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Abstract

Current automatic speech recognition systems already show remarkable results in constrained
scenarios with close-talk recordings. However, the performance is affected when recordings are
taken from the far-field due to both noise and reverberations. In the presence of multiple distant-
talking microphones we can assume that some decoded channels deliver better transcriptions
than others. The objective of this thesis is to investigate a DNN-based classifier for channel
selection trained on signal-based and/or decoder-based features. The CHiME-5 dataset, a novel
dataset for distant multiple-microphone conversational speech recognition, is used to conduct
the experiments. A promising performance gain of 18% is provided from an oracle analysis.
Actual experimental results reveal the limitation of the extracted features and DNN classifiers to
correlate well with the oracle results, i.e. the classification results and the DNNs generalisation
performance is weak. The problem is traced back to a high proportion of simultaneous and
spontaneous speech, different acoustic scenarios and background noises, as well as the variation
in speakers among the sessions of the dataset. Moreover, based on the obtain classifier rankings
we apply hypothesis combination with ROVER on different channel subsets for error reduction,
based on average confidence scores.

Kurzfassung

Für Anwendungen mit Nahfeldmikrofonen erzielen automatische Spracherkennungssysteme bere-
its heute sehr gute Ergebnisse. Die Genauigkeit der Transkriptionen kann sich jedoch ver-
schlechtern, falls die Aufnahmen mit Distanz zum Sprecher erfolgen, da Einflussfaktoren wie
Hintergrundrauschen als auch Nachhall das Signal zunehmend stören. Falls Mikrofonsignale von
unterschiedlichen Positionen zur Verfügung stehen, ist anzunehmen, dass einige Signale bessere
Transkriptionen liefern als andere. Die Arbeit baut auf dieser Annahme auf und untersucht
die Möglichkeit der Kanalklassifizierung mithilfe eines tiefen neuralen Netzes, welches mittels
signal-bezogener und oder auch decoder-bezogener Merkmale trainiert wird. Der CHiME-5 Ko-
rpus dient als Datensatz für die Experimente. Durchgeführte Orakel Untersuchungen zeigen
potenzielle Erkennungsverbesserung um 18%. Die experimentellen Resultate verdeutlichen die
Schwierigkeit, geeignete Merkmale zu extrahieren und Klassifizierer zu lernen, die möglichst
stark mit den Orakel-Labels korrelieren. Das Problem ist hauptsächlich auf den hohen Anteil
an überlappender und spontaner Sprache, den verschiedenen akustischen Szenarien und Hinter-
grundgeräuschen, als auch auf die Variation in den Sprechern zurückzuführen. In einem letzten
Schritt wird auf Basis der erhaltenen Klassifizierungsrangliste eine Hypothesenkombination mit-
tels ROVER durchgeführt.
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1
Introduction

Automatic speech recognition (ASR) systems are increasingly present across a wide range of
modern applications already demonstrating their functionality, high usability and advantage.
These applications mainly include voice user interfaces and speech-to-text engines for home au-
tomation and security assess control, medical assistance, industrial robotics, telecommunication
industry and also for learning and educational purposes. However, in most cases remarkable
ASR results are only obtained for restricted conditions and well known application areas. Most
of the systems are limited to one active speaker at a time, one language, a restricted vocabulary
and the accuracy depends on a high signal to noise ratio (SNR), usually obtained by a short dis-
tance between the microphone(s) and the speaker(s) mouth. For example, in a car voice control
unit the required vocabulary to control the system is typically small and also clear assumptions
can be made on the speaker positions and the types of background noise (e.g. engine noise,
rolling noise, entertainment noise) present within the car interior. This prior knowledge can
be efficiently used to tailor the overall ASR system to the specific scope of application, from
the microphone placements, signal enhancement, feature extraction and transformation all the
way to the acoustic and language modelling. Considering a more indefinite scenario with an
unknown number of freely moving speakers within an environment and multiple conversations
taking place at the same time, it is very hard, if not impossible, to design a proper system that
delivers a good performance in form of accurate transcriptions. Solely an arbitrary placement
of the microphones with an increased distance to the speaker can have a serious impact on the
SNR and consequently a degradation in the ASR performance. This is due to a variety of effects
including background noises, reverberation in form of early reflections and diffuse sound, and
as well as simultaneous speech. Distant ASR is a current matter that focuses on investigating
in different techniques for noise reduction, dereverberation and speaker separation to mitigate
these disturbing effects of the far-field recordings.

When multiple microphones are used to record the speech signal from different angles, it can
be assumed that there is one microphone among the set that captures the source signal the best;
in other words the decoded utterance from this channel gives the lowest word error rate (WER),
i.e. the best transcription. A very simple idea would be to learn a mapping between channel-
based features and the final WER or good channels using a deep neural network (DNN). The
difficulties lie in the design of proper features that are able to capture signal properties directly
related to its quality and more importantly to the recognition accuracy.

1.1 CHiME-5 Challenge

The CHiME-5 challenge [1] deals with the problem of distant multiple-microphone conversational
speech recognition in everyday home environments. The training and development sets comprise
audio data recorded from both array and binaural microphones, and the corresponding manual
transcriptions. Recordings were conducted during dinner parties with each consisting of four
participants. Three baseline systems for array synchronization, speech enhancement and con-
ventional or end-to-end ASR were provided by the challenge organisers. The challenge features
two main tracks for reporting results on both the development set and an evaluation set, where
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1 Introduction

no transcriptions were provided. For recognition, in the single-array track only one reference
array can be used, whereby in the multiple-array track recordings from all six arrays can be
used. In addition to this, each track is split up into two sub-rankings, one for conventional
acoustic modelling and official language modelling and a second sub-ranking without constrains
on the used system (i.e. end-to-end system and modified language model).

1.2 Aim and contributions

The aim of this thesis is to evaluate the applicability of a DNN based channel selection method
for distant conversational speech recognition on the CHiME-5 dataset. We investigate both
signal-based and decoder-based features in order to train a DNN to predict the best performing
channels in a supervised manner. Labels are provided from computational expensive decodings
of the available channels using the conventional baseline system. We execute several oracle ex-
periments on a subset or on all the available channels and can demonstrate a remarkable gain
for improvement, if a proper channel selection technique is applied. Moreover we address hy-
potheses combination using recognition output voting error reduction (ROVER) to increase the
recognition accuracy even further using the classifier ranked channels to provide the best quality
channel as a skeleton for construction of a comprised word transition network (WTN). Further-
more we perform several analysis on the provided data and show the difficulty of the underlying
dataset for ASR, due to noise, far-field recordings, as well as spontaneous and simultaneous
speech.

1.3 Outline

The thesis is organised in five chapters, where Chapter 2 introduces the conventional base-
line ASR system to provide the reader with the necessary background information on how the
recorded utterances are processed within the ASR baseline chain. The audio data acquisition
with multiple microphones is covered in Chapter 3. This chapter also highlights relevant analysis
on the recorded data that will play a crucial role in the experimental results. Following this, the
theoretical aspects of the channel selection method as well as the system combination technique
using ROVER are covered in Chapter 4. Chapter 5 documents the conducted experiments on
channel selection and combination and discussed on the obtained results. The work is then
concluded in Chapter 6.
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2
Baseline System

In automatic speech recognition (ASR) we distinguish between two main types of recognition
architectures, a conventional and an end-to-end system. A conventional ASR system comprises
a handcrafted acoustic model (AM), language model (LM) and a pronunciation dictionary,
which are often trained separately from each other, using different datasets. A LM assigns a
probability to a certain word sequence and the pronunciation dictionary is used to represent
this word sequence by a sequence of smaller linguistic units or phones. The AM then predicts
the likelihood of a sequence of acoustic features, given this set of phones. Despite the fact that
conventional ASR systems are the standard approach in performing transcriptions from speech,
the decomposed training of the three models is complex and often requires careful engineering
work. Mismatches of these components impair the accuracy of the overall system and can
be avoided when training the models in a joint way, using end-to-end methods. In doing so,
usually a deep neural network (DNN) is trained in a sequence-to-sequence fashion to find the
corresponding character sequence from a sequence of acoustic feature vectors. Nowadays large
amount of computational resources and the accessibility of huge datasets makes this training
feasible and even more important the mutual training delivers competitive results.

The CHiME-5 challenge comes with an ASR baseline system for both conventional and end-
to-end speech recognition, hence offering participating groups a range of possibilities in the
design of a competitive system. The conventional baseline is implemented within the Kaldi
framework [2]1, a state of the art speech recognition toolkit written in C++ that provides full
implementations for each single stage within the ASR pipeline, including data preparation, fea-
ture extraction, model training, decoding and scoring. The provided end-to-end baseline system
is an attention/connectionist temporal classification (CTC) hybrid architecture [3], implemented
using the ESPnet2 toolkit. Moreover, both systems make use of two preprocessing stages, one
for headworn and array synchronization3 and a second one for speech enhancement using a
weighted delay-and-sum beamformer based on the BeamformIt toolkit [4]4.

The following parts of this section describe the conventional baseline system, whereby the
emphasis is to give an overview rather than a detailed description of all the incorporated com-
ponents, for which the reader is referred to the specified references in the following paragraphs
and also to [5], [6] and [7] for a more general insight into ASR. In Section 2.1 and Section 2.2
the two preprocessing stages for array synchronisation and speech enhancement are introduced
followed by a description of the conventional baseline system in Section 2.3. Section 2.4 states
the official baseline results. Part of the information is taken from the challenges website5.

1 Kaldi: speech recognition toolkit repository available under https://github.com/kaldi-asr/kaldi
2 ESPnet: End-to-end speech processing toolkit repository can be copied from https://github.com/espnet/

espnet
3 Source code of the array synchronization available from https://github.com/chimechallenge/

chime5-synchronisation
4 BeamformIt: implementation of the weighted delay-and-sum beamformer can be found on https://github.

com/xanguera/BeamformIt
5 CHiME-5 challenge website: http://spandh.dcs.shef.ac.uk/chime_challenge
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2 Baseline System

2.1 Array synchronisation

As we will see in Chapter 3, each dinner party is recorded with a set of six Kinect arrays and
four binaural microphones, one for each of the four speakers, onto separate recorders over the
full duration of the session (∼ 2 h). The ten recorders suffer from time misalignments due to a
combination of clock drifts (on all devices) and occasional frame-dropping on the Kinect arrays,
whose impact becomes larger with the duration of the recorded session. Especially the signals
from the Kinect arrays reach time misalignments in the range of seconds, the ones from the head-
worn recordings around 100 ms. Hence, device synchronisation is crucial in order to extract
equal signal snippets from the different recordings for later processing, likewise it is needed
when training an AM on utterances. Figure 2.1 illustrates the applied device alignments for the
development session S02 with respect to the reference binaural device P05 for both the remaining
binaural devices (see Figure 2.1(a)) and for the Kinect arrays (see Figure 2.1(b)). The effect of
frame dropping can be observed in the right figure for Kinect U01 (in blue) around a recording
time of 3500 seconds when the time drift jumps from approximately 0.6 to 1.3 seconds. In order
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Figure 2.1: Estimated misalignment for training session S02 with respect to the binaural reference channel
P05 to compensate for the synchronisation drift between channels.

to compensate for the misalignment the transcription files are equipped with device dependent
aligned start and end times for each utterance, obtained from the array synchronisation baseline
system3. The synchronisation chain itself comprises two main stages, starting from computing
coarse time alignments and followed by subsequent refined alignments which are then applied
to the transcription files. Synchronisation for the microphone arrays is applied on device level,
since there are no drifts among the four single channels of each array. Before the synchronisation
is explained in more detail, we introduce the following five terms:

Reference channel: Binaural device that serves as the reference channel for the time lag estima-
tion. This is always the first binaural channel of a specific session in an alphabetical and
numerical order. The Kinect is not suitable as reference channel due to the risk of frame
dropping.

Target channel: Channel whose alignment is compared with the one from the reference channel.

Time resolution: The time interval for which time lags are computed between the target and
the reference device, to get equidistant separated points in time over the full recording
duration.
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2.2 Speech enhancement

Search duration: Expected maximum time drift between reference and target channel for which
the cross-correlation is computed.

Template duration: Duration of the target channel audio snippet actually used to calculate the
cross-correlation. The length of the reference channel audio snippet is composed by the
template duration plus twice the search duration. Often this is also known as the analysis
window.

The estimation of the time lag between the target channel and the reference channel is based
on a cross-correlation principle6. Imagine two signals with a peak at different positions in time.
The position of the peak in its cross-correlation result may serve as an estimate of the time lag
between the peaks and the magnitude as a measure of confidence of this estimated quantity. In
this manner, misalignments between the two channels are then computed in equidistant time
intervals over the recording length, as given by the applied time resolution. It would be pointless
and computational demanding to compute each time lag with a cross-correlation over the total
session recording, hence small chunks in the time region of interest with a length defined by the
template duration are used instead. In addition to speed up the whole process the correlation is
computed over the search duration rather then the full chunk length, assuming that the maximal
time drift does not exceed this observation window. Time lags are computed for both binaural
reference channels (left and right) and at the end the lag with the higher confidence score
(correlation peak) is chosen. For the Kinect arrays the recordings from channel 1 are always
used to compare against the reference channel.

In the first coarse alignment pass the misalignment between two binaural channels is estimated
every 100 seconds, while this is done every 10 seconds when aligning a Kinect channel. The
template duration is set to 5 seconds for both device types, and the search duration to 5 seconds
for Kinect devices and 0.5 seconds for binaural devices. The refined alignment pass is build
upon the previous stage and primary deals with large differences in time lags of consecutive time
intervals for the Kinect arrays. If the lag threshold of 50 ms is exceeded, time lags are recomputed
with a refined time resolution of 1 second rather then 10 seconds. Moreover smoothing of adjacent
lags is performed with the help of a median filter on all channels. Afterwards the transcriptions
are aligned by altering the start and end times of the utterances according to the estimated
misalignments. A transcription snippet of an aligned utterance from session S02 is shown in
Listing 3.1.

2.2 Speech enhancement

Before executing the actual speech recognition step, the raw recorded signals are enhanced with
appropriate processing techniques in order to increase the signal to noise ratio (SNR) of the
speech signal of interest. When multiple-microphones are available, beamforming is a common
technique to emphasise the signal coming from the direction of the speaker. The basic principle
behind beamforming is to make use of recordings from different spacial positions with a delayed
summation of the signals to achieve a constructive interference of the signal from a steering
direction (i.e. direction of the speaker) while simultaneously attenuating signals arriving from
all the other directions. Usually, a prior weighting Wm of the signals is applied before the
summation step so that the beamformed output is defined as follows [4]:

y[n] =
M∑
m=1

Wm[n]xm[n− TDOA(m,ref)[n]], (2.1)

6 The cross-correlation is a measure of similarity between two signals. For a more mathematical explanation see
also https://en.wikipedia.org/wiki/Cross-correlation.
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2 Baseline System

where m is one of M microphone channels, xm[n] is the signal of the m-th channel at time n and
the TDOA(m,ref) is the time delay of arrival (further explained in Section 4.3.2) between the m-th
channel and a reference channel. Equation (2.1) describes weighted-delay and sum beamforming
which is also applied as front-end enhancement method within the CHiME-5 baseline system
(see Figure 2.3).

In the particular domain under investigation, recordings are made with Kinect arrays, like the
one shown in Figure 2.2. The board comprises four microphones that are non-uniformly spaced
as line array, with three microphones on the left side below the camera and a fourth microphone
on the very right-hand side. Always the four microphone signals of one device are processed
together so that one enhanced output signal is provided for each Kinect. The exact position of

Figure 2.2: Microsoft Kinect device3 with indicated microphone positions and the distance to each other.
Since the four microphones are placed in line without an uniform spacing, the array device falls
into the category of non-uniform linear arrays with ambiguities in the estimation of the source
position along azimuth and elevation.

the six Kinects within the apartment is unknown and the position of the speakers varies over
time. Under these conditions it is necessary to adapt the weights and to facilitate an automatic
selection of the reference channel for the TDOA estimation that provides best enhancement
results for a certain point in time. The weighted-delay and sum beamformer is based on the
BeamformIt toolkit4 and implements some superior techniques originally elaborated in order to
face the problem of beamforming in typical meeting scenarios with a number of microphones
arbitrarely placed within the meeting room. The main components and properties of BeamformIt
are: (the interest reader is referred to [4] for a more details):

• Skew estimation to fix synchronisation errors between channels.

• Dynamic range expansion by applying a common weighting factor for the amplitude, com-
puted over the full recording length of a channel.

• TDOA computation between channels of a Kinect device based on GCC-PHAT7 (explained
in Section 4.3.2).

• The accuracy of the TDOA estimation among channels highly depends on the quality of the
chosen reference channel. The time-average of the cross-correlation between each channel
is computed and the one providing the highest cross-correlation on average is nominated
as the reference channel.

• Optimal TDOA estimation by computing N relative maxima of the cross-correlation (in-
stead of only between one arbitrary channel and the reference channel). This should
minimize false delay computations, which can be caused by spurious noises or overlapping
speakers that overshoots the speakers local maximum in the cross-correlation.

7 GCC-PHAT - generalized cross-correlation phase transform
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2.3 Conventional ASR baseline system

• Postprocessing of the computed delays using noise thresholding and dual-pass viterbi de-
coding to discard unreliable TDOA values (e.g. obtained from silence regions) and to avoid
delay switching in order to maximize speaker continuity.

2.3 Conventional ASR baseline system

In the 1970’s the researchers James Baker and Janet M. Baker and a few years later also Fred
Jelinek set a milestone in speech recognition by using hidden Markov models (HMMs) as a
statistical way to model the time evolution of speech with states and their transitions. At the
same time also the n-gram language model was introduced and has become a standard in the
statistical description of word patterns within a language8. Only little has been changed so far
and nowadays we often speak from a conventional ASR system when referring to a recognition
system based on these ideas.

Considering a sequence of spectral compact acoustic vectors Y = y1,y2, ...,yT extracted from
segments of the recorded speech signal by using an adequate signal processing technique, the
problem in speech recognition is to find the most probable word sequence w∗ = w1, w2, ..., wN
given Y , i.e finding w that maximizes the conditional probability:

w∗ = argmax
w

P (w|Y ). (2.2)

Solving this maximization problem is infeasible taking into account the sound diversity in the
human speech and a large language vocabulary with more than 10000 words. Thus, thanks to
Bayes’ theorem the search for w∗ can be split up into a product of two independent probabilities,
namely the one of computing the a-priori probability of the word sequence w and secondly the
calculation of the likelihood of the observation sequence Y given w. Thus, we can write

w∗ = argmax
w

P (Y |w)P (w), (2.3)

where the a-priori probability is determined by a language model (LM) and the likelihood is
provided from an acoustic model (AM). Please also note that the marginal probability of the
observation P (Y ) =

∑
w P (Y ,w) =

∑
w P (Y |w)P (w), part of the denominator in the Bayes’

theorem, does not influence the result of the maximization itself and is therefore neglected in
Equation (2.3). However, when comparing results among different ASR systems it is necessary
to reintroduce this scaling factor since it depends on the nature of the acoustic model.

A LM can be defined from strict grammatic rules of the language under investigation, like
context free grammars (CFG) or context sensitive grammars (CSG). However, these models
require a careful design (usually linguist experts are needed), have problems in robustness when
handling a large vocabulary and are ambiguous in their outcome. Hence, a statistical n-gram
model trained on a large text corpus is the preferred method to make statements on the proba-
bility of words in a sequence. To handle the large number of possible words in a language, it is
inpractical to gather observation statistics on word level and it makes sense to decompose each
word into smaller distinctive sounds called phones. For example the english language incorpo-
rates about 40 individual phone sounds, all produced by the speaker while varying the position
of the acoustic actors (e.g. lips, tongue, velar) in combination with an either voiced or unvoiced
excitation signal controlled with the function of the vocal folds (see also source filter model in
[8] for a more mathematical view on this). To execute the mapping from words to a decompo-
sition in phones, usually a handcrafted (by human experts) or an auto-generated pronunciation
dictionary is used.

8 More on the history of ASR can be found on https://en.wikipedia.org/wiki/Speech_recognition#History
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2 Baseline System

The acoustic model is a set of statistical hidden Markov models (HMMs), one for each indi-
vidual phone, which are concatenated according to the given word sequence to form a composite
HMM in order to compute the probability of that model given the acoustic observation sequence
Y . Each HMM is defined by states, state initial probabilities, transition probabilities among
those states and emission probabilities. For monophone acoustic models, each phone is repre-
sented by one state only, in contrast a triphone model has three different states to allow context
modelling with neighboring phones. For a deeper view into HMMs see also [9]. The emission
probabilities of the HMM are typically modelled using a mixture of Gaussian components,i.e. a
Gaussian mixture model (GMM), but recently also hybrid systems using deep neural networks
(DNNs) have been widely used and lead to a better recognition performance. For example the
work in [10] has made effective use of a time-delayed neural network (TDNN) for modelling long
temporal contexts in a hybrid system.

Both the HMM and the GMM parameters need to be learned from data. For a HMM the
Baum-Welch method is used to estimate the state and transition probabilities. Typically to
learn the parameters for the GMMs an iterative algorithm called expectation maximization
(EM) is employed. DNN training is performed with the backpropagation algorithm. For a more
in depth description of the conventional approach in speech recognition the reader is referred to
the explanations in [5] and [7].

GMM­HMM 
(MFCC) 

GMM­HMM 
(LDA­MLLT) 

GMM­HMM results
reference Kinect arrays

Training utterances
­ 100k Kinects
­ 70k worn (L)

DNN­HMM results

Acoustic Model (AM)

BEAMFORMIT 
CH2 
CH3 

CH1 

CH4 

FEATURE
EXTRACTION

(MFCC) 

LANGUAGE MODEL

(LM) 

GMM­HMM 
(fMLLR­SAT) 

DNN­HMM 
(TDNN) 

DECODING 

Figure 2.3: Main components of the conventional baselines system provided by the challenge organisers.
The ASR system comprises a in-domain LM and an AM trained on a random subset of Kinect
utterances together with all binaural utterances over various refinement training stages starting
from a simple monophone model up to a hybrid DNN-HMM model.

Figure 2.3 depicts the conventional baseline system (be aware that the very first processing
stage for array synchronisation is missing within this sketch). The acoustic model is trained on
a subset of the recorded utterances from the training sessions, comprising of 100000 utterances
randomly selected from the Kinect arrays and 70000 utterances from the speakers left channel
recordings of the binaural microphones. Speech enhancement is only applied on the development
reference Kinect recordings. The SRILM9 toolkit is used to train an in-domain LM and the pro-
nunciation lexicon is also constructed from the transcriptions with the help of Phonetisaurus10.
The following parts describe the acoustic model of the conventional baseline system in more
detail.

9 SRILM: SRI language modelling toolkit; for code see http://www.speech.sri.com/projects/srilm
10 Phonetisaurus: Lexicon construction using grapheme to phoneme conversion

– 16 – January 24, 2019

http://www.speech.sri.com/projects/srilm


2.3 Conventional ASR baseline system

2.3.1 Acoustic model

The baseline AM is trained over several stages, where a former trained GMM-HMM model
provides the phone-level alignments of the feature data in order to train a hybrid DNN-HMM
model in a supervised manner. First of all a monophone GMM-HMM model is trained from a
flat start (i.e. without any provided alignments) on MFCC features extracted from a subset of
the training utterances. The obtained alignments are then used to train a triphone model. This
follows two refinement stages that make use of feature-space and model-space transformation in
order to reduce the feature dimensionality, to enhance the phone class separability and also to
adapt the model to the speakers. Finally, lattice free maximal mutual information (LF-MMI) is
used to train the DNN of the hybrid system in a sequence discriminative manner.

Features are transformed using both, feature-space or model-space methods. Feature-space
approaches convert a feature vector X into a vector Y via a linear or non-linear transformation
operation T [11], i.e.

Y = T (X). (2.4)

This way the transformation solely applies to the feature vector and no model specific parameters
are changed. Linear discriminant analysis (LDA) and maximum likelihood linear transformation
(MLLT) are both feature-space methods and used in the baseline system to enhance the class
separability. Another way to fit the system to data distortions and noise is achieved through
model-domain methods. Hereby the transformation applies to the acoustic model parameters Λ
which is often more effective because the optimization process is directly linked with the ASR
objective, i.e.

Λ̂ = T (Λ,X). (2.5)

This usually leads to a significant gain in ASR performance while it requires more computational
time. The baseline uses feature space maximum likelihood linear regression (fMLLR) with
speaker-adaptive training (SAT) for model-domain transformation.

MFCC

Mel frequency cepstral coefficients (MFCCs) are the dominant features in speech recognition
to represent speech in a compact form. As illustrated in Figure 2.4 during feature extraction
the speech signal goes through several stages that are designed upon perceptual and statistical
properties of speech. In a first step the raw speech signal is processed with a pre-emphasis

Framing and
Windowing  FFT Pre­emphasis

filter 

Mel Filter
Bank 

Speech signal

MFCCsLogarithm  DCT 

Figure 2.4: Processing stages of the MFCC feature extraction.

filter to balance the amplitude spectrum, usually for speech the lower frequencies contain most
of the energy, while the upper part of the spectrum is low in amplitude. The filtered signal
is then split into overlapping (i.e. 50%) frames of length typically between 10 ms - 40 ms for
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2 Baseline System

which speech is assumed to be stationary. Applying a window to each of the frames (a hamming
window is typically used) helps to reduce spectral leakage. The Fourier transformation is used to
transform the time frames into the spectral domain. In practice, the fast Fourier transformation
(FFT) is applied in order to reduce the computational time. Following this, typically between
20 − 40 Mel-filterbank features are computed from the periodogram power spectral estimate
applying triangular filters. Important here is the applied non-linear spectral distribution of the
filters according to the Mel-scale that mimics the non-linear human ear perception of sound. By
taking the logarithm the log-filterbank energies are obtained. In a very last step a discrete cosine
transformation (DCT) decorrelates the obtained coefficients from the previous filter banks11.
Usually for ASR only the first 12 − 13 coefficients are used. Table 2.1 summarizes the most
important MFCC extraction settings used in the baseline system.

Setting Value

pre-emphsis coeff. α = 0.97
window-type “povey”
frame length 25 ms
frame shift 10 ms

mel-frequency bins 23
MFCC coefficients 13

Table 2.1: Essential MFCC extraction settings used in the baseline system. The “povey” window is similar
to the hamming window type, but with the property that it goes to zero at both edges.

LDA

Even though MFCCs are well established features in the field of ASR they lack from sparse
time context of the signal due to the applied short time window. In practice MFCC features
are therefore augmented by their differential and acceleration coefficients (first and second order
delta feature) to introduce more information on the speech dynamics. This consequently spans
the feature vector to maximal 100 ms. However, it has been shown by Yang et. al [12], that
the best accuracy in phone recognition is achieved for an observation window of about 200 ms.
One way to mitigate this drawback can be achieved by a former splicing of consecutive MFCC
feature frames with an additional transformation to reduce the obtained dimensionality. A
common method is called linear discriminant analysis (LDA), which tries to find a projection of
the original feature to a subspace by maximizing the between-class and minimizing the within-
class scatter matrix [13]. In this sense classes can be modelled by phones or even by HMM
states. The transformation in general allows a better discrimination of the classes and has been
shown to be beneficial for ASR [14].

LDA is a generalisation of Fisher’s linear discriminant [15] and applies to an arbitrary number
of classes. It performs a dimensionality reduction from the D-dimensional observation to the
P -dimensional feature space using a linear projection matrix W . Since projection onto a lower
dimension may lead to significant loss of information, W underlies a careful design aiming to
maximize the between-class variation while simultaneously minimizing the within-class variation
to prevent classes from overlapping. With J number of classes and Nj data samples per class

11 See also the explanation at https://haythamfayek.com/2016/04/21/speech-processing-for-machine-learning.
html
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2.3 Conventional ASR baseline system

the mean µj and the covariance matrix Sj of a normal distributed class j is given with

µj =
1

Nj

Nj∑
i=1

xji (2.6)

Sj =
1

Nj

Nj∑
i=1

(xji − µj) (xji − µj)T , (2.7)

where xji is the ith sample from class j. With the assumption of identical class covariances(
Sj = S, j ∈ {1, ..., J}

)
the within-class covariance SW and the between-class covariance SB

can be defined as

SW =
J∑
j=1

Sj (2.8)

SB =
J∑
j=1

Nj (µj − µ) (µj − µ)T , (2.9)

where µ = 1
N

∑N
i=1 xi is the global mean and N =

∑J
j=1Nj is the total number of samples.

The linear transformation from the observation into the subspace is accomplished with

y = W Tx. (2.10)

Applying this transformation to the mean and the class covariance defined in Equation 2.6 and
2.7 respectively, we can write the corresponding expressions in the subspace:

µ̃j =
1

Nj

Nj∑
i=1

W Txji = W Tµj (2.11)

S̃j =
1

Nj

Nj∑
i=1

(
W Txji −W Tµj

) (
W Txji −W Tµj

)T
= W TSjW . (2.12)

With this we can write the corresponding within-class and between-class covariances after the
applied transformation, i.e.

S̃W = W TSWW and (2.13)

S̃B = W TSBW . (2.14)

The optimal solution to this problem is given by the transformation matrix W that maximizes
the quotient

J(W ) =
|S̃B|
|S̃W |

=
|W TSBW |
|W TSWW |

. (2.15)

A solution can be found by taking the first p eigenvectors of the matrix S−1W SB for a p-
dimensional projection, as derived in [16].

MLLT

In a GMM-HMM model, the observation probabilities of the HMM states are modelled with
Gaussian mixture models (GMMs). A standard GMM with N components and parameters
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Θ = {wi,µiΣj}Ni=1 has the form

p(x|Θ) =

N∑
i=1

wiN (x|µi,Σi). (2.16)

Usually a constrained diagonal covariance matrix Σ is used under the assumption of statisti-
cal independent feature components, mainly to reduce the number of parameters to learn but
also to overcome noisy parameter estimates due to data sparsity. Maximum likelihood linear
transformation (MLLT) is a technique for linear transforming the features so that the structural
diagonal constraint in the covariance matrix is more valid by means of maximum likelihood [17].

MLLR

Maximum likelihood linear regression (MLLR) is an acoustic model adaptation technique that
transforms the means and the covariances of class separated GMM distributions using indepen-
dently estimated transformation matrices. A common usecase for this kind of transformation
is the adaptation of the HMM states emission distributions of the acoustic model towards a
channel, an acoustic scene or a specific speaker. Unlike in maximum a-posteriori estimation
(MAP), where only model parameters seen in the adaptation data are updated, in MLLR the
same transformation applies to a regression class (i.e multiple states or a set of phonemes) and
therefore a respectively smaller set of adaptation data is required. A regression class is a set of
Gaussian distributions and can be obtained by building a regression class tree. Hence, even if
the available adaptation data is tiny, a single transformation can still be applied to a class incor-
porating all emission distributions. In doing so, the transformation itself maintains the weights
of the individual Gaussians of the speaker independent model [6,18,19]. Figure 2.5 demonstrates
the MLLR transformation of a group of four two-dimensional Gaussian distributions. Note that
each individual distribution is moved in the same direction. With D being the dimension of the
observation space, the general transformation of the mean vector and the covariance matrices is
given as

µ̂ = Aµ+ b and (2.17)

Σ̂ = HΣHT , (2.18)

where A and H are both D × D dimensional transformation matrices and b an additive D-
dimensional vector to be obtained from the data using maximum likelihood. A solution to the
problem and additional implementation issues are provided in [6].

Figure 2.5: Example of MLLR adaptation in a two-dimensional feature space, taken from [19]. Four Gaus-
sians are grouped into one class, as illustrated by the rectangle frame, and equally transformed.
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2.3 Conventional ASR baseline system

fMLLR

Constrained maximum likelihood linear regression (CMLLR) is a constrained version of the more
general MLLR method described above. It is still a technique to adapt the model parameters,
however due to a single applied adaptation matrix for both the mean and the variance the number
of parameters to estimate is smaller, hence less adaptation data is required. The general mean
and variance transformation is given with [6]:

µ̂ = Aµ+ b (2.19)

Σ̂ = ATΣA (2.20)

Due to this constraints a feature transformation can be found that behaves equivalent as adapting
the model itself, simply by taking the inverse of the CMLLR feature matrix. The modification
of the feature vector xt at time t can be written as

x̂t = A−1xt +A−1b. (2.21)

Therefore, this method is often called feature space maximum likelihood linear regression (fM-
LLR). This is actually very powerful in a way that given an acoustic model, the fMLLR ma-
trix can be estimated separately for each speaker to transform the features towards a uniform
speaker12.

SAT

Typically speaker adaptation starts from a speaker independent model trained on data from
multiple speakers which gets adapted towards a speaker present in the test data. Authors in
[20] proposed speaker adaptive training (SAT) that already uses either MLLR or CMLLR/fM-
LLR transformations during model training in order to reduce the speaker variation and the
variations between channels or acoustic conditions. The baseline makes use of fMLLR/SAT
adaptive training. In fMLLR/SAT the training data is grouped by speakers. After an initial
model training on the full training data fMLLR transformations are computed from the data
corresponding to a specific speaker. Each of the transformations is then applied to the acoustic
feature vectors, which are used to reestimate the model parameters. The whole process can be
repeated until convergence (see also the explanations in [19]).

TDNN

The nature of speech is sequential with long time dependencies among its acoustic features.
Modelling of these temporal relations within a neural network can be achieved either by con-
catenating contiguous input feature vectors to construct a certain context or by using network
architectures that are capable to exploit time dependencies such as recurrent neural networks
(RNNs). However, the recurrent connections in a RNN structure make parallelized training with
multiple computational resources, like CPUs or GPUs, not expoitable in the same way how it
can be achieved for feed-forward neural networks. In order to make use of parallelized training
while modelling a long temporal context at the same time, the baseline system employes a time
delayed neural network (TDNN) [10].

In a feed-forward neural network the activation a
(k)
i of neuron i at layer k is typically computed

by a weighted summation over the J previous layer outputs vk−1 as follows

a
(k)
i =

J∑
j=1

w
(k)
ij v

(k−1)
j . (2.22)

12 For an more detailed overview on fMLLR see also http://data.cstr.ed.ac.uk/asr/2017-18/asr-lec11.html
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2 Baseline System

For a TDNN the activation of the neural unit not only depends on the current, but the delayed
inputs as illustrated in Figure 2.6. The temporal width is defined by the number of delays N .

Hence, we can formulate the activation value a
(k)
i as an element wise sum over the weighted

current and delayed inputs

a
(k)
i =

J∑
j=1

N∑
n=0

w
(k)
ij+nv

(k−1)
j+n . (2.23)

In this way the inherent structure of a feed-forward network is maintained and a temporal
context is constructed with the introduced delayed input frames. However, training of this

DN 

D1 

vJ(k­1) wiJ+N(k)

wiJ+1(k)

wiJ(k)

DN 
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v1(k­1) wi1+N(k)

wi1+1(k)

wi1(k)

ai(k)
+ f

Figure 2.6: TDNN neural unit redrawn from [21]. The input to the activation function f is the sum over
the weighted delayed inputs.

network can be expensive, as the number of multiplications increases exponentially with the
number of introduced delays N . Therefore, often sub-sampling is applied as described in [10].
The basic idea of sub-sampling is to skip the calculation for a majority of hidden activations
in each layer in a structured way, to allow information from all input time steps to influence
the network output while keeping the number of hidden layer activations to be evaluated low.
An example how this method works is illustrated in Figure 2.7 for a network with four layers,
where each rectangle represents a data frame at time t. Using an input context of [−2,+2] with
a subsequent context of [−1, 2], [−3, 3], [−7, 2] for the three upper layers, requires to compute
activations for each time step. The sub-network in red splices together the input frames [−2, 2]
and {−1, 2}, {−3, 3}, {−7, 2} for the upper layers. With this the computational cost is reduced
by a factor of∼ 10. For acoustic modelling in the baseline system, a TDNN with 8 layers, rectified
linear unit (ReLU) activations, and context specifications as listed Table 2.2 is employed.

LF-MMI

A neural network with multiple classes is typically trained in a discriminative manner. The
sigmoid function at the last layer forces the sum of the class probabilities to 1, i.e. a higher
probability for a specific label results in a probability decrease of the other outputs. In speech
recognition the output labels are frame tight (i.e. phones) and the weights are adjusted in
order to minimize the cross-entropy error. Sequence discriminative training with maximum
mutual information (MMI) can be performed, although it requires an initial cross-entropy pass

– 22 – January 24, 2019



2.4 Baseline results

Figure 2.7: Computation of TDNN network output with sub-sampling (red) and without sub-sampling (blue
+ red) taken from [10].

Layer Input context

1 {0}
2 {−1, 0, 1}
3 {0}
4 {−1, 0, 1}
5 {0}
6 {−3, 0, 3}
7 {−3, 0, 3}
8 {−6,−3, 0}

Table 2.2: Input context (frames) for each layer of the baseline TDNN architecture.

in order to generate the alignments, the lattices and also to initialize the networks weights.
MMI improves the recognition accuracy as demonstarted in [22]. However, the training is quite
expensive due to the required initial cross-entropy training and because of the time and resources
needed to build and store the lattices. Lattice free maximum mutual information (LF-MMI)
is a more state-of-the-art discriminative training procedure for neural networks that does not
require an initial cross-entropy model and pre-generated lattices. Instead the total likelihood in
the denominator is calculated directly using forward-backward computations. To speed up the
overall training, serveral tricks are used as reported in the original paper [23].

2.4 Baseline results

The official baseline results on the development set for both the conventional and the end-to-end
baseline system are presented in Table 2.3. The hybrid model (DNN-HMM) introduces a great
improvement in recognition accuracy. The end-to-end (E2E) ASR system does not perform well
with this amount of training data. Compared with the binaural microphone results in Table 2.4
we can conclude that the performance lacks mainly from the distance of the speakers to the
microphone arrays, as the recognition accuracy obtained using the close-talk recordings is much
higher.
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Session S02 S09
Overall

Location Kit Din Liv Kit Din Liv

GMM-HMM 93.9 91.4 90.8 90.8 90.9 88.1 91.7
DNN-HMM 86.6 79.1 78.4 82.6 81.7 77.9 81.1

E2E - - - - - - 94.7

Table 2.3: Published WER [%] results on the development set using the reference Kinect array with beam-
forming (single-array track) for the conventional (GMM-HMM), hybrid (DNN-HMM) and end-
to-end (E2E) system.

baseline Dev

GMM-HMM 72.8
DNN-HMM 47.9

E2E 67.2

Table 2.4: Baseline WERs [%] for the binaural close-talk microphones. The actual recording from the speak-
ers microphone was used for decoding (oracle).
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Channel Selection for Distant ASR

3
Dataset

The 5th CHiME challenge [1] considers the problem of distant multiple-microphone conversa-
tional speech recognition in everyday home environments. The title itself describes the issue of a
very realistic dataset and problem. In the current chapter the data is described in more detail.
The information was taken from the challenge’s website13, onto which the reader is referred for
a full description on the challenge data collection and preparation.

3.1 CHiME-5 corpus

3.1.1 Background

In general data was elicited from 20 dinner party scenarios taking place in real homes with a
mixed group of 4 participants over an average duration of 2 hours. Each session was hosted
in a different home with different speakers. The concept of conversational speech describes the
scenario of multiple speakers behaving naturally without any script, i.e a causal and informal
talk. This is often characterized by a remarkable degree of spontaneous and overlapping speech,
which makes especially the applicability of conventional multiple-microphone speech enhance-
ment techniques challenging. The term part of everyday home environments depicts the specific
surrounding in which the speakers are located and move around. Specifically, it addresses the
scenario of a dinner party, with all kind of noise sources imaginable to fit this type scenario.
One can think of stationary noise signals coming from the air conditioning system or the oven,
but also high energy and short time noises emitted by kitchen utensils which distract the speech
and mitigate the SNR. However, we do not need to deal with other speech sources from radios
and television devices, since they were switched off during recording time due to licensing is-
sues. Furthermore, the participants were encouraged to change room every 30 minutes between
kitchen, dining room and living room. This naturally involves a switch of the acoustic environ-
ment, hence an additional degree of freedom to consider and probably to put to good use while
designing the overall ASR system. All this is recorded using multiple microphones, some placed
within the rooms in distance to the speakers and others worn by the speakers itself. As close-talk
microphones, a set of Soundman OKM II Classic Studio binaural microphones are used and the
audio from these is recorded via Soundman A3 adapter onto Tascam DR-05 recorders. The
close-talk recordings were required to facilitate the manual transcriptions.

3.1.2 Audio data

The recordings from the 20 different dinner parties are split up into three sets for training,
development and evaluation. The training set comprises 16 sessions and 2 sessions are assigned
for each development and evaluation set. Each session was recorded by six distant microphone
arrays and additional binaural microphones, one for each speaker. Tables 3.3, 3.1, 3.2 list details
on the recorded sessions for the training, development and evaluation set, respectively. The

13 CHiME-5 challenge website: http://spandh.dcs.shef.ac.uk/chime_challenge/
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3 Dataset

Session ID Participants (Bold=Male) Duration #Utts Notes

S02 p05, P06, P07, p08 2 : 28 : 24 3, 822
S09 p25, p26, p27, p28 1 : 59 : 21 3, 618 U05 missing

Table 3.1: Development sessions.

Session ID Participants (Bold=Male) Duration #Utts Notes

S01 p01, p02, P03, p04 2 : 39 : 04 5, 797 No registration tone
S21 P45, p46, P47, p48 2 : 33 : 20 5, 231

Table 3.2: Evaluation sessions.

Session ID Participants (Bold=Male) Duration #Utts Notes

S03 P09, P10, P11, P12 2 : 11 : 22 4, 090
P11 dropped from

min 15 to 30
S04 P09, P10, P11, P12 2 : 29 : 36 5, 563

S05 P13, p14, p15, P16 2 : 31 : 44 4, 939 U03 missing (crashed)
S06 P13, p14, p15, P16 2 : 20 : 06 5, 097
S07 p17, P18, p19, P20 2 : 26 : 53 3, 656
S17 p17, P18, p19, P20 2 : 32 : 16 5, 892
S08 P21, P22, P23, P24 2 : 31 : 35 6, 175
S16 P21, P22, P23, P24 2 : 32 : 19 5, 004

S12 P33, P34, P35, p36 2 : 29 : 24 3, 300

Last 15 minutes

of U05 missing

(accidentally turned off)
S13 P33, P34, P35, p36 2 : 30 : 11 4, 193
S19 p49, P50, P51, p52 2 : 32 : 38 4, 292
S20 p49, P50, P51, p52 2 : 18 : 04 5, 365
S18 p41, P42, p43, p44 2 : 42 : 23 4, 907
S22 p41, P42, p43, p44 2 : 35 : 44 4, 758 U03 missing

S23 p53, P54, P55, p56 2 : 58 : 43 7, 054 Neighbour interrupts

S24 p53, P54, P55, p56 2 : 37 : 09 5, 695
P54 mic unreliable,

P53 disconnects for bathroom

Table 3.3: Training sessions.

session is tagged with a unique session id, it has four participants and a minimal duration of
two hours. What makes this dataset interesting and also challenging for the speech recognition
system design, are its few restrictions in how the data is collected. Between sessions we can
find large differences in the acoustical environment, the gender of the participants and in the
position of the array microphones. Particularly speaking, each session was held in a different
flat with different floor plans, from tiny apartments with a traditional room separation up to
large open plan spaces with few walls (see Figure 3.2 for two example floor plans). This creates
a dataset with a wide range of acoustical scenarios that makes each session unique. Therefore
also the placement of the Kinect arrays is not prescribed and it is only important that at
least two arrays cover one room (kitchen, dining room, living room). For pictures of example
rooms see Figure 3.1. Besides the environment, different participants for most of the sessions
introduce a further versatility among sessions. Hereby it is important to point out the variance
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(a) kitchen (b) dining room (c) living room

Figure 3.1: Example rooms in which the recording of the dataset took place.

in the proportion of men and women among training, development and evaluation set. In the
training set we can count a mean of 2.5 men per session and an overall men to woman ratio of
40/24, whereby in the development and evaluation set the presence of female speakers is more
dominant with 3 women and 2.5 women, respectively. The amount of utterances per session
count from 3300 in session S12 to a maximum of 7054 in session S23. The comparable few
numbers of utterances in the development set is of remark. Furthermore individual sessions leak
on recording data, mostly due to unpredictable behaviors of the recording equipment, details
on this are listed in the the last line of the tables. Concluding, a first glance on the CHiME-5
dataset at abstract level already reveals interesting information on its content, structure and it
is somehow evident that work needs to be done in different stages of the recognition system in
order to deal with the high variability and the sparse development set that might make system
validation and comparison difficult.

3.1.3 Transcriptions

The transcriptions of the recorded material have been manually annotated with the help of
the binaural recordings and stored within json files, one file per session. Apart from the tran-
scriptions, each entry of the json file contains additional information on the recorded data (e.g
speaker id and location) and the array alignments ( see Section 2.1). A transcription example
for an utterance from session S02 of the development set is depicted in Listing 3.1. All other
utterance transcriptions are structured in the same way containing manually annotated start
and end times for the binaural recordings, its corresponding aligned times for the Kinect arrays
”U01-U06”, as well as speaker and session ids. ”location” and ”ref” array are only provided
for development and evaluation set (not for the training set). The tags listed in Table 3.4 are
applied in cases of non verbal utterances.

1 {
2 ” end time ” : {
3 ” o r i g i n a l ” : ” 0 : 0 0 : 4 3 . 8 2 ” ,
4 ”U01 ” : ” 0 : 0 0 : 4 3 . 8 5 ” ,
5 ”U02 ” : ” 0 : 0 0 : 4 3 . 8 4 ” ,
6 ”U03 ” : ” 0 : 0 0 : 4 3 . 8 3 ” ,
7 ”U04 ” : ” 0 : 0 0 : 4 3 . 8 3 ” ,
8 ”U05 ” : ” 0 : 0 0 : 4 3 . 8 2 ” ,
9 ”U06 ” : ” 0 : 0 0 : 4 3 . 8 2 ” ,

10 ”P05 ” : ” 0 : 0 0 : 4 3 . 8 2 ” ,
11 ”P06 ” : ” 0 : 0 0 : 4 3 . 8 2 ” ,
12 ”P07 ” : ” 0 : 0 0 : 4 3 . 8 2 ” ,
13 ”P08 ” : ” 0 : 0 0 : 4 3 . 8 2 ”
14 } ,
15 ” s t a r t t i m e ” : {
16 ” o r i g i n a l ” : ” 0 : 0 0 : 4 0 . 6 0 ” ,
17 ”U01 ” : ” 0 : 0 0 : 4 0 . 6 3 ” ,
18 ”U02 ” : ” 0 : 0 0 : 4 0 . 6 2 ” ,
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19 ”U03 ” : ” 0 : 0 0 : 4 0 . 6 1 ” ,
20 ”U04 ” : ” 0 : 0 0 : 4 0 . 6 1 ” ,
21 ”U05 ” : ” 0 : 0 0 : 4 0 . 6 0 ” ,
22 ”U06 ” : ” 0 : 0 0 : 4 0 . 6 0 ” ,
23 ”P05 ” : ” 0 : 0 0 : 4 0 . 6 0 ” ,
24 ”P06 ” : ” 0 : 0 0 : 4 0 . 6 0 ” ,
25 ”P07 ” : ” 0 : 0 0 : 4 0 . 6 0 ” ,
26 ”P08 ” : ” 0 : 0 0 : 4 0 . 6 0 ”
27 } ,
28 ”words ” : ” [ laughs ] It ’ s the blue , I th ink . I th ink . ” ,
29 ” speaker ” : ”P05” ,
30 ” r e f ” : ”U02” ,
31 ” l o c a t i o n ” : ” k i t chen ” ,
32 ” s e s s i o n i d ” : ”S02”
33 } ,

Listing 3.1: First utterance belonging to the transcription file of session S02 of the development
set. The aligned utterance start and end times are denoted for the binaural
microphone and the Kinect arrays. Additional to the transcription itself, information
on the speaker, the reference Kinect, the location and the session id is provided
(available information varies among training, development and evaluation set).

Tag Meaning

[noise]
denotes any non-language noise made by the speaker

(ex: grunts, coughing, loud, chewing, loud lip smacking etc.)

[inaudible]
denotes speech that is audible
but not clear enough to be transcribed

[laughts] denotes an instance where the participant laughs

[redacted]
are parts of the signals that have been zeroed out

for privacy reasons (speaker id not given)

Table 3.4: Transcription tags used to name non speech and unintelligible utterance parts of the recordings.

3.1.4 Floor plans

Floor plans for all sessions are provided. Figure 3.2 illustrates the floor plans from both sessions
of the developments set; the ones for the training set can be found in Section C.1 of the Ap-
pendix. It is worth to notice that the room partitioning highly varies among apartments from
conventional flats with wall separated rooms to open space designs where sounds can propagate
freely within the apartment. Especially for the open spaced scenarios each Kinect array can be
a candidate to deliver a good recording, even when it is positioned far away from the speakers.
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(a) Session: S02 (b) Session: S09

Figure 3.2: Floorplans of both development sessions. The location and orientation of the six Kinect arrays
are marked in red.

3.2 Recordings

Multiple microphones, including 6 Kinect arrays and 4 binaural microphones (6×4+4×2 = 32)
were used to collect conversation material from 20 dinner parties. Listening to randomly parts
of the recordings and comparing different channels is a good way to get a first glance of the data.
Figure 3.3 illustrates the spectrograms and the time domain representations of an utterance from
session S02 for an arbitrary selected Kinect microphone channel and its corresponding recording
from the left channel of the binaural microphone. This recording slice contains laughter followed
by a female utterance with background noises from the kitchen, like clanking pots.
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(a) Recording of channel CH1 from Kinect device U01.
ID: P05 S02 U01 CH1 KITCHEN-0015986-0016650
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(b) Left channel of the binaural recorded audio from mi-
crophone with speaker id P08. ID: P05 S02 KITCHEN-
0015991-0016655

Figure 3.3: Spectrogram and time domain representation of an utterance from speaker P05 extracted from
the development session S02.

Presented very well in both figures is the difference in the dynamic range of the signals. The
Kinect recordings are usually much louder as observable in the time domain in Figure 3.3. They
clip very often, not only during parts with laughter. This is due to the far distance of the array
to the speakers, which demands for a higher microphone gain to capture each utterance at an
adequate level. Consequently, background noises are more prominent and the overall SNR is
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low. On the other hand the binaural recordings present small amplitudes in most of the recorded
sessions, but nevertheless transient noises still disturb the speech signal. Moreover, at least from
a listening point of view, no major signal quality differences are audible among Kinect channels.

3.3 Simultaneous speech

A key point what makes a proper recognition of the recorded utterances very challenging, is
the amount of overlapping or simultaneous speech as an integral part of conversational speech.
Using the time information from the transcriptions, a rough analysis on the occurrence of cross-
talk situations for each session can be made. The obtained results are depicted in Figure 3.4.
For each session a histogram presents the percentage of non-speech duration as well as overall
duration on single, double, triple and quadruple talk over the course of a session. Even if the
share of single talk dominates, most of the sessions incorporate also a remarkable amount of
double talk. An interesting fact is the difference in simultaneous speech between sessions from
the training and the development set. Both development sessions show a smaller amount of
sections without speech and more simultaneous speech from two or three speakers. This might
be one reason to justify the poor baseline recognition results on the development set in Table 2.3.
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Figure 3.4: Percentage of no talk, single, double, triple and quadruple talk for each session. Statistics for the
sessions part of the training set are grey colored, the ones from the development set are presented
in green color and the remaining two sessions from the evaluation set in red.
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4
Channel Selection and Fusion

The following section introduces a channel selection method to increase the recognition accuracy
on the development set. Therefore we start the discussion with the main idea behind channel
selection in Section 4.1. Training of a channel classifier requires the ground truth, which is
obtained by an oracle. The definition and further introduction to the oracle analysis is going
to be explained in Section 4.2. The major part of this chapter deals with appropriate feature
extractions directly from the signal or the ASR decoder in Section 4.3. Finally, we introduce
ROVER in Section 4.3 as a way to combine different hypotheses.

4.1 Channel selection

The setup how the challenge data was recorded comprises a large amount of microphone chan-
nels to gather the conversations from different locations within the apartments. Due to this
distributed setup each microphone is placed with a different distance and angle towards the
speaker(s). Utterances are even recorded from rooms where the speakers not reside. In this way
each channel somehow records an individual representation of the spoken utterance within the
environment, that in particular depends on the distance to the speaker, the reverberation and
the noise distortion present at the microphones position at a certain point in time. Consequently,
utterance recordings may vary strongly between channels and we can assume that there is one
channel or a set of several channels that gather the spoken utterance with less distortions, or
that fit the properties of the acoustic model better.

The idea behind channel selection is to select the channel that provides the highest recognition
accuracy for subsequent decoding. Since the WER information is unknown for unseen data, it is
required to find proper features to allow a correct ranking and successive selection of the channels.
Suitable for this are either signal-based features, directly extracted from the recordings with the
help of signal processing techniques, or features derived from the ASR decoding stage, denoted
as decoder-based features.

A simple form of channel selection is already employed in the single-array track of the chal-
lenge. Here the additional visual information recorded from the onto the Kinect mounted video
cameras is used to select a reference Kinect device accordingly to the estimated speaker distance.
As this is a very rough selection process, there is hope to do better using more sophisticated
features and methods as we propose in this work.

We approach channel selection in two ways. First of all the extracted features can directly
be used to rank the channels; this method is titled as feature direct classification. The second
method employs the features to train a deep neural network (DNN) to be capable of classifying
and ranking the channels quality. In order to train this network in a supervised manner, target
labels are required that are obtained from an oracle analysis as described in the following section.
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4.2 Oracle

We may come across various definitions when searching for the word “oracle” on the internet. On
wikipedia the first appearing sentences explain the word as “[...] a person or agency considered
to provide wise and insightful counsel or prophetic predictions or precognition of the future,
inspired by the gods. As such it is a form of divination.”14

In the field of speech recognition we can define the oracle as a fully informed tool used to
check the possible improvement in the recognition accuracy when employing a channel selection
technique, exploiting the knowledge how each individual hypothesis scores. Hence, it executes
a helpful analysis to estimate the ASR performance when picking always the hypothesis that
provides the lowest WER and can furthermore be used to rank the available channels. Of course
this is only possible when the reference transcriptions are provided, since they are necessary in
order to compute the WER for each candidate hypothesis, which is not the case for unseen data.
The main steps consist of decoding each utterance with a fully trained ASR system, followed
by hypotheses ranking. The main drawback of this analysis is the huge computational power
required for the decoding steps in order to generate all the hypotheses.

4.3 Features

Appropriate features are required that contain valuable information on the quality of the channel
recording with strong relations to the oracle results and the outcome of the ASR system. The
features are key to make this idea of channel classification even possible and therefore require
great attention. In general we can distinguish between two main types of features, signal-based
and decoder-based features. The former ones are directly obtained from the time signals of the
recorded utterances, whereby for the latter ones information is extracted from the ASR model
(i.e. DNN posterior probabilities). Decoder-based features are therefore closer to the striving
goal, since they are obtained from behind the ASR chain. In the following we discuss on four
signal-based and two decoder-based features, used to train the channel classifier as described in
Chapter 5.

4.3.1 Signal energy

We compute the normalized energy of the recorded utterance u as

xum[n] =
1

Ne −Ns + 1

Ne∑
n=Ns

|sum[n]|2, (4.1)

where sum is the signal from microphone m and Ns and Ne the start and end time of the utterance
u in samples, respectively. The scaling ensures that energies among channels are independent
from the signal length. The final feature vector for utterance u is then composed by the signal
energies from M different channels xu = [xu1 , x

u
2 , . . . , x

u
M ]T .

4.3.2 Time Delay of Arrival (peak)

The time a signal requires to get from the transmitter (sender) to the antenna of the receiver is
denoted as the time of arrival (TOA) or the time of flight (TOF). Likewise in telecommunications
the same value is used to describe the time duration of an acoustic signal (e.g. speech) from its
origin to a microphone. Once several microphones are used for recording, we can furthermore

14 https://en.wikipedia.org/wiki/Oracle
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determine the delay of arrival among the different microphones, that will obviously depend on
the position of the microphones and the position of the source itself. This delay in time is
known as the time delay of arrival (TDOA) and describes the time difference in the arrival of
a signal between a target microphone and a reference microphone. Knowing the position of
both microphones and the propagation speed of the signal, the TDOA can be used to estimate
the source position but also to track a speaker over time if the quantity is computed in an
online-fashion. Here a degree of freedom is the length of the analysis window, that influences
the tracking resolution and the robustness of the estimate. Compared to the TOA, for the
TDOA no information on the exact start time of transmission is needed, since the location is
inferred from the time delays. The obtained steering direction is often used in a beamformer
for enhancement purposes. A classical way to estimate the TDOA between a signal xi[n] and a
reference signal xref [n] uses the delay d that maximizes the cross-correlation between the two
segments:

Ri,ref (d) =
N∑
n=0

xi[n]xref [n+ d]. (4.2)

A main drawback of this method is the high sensitivity of the outcome on the noise and the
reverberations. This is of even more concern when speech is recorded from far-field, since with
the distance to the speaker usually the acoustics has greater impact on the overall recorded
signal and might affect the correctness of the outcome (see also [4]). Compared to equation
(4.2) the GCC-PHAT15 is often a preferred method to estimate this time delay. It computes
the cross-correlation and performs an amplitude normalization in the frequency domain that
results in a sharper peak in the final time-domain representation. The normalization in the
computation is important especially when comparing peak values of the cross-correlation from
different microphones. The GCC-PHAT can be written as:

R̂i,ref (d) = F−1
(
Xi(f)X∗ref (f)

|Xi(f)X∗ref (f)|

)
, (4.3)

where Xi(f) and Xref (f) are Fourier transformed signals, F−1 denotes the inverse Fourier
transform and ∗ is the hermitian. Following the results obtained from Equation (4.3) the TDOA
is the delay d that maximizes the estimate:

TDOAi,ref = argmax
d

(
R̂i,ref (d)

)
(4.4)

We can use the GCC-PHAT results directly to estimate the Kinect device closest to the speaker
under the assumption that the peak in the correlation is more distinctive and has a larger value
if the device is closer to the sound source. This is motivated by the fact that the ratio of direct
sound to early reflections and reverberation decreases with the distance to the speaker.

4.3.3 Envelope variance

It has been shown in [24] that room reverberation distorts the speech signal and increases the
WER of the speech recognition result. Hence, it could be possible to estimate the WER of a
recorded utterance with the help of a proper feature that contains information on the amount of
this distortion within a signal. As reported in [25] a potential approach is to make use of the fact
that reverberation smooths the time sequence of the speech energy values and consequently has
an impact on the dynamic range of the time envelope. From this we can infer that the speech
signal with the largest dynamic range must be the one obtained from a microphone that was

15 GCC-PHAT - generalized cross-correlation phase transform
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either positioned very close to the speaker or within a good acoustic environment. Usually the
reverberation depends on the frequency, which we can exploit to further increase the informative
value of this feature. In the following the feature is derived as reported in [26].

In order to construct the envelope variance feature vector we first compute the Mel-scaled
filterbank energies from the speech signal xm[n] of microphone m. This is the same proceeding
like computing MFCC features, but without computing the cepstral coefficients. From this we
get one vector for each frame l that contains k energy values, one for each Mel-sub-band. One
element of this vector is denoted as xm[k, l]. Next, the mean of each sub-band is subtracted in
the log domain.

x̂m[k, l] = elog(xm[k,l])−µlog(xm[k])) (4.5)

This should compensate for any inequalities among microphones, like different gain settings. In
the following the spectral energies are compressed using a non-linear cubic root function and
the variance is computed for each sub-band as

Vm[k] = var(x̂m[k, l]
1
3 ). (4.6)

With this we get a representation of the dynamic energy range for each sub-band and channel.
The envelope variance over the frequency range can then be computed by summing over the
weighted normalized variances. The normalization is required in order to obtain a final channel
variance value in the range between 0 and 1. The weighting of each channel wm[k] is used
to compensate for higher distortions in individual sub-bands and should be learned from data.
Channel C with the highest variance is the one that has the lowest reverberation distortions,
i.e.

C∗ = argmax
m

∑
k

wm[k]
Vm[k]

max
m

(Vm[k])
. (4.7)

The weighting should accumulate to 1 and can be either manually set or learned from data.

4.3.4 Mel-filterbank

The Mel filterbank features are likewise to the MFCC feature extraction depicted in Figure 2.4,
without the last two steps of computing the logarithm and the discrete cosine transformation
(DCT). With usually 40 different bands for each channel and frame, this is by far the most data
expensive feature among the other presented features.

4.3.5 Average Posterior Entropy

So far, the features were derived directly from the channel signals with the help of simple
calculations and standard transformations. Another way to estimate the quality of a channel
can be achieved from the recognizer’s point of view by considering the output confidence of the
acoustic model. In general, for each acoustic input feature vector xmt of channel m at time instant
t, the AM results a stream of posterior probabilties pmt = [p(s1,x

m
t ), p(s2,x

m
t ), . . . , p(sN ,x

m
t )]T ,

one value for each HMM state si. From this distribution the uncertainty of the model outcome
can be determined using the entropy measure as follows:

Hm
t = −

∑
s

pmt · log2 (pmt ) . (4.8)

The entropy is a measure of information. Hence, it can be used to evaluate the uncertainty in
the AM phone posterior probability predictions, where a high entropy value stands for a high
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uncertainty in the model outcome and a lower value reflects more confidence in the predicted
phone posteriors. In order to get a measure on utterance-level, entropies are averaged among
frames. Figure 4.1 depicts the averaged posterior entropy feature for session S02 and S09 of the
development set. For visualization purpose the entropy values are normalized within a session
to lie in the range between 0 and 1 (plots for the training sessions are located in Section B.1 of
the Appendix).
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(b) Session: S02

Figure 4.1: Normalized average posterior entropy feature over utterances for both session of the development
set.

4.3.6 Average posterior moments

In principle the DNN posterior probabilities are expected to be more fuzzy for uncertain predic-
tions of the acoustic model. Apart from using the entropy as an estimate on the certainty of the
predicted phone posteriors (as described in Section 4.3.5), we now make the rough assumption
of a Gaussian posterior distribution and compute the first four moments, i.e. the mean (4.9),
variance (4.10), skewness (4.11)and the kurtosis (4.12). This means, we collect all posterior
probabilities p(si,x

m
t ) for each state si and time frame t belonging to an utterance u of a certain

channel m and compute the four statistical values with:

µmu =
1

N

∑
i∈S

∑
t∈T

p(si,x
m
t ), (4.9)

σmu =

√
1

N

∑
i∈S

∑
t∈T

(p(si,xmt )− µmu )2, (4.10)

γmu =
1
N

∑
i∈S
∑

t∈T (p(si,x
m
t )− µmu )3√

1
N−1

∑
i∈S
∑

t∈T (p(si,xmt )− µmu )3
, and (4.11)

κmu =
1
N

∑
i∈S
∑

t∈T (p(si,x
m
t )− µmu )4(

1
N

∑
i∈S
∑

t∈T (p(si,xmt )− µmu )2
)2 − 3, (4.12)
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where N = |S| · |T | is the number of posteriors, i.e. the number of phone states S times the
number of frames T for utterance u.

4.4 ROVER

A very effective method to further reduce the transcription errors is the combination of hy-
potheses from different regonizers or channels using the recognizer uutput voting error reduc-
tion technique, in short ROVER [27]. The main idea behind ROVER is to make use of the
differences in the transcription errors of each system (or decoded microphone channel) in order
to generate a final best transcription from the combined word transition network (WTN) with
respect to a certain voting scheme. A WTN is a linear graph that is made up of a sequence
of nodes and multiple arcs connecting each pair of adjacent nodes. Each arc corresponds to a
word or an empty symbol (i.e.“@”). The algorithm comprises two main stages, the creation of
the composite WTN using dynamic programming and the Levensthein distance as well as the
selection of the best word at each bin via majority voting.

An example of the procedure for three transcriptions (hypotheses) is depicted in Figure 4.2.
Each of the three ASR outputs are wrapped into an initial linear WTN (WTN-1, WTN-2,
WTN-3) that needs to be combined. For illustration purposes, the words of the hypotheses
are represented with letters. First, WTN-1 is selected as the base network to which WTN-2 is
aligned. From this the aligned WTN (ALIGN-1) is obtained, where the “@” symbol represent
an insertion or a deletion. The aligned WTN (ALIGN-1) is then used as the base network to
align WTN-3 to and we get the final composite WTN (ALIGN-2). Once the final composite
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Figure 4.2: Illustration of the ROVER procedure with three different initial transcriptions from [28].

WTN is ready, a voting scheme is used to select the letter (i.e. word) with the highest score for
each branching point to generate the final hypothesis. The scores can be computed in various
ways, for example, using the frequency of occurrence, average word confidence score, maximum
confidence score, and also a combination of those. Here, the confidence measures are provided
by the ASR system. It has been shown in [28] that the combined transcription results depend
on the order how the hypotheses are feed into ROVER. In cases where different words receive
the same vote (this is pointed out in red color in Figure 4.2), ROVER gives priority to the one
in the top position of the column in the branch (i.e. “d”). This might not be the best solution,
and can be mitigated by ranking the hypotheses according to their estimated quality before the
actual combination is performed.
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5
Experimental Results

In the previous chapters, the CHiME-5 dataset, the baseline ASR system as well as the necessary
blocks for the channel selection and the hypotheses fusion have been introduced. This chapter
describes the conducted experiments and lists the obtained results (see also [29]).

In Section 5.1 we report our own results on the baseline system and in Section 5.2 the ones
obtained from decoding individual channels. In Section 5.3 the theoretical performance gain
of a proper channel selection technique is explored using the oracle. Section 5.5 reports the
performance of the DNN channel classifier and in Section 5.6 we explore the performance gain
when combining different hypotheses using ROVER. Finally, in Section 5.7 we draw a conclusion
on the observations.

5.1 Local baseline results

All the experimental results reported within this chapter make use of the conventional baseline
system, introduced in Section 2.3 of Chapter 2.

The acoustic model is trained on a subset of the available data, that comprises around 70000
utterances from the binaural left channel recordings and 100000 utterances randomly picked from
the Kinect recordings. Due to this randomness in the selection of the training data, it is assumed
that a fresh model training delivers a different model and therefore different decoding results.
Furthermore, it is interesting to check if the baseline performance improves if the size of the
training data is increased. Therefore we conducted several training runs with different amount
of training data, one with slightly more utterances from the Kinect recordings and another run
with all available data from the Kinect arrays. The WER results when model training was
conducted at the SPSC machines at Graz University of Technology are provided in Table 5.1
and Table 5.2 lists the results when training was conducted on the FBK16 machines. First of

System Training set Decoding channel Dev

GMM-HMM
70k worn (L)
+100k Kinects

ref. Kinects + BfIt 91.25
worn 74.57

DNN-HMM
70k worn (L)
+100k Kinects

ref. Kinects+ BfIt 80.86
worn 49.86

GMM-HMM
70k worn (L)
+200k Kinects

ref. Kinects + BF 91.35
worn 74.31

DNN-HMM
70k worn (L)
+200k Kinects

ref. Kinects+ BfIt 80.65
worn 49.11

Table 5.1: WER [%] results of the conventional baseline system trained on the SPSC cluster at Graz Uni-
versity of Technology. Decoding was conducted for both the beamformed reference Kinect arrays
and the worn binaural microphones.

16 FBK - Fondazione Bruno Kessler
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all we notice the big advantage of retraining a DNN upon the GMM-HMM model, from which
we gain an absolute WER reduction of about 10%. As expected, different training runs lead
to different performance outcomes. Moreover when using all the available Kinect data (around
1600000 utterances) only a slight improvement can be observed. Interesting are the results on
the binaural close-talk microphones (worn). They show that a major performance impact is due
to the microphone distance. The remaining experiments were conducted at FBK and we stick
to the baseline performances obtained when trained on those machines.

System Training set Decoding channel Dev

GMM-HMM
70k worn (L)
+100k Kinects

ref. Kinects + BfIt 91.02
worn 71.87

DNN-HMM
70k worn (L)
+100k Kinects

ref. Kinects + BfIt 82.52*
worn 48.92

DNN-HMM all Kinect channels
ref. Kinects + BfIt 81.95

worn -

DNN-HMM all worn
ref. Kinects + BfIt 91.39

worn 48.67

Table 5.2: WER [%] performance of the ASR baseline system trained at FBK. (*) FBK baseline system used
for benchmarking.

5.2 Channel decoding

We decoded the available channels individually by considering only utterances from one specific
channel. This provides insight into the performance mismatch between channels and further-
more reveals the suitability of the proposed reference Kinect selection method as well as the
contribution from the enhancement stage (see Section 2.2).

First we investigated the performance gain obtained from the speech enhancement stage. For
this we decoded each microphone part of the reference Kinect separately to get four individual
recognition results as listed in Table 5.3. The best performance is achieved for the second
microphone channel with a WER of 82.36%, which is actually better then the baseline result
of 82.52%. From this we can conclude that BeamformIt does not perform well within this
dataset. This is explained particularly by the fact that the enhancement highly depends on the
TDOA estimation, which is used for the direction of the steering vector. The distance of the
speakers to the microphones, the reflections from the surrounding walls and objects, upon this
the spontaneous and overlapping speech make this estimation not reliable, which results in a
poor enhancement gain.

Next, we compared the performance among Kinect arrays. Identical to the baseline system,
BeamformIt is applied to fuse the four single channels of each array into an “enhanced” channel
which is then feed into the decoding stage. The results on five out of six devices are reported in
Table 5.4. The lack of Kinect U05 is due to a recording failure in session S09 that has caused
frame droppings and therefore several utterances of the recording from this devices are missing
(see also Table 3.1). We will see in Section 5.5 that this also restricts the number of channels for
the proposed channel selection method. Overall the device U03 delivers the best transcriptions
on the development set. One possible explanation could be related to the position of the Kinects
within the two apartments. In view of the floor plans of Figure 3.2, Kinect U03 is the one located
in the living room, at a preferred place able to cover the full duration of the party session the
best as the array is closest to the speakers over the course of the dinner party, on average.
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Decoding channel Dev

ref. Kinects CH1 82.54
ref. Kinects CH2 82.36
ref. Kinects CH3 82.53
ref. Kinects CH4 82.72

Table 5.3: WER [%] from decoding each mi-
crophone channel from the reference
Kinect device, i.e. no BeamformIt
speech enhancement is applied.

Decoding channel Dev

Kinect U01 + BfIt 85.32
Kinect U02 + BfIt 84.91
Kinect U03 + BfIt 82.61
Kinect U04 + BfIt 83.27
Kinect U06 + BfIt 84.94

Table 5.4: Decoding results for all beamformed
Kinect channels.

Decoding channel Dev

U01.CH1 85.68
U01.CH2 85.35
U01.CH3 85.50
U01.CH4 85.64
U02.CH1 85.56
U02.CH2 85.21
U02.CH3 85.41
U02.CH4 85.37
U03.CH1 83.87
U03.CH2 83.39
U03.CH3 83.75
U03.CH4 83.76
U04.CH1 83.61
U04.CH3 84.17
U04.CH2 83.67
U04.CH4 83.74
U06.CH1 85.50
U06.CH2 85.22
U06.CH3 85.36
U06.CH4 85.35

Table 5.5: Comparison of WER [%] between the
single microphone channels.

Following the investigations on device level, we decoded each single microphone channel and
obtained the results listed in Table 5.5. The total difference in absolute WER is around 2.2%
among channels. It is assumed that a refined channel selection on utterance level will enhance
the performance even more. This is going to be investigated in the next section.

5.3 Oracle results

Several oracle experiments were conducted with different sets of hypotheses in order to in-
vestigate the possible performance gain when selecting among a set of decoded channels on
utterance-level. Table 5.6 shows the oracle scores for the development set and its individual
sessions. These results may serve as an indicator to which extend both the best selection and
the set of channels impacts the final performance. Most of the experiment are conducted with-
out using array five, since it is partially missing in the development set. However, information
coming from this array is introduced when U ref is part of the channel set. Using all the avail-
able hypotheses from 29 channels the oracle scores to a WER of 63.6% on the development set,
which is a total of 18.9% in absolute word error rate reduction compared to the baseline system.
Moreover importantly, remarkable results are also obtained when solely selecting among the 20
single array channels, without using any enhanced signal or information of the reference array.
However, as illustrated in Figure 5.1, a good selection is crucial since the performance drastically
decreases with increasing oracle rank. Further investigations on the oracle output show that the
number of channels being oracle (i.e deliver the lowest WER) differs among utterances. This
is visualized in Figure 5.2 separately for each session of the development set, where an explicit
peak shows that for many utterances, only one channel delivers the best transcription with the
lowest WER. The peak at the very left hand side in the histogram comes from the utterances
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Channels
Dev

S02 S09 Overall

Baseline: U ref + BfIt (1) 83.4 81.1 82.5

U ref (4) 76.1 72.8 74.8

U + BfIt (5) 70.8 68.2 69.3

U (20) 66.3 63.3 65.1

U + BfIt, U (25) 65.5 62.3 64.3

U ref, U + BfIt, U (29) 64.6 62.2 63.6

Table 5.6: WER [%] results of the oracle for different sets of decoded channels. U indicates a set of 20 single
array channels while U ref are the four channels from the reference array provided by the baseline
system. The parenthesized number states the number of available channels in this specific setting.
BfIt stands for the BeamformIt beamformer enhancement.

where no error rate can be computed, i.e. for an empty hypothesis. The peak at 20 states
that actually for a high number of utterances all channels perform equally, which is supposed
to be the case when the system outputs nonsense transcriptions. An additional observation in
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Figure 5.1: WER [%] results for the development set on the per utterance oracle informed channel ranks,
considering the 20 array channels.

Figure 5.3 demonstrates that the chance to be oracle is equally distributed among channels.
The findings that we get from the plot in Figure 5.4 is that no strict pattern over the utterances
of a session is observed. For example one could expect that the appearance of oracle channels
might be associated to the speakers location within the apartment. However, there is no strict
evidence following this analysis.
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(b) Session: S09

Figure 5.2: Histogram over the number of oracle channels per utterance. Zero oracle channels apply to the
cases where the WER is infinity. This happens for empy transcriptions.
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Figure 5.3: Oracle channel distribution among the available 20 single channels of a session.
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Figure 5.4: Oracle channel (in red) for each channel over the utterances of a session. No particular pattern
can be observed. Figures for the training sessions are available in B.2 of the Appendix.
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5.4 Feature direct classification

Some of the features introduced in Section 4.3 can be directly used for quality ranking of the
20 single channels at utterance level, without the actual need to train a classifier model. We
ranked the channels with respect to the signal energy feature described in Section 4.3.1 and the
average posterior entropy features from Section 4.3.5. For the energy ranking it is assumed that
microphones closer to the speaker provide higher SNRs and signal energies, compared to the
ones located in the far-field. The average posterior entropy states the confidence of the model
on the phone state predictions and here it is assumed that the best hypothesis is the one with
the smallest entropy value. The obtained ranks, as depicted in Figure 5.5, show a correlation
with the channels WER, that proves our reflections in the sense that the features contain some
significant information on the channels quality.
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Figure 5.5: WER [%] obtained from channel ranking according to either the energy or the average posterior
entropy features. Results from a random channel ranking are shown in grey, and the baseline
result in red color. A clear trend between the WER and the features rank is observed. Similar
results for training sessions can be found in Section B.3 of the Appendix.

Ranking can also happen on Kinect level, with respect to the energy computed on the beam-
formed array channel or by using the cross-correlation peak from the GCC-PHAT as confidence
measure, usually used to estimate the TDOA. For the spatial feature the average peak of the
GCC-PHAT between the two most outstanding microphones (CH1 and CH4) is computed over
the full length of the utterance, with an estimation time interval of 128 ms. The numerical results
on the development set when always using the best channel according to rank 0 are listed in
Table 5.7. Compared to the baseline results of 82.52% in Table 5.2, a slight increase in accuracy
is obtained.
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Channels Feature
Dev

S02 S09 Overall

U+BfIt (5)
Energy 81.2 81.6 81.3

GCC-PHAT 81.1 81.7 81.4

U (20)
Energy 82.2 82.0 82.1

Avg. Entropy 81.1 81.8 81.4

Table 5.7: WER [%] results on the development set for feature based channel selection using either energy,
average posterior entropy or GCC-PHAT features. The number in round brackets state the number
of available channels. U indicates the set of available single channels and BfIt is an abbreviation
for the BeamformIt beamformer.

5.5 DNN classifier

We address the problem of channel selection with a DNN-based classifier, trained on features
either directly extracted from the recordings of the training sessions or the ASR decoder stage
(see Section 4.3) to predict the oracle channels (see Section 4.2). Since multiple oracle channels
may occur for a certain utterance, the classification is categorized as a multi-class multi-label
problem. We employ a sigmoid activation in the last layer of the neural network, to allow ranking
the channels according to the predicted scores. Following this ranking, we can simple decode
the channel with lowest rank or combine the best N hypothesis using ROVER (see Section 5.6)
in order to obtain a good recognition accuracy. As training objective the cross-entropy error is
used and the final model is evaluated on both sessions of the development set.

S02S09S03S04S07S08S13S16S17S19S20S23S24
Session

40

50

60

70

80

90

100

Ac
cu

ra
cy

/W
E

R
 [%

]

acc-top1
acc-top3

clf
ref

(a) Recognition accuracy on unseen data and on the ses-
sions used to train the classifier. ”acc-top1” states the
accuracy that the best scoring channel is an oracle chan-
nel. “acc-top3” is the accuracy that an oracle channel
is within the best three scoring channels. To demon-
strate the performance gain obtained from the classifier
informed channel selection (clf), the points in grey show
the reference baseline results (ref). These results are ob-
tained by decoding the beamformed reference Kinect for
both development sessions or Kinect U03 for the training
sessions.
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(b) Cross-entropy loss over the number of epochs on
both training and development data.

Figure 5.6: DNNs trained on average posterior entropy features from the development set. No regularization
or dropout is applied during training. The model shows poor generalization.

For the envelope variance features (EV) we compute 12 sub-bands per channel. The sub-band
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variances are directly feed into the network without any prior sub-band weighting (as requested
by Equation (4.7)), since it is assumed that the network can learn a reasonable weighting by its
own. The Mel-filterbank features (Fbank) make use of 40 filter banks for each channel and frame,
extracted from the signals with an applied window of 20 ms and a hop-size of 10 ms. To allow
the network to learn the temporal context hidden in contiguous feature vectors, we introduce
recurrent units in the classifier architecture. All other features, like the average posterior entropy
(avg. entropy) and the energy have a dimensionality of one, i.e. one value for each channel and
utterance. Moreover we stacked the energy, average posterior entropy and the average posterior
moments to construct higher dimensional features while combining information from different
analysis.

As we have seen in Figure 5.2, for many utterances either no oracle channel exists or all
channels deliver the same WER. Since it is not expected that the network can extract meaningful
information from this data, the utterances used for training are restricted to the ones where this
is not the case. This reduces the total amount of training data by approximately 40%.

During experimental procedures we investigated several network architectures, incorporating
different number of layers, units in each layer, activation functions, and furthermore played with
regularizations and training algorithms. At the end we decided on two final architectures, a
LSTM (1 recurrent layer followed by 2 dense layers) for frame based features (i.e. Mel-filterbank
features) and a feed-forward network (MLP) with two hidden layers of 1024 units each when
utterance-based features are used instead. ADAM is used as the learning algorithm with a
L2-regularization and dropout of 20% in each layer.

Our findings from training without any regularization are that the network learns the training
data by heart, i.e. the model performs well on the sessions from the training set, but bad on the
development set. This observation has been obtained when the model was trained on average
posterior entropy features from 11 training sessions over 500 epochs. The loss function, as well
as the evaluation on the various sessions is depicted in Figure 5.6. Figure 5.6(b) shows the bad
generalisation behavior of the model, as the cross-entropy loss on the development set increases
strongly while simultaneously the training loss converges to a minimum.
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(a) Classifier with 20 labels, one for each single channel.
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(b) Classification with 5 outputs, one for each Kinect
device.

Figure 5.7: WER [%] results obtained from the trained model when the best scoring channel is selected for
each utterance. The network was trained using the average posterior entropy features with L2-
regularization and dropout of 20% over 50 epochs.

Introducing a L2-regularization term and dropout mitigates this discrepancy, although it does
not help the network to learn useful features. We set the L2-regularization factor to 0.00001 and
applied 20% dropout in each layer. Training the model on 50 epochs has provided best overall
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results, independent on the type of features. Table 5.8 presents the WER of the best selected
channel for the full development set for all models, trained on the different features. The success
of the channel classifier is weak, as the performances are similar to the baseline results. The
average posterior entropy features seem to incorporate more valid information as they perform
best compared to the others. Figure 5.7(a) shows the results of the selection approach for this
feature type in more detail for each session.

Additionally we also tried to rank among the beamformed Kinect channels (see the results
in Figure 5.7(b)). In this experiment the classifier provides five different scores, one for each
Kinect array without considering Kinect U05. Unfortunately, the obtained results are not better
compared to the ones from the 20 single channel ranking.

Channels Feature
Dev

S02 S09 Overall

U (20)

Energy 82.2 82.7 82.8
EV 83.7 82.6 82.7

Fbank 83.8 83.5 83.7
Avg. Entropy 81.7 82.8 82.1
Avg. Moments 82.8 81.3 82.3

Stacked 82.3 82.3 82.3

U+BfIt (5)
Avg. Entropy 80.8 80.1 80.5
Avg. Moments 81.1 80.7 81.0

Table 5.8: WER [%] results on the development set for classifier based channel selection with different fea-
tures. The number in round brackets state the number of available channels.

5.6 ROVER

We applied hypotheses fusion using ROVER on a subset of best scored channels obtained from
the DNN channel classifier experiments described in Section 5.5. To determine the final tran-
scriptions we use average confidence scores for majority voting on the composite WTN. As listed
in Table 5.9 the best result (78.10%) is achieved when combining the best 10 channels given by
the network trained on the average posterior entropy features.

#Channels 3 5 10 20

Energy 82.00 81.08 79.96 79.65
EV 80.02 79.21 79.08 79.54

Avg. Entropy 79.36 78.25 78.10 79.40
Avg. Moments 79.73 78.53 78.17 79.51

Stacked 79.99 78.89 78.63 79.49
Fbank 81.71 80.41 79.56 79.52

Oracle 67.67 68.81 72.46 78.82
Random 81.92 80.90 79.88 79.67

Table 5.9: Numerical results of the conducted ROVER combinations upon classifier rankings with different
features. The fusion is executed for the best 3, 5, 10, and for all the available 20 channels. The
same results are also visualized in Figure 5.8.

With this an absolute WER reduction of 4.4% with respect to the baseline is achieved. The
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table also lists results on the combine N -best hypotheses obtained from both the oracle and a
random channel ranking. This is mainly to set an upper and a lower bound to check whether
the approach was successful or not.

The ROVER outcomes are also visualized in Figure 5.8. Our findings from these experiments
are that the DNN classifier is not capable in ranking the channels accordingly. For example we
would expect much more gain in performance when only combining the best three channels, if
at least one of them is oracle.
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Figure 5.8: ROVER results from the combination of 3, 5, 10 or 20 best channels given by the classifier (clf)
trained on different features. Transparency colored regions states the performance deviation
among the two development sessions.

5.7 Discussion

The experimental results show clearly that the approach of channel selection does not deliver
notable improvements in WER. One of the main concerns is the significance of the extracted fea-
tures with respect to provide reliable information for the distinction of high- and low-performing
channels. However, the energy and average posterior entropy features seem to incorporate data
that correlates with the oracle channels, since we observed an increasing trend in WER with
the number of channel ranks (see Figure 5.5). It is not evident, at least from this point of view,
where the required information is hidden. Due to the difficulty of the dataset, standard features
do simply not work and probably more reflections are required in order to extract significant
features.

Furthermore, the results from the DNN classifier experiments demonstrate that a deep learning
approach is capable in extracting the required information from the features. The model however
generalises very badly in this scenario and by introducing an appropriate regularization it has
been shown that the accuracy improvement is close to zero again. Perhaps besides the features
itself, also the limitation on the available data may restrict the model training.

As the classifier did not work as expected, the ranking of the channels is not reliable. It
is therefore no surprise that the performance gain from the ROVER combination is relatively
small. For correctly ranked channels we would expect the lowest WER when combining the best
3 or 5 channels. In the ROVER results however, the number of combined channels is decisive
for the final accuracy, which confirms the findings of an unstructured and poor classifier channel
ranking.

Besides these rather weak results, the oracle analysis has shown a promising gap of improve-
ment from channel selection and at the same time verified the poor selection of the reference
Kinect provided in the baseline.
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6
Conclusion

In this work, we addressed the problem of channel selection for distant automatic speech recog-
nition on the CHiME-5 dataset. We started the discussion with an explanation of the individual
blocks of the CHiME-5 conventional baseline system for array synchronisation, speech enhance-
ment and ASR. Subsequently the dataset with a description and demonstration of its main
properties is introduced. In Chapter 4 we elaborated the main idea of channel selection and
fusion, as well as provided a description of the various features. The main experimental work of
the thesis has been presented in Chapter 5 where our observations are discussed.

The difficulty of the channel selection approach has been demonstrated, at least concerning the
CHiME-5 dataset. At this point of time and work it is not evident, how established features can
be extracted from the signal or stages of the ASR system that incorporate information matching
the oracle channels. Perhaps further in-depth analysis of the data is necessary, using advanced
methods and approaches.

It was shown, that at least by using signal energy, spatial information, estimates of the reverber-
ation content, and the DNN posterior entropy an accurate channel selection is not possible. The
main obstacle is by far the difficulty of the dataset itself. The far-field recordings are dominated
by noise, spontaneous and simultaneous speech, supplementary distinct by different acoustical
environments in each session and room. This limits the application of speech enhancement tech-
niques; e.g. we showed that multi-channel speech enhancement using BeamformIt only delivers
minimal or no improvements in the final ASR accuracy.

Furthermore, I would like to address the limitations in time and computing power available
in which the experiments were conducted, which may (unintentionally) influence the type of
features investigated. Strictly speaking, the allocation of memory was limited to approximately
40 GB. Hence experiments with frame-based features, like the Mel-filterbank features, always
required attention on the memory consumption.

In spite of these findings, the oracle experiments show a high possible theoretical performance
gain if someone is capable to select the best channel on utterance-level, which provides motivation
and encouragement to keep researching various and other approaches. Therefore this work raises
several interesting questions for further work:

• First of all it would be very useful to investigate this approach on an easier data corpus to
trace back the problem to the channel selection itself rather conflicting with the difficulty
of the provided dataset. This would allow to check the method in general, as well as being
able to compare features more accurately.

• Application of other features. This may require further in-depth analysis of the recorded
data as well as the inner workings of the ASR system. The goal here is to provide informa-
tion that correlates with the accuracy of the decoded channel. For expensive features an
autoencoder could be used to reduce the dimensionality while preserving the information.
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A
List of Abbreviations

AM Acoustic Model

ASR Automatic Speech Recognition

CHiME Computational Hearing in Multisource Environments

CMLLR Constrained Maximum Likelihood Linear Regression

CTC Connectionist Temporal Classification

DNN Deep Neural Network

EM Expectation Maximization

FBK Fondazione Bruno Kessler

FFT Fast Fourier Transformation

fMLLR Feature space Maximum Likelihood Linear Regression

G2P Grapheme to Phoneme

GCC-PHAT Generalized Cross-Correlation Phase Transform

GMM Gaussian Mixture Model

HMM Hidden Markov Model

LDA Linear Discriminant Analysis

LM Language Model

LSTM Long Short-Term Memory

MAP Maximum A Posteriori

MFCC Mel Frequency Cepstral Coefficients

MLLR Maximum Likelihood Linear Regression

MLP Multi-Layer Perceptron

ReLU Rectified Linear Unit

ROVER Recognizer Output Voting Error Reduction

SAT Speaker Adaptive Transformation

SRILM SRI Language Modelling toolkit

SPSC Signal Processing and Speech Communication

TDOA Time Delay of Arrival

SNR Signal to Noise Ratio

WER Word Error Rate

WTN Word Transition Network
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B
Graphical results (training sessions)
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B.1 Average posterior entropy features
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(a) Session: S03
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(h) Session: S19
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(i) Session: S20
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(j) Session: S23
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(k) Session: S24

Figure B.1: Normalized average posterior entropy for part of the training sessions.
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(k) Session: S24

Figure B.2: Oracle channels for sessions of the training set.
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B.3 WER over feature ranks
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(e) Session: S13
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(g) Session: S17
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(h) Session: S19
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(j) Session: S23

Figure B.3: WER over feature ranks for the sessions of the training set.
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C
Floorplans (training sessions)
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C Floorplans (training sessions)

C.1 Floorplans

(a) Session: S03 (b) Session: S04 (c) Session: S05

(d) Session: S06 (e) Session: S07 (f) Session: S08

(g) Session: S12 (h) Session: S13 (i) Session: S16

(j) Session: S17 (k) Session: S18 (l) Session: S19

Figure C.1: Oracle channels for sessions of the training set.
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C.1 Floorplans

(a) Session: S20 (b) Session: S22 (c) Session: S23

(d) Session: S24

Figure C.2: Oracle channels for sessions of the training set.
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