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Abstract

The problem of information overload is widely recognized today. Living
in an information society, we are all affected by the increasing amounts of
information becoming available every day. The impact of this phenomenon
shows itself in several information related tasks, such as conducting a litera-
ture search, by making it difficult for people to find information relevant
to their interests. In this work, we develop a recommender system capable
of providing relevant literature recommendations for a pending citation in
a scientific paper. We employ a content-based recommendation approach
based on information retrieval techniques. The input to our system con-
sists of the citation context around the pending citation while the output
comprises a ranked list of documents serving as citation candidates. Within
our experimental setup, we experiment with different query formulation
strategies and retrieval models in order to improve the performance of the
system. The evaluation of our system shows the potential of this approach,
reaching a peak MRR of 0.416. This is further emphasized by the results
gained from our contribution to the CL-SciSumm Shared Task 2017 where
we achieve top results among all participating systems.
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1. Introduction

With the rapidly expanding amount of information in our current era, it
becomes increasingly difficult to find the right piece of relevant information
and distinguish it from the irrelevant masses. This is a well known phe-
nomenon in our time and is commonly referred to as information overload.

There is a broad spectrum of information related tasks falling victim to this
phenomenon. One such task, for example, is the process of literature search:
A general approach to conduct a literature search is to perform a keyword
based search and then follow the chain of citations in the found documents.
With the increasing amount of new information becoming available at all
times, however, the number of found documents will become larger as well.
Therefore, conducting a literature search becomes a more and more labor
intensive task.

A similar scenario arises, when someone is writing a scientific paper and is
about to cite a passage of text with a source. In this case, either the writer
already knows a proper source or she has to perform a search in order to
find out. Figure 1.1 illustrates this scenario for an article hosted on Wikipedia
where a paragraph is marked with “citation needed”. For the editors of this

Figure 1.1.: Example of a pending citation in an article on Wikipedia.

article, it certainly would be useful if a citation recommendation system
could provide some candidate papers containing the required information
about the used material.

1



1. Introduction

This scenario is, where the focus of this thesis ties in: Over the course of this
thesis, we develop a content-based recommender system with the idea of
providing a set of documents serving as citation candidates.

Additionally, we participate at the CL-SciSumm Shared Task 2017, where we
employ the approach taken in this thesis within the context of bibliometric-
enhanced information retrieval and natural language processing for digital
libraries in order to solve the problems posed by this task 1. A closer look
at the setup of the shared task and how well our approach performs is
discussed in Section 6.1.

All the work done within the scope of this thesis, is contributed to a research
question which we formulate as follows:

How reliable are content-based recommendations serving as citation candi-
dates for a pending citation?

Over the next chapters, we provide a background to recommender systems
and information retrieval and follow to describe how our system is designed
and implemented. Furthermore, we describe the experiments conducted
with the system and show the evaluation and results. After a discussion of
related work, we come a conclusion of this thesis.

The according structure is as follows:

Chapter 2 This chapter gives an introduction to recommender systems and
recommendation techniques followed by an introduction to informa-
tion retrieval.

Chapter 3 In this chapter, we provide a general description of our system
and discuss our data set.

Chapter 4 In this chapter, we cover the technical details of our system and
provide algorithmic solutions to the problems we face.

Chapter 5 In this chapter, we show the evaluation of our system and inter-
pret the results.

Chapter 6 In this chapter, we discuss related work on the recommendation
of documents within the context of scientific writing and take at closer
look at the CL-SciSumm Shared Task 2017.

1See Appendix A for the system report to our submission
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Chapter 7 In this chapter, we recapitulate on the work conducted within
the scope of this thesis and come to a conclusion.
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2. Background

2.1. Recommender systems

A Recommender system is a special tool with the goal to help users with
their information seeking tasks. This is achieved, by providing useful sug-
gestions for items which best match the user’s needs and preferences [46,
58].

The term “item” in this context refers to what kind of thing the system
recommends and can be anything like a product, a service, or some piece of
information.

Typically, recommender systems focus on only one specific type of item,
and all inner mechanics of the system are tweaked and optimized towards
the calculation of effective and useful suggestion of items of that particular
type [60].

To accomplish its task of generating recommendations, the recommender
system must be capable of coming up with a prediction of items which
qualify as potentially useful to a user. In order to do that, various differ-
ent approaches have been evolved since the beginning of recommender
systems.

The two approaches most relevant within the scope of this thesis refer to
content-based recommendation and collaborative filtering. How these approaches
work, we described in the following sections.

Other more and less commonly used recommendation techniques comprise
community-based recommendation, knowledge-based recommendation, demographic
recommendation, hybrid recommendation. How all of these work, however, is
beyond the scope of this thesis.

5



2. Background

2.1.1. Content-based Recommender

Content-based recommender systems have their roots in information re-
trieval. Systems of this group calculate recommendations according to a
simple principle: If a user has previously liked an item (e.g., by providing a
rating) then similar items will be recommended in the future.

In practice, this works by analyzing the properties of all a user’s previously
rated items and derive a user profile from this information [50]. Such a user
profile serves as a representation of the user’s interests and is utilized to
recommend new relevant items. This is done by comparing the attributes of
the user profile with the attributes of the items. The result of a comparison
between the user profile and a particular item reflects the user’s degree
of interest in that item. The more accurately the user profile represents
the user’s interests, the more effective an information access process can
become. For example, let’s consider a user is performing a search on a web
shop yielding a set of products. In this case, the user profile could be used
to determine whether or not the user is interested in a product, and, if not,
then the product could be filtered out.

As described in [60], following a content-based approach exhibits various ad-
vantageous and disadvantageous properties compared to other approaches
such as collaborative filtering (see Section 2.1.2).

Among the advantageous properties, there is:

User Independence For a target user, only his own ratings are taken into
account when it comes to building his user profile. That is, recommen-
dations do not depend on other users as it is the case with collaborative
filtering.

Transparency An explanation why an item was recommended or not can
be derived by comparing the item attributes with the user profile. This
is in contrast to the collaborative filtering approach, where finding an
explanation to a recommendation is more obscure, since, in this case,
recommendations are based on unknown users with similar tastes and
which items they liked.

New Item Items do not have to be rated in order to be considered for a
recommendation. This is a major advantage over systems following a

6



2.1. Recommender systems

collaborative filtering approach. This is because systems of this type
require a new item to be rated by a significant amount of users before
the system would be able to recommend it.

Among the disadvantageous properties, there is:

Limited Content Analysis Enough discriminating information needs to be
present in items in order to decide whether a user likes the item or not.
Providing such information often requires special domain knowledge.
For instance, for music recommendations, the system would need
information such as band members, genre and song writer.

Over Specialization Items are only recommended if they display a good
match against the user profile. Thus, only items similar to the ones
already rated are going to be recommended. This circumstance is
also known as serendipity problem and means that the amount of novel
recommendations is vastly restricted.

New User Content-based recommenders need access to a sufficient amount
of ratings in order to come up with a user profile. For a new user, with
only a few ratings, an accurate user profile can not be created, hence,
no reliable recommendations can be provided to the user.

2.1.2. Collaborative Filtering

The collaborative filtering approach tries to overcome some of the short-
comings present in content-based recommenders. In content-based recom-
menders, recommended items solely depend on a user’s previously liked
items. Systems based on collaborative filtering take a different route, with
the basic idea being: If two different users u and v have rated items in a
similar fashion then it is likely that the rating of user u for a new item i is
similar to that of user v for item i.

Two common techniques of collaborative filtering are user-user collaborative
filtering and item-item collaborative filtering.

7



2. Background

User-User Collaborative Filtering

User-user collaborative filtering, or sometimes denoted as k-NN collaborative
filtering is an algorithmic implementation of the basic idea behind collabora-
tive filtering, namely, finding users with a similar rating pattern to that of
the target user and use their ratings to other items in order to determine
which items the target user will like.

The first recommender system taking this approach was the Usenet arti-
cle recommender GroupLens [59], followed up by the Ringo [73] music
recommender and the Bellcore video recommender [30].

Formally, what we are interested in, is to come up with a prediction for the
rating rui where rui is the rating of a user u for an item i.

This is done by considering the nearest-neighbors of u with respect to their
rating similarity: Let’s consider the value suv where u and v are two users
with u 6= v and suv representing their rating similarity. Then, the users v
with the highest similarity suv are the k nearest-neighbors of u and shall be
denoted as N (u).

To make a prediction about rui, however, only users v who have rated the
item i can be taken into account, therefore, we are interested in the users v
with the highest similarity suv who have also rated item i. This set is denoted
as Ni(u) and can be used to compute a prediction of rui [60]:

r̂ui =
1

|Ni(u)| ∑
v∈Ni(u)

rvi

In this case rui is simply the average rating given to i by the users in Ni(u).

One drawback of this approach is its scalability problem [26]. Since finding
the k nearest-neighbors is an O(|U|) operation, where |U| is the size of the
user base, it becomes increasingly expensive to predict rui as the user base
keeps growing.

To tackle this problem, it was necessary to develop a more scalable approach.
As a result an approach known as item-item collaborative filtering arised.

8



2.1. Recommender systems

Item-Item Collaborative Filtering

Because of scalability issues with user-user collaborative filtering, it was
necessary to find a more scalable approach which led to the development
of item-item collaborative filtering, also known as item-based collaborative filter-
ing.

First introduced by Sarwar et al. [72] and Karypis [38] item-item collabo-
rative filtering is among the most widely used collaborative filtering tech-
niques.

In contrast to user-user collaborative filtering, where the rating similarities
between users are considered, item-item collaborative filtering focuses on
the rating similarities between items. The key thought is, if two items have
the same users rating them in a similar way then those items are considered
to be similar and it is expected that users have a similar preference towards
similar items.

As an example, imagine you wanted to find out if a particular book A is
interesting to you. You observe that people who have rated book A have
given a similar rating to two other books B and C that you have both read
and liked. Thus, you draw the conclusion that you will also like book A.

In a formal sense, this idea can be captured as follows: As with user-user
collaborative filtering, the goal is to predict the rating rui representing the
rating of a user u for an item i. Likewise, we consider the value sij reflecting
the similarity between items i and j. A value for sij is calculated between
item i and all of user u’s rated items j. Items of j with the highest similarity
to i, are denoted by the set Nu(i). That is, Nu(i) contains items rated by
u with highest similarity to i. With this set, a prediction for rui can be
determined [72]:

r̂ui =

∑
j∈Nu(i)

sijruj

∑
j∈Nu(i)

|sij|

Notably, in its basic form, item-item collaborative filtering does not pose
any significant advantage over user-user collaborative filtering. It is still
necessary to find the k nearest-neighbors which is an O(|I|) operation

9



2. Background

with |I| being the total number of items in the system. At systems with
|U| >> |I|, it allows us to find the k neareast-neighbors within a smaller
dimension, but this is only a minor gain.

The actual advantage of item-item collaborative filtering comes into play
when we are about to precompute similarities. The similarity sij between
two items i and j depends on which ratings these items got from users in
the system.

With a large enough user to item ratio, changes in a user’s ratings are
not going to dramatically change sij, especially if these items already have
plenty of ratings. Hence, precomputing these similarities in the form of a
similarity matrix is a reasonable task.

Even when users start to change their ratings, it is unlikely to immediately
have a significant negative impact on the recommendation quality. Addi-
tionally, after some time, the similarity matrix can easily be brought up to
date by recomputing it.

Similarity Measures

As described in the previous sections, it is necessary to calculate certain
similarities between objects in order to predict a value for the rating rui.
At user-user collaborative filtering, we are interested in similarities suv
between two users u and v whereas at item-item collaborative filtering
we are interested in similarities sij between two item i and j. Two of the
most commonly used similarity measures are Cosine Similarity and Pearson
Correlation.

Cosine Similarity Cosine Similarity (CS) takes a vector space approach
towards calculating the similarity between two objects. Consider two objects
a and b represented as two vectors ~a and ~b, then the cosine similarity cs
between these vectors is given as follows:

CS(a, b) =
~a • ~b
‖~a‖ ‖~b‖

10



2.1. Recommender systems

where~a •~b is the inner product between the two and ‖~a‖,‖~b‖ are the norms
of vectors a and b.

Within the scope of user-user collaborative filtering, a user u can be rep-
resented by a vector ~u ∈ R|I|, where ~ui = rui in the case that the user has
rated the item or 0 otherwise. Thus, the cosine similarity between two users
u and v can be determined as:

CS(u, v) =
~u • ~v
‖~u‖ ‖~v‖ =

∑
i∈I

ruirvi

√
∑
i∈I

r2
ui

√
∑
i∈I

r2
vi

In the case of item-item collaborative filtering, the same idea applies:

CS(i, j) =
~i • ~j
‖~i‖ ‖~j‖

=

∑
u∈U

ruiruj

√
∑

u∈U
r2

ui

√
∑

u∈U
r2

uj

Pearson Correlation Pearson Correlation (PC) determines the similarity
between two objects a and b by looking at their statistical correlation:

PC(a, b) =

n
∑

i=1
(ai − a)(bi − b)

√
n
∑

i=1
(ai − a)2

√
n
∑

i=1
(bi − b)2

where a = 1
n

n
∑

i=1
ai, and analogously for b.

For user-user collaborative filtering, where a user u is represented by his
rating vector ~u ∈ R|I|, the Pearson Correlation is given by:

PC(u, v) =
∑

i∈Iu∩Iv

(rui − ru)(rvi − rv)

√
∑

i∈Iu∩Iv

(rui − ru)2
√

∑
i∈Iu∩Iv

(rvi − rv)2
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2. Background

And analogously for item-item collaborative filtering:

PC(i, j) =

∑
u∈Ui∩Uj

(rui − ri)(ruj − rj)

√
∑

u∈Ui∩Uj

(rui − ri)2
√

∑
u∈Ui∩Uj

(ruj − rj)2

2.2. Information Retrieval

The main focus of information retrieval (IR) is to give users the possibility
to access information of their interest in an easy and efficient way. Of course,
this concept is not new and has been around for the last thousands of
years.

The old Greeks had already realized that the right storage, organization
and indexing of all their scrolls and books is vital to make future search
and retrieval possible. They went so far as to construct dedicated buildings
especially for this purpose, so called libraries. From that time onward,
libraries began to spread across all civilizations in the world, and nowadays,
a life without libraries is hard to imagine.

In a digitized world such as ours, the scope of IR goes way beyond just
libraries. Baeza-Yates et al. summarize this as follows:

“Information retrieval deals with the representation, storage, or-
ganization of, and access to information items such as documents,
Web pages, online catalogs, structured and semi-structured records,
multimedia objects. The representation and organization of the
information items should be such as provide the users with easy
access to information of their interest.” [17]

The main objective of an IR system is to retrieve all relevant documents with
regard to a user query while at the same time retrieving as few irrelevant
documents as possible. This circumstance is also known as the IR Problem
[17].
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2.2.1. IR Modeling

When it comes to modeling an IR system, a key part is contributed to the
definition of a ranking algorithm. The ranking algorithm is responsible for
calculating scores for documents, with respect to a certain query, and plays
a key role in the characterization of the model.

Formally, an IR model can be defined as follows [17]:

An IR model (IRM) is a quadruple

IRM = [D, Q, F, R(qi, dj)]

where

1. D is a set of logical views (or representations) of the documents in a
collection.

2. Q is a set of logical views (or representations) of the user information
needs.

3. F is a framework for modeling the representation of documents,
queries and their relationships.

4. R(qi, dj) is a ranking function that associates a real number to a query
representation qi ∈ Q and a document representation dj ∈ D.

Based on these parts, different models with different properties can be
created, such as the boolean model (Section 2.2.4), the vectors space model
(Section 2.2.5) or the probabilistic model (Section 2.2.6).

2.2.2. Representing Documents and Queries

As described in the previous section and illustrated in Figure 2.1, two main
parts of an IR model are the sets of documents D and queries Q and their
representation within the IR system. A basic way to represent documents
and queries is the so called bag of words approach.

In a classic IR model, documents are represented by keywords or so called
index terms. A keyword is a word or sequence of words in a document. Basi-
cally, any word in the document can serve as a keyword, and, in fact, search

13
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Q D

qi ∈ Q dj ∈ D

R(qi, dj)

Figure 2.1.: The characterization of an IR model. A collection of documents D and queries
Q, where representations of qi and dj are modeled according to a framework F.
The ranking function R(qi, dj) takes qi and dj as input and delivers a rank to
document dj with respect to query qi.

engine designers usually take this approach. In more special cases, carefully
selected word groups that best describe the topic of the document serve as
keywords. Such an approach is often chosen by information scientists or
librarians.

In any case, for each document dj, we can extract the set of keywords and
combine these sets in order to get the set of all distinct keywords across
the entire document collection. This set is commonly referred to as the
vocabulary of the collection and shall be denoted as V = k1, . . . , kt, where t
is the size of the vocabulary.

Let’s consider the keywords ka, kb, kc, kd are part of document dj. In this case
we say that the pattern [ka, kb, kc, kd] of term co-occurrence is present. With a
vocabulary V of size t there is a total of 2t different patterns of co-occurrence
possible for each document. As an example, the pattern (1, 0, . . . , 0) means
that only keyword k1 is present in the document but no other, whereas the
pattern (1, 1, . . . , 1) means that all keywords are present.

Each one of these 2t different patterns is referred to as a term conjunctive com-

14
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ponent [17]. A document dj can be associated with a unique term conjunctive
component c(dj), reflecting which keywords of the vocabulary occur in the
document and which do not.

The same mechanic can be applied to a query qi, where c(qi) reflects which
keywords of the vocabulary are present in the query and which are not.

With this approach, documents and queries are represented by their re-
spective term conjunctive components indicating presence or absence of
keywords. This simple representation is the idea behind the bag of words
approach mentioned at the beginning of this section.

2.2.3. Term-Document Matrix

The presence of a keyword in a document forms a relation between the two.
To quantify this relation, the frequency by which the keyword occurs in the
document can be considered. This relation can be expressed for all different
document-keyword pairs by a so called term-document matrix [17]

d1 . . . dn





k1 f11 . . . f1n
...

... . . . ...
kt ft1 . . . ftn

where each fij is the number of times the keyword ki appears in document
dj.

Capturing these frequencies provides more information than just recording
whether or not a keyword is present in a document.

2.2.4. Boolean Model

In the boolean retrieval model [40] keywords are assumed to be either
present or not present within documents. This implies that the correspond-
ing term-document matrix contains only cells with values of either 0 (key-
word is not present) or 1 (keyword is present one or more times).
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Queries are formulated by creating a boolean expression of keywords, that
is, logical operators such as AND, NOT and OR are used to combine the
keywords with each other.

As an example, consider the vocabulary V of the document collection to
be V = {k1, k2, k3} and the query of the user to be qi = (k1 ∧ k2) ∨ ¬k3.
With the query being a boolean expression, it is possible to rewrite it in its
disjunctive normal form (DNF). To do this, we can construct the truth table
corresponding to the query and directly extract the DNF from the table.

The DNF of query qi is further denoted as qiDNF. In our example, qiDNF =
(1, 1, 0) ∨ (1, 1, 1) ∨ (0, 1, 0) ∨ (1, 0, 0) ∨ (0, 0, 0) and the corresponding truth
table is shown in Table 2.1.

Table 2.1.: The truth table for the query qi.
k1 k2 k3 qi = (k1 ∧ k2) ∨ ¬k3
0 0 0 1

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 1

Let’s consider there is a document dj which contains the keywords k1, k2
but not k3. This fact can be expressed as a logical clause of (1, 1, 0) and is
equivalent to conjunctive component c(dj) of document dj. In this case, c(dj)
is part of qiDNF and thus document dj satisfies the query qi.

The similarity between a query qi and a document dj within this model is
given as

sim(dj, qi) =

{
1 : if c(dj) part of qiDNF
0 : otherwise

This means that documents are either relevant (if sim(dj, qi) = 1) or not
relevant (if sim(dj, qi) = 0) to a query. A measure for partial relevance is
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not supported in this model which often leads to a scenario where either
too few or too many documents are retrieved. This circumstance is one of
the main disadvantages of the boolean model. It’s main advantages are that
the model has a neat formalism and is simple to implement.

2.2.5. Vector Space Model

In the vector space model [69, 71], documents and queries are represented
as vectors in the t−dimensional space where t corresponds to the number
of keywords in the vocabulary V.

Each keyword ki is associated with an orthonormal unit vector ~ki in the
t−dimensional space. This means~ki contains all 0s except for one 1 corre-
sponding to the dimension that ki is mapped to. For example, consider a
5−dimensional space with a vocabulary of

V = {information, retrieval, word, system, context}

In this case, the keyword kin f ormation can be represented as a vector~kin f ormation =
(1, 0, 0, 0, 0). Here, the keyword is mapped to the first dimension, similarly,
the keyword kcontext could be mapped to the fourth dimension, yielding a
vector representation of~kcontext = (0, 0, 0, 1, 0).

A document dj or query q, containing several different keywords, can be
represented in the t−dimensional vector space as illustrated in Figure 2.2.
Formally, this idea can be captured as follows:

dj =
t=|V|
∑
i=1

kiwij ≡ ~dj = (w1j, w2j, . . . , wtj)

q =
t=|V|
∑
i=1

kiwiq ≡ ~qi = (w1q, w2q, . . . , wtq)

The elements wij and wiq are weights with wij, wiq ≥ 0 chosen under a
particular weighting scheme and are assigned to each keyword-document
pair (ki, dj) and keyword-query pair (ki, q) respectively.
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k1

k2

k3

~dj

Figure 2.2.: The document vector ~dj for document dj.

To get a measure for the degree of similarity between a document dj and a
query q, the vector space model correlates the vectors ~dj and ~q with each
other. The quantification of this correlation can be done, for example, by
taking the cosine of the angle between ~dj and ~q as indicated in Figure 2.3.

This method of quantification is also called cosine similarity and is defined
as:

simcos(dj, q) =
~dj • ~q
‖~dj‖ ‖~q‖

=
∑t=|V|

i=1 (wijwiq)√
∑t=|V|

i=1 w2
ij

√
∑t=|V|

i=1 w2
iq

where ~dj • ~q is the inner product between the document and query vector
and ‖~dj‖, ‖~q‖ are their respective vector norms. Note that since wij, wiq ≥ 0,
simcos(dj, q) takes only values from 0 to 1.

Furthermore, note that with this definition, the vector space model can rank
documents with respect to their degree of similarity to the query, meaning
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~dj

~q

θ

Figure 2.3.: The cosine of the angle θ between the document vector ~dj and query vector ~q is
used to calculate the cosine similarity.

that also documents can be retrieved which only partially match a query.
This is a major improvement over the boolean model.

Besides cosine similarity, there are various other similarity functions such
as Jaccard similarity [31] and Dice similarity [25].

Jaccard similarity compares the similarity and diversity of sets and is defined
as the size of the intersection between two sets divided by their union.
Consider Q to be the set of keywords in a query and D to be the set of all
keywords in a document, then the Jaccard similarity can be computed by:

simJac(D, Q) =
|D ∩ Q|
|D ∪ Q|

Dice similarity uses an analogue approach and is defined as:

simDice(D, Q) =
2|D ∩ Q|
|D + Q|

Weighting Schemes

Not only the choice of the similarity measure plays a role when i comes
to evaluating how relevant a document is to a query, but also the adopted
weighting scheme that is used to determine the weights wij and wiq. This is
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because different weights mean a different orientation of the vectors ~dj and
~q in the t−dimensional space.

The most popular weighting scheme in IR, and originally proposed by
Salton et al. [68], is called TF-IDF weighting. It is based on term frequency
(TF) and inverse document frequency (IDF) and defines the weight wij of a
keyword ki in a document dj as:

wij = t fij × id fi

where t fij is a measure for the frequency of ki in dj and id fi is a measure for
the inverse of the frequency of documents containing ki with regard to all
documents in the collection.

The t fij and id fi parts of above expression are also referred to as TF weights
and IDF weights and depending on how these weights are defined take
different values.

There is a variety of different ways how these weights can be defined, as,
for instance, discussed in [70].

A whole list of different TF and IDF has been compiled from literature and
is summarized in [17]. Some of these variants are listed in Table 2.2 and
Table 2.3 and are described below, starting with TF.

The binary weighting method uses either 1 or 0 as TF weight, i.e. if a
keyword ki occurs in document dj its TF weight is 1 and 0 otherwise. This
method is used in the boolean model for example (see Section 2.2.4). A
similar approach is taken by the raw frequency method. In this case the
count of how often the keyword occurs in the document is used as TF
weight. The log normalization method uses raw frequencies as base and
applies the logarithm on it. This ensures a decreasing weight gain as the raw
frequency grows. The double normalization 0.5 method ensures that weights
are normalized by the maximum frequency of a keyword in the document.
Additionally, it enforces that the weight takes only values between 0.5 and
1.

When it comes to IDF weighting schemes, the first method is the unary
method. This one uses the constant 1 as IDF weight which means that
IDF has no impact in TF-IDF weighting. The inverse frequency method is
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Table 2.2.: Variants of TF weighting.
Weighting Method TF Weight

binary 0, 1
raw frequency fij

log normalization 1 + log fij

double normalization 0.5 0.5 + 0.5
fij

maxi fij

Table 2.3.: IDF weighting methods where N is the total amount of documents in the
collection and ni is the number of documents that contain keyword ki.

Weighting Method IDF Weight
unary 1

inverse frequency log N
ni

inverse frequency smooth log
(

1 + N
ni

)

defined as the logarithm on the inverse of the fraction of documents in the
collection that contain the keyword ki. This is the standard IDF definition
and is derived from the observation that the word frequencies in a natural
language text follow a mathematical distribution, a circumstance that is also
knows as Zipf’s Law [81]. The inverse frequency smooth method works in a
similar fashion by adding the constant 1 to the fraction. This improves the
behavior of the function under extreme values of ni.

By combining different TF and IDF variants, different TF-IDF weighting
schemes can be obtained. Depending on the nature of the document collec-
tion, it can vary what the most appropriate weighting scheme is.

Table 2.4.: Recommended ways to determine TF-IDF weights for documents and queries.
Weighting Scheme Document TF-IDF weights Query TF-IDF weights

1 fij log2
N
ni

(
0.5 + 0.5

fiq
maxi fiq

)
log2

N
ni

2 1 + log2 fij log2

(
1 + N

ni

)

3
(
1 + log2 fij

)
log2

N
ni

(
1 + log2 fiq

)
log2

N
ni
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Salton analyzed different combinations of TF and IDF variants in [67] and
proposes some well working combinations as shown in Table 2.4.

2.2.6. Probabilistic Model

The probabilistic model [65] tries to solve the IR problem by following a
probabilistic approach in order to compute the similarity between docu-
ments and queries. Specifically, the similarity in this model is described as
the probability that a document dj is relevant to a query q.

The rationale behind this model has its roots in the uncertainty that is
involved when it comes to matching a user’s information need to the
contents of documents [47]. In an IR system, a user’s information need
is translated to a query and given as its query representation. Likewise,
documents are transformed to their document representations.

With these two representations, the system tries to figure out how well
documents match the user’s information need, however, doing so is a
process plagued by uncertainty. This is because given solely the query
representation of a query q, the system has only a vague understanding
of the true information need. Subsequently, the determination of relevance
between the contents of documents and the user’s information need can be
interpreted as the system performing a series of uncertain guesses.

With probability theory being well suited for domains where uncertainty is
involved, methods have been researched in order to estimate how likely it
is that a document dj is relevant to a query q. One way that originated from
such research expresses this likelihood as:

sim(dj, q) =
P(R|~dj, q)

P(R|~dj, q)

where R is a set of initially guessed documents which are considered
relevant to the user, R is the complement of R, ~dj is the vector representation
of document dj using binary weights which indicate absence or presence of
keywords in dj, P(R|~dj) is the probability that the document dj is relevant to
the query q, P(R|~dj, q) is the probability that the document dJ is not relevant
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to the query q, and sim(dj, q) is the similarity between document dj and
query q.

This formula is the starting point used to derive one of the key expressions
in the probabilistic model when it comes to ranking computation. How this
derivation works is illustrated in [17] and starts with applying Bayes’ rule
such that:

sim(dj, q) =
P(~dj|R, q)P(R|q)
P(~dj|R, q)P(R|q)

Since P(R|q) and P(R|q) are constant for all documents, this can be simpli-
fied to

sim(dj, q) =
P(~dj|R, q)

P(~dj|R, q)

where P(~dj|R, q) denotes the probability that a randomly selected document
of the set R with respect to query q has the representation dj and P(R|q)
denotes the probability that a randomly selected document of the set R is
relevant to q.

As we have mentioned above, the document representation of dj is a vector of
binary weights reflecting presence or absence of a keyword in the document.
Under the assumption that keywords are independent among each other
sim(dj, q) can be written as

sim(dj, q) =
(∏ki|wij=1 P(ki|R, q))(∏ki|wij=0 P(ki|R, q))

(∏ki|wij=1 P(ki|R, q))(∏ki|wij=0 P(ki|R, q))

Here, P(ki|R, q) denotes the probability that a randomly selected document
of the set R with respect to query q contains the keyword ki. Analogously,
P(ki|R, q) denotes the denotes the probability that a randomly selected
document of the set R with respect to query q does not contain the keyword
ki.

Because P(ki|R, q) + P(ki|R, q) = 1 and P(ki|R, q) + P(ki|R, q) = 1 another
rewrite step yields

sim(dj, q) =
(∏ki|wij=1 P(ki|R, q))(∏ki|wij=0(1− P(ki|R, q)))

(∏ki|wij=1 P(ki|R, q))(∏ki|wij=0(1− P(ki|R, q)))
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Table 2.5.: Contingency table where R is the number of documents relevant to a query q,
ri is the number of relevant documents that contain the keyword ki, N is the
number of document in the collection, ni is the number of document in the
collection that contain the keyword ki.

#relevant #not relevant #total
Documents containing ki ri ni − ri ni

Documents not containing ki R− ri N − ni − (R− ri) N − ni
All documents R N − R N

By applying the logarithm (which does not affect the ranking itself but only
the absolute rank values) and assuming that

∀ki 6∈ q, P(ki|R, q) = P(ki|R, q)

we can transform into

sim(dj, q) = ∑
ki∈dj∧ki∈q

log
P(ki|R, q)

1− P(ki|R, q)
+ log

1− P(ki|R, q)
P(ki|R, q)

This expression is a key expression in the probabilistic model when it comes
to ranking calculation.

One problem with this approach is that initially we do not know the set R
and therefore, we also can not directly calculate the probabilities P(ki|R, q)
and P(ki|R, q).

Robertson et al. [65] investigated various statistical approaches in order to
take advantage of relevance information during term weighting and came
up with a contingency table as shown in table 2.5.

Using this contingency table, we can reinterpret our formula from before
with

P(ki|R, q) =
ri

R
and

P(ki|R, q) =
ni − ri

N − R
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yielding

sim(dj, q) = ∑
ki∈dj∧ki∈q

log
ri(N − ni − R + ri)

(R− ri)(ni − ri)

In order to mitigate extreme conditions related to small values of ri a
constant value of 0.5 is added to each instance of ri resulting in

sim(dj, q) = ∑
ki∈dj∧ki∈q

log
(ri + 0.5)(N − ni − R + ri + 0.5)

(R− ri + 0.5)(ni − ri + 0.5)

Note, that to this point, we still do not know exact values for ri and R which
makes it impossible to compute an actual value for sim(dj, q). One way
around this is to assume ri = 0 and R = 0 leading to

sim(dj, q) = ∑
ki∈dj∧ki∈q

log
(N − ni + 0.5)

(ni + 0.5)
(2.1)

which is the formula used in the probabilistic model in order to do ranking
computation. Many experiments have been conducted using variations of
this formula and improvements have been discovered leading to the BM25

model which we discuss now.

BM25 Model

The BM25 model evolved out of experiments conducted on variations of the
ranking equation 2.1 in the probabilistic model as described in Section 2.2.6.
These experiments were driven by observations in the vector space model,
where good term weighting is determined by inverse document frequency
(IDF), term frequency (TF) and document length normalization. The ranking
equation 2.1, however, neither accounts for TF nor for document length
normalization.

The experiments mentioned above were conducted in conjunction with the
Okapi system [62, 63, 64]. At first, equation 2.1 was used as is, which was
referred to as BM1 (BM is short for Best Match).
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sim(dj, q)BM1 = ∑
ki∈dj∧ki∈q

log
(N − ni + 0.5)

(ni + 0.5)

As a first step of improvement, TF was introduced via a factor

Fij = S1
fij

K1 + fij

where fij is the frequency of keyword ki in document dj, K1 is a constant
chosen experimentally for the collection, and S1 is a scaling factor with
S1 = K1 + 1.

The same idea was followed in order to introduce TF to queries:

Fiq = S2
fiq

K2 + fiq

where fiq is the frequency of keyword ki in query q, K2 is a constant and S2
is a scaling factor with S2 = K2 + 1

As a next step, document length normalization was accounted for, yielding

F′ij = S1
fij

K1 L(dj)
α + fij

where L(dj) is the length of document dj, and α is the average document
length across the whole document collection.

Another proposal was to introduce a factor

Gjq = K3 L(q)
α− L(dj)

α + L(dj)

to account for document and query length, where L(q) is the length of the
query and K3 is a constant.

Adding these factors to the BM1 equation led to the development of other
BM variants such as BM11 and BM15 [17]:

sim(dj, q)BM11 = Gjq + ∑
ki∈dj∧ki∈q

F′ij Fiq log
(

N − ni + 0.5
ni + 0.5

)
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sim(dj, q)BM15 = Gjq + ∑
ki∈dj∧ki∈q

Fij Fiq log
(

N − ni + 0.5
ni + 0.5

)

Experiments in [66] reflect that the best value for K3 is 0 which eliminates
Giq from the equations above. Furthermore, they suggest that large values
for K2 work better for the scaling factor S2 with S2 = K2 + 1, thus Fiq is
simplified to fiq.

With these insights the BM11 and BM15 ranking equation can be simplified
to

sim(dj, q)BM11 = ∑
ki∈dj∧ki∈q

fij(K1 + 1)
K1 + fij

log
(

N − ni + 0.5
ni + 0.5

)

sim(dj, q)BM15 = ∑
ki∈dj∧ki∈q

fij(K1 + 1)
K1 L(dj)

α + fij

log
(

N − ni + 0.5
ni + 0.5

)

These equations are the ones used in practice when it comes to ranking
computation in conjunction with the BM11 and BM15 model. In general the
BM11 model outperforms the BM15 model which can be explained by the
lack of document length normalization of the BM15 model.

The BM25 model combines the ranking equations of BM11 and BM15 via

sim(dj, q)BM25 = ∑
ki∈dj∧ki∈q

fij(K1 + 1)

K1

[
(1− b) + b

L(dj)
α

]
+ fij

log
(

N − ni + 0.5
ni + 0.5

)

where the newly added value b is a constant taking values in the closed
interval [0, 1]. With b = 1 the equation transforms into standard BM11

whereas with b = 0 it transforms into standard BM15. For all other cases it
transforms into a combination of BM11 and BM15.

Empirical evidence shows that K1 = 1 [66] and b = 0.75 [64] work well with
real collections. Experimenting with these parameters under a particular
collection and tuning them can increase the performance even further.

Nowadays, BM25 is thought to yield even better results than the classic
vector space model and serves as a baseline for evaluating new ranking
approaches [17].
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2.2.7. Textual IR

A textual IR system deals with documents and queries, both expressed in
natural language [22]. The typical retrieval process for this kind of system
is illustrated in Figure 2.4 and can be summarized as follows:

query

query transformation

system query

retrieval process

ranking process

show results

Figure 2.4.: Typical IR process.

1. In a first step, the user formulates a textual query Qusr (usually a set
of keywords) as a representation of his information need and passes it
to the user interface of the IR system.

2. Then, the query Qusr is processed by the system. That is, the system
parses the query and translates it into a new query Q̃usr, by applying
textual operations on it.
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3. In a final transformation step, the query Q̃usr is adapted in a way
such that it can be executed on the system, thus, yielding a system
representation of the query denoted as Qsys.

4. In this step, the IR system runs the query Qsys on top of the document
collection D and returns a set of relevant documents R. In order to
achieve good performance, a previously created index I is used for
this task. The index I is a special data structure that consist of all
documents in the document corpus.

5. Next, all the documents in R are sorted according to their rank, where
the rank of a document expresses how relevant it is to the query.

6. Finally, the sorted List of documents in R is shown to the user. By
manually marking documents as ”definitely of interest”, the user can
give feedback to the system.

A closer look at indexing and textual operations is presented in the next
sections.

2.2.8. Indexing

Searching through all the documents in the collection every time a query is
performed in order to generate results is an inefficient and sometimes even
impossible solution. Imagine your document collection consists of billions of
entries. Scanning through all of them would take an unacceptable amount
of time. Therefore, a special data structure is needed which allows rapid
query processing. Such a data structure is called index.

The index is a representation of all documents in the collection by a set
of keywords. In general, the keywords of a document are any words in
the document, in a more restrictive environment, however, the keywords
are those words that best describe the core concept of the document. This
method is commonly chosen by librarians or information scientists.

As already discussed in Section 2.2.2, the vocabulary V is the set of all
distinct keywords of the whole document collection:

V = (k1, k2, k3, ..., kn)
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In its simplest form, a term-document matrix as discussed in Section 2.2.3
can be used to fulfill the role of an index. Using such a matrix offers a very
fast way to determine, whether or not a keyword ki exists in a document
dj.

A problem that comes along with this approach is that the size of the matrix
is proportional to the number of documents in the collection multiplied by
the number of keywords in the vocabulary. Additionally, the matrix is very
sparse. This is because each document only contains few distinct keywords
in relation to the size of the vocabulary.

A way to circumvent this problem is to use a so called inverted index. An
inverted index associates each keyword ki of the vocabulary V with a list
Li. The list Li comprises all documents containing ki. Optionally, Li can also
hold information about how often ki occurred in the document. Figure 2.5
shows the relation between the term-document matrix and the inverted
index.

Vocabulary Documents
d1 d2 d3 d4 d5

search 3 1

retrieval 4 1 2

set 3 3

is 2 3 2 1 4

data 3

index 3 3

the 2

do 5 2 4 3

to 3 1

term 1 1

Vocabulary Occurrences

search [1,3],[3,1]
retrieval [1,4],[3,1],[5,2]
set [2,3],[4,3]
is [1,2],[2,3],[3,2],[4,1],[5,4]
data [3,3]
index [1,3],[5,3]
the [2,2]
do [1,5],[2,2],[3,4],[4,3]
to [1,3],[5,1]
term [2,1],[4,1]

Figure 2.5.: On the left hand side: The term-document matrix for an exemplary document
collection and its vocabulary. Each cell contains the frequency of the keyword in
the document. Empty cells indicate absence of the keyword in the document. On
the right hand side: The corresponding inverted index consisting of lists whose
entries reflect the document containing the keyword and the corresponding
frequency.

When it comes to retrieval efficiency, inverted indexes are hardly rivaled as
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the reduce storage requirements. The size of an inverted index is propor-
tional to occurrences of words in documents which is notably smaller than
the size of the text.

Operations on Text

Considering the textual content of a document, it is noticeable that not every
word carries the same amount of information. For instance, high frequency
words such as conjunctions and prepositions only play an insignificant role
when it comes to describing the semantic of a document. Additionally, these
types of words appear many times across all documents, thus, providing
only minor discriminative power.

In contrast, nouns are typically the words which carry the highest amount
of information. Moreover, nouns potentially have high discriminative power.
This is because some nouns only appear in certain contexts which are only
relevant for specific documents. For example, think of a special technical
term, that only appears in documents related to a particular technology.

These observations are taken into account when an index is created. Two
properties that an index should fulfill are exhaustiveness and specificity [22].
Exhaustiveness describes the property where sufficiently many terms should
be chosen to describe a document. Specificity means that generic words
should be excluded as they only carry little information and only inflate the
size of the index.

Figure 2.6 shows different text processing phases in an IR system entered
when a document is indexed. What theses phases are responsible for is
discussed in [22] and is summarized below.

Parsing During this phase so called unit documents are created where
the structure of the documents is broken down into individual com-
ponents. For instance, an email with attachments is split up into a
document representing the email and as many documents as there are
attachments.

Lexical Analysis During this phase, documents are tokenized into words.
Difficulties of this task involve the correct recognition of different
time and date formats, abbreviations, accents, cases, diacritics and
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Document
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Figure 2.6.: Text processing steps in an IR system.

so on. Depending on different, language properties this can be an
increasingly difficult task.

Stop-Word Removal During this phase, stop-words are removed from
the previously tokenized documents. Stop-words are high frequency
words that do not bear a lot of information such as conjunctions and
prepositions. A possible problem induced by this phase is that the
recall of the system may be decreased. Because of this, search engines
usually do not remove stop-words [47].

Phrase Detection This phase tries to identify noun groups or other phrases.
For instance, for a sentence like ”An information retrieval system tries
to help users find information” the noun group ”information retrieval”
should be identified.
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2.2. Information Retrieval

Stemming and Lemmatization The purpose of this phase is to normalize
words by reducing them to their word stem. Stemming, in particular,
tries to do this by cutting off word ends in the hope that the resulting
word is reduced correctly. A classic algorithm following this approach
is known as Porter stemmer [51].
Lemmatization tries to reduce words to their stem by using dictionaries
and morphological analysis.

Weighting This phase deals with the weighting of keywords. As already
mentioned at the beginning of this section, different words have differ-
ent discriminative power. To account for this, keywords are weighted
differently in order to reflect their significance within a document or
document collection.
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Within the scope of this thesis, we design and implement a recommender
system capable of generating literature suggestions on the fly for a pending
citation. A pending citation in this context refers to the scenario where
someone who is writing a scientific paper is about to cite a passage of text
with a source. In this situation, either the writer already knows the proper
source to cite and is done or she has to perform a literature search in order
to find out.

This is where the idea behind creating such a recommender system ties in:
Instead of having the writer perform a time consuming literature search,
our goal is to have a recommender system available to suggest a correct
source to cite on request. In order to realize such a system, we define
several requirements which we deem necessary to be met for the successful
implementation and operation of such a system:

Data Set The availability of a data set is the most fundamental requirement
for our system. This is because no recommendations can be computed
if there is no data. Furthermore, having a data set turns out quite
useful when it comes to evaluating the performance of the system.
Section 3.1 discusses the data set that we end up using for our system.

Responsiveness Our system has to have a low response time when recom-
mendations are requested. Otherwise, it would not be very convenient
to use such a system in practice, especially when recommendations
are requested at a high frequency. In Section 3.2, we describe how we
meet this requirement by creating an index.

Accurate Recommendations If the requested recommendations are not ac-
curate, the resulting system is not of much use. To tackle this problem,
we take advantage of well researched techniques within the field of
information retrieval. See Section 3.3 for details about that.
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3.1. The Data Set

For our recommender system, we use a data set obtained from the Pubmed
Central Open Access Subset. Pubmed Central (PMC) is an archive at the U.S.
National Institutes of Health’s National Library of Medicine (NIH/NLM).
This archive provides free full-text journal literature of biomedical and life
sciences [54].

The PMC Open Access Subset contains a subset of articles available in PMC.
Articles within this subset are made available under a Creative Commons
or similar license. This allows more liberal redistribution and reuse of the
articles compared to a collection with more traditional copyright in place.
As of 2015, over 1 million articles are available in this collection [56].

Every article in the PMC Open Access Subset is available in two file formats.
These formats are XML and PDF. Supplementary pieces of data such as
image files, background research data, mathematical equations or videos
are included as well. XML files are structured according to the NLM/JATS
DTD [36]. This ensures a well defined structure across all articles.

Access to the articles in the PMC Open Access Subset is provided by the
PMC FTP Service [55]. The base URL to access this service is ftp://ftp.

ncbi.nlm.nih.gov/pub/pmc. We used this service to download all avail-
able articles, in particular, the archives named Articles.A-B.tar.gz, Articles.C-
H.tar.gz, Articles.I-N.tar.gz and Articles.O-Z.tar.gz are acquired. These archives,
when extracted, yield the desired articles and serve as a foundation for our
data set.

3.2. Indexing

In order to efficiently access information contained in our data set, we utilize
a special data structure known as index. The main benefits offered by this
structure are great size reduction and rapid data access as already discussed
in Section 2.2.8.
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3.2. Indexing

To build such an index, we use a software library known as Apache Lucene
[76]. Apache Lucene is a Java-based cross platform programming library
offering a solution to scalable, high-performance indexing. Other noteworthy
features of Lucene involve:

• ranked searching where best results are returned at first
• various supported query types such as phrase queries, wildcard

queries, proximity queries, range queries and more
• fielded searching (e.g. title, author, contents)
• sorting by any field
• various ranking models, including the Vector Space Model and BM25

Recall Figure 2.6 in Section 2.2.8 where we show that a document (or in this
context, an article) typically undergoes several text processing steps before
it is indexed. The first step is concerned with parsing the document, which
is a step we perform as well. The reason why we do this, is to convert our
articles to our own well defined XML structure. This allows us to access the
information we need more easily during later tasks.

For the parsing procedure, we use a tool specifically developed for parsing
Pubmed articles [19]. This tool parses the articles and saves the contained
data to a database. Via a separate feature of this tool, it is possible to
export the parsed data into a set of three XML files named Articles.XML,
ExtendedArticles.XML and Citations.XML. The structure of these XML files is
described in [19] and summarized below:

The Articles.XML file contains metadata about every parsed article. These
metadata are associated with the following properties:

• ID: A unique number that the article can be identified by
• Title: The title of the article
• Authors: The authors that contributed to the article
• Publication date: The publication date (year, month, day) of the article

The corresponding Document Type Definition (DTD) is given as:

1 < !ELEMENT a r t i c l e s ( a r t i c l e ∗ )>
< !ELEMENT a r t i c l e ( a r t i c l e I d , t i t l e , pubDate , authors )>

3 < !ELEMENT a r t i c l e I d (#PCDATA)>
< !ELEMENT t i t l e (#PCDATA)>

5 < !ELEMENT pubDate ( year , month , day )>
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< !ELEMENT year (#PCDATA)>
7 < !ELEMENT month (#PCDATA)>

< !ELEMENT day (#PCDATA)>
9 < !ELEMENT authors ( author ∗ )>

< !ELEMENT author ( f irs tname , lastname )>
11 < !ELEMENT firs tname (#PCDATA)>

< !ELEMENT lastname (#PCDATA)>

The ExtendedArticles.XML file contains additional information about every
parsed article such as abstract or body. This is reflected via the following
properties:

• ID: A unique number that the article can be identified by (this number
matches the ID in Articles.XML if the information belongs to the same)
• Keywords: The keywords associated with the article
• Abstract: Full text of the abstract of the article
• Body: Full text of the content of the article
• References: Other articles referenced in this article. The referenced

articles are given by ID.

The corresponding DTD is given as:

< !ELEMENT extendedArt i c les ( ex tendedArt ic le ∗ )>
2 < !ELEMENT extendedArt ic le ( a r t i c l e I d , keywords , a b s t r a c t ,

a r t i c l e B o d y ? , r e f e r e n c e s )>
< !ELEMENT a r t i c l e I d (#PCDATA)>

4 < !ELEMENT keywords (kwd∗ )>
< !ELEMENT kwd (#PCDATA)>

6 < !ELEMENT a b s t r a c t (#PCDATA)>
< !ELEMENT a r t i c l e B o d y (#PCDATA)>

8 < !ELEMENT r e f e r e n c e s ( r e f e r e n c e d A r t i c l e I d ∗ )>
< !ELEMENT r e f e r e n c e d A r t i c l e I d (#PCDATA)>

The Citations.XML file contains each and every citation present within any
parsed article. The following properties are associated with each citation:

• Source article: The ID of the source article. This is the article where
the citation occurred in
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• Referenced article: The ID of the article that is referenced by the
citation
• Context: Full text of the paragraph that the citation occurred in
• Section: Section that the citation occurred in

The corresponding DTD is give as:

1 < !ELEMENT c i t a t i o n s ( c i t a t i o n ∗ )>
< !ELEMENT c i t a t i o n ( s o u r c e A r t i c l e I d , r e f e r e n c e d A r t i c l e I d , context ,

s e c t i o n )>
3 < !ELEMENT s o u r c e A r t i c l e I d (#PCDATA)>
< !ELEMENT r e f e r e n c e d A r t i c l e I d (#PCDATA)>

5 < !ELEMENT contex t (#PCDATA)>
< !ELEMENT s e c t i o n ( sect ionType ? , s e c t i o n T i t l e , s e c t i o n ? )>

7 < !ELEMENT sect ionType (#PCDATA)>
< !ELEMENT s e c t i o n T i t l e (#PCDATA)>

Over the course of approximately one month, we were able to parse 152456
articles with the tool mentioned above. The parsed data has been saved
to a database and was subsequently exported to the files Articles.XML,
ExtendedArticles.XML and Citations.XML.

With these files at hand, we can begin to plan some basic characteristics of
our index. Within the context of Apache Lucene, objects called Documents
are the central units of indexing and search and are defined as follows:

“Documents are the unit of indexing and search. A Document
is a set of fields. Each field has a name and a textual value.
A field may be stored with the document, in which case it is
returned with search hits on the document. Thus each docu-
ment should typically contain one or more stored fields which
uniquely identify it.”[6]

Furthermore, Fields are defined as follows:

“ A field is a section of a Document. Each field has three parts:
name, type and value. Values may be text (String, Reader or pre-
analyzed TokenStream), binary (byte[]), or numeric (a Number).
Fields are optionally stored in the index, so that they may be
returned with hits on the document.”[8]
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With this information in mind, we plan the following fields to be available
in our index:

• ArticleID: Stores the unique identifier of an article
• Title: Stores the title of an article
• Authors: Stores the list of authors on an article
• Publication Day: Stores the day of the publication of an article
• Publication Month: Stores the month of the publication of an article
• Publication Year: Stores the year of the publication of an article
• Abstract: Stores the full text of the abstract of an article
• Body: Stores the full text content of an article
• Keywords: Stores the keywords of an article
• References: Stores the references of an article

This structure essentially combines the information available in the files
Articles.XML and ExtendedArticles.XML and, in conjunction with an index,
allows us to access it in a fraction of time.

3.3. Recommendation Generation

In order to compute literature recommendations for a pending citation, we
take advantage of well researched techniques within the field of information
retrieval. In particular, we use the vector space model (see Section 2.2.5) and
the BM25 model (see Section 2.2.6) in conjunction with our index to find
the most suitable literature to a pending citation. The way we do this can be
summarized by the following steps:

1. In the first step, we determine a citation context for the pending citation.
This is done under the consideration of various aspects as illustrated
in Table 3.1.

2. In the second step, the citation context is used to formulate a query. The
index subsequently processes this query and performs an information
retrieval task. As a result, the index provides a set of documents. These
documents are ranked according to a score, where documents with a
high score are on top. The score reflects how relevant a document is
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with respect to the query, that is, a high score signifies high relevance
and vice versa.

3. In the third and last step, a subset, consisting of the top n highest
scored documents, is returned as result and presented to the user. The
value of n should not be chosen to be too large as returning too many
documents would make it difficult for the user to find the best match
(the more documents are returned the more documents the user has
to go through and decide if it is a good match or not).

How these steps are implemented in detail, is discussed in the next chapter.

Table 3.1.: Aspects of Citation Contexts
Option Example Setting Remark

Length 30, 50, 100, etc. Determines how many words
the citation context comprises.

Preprocessing
Stop word removal,
stemming,
lemmatization, etc.

Which Preprocessing steps
(if any) to perform on the
citation context.

Scope

before citation,
after citation,
before and after
citation, etc.

Determines which words
to consider for the citation
context. E.g.: Only words
after the citation, only
words before the citation,
words before and after
the citation, ...
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In this chapter, we provide a closer look on the implementation side of the
recommender system we develop within the scope of this thesis. A general
description of the system is already covered in chapter 3. Here, we discuss
more specific information such as software versions, parameter choices,
query types, algorithms, etc..

4.1. Programming Language and Frameworks

In Section 3.2 we mentioned that we use the Apache Lucene programming
library for tasks like indexing and recommendation generation. Since this
library is written purely in Java, we choose to implement our recommender
system in Java as well. In particular, Java version 1.8 is our version of choice.
For Apache Lucene we use version 6.5.0 which is the latest version available
at the time when we start with the implementation of the system.

In Section 3.2, we also mention that in order to parse the articles of the data
set, a special tool is used which requires the availability of a database. To
meet this requirement, we installed a MariaDB [48] in version 10.0.28, which
is the latest version of this database at the time we start with the parsing
procedure.

For the creation of a graphical user interface (GUI) we use Qt Jambi [57].
Qt Jambi is a Java binding of the Qt [78] framework. As Qt is a cross-
platform framework, it allows us to run the GUI of our system on a variety
of platforms such as Windows, Linux and Mac. Qt Jambi comes with
additional software such as Qt Designer. Qt Designer allows users to design
and build GUIs using Qt Widgets as illustrated in Figure 4.1. These GUIs,
when saved, are stored as XML files and are handed over to the Java User
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Figure 4.1.: Designing our system interface in Qt Designer.

Interface Compiler (JUIC). This program is responsible for converting the
XML files to the corresponding Java source files.

4.2. Indexing

In this section, we take a closer look at the field definitions discussed in
Section 3.2 as well as the exact procedure of adding documents to the
index.

Let’s recall the required parts of an Apache Lucene field from Section 3.2:

“[...] Each field has three parts: name, type and value. Values
may be text (String, Reader or pre-analyzed TokenStream), binary
(byte[]), or numeric (a Number). [...]“
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How we meet these requirements for our predefined fields is illustrated in
the overview provided by Table 4.1. When it comes to defining an index in

Table 4.1.: Field properties of the index.
Fields

Name Type Value Store in Index
ArticleID IntField Numeric YES
Title TextField String YES
Authors TextField String YES
Publication Day IntField Numeric YES
Publication Month IntField Numeric YES
Publication Year IntField Numeric YES
Abstract TextField String YES
Body TextField String YES
Keywords TextField String YES
References TextField String YES

Apache Lucene, not only the structure of the index has to be considered but
also the so called Analyzer [6] that is used.

The role of the analyzer is to analyze every input prior to indexing and, if
necessary, transform or even remove that input. A common transformation
is to automatically transform everything to lower case letters. This has the
advantage that there can not be any duplicated words only distinguished
by the case of their letters.

Another useful transformation is to perform stemming on each word which
further prevents the index from having redundant entries. A case where the
complete removal of a word can be useful is when said word is a stop-word.
These and other transformations are discussed in Section 2.2.8.

Apache Lucene comes with various predefined analyzers for different lan-
guages and purposes. The analyzer we use in our system is the standard En-
glishAnalyzer [7]. According to its implementation, it automatically removes
stop-words and performs stemming using the Porter stemmer algorithm
[51]. Additionally, everything is transformed to lower case and possessives
(trailing ’s) are removed from all words.
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From a programming point of view, we can divide our indexing procedure
into the following steps.

1. At the beginning, we create an Apache Lucene IndexWriter [10] object
and configure it to use the EnglishAnalyzer as its default analyzer. The
purpose of the IndexWriter is to maintain and create an index. It takes
Apache Lucene Document objects as input, processes them and adds
them to the index.

2. After that, we iterate over all articles contained in Articles.XML and
ExtendedArticles.XML and create Apache Lucene Document objects
along the way. All these Document objects are provided with the field
definitions listed in Table 4.1 and all fields are initialized with the
corresponding information contained in Articles.XML and ExtendedAr-
ticles.XML.

3. Finally, each Apache Lucene Document object is passed to the In-
dexWriter object. This causes the Document objects to be added to the
index.

In order to make the field initialization during step 2 as easy as possible,
we use the Java Architecture for XML Binding (JAXB) framework [77]. This
framework provides a way to establish a mapping between XML documents
and Java classes.

In our case, the idea is to access information contained in Articles.XML and
ExtendedArticles.XML via simple operations on Java classes. A useful tool
provided by this framework is the JAXB Binding Compiler (XJC). This tool
is capable of translating XML schemas or Document Type Definitions (DTD)
to fully annotated Java classes.

We take advantage of this feature by compiling the underlying DTDs of
Articles.XML and ExtendedArticles.XML into their corresponding Java classes
(refer to Section 3.2 on how these DTDs are composed).

With these classes in place, a so called Unmarshaller, provided by the JAXB
framework, is used to read the contents of the XML files at run-time and
automatically instantiate the necessary classes providing access to the avail-
able information. From that moment on, everything contained in the XML
files can be accessed in an object oriented way.
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To further clarify all the steps taken over the course of the index creation,
refer to the pseudocode provided by Algorithm 1.

Algorithm 1: Index creation
Input: Articles.XML file fa, ExtendedArticles.XML fe

1: Set A← new EnglishAnalyzer()
2: Set W ← new IndexWriter(A)
3: Set U ← new Unmarshaller( fa, fe)
4: while U.hasNext() do
5: Set R← U.next()
6: Set D ← new Document()
7: foreach Field f specified in Table 4.1 do
8: Set n← Name of Field f
9: Set v← R.getValueForField(n)

10: Set F ← new Field(n, v)
11: D.add(F)
12: end
13: W.addDocument(D)
14: end
15: W.commit()

4.3. Recommendation Generation

In Section 3.3, we mentioned that we use the citation context of a pending
citation to formulate a query. This query is then handed over to the index
who processes the query and performs an information retrieval task in order
to return the top n ranked articles. In our system we choose the citation
context to consist of the whole sentence of where the citation should be
placed. The default value for n in our system is 10, however, this value can
also be adjusted at run-time by the user. Figure 4.2 shows a screen shot of
the main view of our system.
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Figure 4.2.: The main view of our system prototype. Via the controls on the left, users
can switch between different query types used during the recommendation
process of the system. Additionally, different query parameters can be supplied
and the scoring model can be chosen. The middle part comprises the input
area. This area is where users write their text and where they can request
recommendations for a citation they want to make. The area on the right side
shows the retrieved recommendations as well as some debug information.

4.3.1. Query Formulation and Document Retrieval

As soon as we have determined the citation context, we begin with the
query formulation task. To complete this task, we make use of the classic
Apache Lucene QueryParser [13] object. The purpose of this object is to take
a query string as input and return an Apache Lucene Query [12] object. The
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Algorithm 2: Query formulation and document retrieval
Input: Citation context C
Result: Documents D most relevant to ctx

1: Set A← new EnglishAnalyzer()
2: Set QP← new QueryParser(A)
3: Set Q← QP.parse(ctx)
4: Set S← new IndexSearcher()
5: Set Z ← Similarity.BM25 (or any other supported model)
6: S.setSimilarity(Z)
7: Set D ← S.search(Q)
8: return D

query object is then passed to an Apache Lucene IndexSearcher [9] instance
which performs the actual document retrieval.

Thanks to Apache Lucene’s support for pluggable ranking models, it is
possible to specify the model to use for this retrieval at run-time. Among
the natively supported models in Apache Lucene there is the vector space
model (covered in Section 2.2.5) and the BM25 model (covered in Section
2.2.6). After the IndexSearcher has done its job, the retrieved documents
with the highest rank are shown to the user.

One important aspect when it comes to using the QueryParser object is
that we also have to provide an analyzer to the constructor of the object.
Recall the analyzer used Section 4.2 for creating the index. We use the same
analyzer (which is the EnglishAnalyzer) here in order to stay consistent.
The reason behind this is because otherwise keywords in the query would
potentially undergo different transformations than keywords in the index;
and this would most certainly have a negative impact on the retrieval
performance.

To further clarify all these steps, refer to the pseudocode provided by
Algorithm 2.
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This chapter is concerned with the experiments we conduct in order to
measure the performance of our system. Within our experiments, we tweak
various parameters related to the retrieval of documents and then use these
settings to gather a set of documents D returned by the index after executing
a query q. How we accomplish this, what parameters we tweak, and what
the results are is explained in the following sections.

5.1. Experiments

For all of our experiments we make use of the Citations.XML file described
in Section 3.2. This file contains every citation made within all articles in our
index as well as the corresponding citation contexts. Having this information
allows us to take the following approach:

1. At first, we open the Citations.XML file and iterate over every citation
available. For each citation, we are interested in the corresponding ci-
tation context, the ID of the source article, and the ID of the referenced
article.

2. Once we have this information, we formulate a query based on the
citation context and gather results using a similar method as to what
is shown in Algorithm 2. During this step, we also tweak various
parameters such as which query type to use or under which scoring
model the ranking should take place.

3. After we gather the results, we use a common evaluation metric for
information retrieval systems to measure the performance.

The pseudocode provided by Algorithm 3 gives an idea how the approach
taken above is realized within our system. On Line 11 of the algorithm, all
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Algorithm 3: Run experiment and gather result
Input: Citations.XML file fc, QueryFormulationStrategy T,

Similarity Z
Data: Citation C
Result: List L containing Lists of documents D

1: Set U ← new Unmarshaller( fc)
2: Set A← new EnglishAnalyzer()
3: Set QP← new QueryParser(A)
4: Set S← new IndexSearcher()
5: S.setSimilarity(Z)
6: Set L← {}
7: while U.hasNext() do
8: Set C ← U.next()
9: Set ctx ← C.getCitationContext()

10: Set Q← QP.parse(ctx)
11: Set KQ ← Q.getKeywords()
12: Set Q1← T. f ormulateQuery(KQ)
13: Set D ← S.search(Q1)
14: L.add([D, C])
15: end
16: return L

keywords contained in the parsed query are extracted. On Line 12, a new
query is created from these keywords using the QueryFormulationStrategy
object passed as an argument to the algorithm. The role of this object is to
build a query of a particular type and with particular parameters. Also, note
the argument Z being passed to the algorithm. This argument determines
the scoring model according to which the articles should be ranked.

Table 5.1 lists the different combinations of query types, parameters, and
models that we run our experiments with.

All of our test are conducted under the BM25 model as well as the vector
space model. Regarding the BM25 model, we use the parameters b = 0.75
and K1 = 1.2 (see Section 2.2.6 about the BM25 model to find the purpose
of these parameters). These are the default values in Apache Lucene’s BM25
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Table 5.1.: Query formulation strategies and models.

Query type Parameters Modeln-grams Slop
TermQuery - - BM25, vector space
PhraseQuery 2,3,4,5 - BM25, vector space
SpanOrQuery - 10,25,50 BM25, vector space

implementation [2].

When it comes to TF-IDF weighting under the vector space model (see
Section 2.2.5), we use the default implementation provided by Apache
Lucene’s ClassicSimilarity class [5], that is, the document TF weight t fij for a
term ki in a document dj is determined by

t fij =
√

fij

where fij represents the number of occurrences of term ki in document dj.
As a query TF weight, a constant 1 is used. The IDF weight id fi for a term
ki contained in a document or query, is determined by

id fi = 1 + log
(

N + 1
ni + 1

)

where N is the total number of documents in the index and ni is the number
of documents containing the term ki. When it comes to length normalization,
the adopted strategy is to normalize via a factor of

lengthNorm =
1√

number of terms

The different query types we use are provided by Apache Lucene and
comprise TermQuery [16], SpanOrQuery [15] and PhraseQuery [11]. We
use these queries in combination with different parameters as described
below:

TermQuery This query type matches documents containing the term asso-
ciated with the query. This is the simplest form of query. In our tests,
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we extract all terms from the citation context, create a TermQuery
instance for each one, and combine them to a BooleanQuery [3] via
OR-conjunctions. Using OR-conjunctions allows us to link multiple
terms and find a matching document if any of the terms exist in the
document.

PhraseQuery This query type matches documents containing a particular
sequence of terms, e.g. for the term sequence ”information retrieval
system” only documents containing this exact sequence are matched.
With the n-grams parameter, we specify how long these term sequences
should be, e.g. a value of 2 means that we form sequences of length 2.
In our tests, we extract word sequences from the citation context and
combine them via OR-conjunctions to form a BooleanQuery.

SpanOrQuery With this query, we combine multiple SpanNearQuery [14]
instances via OR-conjunctions. A SpanNearQuery is used to match
documents where terms occur within a certain distance of each other.
The slop parameter is used to specify this distance. In our tests, we
extract the terms from the citation context and set them up as Span-
NearQuery instances. These are then combined to a SpanOrQuery
[15].

5.2. Results

The main performance metric we use to evaluate the results gathered
through our experiments is known as mean reciprocal rank (MRR) [79]. The
reciprocal rank of a query response is defined by the reciprocal value of the
rank of the first correct answer as illustrated in Table 5.2.

Table 5.2.: Reciprocal rank calculation illustrated on a set of exemplary queries and their
query responses.

Query Query response Answer Rank Recipr. rank
search engine, algorithm, term engine 1 1

retrieval system, model, algorithm model 2 1/2

system id, details, evaluation evaluation 3 1/3
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Algorithm 4: Reciprocal rank calculation
Input: List of Document objects D, Citation object C
Result: The reciprocal rank RR

1: Set RR← 0
2: Set r ← 0
3: Set i← 1
4: for d in D do
5: Set DID ← d.getID()
6: Set CID ← C.getRe f erencedArticleId()
7: if DID == CID then
8: Set r ← i
9: break

10: end
11: Set i← i + 1
12: end
13: if r 6= 0 then
14: Set RR← 1/r
15: end
16: return RR

Given this definition, the MRR can be introduced as the average over all
reciprocal ranks for a set of queries Q. Formally, this means:

MRR =
1
|Q| ∑

q∈Q
RR(q)

where RR(q) refers to the reciprocal rank associated with query q and |Q|
is the total number of queries.

Typically, the MRR is used when we are interested in the first correct answer
to a query [17]. A good example for where this makes sense are web queries
where the users specify a reference to a website and are interested in the
first correct answer. Another example would be question answering systems
whose goal is to provide a correct answer to a question (instead of a ranked
answer set). But, also our task of finding a correct source to a pending
citation can be placed in this category, as we are interested in the first
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correct source. Since the MRR is a metric that favors results where the
correct answer is highly ranked, it is well suited for these cases and is why
we choose it for our evaluation.

Algorithm 5: Mean reciprocal rank calculation
Input: List of experimental results L
Data: IndexReader X
Result: The mean reciprocal rank MRR

1: Set MRR← 0
2: for l in L do
3: Set D ← l.getDocuments()
4: Set C ← l.getCitation()
5: if (X.getDocument(C.getRe f erencedArticleId()) then
6: Set MRR← MRR + RR(D, C)
7: end
8: end
9: if L.size() > 0 then

10: Set MRR← MRR/L.size()
11: end
12: return MRR

Recall the list L we compute with Algorithm 2. This list comprises elements
for each query, containing the query response (the list of document objects
D in the algorithm) and the correct answer (the citation object C in the
algorithm). Every document d in D has a unique ID and is sorted according
to its score. Every citation object C has a property named referencedArticleId.
Thus, the reciprocal rank can be calculated as shown in Algorithm 4.

Calling this algorithm on each element in L and dividing by |L| after
summing up all the results yields the desired MRR. This procedure is also
shown in Algorithm 5.

Note that not every article that a citation expects is available in our data set.
In this case, the reciprocal rank calculation is simply skipped as reflected
by line 5 in Algorithm 5. Overall, for 106671 citations, the corresponding
article is in our data set.
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Also, regarding the size of the list of documents D in the algorithms shown
above: We have chosen a value of 100 for the size of this list within all of
our experiments. This means, if the correct article is not within this list then
it is treated as having a reciprocal rank of 0.
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5.2.1. Vector Space Model

Within our experiments under the vector space model, we investigate the im-
pact of varying the query parameters listed in Table 5.1 on the performance
of the system.

PhraseQuery Our test results regarding varying the n-grams parameter
show that a lower value generates better results as illustrated in Figure 5.1.
An explanation for this behavior can be that a lower value implies smaller

Figure 5.1.: The cumulative rank distribution for varying the n-grams parameter in Phrase-
Query instances in the vector space model. For each rank on the x-axis, this
diagram shows the cumulative probability that the expected document is found
at this rank.

word groups, and this is less restrictive when it comes to finding documents
that match these word groups. The respective MRRs to these test runs are
shown in Table 5.3.
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Table 5.3.: The MRRs for tests with PhraseQuery instances in the vector space model.
n-grams MRR
2 0.341
3 0.188
4 0.108
5 0.069

SpanOrQuery Our test results regarding the variation of the slop parameter
show that a higher value generates better results as illustrated in Figure 5.2.
An explanation for this behavior can be that a higher value implies larger
text span coverage, thus, the chance for a document to match the query is
higher. The respective MRRs to these test runs are shown in Table 5.4.

Figure 5.2.: The cumulative rank distribution for varying the slop parameter in SpanNear-
Query instances in the vector space model. For each rank on the x-axis, this
diagram shows the cumulative probability that the expected document is found
at this rank.
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Table 5.4.: The MRRs for tests with SpanOrQuery instances in the vector space model.
Slop MRR
10 0.058
25 0.062
50 0.065

TermQuery Our test using TermQuery instances yields the best result as
illustrated in Figure 5.3. The respective MRR is 0.416.

Figure 5.3.: The cumulative rank distribution for our test with TermQuery instances in
the vector space model. For each rank on the x-axis, this diagram shows the
cumulative probability that the expected document is found at this rank.

5.2.2. BM25

Within our experiments under the BM25 model, we investigate the impact
of varying the query parameters listed in Table 5.1 on the performance of
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the system.

PhraseQueries Same as for the vector space model, our test results re-
garding the variation of the n-grams parameter show that a lower value
generates better results as illustrated in Figure 5.4. Judging by the rank

Figure 5.4.: The cumulative rank distribution for varying the n-grams parameter in Phrase-
Query instances in the BM25 model. For each rank on the x-axis, this diagram
shows the cumulative probability that the expected document is found at this
rank.

distribution, performance seems very similar to the vector space model, this
is also reflected by the MRRs as shown in Table 5.5.

SpanOrQuery Like in the vector space model, our test results regarding
the variation of the slop parameter show that a higher value generates
better results as illustrated in Figure 5.5. Based on the rank distribution,
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Table 5.5.: The MRRs for tests with PhraseQuery instances in the BM25 model.
n-grams MRR
2 0.340
3 0.183
4 0.108
5 0.070

Figure 5.5.: The cumulative rank distribution for varying the slop parameter in SpanNear-
Query instances in the BM25 model. For each rank on the x-axis, this diagram
shows the cumulative probability that the expected document is found at this
rank.

performance is slightly better than in the vector space model, this is also
reflected by the MRRs as shown in Table 5.6.

TermQuery Our test results regarding TermQuery instances yields the
result illustrated in Figure 5.6. The respective MRR is given as 0.415.
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Table 5.6.: The MRRs for tests with SpanOrQuery instances in the BM25 model.
Slop MRR
10 0.087
25 0.092
50 0.096

Figure 5.6.: The cumulative rank distribution for our test with TermQuery instances in the
BM25 model. For each rank on the x-axis, this diagram shows the cumulative
probability that the expected document is found at this rank.

5.3. Role of the Citation Context

In this section, we investigate how the size of the citation context influences
the recommendation performance. In order to do so, we re-run our Ter-
mQuery approach under the vector space model from the previous section
on a subset of 1000 citations, while setting a limit on the size of the citation
context.
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The size of the citation context is determined by how many words it com-
prises. In this experiment, we vary the size of the citation context from 1 to
300 words and measure the resulting MRR. The result of this experiment is
illustrated in Figure 5.7.

Figure 5.7.: Recommendation performance measured as MRR using the TermQuery ap-
proach under the vector space model for differently sized citation contexts.

By default, our citation context is read from the Citations.XML file and
consists of the full text paragraph of where the citation occurs in (see
description of the Citations.XML file in Section 3.2). Now, if the size of this
citation context is larger than the set limit, we alternately remove words
from left and right until the set limit is reached. In the case that the size is
already smaller than the limit, no modification is performed.

Judging by the resulting MRRs, we find that the MRR drops significantly
if the citation context is chosen too small (e.g. only a few words). On the
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other hand, after the size of the citation context reaches a certain threshold,
it only induces minor alterations to the MRR.

In the results shown in Figure 5.7, the MRRs between the sizes 120 to
300 of the citation context are in the interval [0.401, 0.415]. In contrast, the
MRRs between the sizes 1 to 75 of the citation context are in the interval
[0.008, 0.380]. The MRRs between the sizes 76 to 119 of the citation context
are in the interval [0.378, 0.401].

Within the scope of our data set, a citation context of, for instance, 120

words seems to work well. The mean size of the citation context in our
Citations.XML file is 182 words, with a standard deviation of 101 words.
With this characteristics, we obtain a MRR of 0.416 as mentioned in the
previous section.

5.4. Conclusion

Judging by the results of our test runs, the vector space model and BM25

model show very similar performance. In terms of generating queries,
simple OR-conjuncted TermQuery instances in the form of a BooleanQuery
seem to work best and OR-conjuncted SpanNearQuery instances in the form
of a SpanOrQuery seem to work worst.

Looking at the cumulative rank distribution regarding our TermQuery
approach, we observe that in about 60 out of 100 cases, the expected article
is present within the first 10 hits. If we consider a list of 20 hits, around
68 out of 100 times, the expected article is found. Going up to 100 hits,
in approximately 82 out of 100 cases, the expected article is available. In
around 18 out of 100 cases, the expected article is not contained in the top
100.

Regarding the cumulative rank distribution of the best PhraseQuery ap-
proach, we observe that in about 48 out of 100 cases, the expected article is
within the first 10 hits. Inspecting the first 20 hits, in roughly 55 out of 100
cases, the expected article is present. Considering a list of 100 hits, in about
67 out of 100 times, the expected article is found. In around 33 out of 100
cases, the expected article is not found within the top 100.
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The cumulative rank distribution of the SpanQuery approach shows that
approximately in 16 out of 100 cases, the expected article is found within the
first 10 hits. If we consider a list of 20 hits, around 22 out of 100 times, the
expected article is found. In a list of 100 hits, in roughly 36 out of 100 times,
the expected article is found. In about 64 out of 100 cases, the expected
article is not found within the top 100.

Overall, the TermQuery approach works best and shows a clear performance
margin over the other approaches. The potential of this method shows
itself by an almost 70% chance of finding the expected article within the
top 20 retrieved documents. By introducing further techniques such as
query boosting [4] and/or optimizing parameters in the ranking models
themselves, this value can most certainly be improved even more.

A summary of the best MRRs amongst our query formulation strategies is
shown in Table 5.7. A visual comparison is provided by Figure 5.8.

Table 5.7.: The highest MRR for each query formulation strategy.

Query type Query parameters Model MRRn-grams Slop
TermQuery - - VSM 0.416

PhraseQuery 2 - VSM 0.341

SpanOrQuery - 50 BM25 0.096
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Figure 5.8.: The cumulative rank distributions of our query formulation strategies, using
the parameters that worked best during our experiments. For each rank on
the x-axis, this diagram shows the cumulative probability that the expected
document is found at this rank.
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In this chapter, we discuss related work conducted on the recommendation
of literature within the context of scientific writing.

He et al. [29] develop a prototype system running on the CiteSeerX [28]
digital library. This system is capable of recommending citations for citation
placeholders placed in a query manuscript. Within their approach, they
consider the snippet of text around a placeholder (the citation context),
preprocess it, and based on that, they recommend relevant documents. For
the citation context, they consider a fixed size window of 50 words before
and 50 words after the placeholder, as suggested by the extensive studies of
Ritchie [61] on the impact of different lengths of citation contexts. After ex-
tracting the citation context, they remove all the stop words. To measure the
relevance between a document and a preprocessed citation context, they use
their implementation of a novel non-parametric probabilistic model. Over
the course of thorough empirical evaluation, they show the effectiveness
and scalability of their approach.

A set of research papers can be seen as a network: Papers reflect outgoing
connections by citing other papers, and incoming connections by being
cited by other papers. All these connections together form a network graph
known as the citation web. McNee et al. [49] use the information provided
by the citation web to set up a collaborative filtering (CF) framework. This
framework they then use to find citations that would suit well as additional
references in a target paper. After a series of experiments with different
algorithms, they find that the generated recommendations are either very
relevant or very novel. None of the algorithms they study, however, provides
both at the same time.

Strohman et al. [75] show their model to a content-based system. The use
case of their system is targeted to users who have already written several
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pages about a topic and then proceed to hand over the written text to
the system with the goal of retrieving documents that the provided text
might cite. They show that text features alone are not sufficient for this task
and that additional graph-based features are required in order to retrieve
high quality results. Via linear combinations of text features and citation
graph features, they measure the relevance between queries and documents.
After evaluating their system, they conclude that the similarity between the
query and candidate documents as well as the Katz distance [39] within
the retrieved set of documents are the two most significant features in this
task.

Also, translation models are used to solve the problem of citation recom-
mendation. Originally used to translate text from one language to another,
Berger et el. [20] introduce the idea behind translation models to informa-
tion retrieval by translating words in documents to query terms in order to
overcome vocabulary gaps between queries and documents. In the work
conducted by Lu et al. [44], they propose a translation model for citation
recommendation. Within their experimental setup, they use the citation
context around citation placeholders to retrieve a set of papers that may be
referenced at the particular citation placeholder. Based on their results, they
observe that building the translation model upon the abstract of a document
performs better than building the model upon the full text.

Basu et al. [18] show their approach on recommending conference paper
submissions to reviewers. To tackle this problem, they create a user profile
for each reviewer where the purpose of these profiles is to capture and
reflect the reviewers’ interests. The data to create these profiles is automat-
ically extracted from the Web. Based on the abstract of conference paper
submissions and these profiles, they implement a recommendation frame-
work to route papers to reviewers. From the evaluation of their system,
they conclude that within the context of peer reviewing, they can make the
recommendation process less “people intensive”. Furthermore, they observe
that their content-based algorithms can outperform their collaborative ones
in this task.

Finding relevant scholarly literature is also a key point of the workshop on
Bibliometric-enhanced Information Retrieval and Natural Language Process-
ing for Digital Libraries (BIRNDL) [21, 23, 24]. As a part of these workshops,
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Computational Linguistics (CL) Scientific Summarization Shared Tasks (CL-
SciSumm Shared Tasks) [33, 32, 35] take place. Having participated in the
CL-SciSumm Shared Task 2017, we take a closer look at results and key
insights gained by this task in the following section.

6.1. The CL-SciSumm Shared Task 2017

In this section, we discuss the CL-SciSumm Shared Task 2017 [32] and its
results and key insights [34]. The CL-SciSumm Shared Task 2017 poses three
problems: (1A) finding relevant text spans in a target document given a
citation context in a source document, (1B) classifying the discourse facets
for target documents found in (1A), and (2, optional) generating a summary
for target documents by their identified text spans.

Via our own submission 1 [27] to the CL-SciSumm Shared Task 2017, we
provide a solution to tasks (1A) and (1B) by translating the concepts used in
this thesis to the scope of these tasks.

6.1.1. Participating Systems

Overall, nine systems [45, 53, 41, 42, 1, 27, 37, 80, 52] participated in tasks
1A and 1B. Beginning from support vector machines, over to neural network
based ranking models, and up to variants of tf-idf scoring, all sorts of
different approaches were employed by these systems, some of which are
briefly summarized below:

The University of Mannheim [41], for example, employed a supervised
learning approach to solve Task 1A. To rank the results, they considered
features such as lexical similarity, entity similarity, semantic similarity, and
others. To solve Task 1B, they experimented with support vector machines
and trained a convolutional neural network to perform the classification
task.

1See Appendix A for the system report to our submission
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The National University of Singapor [53] solved Task 1A by using a com-
bined scoring mechanism, where they considered TF-IDF, longest common
subsequence (LCS), and semantic relations. To determine the semantic rela-
tions, they used a neural network based ranking model. For the classification
in Task 1B, they also used a neural network based approach.

The Beijing University of Posts and Telecommunications [42] computed
various similarity metrics such as Jaccard similarity, context similarity, and
IDF similarity to solve Task 1A. By combining these similarity scores using
approaches such as support vector machines, fusion method, or Jaccard
Cascade, they determined the final ranking. For Task 1B, they took an
approach using support vector machines.

The Nanjing University of Science and Technology [45] treated Task 1A as a
classification problem. They used different classifiers such as two different
support vector machines, a decision tree, and a logistic regression. By using
a voting based system, they then combined the results of these classifiers.
To solve Task 1B, they introduced a dictionary for each discourse facet. A
reference span was labeled with a facet if its dictionary comprised any of
the words present in the reference span.

6.1.2. Evaluation and Results

The evaluation for task 1A was done by comparing the sentence (text span)
overlaps between sentences found by the system and a humanly created
gold standard. Based on the number of overlaps, precision, recall and F1
score [74] were calculated for each system. Furthermore, lexical overlaps
using variants of the ROUGE score [43] were calculated.

For Task 1B, under the condition that the response of task 1A was as
expected, the proportion of the correctly classified discourse facets serves as
base for the evaluation. Same as for task 1A, precision, recall and F1 score
were used to score this task.

Regarding our own contribution, a ROUGE score of 0.108 and second best
overall result at Task 1A, closely behind the ROUGE score (0.114) of the
winning system, shows the effectiveness of our approach in this task. A
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similar situation is present at Task 1B, where we generate a ROUGE score
of 0.337, placing eighth among all the 47 submitted system runs.

A complete overview comprising all the results of all the different partici-
pating systems is available in [34].
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With the rapidly growing amount of information in our time, it becomes
more and more difficult to conduct any form of information related search.
This circumstance is known as information overload and makes its presence
felt in scenarios where, for example, someone who is writing a scientific
paper has to conduct a literature search as she does not know a correct
source for a citation she wants to make.

Over the course of this work, we show the implementation of a recommender
system and demonstrate how we tackle this problem via the assistance of
this system.

Within a general description of this system, we discuss about its various
requirements and give insight to several concepts used during its imple-
mentation. We discuss the data set that we use and show how we process
and use the data within the system.

Referring to the implementation of the system, we describe important tech-
nical details and provide relevant background information to the various
technologies that we make use of. Among these technical details, we are
mostly concerned with different query formulation strategies and informa-
tion retrieval approaches.

To measure the performance of the system, we conduct a series of exper-
iments. We describe how these experiments are set up and specify the
active parameters for each one. Eventually, we gather the outcomes of these
experiments and interpret the result.

Additionally, we investigate how the size of the citation context influences
the recommendation performance within our top performing experiment
and analyze the result. Based on this analysis, we find that the citation
context should not be chosen too small (e.g. only a few words), otherwise
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the recommendation performance drops significantly. We also observe that
if the size of the citation context reaches a certain threshold, only minor
performance changes are measurable if the size is further increased.

The measured performance of the system reflects the potential of our ap-
proach, given that the correct parameters are chosen. In particular, our query
formulation strategy using TermQuery instances performs well: At our best
experimental results, our algorithm has a 60% chance that the expected
document to cite is found within the first 10 recommended documents.
Considering a list of 20 or 100 recommended documents, this chance even
increases to 68% and 82% respectively. Based on these probabilities, our
system is definitely helpful as there is a good chance that the expected docu-
ment is found even within a small list of only 10 recommended documents.
Following this observation, we can conclude that this approach offers a
solid solution to our original problem, which also provides an answer to our
research question where we were interested in how reliable content-based
recommendations, serving as citation candidates for a pending citation,
are.

Via our participation at the CL-SciSumm Shared Task 2017, we further
investigate the capabilities of the system within the context of bibliometric-
enhanced information retrieval and natural language processing for digital
libraries. Yielding top results among all participating systems also shows
the potential of our approach.
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Abstract. In this report we present our contribution to the 3rd Com-
putational Linguistics Scientific Document Summarization Shared Task
(CL-SciSumm 2017), which poses the challenge of identifying the spans
of text in a reference paper (RP) that most accurately reflect a citation
(i.e. citance) from another document to the RP. In our approach, we ad-
dress this challenge by applying techniques from the field of information
retrieval. Therefore we create a separate index for every RP and then
transform each citance to a RP into a query. This query is subsequently
used to retrieve the most relevant spans of text from the RP. Different
ranking models and query generation strategies have been employed to
alter which spans of text are retrieved from the index. Furthermore we
implemented a k-nn classification based on our search infrastructure for
assigning the cited text span to pre-defined classes.

Keywords: Information Retrieval, Query Generation, Ranking Models

1 Introduction

The focus of the CL-SciSumm 2017 Shared Task is on automatic paper summa-
rization in the Computational Linguistics (CL) domain. It is organized as part
of the 2nd Joint Workshop on Bibliometric-enhanced Information Retrieval and
Natural Language Processing for Digital Libraries (BIRNDL 2017)1[2], held at
the 40th International ACM SIGIR Conference on Research and Development
in Information Retrieval2 in Tokyo, Japan. It is a follow-up on the CL-SciSumm
2016 Shared Task at BIRNDL 2016 [1] which was conducted in the course of the
Joint Conference on Digital Libraries (JCDL ’16) in Newark, New Jersey.

This Shared Task is divided into multiple smaller tasks which pose the fol-
lowing problems:

– Task 1A: Identify the spans of text (cited text spans) in a reference paper
(RP) that most accurately reflect a citation (i.e. citance) to the RP made
from another document.

1 http://wing.comp.nus.edu.sg/ birndl-sigir2017/
2 http://sigir.org/sigir2017/
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– Task 1B: Classify each identified cited text span according to a predefined
set of facets. The elements of that set are: Implication, Method, Aim, Results,
and Hypothesis.

– Task 2 (optional bonus task): Generate a structured summary of the
RP from the identified cited text spans of the RP, where the length of the
summary must not exceed 250 words.

The data set provided for these tasks comprises a training set and a test set
consisting of 30 and 10 RPs respectively. Each RP is associated with a set of
citing papers (CP) which all contain citations to the RP. In each CP, the text
spans (citances) have been identified that pertain to a particular citation to the
RP.

To tackle the problem in Task 1A, we followed an information retrieval (IR)
approach. For every RP, we created an index holding all the spans of text of that
RP. A citance to a RP is transformed into a query and performed on the index
associated with the RP to retrieve the most relevant spans of text.

For Task 1B, we followed a k-NN classification approach. Each identified
cited text span is compared against all different cited text spans in the training
set. Among the top five most similar cited text spans a majority vote is used to
determine the facet.

2 Task 1A: Identification of Text Spans in the RP

In this section we provide a closer look at our approach to Task 1A. We will
describe how the indices to the RPs are created as well as how the citances are
turned into queries and subsequently used to identify relevant spans of text in
the RP.

2.1 Index Creation

In order to create an index to a RP, which holds all the different spans of text of
the RP, we used the Apache Lucene text search engine library3 which features
Java-based indexing and searching technology.

Taking advantage of the library’s indexing technology, we created an index
for every RP and added all spans of text of the RP to the index. In this scenario
a single span of text can be imagined as a separate text document that is being
added to a conventional index. Before we added anything to the index, however,
we performed two additional preprocessing steps on every span of text. At first,
all stop words contained in a span of text were removed. The idea behind this is
to tune the performance of the index (fewer terms in the index) and to obtain
more relevant search results since stop words only carry little distinguishing
potential [6].

To decide which words qualify as stop words and which do not, we used
Apache Lucene’s integrated list of stop words for the English language. As a

3 http://lucene.apache.org/
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second preprocessing step, we stripped down all suffixes of all words contained
in a span of text in order to normalize them. This was achieved by applying
Porter’s stemming algorithm [3]. After the preprocessing on a span of text was
completed, we moved on and added it to the index.

2.2 Query Generation

After all the indices for the RPs were in place, we transformed each citance
to a RP into a query and ran it on the index associated with the RP in or-
der to retrieve the most relevant spans of text of the RP for that particular
citance. Since all indices were constructed with Apache Lucene, we also resorted
to Apache Lucene functionality to generate the queries. There exists a broad
range of different query types in Apache Lucene, however, after we conducted
various experiments on the training set, we found that using Apache Lucene’s
TermQuery generated the best results.

To turn a citance into a query, we first applied two preprocessing steps to the
citance. The preprocessing steps applied, are analogous to the ones described in
section 2, that is, stop words were removed from the citance and porter stem-
ming was performed. As a next step we extracted all words from the citance
and created a TermQuery for every word. This means, each TermQuery corre-
sponds to a single word in the citance. After that, we created an Apache Lucene
BooleanQuery by OR-conjuncting all TermQueries. This resulting BooleanQuery
was then used to query the index associated with the RP that the citance refers
to.

As a result of the query, we obtained a set of top ranked spans of text of
the RP. The elements of that set are ordered according to a score, however, it
depends on the ranking and retrieval model used by the index what elements
are in the set and what score they are given. From all spans of text that are
retrieved this way, we considered the top two as most accurately reflecting the
corresponding citance. This is because considering the top two yielded the best
results during experiments on the training set.

2.3 Ranking

In section 2.2 we mentioned that it depends on the ranking and retrieval model
that is used by the index which elements are retrieved by a query and how they
are ranked. For the sake of the CL-SciSumm 2017 Shared Task, we submitted a
system run using a simple vector space model (VSM) [5] based method and the
popular BM25 model [4].

Vector Space Model The term frequency and inverse document frequency
(TF-IDF) weighting scheme used by Apache Lucene within the scope of the
VSM is as follows:
For the term frequency, which correlates to a term t in a document d, the formula

tft,d =
√

ft,d (1)
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is used, where ft,d denotes the number of times the term t occurs in document
d.

For the inverse document frequency, which correlates to the number of doc-
uments in which the term t appears, the formula

idft = 1 + log
N

nt + 1
(2)

is used, where N is the total number of documents in the index and nt is the
number of documents containing the term t.

The score of a document d to a query q is calculated based on the cosine
similarity and is defined as

sim(d, q) =
V (d) · V (q)

|V (d)||V (q)| (3)

where V (d) · V (q) is the dot product of the weighted vectors, and |V (d)| and
|V (q)| are their euclidean norms.

BM25 The term frequency factors used in Apache Lucene within the scope of
BM25 ranking are defined as

Bt,d =
(k1 + 1)ft,d

k1

[
(1− b) + b |d|

i2boost|d|avg

]
+ ft,d

(4)

where ft,d denotes the number of times the term t occurs in document d, |d| is
the length of the document d in words, |d|avg is the average document length,
iboost is an index-time boosting factor, and k1 and b are parameters.

The ranking equation used in the BM25 model can then be written as

sim(d, q) =
∑

t[q,d]

Bt,d × log
N − nt + 0.5

nt + 0.5
. (5)

The values we used for the parameters k1 and b are 1.2 and 0.75 respectively.

3 Task 1B: Identification of the Discourse Facet

The discourse facet takes one of the following values: Implication, Method, Aim,
Results, and Hypothesis. To classify the spans of text, which were identified in
Task 1A, we took the following approach: At first we created an index which we
filled with all available cited text spans of the training set plus their correspond-
ing discourse facets. To classify which discourse facet a span of text belongs to,
we then transformed the span of text into a query, analogous to the way de-
scribed in 2.2, and then ran the query on the index. After that, we conducted a
majority vote on the top five retrieved results to determine the discourse facet
to use.
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4 Evaluation

Overall we submitted two system runs for Task 1. One of the system runs was
conducted using the BM25 ranking model and the other using a simple vector
space model (VSM). See section 2.3 for the parameters that we used for these
models.

The system performance for Task 1a was determined by measuring the sen-
tence id overlaps between the sentences identified by the system and the gold
standard sentences created by human annotators. Based on that, precision, recall
and F1 score were calculated for each system run.

The performance of Task 1b was measured by the proportion of the correctly
classified discourse facets by the system, contingent on the expected response of
Task 1a. The metrics used here are also precision, recall and F1 score.

The official evaluation results of our submitted system runs for Task 1a and
Task 1b are shown in Table 1 and Table 2 respectively:

Table 1: The Task 1a evaluation results for our system runs using the vector space
model (VSM) and BM25.

Ranking Model Precision Recall F1 score

VSM 0.085 0.138 0.105
BM25 0.107 0.181 0.135

Table 2: The Task 1b evaluation results for our system runs using the vector space
model (VSM) and BM25.

Ranking Model Precision Recall F1 score

VSM 0.917 0.158 0.269
BM25 0.938 0.205 0.337

Judging by the official evaluation results we find that our proposed ap-
proaches yield excellent results. Especially our BM25 approach seems to work
very well for both Task 1a and Task 1b: An F1 score of 0.135 at Task 1a achieves
the third highest result among all system runs, not far behind the winning sys-
tem, which has an F1 score of 0.146. An F1 score of 0.337 at Task 1b is the
eighth highest result among all system runs, with the winning system having an
F1 score of 0.408. Overall 47 system runs have been submitted to Task 1. The
mean F1 score at Task 1a among all system runs is 0.088 and at Task 1b 0.208.

5 Conclusion

In this report we described the approaches we followed to tackle the problems
posed in Task 1A and Task 1B of the CL-SciSumm 2017 Shared Task. In pre-
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liminary test we found out that using a combination of stop word removal and
stemming in combination with a disjunction query strategy work best. The of-
ficial evaluation results confirmed the success of our approach. We were able
to reuse the indexing infrastructure for a classification task, namely assigning
categories to the cited text spans. In future work we plan to make use of our in-
frastructure and investigate methods to enhance the process by integrating more
sources of evidence. In particular, additional context information like author or
venue specific information might prove beneficial.

Acknowledgements

The Know-Center is funded within the Austrian COMET Program – Compe-
tence Centers for Excellent Technologies – under the auspices of the Austrian
Federal Ministry of Transport, Innovation and Technology, the Austrian Federal
Ministry of Economy, Family and Youth and by the State of Styria. COMET is
managed by the Austrian Research Promotion Agency FFG.

References

1. Cabanac, G., Chandrasekaran, M.K., Frommholz, I., Jaidka, K., Kan, M.Y., Mayr,
P., Wolfram, D.: Joint workshop on bibliometric-enhanced information retrieval and
natural language processing for digital libraries (birndl 2016). In: Proceedings of the
16th ACM/IEEE-CS on Joint Conference on Digital Libraries. pp. 299–300. ACM
(2016)

2. Jaidka, K., Chandrasekaran, M.K., Rustagi, S., Kan, M.Y.: Overview of the cl-
scisumm 2017 shared task. In: In Proceedings of the Joint Workshop on Bibliometric-
enhanced Information Retrieval and Natural Language Processing for Digital Li-
braries (BIRNDL 2017), Tokyo, Japan, CEUR. (2017)

3. Porter, M.F.: An algorithm for suffix stripping. Program 14(3), 130–137 (1980)
4. Robertson, S.E., Walker, S., Jones, S., Hancock-Beaulieu, M.M., Gatford, M., et al.:

Okapi at trec-3. Nist Special Publication Sp 109, 109 (1995)
5. Salton, G., Wong, A., Yang, C.S.: A vector space model for automatic index-

ing. Commun. ACM 18(11), 613–620 (Nov 1975), http://doi.acm.org/10.1145/
361219.361220

6. Silva, C., Ribeiro, B.: The importance of stop word removal on recall values in text
categorization. In: Neural Networks, 2003. Proceedings of the International Joint
Conference on. vol. 3, pp. 1661–1666. IEEE (2003)


