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Abstract

In this work we present a scalable surface reconstruction method for multi-scale
multi-view (stereo) point clouds. The process pipeline consists of an octree
data partitioning with unlimited depth and local Delaunay tetrahedralization,
followed by the surface extraction: At first overlapping local surface hypotheses
are generated by graph cut energy minimizations. These overlapping hypotheses
are then merged by using a two step technique where an own formulated graph
cut minimizes the hole boundary lengths. In our experiments we challenge our
approach with multiple freely available public datasets where we compete with
two state-of-the-art scalable surface reconstruction methods. The results prove
that our method is on par in terms of quality, completeness and outlier resistance.
On a purposely created showcase dataset with 2 billion points and a scale
variety of 4 orders of magnitude our approach demonstrates its unprecendented
potential for scalability. Furthermore, in all experiments the main memory
consumption never exceeded 9 gigabyte per process. These promising results
encouraged us to submit this work as a paper to IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2017 where it got accepted [36].
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Kurzfassung

In dieser Arbeit stellen wir eine skalierende Methode zur Oberflächenrekon-
struktion für Punktwolken vor. Unser Ansatz beinhaltet die Aufteilung der
Punkte mittels einer Octree-Datenstruktur, welche unbegrenzte Tiefe zulässt,
deren Delaunay Triangulierung, gefolgt von der eigentlichen Rekonstruktion:
Zu Beginn werden überlappende Oberflächen-Hypothesen durch Anwendung
einer Energieminimierung (minimaler Graphen-Schnitt) erzeugt. Die Zusam-
menführung dieser Hypothesen zu einer vollständigen Oberflächenrekonstruk-
tion erfolgt in zwei Schritten und wird durch eine Minimierung der Länge der
Grenzkanten bewerkstelligt. Dabei kommt eine eigens formulierte Energiem-
inimierung mittels Graphen-Schnitt zum Einsatz. In unseren Experimenten
vergleichen wir unsere Methode mit zwei aktuellen skalierenden Methoden
für Oberflächenrekonstruktion anhand mehrerer frei verfügbarer Datensätze.
Die Resultate zeigen, dass unsere Methode in der Qualität, Vollständigkeit der
Rekonstruktion und auch in der Beständigkeit gegen Daten-Ausreißer, mit den
aktuellen Methoden mithalten kann. Auf einem eigens erstellten Datensatz,
welcher aus 2 Milliarden Punkten besteht und eine enorme Messungsdistanz-
Varianz (der Größenordnung Vier) beinhaltet, demonstriert unser Ansatz sein
Potenzial für skalierbare Oberflächenrekonstruktion. Außerdem hat in allen von
uns durchgeführten Experimenten der Arbeitsspeicherverbrauch die 9 Gigabyte
Grenze pro Prozess niemals überschritten. Diese vielversprechenden Resultate
haben uns ermutigt unsere Methode als Facharbeit für die IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2017, einzureichen. Unsere
Arbeit wurde mit Erfolg angenommen [36].
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1. Introduction

Figure 1.1.: Shows the reconstructed colored mesh from the valley dataset. The rectangles mark
the viewpoint of the following outcrop. The first image from the left shows the
whole reconstructed area of 6 km2. The ground sampling distance drops from left
to right from 1 m to 50 µm.

This work focuses on surface reconstruction from multi-view stereo (MVS)
generated point clouds with enormous scale variety. In general MVS is a term
for a group of techniques that use stereo correspondences between more than
two images from a normal still image camera to reconstruct a 3D geometry. Thus
we are able to combine images from different acquisition platforms that capture
a scene in a large scale variety. For example, we can combine images that were
taken by an UAV (unmanned aerial vehicle) to cover a certain region with images
from hand held camera that capture images from a short range to preserve more
detail. The variety of scale (capture distance) can be enormous. A single UAV
can vary its ground sampling distance (distance between pixel centers on the
ground) by multiple orders of magnitude by changing its flight altitude. Thus
there is no guarantee for a constant point density and 3D uncertainty when
combining 3D geometries that were reconstructed from different acquisition
platforms. In addition the number of points can be massive: In recent years
dense MVS approaches became more and more popular and current state-of-
the-art dense MVS approaches can compute 3D points around the total number
of acquired pixels per stereo image pair. This scales up for a stereo image
pair, taken with a modern camera, up to 10 million points and even more [38].
Capturing images that result in billion of points is neither difficult nor time
consuming, it can be done within a few hours of time.
But reconstructing a consistent and highly detailed surface mesh from this huge
amount of data is not straightforward. Due to the scale variety and amount of
data the scalability or completeness of the reconstructed surface often lacks:
While global approaches generally focus on the generation of a fully closed
mesh (which usually results in a higher completeness) these methods are not
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1. Introduction

suitable for being scalable. At one point the data would not fit into the memory
and too much data has to be thrown away. Where local approaches can achieve
scalability through their local formalization they often trade completeness for
scalability. This results in holes in the surface where the point density of the
input point cloud changes. Our desired goal is to achieve both, completeness
and scalability by dividing the mesh reconstruction into (overlapping) sub
problems. In theory this might not be fully achievable: If we consider a point
cloud with two clusters of equal metric size but different point density, the
sparse point cluster might have no points at all while the dense one might
contain more points that cannot fit into memory. Without constraining the
magnitude of the point density variety completeness cannot be guaranteed!
Nonetheless our approach can be seen as a hybrid between local and global
methods. We make use of the Divide and Conquer principle to encourage
scalability. Thus, for being scalable we have to assure that each sub-problem
can be processed within an upper limit of computation time and allocated
memory. To ensure this we divide our input point cloud with an octree that
has unrestrained leaf-node depth. The number of points in a leaf node is an
adjustable parameter that regulates the overall memory consumption, a higher
number usually improves completeness. From this octree we extract our sub-
problems: A sub-problem consists of (up to) eight leaf nodes that lie in a local
neighborhood and a leaf node can be part of multiple sub-problems. For each
sub-problem we generate a Delaunay tetrahedralization and apply an energy
minimization to split the tetrahedra into two sets: One set for tetrahedra that lie
inside the surface and another one with tetrahedra that lie outside the surface.
The set of triangles that separate these two sets form surface hypothesis for a
sub-problem. We use the method of Labatut et al. [30, 31] to extract these local
surface hypotheses. For one leaf node we now have multiple surface hypotheses
that contain ambiguities. We introduce a graph cut formalization to resolve
these conflicts: This formalization uses a surface hypotheses for a leaf node to
optimally fill surface holes caused by ambiguities. With optimally we mean
the minimization of the length of the surface boundary by adding suitable
triangles from surface hypotheses. Thus we increase the completeness of our
reconstructed surface. In our experiments we show that we are qualitative
and quantitative on par with current state-of-the-art meshing approaches. In
addition we are able to reconstruct a consistent mesh from a point cloud of 2
billion points that contain an enormous scale variety of 50 µm to 100 cm. An
outlook of our reconstruction capabilities can be seen in Figure 1.1.
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2. Related Work

The problem of all surface reconstruction methods is to find an unknown
surface S that approximates a physical surface P. An unordered point set
P = {p1, p2, · · · , pn} with pi ∈ R3 sampled on P serves as input. In addition
these points are usually not noise free and contain outliers. Thus, noise handling
and outlier resilience are two major qualities any surface reconstruction has
to fulfill. In this section we focus on methods that use no a priori information
about the real surface P and thus have solely to rely on the sampled point set
and their visibility information only. This section is split into two parts: In the
first we give an overview of different surface reconstruction categories. In the
second we discuss several state of the art and scalable surface reconstruction
methods.

2.1. Surface Reconstruction - Overview

Surface reconstruction methods can be divided into several different categories
that emerged in the last decades. The category pairs we discuss here are intra-
class mutual exclusive and inter-class mixable. Implicit versus explicit: Explicit
methods try to find the correct surface directly within the given point cloud.
Usually they connect the sampling points of the point cloud by triangles and
the reconstructed surface is an exact interpolation within these points. To
function properly the samples of the point cloud have to be well aligned and
too much noise within the samples can cause problems. Implicit methods on the
other hand try to approximate a surface from the given point cloud. They do
this by defining an implicit function (often a Signed Distance Function (SDF))
f : R3 → R with F(x) < 0 inside an object and F(x) > 0 outside an object.
The surface is then reconstructed by extracting the zero set {x : F(x) = 0}. To
define an SDF additional inside/outside information is needed, this can for
example be achieved by calculating (if not given) the normal vectors of the point
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2. Related Work

cloud. Figure 2.1 shows a visual example for 2D implicit and explicit surface
reconstruction methods.

(a)

f(x)=0

(b)

Figure 2.1.: (a) shows an explicit and (b) shows an implicit reconstructed surface for a 2D point
cloud.

Volumetric versus Delaunay: In general volumetric approaches work on a dis-
cretized volume that encloses the object that is to be reconstructed. The volume
is often uniformly divided in a regular grid of fixed elements (aka voxels).
These volumetric data structures can either store simple state information such
as occupancy (probability) [21] or samples of a continuous signed distance
function [18, 12]. The former typically generate binary occupancy grids and
reconstruct the visual hull of an object only. These occupancy grid based meth-
ods often lack in surface quality, but due to their ability of incremental point
insertion and real-time capabilities they are preferred for obstacle avoidance in
robotics [23]. For the latter a common technique is to convert a depth map in a
signed distance field. This field is afterwards cumulatively averaged into the
regular voxel grid. By using isosurface polygonization [33] the surface can be
extracted as the zero level set of the signed distance function. Scalable surface
reconstruction on regular voxel grids is not achievable, therefor several groups
utilize recursive [14] data structures that are computationally expensive. Con-
trary, Delaunay methods work directly on the full point cloud. These methods
usually are a variant of explicit surface reconstruction methods where the basis
is a Delaunay complex. They are explicitly discussed here because they formed
an own surface reconstruction community in the last decades. Following Cazals
et al. [11], Delaunay based surface reconstruction methods can be classified in
different categories:

Tangent plane methods - These methods derive a local triangulation around a
sample point by using its surface normal vector. The idea behind these methods
is that point neighbors are likely to lie in short distance to the surface tangent
plane. This assumption only holds if the surface is sufficiently sampled. The
tangent plane then can be approximated by the fact that the Voronoi [5] cell
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2.1. Surface Reconstruction - Overview

is elongated in the direction of the surface normal. Methods that exploit this
property are [9] and [29].

Restricted Delaunay based methods - These methods try to extract a surface
by restricting the sample points to a subset. The Delaunay triangulation of
this subset serves as the approximated surface. The crust algorithm [1], for
example, creates a Delaunay triangulation from the point samples and their
poles. A pole is a Voronoi vertex that is associated with a sample point and every
sample point has exactly two poles. The triangles of the Delaunay triangulation
of this union point set, that are not connected to any pole, become the initial
approximated surface (the crust). By applying different filters on this initial
surface they compute their final surface approximation.

Inside-Outside labeling - These methods classify each tetrahedron of the De-
launay triangulation as inside or outside the unknown surface. The set of
triangles that separate inside and outside tetrahedra define the approximated
surface. The Power Crust [3] improved the concept of the Crust [1] algorithm:
There they compute a weighted Voronoi diagram for the poles and label each
pole as inside or outside. The crust is defined as the set of Voronoi faces that
separate inside and outside cells. The reconstructed surface, the so called power
shape, is a subset of a weighted Delaunay triangulation that lie inside the crust.
Inside-Outside based methods, where visibility information of the sampled
points is given, often use energy minimization for surface reconstruction. They
usually create a directed graph of the Delaunay triangulation where tetrahedra
become nodes and faces that connect two tetrahedra become edges. The energy
weights are set according to the visibility information. Finally a graph cut opti-
mization labels tetrahedra as inside or outside and the surface can be extracted.
Several methods use this kind of energy optimization [43, 20, 30]. The main
difference between these methods is how they define the smoothness term and
what post-processing they apply. They all use a global graph cut optimization
which excludes them from being scalable. Nevertheless our approach is based
on [30]. In a Divide & Conquer manner we generate multiple surface hypotheses
for a all volumetric elements and fuse them to reconstruct the final surface.

Empty Ball methods - Bernardini et al. [6] introduced the ball pivoting algo-
rithm (PBA). It does not directly work on a Delaunay triangulation, although
it uses a similar property of localness - the empty ball. An empty ball bounds
a sphere that circumscribes a simplex and does not contain any other sample
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2. Related Work

points. Since all simplices in a Delaunay triangulation are local in this sense this
algorithm highly relates to Delaunay methods. The algorithm directly works
on the point cloud, thus it does not require any triangulation beforehand and
the surface is built incrementally. At first it looks for a potential seed triangle
which has an empty ball of radius r. From there on the ball pivots around an
edge of the seed triangle while keeping the edge points on its boundary. If the
ball hits an unvisited sample point it adds the triangle formed by this point
and the endpoints of the edge to the surface. The newly added triangle is then
a new starting point for the next pivoting operation. If no new triangles where
added by the pivoting, the algorithm continues with a new seed triangle until
all points have been considered. The selection of the ball radius r is crucial for
this algorithm. If r is too small the reconstruction will contain holes. If it is too
big some of the points will not be reached and features of the real surface will
be missed. To overcome this the authors propose to analyze the point density
beforehand and apply the algorithm with different radii for the empty ball,
starting with the smallest one.

2.2. Scalable Surface Reconstruction

In this section we give a short overview of common scalable surface and/or
multi resolution reconstruction methods. We focus on volumetric and Delaunay
methods and how they handle vast scale differences within the point sam-
ples. At the end we discuss two current state of the art and scalable surface
reconstruction methods we compete with in our experiments.

It has been shown by Kazhdan et al. [25] that a consistent isosurface can be
extracted from any octree structure. But high scale variances generated by
modern MVS systems lead to new challenges, thus the integration of multi
resolution and scale becomes more and more prominent.

To incorporate multi resolution Mücke et al. [37] presented an iterative recon-
struction algorithm. Initially, they put the sample points into a regular octree
and determine the crust (a subset of voxels that contain the unknown surface)
at a low octree level. By applying a graph cut they generate a surface within the
crust where mesh vertices are only placed at a voxel’s center. Afterwards they
identify surface regions where the sampled details are to fine to be reconstructed
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2.2. Scalable Surface Reconstruction

properly at the current level. For these regions they form new crusts on higher
octree level and reconstruct higher resolution surfaces. This is repeated until
eventually all fine details are reconstructed. Finally, they fuse the meshes from
all different reconstruction levels together to extract their final surface. Due to
the fact that the energy formulation for their graph cut is global, their approach
is not scalable but handles multi resolution well.

A local approach worth to mention was proposed by Kuhn et al. [28]. They
fuse disparity maps created with SGM [19] into an octree voxel grid. Their
novelty was a Total Variation based regularization term that allows pixel wise
classification of disparities into different error classes. The uncertainties of the
classes are then considered a-priori when fusing the disparity maps into a
probabilistic voxel grid. These probabilistic grid is then transformed into a 3D
point cloud and a surface is generated using the incremental local meshing
method of Bodenmueller [8]. To corporate visibility constraints they cast a ray
along the line of sight for a voxel for ten times the voxel size to filter occluded
measurements. In their experiments they outperformed FSSR [13] which will be
described in the next section.

2.2.1. Floating Scale Surface reconstruction (FSSR)

FSSR [13] is an implicit local approach using Gaussian basis functions to extract
the zero level set from a point cloud containing normal and scale information.
Its implicit function F(x) is defined as a sum of weighted basis functions:

F(x) = ∑i ciωi(x) fi(x)
∑i ciωi(x)

W(x) = ∑i ωi(x) (2.1)

Where the weighting function ωi and basis function fi are parameterized by ith
sample’s position pi, normal and scale si. A confidence value ci is also added
that can be omitted by setting it uniformly to 1. For f they use a derivative of
Gaussian for fx and normalized Gaussian for fy and fz. The direction of fx is
set to the sample’s normal while σ is set to the sample’s scale. A polynomical
function with compact support serves as weighting function ω. Following
Curless et al. [12] it gives samples in front of the surface a high weight and falls
of quickly behind the surface. ω is defined by a non-symmetric component in x
direction and rotation invariant components in y and z direction. W(x) is the
weight function: the zero level set is only evaluated where W(x) > 0.
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2. Related Work

At first all samples are stored in an octree. According to the sample’s scale
value it has to be put into a (leaf) node that’s side length meets the following
criterion:

1
2

si < Sl ≤ si (2.2)

Where si is the scale of the ith sample and Sl is the side length of the node
(at level l). To meet this criterion the octree will be iteratively expanded until
it is fulfilled. When all samples are inserted they make the octree regular by
adding additional nodes such that all branch nodes have exactly 8 leaf nodes.
Afterwards the implicit function is evaluated at the corner points of each leaf
node. For each corner point x they recursively traverse the octree and check if a
node N contains samples that influences the implicit function F(x). The radius
of a sample’s support is defined to 3si, thus from Equation 2.2 it can easily be
omitted if a node contains samples that support F(x). To avoid mixing high and
low resolution samples that will degrade the iso surface [27, 13] a continuous
cut-off heuristic is used: A sample is only considered if si < smax where:

smax =
1
5 ∑i si (2.3)

Where the ith sample is affecting the implicit function at position x. From
this point on the original samples are of no further use. They extract the final
isosurface with the surface extraction algorithm proposed by Kazhdan et al.
[26]. It is a Marching-Cubes-like [34] algorithm that yields a crack free mesh
from an octree hierarchy. Finally, they apply a simple cleanup procedure to
remove degenerated triangles that on average leads to a triangle reduction of
40%.

They also evaluated their approach on a wide range of datasets with impressive
results. Due to their local problem definition, their algorithm is well suited for
mixed scale datasets. One drawback, due to their local nature, is the unability
to deal with mutually supported outliers.

2.2.2. Global, Dense Multiscale Reconstruction for a billion
points (GDMR)

GDMR [41] is a variational global approach for surface reconstruction of a point
cloud with normal and scale information. The samples of the scenes are stored
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2.2. Scalable Surface Reconstruction

in an octree. Different to our approach, a leaf node of a certain depth only
stores information of point samples of the corresponding input scale. The lower
the scale of a sample the deeper the leaf node it will be assigned to. After the
creation of this unconstrained octree they apply a balancing criterion where the
depth difference of adjacent leaf nodes must be at most one depth level.

For every node in the octree they aggregate all points within a window to form
10 normal cluster centres fn and their weights ωn. In addition they store the
signed distance values for each point and their weights into a histogram with 8
bins, gm and ωm respectively. This results in a compact memory footprint of 64
bytes for every node (including fields for average color information). From this
point on the original point cloud is of no further need.

The following energy is then minimized:

E(u, v) = λ1Edatau + λ2Edatav + α1Ecoupling + α2Esmooth (2.4)

Where u is the signed distance function u(x) and v is the normal vector field
v(x) and x ∈ R3. λ1, λ2, α1 and α2 define the relative importance of the terms.
For a detailed description of the terms we refer to [41]. They also include a
scale function s in Edatau and Esmooth make the energy function aware of the
reconstruction scale which is worth mentioning.

After discretizing the problem by using various function approximations of u(x)
and v(x) they compute the signed distance function u. To generate a surface
from the signed distance function they use the dual contouring algorithm
proposed by Ju et al. [24]. In addition the surface orientation from the vector
field v are used to compute/improve the vertex positions. This global approach
performed highly competitive in terms of robustness and completeness on
various datasets with high scale variance [41].
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3. Base Approach

Our surface generation method is based on the work of Labatut et al. [30]. In this
section we describe how this method exactly works. It is a surface generation
technique that is based on Delaunay triangulations and graph cuts. As input
it uses a point cloud that contains visibility information. At first it generates
the 3D-Delaunay triangulation of this point cloud. During the optimization
process it labels a Delaunay tetrahedron as empty or occupied. This is done by
applying an energy minimization algorithm that takes the visibility information
into account. The set of triangles that separate empty tetrahedra from occupied
are finally extracted and represent the surface.

3.1. Delaunay Triangulation

Every triangulation of a discrete point set of any dimension is a subdivision of
its convex hull into simplexes. A simplex is a generalization of a tetrahedral
region of space to n dimensions. A 0−simplex represents a vertex, a 1-simplex
an edge, a 2-simplex a triangle and a 3-simplex represents a tetrahedron. The
set of simplexes of any triangulation are always intersection free [5].

The Delaunay triangulation is a special and well researched kind of triangulation
where every simplex fulfills the Delaunay condition. In the case of 3 dimensions
a simplex is Delaunay if there exists a circumsphere such that no vertices lie
inside the circumsphere, except the vertices of the simplex itself. A simplex
is strongly Delaunay if it is Delaunay and there lie no other vertices on the
circumsphere. For the 2D case a circumcircle serves for this condition check,
an example is plotted in Figure 3.1. If all simplexes are strongly Delaunay the
Delaunay triangulation is unique. In fact, this means that the point set is in
general position. In the case of 3 dimensions, this also means that there are no
5 points that are co-spherical (co-circular for 2 dimensions). If the point set is
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3. Base Approach

not in general position it is called degenerate and its corresponding Delaunay
triangulation is not unique.

(a) (b)

Figure 3.1.: The Delaunay triangulation of 20 randomly sampled points. In (a) the red circle
visualizes the Delaunay condition for a single triangle. It does not contain or touch
any other vertices except the vertices of the triangle it encloses. In (b) we additionally
plotted the Voronoi diagram.

More generally a Delaunay triangulation of a point set of dimension n is
a projection of a lower convex hull. To form the convex hull the points are
transformed to the n + 1 dimension by applying a parabolic lifting. For the 2D
case the paraboloid z2 = x2 + y2 is used form this transformation. For every
point P = (x, y) in the point cloud its vertical projection on this paraboloid is
P∗ = (x, y, x2 + y2) in 3D. Consider S as the set of points in a 2 dimensional
space and S∗ as the projection of S on the paraboloid. Then the projection of
the lower convex hull of S∗ back into 2D determines the Delaunay triangulation
in 2D. In Figure 3.2 an example for this parabolic lifting is visualized.

The Delaunay triangulation is also closely related to the Voronoi [5] diagram.
A Voronoi diagram is a spatial segmentation of an n-dimensional space into
piecewise linear cells. Every point in the point set has its own cell, which is
called the seed of a cell. At any point in a cell its distance to the seed of the
cell is shorter than to any other seed. If the point set is in general position the
Delaunay triangulation is the dual graph of the Voronoi diagram. For the case
of 2 dimensions a Voronoi can be easily converted to Delaunay triangulation. If
two cells share a border segment their seed cells are connected by a Delaunay
edge. An example of a Voronoi diagram and its dual Delaunay triangulation
can be found in Figure 3.1.

The Delaunay triangulation has some nice properties for surface reconstruction.
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3.1. Delaunay Triangulation

S

S *

(a) (b) (c)

Figure 3.2.: Parabolic lifting example in 2D. In (a) you can see the projection of the 2D point set
onto the 3D paraboloid. S represents the points in a 2D space, S∗ represents their
corresponding projections onto the paraboloid. (b) shows the lower convex hull of
S∗. (c) illustrates the back projection of the lower convex hull in 3D into 2D and its
yielded Delaunay triangulation for S.

It has been shown that, if a point set is adequately dense and accurate, a good
approximation of the surfaces can be found in the subset of the Delaunay trian-
gulation [1]. The algorithmic complexity of the Delaunay triangulation in 2D is
O(n log n) and O(n2) in 3D. But if the points are distributed on smooth surfaces
it has been shown that the complexity drops from O(n2) to O(n log n)[4]. One
drawback of the Delaunay triangulation is that it is not unique if the points are
degenerate. However, there are implementations like CGAL [40] that always
yield an unique Delaunay triangulation, even for this case. In terms of scalability
we have to consider that for any Delaunay triangulation in 3D, the number of
tetrahedra can be upper bounded by O(n2) and is not known in advance [5].

For our surface reconstruction algorithm we use CGAL for the creation of the
3D Delaunay triangulation. It does not only deliver an unique solution for the
degenerate case, but it also incorporates the concept of the infinite vertex. In
addition, this causes the presence of infinite cells and faces in the Delaunay
triangulation. These are essential for our dual graph generation for our energy
minimization.
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3. Base Approach

3.2. Energy Minimization using Graph Cut

As its name indicates, a graph cut is a global energy minimization method
that works on a graphs. The graph G = (V, E) has to be finite and consists of
vertices (V) and directed edges (E). Also, each edge has a non negative weight
which is called capacity. The graph has two special vertices the source s and the
sink t that are called terminals. Someone can image this graph as a energy flow
network where the source is the only vertex that can create energy and the sink
is the only vertex that can absorb it. The goal is to find the maximum energy
flow from the source to the sink in this network. Which is equivalent to finding
the bottleneck of the network which is called the minimum cut. A cut C is a
set of oriented edges that separates the vertices into two disjoint sets, where
the source and the sink are always separated. The costs |C| of a cut is equal to
sum of its edge weights. There might be more than one possible minimum cut
in such a network. Graph cuts can be used for binary labeling tasks such as
image segmentation in computer vision. In this project we use the algorithm
of Boykov et al. [10] to find the minimum cut C. It has a theoretical worst case
complexity of O(VE2|C|), but it has near linear complexity in practice. The
original implementation allocates 24|V| + 14|E| bytes [32]. An example of a
network flow graph and a minimum cut can be found in 3.3.

S

(a)

S

(b)

S

(c)

Figure 3.3.: An Example of a minimum cut in an energy flow network. The red node is the
source and the blue node is the sink. In (a) you can see a simple flow network. In
(b) a minimum cut is visualized (green dotted line). (c) shows the flow network
reduced by the edges of the minimum cut, which leaves two disjoint sets. One is
connected to the source, the other to the sink.
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3.3. Energy Formulization

3.3. Energy Formulization

This section is mainly based on the work of Labatut et al. [30] with some minor
adaptations from Mostegel [35]. The Delaunay triangulation of the point cloud
and their visibility information (from which viewpoint a point was seen from)
serve as input. The main concept of Labatut et al. [30] algorithm is to utilize
the visibility information of the point cloud to approve or disapprove if a facet
in the triangulation is part of the surface. As already explained graph cuts can
solve binary labeling problems. At first we have to convert the task of surface
extraction in a Delaunay triangulation to such a binary labeling problem. This
can be done by considering that a tetrahedron can be inside or outside an object.
After labeling all tetrahedra as inside or outside we can extract the surface by
gathering those faces (2-simplex) that are shared by tetrahedra with different
labels. Thus the goal is to separate the tetrahedra into two disjoint sets which
exactly matches a binary labeling problem.

The next step is to generate a energy flow network graph and set its weights
accordingly that can be solved by a graph cut. To do this we create the dual
graph of the Delaunay triangulation. A tetrahedron becomes a node and a face
that is shared by two tetrahedra becomes two directed edges that connects
these nodes. This graph coincides with the Voronoi diagram of the Delaunay
triangulation, except that the edges are orientated. In addition we add links
from the source to the vertices and links from the vertices to the sink. These
links do not have any corresponding simplices in the Delaunay triangulation,
they are only needed for the flow network graph generation. To obtain a surface
S we have to minimize the following energy terms, one for the visibility the
other for the smoothness of the surface:

E(S) = Evis(S) + α · Esmooth(S) (3.1)

where Evis(S) is the data term and represents the penalties for the visibility
constraint violations. Esmooth(S) is the regularization term and is the sum of all
smoothness penalties across the surface. α is a balance factor between the data
and the regularization term and thus it controls the degree of smoothness. In
Figure 3.4 we plotted an example for the construction of the flow network. We
use the same example for the whole data term description.
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3. Base Approach

(a) (b)

Figure 3.4.: In (a) we plotted a small point cloud and a camera. The red line represents the
ray from the camera center to a seen measurement point. In (b) we plotted the
corresponding flow network, with sink and source, of this point cloud as described
in the energy formulization section.

3.3.1. Data Term - Visibility Information

This term serves to incorporate the visibility information into the flow network.
Every vertex of the point cloud keeps its visibility information. This information
is crucial and thus it has a major influence when designing the data term. If a
vertex is part of the final surface S it should be visibly from the positions it was
captured from. Hence all the tetrahedra (nodes) that are intersected by a ray
from any capturing position to the vertex should be labeled as outside and the
tetrahedron behind it should be labeled as inside.

At first we have to connect the terminal nodes to the graph. A tetrahedron is set
to be outside by setting the weights from the source to it accordingly. Labatut
et al. [30] recommend to define the tetrahedra where the capture positions are
in as outside. They proposed a hard constraint for this connection and an infinity
weight (λ∞) is set. Thereby the graph cut will always assign this tetrahedron
as outside, it cannot change its label. In [31] they proposed a soft constraint.
Here a finite weight is added to the connection. This allows tetrahedra where
capturing position to be labeled as inside. Labeling such tetrahedra as inside
sounds not reasonable thus in our implementation we only considered the
approach with the hard constraint. An example of this outside labeling can be
found in Figure 3.5.

Mostegel [35] showed in his experiments that under certain circumstances this
definition of outside may causes the scene to become unstable and fall apart. To
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(a) (b)

Figure 3.5.: In (a) we have highlighted the triangle the camera lies in. In (b) the green edge
represents the connection in the flow network the outside labeling has impact on.
In this case this edge gets the weight λ∞ assigned.

avoid this undesired behavior they suggest assigning also all infinite tetrahedra
to outside. An infinite tetrahedron does not physically exist, it always shares
a facet of the convex hull of the Delaunay triangulation and is connected to
the infinite vertex. As a result three of four facets of this tetrahedron do not
exist and are artificial. The infinite vertex is a special vertex in the Delaunay
triangulation that also does not have a real location and per definition it always
lies outside the convex hull.

Defining every tetrahedra outside the convex hull as outside cannot invalidate
the surface reconstruction. This is due to the fact that the surface we have to
reconstruct always lies inside or on the convex hull. This adaption only has an
impact on parts of the scene we have no information about.

For inside labeling finite weights have to be used otherwise the energy mini-
mization would be weakened. Consider every captured measurement as a vote
for the surface. Usually a set of measurements always contains outliers. If we
use infinite weights for the inside labeling the outliers will have a big impact
on the reconstructed surface and it will become noisy. Our goal is to extract a
surface as noise free as possible. To set the weights accordingly we use a simple
technique: We cast a ray from the capture position of the measurement to the
position of it. Afterwards we add a finite constant weight to the connection
from the tetrahedron, that lies behind the measurement in the the direction of
the ray, to the trunk. Figure 3.6 shows an example of this concept.

After setting the initial inside and outside label weights for the tetrahedra we
need to consider the empty space criterion. Some facets of the Delaunay trian-
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(a) (b)

Figure 3.6.: In (a) we highlighted the triangle that lies behind the measurement. In (b) the green
edge connects this triangle to the trunk in the flow network. A finite fixed weight is
added to this edge in the flow network.

gulation cannot be part of S because the would occlude other measurements
that were captured from several camera positions. This property is handled by
penalizing ray conflicts. To do this we follow a ray from the capturing position
to a measurement. Each facet we intersect is then updated in our flow network.
Since every facets exists twice in the flow network, one for each orientation, we
only update those that are crossed from the inside to the outside.

Labatut et al. proposed two concepts of calculating the weights for the ray
conflicts. In [30] they suggest to add a fixed weight for these intersections.
In a later work [31] they decided to use weights depending on a confidence
parameter σ and the distance d of the ray intersection to the measurement. They
used this concept to be able to deal with Gaussian scene noise. σ represents the
estimated noise of the measurement, the final weight is then composed by the
following formula:

wviz = αviz(1− e
−d2

2σ2 ) (3.2)

Here, αviz is a fixed penalization factor that controls its impact on the surface.
In this work we also use this formula to obtain the penalization weights for the
ray crossings. An example ray crossing penalization is shown in Figure 3.7.

3.3.2. Regularization Term

Regularization is essential for this method. If in a flow network an edge does
not have any capacity its equivalent facet cannot be part of the solution. An
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(a) (b)

Figure 3.7.: In (a) we highlighted the ray crossings (green dotted lines). In (b) we marked the
corresponding edges that are penalized.

edge without capacity is a non existing edge in the flow network thus it will
never be part of the minimum cut. This means that a facet can only be part
of the solution if it has a penalty assigned. Furthermore, this means that we
require at least one measurement that lies behind this facet that that causes a
ray crossing penalty for it.

To fulfill this requirement Labatut et al. [30] encourages smoothness by mini-
mizing the area of the overall surface. The corresponding weights are calculated
using the following formula:

Earea(S) = ∑
T∈S

area(T) (3.3)

Here T is a triangle in the Delaunay triangulation. This term can easily be incor-
porated into the flow network. We simply have to calculate the regularization
term for a facet and update its corresponding edges (for both directions) in
the network. This kind of regularization manages to exclude large facets that
connect to a measurement outlier to be part of the surface. If we have a highly
sampled surface (with a lot of low noise measurement points on it) it is most
accurately described by a large set of small facets. Using the area of a facet for
regularization causes the denial of this set to be part of the surface. It is very
likely that we can find a big triangle close to the front to this surface that has a
lower area than the accumulated area of the set. Thereby the energy minimiza-
tion might assign this big triangle to be part of the surface. Thus regularization
with area minimization is not well suited for a reliable and accurate surface
reconstruction.
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In [31] they overcame this problem by using an generalization of the β-skeleton
that was proposed in [2] for curve reconstruction in 2D. The β-skeleton is
a subset of Delaunay edges in the 2 dimensional case. To determine if an
edge is part of the β-skeleton we have to test the circumcircles of its adjacent
triangles. If both circumcircles are centered on opposite sides of the edge and
both have a radius greater than β/2 times the length of the edge it is part of
the β-skeleton. If the samples are dense enough this subset of edges outputs a
correct reconstruction. Unfortunately the β-skeleton does not generalize well
to 3 dimension. Close to a surface we can have flat tetrahedra that have small
circumspheres thus the β-skeleton may introduce holes. Labatut et al. [31]
introduced a generalization for the β-skeleton in the 3 dimension case and they
fused an approximation of it into their energy optimization. For a given facet
in the Delaunay triangulation they analyzed the circumspheres of the adjacent
tetrahedra. Each circumsphere intersects with the plane of the shared facet at
an angle ϕ and ψ. They used these angles to compute a weight:

ωβ = 1−min(cos ϕ, cos ψ) (3.4)

This weight is then added to both facets in the flow graph, one for each
orientation. As a result a tetrahedron with a large empty circumsphere gets a
low penalty and it is more likely that it is being cut by the energy minimization.
This behavior is very welcome because it is also more likely that it belongs to
the surface.

The last variant of regularization, and the easiest to think of, is to penalize
all facets with a small finite weight. Mostegel [35] introduced this in their
reimplementation. In their various different experiments it turned out that this
simple regularization outperforms all other types of regularization in terms of
accuracy. They give credits for this result to the Minimum Description length
(MDL) principle. The conclusion of the MDL principle is that the best hypothesis
is the one which leads to the best compression of data. Transfered this principle
to surface reconstruction means that the best surface is the one with the fewest
number of facets, which can be accomplished by assigning small constant
penalties for all facets.

As a conclusion of Mostegel [35] experiments they showed that the highest
accuracy can be achieved by using the hard visibility constraint and a constant
regularization term. Therefore we use this setup for our surface reconstruc-
tion.
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With respect to scalability, the goal of our approach is to process a huge number
of 3D measurements that contain visibility information, and produce a surface
from it. Our approach is designed as a process-pipeline with 3 consecutive
steps. In the first step we store the measurements in an octree where every leaf
node is restricted to hold a maximum number of measurements. Afterwards
we de-noise these measurements by using a simple k-nearest method and put
them into a new octree.

In step 2 & 3 we reconstruct the surface from the de-noised octree. Also, from
step 2 to 3 we decrease the required certainty for a triangle to be part of the
reconstruction. Where in step 2 the extracted triangles have a 100% consensus,
the applied triangles in step 3 are ambiguous. Which means that we increase
the approximation of the final surface in each step.

To make it scale we divide the octree into tasks. A task is a set of leaf nodes
that fulfill a neighborhood criterion (which we describe later). These tasks
can be processed in serial or parallel. For our approach it is essential that
a leaf-node can appear in more than one task: In step 2 we use the surface
reconstruction algorithm of Labatut et al. [30] to create a surface hypothesis
for every task. Thus, for a node, we have as many surface hypothesis, as it has
been part of different tasks. The main idea behind our approach is to pick those
surface hypotheses (or parts of it) that approximates the real, unknown surface
well. Our final reconstructed global surface is a combination of many different
reconstructed local ones.

After generating a surface hypothesis for every task we compare these hypothe-
sis node-wise. We gather all triangles that have a 100% consensus (are present in
all hypotheses for a node) and add them to our final surface. This final surface
is self intersection free but it usually contains holes and gaps. The holes are
caused by the nature of Labatut et al. [30] global optimization method: The
energy terms for the optimization depend on the leaf-nodes within the task. If
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a leaf-node appears in more than one task, every task it appears in has different
energy terms. This global energy minimization may not result in the same
node surface hypothesis for every task. Thus a 100% consensus for a surface
hypothesis for a node is very unlikely. But there is a high chance that parts of
the different surface hypotheses are equal.

The purpose of step 3 is to minimize the length of the overall boundary of
the final reconstructed surface. In this step we consider triangle patches, we
call them patch-candidates, that got rejected by step 2 to be part of the final
surface. The step is split into two parts: 3a and 3b. In step 3a we rank these
patch-candidates by using a cost function and add them if they fully patch a
hole in the final surface. In step 3b patch-candidates have not to fully patch
a hole: An energy minimization is applied to the to the patch-candidate that
minimizes the boundary length of a hole.

In Figure 4.1 an overview of the different processing steps can be found.

Figure 4.1.: System overview of our approach

Surface Topology
Our generated surface is also stored in an octree and it contains vertices, edges
and triangles. A vertex is uniquely defined by a pair of values, its leaf ID and
an unique vertex ID within the leaf. An edge always contains two vertices it
connects and in addition we store all adjacent triangles the edge is part of. We
define that an edge can only be part of two triangles (local 2-manifoldness).
At last, a triangle is identified by its three vertex IDs, furthermore we store its
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orientation using a normal vector. If the vertices of a triangle lie in different leaf
nodes, the triangle, its edges and vertices are present in these leaf nodes too.
This duplicate information is necessarily to check if a triangle is fully connected
to an adjacent node globally. A visualization of this topology can be found in
Figure 4.2.

12

21

Vertices:
{0},0
{0},1
{0},2
{12},0
{30},0

Edges:
{0},0 - {0},1
{0},0 - {0},2
{0},1 - {0},2
{0},1 - {12},0
{0},2 - {12},0
{0},2 - {30},0
{12},0 - {30},0

Triangles:
{0},0 - {0},1 - {0},2
{0},1 - {0},2 - {12},0
{0},2 - {12},0 - {30},0

0 1

2

0

0

0

30

1

2

3

Figure 4.2.: Surface topology example for 2 dimensions. Here you can see a quadtree with the
leaf nodes 0, 12, 21 and 30. At the right side of the figure the extract vertices, edges
and triangles with their IDs are plotted. A vertex is identified by its node-ID in {}
and its unique vertex-ID within the node. As an example the green highlighted
triangle and its simplices are present in the leaf nodes 0 and 12.

4.1. Step 1 - Data Fusion & Task Creation

4.1.1. Octree

As already mentioned scalability is one of the main concerns of this work. Due
to the lack of unlimited memory and the requirement that the whole method
has to run on a common personal computer we have to chunk the data into
manageable parts. These parts then can be processed sequentially or in parallel
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depending how much computational capabilities and memory are available. A
data structure that fulfills these requirements is an octree. An octree is a tree
based data structure that provides partitioning and searching operations. The
tree always has a root node and every node represents a 3D cube. A branch node
has 8 child nodes that subdivide it. For this subdivision the cube is separated
into 8 equally sized cubes. This subdivision can be done recursively up to any
tree depth. An illustration of an octree is shown in Figure 4.3. For our system
every leaf node in this tree is limited to hold a defined maximum number of 3D
points. Limiting the number of measurements a leaf-node can hold affects the
overall number of leaf-nodes, thereby maintaining scalability for further data
processing.

(a) (b)

Figure 4.3.: An example subdivision of space and its corresponding octree. A branch node (blue)
and a leaf node (gray) and their equivalents are highlighted in both figures.

4.1.2. Data Fusion

Our input point clouds can come from various different sensors. They may
contain misaligned duplicate measurements and some noise. To fuse our input
point clouds we first put them into an octree. For every leaf node in this tree we
gather all leaf nodes that lie within a radius. This radius depends on the size
of the actual leaf node. If the number of gathered leaf nodes exceeds a certain
number and we filter them. To do this we calculate the center of mass for every
gathered node. Afterwards we sort them by the distance of their center of mass
to the center of mass of the actual node. We skip leafs with the highest distance
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until the scalability constraint is fulfilled. The remaining leafs and the current
leaf are put into a kd-tree.

We randomly choose a measurement from the current node and start fusing it.
We gather the k-nearest measurement that lie within a radius. The search radius
depends on the ground sampling distance of the measurement. We calculate
the mean position and the mean normal for this measurement set. Afterwards
we apply the mean normal to the randomly chosen measurement. After that
we project the mean position onto the randomly chosen measurement using its
applied normal. A fusing example is visualized in Figure 4.4. Also, the fused
measurement gets all visibilities, from all measurements in the search radius,
applied.

(a) (b)

(c) (d)

Figure 4.4.: In (a) we see the original measurements and their normals. (b) shows the chosen
measurement and its search radius-circle. The k for the k-nearest search is set to
5. There lie 4 other measurements within the search radius. In (c) we apply the
average normal to the chosen measurement. We also plotted the projection of the
mean position onto the applied normal. (d) shows the new fused measurement and
its normal.

After we finished all leaf nodes we put the fused data into a new octree. This
tree will be used for task creation and further processing.
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4.1.3. Task Creation

In our system a task is always a set of nodes in the octree. All nodes in a task
have to fulfill a neighborhood condition. We define that this condition is fulfilled
when all nodes in a task are spatially adjacent. In addition the octree has to be
balanced: If the node size difference between two adjacent nodes is too big, we
split the bigger node until this constraint is not violated any more. This avoids
the reconstruction of enormously big triangles that span from big to smaller
nodes. The maximum node size difference of adjacent nodes we allow is two
octaves. An unbalanced quadtree and its balanced equivalent can be seen in
Figure 4.5.

(a) (b)

Figure 4.5.: An unbalanced (a) and balanced (b) Quadtree.

To extract those tasks we gather all corner points of the 3D cubes that are
represented by the octree. For the neighborhood condition we check if a corner
point is adjacent to any other 3D cube. We do this by creating a virtual cube that
is centered at this corner point and has half the dimension of the smallest cube
in the octree. Afterwards we estimate in which nodes of the octree the corner
points of this virtual cube lie in. This set of nodes form a potential task. To
minimize the total number of tasks we eliminate duplicates and those that are
fully contained in a different task. This reduced set of tasks represents the final
one. An example of the neighborhood condition in 2D is shown in Figure 4.6.
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Figure 4.6.: The neighborhood condition in the 2D case. The black squares represent the nodes
in a Quadtree (2D equivalent of the octree), the blue squares symbolize the virtual
squares that are placed at the corner of a node. For better visualization only one
virtual square is shown per task. For 2D there are up to 4 nodes in a task, in the 3D
case there are up to 8.

4.2. Step 2 - Collecting Consistencies

For every task we create a surface hypothesis by using the approach of Labatut
et al. [30]. Thus we have as many surface hypotheses for a node as it has been
part of different tasks. We assume that these hypotheses highly coincide if the
point set in a node is dense enough. With this assumption we firstly extract
all facets for a node where all hypotheses exactly match. This set is our initial
surface and it is unambiguous. If all surface hypotheses for a node have a
consensus in certain parts of the surface, then these parts have the highest
possible probability to approximate the real and unknown surface well. In a
second iteration we look at facets that span through two nodes, we call them
2-facets. During the surface generation of the tasks beforehand we also kept
track of how often a node pair was part in a task. If a 2-facet appears in all tasks
that contain its node pair and if it is a definite-facet, it is selected for being part
of the surface. We define a definite-facet as a Delaunay facet that would also
be present within a task that contains all nodes. We can determine if a facet
is a definite-facet by testing the two tetrahedra it is part of. A tetrahedron in a
Delaunay Triangulation is definite if we can guarantee that there will not be
any vertex added that lies within the circumsphere of the tetrahedron. We can
test this by distance checks within the task and the spatial information of the
octree. If a 2-facet is part of at least one definite tetrahedron,it is a definite-facet.
This condition serves that the set of 2-facets is 100% self intersection free.
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4.3. Step 3 - Closing ambiguous transitions

As our initial surface will always have some holes in it we need a strategy to
patch them. Holes will likely be present at border regions of our tasks: Labatut
et al. [30] surface reconstruction algorithm will always produce a closed surface.
Facets that lie at the border of a task will always be adjacent to a facet that
connects it to a point behind the surface to ensure that it is closed. This always
results in a hole if there is not any other task that connects these two borders
with definite-facets. In addition, we will always have holes within a node where
its containing tasks do not produce the exact same surface, there it is ambiguous.
If there are more different hypotheses for a part of the surface neither hypothesis
is chosen which results in a hole. To overcome this problem we introduced a
patching mechanism that uses a score function for the various different patch
candidates.

4.3.1. Patch-Candidate Extraction

This action will always be performed within a task. At first, we load the initial
surface results, created by Step-2[4.2], for a task. Secondly, we remove those
triangles that are present in both reconstructions (the task and the initial result).
After that, we remove all triangles that share an edge with an initial surface
triangle that is 2-manifold. As the leaf nodes in a task have not necessarily the
same size we also remove those triangles that reach through the task boundaries
as visualized in Figure 4.7a. In a last step we remove all triangles of the task
that intersect with triangles of the initial surface. Point intersections of triangle
vertices are excepted. The first two steps can easily be done using our surface
topology, where for the third step we had to use intersection tests in 3D. We
achieved this by using CGAL [40] axis aligned bounding box (AABB) library.
This library allows us to perform efficient intersection and distance queries
against a set of finite 3D geometric objects. In this set of reduced task triangles
we look for patch-candidates.

We cluster all remaining triangles that are edge-connected in linear time to
find patch-candidates. Vertex connections are ignored, see Figure 4.7b. The
minimum number of triangles in a patch-candidate is one, theoretically a patch
candidate can consist of all remaining triangles if they are edge-connected.
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(a) (b)

Figure 4.7.: In (a) a triangle where its three vertices lie inside a task is shown. One edge of
the triangle intersects with the border of the task thus it cannot be part of a patch-
candidate and it is ignored. In (b) you can see how triangles can be connected.
The first row shows the unconnected case, the second shows the vertex-connected
case. The last one shows the edge-connected case that is considered for our patch-
candidate extraction.

4.3.2. Patch-Candidate Score Calculation

After the extraction we have an unordered set of patch-candidates. One should
think that all candidates have the same quality for hole patching if they only
fit perfectly into a hole. Unfortunately this is not the case, especially for patch-
candidates that reach through two or more leaf nodes. The situation that we
describe was observed during the execution of our early experiments and is
a worst case scenario: If a patch-candidate, that mainly consists of backside
triangles, gets chosen before a front-side patch-candidate, a hole would possibly
be wrongly patched. This also denies any other correct patch-candidate, once a
hole is patched it is final and assumed to be correct. To solve this problem we
applied a score to each candidate which depends on its spatial position within
the task. The implemented score function follows a heuristic: The greater the
distance of a patch candidate to the task center, the lower its score should be.
The arithmetic mean of all 3D-point simplices of a patch-candidate serves as its
point representation. For the score calculation we measure the distance of the
patch-candidate to different chosen center points within the task. For a small
example see Figure 4.8.

We distinguish between four candidate-point distances: The first one is its
distance to the center of a node within the task. If a candidate lies at the center,
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d

Figure 4.8.: In this figure we plotted a leaf node and a patch-candidate within in. In this example
the distance for the score calculation is measured from the arithmetic mean of the
candidate to the center of the node.

its score should be at a maximum. The other ones are based on point distances
in an adjacent node setup.

In a task adjacent nodes are connected pair-wise, they share a plane. The center
of such a shared plane serves as another point-distance, we call this distance
plane-distance. A patch-candidate can lie next to its node border but within the
hole task it does not. We consider this case by using the plane-distance for two
adjacent nodes.

For the same reason we introduced the edge-distance. If we have an edge in the
task that is shared by more than two nodes and the edge is inside the task (it
is not part of the boundary), we add the center of this edge as edge-distance
point.

In addition, if we find a node corner point in the task that is shared by at least
five nodes, and again, the point lies at the inside of the task, this point is added
for the corner-distance.

A visualization of the four distance types is shown in Figure 4.9. The final score
of a candidate consist of the 1 minus the minimum distance of all four types
and is calculated using the formula 4.1.

score(c) = 1−min[dnode(c), dplane(c), dedge(c), dcorner(c)] (4.1)

The particular distances are normalized to {0..1}, depending on the size of the
node.
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(a) (b)

(c) (d)

Figure 4.9.: The four distance types: (a) node-center-distance, (b) plane-distance, (c) edge-
distance (d) corner-distance. All points lie at the inside of the task. A task with eight
nodes has 25 distance points, which is the maximum.

Eventually, this gives us a list of patch-candidates, ranked and sorted by their
score. We process them in descending order to minimize the chance of a false
patch-candidate insertion.

4.3.3. Patch-Candidate Insertion

A patch-candidate is a set of edge-connected triangles and it can intersect
with other patch-candidates. Due to our extraction process it is guaranteed
that a patch-candidate does not intersect with the initial surface generated by
Step2[4.2]. The insertion is separated in two parts, a strong and a weak insertion.
These insertions are executed consecutively, when the strong insertion is finished
the weak insertion is started. The insertion is always performed for a single node.
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If a Patch-Candidate contains triangles from different nodes, these nodes are
loaded on demand.

Step 3a - Strong Patch-Candidate Insertion

We define a strong patch-candidate insertion as an insertion where the whole
patch-candidate is added to the initial surface. That also means that this patch-
candidate fully closes a hole in the initial surface. To apply a patch-candidate
to the surface we execute the following steps: At first we extract the boundary
edges of the patch-candidate, which are all edges that are not 2-manifold. After
that we check if the boundary edges connect to the surface properly. They do if
all boundary edges of the patch-candidate are present in the surface and they
are not 2-manifold too. When inserted, this ensures that the boundary edges
become 2-manifold and a hole is completely patched.

Step 3b - Weak Patch-Candidate Insertion

The difference between a weak and a strong patch-candidate insertion is that
in the former a subset of triangles is allowed to be inserted. In the latter all
triangles of the patch-candidate have to be inserted. Thus weak patch-candidate
insertion is at a higher degree of approximation of the original surface with the
target to decrease the overall boundary length of the surface. We use the same
set of patch-candidates as in the strong insertion but we skip all candidates
that have already been inserted by the the strong version. Before we test if
a weak patch-candidate fits we have to make sure it does not intersect with
the already generated surface. We do this by applying the same checks as in
the patch-candidate extraction, see 4.3.1. If the candidate does intersect, we
remove the intersecting triangles and re-cluster it. The re-clustering splits the
intersecting patch-candidate into a new subset of candidates that can be tested
for a weak insertion. After we ensured that a patch-candidate does not intersect
with the already generated surface we check if it is edge-connected to at least
one boundary edge of the surface. If not, the patch-candidate will be skipped
and we will continue with the next one. If it is connected to a boundary edge
we apply an energy minimization that gives us a (sub)set of the patch-candidate
that decreases the boundary length optimally.
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The minimization works as followed: We define it as a binary labeling problem.
A patch-candidate should be separated into two disjoint sets of triangles. One
set will be added to the current surface and the other one will be discarded.
We solve this by using a graph cut that has a two layered flow network as input,
where a triangle is represented as a node.

In the first layer we put all boundary triangles of the current surface that
form an edge-connection to the patch-candidate. We connect these triangles to
the source using infinite weights, thus these triangles are always part of the
minimization result (as they are already part of the current surface).

The triangles of the patch-candidate are put into the second layer. If a triangle
in this layer is (spatially) edge connected to a triangle of the first layer we add
a connection in the flow network between them. This connection is always
directed from the first to the second layer. The weight of the connection is equal
to the length of the shared spatial edge.

If two triangles of the second layer share an edge, we add two connections with
different directions between them. Again, the weight is equal to the length of
the shared spatial edge.

At last we have to connect the triangles to the sink. Triangles of the first layer
will never be connected to the sink, we only consider triangles of the second
layer to be connected to the sink. If a triangle of the second layer has an edge
that is not shared with any triangle of the first or second layer, we connect it to
the sink. The weight of the sink connection is the accumulated sum of edges
lengths, that are not shared, for the triangle.

Applying the minimum cut (3.2) gives us now a set of triangles that minimizes
the overall border edge. Also, if a weak-patch-candidate perfectly close a hole in
the surface, no connection to the sink would be present. In this case all triangles
of the weak-patch-candidate would be added to the surface. A sandbox example
of weak-patching can be found in Section 4.3.3.

Weak-Patching Example

In this section we showcase the process of weak-patching on the basis of a small
initial surface and a weak-patch candidate. In Figure 4.10 we plot the initial
surface, a patch candidate and the final weak-patched surface. In this example
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(a) (b) (c)

Figure 4.10.: (a) shows surface that is to be weak-patched. In (b) a weak-patch candidate is drawn
with light-red triangles. All triangles, except the dashed one lie on a plane. The
dashed one has a different orientation, thus it does not intersect with the initial
surface. It only blocks the vision. (c) shows the weak-patched surface.

the weak-patch candidate is already reduced and does not intersect with the
initial surface. The corresponding flow network and its minimum cut can be
seen in Figure 4.11.

For a better visualization how the weak-patching impacts on a real dataset, we
plotted an example weak-patch insertion in Figure 4.12. This example is a subset
of the Citywall [15] dataset and shows the un-patched surface, a weak-patch
candidate, the optimized candidate, and the patched surface.

4.4. Limitations

The former sections describe how we add patch-candidates to our initial surface.
This section explains the limitations of our processing pipeline. If a hole expands
through more than one task, there is a high probability that our pipeline will
never fully close it. Our pipeline processes the mesh generation task-wise, thus
we cannot deal with holes that spread through more than one task appropriately.
The weak-patch candidate insertion will most likely reduce the size of the hole
but it will not fully patch it. There are two situations where a hole that crosses
multiple tasks can be present: A too big measurement density difference and a
missing leaf node in the octree.
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(a) (b) (c)

Figure 4.11.: (a) shows the initial flow network. The network consists of triangles of the surface,
that are edge-connected to the patch-candidate, and all triangles of the candidate.
Triangles of the first layer have the only connection to the source. Triangles of the
second layer that are not fully edge-connected have the only connection to the sink.
(a) visualizes the edge-weights of this flow network: Edge weights are equal to the
length to the shared edge between two connected triangles. Except for the source
and sink connections: Source connections are always infinite, sink connections are
equal to the sum of triangle-edge lengths that are not connected. (a) shows the
minimum cut (red-edge) of this example: Triangles of the patch-candidate that are
still connected to the source will be added to the surface.

4.4.1. Measurement Density Difference

When two adjacent nodes have a big measurement density difference it may
causes holes that cannot be patched: This is due to the property that a Delaunay
triangulation of sparsely distributed measurements has special tetrahedra. In
such a tetrahedron one facet is much bigger (area-wise) than the other three it
consists of. Which also means that its circumsphere lies outside the tetrahedron
and it can be enormously big. Thus the tetrahedron will not be marked as
definite, see Section 4.2, and its facets will never be considered for the initial
surface. In a worst case scenario such a node in a task forms an island of
triangles. This island is not and never will be connected to the rest of the
surface. This often happens when a small node only contains a few and sparsely
distributed measurements. We evaluated which measurement density difference
our pipeline can handle, see Section 5.5.

4.4.2. Missing Leaf Nodes

This section describes the absence of leaf nodes in the octree. As general input
we can have point clouds from from various different sensors. We have no
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(a) (b)

(c) (d)

Figure 4.12.: In (a) we see the original surface. In (b) we plotted one patch-candidate. After the
optimization the patch-candidate is reduced to the subset plotted in (c). (d) shows
the patched surface.

constraint how densely or sparsely distributed their measurements have to be,
they only need to be aligned. If we chunk a dense and a sparse point cloud
using an octree, the dense one will generate small leaf nodes and the sparse one
will tend to generate big ones. This might result in a gap in the octree where the
data transitions from dense to sparse measurements. A visualization of such a
situation can be seen in Figure 4.13. Since we do not create tasks that expand
through such a holes we cannot close them.

4.5. Implementation Detail - Parallelism

Since our data structures are stored in an octree and all steps are performed
within a node or a task, our approach has a high potential for parallelism.
The base approach, which runs task-wise, has the most potential: It can be
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(a)

Figure 4.13.: Visualization of missing leafs in an Quadtree for the 2D case. In this example a
leaf node can hold 10 measurements. We have two clusters of measurements, a
sparse one at the left and a denser one at the right side. These nodes cannot be
merged to a bigger node because it would violate the size constraint

fully parallelized and it is only limited by the computation capabilities and the
amount of accessible main memory. For all following steps, a synchronization
mechanism had to be taken into account to avoid race conditions. Thus the
data structure that contains the final surface for a node is always protected by a
locking mechanism. We follow a strict rule: Only one process at a time is to be
allowed to perform read and write operations on a node!

Our software is designed in a master/worker hierarchy: For each step we have
a master process that overviews the actual progress. The master process is
responsible for forking and applying tasks to worker processes. If a worker
finishes a task it notifies the master, the master then forks a new worker until
all tasks are finished. The number of active workers is configurable and can be
set at the start-up of the master process.

Due to our strict Read & Write rule, sometimes workers have to wait for a node
resource that was acquired by an other worker. To minimize this sleeping time
the workers are forked in random order.
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In this chapter we discuss the results of our experiments. We split the the
evaluation in a qualitative and quantitative part and compare our results with
two state of the art volumetric meshing approaches GDMR [41] and FSSR [13].
As mentioned in Mostegel [35] technical report, the base approach does not
handle Gaussian Noise well. Thus we performed two iterations of HC-Laplacian
smoothing [42] as post-processing on our generated meshes.

The quantitative evaluation was performed on the DTU [22] and the Mid-
dleburry Temple Full [39] datasets. Both are single scale datasets that provide
ground truth which allow us to benchmark our approach in terms of accuracy
and completeness.

Since there are not any multi scale 3D reconstructions benchmarks available yet,
we solely rely on a visual comparison. We perform this qualitative evaluation
on two datasets: The first evaluation was done on a public available multi-view
dataset [15], we refer to it as the Citywall dataset. Beside the visual evaluation we
also evaluated the memory and runtime consumption with different parameter
sets for our approach on this dataset. The second dataset, called Valley dataset,
is a cultural heritage dataset and covers an area of 6km2. Where the images
were taken at 4 different scale levels with a ground sampling distance range
from 50 µm to 100 cm.

Last, but not least we challenge our approach with a self-created, synthetic
dataset to find out under which circumstances our generated surface lacks
completeness.
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Figure 5.1.: DTU Scene 25 views (subset). Images were taken at a resolution of 1600x1200.

5.1. MVS Dataset 2014 - DTU

This dataset consists of 124 different miniature scenes and is freely available [22].
It focuses on the multiple view stereo (MVS) evaluation and it contains ground
truth data for comparison. The ground truth was acquired by using an industrial
robot arm mounted with a structured light scanner. For each structured light
scan they have one corresponding image in the dataset, which was taken by
one camera in the scanner.

They also delivered a comparison framework for reconstructed 3D points (MVS
results) and meshes. The comparison is closest-point-distance based, thus they
convert a mesh back to a 3D point cloud. This is done by super-sampling the
mesh and a subsequent reduction of high point densities. The reduction is
necessarily to meet their requirements of an equal and fair comparison. The
evaluation is based on completeness and accuracy. Accuracy is measured as the
distance from the sampled 3D points to the structured light reference, and the
completeness is measured from the reference to the sampled 3D points [22].

The main focus of the evaluation is to rate the results of different MVS ap-
proaches. Since the meshing quality highly depends on these results we did
not run our approach on all scenes. Instead we only choose one scene and
run three different state of the art MVS approaches (PMVS [16], MVE [15] and
SURE [38]) on it. Their results serve as input for our surface reconstruction
approach. In addition, we compare our results with two recently published
volumetric meshing approaches, GDMR [41] and FSSR [13].

For this experiment we picked scene 25 which has 49 images, views from
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different angles can be seen in Figure 5.1. It contains a miniature model of
an old building with some challenging meshing properties: A terrace on the
first floor which is fenced by some railings. Furniture, like tables, chairs and
benches, umbrellas, an entrance with arc and a detached sign-plate. To make
the evaluation more accurate we removed obvious outliers from the structured
light reference point cloud.

For our approach we used a leaf-size of 128k. For GDMR and FSSR we used
different parameter sets to find their best evaluation outcome. For FSSR we
changed the scale multiplication factor and for GDMR λ1 and λ2 in multiples
of two. The detailed evaluation outcomes for accuracy and completeness are
plotted in Table 5.1. There, the highlighted rows mark the best evaluation
outcome (where the mean of the median-accuracy and the median-completeness
is at a minimum). These tables are only supplemental and are only plotted to
proof that we took the effort to find the best evaluation scores for the competing
approaches.

(a) MVE (b) SURE (c) PMVS

Figure 5.2.: Accuracy and completeness plots on scene 25 of the DTU dataset [22]. We evaluated
three surface reconstruction approaches: GDMR and FSSR and OURS. We used
three different MVS approaches (MVE [15], SURE [38] and PMVS [16]) for the input
point cloud generation. The plots show the best mean and median values for the
accuracy and completeness, lower values are better.

For a better comparison, the best outcomes for this evaluation are also shown in
Figure 5.2 and a visual-only evaluation of the accuracy of all three approaches
is shown in Figure 5.3.

In Figure 5.3a we visualized the accuracy evaluation provided by Jensen et al.
[22]. In the first column we show the original Ground-Truth (GT), and the
modified GT where we removed obvious outliers. We put the labels for every
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sub-image in its top-left corner: FSSR, GDMR and OURS. In brackets we note the
MVS algorithm we used to obtained the input point cloud: MVE [15], SURE [38]
and PMVS [16]. Points from blue to green were excluded from the evaluation,
points from white (no error) to red (error >10mm) were evaluated.

In Figure 5.3b we plotted the non-textured surface meshes for all approaches.
The nomenclature for the sub-images is the same as in Figure 5.3a.

5.1.1. Discussion

If we take a closer look at Figure 5.2 we can see that GDMR and our approach
are more robust to outliers than FSSR. We can confirm this by the median-
accuracy with the MVE and SURE input. On a dataset that does only have a
few outliers (PMVS), FSSR has the highest accuracy. This high accuracy comes
with a trade-off, as we can see in Figure 5.3b in the first row, FSSR generally
leaves a lot of holes in the reconstruction. If we (visually) compare GDMR to
our approach we can conclude that both perform very similar on the facade. Yet,
if we focus on the arc and the umbrellas (highlighted in Figure 5.3b) we notice
that GDMR tends to form unwanted bubbles. This is caused by the formulation
of GDMR which prefers smooth normal transitions if points that constrain the
algorithm are absent. In this case our approach generally closes holes, where
GDMR focuses on a smooth transition. For this example our approach leads to
a better accuracy in these regions, see Figure 5.3a. From this experiment we can
conclude that the quality of a surface reconstruction method strongly depends
on the quality of the input and that on this dataset our method is on par with
the others.
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(a)

(b)

Figure 5.3.: See text for description.
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MVS Approach
Scale Accuracy Completeness

Factor Mean Median Variance Mean Median Variance

PMVS

FSSR
2 0.332 0.245 0.079 1.110 0.476 4.867
4 0.491 0.318 0.273 0.624 0.395 1.772
8 0.593 0.327 0.551 0.764 0.413 3.126

GDMR

1 1.651 0.456 9.159 1.280 0.621 3.785
2 1.372 0.373 6.855 0.789 0.468 1.510
4 1.149 0.343 4.991 0.581 0.404 0.735
8 0.996 0.355 3.024 0.537 0.389 0.613

16 0.988 0.377 2.697 0.529 0.381 0.615
32 1.003 0.402 2.586 0.518 0.368 0.633

OURS - 0.626 0.341 0.755 0.567 0.390 0.743

SURE

FSSR

1 1.044 0.490 2.487 0.431 0.257 1.218
2 1.594 0.523 5.935 0.501 0.353 0.985
4 1.975 0.496 9.503 0.485 0.370 0.450
8 2.395 0.520 14.259 0.520 0.387 0.462

GDMR

0.5 1.101 0.295 4.931 0.565 0.373 0.917
1 1.099 0.301 4.693 0.519 0.357 0.744
2 1.163 0.322 4.813 0.494 0.339 0.753
4 1.358 0.373 5.687 0.465 0.317 0.703

OURS - 1.247 0.365 5.013 0.509 0.368 0.512

MVE

FSSR
1 0.673 0.396 0.685 0.430 0.239 1.638
2 0.833 0.403 1.213 0.474 0.285 1.630
4 0.878 0.338 1.698 0.490 0.289 1.625

GDMR

0.5 1.048 0.269 4.846 0.460 0.290 0.716
1 1.013 0.275 4.262 0.423 0.284 0.587
2 1.021 0.287 4.015 0.410 0.278 0.496
4 1.008 0.304 3.539 0.407 0.270 0.524
8 0.971 0.332 2.772 0.399 0.260 0.564

OURS - 0.671 0.262 1.330 0.423 0.279 0.575

Table 5.1.: Detailed DTU Evaluation Results - with PMVS, SURE and MVE as MVS.
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5.2. Middlebury Dataset

Figure 5.4.: A subset of images of the Middlebury Temple Full dataset.

As GDMR [41] and FSSR [13] evaluated their approaches on the Middleburry
Temple Full [39] dataset, we also challenged our approach by proposing our
result mesh to this non public evaluation system. An image subset of this dataset
can be seen in Figure 5.4. The object to be reconstructed is a model of the Temple
of the Dioskouroi made of mortar. The benchmark contains 312 views that are
sampled on a hemisphere with an image resolution of 640 times 480 pixels. The
ground truth is not public and has a resolution of 250 µm. We computed a point
cloud using MVE [15] and submitted our reconstructed mesh. In Figure 5.5 we
plotted the two main views of the reconstructed meshes and their corresponding
ground truths for OURS, FSSR and GDMR.

5.2.1. Discussion

If we take a look at the accuracy and completeness scores printed in Table 5.2,
we see that our approach is higher ranked than FSSR and GDMR. A possible
explanation for this result can be seen in Figure 5.6. There we cropped out
a magnified detail that proves that our approach preserved fine details and
edges more accurate than GDMR and FSSR. We assume that this property led
to the higher accuracy score. If we compare our result score to all submitted
and evaluated MVS approaches we are ranked second on this dataset1 over all

1http://vision.middlebury.edu/mview/data/ (July 15, 2018)
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Figure 5.5.: Middleburry Full Temple Dataset. First row shows "view 1" and the second shows
"view 2" from the evaluation system.

approaches. Note that the only approach better than ours [44] uses a different
input point cloud. While the other approaches reported here use the exact same
input as we do. This means on this input, our approach leads to state-of-the-art
results on this dataset.

Threshold
Accuracy[mm] Completeness

FSSR GDMR OURS FSSR GDMR OURS
90 % 0.40 0.42 0.35

99.4 % 99.3 % 99.7 %97 % 0.63 0.61 0.55
99 % 0.84 0.78 0.71

Table 5.2.: Accuracy and Completeness report for the Middleburry Dataset.
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Figure 5.6.: Middleburry Full Temple Dataset. Cropped out detail of "view 2" which shows that
our approach preserved more details an edges. This property probably led to the
higher accuracy score.

5.3. Citywall Dataset

Figure 5.7.: A small subset of the Citywall dataset images.

The Citywall dataset is a freely available multi-view dataset [15]. It consists of
564 images that were captured hand held. The scene covers an old historic wall
with a fountain and a miniature model of a village, a sub-sample is shown in
Figure 5.7 The images were captured from different distances: While most of the
images cover the scene from a certain distance they also captured low-distance
images to preserve small details. Due to this high scale difference, this dataset
is highly suitable for testing our reconstruction pipeline. Unfortunately there
is no ground truth available, thus evaluation can only be done visually. The
number of measurements a leaf node can hold is the only parameter that has a
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major impact on the runtime, quality and completeness of our reconstructed
surface. We refer to this number as leaf-size. Our experiment consists of eight
runs with different leaf-sizes: from 8K up to 1M points.

At first we use the incremental structure from motion tool from MVE (Multi-
View Environment)[15] to generate a sparse geometry from the scene. To densify
this geometry we use MVS (Multi-View Stereo) [17] at scale level L1 which gives
us a depth-map for every camera at a half image resolution. The total number
of (dense) measurements is 295M points and every measurement is seen by
only one camera. This dense geometry and the low visibility information serves
as input for our surface reconstruction pipeline. For Step1 we used a k = 30
for the k-nearest-neighbor fusion which resulted in a fused point cloud of 22.5
million points.

We also visually compare our result mesh with GDMR [41] and FSSR [13].
We chose a leaf-size of 128k for our, and default parameters for the other
approaches.

5.3.1. Runtime & Memory Consumption

For this experiment we logged the runtime and peak memory consumption
for Step2, Step3a & Step3b. The runtime of Step1 is negligible compared to the
meshing itself, it takes less than 1% of the total runtime. The experiments were
performed on a server with 210GB of RAM and 2 Intel(R) Xeon(R) CPU E5-2680
v2 @ 2.80GHz. Which sums up in 20 physical cores that can process 40 threads
at once. They server was shared with other users, thus the run times can only
be interpreted as an indication. In addition, we did not use the same number of
CPU cores for every step and leaf-size. Therefore we normalized the runtime to
a setup where only one process can be processed at once. These timings and
the PMCP (Peak-Memory-Consumption per Process) can be found in Table 5.3.
With a leaf-size of 8K our approach finishes this dataset on a 4-core CPU (with
hyperthreading) and 8GB of RAM within 2 days.
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1M 512K 256K 128K 64K 32K 16K 8K
#Nodes 142 194 378 695 1392 2675 4820 10123
#Tasks 172 232 499 938 1805 3604 6317 13254
Runtime/Node 1h12m 42m 15m 7m 3m 1m 40s 20s
Runtime/Task 4h20m 5h 2h20m 1h 25m 12m 4m 1m30s
Total Runtime~ 1260h 1296h 1258h 1019h 821h 765h 473h 388h
PMCP [GB] 44.3 25.3 16.1 8.9 5.1 3.1 2.2 1.8

Table 5.3.: Runtime and Peak Memory Consumption.

5.3.2. Discussion

In Figure 5.8 we show a visual comparison of our result meshes. As we can see
in the Fountain view-port (1st column) the bars are reconstructed with some
outliers for a leaf-size of 8k and 16k. In these cases there are some leaf nodes in
the octree that mainly contain outliers and they form a task. Since the visibility
casts (see Section 3) are only performed within a task we cannot distinguish
outliers from valid measurements on a global base. Thus, with increasing node
size this effect becomes negated: From a node size of 32K to 1M our approach
is more outlier resilient on this dataset.

In regions where the point density is constant (Wall, Lions and City view-ports)
our approach is capable to preserve even small details and produce a closed
surface, even for a leaf-size of 8k. The Stairs view-port shows the impact on the
completeness: A large leaf-size leads to a more complete result. With a large
leaf-size we have less tasks but a task contains more measurements and covers
a larger area, thus the base optimization has more information.

For the visual comparison of this dataset with GDMR and FSSR we use similar
view points as used in [41]. These visual results are shown in Figure 5.9. The
big advantage of GDMR is that they always reconstructs a fully connected mesh
without any holes. However, with their standard parameters they tend to overly
smooth the scene and they did not propose their used parameter set in [41].
Both, FSSR and GDMR have some artifacts in the basin of the fountain, where
our approach does not. In addition, FSSR is often not able to reconstruct parts
of the scene which leads to big holes and gaps.

From the former visual comparison and the runtime and quality evaluation
we conclude that a leaf-size of 128K is preferable for our approach. With this
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5. Experiments

Figure 5.8.: Citywall - Surface reconstruction results for different leaf-sizes. Prominent features
are highlighted.

leaf-size we are visually definitely on par with GDMR and FSSR on this dataset
while the runtime of our approach is also in an acceptable range.
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5.3. Citywall Dataset

Figure 5.9.: First column shows the result mesh of our approach with a leaf size of 128k. The
second & third column show the result meshes for GDMR (λ1 = λ2 = 40) and FSSR
(default parameters).
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5.4. Valley Dataset

Figure 5.10.: A small image subset of the Valley dataset. The images are ordered row-wise from
scale level 1 to 4.

This experiment was chosen to show the surface reconstruction power of our
approach. The dataset contains an extreme scale variance, it has four scale levels
with a ground sampling distance from (about) 1 m to 50 µm. It also covers an
area of about 6 km2 and zooms in to highly dense sampled area of 0.1 m2. The
initial data of each scale level was acquired vision based and aligned with
geo-referenced ground control points. We also processed this dataset with
GDMR [41] and FSSR [13] and (visually) compare their results with ours.

5.4.1. Data Acquisition

The raw data was acquired in the Valcamonica Valley, Italy during the pro-
ceeding of the 3D-pitoti 2 EU-project. A small image subset can be seen in
Figure 5.10. Each scale level was reconstructed individually which resulted
in four different sparse point sets and their visibility information. The most
coarse scale was captured with a manned hang glider. The second and third
were both recorded with an unmanned aerial vehicle, a fixed wing and octo-
copter respectively. The finest scale was captured with a terrestrial stereo setup.
After reconstruction, the datasets were geo-referenced using a prism on the
total station and ground control points of offline differential GPS, and total
station, measurements. We further optimized the relative alignment by using
the iterative closest point algorithm [7]. After that we densified each scale level

2http://www.3d-pitoti.eu/
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5.4. Valley Dataset

point cloud using SURE [38]. The sizes and ground sampling distances of the
four densified datasets can be found in Table 5.4a. This sums up in a combined
dataset that consists of 1925 million points with a ground sampling distance
range from 42 µm to 100 cm.

Scale Level #points min. GSD max. GSD
1 572M 42 µm 47 µm
2 162M 3.5 mm 15 mm
3 64M 3 cm 5 cm
4 1127M 10 cm 100 cm

(a)

Approach Runtime[Days] PMC[GB]
GDMR 1.5 150
FSSR 0.5 170
OURS 9 119

(b)

Table 5.4.: (a) shows the size and ground sampling distances of the four scale levels. (b) shows
the runtimes and memory consumptions.

5.4.2. Execution Setup

For a fair comparison we used the parameters for GDMR and FSSR where they
performed best (in terms of accuracy and completeness) on SURE densified
input data. We obtained these parameters from our DTU experiment where
we used SURE as MVS, see Table 5.1. Both approaches ran out of memory
on our evaluation server (further specification in Section 5.3.1) with 210 GB
of accessible RAM. However, to achieve any result we increased their scale
parameter in multiples of two until both could be successfully executed. This
resulted in a scaling factor of 4 for both approaches. Another problem was the
scale difference of our dataset: The reference implementations of GDMR and
FSSR use a fixed octree depth of 21 levels, but our dataset requires a higher
depth. Thus both approaches ignored the finest scale level. Therefore we also
executed both approaches on a subset of our dataset that contained only scale
3 and 4. To evaluate the transition capabilities of GDMR and FSSR on the two
lowest scale levels we executed both approaches also only on these scale levels.
FSSR and GDMR ran on a reduced dataset without scale level 1 and 2 which
represents a data reduction of more than a half.
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5. Experiments

5.4.3. Discussion

In Figure 5.12 we plotted the reconstructed meshes. Our approach consistently
connects all scales, where GDMR and FSSR have their difficulties with the
lowest scale. This is due to the fact that our approach uses the Divide &
Conquer principle and can thus process data from all scale levels. As long as the
density transition between to adjacent nodes is smooth enough, our approach
will try to reconstruct a surface that interfere within these nodes. If we take a
closer look at the smallest scale in Figure 5.12 we can see individual small holes
at density transitions. However, if we focus on the density transition between
the two lowest scales (see Figure 5.11), we see that our approach is able to close
nearly the whole transition despite the immense jump in the point density,

Figure 5.11.: Density transition between the two lowest scales of the valley dataset.

The overall runtimes and PMC (Peak Memory Consumption) can be found
in Table 5.4b. Our approach used 16 processes and the maximum memory
consumption was less than 9 GB per process. The main disadvantage of our
approach is the runtime as shown in Table 5.4b. With further improvement of
parallelism we are sure to be able to drop the runtime significantly.

However, it is important to note that our approach was the only one that could
process the whole, unfiltered dataset with all four scale levels, at once.
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5. Experiments

5.5. Synthetic

We processed lots of real world sensor data where the reconstructed surface
contained holes. As described in 4.4.1 we figured out that this mainly happens
at point cloud density transitions in the data. Chunking such data results in
an octree where adjacent leafs have different densities and often different sizes.
We decided to challenge our pipeline by generating worst case datasets with
increasing density transitions.

We do this by creating a set of points that lie on a plane. The x and y coordi-
nates of the points are sampled on a regular grid. We add some small normal
distributed noise to the z coordinates of the points to ensure that the tetrahedra
in the Delaunay triangulation are not flat. We place 4 virtual cameras that are
positioned fronto-parallel to the grid plane and project the sampled points to
get the visibility information. This initial set of point has 2.4 Million points.

Afterwards we start to reduce the number of points in the center region. The
boundary of this region is computed that a reduction of points leads to an
octree with bigger inner nodes that are surrounded by smaller and denser outer
nodes, see Figure 5.13. The reduction ratio for the center region is computed as
shown in Equation 5.1.

ratio(n) =
1
4n , n = {0, 1, 2, 3, 4, 5, 6} (5.1)

Where n is the current iteration. After the last iteration we have 1.4 Million
points left.

(a) (b) (c) (d)

Figure 5.13.: Octree for synthetic experiments, iteration 1,2,3 and 4.
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5.5. Synthetic

5.5.1. Discussion

For n < 3 our pipeline generates a fully closes mesh of the point cloud. For
n >= 3 the number of un-patched holes increases continuously. We plotted
the result meshes for n = 2 . . . 6 in Figure 5.14. As we can see in iteration 6,
Step2 mainly produces an island in the center node, this is due to the lack of
definite-facets. Therefore Step3 is not capable to fully connect this island with
the surrounding surface. The hole spans through more than one task, thus there
are no Patch-Candidates that can fully connect to the surface. We can clearly
see the impact of Step3b, it always reduces the size of holes. Even in iteration 6
the size of the holes is reduced to more than 50% (from Step3a to Step3b). Until
a density transition of 1/256 the number of holes in the surface is negligible
low.

Figure 5.14.: Generated meshes for our synthetic test data set.
Rows: Sub-result meshes of Step2, Step3a and the final result Step3b.
Columns: iterations 2,3,4,5 and 6.
Holes are colored red.
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5. Experiments

5.6. Discussion - Summary

Overall our approach performed well in all of the presented experiments and
proofed to be competitive with state-of-the-art surface reconstruction methods.
Nevertheless, during the execution a few topics rose that we discuss and
summarize in this section.

One of the reasons for the Citywall experiment (5.3) was to find the most
practicable leaf-size. There we observed that a higher leaf-size tends to improve
the completeness and overall quality of the reconstructed mesh at the cost of
a higher memory consumption and runtime (to a certain limit). Where the
runtime mostly flattens at a higher leaf-size, the memory consumption rises
intelligibly, see Table 5.3. Thus we see the selection of this parameter as a trade-
off between overall mesh quality and computational resource consumption.
From this experiment we concluded that a leaf-size of 128k suits us best, and
was therefore used in all further experiments.

Due to the fact that we allow an unlimited leaf depth in our octree data structure,
the question of how density jumps impact the completeness, came up. This
line of thought led to the creation of the Synthetic experiment (5.5) where
we simulated worst case density jumps. The outcome of this experiment was
that our hole filling mechanism works well up to point density jump of 1/256.
However, in the valley experiment (5.4), much higher point density jumps
occurred, which did not lead to a significant number of holes. In addition, the
decision to allow unlimited leaf depths grant our approach to be genuinely-
scalable.

The main disadvantage of our approach is the overall runtime. In this aspect
other approaches are simply more efficient, see for example Table 5.4b. We think
that further effort in parallelism and a more intelligent locking mechanism (4.5)
could reduce the overall runtime by a lot. In general, consumer CPUs tend to
get more and more cores, which naturally improves our runtime.

The capability of running on a consumer desktop without high-end hardware
is a major advantage of our approach. In all of our experiments the allocated
memory never exceeded 9GB per process. When decreasing the leaf-size the
memory consumption drops significantly more. Thus, with our approach a
surface can be reconstructed on a less potent hardware setup.
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6. Conclusion & Outlook

While the other approaches are implicit approaches, ours works directly on the
point cloud and is thus explicit. The formulation as a hybrid between volumetric
and Delaunay based surface reconstruction approaches grants us the ability
to reconstruct a surface from a point cloud of any size at a constant memory
consumption. One further difference between our approach and GDMR [41] and
FSSR [13] is that we use an octree with unlimited depth as data structure. It is
only constrained by the number of samples a voxel can hold which guarantees
to evenly partition the input samples into chunks that can be processed. In
addition, the scale of a sample does not influence the leaf-depth it will be stored
in. Our approach does not require any normal or scale information like the
others but it highly depends on visibility information.

In our experiments our approach was the only one that were able to reconstruct
a high quality and consistent surface from a dataset with roughly 2 billion
points (5.4) that contains vast scale changes. Since our process pipeline is
based on the Divide and Conquer principle, we were well suited for processing
such large amount of data. In terms of reconstruction quality our experiments
proof that we are on par with state-of-the art multi-scale surface reconstruction
methods. Our memory consumption directly depends on the only parameter
our approach needs, the leaf-size. The overall runtime is a minor drawback that
can be counteracted by decreasing the leaf-size.

To further increase the quality of the reconstructed surface we could replace our
base approach [30] with another one. With some minor adaption we would be
able to make some of Delaunay based surface reconstruction methods scalable!
To reduce the overall runtime we could beforehand calculate the best task
execution order. A minimization of the time a process needs to wait before
it can access its required resources would be, in our opinion, a good starting
point.
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6. Conclusion & Outlook

Since the computation capabilities in terms of multi-processing is still increasing
continuously, even on the consumer market, we see a potential for methods
like ours that use a Divide and Conquer principle. When we think of cloud
computing with the sheer amount of available processing units can drastically
speed up our reconstruction runtime, which would make it more practical.

However, the race between explicit and implicit methods is still going on. With
both having their set of advantages and disadvantages, someone cannot predict
which variant will overcome the other. In our opinion the property of being
scalable will become more and more important in the future for a modern
surface reconstruction method, independently of its category.

60



A. Appendix - CVPR Submission

The method we presented in this thesis was also submitted as a paper to CVPR,
2017 and got accepted [36]. The apportionment of the work was the following:
The ideas that are used in our approach were formed and exhaustively discussed
between Christian Mostegel and me. The C++ software implementations needed
for the paper were mainly done by myself. The experiments were planned and
executed by Christian Mostegel and me. Friedrich Fraundorfer and Horst
Bischof supported us with their knowledge and experience throughout the
whole project and were always available for a detailed discussion and critics.

At this point I want to thank all my project members and former colleagues for
their patience and great support. Special thanks to Christian Mostegel; he was
always sympathetic and supportive and he also gently pushed me to finish my
master thesis.
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