	Sonstiges
	strom	strom	geschw.	zeit	Form/Lage	Frequenz	Breite	ein	aus	leistung	Mariaus
	current	current	speed	time	direction	frequency	width	up	down	Power	Vanous
Andre	mA	mA	mm/s	min		Hz	mm	mm	mm	kW	
Annss Wilness line	3	±0	20	-	Spot	-	-	40	80	0,24	
Heftnaht Tack weld	40	±0	10	-	Kreis	817	X=0,8 Y=0,8	40	80	3,2	SQ_Heft (1,1,1,2)
Schweißnaht <i>Weld</i>	260	-80	8	-	Parabel	817	X=1,0 Y=2,0	40	80	20,8	_Slout +10mA
^{Kosmetik} Wash Pass	70	+ 50	8	-	Parabel	817	X=1,5 Y=2,5	40	80	5,6	
CNC-Programm <i>NC-program</i> VoestAlpin Prüfungen und	i: ie_WPD\ Maßnahmen	AG_220)_PC_C.	MPF				1	1		
Positionier Positioning - sc Prüfungen und Approvals and d alle losen a removal of all lo Sichtprüfun	en - Anris an - wilness i Maßnahmen actions after Schweißs osespatter ng, RT, F	ss - Hef line - tack-v nach dem welding spritzer PT, Erm	iten , dan ^{Schweißen:} entferner	n Schwe with ELC	eißen mit E o ONLINE (man	LO ONLII ual tracking al	NE (Nachf <i>lowed</i>) bei ZLS	ührung	per Ha	nd mög	hich)

FIGURE 79: PWPS PRO-BEAM PAGE 2/2 [43]

L

Auftragebe Customer:	r: pro-bear Burg	m AG a	& Co. k	KGaA		Abnah	ime:	ΤÜ	/ Nord		Seite 1 vo Page of
	Lindena	llee 22	2			Regel	werk:	DIN	EN ISO 7	15614-	11
ZLS Prüf-	Nr: 13-073	73				Grund	werksto	off: Inco	onel 617 /	Incone	el 625
Auftrags-N	Ir.: 4500015	5012				Schme	eta: Ize-/Blec	h-Nr.: WG	249/3318	889	
Abmessur	ng: Ø 220 / 5	0 mm				Schwe	late-no.: issverfah	ren FBV	N		
Dimension: Zuavers	uch	1.1916				DIN EI	of weldin	g: 36	•		
Tension test			1. juli 1. 1				7			T	Dent
Test-no.	Abmessung Dimension (mm)	Gouge (mm)	Yie	rc _e eld point (MPa)		Elong. (%)	Z Red. (%)	Sample typ	Bruchl. Loc. of crack	Temp. C°	Remark
Anforderun	gen	Min.			400)					
VP VOE IN625-617	46.69 x 19.01	Max.			609	,		CW	PM*	RT	* Inconel 617
VP VOE IN625-617	46,46 x 19,06				584			CW	PM*	RT	* Inconel 617
CW Quer zur	Naht	PM Gr	undwerksto	off							
Technol	ogischer	Versu	Jch			DIN EI	N ISO 51	73			
Probe-Nr.	Probety	o E	Biegewi	inkel °	Biege	edorn Ø	Biege	dehnung	Befund		Bemerkung
Test-no.	Sample ty		3ending	angle °	Bending	mandrel Ø	Elong	gation %	Result		Remark
VP VOE IN625-617	SBB		18			ext			a		
VP VOE IN625-617	SBB		18			r x t			a 2		
VP VOE IN625-617	SBB		18			lyt			a		
SBB Seitenbie	gepr. q. z. Naht							I			
Kerbsch		/ersu	ch nac	h Charpy-	v	DIN EN	I ISO 90'	16			
Impact test	Quorschnitt	Korh	PSW	450J Seri	al No. 199		I Max	Cloit	bruch %	D.A.	Bomork
Test-no.	Cross area cm ²	Notch p	osition	Temp. C°	Impac	st energy J	Av.	Shear	fracture %	Av.	Remar
Requirement	ngen s	Max.					50				
VP VOE IN625-617	0,80	vv	νт	RT	214	232 20	3 218				
	0,80	VH	ιT	RT	338	372 35	7 356				zum Inconel 62
VP VOE IN625-617	0,80	VH	нт	RT	300	289 32	1 303				zum Inconel 61
VP VOE IN625-617 VP VOE IN625-617											
VP VOE IN625-617 VP VOE IN625-617	gut/senkrecht	VHT ÜL	ergang/sen	ikrecht se							
VP VOE IN625-617 VP VOE IN625-617	gut/senkrecht	VHT ÜE HA	ergang/sen Z/transver Unters	ikrecht se uchung/e	en						
VP VOE IN825-617 VP VOE IN825-617 VWT Schweißy Weldcer Anlage/n annex e. = erfüllt a. = accepted pe. = njehr arfüllt	Metallogra Metallogra Metallograp	nic exam		-							

FIGURE 80: TENSILE TEST PRO-BEAM [43]

FIGURE 81: HARDNESS TEST PRO-BEAM [43]

FIGURE 82: MICROSCOPY PRO-BEAM [43]

FIGURE 83: MACROSCOPY PRO-BEAM [43]

Zerstörungs	freie Werkstoffprüfung · Te	chnische Abn	ahmen
BERICH	T über Sichtprüfung		Dakks
Report on visual e	examination		Drukko Deutsche Akkreditierungsstu D-PL-18631-01-00
Prüf Nr.: Test-No.:	76263/7-13		Nach DIN EN ISO / IEC 17025 akkreditiertes Pröfflaboratorium Zulassungen für die Lutifahrindustie (dass III) durch Rolts- Prölung gemäß DIN EN ISO und ASME Ausbildung nach ASMT-TC-1A
Auftraggeber:	pro-beam AG & Co. KGaA		_
	Lindenallee 22, 39288 Burg		_
Prüfort: Test location:	Freudenberg, PZ I	Prüfdatum: Date of test:	11.10.2013
Auftrags-Nr.: Order-No.:	4500015013 VP VOE IN625-617	Zeichnungs-Nr.: Drawing-No.:	
Werkstoff: Material:	INC625/INC617	Abmessungen: Dimension:	ø 220 x 55 mm
Schweißart: Welding Process:	Elektronenstrahlschweißen (EBW)	Spezifikation:	DIN EN ISO 5817
Prüfzeitpunkt: Time of Examination:	nach dem Schweißen	Prüfanweisung: Examination Procedure:	VT 007 Ing. Büro F. Braun
Prüfgegenstand: Component:	Verfahrensprüfung / Proben-Nr.:VP Verfah	DE IN 625-617 / Schn	nelze: WG249/331889
Prüfumfang und Auswertung:	Längsnaht einseitig 100 %		
Extent of Examination and Acceptance Standard:	Sichtprüfung der Nähte gem. DIN EN I	SO 17637, Auswertur	ng gem. Bewertungsgruppe B
Prüfoberfläche: Test Surface:	gesäubert	Nahtoberfläche: Weld surface:	mechanisch bearbeitet
Bewertungsmerkn	nale: DIN EN ISO 5817	Prüfgeräte: Equipment:	gem. DIN EN 17637
Beleuchtung: Light intensity :	1320 Lux auf der Prüffläche	Beleuchtungstyp:	Handlampe Halogen
Bemerkungen: Remarks :	Wurzel nicht auswertbar!		
		र्थत र अयोग	
Prüfbefunde:	Die geforderte Sichtprüfung ergab keine	Beanstandungen.	
Die Prüfstücke we Components tested have been	rden mit folgendem Stempel gekennzeich marked by the following stamp:	net:	
Der Prüfbericht be The report with appendix con	esteht aus: 1 Seiten Seite sist of: pages page	1 von of	1 Seiten pages
Freudenberg, den	30.10.2013 Prüfer: Donner, Cert-No Examiner: Level II	: 29044 Prüfa Inspection	ufsicht: n supervisor: Levensur Levens Levensur Levensur Levensur Levensur Lev

FIGURE 84: VISUAL TEST PRO-BEAM [43]

Zerstörungs	freie Werkstof	ffprüfung · Te	chnische Abna	hmen
BERICH Report of Pene	T über Eindri trant testing	ngprüfung		Control (COAkks
Prüf Nr.: Test-No.:	76263/3-13			Nach DIN EN ISO / IEC 17025 aktreditiertes Pröflaboratorium Zulassungen für die Lutifahrlindustie (class III) duch Rofe-Ro Pröfung gemäß DIN EN ISO und ASME Ausbildung nach ASNT-TC-1A
Auftraggeber:	pro-beam GmbH &	Co. KGaA		-
	Lindenallee 22, 392	88 Burg		_
Prüfort: Test location:	Freudenberg, PZ I		Prüfdatum:	11.10.2013
Auftrags-Nr.:	4500015013 VP VO	E IN625-617	Zeichnungs-Nr.:	
Werkstoff:	INC 625 / INC 617		Abmessungen:	ø 220 x 55 mm
Schweißart: Welding Process:			Spezifikation:	DIN EN ISO 5817
Prüfzeitpunkt: Time of Examination:	nach dem Schweiße	en	Prüfanweisung: Examination Procedure:	PT 003 Ing. Büro F. Braun
Prüfgegenstand:	Verfahrensprüfung	/ Proben-Nr.: VP V	OE IN 625/617, Schme	elze: WG 249/331889
Prüfumfang und Auswertung:	Längsnaht einseitig	100 %		ana amin'n dan amin'n a mar an
U				
Extent of Examination and Acceptance Standard:	Prüftechnik gem. D	IN EN 571-1 / Ausw	ertung gem. DIN EN IS	SO 23277 Zulässigkeitsgrenze 2
Extent of Examination and Acceptance Standard: Prüftechnische	Prüftechnik gem. D Angaben	IN EN 571-1 / Ausw	ertung gem. DIN EN IS	60 23277 Zulässigkeitsgrenze 2
Extent of Examination and Acceptance Standard: Prüftechnische Technical details Hersteller:	Prüftechnik gem. D Angaben Chemetall	IN EN 571-1 / Ausw	ertung gem. DIN EN IS Systembezeichn.:	60 23277 Zulässigkeitsgrenze 2 EN 571-1 - II Ad-2
Extent of Examination and Acceptance Standard: Prüftechnische Technical details Hersteller: Manufacturer: Eindringmittel:	Prüftechnik gem. D Angaben Chemetall Ardrox 9 VF 2 Cha	IN EN 571-1 / Ausw arge: 0900035063	ertung gem. DIN EN IS Systembezeichn.: Sensitivity class: Eindringzeit: Penetrand well time:	60 23277 Zulässigkeitsgrenze 2 EN 571-1 - II Ad-2 30 Min.
Extent of Examination and Acceptance Standard: Prüftechnische Technical details Hersteller: Manufacturer: Eindringmittel: Penetrant: Reinger: Genner	Prüftechnik gem. D Angaben Chemetall Ardrox 9 VF 2 Cha Wasser Cha	IN EN 571-1 / Ausw arge: 0900035063 arge:	ertung gem. DIN EN IS Systembezeichn.: Sensitivity class: Eindringzeit: Penetrant dwell time: Trockung: Drvine:	SO 23277 Zulässigkeitsgrenze 2 EN 571-1 - II Ad-2 30 Min. Luft
Extent of Examination and Acceptance Standard: Prüftechnische Technical details Hersteller: Manufacturer: Eindringmittel: Penetrant: Reiniger: Cleaner: Entwickler: Develoner:	Prüftechnik gem. D Angaben Chemetall Ardrox 9 VF 2 Cha Wasser Cha Ardrox 9 D1 B Cha	IN EN 571-1 / Ausw arge: 0900035063 arge: arge: 0900040692	ertung gem. DIN EN IS Systembezeichn.: Sensitivity class: Eindringzeit: Penetrant dwell time: Trocknung: Drying: Entwicklungszeit: Developing time:	SO 23277 Zulässigkeitsgrenze 2 EN 571-1 - II Ad-2 30 Min. Luft 30 Min.
Extent of Examination and Acceptance Standard: Technical details Hersteller: Manufacturer: Eindringmittel: Penetrant: Reiniger: Cleaner: Entwickler: Developer: Prüfoberfläche: Test surface:	Prüftechnik gem. D Angaben Chemetall Ardrox 9 VF 2 Cha Wasser Cha Ardrox 9 D1 B Cha gesäubert / geschlift	IN EN 571-1 / Ausw arge: 0900035063 arge: arge: 0900040692 fen	ertung gem. DIN EN IS Systembezeichn.: Sensitivity class: Eindringzeit: Penetrant dwell time: Trocknung: Drying: Entwicklungszeit: Developing time: Pröftemperatur: Test temperatur: Test temperatur:	SO 23277 Zulässigkeitsgrenze 2 EN 571-1 - II Ad-2 30 Min. Luft 30 Min. 19° C
Extent of Examination and Acceptance Standard: Technical details Hersteller: Manufacturer: Eindringmittel: Penetrant: Reiniger: Cleaner: Entwickler: Developer: Prüfoberfläche: Test surface: Beleuchtungsstärke:	Prüftechnik gem. D Angaben Chemetall Ardrox 9 VF 2 Cha Wasser Cha Ardrox 9 D1 B Cha gesäubert / geschlift 1241	IN EN 571-1 / Ausw arge: 0900035063 arge: arge: 0900040692 fen Lux	ertung gem. DIN EN IS Systembezeichn.: Sensitivity class: Eindringzeit: Penetrant dwell time: Trocknung: Drying: Entwicklungszeit: Developing time: Prüftemperatur: Test temperatur: Bestrahlungsstärke: Light intensity :	SO 23277 Zulässigkeitsgrenze 2 EN 571-1 - II Ad-2 30 Min. Luft 30 Min. 19° C μW/cm ²
Extent of Examination and Acceptance Standard: Technical details Hersteller: Manufacturer: Eindringmittel: Penetrant: Reiniger: Cleaner: Entwickler: Developer: Prüfoberfläche: Test surface: Beleuchtungsstärke: Ilumination level:	Prüftechnik gem. D Angaben Chemetall Ardrox 9 VF 2 Cha Wasser Cha Ardrox 9 D1 B Cha gesäubert / geschlift 1241 Handlampe Haloge	IN EN 571-1 / Ausw arge: 0900035063 arge: arge: 0900040692 fen Lux n	ertung gem. DIN EN IS Systembezeichn.: Sensitivity class: Eindringzeit: Penetrant dwell time: Trocknung: Drying: Entwicklungszeit: Developing time: Prüftemperatur: Test temperature: Bestrahlungsstärke: Light intensity :	SO 23277 Zulässigkeitsgrenze 2 EN 571-1 - II Ad-2 30 Min. Luft 30 Min. 19° C μW/cm ²
Extent of Examination and Acceptance Standard: Technical details Hersteller: Manufacturer: Eindringmittel: Penetrant: Reiniger: Cleaner: Entwickler: Developer: Prüfoberfläche: Test surface: Beleuchtungsstärke: Ilumination level: Beleuchtungsart: Light equipment: Bemerkungen: Remarks :	Prüftechnik gem. D Angaben Chemetall Ardrox 9 VF 2 Cha Wasser Cha Ardrox 9 D1 B Cha gesäubert / geschlift 1241 Handlampe Haloge Wurzel nicht auswo	IN EN 571-1 / Ausw arge: 0900035063 arge: arge: 0900040692 fen Lux n	ertung gem. DIN EN IS Systembezeichn.: Sensitivity class: Eindringzeit: Penetrant dwell time: Trocknung: Drying: Entwicklungszeit: Developing time: Prüftemperatur: Test temperature: Bestrahlungsstärke: Light intensity :	SO 23277 Zulässigkeitsgrenze 2 EN 571-1 - II Ad-2 30 Min. Luft 30 Min. 19° C μW/cm ²
Extent of Examination and Acceptance Standard: Technical defails Hersteller: Manufacturer: Eindringmittel: Penetrant: Reiniger: Cleaner: Entwickler: Developer: Prüfoberfläche: Test surface: Beleuchtungsstärke: Illumination level: Beleuchtungsart: Light equipment: Bemerkungen: Remarks : Prüfbefunde: Test results:	Prüftechnik gem. D Angaben Chemetall Ardrox 9 VF 2 Cha Wasser Cha Ardrox 9 D1 B Cha gesäubert / geschlift 1241 Handlampe Haloge Wurzel nicht auswe Die geforderte Eind	IN EN 571-1 / Ausw arge: 0900035063 arge: arge: 0900040692 fen Lux n ertbar! lringprüfung ergab	ertung gem. DIN EN IS Systembezeichn.: Sensitivity class: Eindringzeit: Penetrant dwell time: Trocknung: Drying: Entwicklungszeit: Developing time: Prüftemperatur: Test temperature: Bestrahlungsstärke: Light intensity :	SO 23277 Zulässigkeitsgrenze 2 EN 571-1 - II Ad-2 30 Min. Luft 30 Min. 19° C μW/cm ²
Extent of Examination and Acceptance Standard: Technical details Hersteller: Manufacturer: Eindringmittel: Penetrant: Reiniger: Cleaner: Entwickler: Developer: Prüfoberfläche: Test surface: Beleuchtungsstärke: Ilumination level: Beleuchtungsstärke: Ilumination level: Beleuchtungsart: Light equipment: Bemerkungen: Remarks : Prüfbefunde: Test results: Die Prüfstücke wee Component tested have beem	Prüftechnik gem. D Angaben Chemetall Ardrox 9 VF 2 Cha Wasser Cha Ardrox 9 D1 B Cha gesäubert / geschliff 1241 Handlampe Haloge Wurzel nicht auswo Die geforderte Eind rden mit folgendem S marked by the following stamp:	IN EN 571-1 / Ausw arge: 0900035063 arge: arge: 0900040692 fen Lux n ertbar! Iringprüfung ergab Stempel gekennzeich	ertung gem. DIN EN IS Systembezeichn.: Sensitivity class: Eindringzeit: Penetrant dwell time: Trocknung: Drying: Entwicklungszeit: Developing time: Prüftemperatur: Test temperature: Bestrahlungsstärke: Light intensity : keine Beanstandungen. net:	SO 23277 Zulässigkeitsgrenze 2 EN 571-1 - II Ad-2 30 Min. Luft 30 Min. 19° C μW/cm ²
Extent of Examination and Acceptance Standard: Technical details Hersteller: Manufacturer: Eindringmittel: Peaetrant: Reiniger: Cleaner: Entwickler: Developer: Prüfoberfläche: Test surface: Beleuchtungsstärke: Ilumination level: Beleuchtungsstärke: Ilumination level: Beleuchtungsart: Light equipment: Bemerkungen: Remarks : Prüfbefunde: Test results: Die Prüfbefunde to Test results:	Prüftechnik gem. D Angaben Chemetall Ardrox 9 VF 2 Cha Wasser Cha Ardrox 9 D1 B Cha gesäubert / geschliff 1241 Handlampe Haloge Wurzel nicht auswo Die geforderte Eind rden mit folgendem S marked by the following stamp: eesteht aus: 1	IN EN 571-1 / Ausw arge: 0900035063 arge: arge: 0900040692 fen Lux n ertbar! lringprüfung ergab Stempel gekennzeich Seiten Seite	ertung gem. DIN EN IS Systembezeichn.: Sensitivity class: Eindringzeit: Penetrant dwell time: Trocknung: Drying: Entwicklungszeit: Developing time: Prüftemperatur: Test temperature: Bestrahlungsstärke: Light intensity : keine Beanstandungen. net: 1 Von 1	SO 23277 Zulässigkeitsgrenze 2 EN 571-1 - II Ad-2 30 Min. Luft 30 Min. 19° C μW/cm ²

FIGURE 85: PENETRATION TEST PRO-BEAM [43]

Zerstörungs	sfreie Werkstoffprüfung · Te	chnische Abna	hmen
			seit 1970
Bericht ü Report on radiogr	ber Durchstrahlungsprüfunge aphic inspection	n	CORECTION (COAKES
Prüf Nr.: Test-No.:	76263/1-13		D-PL-18631-01-00 Nach DIN EN ISO / IEC 17025 akkreditiertes Prüflaboratorium
Auftraggeber:	Pro beam AG & Co. KGaA		Zulassungen für die Luftlahrlindustrie (class III) durch Rolls-Royn Pröfung gemäß DIN EN ISO und ASME Ausbildung nach ASNT-TC-1A
	Lindenallee 22, 39288 Burg		-
Prüfort: Test location:	Freudenberg	Prüfdatum: Date of test:	14.10.2013
Auftrags-Nr.: Order-No.:	4500015013 VP VOE IN625-617	Zeichnungs-Nr.: Drawing-No.:	
Werkstoff: Material:	INC625/INC617	Abmessungen: Dimension:	50 mm ø 220 mm
Schweißart: Welding Process:	EBW	Spezifikation:	DIN EN ISO 5817
Prüfzeitpunkt: Time of Examination:	nach dem Schweißen	Prüfanweisung: Examination Procedure:	RT 001 Ing. Büro F. Braun
Prüfgegenstand: Component:	Rohr VP VOE IN 625-617	ana ang ang ang ang ang ang ang ang ang	
Prüfumfang und Auswertung:	100 % Rundnaht		
Extent of Examination and Acceptance Standard:	gem. DIN EN ISO 17636-1 Prüfklasse B	, Auswertung gem. D	DIN EN 12517-1 ZG1
Prüftechnische Ang Technical details	gaben		
Röntgenanlage: X-ray tube:		Brennfleck:	-
Röntgenanlage: X-ray tube: Röhrenstrom: Tube amperage:	-	Brennfleck: Target: Röhrenspannung: Tube voltage:	· ·
Röntgenanlage: X-ray tube: Röhrenstrom: Tube amperage: Isotop: Isotop:	- - Ir. 192	Brennfleck: Target: Röhrenspannung: Tube voltaget: Aktivität: Activity:	- - 50 Ci.
Röntgenanlage: X-ray tube: Röhrenstrom: Tube amperage: Isotop: Isotop: Belichtungszeit: Time of exposure:	- - Ir. 192 1,20 min.	Brennfleck: Target: Röhrenspannung: Tube voltage: Aktivität: Activitä: Abmessung: Size:	- - 50 Ci. 3 x 2,31
Röntgenanlage: X-ray tube: Röhrenstrom: Tube amperage: Isotop: Isotop: Belichtungszeit: Time of exposure: F/FA: Focus/film distance:	- - Ir. 192 1,20 min. 110 mm	Brennfleck: Target: Röhrenspannung: Tube voltage: Aktivität: Activitä: Abmessung: Size: F/OA: Focus object distance:	- - 50 Ci. 3 x 2,31
Röntgenanlage: X-ray tube: Röhrenstrom: Tube amperage: Isotop: Isotop: Belichtungszeit: Time of exposure: F/FA: Focus/film distance: Prüfanordnung gg Esposure arrangement acc. to	Ir. 192 1,20 min. 110 mm em. DIN EN ISO 17636-1 Bild: 5	Brennfleck: Target: Röhrenspannung: Tube voltage: Aktivität: Activitä: Abmessung: Size: F/OA: Focus object distance: Abstand Naht / Fi Distance of source side of object/	- - 50 Ci. 3 x 2,31 Im:
Röntgenanlage: X-ray tube: Röhrenstrom: Tube amperage: Isotop: Isotop: Belichtungszeit: Time of exposure: F/FA: Focus/film distance: Prüfanordnung gy Exposure arrangement acc. to Gruppe der Drahl Image quality indicator:		Brennfleck: Target: Röhrenspannung: Tube voltage: Activität: Activität: Abmessung: Size: F/OA: Focus object distance: Abstand Naht / Fi Distance of source side of object/ Lage des BPK: Location of IQ1:	- - 50 Ci. 3 x 2,31 film: filmnah
Röntgenanlage: X-ray tube: Röhrenstrom: Tube amperage: Isotop: Isotop: Belichtungszeit: Time of exposure: F/FA: Focus/film distance: Prüfanordnung ge Exposure arrangement acc. to Gruppe der Drahl Image quality indicator: Film Material gem. Film type acc. to DIN EN ISO	- Ir. 192 I.20 min. 110 mm m. DIN EN ISO 17636-1 Bild: 5 bild	Brennfleck: Target: Röhrenspannung: Aktivität: Activität: Abmessung: Size: F/OA: Focus object distance: Abstand Naht / Fi Distance of source side of object/ Lage des BPK: Location of IQ: Format: Size:	- - 50 Ci. 3 x 2,31 film: filmnah 10 x 48 cm
Röntgenanlage: X-ray tube: Röhrenstrom: Tube amperage: Isotop: Isotop: Belichtungszeit: Time of exposure: F/FA: Focus/film distance: Prüfanordnung gg Exposure arrangement acc. to Gruppe der Draht Image quality indicator: Film Material gem. Film type acc. to DIN EN ISO Folien: Vorne: Screens: Front:	- Ir. 192 I.20 min. 110 mm em. DIN EN ISO 17636-1 Bild: 5 DIN EN ISO 17636-1 Figur: 5 tstege: DIN EN 6 FE DIN EN ISO 11699-1: Agfa D 5 + Pb 0,13 mm Pb Hinten: 0,13 mm Pb	Brennfleck: Target: Röhrenspannung: Tube voltage: Activität: Activity: Abmessung: Size: F/OA: Focus object distance: Abstand Naht / Fi Distance of source side of object/ Lage des BPK: Location of IQI: Format: Size: Entwicklung: Film Processing:	- - 50 Ci. 3 x 2,31 film: 10 x 48 cm Maschine
Röntgenanlage: X-ray tube: Röhrenstrom: Tube amperage: Isotop: Isotop: Belichtungszeit: Time of exposure: F/FA: Prüfanordnung gg Exposure arrangement acc. to Gruppe der Draht Innge quality indicator: Film Material gem. Film Material gem. Film type acc. to DIN EN ISO Folien: Vorne: Sereens: Front: Die Prüfstücke wer Components tested have been	Ir. 192 1,20 min. 110 mm em. DIN EN ISO 17636-1 Bild: 5 DIN EN ISO 17636-1 Figur: 5 tstege: DIN EN 6 FE DIN EN ISO 11699-1: Agfa D 5 + Pb 0,13 mm Pb Hinten: 0,13 mm Pb erden mit folgendem Stempel gekennzeicht marked by the following stamp:	Brennfleck: Target: Röhrenspannung: Tube voltage: Activität: Activität: Activity: Abmessung: Size: F/OA: Focus object distance: Abstand Naht / Fi Distance of source side of object/ Lage des BPK: Location of 1Q! Format: Size: Entwicklung: Film Processing:	- - 50 Ci. 3 x 2,31 film: filmah 10 x 48 cm Maschine
Röntgenanlage: X-ray tube: Röhrenstrom: Tube amperage: Isotop: Isotop: Belichtungszeit: Time of exposure: F/FA: Focus/film distance: Prüfanordnung gg Exposure arrangement acc. to Gruppe der Draht Image quality indicator: Film Material gem. Film Material gem. Film Vorne: Sereens: Front: Die Prüfstücke we Components tested have been Der Prüfbericht b The report with appendix com	- - Ir. 192 - 1,20 min. - 110 mm - em. DIN EN ISO 17636-1 Bild: 5 pin EN ISO 17636-1 Figur: 5 tstege: DIN EN 6 FE DIN EN ISO 11699-1: Agfa 0,13 mm Pb Hinten: 0,13 mm Pb Back: 0,13 mm Pb erden mit folgendem Stempel gekennzeichtmarked by the following stamp: esteht aus: 2 Seiten Seit	Brennfleck: Target: Röhrenspannung: Tube voltage: Aktivität: Activity: Abmessung: Size: FOOA: Focus object distance: Abstand Naht / Fi Distance of source side of object/ Lage des BPK: Location of 1Q1: Format: Size: Entwicklung: Film Processing: net: e 1 von of	- 50 Ci. 3 x 2,31 film: filmah 10 x 48 cm Maschine 2 Seiten BÜRO F. BIR

FIGURE 86: RADIOGRAPHIC TEST PRO-BEAM PAGE 1/2 [43]

4							
DURCHSTRAHLU Radiographic inspection re:	NGSBEI sult	FUND Prüf Test-N	Nr: 762	63/1-13			
Seite 2 von 2 Page of	Seiter Pages	zum Bericht vom: to the report of:	30.1	0.2013			Nach Din KIN B akkredillerte P Zulassungen lär de Luftbahridas Poldung gemäß DIN Austiklaung nach
Die Auswertung erfo Evaluation by:	olgte dure	ch: Herr Mr.:	n: U.H	intermaier, Co	ertNo	o.: 2139	8
Naht-Nr.	Film-Nr.	Befund	BPK	Schwärzung	Bew Eval	ertung uation	Bemerkungen
Weiu-110.	F IIII-190.	rindings	IQI	Density	e	ne	Kemarks
pro beam			BZ				
4500015013							
VP VOE IN	1		11/0	2.0.00			
625-617 KN	1		W9	> 2,30	X		
	2		w9	> 2,30	<u>X</u>		
						IRP	URO F. D.
						21 A	PH -
					-	5/0	12
					/	=CA	Man
					1	- (1	0.5
						Sio, ech	1608111919
						angs.	reie Werksto
							in an
					1.1.1		
	1						
Denst-L		Eahlau					
Dezelch	nung dei	remer.		FI	aw des	signatio	
100 Riss	401	Bindefehler		100 Cracks			401 Lack of fusion
202 Lunker	402 4011	Ungenügende Durchschweißung Flankenbindefehler		104 Crater crat 202 Shrinkage	:k		402 Incomplete root penet 4011 Lack of side fusion
2024 Endkraterlunker 2025 Offener Endkraterlunker	4012 4013	Lagenbindefehler Wurzelbindefehler		2024 Crater Shr 2025 open Crate	inkage r shrinkage	e	4012 Lack of inter-pass fus 4013 Lack of root fusion
2011 Pore 2012 Porosität	4021	Ungenügender Wurzeleinbrand		2011 gas pores	ani mkagi		4021 Insufficient root weld
2013 Porennest	502	Zu große Nahtüberhöhung(Stumpfnaht)		2012 Porosity 2013 Localized	(clustered)	porosity	500 form indication 502 Excess weld metal
2014 Porenzeite 2015 Gaskanal	504 507	Zu große Wurzelüberhöhung Kantenversatz		2014 Porosity li 2015 Blowhole	nes		504 Excessive penetration 507 Linear misalignment
2016 Schlauchpore 2017 Oberflächenpore	511 515	Decklagenunterwölbung Wurzelrückfall		2016 Elongated 2017 Pores surfa	cavities we	ormholes	511 Incompletely filled gr 515 Root concavity
300 Fester Einschluss ausser Kup 301 Schlackeneinschluss	pfer 516 517	Wurzelporosität Ansatzfehler		300 Solid inclu 301 Sing Inclu	isions(othe	er than coppe	r) 516 Root porosity 517 Poor restart
303 Oxide Einschluss 304 Metallischer Einschluss	5011	Durchlaufende Einbrandkerbe		303 Oxide Incl	usion		5011 Undercut (continuous
3042 Kupfereinschluss	5012	Wurzelkerbe		304 Metallic Ir 3042 Copper inc	lusions		5012 Undercut (intermitten 5013 Shrinkage groove
rr Filmlehler	601	Zundstelle		FF Film defec	t		601 Stay flash or arc strike
	e ne	Erfüllt die Anforderungen Erfüllt nicht die Anforderungen					e Accepted ne Not Accepted

FIGURE 87: RADIOGRAPHIC TEST PRO-BEAM PAGE 2/2 [43]

pro bea	m Pro	cedure Quali PQR–No: VA_	fication Record	(PQR) PC	Page: 1 or Date: 22.10. Rev.: 0
Company Name:	pro-beam AG	& Co. KGaA; Burg	g		
WPS No .:	Voest Alpine	_IN625-617_50mm	_PC		
Welding Process	es: EBW (Elec	ctron Beam Weldin	g)		
Types (Manual, A	Automatic, Semi-A	Auto.): <u>Automatic</u>		-	
JOINTS (QW-402					
		Welded from 1 si	de without backing		
			-		
		\triangleright			
		K			
			TIDX.		
		ma	x. 2		
		Groove Desig	n of Test Coupon		
BASE METALS (C	2W-403)		POSTWELD HEAT TR	EATMENT (OW	-407)
Material Spec.:	A625 (2.4856)	A617	Temperature:		-407)
Type or Grade	(NiCr22Mo9Nb)	(NiCr22Co12Mo9)	Time:		
P-No. / Group-	42				
No.:	43	43	Heating & Cooling Rate		
Test Coupon Thickness:	50 mm	50 mm	GAS (QW-408)		
Test Coupon Dimension:	Tube Ø 220 mm	Tube Ø 220 mm	Environment: <u>Vacuur</u>	n	
FILLER METALS	OW-404)				
SFA Spec.:			· · · · · · · · · · · · · · · · · · ·		
AM/S Classification			ELECTRICAL CHARA	CTERISTICS (Q	W-409)
AWS Classification				Tack Weld	Weld
Filler Metal F-No.:			Beam Current / Voltage:	40 mA / 80 kV	260 mA / 80 /
Size of Electrode:			Welding Speed:	60 cm/min	48 cm/min
Weld Metal Analys	s A-No.:		Beam Focus Current:	2140 ± 0 mA	2140 – 80m
Other:	E0		Beam Power:	3,2 kW	20,8 kW
POSITION (OW-40	5)		Pulsing Frequency:	without	without
Position of Groove	2G (PC)		Method of Cleaning	With ISO-P	ronanol Aceton
Weld Progression	Uphill, Downhill)	·	Angle of Beam Axis:	90°to work	ACCION
Other: None			Oscillation:	817Hz, Paral	pel Circle, 1,0/2,0 mr
DREUEAT (ON)	<u>()</u>		Type of equipment:	Pro-beam h	(6000
Preheat Temporati	b)		Pressure of vacuum:	<=0,003 mb	bar
Internase Tomoro	10. 100		r llament (Type / Size / Shape):	B=70 mA	trip-Catode 3,5 m
Other: -	uie		vvasn Pass:	817Hz, Parat	pel Circle, 1,5/2,5 mr
			Use of thermal processe	es <u>N.A</u>	
		pro-beam AG &	Co. KGaA: Burg	I SIDE	

FIGURE 88: PQR PRO-BEAM PAGE 1/2 [43]

Test-No. / Position VP VOE IN625-617 VP VOE IN625-617			(-110. VA_1	N625-6	017_50mm_P0		Date: 22.10.20 Rev.: 0
Test-No. / Position VP VOE IN625-617 VP VOE IN625-617			Tensile Tes	st (QW-15	50)		
VP VOE IN625-617 VP VOE IN625-617	Width (mm)	Thickn (mm	ess A) (m	rea 1m²)	Ultimate Total Load (kN)	Ultimate Unit Stress (Mpa)	Location of Crack
VP VOE IN625-617	46,69	19,01	1 88	37,5	540,5	609	PM (IN 617)
	46,46	19,06	5 88	35,5	517,1	584	PM (IN 617)
			Guided – Bend	Test (QV	<i>N</i> -160)		
Test No.		Band Angle				Result	
VP VOE IN625-617		SBB 180°			S	atisfactory	
VP VOE IN625-617		SBB 180°			S	atisfactory	
VP VOE IN625-617		SBB 180°			S	atisfactory	- 2
VP VOE IN625-617		SBB 180°			S	atisfactory	
			Toughness To	ests (QW	-170)		
Test-No.	Notch	Cross Area	Test Temperature		Impact Valu	Jes	Drop Weig
	Location	(cm*)	(°C)	Jou	le Average	% Mils	Break (Y/N
				214	4	-	
617 VP VOE IN625 -	VWT	0,8		232	2 218		Y
			-	208	В		
VP VOE IN625 -				338	B	-	_
617 (to In625)	VHT	0,8	RT	372	2 356	-	- Y
			-	357	7		
VP VOE IN625 -	VUT	0.0		300	2 202	-	- ,
(to In617)	VIII	0,8		285	303	-	- Y
Result – Satisfac Macro – Results Other:	otory: Yes: : Satisfactory	N	0: Other	Peneti Tests	ration into Parent Me	tal: Yes:	No:
Type of Test:	Macro section,	Micro section, VI	r, PT, RT satisfac	tory			
Deposit Analysis Other: Hardne	: ss test (HBW2.5/	187,5) PM: 129-1	154 (Average 138). HAZ: 14:	2-162 (Average 153)	WM: 136-153 (Ave	erage 145)
Welders Name:	Toreten Clück		Oleal M			Stome No. 1	
Test Conducted	by: Zentrallab	or Siegerland	CIUCK NO		Laborat	ory Test No.: ZLS	13-07373
We certify that the	e statements in t	his record are cor	rect and that the	test welds	were prepared, weld	ed, and tested in ac	cordance with
Date: 22.1	0.2013	5014-11, AD HP	Z/ I and Section I Manufacture	A of the As	am AG & Co KGaA	11	(P.L
Recertified			B	y: Frank H	Hauser	lan	- (<u>7</u>)
(Detail of record	of tests are illustr	ative only and ma	ay be modified to	conform to	the type and numbe	r of tests required b	y the Code.)
Rev. Date			Rev. Note:	s:		made by	y checked t
			h	0. 1/2			
		pro-	beam AG &	Co. KG	aA; Burg		

FIGURE 89: PQR PRO-BEAM PAGE 2/2 [43]

	E	h	Dal		5 1619 Gumme elefon 02261/7 elefax 02261/7	sbach 98-0 9888	DN EN HO SOST 2008 Develue: 10 VII 12/11	nach EN Certifica EN 1020 Prüfb Certifi	1 10204 / ite of mater 04 / escheir ficate N	ial tests nigung 0.	according g Nr. ²¹⁷	3.1
								Bestell-	Nr./Order no	00 0.: 00	027-050/4 3467/2156	570709 517
1	loes	talpir	ne Giess	serei Tra	aisen GmbH			Zeichen Trade m	des Lieferv ark	verkes		Enpar
N	Maria	azelle	r Strass	se 75				Stempel Inspecto	des Werks or's stamp	abnahm	ebeauftragt	en (ED
F	4 310	30 Tra	aisen									(LA)
Er Pr	zeug	nisforn t	n Stat rour	omateria nd bar, f	al, geschmied orged, non n	det, unbe nachined	earbeitet					
An	forde	erunge	n in A	nlehnun	ig an TLV 95	2705 /						
Re	quire	ments	in de	epender	nce on TLV 9	152705	217					
Qu	ality	11	2.46	oos, ent	spr. / acc. to	inconel (517	and the second				ter ay cara ta manana
Be Ins O W	sicht specti hne vitho	on and Bear ut Ob	und Maßi d dimensi nstandu ojection	nachprüfu ional cont ng	rol	Erschmelz Melting pro VIM +	ung/Nachbe ocess/secun ESR	handlung dary refinin	9	Verwe Identif ohne witho	chslungsprü ication test Beanstan ut Objecti	fung (spectroanalytisch (spectral-analysis) dung on
Pilte Ite	os. em 0	1	Anzahl Quantity 1 Stü	y ick S	Abmessung Dimension Stab RM 270	mm rd >	c 50 mm			Gewie Weig 25	cht kg ht kg	Probe-Nr. Test no. 704
Scl	hmela	z-Nr.	C	Si	Mn	P	S	Cr	Mo	Ni	Co	Cu
He XX4	at-No 093U	K1	0,07	4 0,0	0,06	0,002	0,005	22,39	9,56	53,3	11,61	0,03
			Ti	Fe	AI	В						
Wä Ma	terial	ehand /mater	0,34 Ilungszus ial: lösun	1,1 stand / Co gsgeglüht	2 1,17 ndition of heat / solution anne	0,002 treatment aled						
Prob	be/te	st piec Temp.	ce: <mark>lösun</mark> Lage	gsgeglüht Bp 0.2	/ solution annea Ro 1	aled	Bm	A	7	Ke	rbschlagarb	eit Härte
Tes	t no.	°C	Local	N/mm ²	N/mm ²		N/mm ²	%	%		mpact value	Hardness
704		RT	Q	405			768	35	34			220 HB
Dia	Liefe	rung e	ntspricht	den vere	inbarten Liefert	sedingung	en.					
The	3000	- out		sopond to	and agroou lei							
The	assun	g nach	n Richtlin	ie 97/23/8	EG, Zertifikat-N	r. 012028	11/Q-000004					

FIGURE 90: MATERIAL CERTIFICATE - ALLOY 617 - SMAW

Products No. D027-050/4568557 Works-Wr. Work-order no.: 20467/214158 2027-050/4568557 Works-Wr. Work-order no.: 72467/214158 2010 A 3160 Traisen 2010 Product Stempel des Werksbrahmebaautragter Impedora stamp Product 2.4663 acc. to Alloy 617 Wirks-Wr. Work-conter no.: 72467/214158 Werksbrahmebaautragter Impedora stamp Verstoil 2.4663 acc. to Alloy 617 Vanity Encomplexement Without Objection Verstoil 2.4663 acc. to Alloy 617 Vanity Encomplexementary reliming Without Objection Pos. Ananh Dimension One Beanstandung VIII + ESR Werkethingsprofung (process/accondary reliming Without Objection Pos. Ananh Dimension One Beanstandung 2 picces ring 220/120 mm dia x 150 mm Go Cu 331899 0.06 0.08 0.04 0.002 Wirethebangsprofung Condition of heat transmit Materializateria: solution annealed 1159° C1, Jb/Water Head Stampel Condition of heat transmit Materializateria: solution annealed 1159° C1, Jb/Water Probarter Term Region Rabin Arge Stampel Condition of heat transmit Materializateria: solution annealed 1159° C1, Jb/Water Probaret Term Region	$\begin{array}{c} \mbox{PricesCherningung Nr, 2003} \\ \mbox{PricesCherning Nr, 2003} \\ \mbox{PricesCherning Nr, 2003} \\ \mbox{PricesCherningung Nr, 2003} \\ \mbox{PricesCherning Nr, 2003} \\ \mbox$	Ľ	h	Dal	D-516 Telefo Telefa	19 Gummers n 02261/79 x 02261/79	sbach 98-0 9888	EIN EN HEG TOLS 2008 Zerthan EI VEREIN	Certifica EN 1020	ate of mater	rial tests a	according	3.1
Bastell-Nr./Order no: 2027-050/4568557 Voestalpine Giesserei Traisen GmbH Zeichen des Userwerker A 3160 Traisen Zeichen des Userwerker Fræe mark Stempel des Werksbhahmebaautragter Product Zeichen des Userwerker Andorderungen TLV 9527-05 acc. to order agreement Requirements Zeichen des Userwerker Werksbh. Zeichen des Userwerker Product Zeichen des Userwerker Andorderungen TLV 9527-05 acc. to order agreement Requirements Zeichen des Userwerker Without Objection Ture mark VIM + ESR Vim + ESR Person Anzahl One Beanstandung Without Objection Person Anzahl Oge No Zeizen des Verkableshanding Vim + ESR Weight kag Pose Anzahl One Beanstandung Without Objection Pose Anzahl Benessing Schwark-Nr. G Si Mn Oge No So Cr Mo Ni Schwark-Nr. G Si Mn <	Warkasekingene Giesserrei Traiseen GmbH Mariazeller Strasse 75 Zeichen des Lieferwerkes Traemark Stempol des Warkasahaahmebeauftragten Inspector's stamp Zeichen des Lieferwerkes Traemark Stempol des Warkasahaahmebeauftragten Inspector's stamp Erzeugnister Product Traemark Stempol des Warkasahaahmebeauftragten Inspector's stamp Erzeugnister Product Filterwerkes Traemark Stempol des Warkasahaahmebeauftragten Inspector's stamp Erzeugnister Product Filterwerkes Traemark Stempol des Warkasahaahmebeauftragten Inspector's stamp Erzeugnister Product Filterwerkes Traemark Stempol des Warkasahaahmebeauftragten Inspector's stamp Erzeugnister Product Erzeugnister Product Filterwerkes Traemark Stempol des Warkasahaahmebeauftragten Inspector's stamp Erzeugnister Product Erzeugnister Pr								Certif	ficate N	nigung o.	I Nr. 200	23
Yoestalpine Giesserei Traisen GmbH Zichen des Lieforwerkes Staden nanz Staden nanz	Yoestalpine Giesserei Traisen GmbH Mariazeller Strasse 75Zoichen des Lieferwerkes Trade mark Simpector's stampSimpector Trade mark SimpectorSimpector Trade mark SimpectorSimpector 								Bestell-I Werks-N	Nr./Order n Ir./Work-ord	o.: 00 der no.:73)27-050/4 3467/2141	568557 58
A 3160 Traisen Tracupitation infig, forged, machined Product Antorderungen TLV 9527-05 acc. to order agreement Requirements Werkstof 2.4663 acc. to Alloy 617 Cutly Besichfung und Maßnachpröfung ohne Beanstandung Without Objection Maining processive Num + ESR VIM + ESR VIM + ESR VIM + ESR VIM + ESR VIM + ESR VIM + ESR Maining processive VIM + ESR Maining processive VIM + ESR VIM + E	A 3160 Traisen A 3160 Traisen Inspector's stamp Erzeugnistorm ring, forged, machined Product Inspector's stamp Antorderungen ring, forged, machined Product It V 9527-05 acc. to order agreement Requirements 2.4663 acc. to Alloy 617 Werkstoff 2.4663 acc. to Alloy 617 Outily Desenstandung Without Objection Ohne Beanstandung Without Objection VIM + ESR VIM + ESR Gewicht kg Probe-Nr. Test no. 68 30 2 pieces ring 220/120 mm dia x 150 mm 30 2 pieces ring 220/120 mm dia x 150 mm Schmetz-Nr. C Si Mn 41889 0.08 0.04 <0.002	Voe Mari	stalpii azelle	ne Giess er Strass	serei Trais se 75	en GmbH			Zeichen Trade m Stempel	des Lieferv ark des Werks	verkes abnahme	beauftragte	Enpar Sonderwerkstolle
Erzeugnistom Product ring, forged, machined Product Antordorungen Requirements TLV 9527-05 acc. to order agreement Requirements Werkstoff 2.4663 acc. to Alloy 617 Chailing Beschtigunud Maßnachprötung Inspection and dimensional control ohne Beanstandung without Objection Verwechslungsprötung (spectroamly Meting process/secundary relining VIM + ESR One Beanstandung without Objection ViM + ESR Verwechslungsprötung (spectroamly tidentification test (spectrai-nana)sis) ohne Beanstandung without Objection Pos. 100 2 pieces ring 220/120 mm dia x 150 mm Gewicht kg Probe-Nr. Test no. 30 2 pieces ring 220/120 mm dia x 150 mm 68 705 Schmelz-Nr. 103 C Si Mn P S Cr Mo Ni Co Cu 30 2 pieces ring 220/120 mm dia x 150 mm 68 705 Schmelz-Nr. 1046-R. Teng. Co Si Mn P S Cr Mo Ni Co Cu Without Objection 0.06 0.08 0.04 -0.002 2.04 8.64 54.86 11.68 0.03 30 106 Dieat treatment Material/material: solution an	Erzeugnisform Product ring, forged, machined Product Anforderungen Requirements TLV 9527-05 acc. to order agreement Werkstoff 2.4663 acc. to Alloy 617 Quality Sesichtigung und Maßnachprüfung Inspection and dimensional centrol ohne Beanstandung without Objection Verwechslungsprüfung (spectroanalytisc filen gprocess/secundary refining UIM + ESR Verwechslungsprüfung (spectroanalytisc (spectra1-analysis) Pos. 1tem Anzahl Quantity Abmessung Dimension Verwechslungsprüfung (spectroanalytisc (spectra1-analysis) 30 2 pieces ring 220/120 mm dia x 150 mm Gewicht kg (spectra1-analysis) Probe-Nr. 68 Schmelz-Nr, Heat No. 31889 C Ni Co Cu (spectra1-analysis) Gewicht kg (spectra1-analysis) Probe-Nr. 68 Verweehslungszustand / Condition of heat treatment daterial/machina-is solution annealed 1150° C/1,5h/water Ni Co Cu (spectra1-solution annealed 1150° C/1,5h/water Yorbe/test piece: solution annealed 1150° C/1,5h/water Nmm² X Kerbschlagarbeit Harte Hardness Stall RT Q 299 690 72 59 195 HB	A 31	60 Tr	aisen					Inspecto	or's stamp			(E ₃ E)
Altorderungen Requirements TLV 9527-05 acc. to order agreement Requirements Werkstoff 2.4663 acc. to Alloy 617 Cuality Beischlügung und Maßnachprüfung Inspection and dimensional cuments without Objection Erschmeizung/Nachbehandlung Multing process/secundary refining VIM + ESR Verwechslungsprüfung (spectroandy chuffication test (spectra1-analysis) ohne Beanstandung without Objection Pos. Anzah Abmessung Dimension Cervechslungsprüfung (spectroandy beiting process/secundary refining VIM + ESR Gewicht kg Probe-Nr. Test no. 30 2 pieces ring 220/120 mm dia x 150 mm 68 705 Schmelz-Nr. Heat-No. 30.93 0.08 0.04 -0.002 21,94 8,64 54,86 11,88 0,03 Ti Fe Al B 0.03 0.04 -0.002 21,94 8,64 54,86 11,88 0,03 Witherelat/material: solution annealed 1150°C/1,51/water Probe-Nr. Test no. 68 705 Probe-Nor 1818 Cong Filo 2, Filo 1,16 0.02 0.03 25 <240 HB	Anforderungen RequirementsTLV 9527-05 acc. to order agreementWerkstil2.4663 acc. to Alloy 617Quality2.4663 acc. to Alloy 617Besichtigung und Maßnachpröfung Inspection and dimensional control ohne Beanstandung without ObjectionErschmeizung/Nachbehandlung Melling process/secundary refining VIM + ESRVerwechslungspröfung (spectroanalytisc dentification test (spectra-analysis) ohne Beanstandung without ObjectionPos. Tesm 2Anzahl piecesAnzahl mensionErschmeizung/Nachbehandlung Melling process/secundary refining VIM + ESRVerwechslungspröfung (spectroanalytisc ohne Beanstandung without Objection)Pos. Tesm 2Anzahl piecesAbmessung Dimension Ting 220/120 mm dia x 150 mmGewicht kg 8,64Probe-Nr. Test no. 68Schmelz-Nr. teat-No. 31089Q0,08 0,040,00221,94 0,0028,6454,8611,68 0,03Ti FeAl 0,39B 1,021,16 0,0020,00221,94 8,648,6454,8611,68 0,03Weight kg teat-No. 31089Ti 0,02Ti 1,02Ti 1,160,002Erschmeisteat MinmeHardee HardnesWeight kg teat-No. 31089Lage NumalPode/C/, Jsh/water NummeRm NummeA N NummeZ No NumeKerbschlagarbeit HardnesVebrite teat-No. To be N: Tem, Lage No No No NumeRm NummeA NumeZ NumeKerbschlagarbeit HardnesVebrite No No No No No No Nume	Erzeug	nisforn t	n ring,	forged, m	achined							
Werkstoff 2.4663 acc. to Alloy 617 Besichligung und Maßnachprüfung spection and dimensional centro oht Beanstandung without Objection Frachmelzung/Nachbehandlung Will + ESR Verwechslungsprüfung (spectroanalysis) ohne Beanstandung without Objection Pos. Anzah Anzah Besichligung und Maßnachprüfung (spectroanalysis) VIM + ESR Verwechslungsprüfung (spectroanalysis) Pos. Anzah Anzah Besichligung und Maßnachprüfung (spectroanalysis) Verwechslungsprüfung (spectroanalysis) Pos. Anzah Anzah Besichligung und Maßnachprüfung Pos. Gewicht (spectroanalysis) Pos. Anzah Binnenston Binnenston Gewicht (spectroanalysis) Probe-Nr. 30 2 pieces ring 220/120 mm dia x 150 mm Gewicht (spectroanalysis) Probe-Nr. Schmelz-Nr. C Si Mn P S Cr. Mo Ni Co Cu 30 1,02 1,16 0.02 Binder Binder Binder Side Tig. Side Tig. Side Side <td>Verkstoff Quality 2.4663 acc. to Alloy 617 Besichtigung und Maßnachprüfung Inspection and dimensional control ohne Beanstandung without Objection Erschmelzung/Nachbehandlung VIM + ESR Verwechslungsprüfung (spectroanalytisc Identification test (spectroanalytisc Ohne Beanstandung without Objection Pos. Item Anzahl Quantity Abmessung Dimension Erschmelzung/Nachbehandlung VIM + ESR Verwechslungsprüfung (spectroanalytisc Identification test (spectroanalytisc Ohne Beanstandung without Objection Pos. Item Anzahl Quantity Abmessung Dimension Erschmelzung/Nachbehandlung VIM + ESR Verwechslungsprüfung (spectroanalytisc Identification test (spectroanalytisc Without Objection Schmelz-Nr. Heat-No. 31889 Anzahl Quantity Abmessung Dimension Cr Mo Ni Co Cu Schmelz-Nr. Heat-No. 31889 C Mn P S Cr Mo Ni Co Cu Schmelz-Nr. Heat-No. 31889 C Mn P S Cr Mo Ni Co Cu Vimme J. Fe All B J. B J. Co Cu Vimme J. G O. Schmelzen Kerbschlagarbeit Härte Harde</td> <td>Anforde Require</td> <td>erunge ements</td> <td>n TLV</td> <td>9527-05 a</td> <td>icc. to ord</td> <td>er agreei</td> <td>ment</td> <td></td> <td></td> <td></td> <td></td> <td></td>	Verkstoff Quality 2.4663 acc. to Alloy 617 Besichtigung und Maßnachprüfung Inspection and dimensional control ohne Beanstandung without Objection Erschmelzung/Nachbehandlung VIM + ESR Verwechslungsprüfung (spectroanalytisc Identification test (spectroanalytisc Ohne Beanstandung without Objection Pos. Item Anzahl Quantity Abmessung Dimension Erschmelzung/Nachbehandlung VIM + ESR Verwechslungsprüfung (spectroanalytisc Identification test (spectroanalytisc Ohne Beanstandung without Objection Pos. Item Anzahl Quantity Abmessung Dimension Erschmelzung/Nachbehandlung VIM + ESR Verwechslungsprüfung (spectroanalytisc Identification test (spectroanalytisc Without Objection Schmelz-Nr. Heat-No. 31889 Anzahl Quantity Abmessung Dimension Cr Mo Ni Co Cu Schmelz-Nr. Heat-No. 31889 C Mn P S Cr Mo Ni Co Cu Schmelz-Nr. Heat-No. 31889 C Mn P S Cr Mo Ni Co Cu Vimme J. Fe All B J. B J. Co Cu Vimme J. G O. Schmelzen Kerbschlagarbeit Härte Harde	Anforde Require	erunge ements	n TLV	9527-05 a	icc. to ord	er agreei	ment					
Cuality Besichtigung und Maßnachpröfung ohne Beanstandung without Objection Erachmelzung/Nachbehandlung VIM + ESR Varwechslungspröfung (spectroanaly dentification test (spectroanaly ohne Beanstandung without Objection Pos. Anzah Abmessung Dimension Min P S Cr Mo Ni Co Cuality Beanstandung Probe-Nr. Test no. 30 2 pieces ring 220/120 mm dia x 150 mm Strong Cr Mo Ni Co Cuality Beanstandung Probe-Nr. Test no. 30 2 pieces ring 220/120 mm dia x 150 mm Strong Cr Mo Ni Co Cuality Beanstandung Strong Cr Min Beanstand 0.06 0.08 0.04 <0.002	Guality Besichtigung und Maßnachprüfung Inspection and dimensional control ohne Beanstandung without Objection Erschmelzung/Nachbehandlung VIM + ESR Verwechslungsprüfung (spectroanalytisc identification test (spectroanalytisc ohne Beanstandung without Objection Pos. Anzahl Quantity Abmessung Dimension VIM + ESR Gewicht kg Weight kg Probe-Nr. 30 2 pieces ring 220/120 mm dia x 150 mm Gewicht kg 0,002 Probe-Nr. Schmelz-Nr. Heat-No. C Si Mn P S Cr Mo Ni Co Cu 0,003 Ti Fe AI B 0,39 1,02 1,16 0,002 Warmebehandlungszustand / Condition of heat treatment Vaterial/material: solution annealed 1150°C/1,5h/water Rm A Z Kerbschlagarbeit Härte Impact value Yobe-Nr. Test no. 260 680 30 25 < 240 HB	Werksto	off	2.46	63 acc. to	Alloy 617							
Pos. 30 Anzahl Quantity 2 Abmessung Dimension ring 220/120 mm dia x 150 mm Gawicht kg (Weight kg) 68 Probe-Nr. Test no. 705 Schmolz-Nr. Heat-No. 31889 C Si Mn P S Cr Mo Ni Co Cu 33 0,06 0,08 0,04 <0,002	Pos. Item 30Anzahl Quantity 2Abmessung DimensionGewicht kg Weight kgProbe-Nr. Test no.302piecesring 220/120 mm dia x 150 mm 68 705 Schmelz-Nr. Heat-No. 31889CSiMnPSCrMoNiCoCu $0,06$ $0,08$ $0,04$ $<0,002$ $<0,002$ $21,94$ $8,64$ $54,86$ $11,68$ $0,03$ TiFeAIB $0,39$ $1,02$ $1,16$ $0,002$ V V V V V Warmebehandlungszustand / Condition of heat treatment Material/materiat: solution annealed 1150°C/1,5h/waterRmAZKerbschlagarbeit HardnessHärte HardnessYobe-Nr. Temp. LageRp 0,2Rp 1 N/mm²N/mm²AZKerbschlagarbeit HardnessHärte HardnessSoliRTQ2606803025< 240 HB 195 HBYob RTQ2996907259195 HB	Quality Besichti Inspecti ohne witho	igung t ion and Bear out Ob	und Maßna I dimension Instandur Djection	achprüfung onal control ng	E	Erschmelzu Aelting pro VIM + E	ing/Nachbe cess/secund ESR	handlung dary refining	3	Verwec Identific ohne withou	hslungsprüf cation test (s Beanstan ut Objectio	ung (spectroanalytisch) spectral-analysis) dung on
Schmelz-Nr. Heat-No. 331889 C Ni Co Cu 131889 0,06 0,08 0,04 <0,002	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Pos. Item 30		Anzahl Quantity 2 piec	Abn Dim ces ring	nessung nension 220/120 i	mm dia x	: 150 mm			Gewich Weigh 68	nt kg t kg	Probe-Nr. Test no. 705
Heat-No. C SI Will P S Cr Mo Ni Co Cu 331889 0,06 0,08 0,04 <0,002	Heat-No. O SI Mill P S Cr M0 NI Co Cu 31889 0,06 0,08 0,04 <0,002	Schmelz	z-Nr.	C	Ci	Mo	D	0	0.	м.		0	
Ti Fe Al B 0,39 1,02 1,16 0,002 Wärmebehandlungszustand / Condition of heat treatment Material/material: solution annealed 1150°C/1,5h/water Hand Probe-Nr. Temp. Lage Rp 0,2 Rp 1 Rm A Z Kerbschlagarbeit Hand Test no °C Local N/mm² N/mm² % % Maract all Soll RT Q 260 680 30 25 <240 HB	Ti Fe Al B 0,39 1,02 1,16 0,002 Wärmebehandlungszustand / Condition of heat treatment Material/material: solution annealed 1150°C/1,5h/water	Heat-No 31889).	0,06	0,08	0,04	<0,002	<0,002	Cr 21,94	Mo 8,64	NI 54,86	Co 11,68	Cu 0,03
0,39 1,02 1,16 0,002 Warmebehandlungszustand / Condition of heat treatment Material/material: solution annealed 1150°C/1,5h/water Probe/test piece: Local Rp 0,2 Rp 1 N/mm² A Z Kerbschlagarbeit Hard Soll RT Q 260 680 30 25 < 240 HB	0,39 1,02 1,16 0,002 Wärmebehandlungszustand / Condition of heat treatment Material/material: solution annealed 1150°C/1,5h/water Kerbschlagarbeit Härte Probe/test piece: solution annealed 1150°C/1,5h/water N/mm² A Z Kerbschlagarbeit Härte Yobe/test piece: Lage Rp 0,2 Rp 1 N/mm² % % Impact value Härte Yobe/test piece: Solil RT Q 260 680 30 25 < 240 HB			ті	Fe	AI	в						
Warmebehandlungszustand / Condition of heat treatment Material/material: solution annealed 1150°C/1,5h/water Probe/test piece: solution annealed 1150°C/1,5h/water Probe/Nr. Temp. Lage Rp 0,2 Rp 1 Rm A Z Kerbschlagarbeit Hau Robe-Nr. Temp. Lage Rp 0,2 Rp 1 N/mm² % % Impact value Hard Soll RT Q 260 680 30 25 < 240 HB	Wärmebehandlungszustand / Condition of heat treatment Material/material: solution annealed 1150°C/1,5h/water Probe/test piece: solution annealed 1150°C/1,5h/water Probe/test piece: solution annealed 1150°C/1,5h/water Yobe-Nr. Temp. Lage Rp 0,2 Rp 1 Rm A Z Kerbschlagarbeit Härte Test no. °C Local N/mm² N/mm² % % Impact value Hardness Soll RT Q 260 680 30 25 < 240 HB			0,39	1,02	1,16	0,002						
Hotevites precess backet and the det from Crightwater Rp 1 Rm A Z Kerbschlagarbeit Hard Test no. °C Local N/mm² N/mm² % % % Soll RT Q 260 680 30 25 < 240 HB	Nobe-Nr. Temp. LageRp 0,2Rp 1RmAZKerbschlagarbeitHärteNobe-Nr. Temp. LageRp 0,2Rp 1N/mm²N/mm²%%Impact valueHardnessSolilRTQ2606803025< 240 HB	Wärmeb Material	ehand /materi	lungszust	and / Condition annealed t	on of heat to 150°C/1,5h	reatment /water						
Soll RT Q 260 680 30 25 <240 HB 705 RT Q 299 690 72 59 195 HB	Number Number Number Number Number Number Number Number Hardnes Soll RT Q 260 680 30 25 < 240 HB	Probe-Nr. Test no	Temp.	Lage	Rp 0,2	Rp 1	water	Rm	A	Z	Kerb	schlagarbe	it Härte
705 RT Q 299 690 72 59 195 HB ultrasonic examination EN 10228-4, Type 3, 100 %, Class 3, Table 4: w.o. dye-penetrant inspection acc. to EN 10228-2, Type 3, 100%, Class 3: w.o. dye-penetrant inspection acc. to EN 10228-2, Type 3, 100%, Class 3: w.o.	705 RT Q 299 690 72 59 195 HB	Soll	RT	Q	260	19/11111		680	30	25	III	ipact value	< 240 HB
ultrasonic examination EN 10228-4, Type 3, 100 %, Class 3, Table 4: w.o. dye-penetrant inspection acc. to EN 10228-2, Type 3, 100%, Class 3: w.o.		705	RT	Q	299			690	72	59			195 HB
	Iltrasonic examination EN 10228-4, Type 3, 100 %, Class 3, Table 4: w.o. Iye-penetrant inspection acc. to EN 10228-2, Type 3, 100%, Class 3: w.o.	ıltrasoı İye-pei	nic ex netrar	amination nt inspec	on EN 102 ction acc. t	28-4, Typ o EN 102:	e 3, 100 28-2, Typ	%, Class be 3, 100%	3, Table 4 %, Class 3	4: w.o. 3: w.o.			
Die Lieferung entspricht den vereinbarten Lieferbedingungen. The goods supplied correspond to the agreed terms of the order. Zulassung nach Richtlinie 97/23/EG, Zertifikat-Nr. 01202811/Q-000004	ie Lieferung entspricht den vereinbarten Lieferbedingungen. he goods supplied correspond to the agreed terms of the order. ulassung nach Richtlinie 97/23/EG, Zertifikat-Nr. 01202811/Q-000004	Die Liefe The good Zulassun	rung ei Is supp g nach	ntspricht c lied corre Richtlinie	den vereinba spond to the 97/23/EG, ;	rten Lieferbi agreed term Zertilikat-Nr.	edingunge ns of the o	n. rder. /Q-000004	6				ρ

FIGURE 91: MATERIAL CERTIFICATE - ALLOY 617 - EBW

En	Dar	D-51619 Telefon Telefax	Gummers 02261/79 02261/79	bach 8-0 888		nach EN Certifica EN 1020	10204 / te of materi 4 /	al tests ac	cording	3.1
						Prüfb Certif	eschein icate No	igung b.	Nr. 200	24
						Bestell-N Werks-N	lr./Order no r./Work-ord	.: 002 er no.:734	27-050/4 467/2141	568557 58
Voestalpi Mariazelle	ne Giess er Strass	erei Traise e 75	n GmbH			Zeichen Trade ma Stempel	des Lieferw ark des Werksa	erkes abnahmeb	eauftragter	Enpar Sonderwerkstolle
A 3160 Ti	raisen					Inspecto	r's stamp			(E ₃ E)
Erzeugnisforn Product	n ring,	forged, ma	chined							
Anforderunge Requirements	n TLV	9527-05 ad	c. to orde	er agree	ment					
Werkstoff	2.466	63 acc. to A	Alloy 617							
Besichtigung (Inspection and ohne Bea without O	und Maßna d dimension nstandur bjection	chprüfung nal control Ig	E M	rschmelzu lelting pro VIM + I	ng/Nachbeh cess/secund ESR	andlung lary refining		Verwech: Identifica ohne E withou	slungsprüfn ation test (s Beanstand t Objectio	ung (spectroanalytisch) ;pectral-analysis) dung on
Pos. Item 40	Anzahl Quantity 1 piec	Abme Dime pieco	essung ession eperdra	wing VA	GT-ST7E0)506 date	d	Gewicht Weight 1	t kg kg	Probe-Nr. Test no. 456
Schmelz-Nr.	C	Si	Mn	Р	S	Cr	Mo	Ni	Co	Cu
Heat-No. 21016	0,065	0,04	0,02	0,002	<0,002	21,99	8,72	R55,31	11,61	0,02
	Ti	Fe	AI	В						
	0,41	0,59	1,14	0,001						
Wärmebehand Material/mater	llungszusta ial: solutio	n annealed 1	n of heat tr 150°C/1,5h	eatment /water						
Probe/test pier	ce: solutio	n annealed 1 Rp 0.2	150°C/1,5h Ro 1	/water	Bm	A	Z	Kerbs	schlagarbe	it Härte
Test no. °C	Local	N/mm ²	N/mm ²		N/mm ²	%	%	Im	pact value	Hardness
456 RT	L	376			771	60	65			225 HB
ultrasonic e dye-penetra	xaminatio	on EN 102 ction acc. te	28-4, Typ o EN 102	e 3, 100 28-2, Ty	%, Class pe 3, 100	3, Table %, Class	4: w.o. 3: w.o.			

FIGURE 92: MATERIAL CERTIFICATE – ALLOY 617 - SMAW

OR-No.): NIBas625/617 Schweißprotokoll Datum: Other Content Page Schweißprotokoll Datum:
OR-No.): NiBas625/617 Colored Colored Colored Colored Colored Diate (Page): VOEStal Dine
:Bu
420/2077 90 1/6
4 11823 1103 16
4 11924 1008 15
418246 92715
500 1 1 20 C 1 1
120 24 150 24 150 24 150 24 150 24 150 24 20 20 24 20 20 24 20 20 20 20 20 20 20 20 20 20 20 20 20
4 Nigas 625 115 24 115 4 11
111 212 Boller FOX 410768 - + 20 24 80 4 12
141 As 12 \$ Stellen
727 2 2 3
2 2 2 2 2 2
141 1 10 3 1 1
141 188 18,2 12 2 2 2
141 - 1- 18576 132 2 1 1
141 625-14 ABUMin 18546 89111
1 920 8 ALA R.4 R.4 R.4 Lohler Niber Nober 2 deoral = - 194 AL 20 W/1 1
t von bis von bis Volgening mut von bis volg
Herstellerbezeichnung Chargen Seriennit

FIGURE 93: WELDING RECORD - SMAW - PAGE 1

	Unterschrift	Paratesian Abnahme- gesellschaft (Inspection Agency)	edney	14	4	0	14	2	7	0	0	3	0	2	2	<u></u>			S		/oest alpine	IESSERETTRAISEN GMBH	
		(apis	Seite (~	V	100	1	1	1	1 5	1 8	1 5	100	1 8	1 5	1 8	19	13	1 3		r	0	
		rayer)) ə6e7	N	12	13	14	15.	16	17	10	19.	20.	21	22	3	24	52	26				
	.qmetne	echenlage (.qmaT seer)	iwZ Suie	120	125	hVI	30	945	100	125	122	128	30	50	81	3	120	10	20				
ter)	(uim/m) d	htvorschu	Dra	Ì	-	1		_	-		-)			~	4		ć	1				
Parame	enperatur		Vorwärmten Oreheat Temp.																				
ter (Welding	ulgnel fin.	sziehlänge eid bead per rode)	E elect																		e):		
arame	(egetele	on) Bunuu	eds E	217	2,2	27	27.9	52	262	50	23.8	242	23	229	23.8	22,2	2	22.9	228	-	(Page	Ë	.e
weißp	(Ampere)	exhisterno	Ats E	541	514	113 2	154	七	150	148	148	541	150	150	152.	154	150	153	151		Blat	Datu	Nan
Sch	(A	tinelog) pru			`	4			`							_	-						
	(tue	nua) hemo	nts [™]																		=		
	Schweißzusatzwerkstoffe Schweißhilfsstoffe (weiding Materials) (weiding consumbles) (weiding Materials) (weiding consumbles) (mm) (Trade Name) (mm) (theat cr.		(Shielding Gas/ Backing Gas [l/min])											1								OKO	(p
			(Heat or. Serial No.)				6588014							50050V4								bro	Record
			(Trade Name)	Nibq5 625			UTP 6222 HO														. 0:	CINWEIIS	(Welding
			2	T	Z	5	2	1.0	5	5	5	5	21	2	5	5	5	5		0	0		
		Position)	igwdo2 gnibleW)																				
	u	Process) Bverfahre	iswrto2 (gnibleW)													5. ¹ . 1					6/617		
	c. WPS) SP	sine ecreace sine ecreace	Arbeitst enibleW)																		s625		
JƏL	Schweißer-Stempelnummer (Welder Stamp No.)		8																	NiBa			
	time)		bis (to)			130						1300							130				r No.):
	Schich (Shiftti (Shifti (Shift		von (from)				200						200							÷	(-oN-3		(Orde
atum Sch (S (S (Montt) (from (Montt)					NO						NO							nerkung	Nr. (PQF	S	ragsnr.		
		5	Tag Day)				3						24							Ben	e l	WF	Auft

FIGURE 94: WELDING RECORD - SMAW - PAGE 2

	Unterschrift Uhrzeit	Abnahme- gesellschaft (Inspection Agency)				1							estalpine	SEREI TRAISEN GMBH	///
		(səssed) U	Baupe	10	40								\$	GIES	V
		(abi2	Seite (Y	1										
		(ayer)) əɓeŋ	27	200										
	.dmetne	chenlage	iwZ (Inter	01	120										
ter)	(uim/m) di	htvorschu	Dra												
Paramet	Deratur	(.qməT fisər	C (Pret												
Welding	rignel tinu	iq pesq ber													
neter (v	ylgnei) (əgnäldəiz	snA 2				 -	_	_		_		age):		
param	(egetele	on) bunuu	Eq8 Spa	25	3						_		att (P	atum	ame:
nweiß	(ereqmA)	emstärke	Patro	151	154						_		ä	õ	ž
Scl	U	thelog) pri	+ Pole												
	Stromart (Current)											=			
	nilfsstoffe nsumables)	Schutzgas/ Spülgas [//min]	(Shielding Gas/ Backing Gas [l/min])											OYO.	
	Schweißh (Welding co	Chargen- Seriennr.	(Heat or. Serial No.)		4108899									bid	g Record
	weißzusatzwerkstoffe (Welding Materials)	Herstellerbezeichnung	(Trade Name)					X					0:000	cinweiis	(Welding
	Sch	Ø	(mm)	3	30								0	0	
		noition) (noition)	Diewdo2 9 gnibleW)												
		verfahrer เงcess)	Schweig 9 gnibleW)										5/617		
	(saw Sb	equence acc	Arbeitsfo 2 gnibleW)										1562		
) E	əmmunalə	er-Stemp (.oN qme	Schweider Sta	0									NiB		
	Itzeit	(pur	bis (to)		est	199									r No.)
	Schict		von (from)	5-00								:6	R-No.)		(Orde
	itum ate)	14	Monat (Month)	Yo								nerkun	Nr. (PQI	S	ragsnr.
	Da (Da	20	rag Jay)	5								Ben	VP-P	WP	Auft

FIGURE 95: WELDING RECORD - SMAW - PAGE 3

FIGURE 96: TENSILE TEST - SMAW - AS WELDED - TOP

FIGURE 97: TENSILE TEST - SMAW - AS WELDED - BOTTOM

FIGURE 98: TENSILE TEST - SMAW - PWHT - TOP

FIGURE 99: TENSILE TEST - SMAW - PWHT - BOTTOM

FIGURE 100: HARDNESS LINE EBW-AW BOTTOM

FIGURE 101: HARDNESS LINE EBW-AW MIDDLE

FIGURE 102: HARDNESS LINE EBW-AW TOP

FIGURE 103: HARDNESS LINE SMAW-AW BOTTOM

FIGURE 104: HARDNESS LINE SMAW-AW MIDDLE

FIGURE 105: HARDNESS LINE SMAW-AW TOP

FIGURE 106: HARDNESS LINE SMAW-PWHT BOTTOM

FIGURE 107: HARDNESS LINE SMAW-PWHT MIDDLE

FIGURE 108: HARDNESS LINE SMAW-PWHT TOP