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Abstract

While Computed Tomography (CT) is a widely used and well established technique to

non-invasively visualize the patient’s interior body structure, it also exposes the patient to

ionizing radiation and increases the risk to develop cancer. Directly reducing the amount

of ionizing radiation exposure and violating the Nyquist-Shannon sampling theorem de-

grades the quality of the reconstructed CT image by heavily introducing artifacts. Dif-

ferent approaches aiming to improve the image quality from undersampled data have

been introduced of which many recent approaches rely on Convolutional Neural Networks

(CNNs). In this thesis we propose a sparse-view CT reconstruction method from a reduced

set of equidistant projection views around the axial plane of the patient. To allow data

augmentation and experimentation at will, we simulate the necessary projection data by

generating it from 10 already reconstructed normal-dose CT images which we separated

into a training and test set. Our experiments include the utilization of three dimensional

(3D) CT volumes respectively two dimensional (2D) CT slices used to train individual

CNNs optimized on L1 loss. We conducted additional experiments on the 2D data where

a combined loss function is used that consists of a content L1 and an adversarial LwGAN
loss coming from a Generative Adversarial Network (GAN). We show that CNNs repre-

sent a viable option to reduce the amount of ionizing radiation exposure to the patient

while still achieving good reconstruction results compared to the well established Filtered

Backprojection (FBP) method and also, that GAN based methods can be used to further

optimize the visual quality of the reconstructed images. However, the results generated

by these CNN based methods have to be treated with care especially when huge under-

sampling rates are used, since the correspondence to the patient is gradually decreased

which can lead to the introduction of artifacts that look similar to anatomical structures.

As such, while the use in diagnostic clinical practice remains questionable, we see poten-

tial applications in cases where reducing the amount of ionizing radiation exposure to the

patient is favorable over image quality, e.g. during minimally invasive and image guided

surgeries.
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Kurzfassung

Während Computertomographie (CT) ein weit verbreitetes und etabliertes Verfahren

darstellt, um die inneren Körperstrukturen eines/einer Patienten/Patientin zu

visualisieren, so setzt sie den/die Patienten/Patientin auch einer Belastung durch

ionisierende Strahlung aus, die das Risiko erhöht Krebs zu entwickeln. Eine direkte

Reduzierung der ionisierenden Strahlenbelastung und eine Verletzung des Nyquist-

Shannon-Abtasttheorems führen zu einer verringerten Qualität der rekonstruierten

CT Bilder aufgrund einer vermehrten Einführung von Artefakten. Verschiedene

Ansätze existieren, die darauf abzielen die Bildqualität von unterabgetasteten Daten

zu verbessern, von welchen sich viele kürzlich publizierte Arbeiten auf Convolutional

Neural Networks (CNNs) verlassen. In dieser Diplomarbeit schlagen wir eine CT

Rekonstruktionsmethode von einer verringerten Anzahl von gleichabständigen

Projektionsbildern des/der Patienten/Patientin von verschiedenen Winkeln auf

der Transversalebene vor. Um eine weitreichende Datenaugmentierung sowie die

Durchführung beliebiger Experimente zu ermöglichen, simulieren wir die notwendigen

Projektionsdaten, indem wir diese von 10 bereits rekonstruierten normal dosierten

CT Bildern simulieren, welche wir in ein Trainings- und Testset aufteilen. In unseren

Experimenten nutzen wir dreidimensionale (3D) CT Volumen bzw. zweidimensionale

(2D) CT Scheiben, die jeweils dazu genutzt werden, individuelle CNNs zu trainieren,

welche mithilfe der L1 Verlustfunktion optimiert werden. Des Weiteren haben wir

zusätzliche Experimente auf den 2D Daten durchgeführt, bei denen wir eine kombinierte

Verlustfunktion verwenden, die die L1 Verlustfunktion mit einer von einem Generative

Adversarial Network (GAN) stammenden LwGAN Verlustfunktion kombiniert. Wir

zeigen, dass CNNs eine Möglichkeit darstellen, um die Belastung durch ionisierende

Strahlung des/der Patienten/Patientin zu reduzieren, während gleichzeitig bessere

Rekonstruktionsergebnisse erzielt werden als durch die gefilterte Rückprojektion (FBP)

und weiters, dass GAN basierte Methoden genutzt werden können, um eine weitere
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Verbesserung der visuellen Qualität der rekonstruierten Bilder zu erreichen. Jedoch sind

Ergebnisse, die mithilfe von CNN basierten Methoden generiert werden mit Vorsicht

zu behandeln, dies gilt insbesondere für den Fall einer hohen Unterbeabtastung. Da

die Übereinstimmung des rekonstruierten Bildes mit dem/der Patienten/Patientin

graduell reduziert wird, kann dies zu der Einführung von Artefakten führen, die

echten anatomischen Strukturen ähneln. Während die Anwendung von CNN basierten

Methoden zur Diagnose in der klinischen Praxis fragwürdig bleibt, sehen wir potenzielle

Anwendungen in Fällen, in denen eine Reduzierung der ionisierenden Strahlenbelastung

des/der Patienten/Patientin gegenüber einer optimalen Bildqualität bevorzugt wird, ein

Beispiel hierfür stellen minimal invasive und bildgestützte chirurgische Eingriffe dar.
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1
Overview

Computed Tomography (CT) is a well established and widely used technique to visualize

the interior body structure of a patient non-invasively. Radiologists and physicians use the

information they gain from CT images to treat patients by diagnosing injuries and dis-

eases as well as monitoring their progress. CT imaging requires a set of X-ray projection

views that are acquired from different angles on the axial plane of the patient and then

used for CT image reconstruction. However, since CT imaging is based on X-ray technol-

ogy, the patient is exposed to ionizing radiation during image acquisition and potentially

harmed in the long term by introducing cancer [11]. Directly reducing the amount of

ionizing radiation exposed to the patient leads to undersampling, i.e. a violation of the

Nyquist-Shannon sampling theorem and consequently to a degraded image quality that

increasingly suffers from artifacts especially when classical reconstruction techniques like

the Filtered Backprojection (FBP) method are used for image reconstruction. To preserve

a better image quality, many recent contributions to the field of CT image reconstruction

from undersampled data rely on machine learning and especially Convolutional Neural

Networks (CNNs), where knowledge about the data distribution learned during training

is exploited to compensate the reduced amount of projection data available for recon-

struction. Additionally, literature provides different approaches to acquire undersampled

projection data in the first place, which we separated into three groups, namely tube

current reduction based, beam blocking based and sparse-view based approaches. Tube

current reduction based approaches reduce the tube current that leads to a lower num-

ber of emitted X-rays utilized for image acquisition, while beam blocking based methods

reduce the amount of radiation by using physical beam blockers to partially shield the

patient from X-rays. Lastly, sparse-view based methods reduce the number of projection

views that are acquired and used for CT image reconstruction.

In this thesis we propose a CNN based sparse-view CT reconstruction approach that

is motivated by reducing the amount of ionizing radiation exposure to the patient, where

we aim to improve the quality of reconstructed CT images from undersampled projec-

tion data. Many recent learning based approaches utilize already reconstructed low-dose

1
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CT images that have been reconstructed using classical techniques like the FBP method

and learn to improve the quality of these images by removing the undersampling arti-

facts introduced by the utilized classical reconstruction technique. In contrast to that,

our sparse-view CT reconstruction method does not rely on any classical reconstruction

technique and instead replaces it, by directly optimizing a CNN to learn CT image re-

construction from a reduced number of projection views. As such, the CNN used in our

approach directly receives a set of equidistant projection views acquired from the axial

plane of the patient as an input, while the corresponding normal-dose CT image is used

as the target to optimize the CNN . Since most publicly available data sets in this field

only provide already reconstructed CT images without the original projection data used

for reconstruction, we decided to simulate the projection data from the CT images. The

simulation of the projection data results in two important advantages: First, simulation

allowed us to augment the CT images before generating the projection data at will, which

would corrupt the correspondence to the original projection data in most cases and second,

it also made it possible to freely experiment with the number of projection views as well

as with the angles from which they are acquired. As such, projection image simulation

enabled us to proof our conecpt and focus on the feasibility of our method as well as on

the various experiments we wanted to conduct to get a feeling of the performance of our

method.

We implemented our method as a two dimensional (2D) and a three dimensional (3D)

pipeline, where the 2D pipeline learns to independently reconstruct 2D CT slices, while

the 3D pipeline directly reconstructs the whole CT volume at once. Due to the vast

execution time and huge memory requirements when training the CNN on the 3D data, it

was necessary to use a rather small image size to sufficiently conduct the 3D experiments,

whereas the lower dimensionality of our 2D pipeline allowed us to use a larger image

size and additional experiments. We optimized our CNNs by minimizing the L1 loss

function, however, we also experimented with a combined loss function on our 2D data

that consists of a content L1 loss and an adversarial LwGAN loss that comes from a

Generative Adversarial Network (GAN) [26]. The intuition behind this combined loss

function is, that while a content L1 loss promotes consistency in anatomy, an adversarial

LwGAN loss promotes sharper looking results. The results generated by our approach are

evaluated quantitatively and qualitatively by comparing them to the results of the well

known FBP method which we used as a baseline.

We show that the results generated by our approach are significantly better than the

results of the FBP method when undersampled projection data is utilized for CT im-

age reconstruction. While the FBP method increasingly suffers from the introduction of

streaking artifacts when decreasing the number of projection views, our approach is able

to result in images that convey more information. Comparing the results optimized on L1

loss to the results generated by our GAN based method 2D-L1-LwGAN shows, that the

L1-only results look increasingly blurry, while 2D-L1-LwGAN is able to achieve sharper

reconstruction results that look more realistic, but are not necessarily anatomical con-
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sistent to the patient. This observation leads to the conclusion that, while the results

generated by our 2D-L1-LwGAN method look visually better compared to the results of

our 2D-L1-only method, they have to be treated with caution when heavily undersam-

pled projection data is used for image reconstruction. We show that tweaking the weight

hyperparameter of the combined loss function as such that the contribution of the adver-

sarial LwGAN loss is reduced, is a possibility to increase the anatomical consistency to the

patient when using heavily undersampled data while still achieving sharper images. Due

to these difficulties it remains an open question whether or not our method can be utilized

in diagnostic clinical practice, however, we see potential applications in scenarios where a

reduction of ionizing radiation exposure to the patient outweighs and a degraded image

quality is feasible, a possible example is image registration during minimally invasive and

image guided surgeries to precisely locate the surgical instruments inside of the patient.

To provide a theoretical background, Chapter 2 is dedicated to CT imaging, where

we give insight into CT image acquisition as well as CT image reconstruction, while

Chapter 3 focuses on machine and especially deep learning. The related work will be

described in Chapter 4 which we separated into groups depending on how the ionizing

radiation dose reduction is achieved as well as the strategy that was used to improve

the reconstruction results. Chapter 5 is dedicated to our CNN based sparse-view CT

reconstruction method to improve the quality of the reconstruction results generated from

undersampled projection data. The results of our method are presented in Chapter 6,

while a discussion is given in Chapter 7. Finally, we conclude our work in Chapter 8.
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Medical Image Reconstruction
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Medical imaging refers to a set of techniques that have revolutionized medicine by

allowing physicians to safely and non-invasively visualize the interior of a body keeping it

fully intact. By observing the region of interest, the physician gains insights that make

diagnosis of diseases and injuries possible that in the past would only be found at surgery

or autopsy. Nowadays, medical imaging supports diagnostic radiologists in their decision

process on a daily basis making it a well-established and integral part of healthcare. As

such it is no surprise that the invention of various important technologies that lead to

medical imaging as it is known today has been awarded with a nobel price, amongst them is

the discovery of X-rays by Wilhelm Röntgen [73], the invention of Computed Tomography

(CT) by Allan Cormack and Godfrey Hounsfield [3, 34] as well as the invention of Magnetic

Resonance Imaging (MRI) by Paul Lauterbur and Peter Mansfield [54].

Insight into important imaging modalities that are used in medicine on a daily basis

is given in Section 2.1 and since the problem of image reconstruction in CT falls into the

category of inverse problems, we will give an insight into this type of problems in Sec-

tion 2.2. More details on the inner workings of CT scanners are given in Section 2.3, while

the process of image acquisition is described in Section 2.4. Next, image reconstruction in

CT is explained in Section 2.5 and lastly, Section 2.6 presents the limitations of classical

reconstruction approaches.

5
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2.1 Imaging Modalities in Medicine

While two dimensional (2D) imaging techniques like radiography allow a look through the

body by yielding a 2D projection image of a three dimensional (3D) object, 3D imaging

modalities like CT and MRI yield a volumetric 3D image of the body allowing a look

inside it. Figure 2.1a shows an exemplary radiography image and Figure 2.1b represents

a volumetric 3D image consisting of a number of stacked 2D image slices incorporating

detailed structural information of the 3D object’s interior. Radiography is sufficient to

observe diseases and injuries that yield a high contrast like bone fractures, while CT and

MRI are utilized to evaluate soft tissues like the abdominal organs or the brain and are

able to visualize more subtle abnormalities like nodules or tumors and additionally allow

to precisly locate them in 3D .

(a) Radiography (b) Axial CT slice

Figure 2.1: Image (a) shows a radiography image acquired by Wilhelm Röntgen showing the
hand of Albert von Kölliker.1 Image (b) shows an exemplary axial 2D slice of a CT image of a
normal thorax.2

CT and MRI are the most important 3D imaging techniques and while CT is based

on X-rays and MRI on a strong magnetic field and radio waves, they both result in

distinctive properties complementing each other. An important advantage of CT imaging

is represented by the high contrast it achieves between bones and soft tissues, i.e. different

organs of the patient, while MRI imaging allows a better contrast between individual soft

tissues. The main disadvantage of either method can be summarized into the exposure

of the patient to ionizing radiation in CT and the long acquistion time in MRI . It is

well known that the exposure to ionizing radiation increases the risk to develop cancer

which leads to the consensus that CT imaging has a minor chance to harm the patient

in the long term [11, 86]. In contrast to CT , where images are acquired within seconds,

image acquisition in MRI takes from at least several minutes up to one hour depending

1 Radiography image taken from Wilhelm Röntgen on 23 January 1896, this work is in the public
domain.

2 High-resolution CT slice of an axial plane of a normal thorax, from Mikael Häggström, 20 May 2017,
CC0 1.0 Universal Public Domain Dedication.
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on the size of the observed region and requires the patient to not move during the whole

time to prevent image disruption. This extensive acquisition time leads to non-neglectible

difficulties if a patient is unable to lie still during the whole time and also limits the total

number of patients that can be examined in a given amount of time compared to CT .

Therefore, CT is preferred in time critical cases like emergencies or when examining body

regions like the thorax or abdomen that are influenced by the breathing movement.

2.1.1 Motivation

While the information gained from a CT image to accurately treat a patient is consid-

ered to outweigh the risks that are caused by ionizing radiation, a further reduction of

the amount of ionizing radiation is still desired and represents an active field of research.

A simple method to reduce the amount of ionizing radiation the patient is exposed to is

represented by reducing the amount of data that is sampled from the patient during image

acquisition which is called undersampling. However, classical reconstruction methods rely

on a certain minimum of data to correctly reconstruct a CT image which leads to a heavily

degraded image quality of the reconstructed image if this criterion is not met. The work

in [9, 24] observed the relation between the radiation dose and the resulting image quality

in CT imaging demanding better image reconstruction techniques which also represents

the main motivation of this thesis. State-of-the-art reconstruction techniques from under-

sampled data rely on deep learning and can oftenly be interchanged easily between CT

and MRI , which is the reason why we also consider some recent contributions that have

been made to the MRI community which are motivated by reducing the acquisition time

the patient has to endure.

2.2 Inverse Problems

A classical forward problem is a problem where causal factors like physical laws of a system

are known and used to predict the outcome for a set of observations. In contrast to that, an

inverse problem represents the inverse operation of a forward problem where the outcome

for a set of observations is known and the goal is to find the causal factors that lead to

that outcome [91]. While forward problems are oftenly easily solvable and deterministic,

inverse problems are hard problems and infeasible to solve if too little data is available to

find a good approximation of the system.

2.2.1 Image Processing and Signal Processing

As the name suggests, image processing describes a field that is dedicated to processing

images using a set of algorithms to solve problems of which many are inverse problems

like image denoising, artifact reduction and image reconstruction to name a few [37].

Image processing represents a subfield of signal processing where signals are commonly

defined as functions that convey information about the behavior or attributes of some
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phenomenon [68]. Analog signals from the real world like audio, images or video are

continuous and can be captured by taking measurements and transforming them into

digital signals to make them readable by computers. However, this digitization of analog

signals inevitably leads to a discretization in space or time with the resolution representing

the spatial discrete step size in images and videos and the framerate defining the additional

temporal discrete step size in videos. Accordingly, a digital 2D image can be expressed as a

number of signals that have been measured from a 2D grid-like structure in spatial domain

at a given time and it follows, that image processing represents a multidimensional case of

signal processing which brings the individually measured signals into a spatial correlation.

2.2.2 Undersampling

To digitize an analog system, measurements are acquired from that system at certain

intervals which is called sampling, where the sampling rate defines the discrete intervals

of acquisition [90]. Following this definition, digitizing an analog signal is equivalent to

discretizing a continuous function and both represent an approximation of the original

signal or function and inevitably introduce an error, which is called aliasing in signal

processing. The amount of aliasing introduced when digitizing an analog signal is directly

influenced by the sampling rate used to measure it and as such, it is possible to formulate

the minimal sampling rate required to sufficiently digitize an analog signal so that the

analog signal can correctly be reconstructed from the digital signal without being heavily

aliased, which is defined by the Nyquist-Shannon sampling theorem, see Section 2.2.3. The

term undersampling now refers to sampling rates that do not fulfill the Nyquist-Shannon

sampling theorem [90].

2.2.3 Nyquist-Shannon Sampling Theorem

The Nyquist-Shannon sampling theorem [64, 82] independently also discovered in [44, 94]

defines the minimal sampling rate when digitizing an analog signal that still allows to

correctly recover the analog signal from it’s digital representation. A violation of the

Nyqusit-Shannon sampling theorem leads to a loss of information which can lead to a

misrepresentation and consequently to a flawed reconstruction of the original signal. If

we consider an analog signal with a frequency of 3 Hertz (Hz) that is digitized with a

sampling rate of 1.5 Hz as shown in Figure 2.2, recovery of the analog signal from these

measurements wrongly results in a 1 Hz signal due to aliasing caused by undersampling.

The Nyquist-Shannon sampling theorem states that the sampling frequency fs should be

greater than twice the maximum frequency fmax of the original signal [90], which yields

fs ≥ 2fmax, (2.1)

representing the minimal sampling rate to allow the correct recovery of any analog signal.

In image processing, the sampling rate fs corresponds to the distance between the positions
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at which the pixel values have been measured.

Actual Signal Acquired Meassurements Reconstructed Signal

Figure 2.2: Visualization of a signal that was undersampled and reconstructed incorrectly.3

2.2.4 Compressed Sensing

Compressed sensing as introduced in [20] allows to recover signals which are undersam-

pled according to the Nyquist-Shannon sampling theorem under certain conditions. In

contrast to the Nyquist-Shannon sampling theorem that describes the minimal amount

of information required for a linear system to be determined, compressed sensing tackles

the problem of finding the correct solution to an underdetermined linear system. The

problem of underdetermined systems is that they generally have an infinite number of

solutions since they have more unknowns than equations, however, additional constraints

can be introduced to find the correct solution to such a system. In the case of compressed

sensing, these additional constraints are represented by the sparsity of the observed signal

in some domain and incoherence, allowing compressed sensing to determine the optimal

solution of the underdetermined system [21].

2.2.5 Computed Tomography as an Inverse Problem

In Section 2.2.1 we explained that image processing represents multidimensional signal

processing which follows, that images can be expressed as spatially correlated multidi-

mensional signals. Therefore, if we consider generating a CT image of a patient, we first

acquire a number of digital signals form the patient that are later used to reconstruct a CT

image that represents the digital counterpart of the patient. Following the definition given

in Section 2.2, signal acquisition in CT imaging represents the forward problem, while CT

image reconstruction poses the inverse problem that requires a certain minimum amount

of data to be solved correctly, which is defined by the Nyquist-Shannon sampling theo-

rem as given in Equation (2.1). However, before going into further details, CT in general

(Section 2.3) as well as the procedures of CT image acquisition (Section 2.4) and image

reconstruction in CT (Section 2.5) need to be explained.

3Visualization of undersampling, adapted from http://www.ni.com/newsletter/50078/en/, last ac-
cessed on 22 March 2019.

http://www.ni.com/newsletter/50078/en/
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2.3 Computed Tomography

A CT scanner is a device that enables visualization of the interior body structure of a

patient yielding a 3D CT image within seconds. Same as radiography, CT is based on

ionizing radiation that is sent through the patients body which partially attenuates it, the

remaining radiation is then measured. However, in radiography the measurements directly

yield the radiography image, whereas in CT they just represent one projection view. A

CT scanner acquires multiple projection views from different angles of the patient, which

are then combined using image reconstruction techniques to result in a 3D reconstructed

image of the patient. While a description of the most important parts of a CT scanner

is given in Section 2.3.1, different types of CT devices are explained in Section 2.3.2.

The process of acquiring the necessary projection views is described in Section 2.4 and

the reconstruction of a 3D CT image from the acquired projection data is explained in

Section 2.5.

Gantry

Aperture
Patient table

X-ray detector array

X-ray tube

Figure 2.3: A CT scanner with additional visualizations and labels.4

2.3.1 Schematics of a Computed Tomography Scanner

A CT scanner, more precisly a Fan Beam Computed Tomography scanner, as shown in

Figure 2.3 consists of the patient table and the gantry. While the patient is lying on the

patient table which is a motorized platform that moves slowly through an aperture in the

gantry, the gantry acquires the data required for image reconstruction slice by slice. The

4CT scanner with additional visualizations and labels, from OpenStax College, June 2013 via Anatomy
and Physiology http://cnx.org/content/col11496/latest/, CC BY 4.0 License. c© 2013 Rice University

http://cnx.org/content/col11496/latest/
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two main components of every CT scanner are represented by the X-ray tubes and the

X-ray detector arrays which are positioned oppositely to one another in the gantry and

rotate around the gantry’s aperture during image acquisition as explained in Section 2.4.

The number and the placement of the X-ray tubes and the X-ray detector arrays defines

the geometry and as such, the type of the CT scanner.

2.3.2 Types of Computed Tomography Scanners

The technical advance in constructing CT scanners lead to a number of various devices

that use different geometries for CT image acquisition. These individual geometries result

in different properties and as such, in different advantages and disadvantages discussed

in more detail in [35, 76]. Fan Beam Computed Tomography (FBCT) scanners represent

the most widely used devices and will be considered as default unless explicitly stated

otherwise throughout this thesis.

(a) Parallel Beam (b) Fan Beam

(c) Multi-Slice

(d) Cone Beam

Figure 2.4: Visualization of different geometries of CT scanners. Image (a) shows a Parallel
Beam, (b) a Fan Beam, (c) a Multi-Slice Fan Beam and (d) a Cone Beam geometry, adapted
from [35].

Parallel Beam Computed Tomography Parallel Beam Computed Tomography

(PBCT) shown in Figure 2.4a relies as the name suggests on a parallel beam geometry

and was used in CT scanners of the first generation [35]. In PBCT X-rays are emitted

as parallel beams and measured accordingly leading to an orthographic projection which

is very similar to radiography. This can be achieved either by using multiple X-ray tubes

that are positioned next to one another or by a moving X-ray tube that sequentially

acquires the necessary signals.

Fan Beam Computed Tomography In FBCT visualized in Figure 2.4b the position

of the X-ray tube is fixed and X-rays are emitted in a range of angles representing a

fan [35]. The detector array is curved as such that the distance to the X-ray tube is

equidistant and nowadays, FBCT scanners rely on a static detector array that forms a

ring in the gantry, however, for simplification we did not visualize that ring in our figures.
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While this geometry originally acquires only one slice after another, it can be extended

as such, that multiple slices are acquired at once. This results in Multi-Slice Computed

Tomography (MSCT) shown in Figure 2.4c, which consists of multiple detector arrays that

are stacked on top of one another and allow to simultaneously measure the projection view

of a given angle for multiple consecutive slices at once. Most FBCT scanners nowadays

are implemented as MSCT scanners and are widely used in hospitals on a daily basis.

Cone Beam Computed Tomography In Cone Beam Computed Tomography

(CBCT) introduced in [71], X-rays are emitted in a cone-shape as shown in Figure 2.4d

and the CT scanner acquires all necessary projection views in just one rotation [35].

Important benefits of CBCT over FBCT are a reduced dose [53, 79], a faster image

acquisition and a smaller size of the device which makes it also cheaper. However, the

cone-beam geometry in CBCT leads to problems like beam scatter and beam hardening

reducing the contrast of the reconstructed image and degrading it’s quality especially

when a larger field of view, i.e. a larger part of the body is used [80]. As such, CBCT

is mostly used and well established in dental and orthodontic imaging where it benefits

from it’s aforementioned strengths [77].

2.4 Image Acquisition in Computed Tomography

The X-ray tubes and the X-ray detector arrays are the most essential components of

a CT scanner and described in Section 2.3.1. This section is dedicated to how these

components are utilized to yield projection images that can later be used to reconstruct

a CT image. A patient from which a CT scan is conducted is placed between the X-ray

tubes and the X-ray detector arrays, in the case of a standard FBCT scanner shown in

Figure 2.3, the patient lies on the motorized patient table as described in Section 2.3.1.

While the X-ray tubes and the X-ray detector arrays rotate around the patient table as

visualized in Figure 2.5 to acquire a set of one dimensional (1D) projections from different

angles of the currently observed 2D slice of the patient, the patient table positions the

patient accordingly to acquire all views that are necessary for image reconstruction. These

acquired sets of 1D projections are then used to reconstruct the individual 2D slices of

the patient which are finally stacked yielding the 3D CT image. Section 2.4.1 gives

insight into ionizing radiation, while the fundamental photon attenuation law derived in

Section 2.4.2 describes how the measurement of a single 1D projection view can be used to

infer knowledge about the material that was measured. The generation of the individual

1D projection views using line integrals is given in Section 2.4.3, which is followed by

Section 2.4.4 defining the Hounsfield Unit (HU) numbers. Lastly, the creation of the

sinogram, i.e. the sequentially stacked 1D projection views, is described in Section 2.4.5,

which is further used for image reconstruction.
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X-ray detector array

Remaining X-rays

Patient

Visualized area

X-ray tube

X-rays

Figure 2.5: A schematic visualization of the image acquisition process in CT .5

2.4.1 Ionizing Radiation

CT imaging as well as radiography expose the patient to ionizing radiation as mentioned

in Section 2.1, which is necessary to acquire a 1D projection view of the patient. The

term ionizing refers to radiation with a high enough energy that it is capable of ejecting

electrons from atoms, which separates an atom into a ion and a free electron [69]. The two

forms of ionizing radiation are represented by electromagnetic and particulate radiation,

where the former refers to electromagnetic waves, i.e. photons, while the latter refers

to particles like electrons or protons. In the case of CT imaging and radiography, high-

energetic photons in the wavelength range of X-rays, i.e. with a lower wavelength than

visible light, are emitted by the X-ray tube and directed towards the patient.

2.4.2 Fundamental Photon Attenuation Law

To acquire single 1D projection views, the X-ray tube emits a specific amount of X-rays

N0, i.e. photons with a certain energy E, that are directed towards the patient, which

we will replace for now by a slab of some homogeneous material as shown in Figure 2.6.

Some X-rays that traverse the material are absorbed or scattered which is dependent on

the thickness ∆s = sout−sin of the traversed material as well as on the density of it, which

is expressed by the linear attenuation coefficient µ(E, s) [69]. The position sin represents

the point where the X-rays enter the material, while the position sout marks the point of

exit. The linear attenuation coefficient µ(E, s) is defined as a function of the energy E

and the material at position s and is well defined for different kinds of material [87], see

Figure 2.7. The remaining part of the X-rays not attenuated by the body constitute the

remaining number of photons Nd, which is measured by the detector array.

Assuming that the material µ, which we want to solve, is homogeneous and the emitted

5 Schematic visualization of CT imaging, adapted from http://www.radtechonduty.com/2017/03/

single-detector-row-ct-scan-systems.html, last accessed on 22 March 2019.

http://www.radtechonduty.com/2017/03/single-detector-row-ct-scan-systems.html
http://www.radtechonduty.com/2017/03/single-detector-row-ct-scan-systems.html
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Number of Photons
Slab

X-ray Detector

Δx

X-ray Tube

Figure 2.6: A schematic visualization of the attenuation process of photons, adapted from [69].

photons N0 are monoenergetic allows to define the number of attenuated photons [69] as

Na = µ∆sN0

= N0 −Nd

= −∆N,

(2.2)

which can be rewritten as
∆N

N0
= −µ∆s. (2.3)

As a next step, we can now integrate on both sides of that equation yielding∫ Nd

N0

dN

N
= −

∫ sout

sin

µ ds, (2.4)

where the bounds of ∆N are defined by N0 and Nd as in Equation (2.2), while the bounds

of s are given by sin and sout representing the positions at which the photons enter re-

spectively exit the material µ. Solving the integral on the left hand side brings us to

ln
Nd

N0
= −

∫ sout

sin

µds, (2.5)

which can then be reformulated into the fundamental photon attenuation law [69] as

Nd = N0 · e
−

∫ sout
sin

µ ds

= N0 · e−µ∆s.
(2.6)

2.4.3 Projection View Generation using Line Integrals

The fundamental photon attenuation law defined in Equation (2.6) can also be expressed

as an intensity profile I instead of using the number of photons N . An intensity profile is

defined as

I = } · ν · N

A∆t
, (2.7)



2.4. Image Acquisition in Computed Tomography 15

10 15 20 30 40 50 60

Bone

80 100 150 200
0.1

1

10

100

Soft Tissue

Muscle

Fat

Photon Energy (keV)

-1
L
in

ea
r 

A
tt

en
u
at

io
n
 C

o
effi

ci
en

t 
(c

m
)

Figure 2.7: A plot of the correlation between the photon energy and the linear attenuation
coefficient for different materials related to medical imaging, adapted from [69].

where } ·ν ·N describes the combined energy of all photons with the Planck constant } and

the photon frequency ν. The area A is normal to the ray and t represents the time [69].

Following this definition allows to reformulate Equation (2.6) as

Id = I0 · e
−

∫ sout
sin

µ ds

= I0 · e−µ∆s,
(2.8)

however, this formulation still follows the assumptions that the material µ is homogeneous

and the photons are monoenergetic defined by energy E. As such, we transform the

homogeneous material into a parametric function µ(E, s), which yields a line integral

defined as

Id =

∫ ∞
0

I0(E) · e−
∫ sout
sin

µ(E,s) ds
dE, (2.9)

that also needs to be solved for the energy E. Solving for E is intractable in image

reconstruction, however, in CT it is sufficient to assume that X-rays are monoenergetic,

the term E can be replaced by the effective energy Ē which represents the mean of E [69].

Treating Ē as a constant allows it to be omitted [87], leading to the following approximated

and simplified formulation

Id = I0 · e
−

∫ sout
sin

µ(s) ds
, (2.10)

to which we will stick throughout the rest of this thesis, see Figure 2.8.

Bringing the remaining X-ray intensity profile Id that has been measured by the X-ray

detector in relation to the incoming X-ray intensity profile I0 that has been emitted by

the X-ray tube yields the attenuation profile representing one acquired 1D projection g
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defined as

g = − ln
Id
I0

=

∫ sout

sin

µ(s) ds.
(2.11)

X-ray detector array

X-ray tube

Patient

Id

I0

xin

xout

μ

g

Figure 2.8: A schematic visualization of the projection view generation using line integrals.

2.4.4 Hounsfield Unit Scale

Up to now we also assumed, that the effective energy represented by the intensity profile

I0 is a well-known constant, however, the effective energy depends on the X-ray tube used

to acquire the 1D projections g and is not equivalent among different CT scanners, which

consequently influences the value of µ when reconstructing the CT image. To circumvent

this problem and make CT images generated from different devices and manufacturers

comparable to one another, CT images are normalized to the HU scale h defined as

h = 1000× µ− µwater

µwater
, (2.12)

where µ represents the attenuation coefficient of a given material and µwater is defined

as the attenuation coefficients of water. The attenuation coefficients µ correspond to the

intensity values in CT images and by normalizing them to the HU scale, the intensity

values of different tissues become well-defined. Some value ranges relevant to medical

imaging are visualized in Figure 2.9, however, the useful range of the HU continues to

approximately a value of 3.000, which falls into the the HU number range of metal.

2.4.5 Sinogram Generation

In Section 2.4.3 we assumed a 1D space which is only integrated along it’s x-axis. To

achieve a more general formulation, the line integral needs to be defined as such, that

it can be dynamically used on a 2D plane. First of all, extending the line integral of
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Figure 2.9: A visualization of some HU numbers related to medical imaging, adapted from [22].

Equation (2.10) to an xy-plane requires to define a coordinate system (x, y) that represents

the axial view of a patient as shown in Figure 2.10. Now, the 2D slice of the patient that

is observed is defined as a 2D distribution of linear attenuation coefficients µ(x, y) with

it’s center point located at the origin of the coordinate system (x, y). We also define a

polar coordinate system (`, θ) with the same origin as (x, y), where θ is an angle and `

is the distance from the origin as visualized in Figure 2.11. Lastly, we define a circular

field of view for µ(x, y) with diameter FOV that is zero outside similar to [87], where

zero corresponds to the linear attenuation coefficient of air defined by the HU scale, see

Section 2.4.4.

Sagittal Plane
Coronal Plane

Axial Plane

Figure 2.10: A visualization of the different imaging planes of a body in medicine.6

Consequently, a 1D projection as in Equation (2.11) can then be expressed in a 2D

plane in parametric form [69] as

gθ(`) = − ln
Iθ(`)

I0

=

∫ ∞
−∞

f(x(s), y(s)) ds,

(2.13)

where the intensity profile Id is replaced by Iθ(`) expressing the remaining X-rays given a

6 Imaging planes of a body with modified labels, from OpenStax College, June 2013 via Anatomy and
Physiology http://cnx.org/content/col11496/latest/, CC BY 4.0 License. c© 2013 Rice University

http://cnx.org/content/col11496/latest/
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Figure 2.11: A visualization of the forward projection procedure that is relevant to CT , adapted
from [69].

fixed angle θ, x(s) and y(s) are defined as

x(s) = ` · cos θ − s · sin θ
y(s) = ` · sin θ + s · cos θ.

(2.14)

Instead of using the parametric form as in Equation (2.14), a line in a 2D plane can also

be expressed as

L(`, θ) = {(x, y)|x · cos θ + y · sin θ = `}, (2.15)

where θ is an angle and ` is the lateral position of the line L(`, θ) which represents a line

integral on the 2D plane (x, y). This allows to reformulate the parametric form of gθ(`)

given in Equation (2.13) as

gθ(`) =

∫ ∞
−∞

∫ ∞
−∞

f(x, y) · δ(x · cos θ + y · sin θ − `) dx dy, (2.16)

where the 1D impulse function δ(·) leads to zero everywhere except on the line L(`, θ) as

shown in Figure 2.12 yielding the line integral [69]. The 1D projection data gθ(`) that

is acquired from the distribution µ(x, y) can be stacked for all θ according to the Radon

transform [70] resulting in a 2D dataset g(`, θ) called the sinogram, which is formally

expressed for any function f(x, y) as

g(`, θ) = R{f(x, y)}

=

∫ ∞
−∞

∫ ∞
−∞

f(x, y) · δ(x · cos θ + y · sin θ − `) dx dy.
(2.17)

We used the Shepp-Logan phantom [83] as an exemplary 2D CT slice that represents

the function µ(x, y) in Figure 2.13 to visualize the generation of inidividual 1D projections
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Figure 2.12: A visualization of a line integral on a 2D plane using a δ function, adapted from [69].

gθ(`) and leads to the sinogram g(`, θ). The individual 1D projections gθ(`) are stacked

along the y-axis where the angle θy that corresponds to y is defined as

θy =
π

N
· (y − 1), (2.18)

where N represents the total number of projections gθ(`). The x-axis of the sinogram

g(`, θ) contains the individual line integrals measured and directly corresponds to gθ(`) as

given in Equation (2.16). The projection gθ(`) is zero for |r| ≥ FOV
2 and can be measured

from the angle θ = [0, 2π), however, the information is redundant for opposite angles and

as such, it is sufficient to measure from [0, π) in PBCT and from [0, π + φ) in FBCT ,

where φ constitutes the fan angle of the FBCT scanner [87]. Both, the 1D projections

gθ(`) as well as the angular information θ from which each projection was acquired from

the patient, i.e. the material distribution function µ(x, y), is then used to reconstruct the

original image as described in Section 2.5.

Phantom CT Slice

Sinogram

1D Projections

Figure 2.13: A visualization of the sinogram generation procedure.
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2.5 Image Reconstruction in Computed Tomography

The 1D projection data gθ(`) which is stored in the 2D sinogram g(`, θ) as explained in

Section 2.4 is used to reconstruct the interior of the 3D patient slice by slice, where each

2D slice is represented as a 2D material distribution µ(x, y). The reconstruction of any

given function f(x, y) from it’s singram g(`, θ) can mathematically be expressed as the

Inverse Radon transform defined as

f(x, y) = R−1{g(`, θ)}, (2.19)

which demands to find the inverse function to the Radon transform R given in

Equation (2.17). An intuitive method to reconstruct any function f(x, y) and solve

the Inverse Radon transform is represented by the backprojection algorithm explained

in Section 2.5.1, which however suffers from the discrete nature of the data. The

projection-slice theorem described in Section 2.5.2 deduces an analytical solution to the

Inverse Radon transform, which is used to derive an optimal reconstruction technique

represented by the Filtered Backprojection (FBP) method given in Section 2.5.3.

2.5.1 Backprojection

The backprojection algorithm is an intuitive approach to approximate the Inverse Radon

transform given in Equation (2.19) and is conducted by accumulating the backprojec-

tions of each 1D projection gθ(`) of the sinogram g(`, θ) on a 2D plane as visualized in

Figure 2.15. Backprojection is accomplished by repeating each 1D projection gθ(`) that

has been acquired from the 2D material distribution µ(x, y) representing one slice of the

patient in the direction of θ at position `, see Figure 2.14. Mathematically, the backpro-

jection is expressed as

bθ(x, y) = B{g(`, θ)}

=

∫ π

0
g(x · cos θ + y · sin θ, θ) dθ,

(2.20)

and can be transformed into a function in the discrete space as

bθ(xi, yj) = B{g(`m, θn)}

=

N∑
n=1

g(xi · cos θn + yj · sin θn, θn)∆θ,
(2.21)

where N represents the number of projections and ∆θ the rotation interval between subse-

quent views. Furthermore and due to the rotation by θ, the positions (xi ·cos θn+yj ·sin θn)

typically need to be interpolated since they generally do not coincide with the discrete

positions `m [87].

The main issue when using the simple backprojection algorithm for image reconstruc-
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tion becomes clear when looking at the quality of the reconstructed image shown in

Figure 2.15, which yields a blurry looking result even when the Nyquist-Shannon sam-

pling theorem in Equation (2.1) is fulfilled, which is caused by the discrete nature of the

measurements [87].

1D Projection θ1

θ2

θ3

2D Reconstruction

Figure 2.14: A schematic visualization of the backprojection procedure, adapted from [23].

Backproject

...
...

Sinogram 1D Projections
2D Projection Images

BP Reconstruction

Sum

...
...

...

θ1

θNθ1

θN

Figure 2.15: A sequential visual demonstration of the backprojection procedure.

2.5.2 Projection-Slice Theorem

The projection-slice theorem introduced in [10] represents a mathematical approach to

find a solution to the Inverse Radon transform as given in Equation (2.19). Considering

any function f(x, y), we define it’s 2D Fourier transform (FT) F2D as

F (u, v) = F2D{f(x, y)}

=

∫ ∞
−∞

∫ ∞
−∞

f(x, y) · e−2πj(ux+vy) dx dy,
(2.22)

where the parameters u and v are given as

u = ρ · cos θ

v = ρ · sin θ,
(2.23)
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with ρ denoting the spatial frequency in arbitrary directions [69]. Furthermore, the 1D

FT F1D of the projection g(`, θ) of function f(x, y) is defined as

G(ρ, θ) = F1D{g(`, θ)}

=

∫ ∞
−∞

g(`, θ) · e−2πjρ` d`.
(2.24)

x

y

ℓ

θ

f(x,y) F(u,v)

u

v

ρ

θ

g(ℓ,θ)

G(θ,ρ)

1D Fourier transform

2D Fourier transform

Figure 2.16: A visualization of the projection-slice theorem, adapted from [69].

According to the Radon transformation in Equation (2.17), we can substitute g(`, θ)

as such that it yields

G(ρ, θ) =

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

f(x, y) · δ(x · cos θ + y · sin θ − `)e−2πjρ` dx dy d`, (2.25)

which can then be further manipulated into

G(ρ, θ) =

∫ ∞
−∞

∫ ∞
−∞

f(x, y)

∫ ∞
−∞

δ(x · cos θ + y · sin θ − `)e−2πjρ` d`dx dy. (2.26)

As a next step, this expression can then be integrated in respect to ` finally resulting in

G(ρ, θ) =

∫ ∞
−∞

∫ ∞
−∞

f(x, y)δ(x · cos θ + y · sin θ − `)e−2πjρ(x·cos θ+y·sin θ) dx dy, (2.27)

which is reminiscent of the 2D FT F2D given in Equation (2.22) with the parameters

defined in Equation (2.23) [69]. This brings us to the important relationship between the

1D FT of a projection g(`, θ) and the 2D FT of any function f(x, y) [87] which defines

the projection-slice theorem as

G(ρ, θ) = F (u, v). (2.28)

In other words, the projection-slice theorem states that the 1D FT of the projection
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g(`, θ) equals the line that passes through the origin of the 2D FT of f(x, y) at angle θ,

see Figure 2.16. This allows to calculate all points (x, y) of the function f(x, y) from it’s

projections g(`, θ).

2.5.3 Filtered Backprojection

The FBP is a well established analytical method that improves the backprojection algo-

rithm explained in Section 2.5.1 and results in sharp and high quality reconstuction images

by introducing an additional filtering step that can be derived from the projection-slice

theorem in Section 2.5.2. This filtering step is used to linearly decrease the contribution

of low frequency content which is overrepresented in the projection data compared to

the high frequency content and leads to blurry looking reconstructions when using the

backprojection algorithm [87] as visualized in Figure 2.17.
...

...

...
... Filtering in

Fourier Domain

Sinogram 1D Projections Filtered 1D Projections
Filtered 2D Projection Images

FBP ReconstructionFrequency

Weight

...

...

Backproject Sum

θ1

θNθ1

θN

θ1

θN

Figure 2.17: A sequential visual demonstration of the FBP method.

The straightforward approach called Direct Fourier Reconstruction (DFR) first

transforms the projections g(`, θ) into G(ρ, θ) using the 1D FT function F1D as in

Equation (2.24). Then, the analogy between G(ρ, θ) and F (u, v) as stated by the

projection-slice theorem given in Equation (2.28) can be used, which finally allows to

utilize the Inverse Fourier transform (IFT) F−1
2D defined as

f(x, y) = F−1
2D {G(ρ, θ)} (2.29)

yielding the reconstruction of f(x, y). However, the DFR method leads to an interpolation

that would downgrade the quality of the reconstructed image [87]. This interpolation step

can be avoided by using the polar variant of the 2D IFT defined as

f(x, y) =

∫ 2π

0

∫ ∞
0

F (ρ · cos θ, ρ · sin θ) · ej2πρ(x·cos θ+y·sin θ) · ρdρdθ, (2.30)

where the additional factor ρ is introduced by the inner derivative when transforming

the function f(x, y) into polar coordinates representing the determinant of the Jacobian

matrix [69]. Following the projection-slice theorem in Equation (2.28) allows to express

f(x, y) as

f(x, y) =

∫ 2π

0

∫ ∞
0

G(ρ, θ) · ej2πρ(x·cos θ+y·sin θ) · ρdρdθ. (2.31)
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The symmetry of a projection given as g(`, θ) = g(−r, θ + π) makes it possible to change

the bounds of the integrals to replace ρ by it’s norm |ρ| that represents a ramp filter in

Fourier domain [69] yielding

f(x, y) =

∫ π

0

∫ ∞
−∞
|ρ| ·G(ρ, θ) · ej2πρ(x·cos θ+y·sin θ) dρdθ. (2.32)

Since a multiplication in Fourier domain corresponds to a convolution in spatial do-

main, the term |ρ| can be transformed by the 1D IFT F−1
1D into a function q(`) given

as
q(`) = F−1

1D {|ρ|}

=

∫ ∞
−∞
|ρ| · ej2πρ` dρ,

(2.33)

which allows to express g(`, θ) as

g(`, θ) =

∫ ∞
−∞

g(`′, θ) · q(`− `′) d`′, (2.34)

where the convolution g(`′, θ) · q(`− `′) can also be written as g(`, θ) ∗ q(`) [87].

This results in a procedure consisting of two steps, first, each 1D projection of g(`, θ)

is filtered by a ramp filter ρ in Fourier domain or by convolving it with the convolution

kernel q(`) in spatial domain. Second, the filtered 1D projections are then backprojected

just as in the backprojection algorithm described in Section 2.5.1, which finally yields the

definition of the FBP method as

f(x, y) =

∫ π

0

∫ ∞
−∞
|ρ| ·G(ρ, θ) · ej2πρ(x·cos θ+y·sin θ) dρdθ

=

∫ π

0

∫ ∞
−∞

g(`, θ) ∗ q(`) d`dθ,

(2.35)

with ` = x·cos θ+y ·sin θ resulting in a sharp reconstruction result as shown in Figure 2.17.

2.6 Limitations of Classical Reconstruction Approaches

Classical reconstruction methods like the FBP are widely used and reliable methods to

reconstruct CT images if a sufficient amount of projection views as defined by the Nyquist-

Shannon sampling theorem described in Section 2.2.3 is available. However, if only under-

sampled data is available, classical methods are heavily burdenend by artifacts degrading

the quality of the reconstructed image [8] as exemplary shown in Figure 3.7. The number

of projection views directly correlates to the amount of ionizing radiation the patient is

exposed to, which stands in stark contrast to greatly reducing the risk for the patient

to develop cancer [11, 86]. Some work was conducted to observe the relation between

the amount of ionizing radiation used and the quality of the reconstructed CT image
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resulting from that dose and demanded better reconstruction techniques [9, 24]. Most

state-of-the-art methods that aim to reduce the amount of ionizing radiation used for CT

image reconstruction rely on machine and especially deep learning, which will be explained

in Chapter 3, before we go into more details about different approaches that have been

recently proposed in Chapter 4.

(a) 360 views (b) 60 views (c) 30 views (d) 15 views

Figure 2.18: Different reconstruction results using a reduced number of projection views gener-
ated by the FBP method.
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Machine learning is a thriving field of research in computer science that has a wide

range of applications. A definition that is attributed to Arther Samuel going back to 1959

describes machine learning as the ability of computers to learn how to solve problems

without being explicitly programmed [45]. Following this definition, machine learning sys-

tems are systems that are able to learn good features from available data and optimize

themselves from that past experience to solve a given task without the need of human in-

tervention or assistance. Instead, learning is accomplished by utilizing data and implicitly

learning a general representation of that data, which can then be applied to unseen data

samples from which new information is deduced.

While different subfields of machine learning exist, we are focusing on supervised learn-

ing which is explained in Section 3.1 in this thesis. Deep learning will be explained in

Section 3.2, which is followed by Section 3.3 that is dedicated to the optimization of deep

learning algorithms. In Section 3.4 we describe Convolutional Neural Networks (CNNs)

that resemble an important kind of deep learning widely used in the field of computer

vision, while typical architectures of neural networks are given in Section 3.5. Generative

Adversarial Networks (GANs) will be discussed in Section 3.6 and lastly, Section 3.7 is

dedicated to topics related to the training of neural networks.

27
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3.1 Supervised Learning

Supervised learning is the most commonly used type of machine learning and requires not

only a large amount of data samples x ∈ X but also a corresponding label for each sample

serving as the ground truth y ∈ Y . When considering the classical classification problem

of distinguishing images of cats and dogs from one another, then the images x represent

the data samples that serve as an input for the classifier algorithm A, whereas the binary

label information for the class cat or dog is the correct answer for a given data sample

and called the ground truth y. The classifier algorithm A consists of model parameters

θ and for a given input x, algorithm A yields an output prediction ŷ that is influenced

by θ. The output prediction ŷ is then compared to the corresponding ground truth y as

shown in Figure 3.1, where the optimal solution given as y = ŷ defines the optimal model

parameters θ∗.

Data

Input x

Target y

Algorithm A

optimize Lcon

Prediction ŷ

Figure 3.1: A schematic visualization of supervised learning.

To improve the performance of A during training, an objective or loss function L is

used to meassure the error which is typically accomplished by calculating the distance

between y and ŷ. The model parameters θ are then updated according to the error as

such, that the performance of A is improved in the next iteration when calculating the

loss function L as explained in more detail in Section 3.3. The overall performance of

a classifier algorithm A given a data set with labels can be estimated by generating the

prediction of the classifier for each data sample in that data set and calculating the correct

prediction rate.

Depending on the specific problem formulation and how the algorithms or models are

trained, they can be further separated into discriminative and generative models [62]. Dis-

criminative models like the mentioned cat and dog classifier are explained in Section 3.1.1,

while generative models are given in Section 3.1.2.

3.1.1 Discriminative Models

A discriminative model predicts a label y from a given data sample x and models the

decision boundary between different classes. As such, a discriminative model makes it’s

prediction by checking on which side of the learned decision boundary a given data sample

falls focusing on distinguishing between the predefined set of classes without learning spe-

cific properties of them. Discriminative models learn a conditional probability distribution
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and can be described as functions that optimize

arg max
y
p(y|x). (3.1)

3.1.2 Generative Models

A generative model is able to learn the actual distribution of each class and thus, is able to

generate a sample of x given a label y. In contrast to discriminative models, a generative

model learns the specific properties of each class and solves the task of classification by

calculating the similarity of the features of a given sample to the typical features of each

class. By utilizing the Bayes’ theorem

p(y|x) =
p(x|y)p(y)

p(x)
, (3.2)

we can reformulate a discriminative model as a generative model as

arg max
y
p(x|y)p(y) = arg max

y
p(x, y), (3.3)

where the term p(x) can be omitted due to optimizing arg max of y resulting in a joint

probability distribution.

3.2 Deep Learning

Deep learning is one method to implement machine learning and is typically based on

Artificial Neural Networks (ANNs) that consist of millions of interconnected artificial

neurons which learn to transform given inputs into an output with some meaning. During

the optimization of the model parameters θ of an ANN called training as explained in

Section 3.3, the ANN learns features from the training data and in the ideal case, the

ANN is able to identify a general representation of the data and also achieves a good

performance on unseen data samples. The breakthrough of deep learning in 2012 with the

AlexNet [46] significantly outperforming state-of-the-art methods for image classification

in that time lead to a highly increased interest in deep learning related research. Amongst

them is the work proposed in [33] which was able to surpass human performance in image

classification as well as contributions to other fields like speech recognition [4, 88] and text

processing [103]. An overview on recent accomplishments in the field of medical imaging

is given in [52, 56].

3.2.1 Artificial Neurons

Artificial neurons are inspired by neurons in biological brains shown in Figure 3.2 and

similar to their biological counterpart, artificial neurons are interconnected signal pro-

cessing units that modify and transmit incoming signals originally introduced in [57].
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Figure 3.2: A schematic visualization of a biological neuron.1

Mathematically speaking, each artificial neuron receives a specific number of K inputs

x and contains a set of K + 1 parameters θ = {b,w} consisting of one bias b and K

weights w = {w1, . . . , wK}, see Figure 3.3. To arrive at a more convenient formulation,

we concatenate a constant factor x0 = 1 to the input vector which is then defined as

x = {x0, x1, . . . , xK} also having a size of K + 1 equally to θ.

b

Input Output

x1

xK

w1

wK
y

... ϕ ^

Figure 3.3: A schematic visualization of an artificial neuron.2

Following this formulation, each parameter θk corresponds to one input xk defining

the relative importance of xk in that neuron, while the bias b represents a weight that is

independent of any input and allows a constant translation along the x-axis of the resulting

function. Combining the set of inputs with the parameters yields the output prediction ŷ

of that neuron defined as

ŷ =
K∑
k=0

xk · θk. (3.4)

This formulation, however, allows only a linear transformation of the input to calculate

the output prediction ŷ, which represents a limitation if the distribution of the data is non-

1 Visualization of a biological neuron, mirrored with modified labels and additional visualizations, from
OpenStax College, June 2013 via Anatomy and Physiology http://cnx.org/content/col11496/latest/,
CC BY 4.0 License. c© 2013 Rice University

2 Visualization of an artificial neuron, adapted from https://medium.com/@jayeshbahire/

the-artificial-neural-networks-handbook-part-4-d2087d1f583e, last accessed on 22 March 2019.

http://cnx.org/content/col11496/latest/
https://medium.com/@jayeshbahire/the-artificial-neural-networks-handbook-part-4-d2087d1f583e
https://medium.com/@jayeshbahire/the-artificial-neural-networks-handbook-part-4-d2087d1f583e
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linear. By introducing a non-linear activation function φ visualized in Figure 3.3, neurons

are able to learn non-linear representations of the data. Since real world data is typically

non-linear, an activation function improves the performance of a neuron significantly.

Incorporating φ leads to the following formulation:

ŷ = φ(
K∑
k=0

xk · θk), (3.5)

important activation functions are explained in Section 3.4.3. This formulation can be

manipulated by directly expressing the inputs and the weights as vectors yielding the

simplified notation given as

ŷ = φ(x · θ) = φ(x;θ). (3.6)

The first learning algorithm for single artificial neurons was proposed in [74] and showed

that they are capable of finding a solution for linearly separable data. While it was shown

that single artificial neurons can solve the logical operators AND, OR and NOT, they are

unable to solve the XOR problem which requires a non-linear solution as demonstrated

in [58], which, however, can be solved by stacking multiple artificial neurons and forming

a simple ANN [25, 27].

3.2.2 Feedforward Neural Networks

Concatenating multiple artificial neurons as such that the output of a preceding neuron

is used as an input of it’s successive neuron leads to an ANN . Restricting the network

by prohibiting circular connections and only allowing the input to be strictly forwarded

through the artificial neurons until the output is reached forms a Feedforward Neural

Network (FNN), see Figure 3.4.

...
Input Layer

...

... ...

...

...

x1

xK

...

Input Hidden Layer 1 Output Layer Output

y1

yK

...

^

^

Figure 3.4: A schematic visualization of a FNN .

All artificial neurons of a given depth in the FNN are referred to as one layer and

we define all layers in this simple FNN to be fully-connected layers, which means that all
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artificial neurons of a preceding layer are connected to all artifical neurons of a successive

layer. While the first and last layer are called the input and output layer accordingly,

intermediate layers are defined as hidden layers. The number of layers present in a FNN

is referred to as the depth of the network and explains the nomenclature of deep learning

oftenly quantified with at least 8 layers going back to the AlexNet [46]. Considering a

FNN of depth D and reformulating the input of the network as a0 = x and the output as

aD = ŷ allows to extend the definition of Equation (3.6) into

ad = φd−1(ad−1;θd−1) (3.7)

with 1 ≤ d ≤ D. Following this formulation shows that a FNN can be expressed as a

parametric function f with parameters θ that learns to map an input x to some output ŷ

yielding

ŷ = f(x;θ). (3.8)

The function f can be disassembled into a set of sequential functions [25] defined as

f(x;θ) = fd(fd−1(x;θd−1);θd), (3.9)

again with 1 ≤ d ≤ D. The parameters θ of the function f are iteratively optimized

using data which is called training. The goal of training the function f is to approximate

the optimal parameters θ∗ representing the ideal solution defined as y = f(x;θ∗), see

Section 3.3.

3.3 Optimization

The optimization of a deep learning based algorithm A is done by minimizing an objective

function, i.e. a loss function L that measures the error between the ground truth y and

the prediction ŷ generated from A given a data sample x. Calculating the global minimum

of a typically non-convex loss function L used by deep learning networks that consist of

millions of parameters is analytically infeasible and demands a solution achieved through

approximation. Over the course of training the algorithm A, this objective function L is

used to iteratively measure the error by slightly modifying the internal parameters θ based

on the data samples seen during the current training iteration. Calculating the gradients

of the loss function L in respect to the parameters θ allows to modify θ as such, that L is

minimized until it saturates in a local minimum, where L is considered to have converged

and the training procedure stops.

3.3.1 Loss Function

Conventional loss functions like the L1 or the L2 loss function are still widely used to

optimize the parameters θ due to their universal applicability and good performance on
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many tasks. While the L1 loss represents the Mean Absolute Error (MAE) calculated as

the mean absolute difference of the prediction ŷ to the ground truth y of a given data set

m ∈M and is defined as

L1 =
1

m

∑
m∈M

|ŷm − ym|, (3.10)

the L2 loss or Mean Squared Error (MSE) is the mean squared difference and defined as

L2 =
1

m

∑
m∈M

(ŷm − ym)2. (3.11)

These rather basic conventional loss functions, however, can be replaced by more task

specific loss functions or combinations of multiple loss functions to improve the perfor-

mance of the algorithm on a specific task. A more sophisticated training scheme is repre-

sented by a GAN introduced in [26] and explained in Section 3.6.

3.3.2 Optimizer

An optimizer O defines how the parameters θ need to be adapted from iteration to iteration

to minimize L as far as possible and ultimately arrive at a good local minimum. Gradient

Descent (GD) represents a traditional optimizer that requires to calculate the gradient with

respect to the parameters θ for each sample xm in the dataset XM , where M represents

the number of samples. The gradient of any sample xm with the corresponding target ym
is defined as

gθm = ∇θL(f(xm;θ), ym), (3.12)

where L is a loss function as explained in Section 5.3.3 and the function f is defined in

Equation (3.8) [25]. The final gradient over all samples in XM is given as

gθ =
1

M

M∑
m=1

gθm , (3.13)

which is then used to update the parameters θ yielding

θ := θ + η · −gθ. (3.14)

The term η represents a hyperparameter called the learning rate that controls the mag-

nitude of the update. As such, each update using GD requires to calculate the gradient

gθm for each sample xm in the dataset XM , which becomes time intensive if the number

of data samples M is very large. Stochastic Gradient Descent (SGD) presents a solution,

where the gradients are only calculated for a small random subset XK ⊂ XM , instead

of calculating them for the full dataset XM . The reduced dataset XK is called a mini-

batch and is typically defined as such, that repeating samples xm are only allowed in the

subset XK after each sample of XM has been chosen exactly once [25]. This brings us
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to the formal expression of SGD which represents an approximation of the GD given in

Equation (3.13) and is defined as

gθ ≈
1

K

K∑
k=1

gθk . (3.15)

However, both GD and SGD require to find a good value for the learning rate η that defines

how much the parameters θ are modified per iteration. Finding the optimal value for the

learning rate η is task specific and not trivial, while a small learning rate significantly

increases the time the algorithm requires to converge and might result in the algorithm

getting stuck in a bad local minimum, a large η can lead to an oscillation of the loss

function L where the local minimum is overshot back and forth oftenly resulting in non-

convergence.

Adaptive learning rate optimizers do not rely on an individual global learning rate η

but utilize an individual learning rate for every trainable parameter in θ, which showed

to work better for a wide range of setups than SGD . A popular adaptive learning rate

optimizer is represented by Adaptive Moment Estimation (ADAM) introduced in [41],

which incorporates momentum that accelerates learning by accumulating an exponentially

decaying moving average of the past gradients defined as

µ := β1 · µ+ (1− β1) · gθ (3.16)

v := β1 · v + (1− β1) · gθ2. (3.17)

The estimates of the first and second moment µ and v of the gradients allow a movement

in the optimal direction without suffering from small or noisy gradients [25]. Following

the definition in [41] we define

µ̂ =
µ

1− β1
(3.18)

v̂ =
v

1− β2
, (3.19)

which represent bias-corrected estimates that finally allow to redefine the parameter up-

date given in Equation (3.14) as

θ := θ − η√
v̂ + ε

· µ̂, (3.20)

where ε is used to prevent a division by zero. The recommended hyperparameters achieving

a good performance among various tasks according to [41] are given by η = 10−3, β1 = 0.9,

β2 = 0.999 and ε = 10−8.
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3.4 Convolutional Neural Networks

In fully-connected FNNs every artifical neuron of a preceding layer is connected to every

neuron of a successive layer with the exception of the input. The vast increase of pa-

rameters per layer that need to be trained in fully-connected FNNs heavily influences the

performance and memory requirements of these networks limiting their potential. One

possibility to circumvent this problem is exploiting additional information that is implic-

itly encoded in some data, like spatial correlation in images or time information from

sensor data or in speech. This is implemented in CNNs that are defined in [25] as

Convolutional networks are neural networks that use convolution in place of general

matrix multiplication in at least one of their layers.

3.4.1 Convolution

A discrete convolution in two dimensional (2D) space is defined as

S(i, j) = (K ∗ I)(i, j) =
∑
m

∑
n

I(i−m, j − n)K(m,n), (3.21)

where each pixel i, j of a 2D image I is convolved with each pixel m,n of a 2D kernel K

yielding the convolved image S called feature map [25]. While an example of a 2D convo-

lution of an image with a kernel of size 3× 3 is shown in Figure 3.5, this formulation can

be extended to three dimensional (3D) volumetric data by adding an additional dimension

to the formula leading to

S(i, j, k) = (K ∗ I)(i, j, k) =
∑
m

∑
n

∑
o

I(i−m, j − n, k − o)K(m,n, o). (3.22)

Sparse Connectivity In contrast to a fully-connected FNN , a CNN is a specialized

neural network based on convolutions, that restricts the number of connections between a

preceding layer and a successive layer. This important property of CNNs is called sparse

connectivity and leads only to connections between neighboring pixels in spatial domain,

where the convolution kernel acts as a receptive field of a given pixel.

Parameter Sharing Another property of CNNs is parameter sharing which allows to

reuse the learned weights of a convolution kernel at any pixel in an image rather than

learning individual weights for each pixel position as it would be necessary for fully-

connected layers. As such, each convolution kernel of a CNN that was trained to detect

one specific feature is able to detect that feature independently of the position in the

image. Parameter sharing in CNNs heavily reduces the amount of parameters that need

to be trained per layer and allows to use more layers yielding better results in many tasks.
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Input Output

Figure 3.5: A visualization of a convolution kernel.

3.4.2 Pooling

Pooling layers are widely used in CNNs after a convolution layer or a set of convolution

layers and transform it’s input into a summary statistics consequently decreasing the size

of the input, see Figure 3.6. As such, pooling layers fulfill different tasks, they enforce

invariance to small translations, reduce the number of parameters of the network as well

as increase the receptive field of the following layers by downsampling the image [25]. An

established method is represented by max pooling, where a square neighborhood typically

of a size 2× 2 is observed and only the maximum value of that neighborhood is preserved

in the output resulting in a reduced image size [107].

Input Output

Figure 3.6: A visualization of a pooling layer.

3.4.3 Activation Functions

As explained in Section 3.2.1, activation functions can be used to introduce non-linear

functions to a neural network, which enables the network to learn non-linearities in the

data. The Rectified Linear Unit (ReLU), see Figure 3.7a, represents an important activa-
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tion function which was introduced in [60] as

φ(x) = max(0, x), (3.23)

where the input x corresponds to the output of an artificial neuron. ReLUs are widely

used in the convolution layers of CNNs, since they show a good performance on many

different tasks leading to a fast convergence towards a local minimum [25]. Due to the

definition of ReLUs yielding zero for x ≤ 0, it is possible that some neurons die, i.e. that

they are always inactive and never contribute to the prediction of the neural network. A

solution to this problem was introduced in [33] called Leaky Rectified Linear Unit (Leaky

ReLU) which is defined as

φ(x) =

{
αx x < 0

x x ≥ 0,
(3.24)

where the additional parameter typically defined as α = 0.2 ensures the existence of a non-

zero gradient for negative inputs x as visualized in Figure 3.7b. As such, Leaky ReLUs

solve the problem of ( dying) artificial neurons [25].

1 1

1

(a) ReLU

1

1

1

(b) Leaky ReLU

Figure 3.7: Visualization of important activation functions. Image (a) shows a ReLU , image (b)
shows a Leaky ReLU .

3.5 Architectures of Neural Networks

The sequence of layers implemented into a neural network is called the architecture of

the network and implicitly defines how a network is operating. Each layer performs a

transformation from the given input to an output and forwards the output to the next

layer. Two prominent and widely used architectures that serve different purposes and

solve a wide range of problems are represented by encoder and decoder networks. While

encoders are explained in Section 3.5.1, a description of decoders is given in Section 3.5.2.

More specific architectures that are relevant to this thesis are given in Section 3.5.1.1

and Section 3.5.2.1.
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3.5.1 Encoder

An encoder network is a neural network that learns to reduce the complexity of a given

input by transforming it into a feature representation ideally consisting only of the most

significant features for the task. CNNs typically accomplish this by concatenating multiple

sets consisting of individual or multiple convolution layers with a non-linear activation

function as in Equation (3.5) which is followed by a pooling layer. During the training of

such a CNN , the first convolution layer learns to extract meaningful features directly from

the input, while follow-up convolution layers combine the previously learned features into

more complex ones. The pooling layers serve the purpose of making the CNN translational

invariant and also reduce the number of features for all successive layers. An exemplary

encoder CNN is given in Figure 3.8.

convolution
pooling

Input: Image Output: Feature Representation

264 232 216 28 24

Figure 3.8: A visualization of an encoder neural network.

3.5.1.1 Classification Neural Network

Binary classification CNNs that predict one class out of two for a given input image are

implemented as encoder networks with an additional fully-connected FNN at the end that

transforms the feature representation into a single scalar value, see Figure 3.9. This single

scalar value can also be replaced by a number of C scalar outputs, where C corresponds to

the number of classes which is defined as C = 2 in the case of binary classification. These

outputs can then be transformed using a softmax function [25] into values that sum up

to one, where the maximum value represents the predicted class. The advantage of this

formulation is that it can also solve a multiclass classification task, since the number of

classes C can be chosen arbitrarily. Additionally, in the case of binary classification the

C outputs of the CNN directly represent the probabilities for either class.

3.5.2 Decoder

A decoder network is a neural network that inversely complements an encoder network

by learning a transformation from a feature representation to an output, i.e. an image

with some meaning in the case of CNNs. A typical decoder consists of a consecutive series

of an upsampling and one or multiple convolution layers with a non-linear activation
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convolution
pooling

fully connected

Input: Image Output: C Scalar Values

C
264 232 216 28 24

Figure 3.9: A visualization of a classification neural network.

function as in Equation (3.5), where a possible implementation of an upsampling layer

is presented by a resampling of the given input to the desired size which is followed

by an interpolation resulting in the desired output. The consecutive convolution layers

learn new representations of the data by transforming the received features into new ones.

Figure 3.10 shows a typical decoder CNN , however, a decoder that is defined as such still

yields an output representing features. To finally transform the feature representation

into a more meaningful output like an image in the case of a CNN , a fully-connected layer

similarly to a FNN is used at the end of the decoder to learn the optimal combination of

all features yielding that image.

convolution
upsamping

Input: Feature Representation Output: Image

24
28 216 232 264

Figure 3.10: A visualization of a decoder neural network.

3.5.2.1 Image-to-Image Neural Network

Another type of network architectures is represented by image-to-image CNNs that receive

an image as an input and learn to transform the image of some input space into an image

of some output space, where the input and output space are defined by the task. Image-

to-image CNN combine an encoder and a decoder with the encoder being trained to

transform the input image into a feature representation and the decoder being optimized

the construct an image in the target space from that feature representation. A well

established and widely used architecture is represented by the U-Net introduced in [72]

and visualized in Figure 3.11. The U-Net uses additional skip connections that directly

connect intermediate convolution layer outputs from the contracting path representing

the encoder to the expanding path, i.e. the decoder. These skip connections allow the
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contribution of high frequency contents to the final output of the CNN .

+

+

+
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Figure 3.11: A visualization of the U-Net [72] which represents an image-to-image neural network
with skip connections.

3.6 Generative Adversarial Networks

GANs represent generative modelling based approaches as exlained in Section 3.1.2 im-

plemented as neural networks that have received a lot of attention due to their good

performance and wide range of applications since their introduction in [26]. While the

original formulation of GANs showed to be hard to train due to instability issues, many

of these problems have been overcome by introducing Wasserstein Generative Adversarial

Network (WGAN) in [6]. The work in [28] further improved WGANs by proposing to

use a gradient penalty term yielding Wasserstein Generative Adversarial Network with

Gradient Penalty (WGAN-GP).

A GAN consists of two differentiable neural networks, namely the generator G and the

discriminator D, that play a game theory based minimax game against one another. While

the discriminator D is defined as a encoder network similarly to the network described in

Section 3.5.1.1, the generator G is represented by a decoder network as in Section 3.5.2.

Considering a real data distribution Pr and following the original formulation as introduced

in [26], the generator G now receives random noise z drawn from a distribution p(z) and

learns to generate new data samples ŷ from z, see Figure 3.12. Defining the generated

synthetic data distribution Pg of the new data samples ŷ leads to the following formulation

ŷ ∼ Pg, ŷ = G(z), z ∼ p(z), (3.25)

where the distribution p(z) represents an arbitrary simple distribution like a uniform or

Gaussian distribution. To accomplish this, the generator G optimizes its parameters θG
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to learn a transformation from p(z) to a synthetic data distribution Pg with the goal that

Pg is as similar as possible and ideally equal to Pr.
The discriminator D is trained to distinguish between real data samples y drawn from

Pr and synthetic data samples ŷ drawn from Pg optimizing the parameters θD of D, see

Figure 3.12. Since D yields the probability of either y or ŷ belonging to the real data

distribution Pr, it ideally manages to result in D(ŷ) = 0 and D(y) = 1. This formulation

leads to the following minimax game

min
G

max
D

v(D,G) = Ey∼Pr [logD(y)] + Ez∼pz(z)[log(1−D(G(z)))], (3.26)

where the payoff function v(D,G) is evaluated to alternately update θD and θG. While

the discriminator is incentivized to optimize the correct classification of the given data into

real and synthetic samples, the generator tries to confuse the discriminator by making him

believe that the generated samples are real. The optimal generator of a GAN is defined

as such, that the discriminator’s output yields 1
2 for both, y and ŷ.

G
Generator

Data

D
Discriminator

or

real

synthetic

Is input

real?

optimize Ladv

Target y

Prediction ŷNoise z

Figure 3.12: A schematic visualization of a GAN according to [26].

However, while GANs are guaranteed to converge when v(D,G) maximized in respect

to D is convex [25], in practice this condition is typically not met resulting in severe

difficulties when training GANs as initially introduced. More precisely, the optimization

of a GAN requires to find a Nash equilibrium, where complementing optimal strategies

need to be found as such, that neither the discriminator nor the generator has anything to

gain by only changing it’s own strategy [61]. Finding a Nash equilibrium is difficult and

typically results in the situation that one network heavily outperforms the other leading

to an unstable training process that causes suboptimal results. While this problem can

be circumvented by carefully tuning the hyperparameters of the GAN and finding a set

of parameters that yields good results for a given task and data, this is a cumbersome

process, since it is still required to find a Nash equilibrium. Another prominent problem

identified in [26] is represented by mode collapse, where the generator G only learns to

map multiple different inputs to the same output and produces very similar samples of ŷ
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instead of a broad variety of samples, which is mainly caused by independent evaluation

of ŷ in a minibatch by the discriminator [75].

To improve the stability issues and problems like mode collapse present in traditional

GANs, the work in [6] provided a comprehensive analysis of popular probability distances

and convergences when learning distributions. Learning a probability distribution Pg that

is as similar as possible to the real data distribution Pr is classically achieved by maximizing

the likelihood estimation of a probability density pg(y) on the real data y. This problem

statement can then be reformulated by transforming the maximum likelihood estimation

into minimizing the Kullback-Leibler (KL) divergence defined as

KL(Pr ‖ Pg) =

∫
log

(
pr(y)

pg(y)

)
· pr(y) dµ(y), (3.27)

where it is assumed that both Pr and Pg admit a density with respect to the same measure

µ [6]. As such, the KL divergence requires that the density pr(y) exists, however, this is

not guaranteed especially in the common case when the distributions are supported by

low dimensional manifolds. This leads to no intersection or just a negligible intersection

between the model distribution and the support of the true distribution resulting in the

KL divergence to be undefined (or infinite).

A typical solution that circumvents the problem of the KL divergence being undefined

is implemented by many generative model based approaches by adding noise sampled e.g.

from a Gaussian distribution to the model distribution. However, while this method is

sufficient to prevent the undefined states when minimizing the KL divergence, the additive

noise consequently also leads to a blurred and thus, degraded quality of the generated

samples. An advantage of a generator neural network G of a GANs is, that G represents

a parametric function that directly generates samples following a distribution Pg from

random noise z. Since the generator G is a parametric function, updating the parameters

θG of G directly influences the generator’s distribution Pg, which is sufficient to bring Pg
closer to Pr. This eliminates the assumption of the KL divergence that both Pr and Pg
admit a density and as such, it is not mandatory that the density pr exists. Furthermore,

since the densities pr and pg are not required to optimize the generator, it is irrelevant

whether the densities are only supported by low dimensional manifolds or not. Thus,

adding noise to the model distribution on which many generative model based approaches

rely on is not necessary [6].

GANs as originially introduced in [26] used the Jensen-Shannon (JS) divergence to

measure the distance between the real data distribution Pr and the generated data distri-

bution Pg defined as

JS(Pr,Pg) = KL(Pr ‖ Pm) +KL(Pg ‖ Pm), (3.28)

where Pm =
Pr+Pg

2 . Similarly to the KL divergence, the JS divergence also suffers when

learning distributions that are supported by low dimensional manifolds as shown in [6].
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3.6.1 Wasserstein Generative Adversarial Networks

Motivated by analysing the properties of different popular probability distance metrics,

the work proposed in [6] found that the Earth Mover (EM) distance or Wasserstein-1

distance is able to solve problems like the instability issues and mode collapse that are

present in traditional GANs and introduced WGANs. The EM distance is defined as

W (Pr,Pg) = inf
γ∈Π(Pr,Pg)

Ey,ŷ∼γ [‖ y − ŷ ‖], (3.29)

where Π(Pr,Pg) defines the set of all joint distributions γ(y, ŷ) whose marginals are Pr
and Pg respectively, resembling the cost of the optimal transport plan to transform the

distribution Pr into Pg. While the infimum in Equation (3.29) is highly intractable, the

Kantorovich-Rubinstein duality [93] allows to reformulate the optimization scheme as

W (Pr,Pg) = sup
||f ||L≤1

Ey∼Pr [f(y)]− Eŷ∼Pg [f(ŷ)], (3.30)

where the supremum is over all 1-Lipschitz functions. Next, the work in [6] suggests to

replace the 1-Lipschitz functions by K-Lipschitz functions given some constant K yielding

K ·W (Pr,Pg), where K is swallowed by the learning rate and the function space f trans-

forms into a parameterized family of functions fw with w ∈ W that are all K-Lipschitz.

This parameterized family of functions fw can then be replaced by our discriminator neural

network D with the parameters θD which finally allows us to derive the following objective

function

max
D

Ey∼Pr [D(y)]− Eŷ∼Pg [D(ŷ)]. (3.31)

A reformulation is possible by following Equation (3.25) and defining ŷ = G(z) sampled

from the distribution Pg, where ŷ is generated by the generator network G given an input

noise z sampled from a noise distribution p(z) such that Eŷ∼Pg [ŷ] = Ez∼p(z)[G(z)]. This

allows to define the objective value loss function v(D,G) of the WGAN as

min
G

max
D

v(D,G) = Ey∼Pr [D(y)]− Ez∼p(z)[D(G(z))]. (3.32)

Since the parameters θD are defined to lie in a compact spaceW, backpropagation leads to

estimating Ez∼p(z)[∇D(G(z))] resulting in a training scheme similar to the one proposed

in the original GAN in [26]. As the last step, it is now necessary to define the compact

space W which then implies that all functions D will ultimatly be K-Lipschitz and the

stated assumption holding true. It is suggested in [6] to clip the weights in θD to a fixed

box defined as W = [−0.01, 0.01] after each gradient update to yield a compact space.

While for original GANs it is important to balance the progressive improvement of

the discriminator D and the generator G as such, that neither is able to outperform the

other, this is not necessary when training WGANs, since the EM distance is still able to

provide gradients in contrast to the JS divergence. Furthermore, the EM distance does
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not rely on the existence of the density pr, which represents a limitation of the KL and

JS divergence as explained in Section 3.6. As such, the EM distance allows to train the

discriminator D to optimality before updating the generator G as recommended in [6],

which yields more reliable gradients and makes the training more stable. An additional

advantage of an optimal discriminator D is, that the loss function becomes interpretable

and correlates to the quality of the generated images in comparison to the real data.

3.6.2 Wasserstein Generative Adversarial Networks with Gradient

Penalty

WGAN solved important issues present in the orginial GAN formulation [26] by using the

EM or Wasserstein-1 distance as a value function. However, their formulation requires the

discriminator’s parameters θD to lie in a compact spaceW of 1-Lipschitz functions, which

they define by clipping the weights of θD to a fixed box defined as W = [−0.01, 0.01]. The

work in [28] argues that weight clipping is a suboptimal solution potentially leading to non-

convergence or unstable gradients of WGANs and prove that the optimal discriminator

has a unit gradient norm almost everywhere under Pr and Pg, since the discriminator D

is defined to be a 1-Lipschitz function. To enforce the 1-Lipschitz constraint and the unit

gradient norm on θD, [28] suggests to constrain the gradient norm of the discriminator’s

output by it’s input using a soft two-sided gradient penalty which encourages the norm of

the gradient to go towards 1. Following this formulation and modifying the value function

of Equation (3.32) accordingly leads to WGAN-GP defined as

min
G

max
D

v(D,G) = Ey∼Pr [D(y)]−Ez∼p(z)[D(G(z))]−γ ·Eỹ∼Pỹ
[(||∇ỹD(ỹ)||2−1)2], (3.33)

where Pỹ is implicitly defined by uniformly sampling along straight lines between pairs

of points sampled from the real data distribution Pr and the generated data distribution

Pg, which they motivate via the optimal discriminator that connects coupled points from

these two distributions. The term γ represents the penalty coefficient which was found

to work well when set to 10 across a variety of experiments [28]. WGAN-GP does not

work if batch normalization is used, since it would lead to an invalid gradient penalty,

however, [28] argues that their method works with normalization schemes that do not

introduce correlations between samples and recommend to use layer normalization [7]

instead of batch normalization.

The introduction of the gradient penalty term in [28] allowed to make the training

of WGANs even more stable. WGAN-GP oftenly shows a good performance by using

the default parameters as proposed in [28] without the need of additional hyperparameter

tuning simplifying the application of WGAN-GP independently of the task and the data.
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3.6.3 Extending Generative Adversarial Networks with a Prior

While GANs and especially the extension WGAN-GP as explained in Section 3.6.2 show

great potential for data generation from a random noise distribution, they can also be

modified to solve other tasks. More precisly, if there exists a prior x with some meaning

that is drawn from a distribution Px as such that x ∼ Px, this prior x can then be

used to replace the random noise z ∼ p(z) as it is defined in the original GAN [26].

Instead of learning a transformation from z to ŷ, the generator G can now be optimized

to learn a transformation from the prior x to ŷ with ŷ forming the data distribution Pg,
see Figure 3.13. The generator G still aims to bring the generated data distribution Pg
as close as possible to the real data distribution Pr as explained in the previous sections.

However, in contrast to the random noise distribution, this prior constrains the generator’s

input distribution since it contains some meaning which ultimately simplifies the problem

for the generator G to learn a transformation to Pg aiming for Pg to be as similar as

possible to Pr. By incorporating that prior, the original formulation of GAN [26] as given

in Equation (3.26) can now be modified to

min
G

max
D

v(D,G) = Ey∼Pr [logD(y)] + Ex∼Px [log(1−D(G(x)))], (3.34)

where the random noise distribution p(z) is replaced by the prior Px. Following this

reformulation, the definition of WGAN-GP as introduced in [28] given in Equation (3.33)

can also be modified accordingly, yielding

min
G

max
D

v(D,G) = Ey∼Pr [D(y)]−Ex∼Px [D(G(x))]−γ ·Eỹ∼Pỹ
[(||∇ỹD(ỹ)||2−1)2], (3.35)

where Pỹ is now defined as uniformly sampled along straight lines connecting the real data

distribution Pr and the generated data distribution Pg.
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synthetic
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optimize Lcon

Input x

optimize Ladv

Figure 3.13: A schematic visualization of an extension to GANs that allows to use an additional
loss function.

While this prior-incorporating formulation of GANs can be used to solve tasks like
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super resolution, domain transfer, image denoising and image reconstruction, they still

need to be further constrained to improve their performance as shown e.g. in [47, 100].

This additional constraint can be accomplished by combining the adversarial loss of the

GAN with a conventional content loss function like L1 loss or L2 loss, see Equation (3.10)

and Equation (3.11) respectively, see Figure 3.13. This was done e.g. in the work in [47],

which applied the adapted GAN formulation given in Equation (3.34) to a 4× super

resolution task and achieved state-of-the-art results by combining the adversarial loss

with a content loss evaluating different content loss functions. Another approach in [100]

evaluated the performance of WGAN-GP using a prior similarly to Equation (3.35) for

Computed Tomography (CT) image denoising and experimented with different combined

loss function aiming to improve the quality of simulated quarter-dose CT images to be

similar to normal-dose CT images explained in more detail in Section 4.1.2.

3.7 Training Neural Networks

While we have discussed deep learning in this chapter and explained how the performance

of neural networks is iteratively improved in Section 3.3, we have only optimized the neu-

ral network towards the data used during training called the training set. Considering the

training set Xtrain consisting of a usually small subset of all possible valid samples X de-

fined as Xtrain ( X, we aimed to train an algorithm A to learn a data distribution PA from

Xtrain that shall be as similar as possible to the real data distribution Pr representative

for all samples in X. So, in the ideal case of PA being equal to Pr, our learning algorithm

A is able to perform as good on samples seen during training Xtrain as on samples not seen

during training X \Xtrain, which is practically very unlikely. The validation of how good

an algorithm A is generalizing to data unseen during training is typically accomplished by

introducing a test set Xtest, which represents another subset of all possible valid samples

X disjoint of Xtrain defined as Xtest ( X \Xtrain [25]. Generalization of A to unseen data

is then expressed as the performance of A on Xtest.

3.7.1 Underfitting and Overfitting

Two problems can be observed when training an algorithm A on a training set Xtrain,

namely underfitting and overfitting of A to Xtrain. Underfitting means that A is unable

to learn a meaningful representation of the training data Xtrain, which, can sufficiently

be solved by increasing the number of parameters θ learned by A directly enabling it to

learn more complex data distributions [25].

Overfitting on the other hand means that A is too powerful allowing it to learn too

specific features of individual data samples in Xtrain and leads to A starting to memo-

rize the distribution of these individual samples by heart rather than learning a general

distribution of the data similar to Pr [25]. As such, overfitting results in A performing

significantly better on the samples Xtrain used during training than on unseen samples
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X \Xtrain and makes it unable to generalize.

3.7.2 Early Stopping

The observation of the performance of A with a high enough number of parameters θ

on Xtrain compared to Xtest during training typically shows, that while the training loss

on Xtrain is continuously decreasing, the loss on Xtest initially decreases but starts to

increase at some point again. The parameters θ at the point where the loss of A on Xtest

is minimal, is considered as the optimal parameter setup of A that best generalizes to

unseen data. As such, early stopping defines a regularization scheme aiming to find the

optimal θ to minimize the loss on the test data [25].

Number of Iterations

E
rr

or

Early Stopping

Training Error

Validation Error

Figure 3.14: A visualization of early stopping.

3.7.3 Data Augmentation

For some problems in computer vision there are huge public datasets3 available, e.g. the

ImageNet4 used for recognition tasks containing over 14 million annotated images. How-

ever, in other domains like medical imaging, one problem that is typically encountered in

deep learning is the sparse amount of data publicly available due to ethical reasons and

acquisition cost. A very small training set Xtrain simplifies memorization of the individ-

ual data samples of an algorithm A and can lead to A overfitting to Xtrain more easily.

While this results in serious problems of A to generalize, it is rather simple to counter this

problem by augmenting the training data before passing it to A.

Data augmentation defines the process of generating artificial data samples by intro-

ducing some variance into the available data samples and increase the number of unique

samples available during training. As shown e.g. in [19, 46, 84], data augmentation is

an effective method to improve the performance of a learning based method significantly.

3A list of publicly available datasets in computer vision: https://github.com/jbhuang0604/

awesome-computer-vision/#datasets
4The well-known ImageNet: http://image-net.org/

https://github.com/jbhuang0604/awesome-computer-vision/#datasets
https://github.com/jbhuang0604/awesome-computer-vision/#datasets
http://image-net.org/
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Furthermore, most applications augment data on the fly, which in theory allows for an

infinite amount of unique data samples without a memory overhead.

While data augmentation is usually done by simple global operations like translation

or intensity shift, also more sophisticated methods as e.g. elastic deformation exist. Data

augmentation is useful and beneficial for a CNN , when the variance introduced to the

data is natural and can potentially occur as such. Considering CT imgaging, translations

up to some degree can occur in the data, while a variation of intensity values is mostly

prevented by the normalization to the Hounsfield Unit (HU) scale which is explained

in Section 2.4.4. Large rotations are typically also not the case, since orientation and

coordinates are defined by the procedure, i.e. the setup of the device and the position and

orientation of the patient during image acquisition. As such, only a slight rotation in each

dimension will be required to be utilized for augmentation.

(a) Original (b) Translation (c) Rotation (d) Scaling

Figure 3.15: A visualization of different data augmentation operations. Image (a) shows the
original image, (b) shows a translation, (c) shows a rotation, (d) shows scaling augmentation.

However, while other data augmentation methods exist, we will only focus on the

ones that were actually used in this work, which are translation, rotation and scale. In

comparison to the not augmented target image shown in Figure 3.15a, by utilizing a

random translation the image is shifted e.g. as shown in Figure 3.15b. Random rotation

is done by rotating the image around it’s center, an example is given in Figure 3.15c. A

random scale is performed to expand or contract the image in the respective dimension,

see e.g. Figure 3.15d.

Furthermore, these image augmentation modalities potentially allow image areas pre-

viously located outside of the image’s boundaries to be visible after augmentation. For

that purpose, different boundary handling methods are in existence to define these newly

introduced image areas, however, for our application we defined these newly introduced

image areas as air according to the HU scale, which defines them as empty.
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This chapter is dedicated to recently published work that contributes to the field

of medical imaging and especially Computed Tomography (CT) image reconstruction of

which many are motivated by reducing the amount of ionizing radiation exposed to the

patient. Due to the breakthroughs of machine learning in general and deep learning for

imaging applications which is explained in Chapter 3, many of the approaches addressed

in this chapter are based on Convolutional Neural Networks (CNNs). And since there are

different strategies to apply deep learning and solve the task of CT image reconstruction,

we will first explain these different strategies in Section 4.1. The subsequent sections are

separated into groups of similar approaches that reduce the ionizing radiation dose used

during image acquisition and learn to reconstruct from that reduced set of available data.

One group of approaches to reduce the radiation dose is the reduction of the tube current

explained in Section 4.2. A second group of approaches relies on physical beam blockers

which are described in Section 4.3 and another group reduces the number of views acquired

and utilized for image reconstruction given in Section 4.4. Lastly, Section 4.5 summarizes

some contributions to the Magnetic Resonance Imaging (MRI) community where the goal

is to improve the quality of accelerated MRI images, which represents a similar problem

to low-dose CT image reconstruction.

49
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4.1 Different Strategies to Apply Deep Learning

Image reconstruction in CT is done by first acquiring a set of projection views as described

in Section 2.4 yielding the sinogram, which contains the projection data used to reconstruct

a CT image that resembles the patient, see Section 2.5. Reducing the radiation dose used

to reconstruct a CT image consequently also reduces the information contained in the

sinogram, which leads to a degraded reconstruction quality when classical methods are

used for CT image reconstruction as explained in Section 2.6. The problem of improving

the reconstruction quality from a low-dose sinogram was in the recent years typically

tackled by deep learning based methods and especially CNNs, see Section 3.2. The advent

of deep learning to the field of medical imaging also introduced a number of different

strategies to apply deep learning and solve the task of CT image reconstruction from a

low-dose sinogram which will be explained in this section.

We differentiate between these strategies depending on the stage at which a CNN is

applied to solve the reconstruction problem of which a subset of strategies have been ob-

served in [51] for sparse-view CT reconstruction, however, following a broader definition,

these strategies can also be applied to other low-dose reconstruction approaches. More

precisly, the observed strategies found in literature include a strategy that learns sinogram-

to-sinogram reconstruction which is explained in Section 4.1.1 and another strategy that

is optimized in image-to-image reconstruction, see Section 4.1.2. A third strategy repre-

sents a sequential combination of both independently training two CNNs as described in

Section 4.1.3. All of the forementioned strategies rely on classical reconstruction methods

like the Filtered Backprojection (FBP) method, which we see as a limitation that needs to

be addressed. As such, the method proposed in this thesis follows a forth strategy, namely

the strategy of learning sinogram-to-image reconstruction, where a CNN directly learns

the CT image reconstruction from the low-dose sinogram without the need of utilizing a

classical reconstruction method as explained in Section 4.1.4.

4.1.1 Sinogram-to-Sinogram Reconstruction

One reconstruction strategy that can be found in literature is represented by sinogram-to-

sinogram reconstruction, where a CNN fS is applied to learn the mapping from a low-dose

sinogram xS to a improved low-dose sinogram yS that is similar to a normal-dose sinogram.

The improved low-dose sinogram yS is then utilized as input for the FBP method – or

any other classical reconstruction technique – which finally yields the reconstructed CT

image yI , see Figure 4.1. This strategy can formally be expressed as

min
θ

(fS(xS ;θ)− yS), (4.1)

where the parameters θ of the CNN fS are optimized to approximate the optimal param-

eters. The strategy of learning sinogram-to-sinogram reconstruction represents a learned

preprocessing step of a classical CT image reconstruction method and was found to yield



4.1. Different Strategies to Apply Deep Learning 51

a bad result compared to other strategies [51].

Final

Reconstruction yI

CNN
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Figure 4.1: A visualization of a sinogram-to-sinogram reconstruction procedure.

4.1.2 Image-to-Image Reconstruction

Learning image-to-image reconstruction is similar to the problem of image denoising or

image enhancement, where the low-dose sinogram xS is directly used as an input to a

classical reconstruction method yielding an intermediate low-dose CT image xI . As a

next step, this strategy now applies a CNN fI to improve the quality of the low-dose CT

image xI to be similar to a normal-dose CT image yielding the final reconstruction yI as

shown in Figure 4.2. Optimization of the parameters θ towards the optimal parameters

is formally expressed as

min
θ

(fI(xI ;θ)− yI). (4.2)

The strategy of image-to-image reconstruction can be seen as a learned postprocessing

step and was found to yield decent reconstruction results in [51]. This strategy is widely

used in research nowadays due to it’s decent results and simplicity, since access to the

projection data – which is usually not available – is not required by the CNN . However,

a limitation of this method is represented by the dependency on a classical reconstruction

method, since the CNN learns to remove the artifacts that have been introduced by this

classical reconstruction method.

Low-Dose

Sinogram xS

Intermediate

Reconstruction xI

Final

Reconstruction yI

CNN  

fI

Classical

Reconstruction

Figure 4.2: A visualization of an image-to-image reconstruction procedure.
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4.1.3 Sinogram-to-Sinogram Reconstruction and then Image-to-Image

Reconstruction

A combination of both, sinogram-to-sinogram reconstruction and then image-to-image

reconstruction as visualized in Figure 4.3 represents another approach, where two inde-

pendent CNNs are trained and sequentially executed to obtain the final reconstruction

result. This approach as it is observed in [51] first utilizes a learned preprocessing step,

where a CNN fS is optimized according to Equation (4.1) as explained in Section 4.1.1,

which results in an improved low-dose sinogram yS . This improved low-dose sinogram

yS is then used to reconstruct a CT image xI using a classical reconstruction method

like the FBP . Finally, the reconstructed CT image xI is then used as input for a different

CNN fI which is optimized as in Equation (4.2) and results in the final reconstruction im-

age yI representing a learned postprocessing step as explained in Section 4.1.2. As such,

two consecutive problems are independently optimized and concatenated by a classical

reconstruction method, which we see as a limitation of this strategy.

Intermediate

Reconstruction xI

Final

Reconstruction yI

CNN

fI

CNN

fS

Low-Dose

Sinogram xS

Improved Low-Dose

Sinogram yS

Classical

Reconstruction

Figure 4.3: A visualization of a sinogram-to-sinogram reconstruction which is followed by an
image-to-image reconstruction procedure.

4.1.4 Sinogram-to-Image Reconstruction

We assume that the forementioned strategies suffer from the utilization of a classical

reconstruction method which is known to heavily suffer from artifacts when undersampled

data is used for image reconstruction leading to suboptimal results as shown in Section 2.6.

The strategy of learning sinogram-to-image reconstruction uses the low-dose sinogram xS
as an input to a CNN fR which directly learns to reconstruct a final CT image yI without

relying on a classical reconstruction method, see Figure 4.4. This strategy can formally

be expressed as

min
θ

(fR(xS ;θ)− yI), (4.3)

where the parameters θ are optimized as such, that they approximate the optimal param-

eters. By directly providing the projection data to the CNN it can access all the available

information to reconstruct the CT image which bypasses the need of using a classical re-

construction method, while the CNN is still incentiviced to learn a function that is similar

to classical reconstruction methods.
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Figure 4.4: A visualization of a sinogram-to-image reconstruction procedure.

4.2 Tube Current Reduction based Approaches

In comparison to normal-dose CT imaging, this type of approaches uses a reduced tube

current to acquire the projection images resulting in a low-dose CT image. By reducing

the tube current, the amount of electrons flowing through the X-ray tube is reduced

which consequently also reduces the amount of X-rays emitted by the X-ray tube. As

such, reducing the tube current ultimately reduces the amount of ionizing radiation that

is exposed to the patient, see Figure 4.5. However, this also means that less photons can

be measured by the detector array, which leads to degraded signals and consequently also

to a lower quality CT image. Approaches utilizing reduced tube current CT images try

to improve the quality of these lower quality CT images as such, that they have a similar

quality to normal-dose CT images.

Figure 4.5: A schematic visualization of tube current based approaches.1

1 Schematic visualization of CT imaging, adapted from http://www.radtechonduty.com/2017/03/

single-detector-row-ct-scan-systems.html, last accessed on 22 March 2019.

http://www.radtechonduty.com/2017/03/single-detector-row-ct-scan-systems.html
http://www.radtechonduty.com/2017/03/single-detector-row-ct-scan-systems.html
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4.2.1 Tube Current Reduced Approaches

The deep learning based approach in [101] implemented a sinogram enhancement method,

utilizing pairs of low-dose and normal-dose CT projections to learn the mapping from a

low-dose to a normal-dose CT projection. In contrast to that, the CNN utilized in [15]

learns the mapping from a low-dose to a normal-dose CT image and thus, learns to remove

artifacts introduced by the image reconstruction of the acquired low-dose projections,

representing the method explained in Section 4.1.2. The follow-up work by the same

authors in [14] replaced the CNN of their method by a residual CNN utilized as an

encoder-decoder network which further improved their results. Differently to that, the

work in [38] uses a CNN to suppress noise specific to low-dose CT images directly on the

wavelet transform coefficients, as such, the low-dose reconstructed image is transformed

into wavelet domain and the CNN learns a wavelet-to-wavelet optimization. Lastly, a

K-sparse autoencoder was utilized in the work in [96] to train priors and iteratively solve

CT image reconstruction and improve the quality of low-dose CT images.

As mentioned in Section 2.3.2, Cone Beam Computed Tomography (CBCT) imaging

is able to reduce the amount of radiaton exposure in comparison to Fan Beam Computed

Tomography (FBCT), however, the CBCT acquired images typically suffer from a reduced

contrast leading to a degraded image quality. As such, the work in [39] reduced the amount

of radiation by utilizing CBCT imaging and trained a CNN to transform the CBCT

images into images similar to FBCT images. To accomplish this, the U-Net [72] based

CNN was provided with pairs of CBCT and FBCT images of the same patient which are

registered to one another. In contrast to the aforementioned method, the work in [102]

aims to improve the visual quality of CT images acquired from lower resolution devices

motivated by reduced costs as well as a possibly lower radiation exposure compared to

higher resolution devices. As such, their approach represents a super-resolution technique

based on a CNN to enhance low-dose CT images to achieve a higher resolution and a better

image quality. The approach in [102] is evaluated as a single-slice as well as a multi-slice

method, where the multi-slice method also takes the information of neighboring slices into

account.

4.2.2 Approaches Using Generative Adversarial Networks

The work in [100] argues that CNN based methods that minimize L2 can compromise

the visibility of important structural details which can be improved by utilizing a per-

ceptual i.e. adversarial loss coming from a Generative Adversarial Network (GAN). More

precisely, they utilized a Wasserstein Generative Adversarial Network (WGAN) to solve a

tube current reduced problem by learning image-to-image reconstruction as explained in

Section 4.1.2, where the generator’s architecture is a simple sequential CNN . The evalu-

ation in [100] includes some combinations of various loss functions amongst which are a

content L2 loss, an adversarial LwGAN loss and a pre-trained LV GG loss, where the latter

is coming from the Visual Geometry Group (VGG) network [85]. A similar approach was
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proposed in [95] which is also optimized for image-to-image reconstruction and solves the

problem of tube current reduced CT image reconstruction by utilizing a combination of

a content L2 loss and an adversarial LGAN loss. The generator CNN is designed as a

sequential network learning the noise pattern from a low-dose CT image which is in a

final layer subtracted from the low-dose CT image yielding a denoised CT image similar

to a normal-dose CT image. The evaluation compares the performance of the content

loss, the adversarial loss and a combination of both.

4.3 Beam Blocking based Approaches

In beam blocking or Many-View Undersampling (MVUS) based approaches the CT itself is

operated normally without a direct reduction of the radiation dose, where the utilized beam

blockers act as physical barriers that block some of the X-rays from reaching the patient,

see Figure 4.6. While beam blockers reduce the radiation dose received by the patient, they

are most oftenly utilized in CBCT based approaches to reduce the amount of beam scatter

and consequently increase the contrast of the reconstructed image. As explained in more

detail in Section 2.3.2, normal dose CBCT already leads to a reduced ionizing radiation

exposure in comparison to FBCT but suffers from a reduced reconstruction quality due

to beam scatter. As such, beam blockers allow for an even further reduction of ionizing

radiation exposure while also increasing the contrast of the reconstructed image in the

case of CBCT . However, using beam blockers leads to missing information in every single

projection posing a problem that is similar to inpainting and results in the introduction

of artifacts when directly used for image reconstruction.

Figure 4.6: A schematic visualization of beam blocking based approaches.2

2 Schematic visualization of CT imaging, adapted from http://www.radtechonduty.com/2017/03/

single-detector-row-ct-scan-systems.html, last accessed on 22 March 2019.

http://www.radtechonduty.com/2017/03/single-detector-row-ct-scan-systems.html
http://www.radtechonduty.com/2017/03/single-detector-row-ct-scan-systems.html
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4.3.1 Observations on Physical Properties of Beam Blockers

One of the most prominent questions related to beam blocking based approaches is about

the physical properties of the utilized beam blockers, which is a subject to research on

it’s own. While variance in size, position and distance between single blockers as well

as the field of view play a role, further distinction can be done by whether the beam

blockers utilized are stationary or moving, where moving beam blockers usually represent

more recent approaches. A study observing some variation in beam blockers in CBCT

especially in respect to the field of view was conducted in [66] and found that a small field

of view decreases the CBCT -typical beam scatter and reduces the radiation dose. The

work in [49] observed moving beam blockers in CBCT , more specifically they tested the

performance according to the number of slits each with a different reciprocation frequency,

which was motivated by finding the configuration with the highest contrast to noise ratio.

Another study was conducted in [16] observing the speed and design, i.e. the strip width

and interspace between strips of a moving beam blocker in CBCT .

4.3.2 Beam Blocking in Cone-Beam Computed Tomography

The approaches in this category utilize beam blocking in CBCT imaging, where each

approach exploits some additional information that is available due to more specific use

cases. Furthermore, all of the following approaches rely on classical reconstruction meth-

ods without utilizing deep learning. The moving beam blocker based approach proposed

in [104] utilizes a multi-view scatter correction method which uses adjacent views to es-

timate and correct scattering. As such, they exploit the information of the neighboring

views which leads to better reconstruction results compared to not using this additional

information. Differently to the previous method, the work in [105] sequentially gathers

multiple partially beam blocked CBCT images introducing a temporal dimension that

contains some redundant information. By defining the movement of the beam blocker

and the respiratory motion asynchronuous, the partially beam blocked and sequentially

gathered information is not identical to the next captured sequence, which maximizes the

benefit of exploiting the temporal dimension. Another moving beam blocker based ap-

proach was proposed in [65], where a CBCT and a Volumetric Modulated Arc Therapy

(VMAT) image are acquired concurrently and for each, the information of the other is

exploited to improve the quality of both, the CBCT and the VMAT image.

4.3.3 Beam Blocking in Fan-Beam Computed Tomography

Differently to the approaches described in Section 4.3.2, where beam blockers have been

utilized to improve the quality of CBCT images, this section is dedicated to the un-

derrepresented field of utilizing beam blockers in FBCT imaging. The approach in [59]

utilizes small beam blockers they call high-resolution coded apertures in FBCT and in-

vestigate their use in combination with low-resolution detectors. By utilizing Compressed
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Sensing (CS) they exploit the sparsity of the acquired data which allows to utilize the

high-resolution coded apertures to achieve super-resolution from low-resolution detectors

resulting in an improved image quality.

4.4 Sparse-View based Approaches

Instead of reducing the tube current or physically blocking some X-ray beams, sparse-view

based approaches achieve a reduction of ionizing radiation exposure by limiting the number

of X-ray projections acquired around the patient as shown in Figure 4.7. As such, sparse-

view based approaches can easily be utilized and simulated, the former by simply reducing

the number of acquired projection views and the latter by omitting some of the projections

contained in a normal-dose sinogram. To maximize the entropy between the utilized X-ray

projection views, they are typically acquired from equidistant positions around the patient.

However, sparse-view CT also allows for some special cases like limited angle CT , where

projections are only acquired within a limited range of angles, which can be restricted due

to physical constraints of the scanned object or the CT scanner in use. Greatly reducing

the number of projection views leads to streaking artifacts in the direction of single views,

which is typically tackled in state-of-the-art approaches by a CNN that learns to reduce

the amount of introduced artifacts.

Figure 4.7: A schematic visualization of sparse-view based approaches.3

4.4.1 Sparse Sinogram-to-Sinogram Reconstruction based Approaches

The method proposed in [50] utilizes a sinogram-to-sinogram reconstruction based ap-

proach to fill in missing sinogram information due to sparse sampling. Their approach is

3 Schematic visualization of CT imaging, adapted from http://www.radtechonduty.com/2017/03/

single-detector-row-ct-scan-systems.html, last accessed on 22 March 2019.

http://www.radtechonduty.com/2017/03/single-detector-row-ct-scan-systems.html
http://www.radtechonduty.com/2017/03/single-detector-row-ct-scan-systems.html
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based on sinusoid-like curve decomposition and eigenvector-guided interpolation with the

goal of ensuring texture continuity of the inpainted sinogram. Differently to that, the work

in [40] proposes a special use case sparse-view reconstruction method where multiple CT

images with different kilovoltage peak (kVp) settings are reconstructed from just one CT

scan. They propose a switching kVp system, where the kVp switches rapidly during gantry

rotation resulting in individual sparse-view sinograms per kVp system each consisting of

another set of views. Image reconstruction is improved by exploiting the additional infor-

mation of the other sinograms by utilizing the in between angle sparse-view projections

acquired using another kVp setting.

4.4.2 Image-to-Image Reconstruction based Approaches

The approaches in this section use already reconstructed low-dose CT images that have

been generated using classical reconstruction methods and learn image-to-image recon-

struction to improve the quality of these images following the definition given in Sec-

tion 4.1.2. The approach in [37] uses a more general formulation and proposes a solution

for inverse problems where the forward operator is a convolution, which includes problems

like denoising and deconvolution as well as image enhancement in CT and MRI . For their

CT evaluation they use the FBP method to reconstruct CT images from a sparse number

of views, a U-Net [72] based CNN is then trained to map the sparse-view reconstructed

CT image to a full-view reconstructed image. The work in [106] derived their problem

formulation from dictionary learning, however, similar to the aforementioned work, the

CNN utilized in [106] learned the mapping from a sparse-view to a full-view CT image.

Instead of utilizing the FBP method for CT image reconstruction, they used the Algebraic

Reconstruction Technique (ART) method and evaluated their method solely on synthetic

images. Another approach was proposed in [98] which is based on an improved residual

GoogLeNet [89] utilizing sparse-view FBP method reconstructed CT images. Differently

to the other methods, the work in [98] learns the mapping from the reconstructed sparse-

view CT image directly to an artifact image which is then subtracted from the sparse-view

CT image to retrieve a denoised CT image. The method proposed in [29] represents an

extension of [37] utilizing the same network architecture to train the CNN but where

the CNN replaces the projector in a Projected Gradient Descent (PGD) method. Their

method enforces the consistency of the reconstructed image to the available measurements

and achieves state-of-the-art results.

Differently to the previous methods, the following ones utilize other learning based

methods than CNNs. The approach in [36] utilizes a dictionary learning method ap-

plied in gradient domain instead of image domain, since it leads to sparser representa-

tions which reduces the required complexity of the learned dictionary. Their method

utilizes a horizontal and a vertical gradient image generated from a sparse-view ART

method reconstructed CT image, image recovery from gradient domain is done by solv-

ing the least-square method. A different approach proposed in [92] utilizes an iterative
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sparse-view and/or tube current reduced CT reconstruction method based on an adap-

tive edge-preserving Total Variation (TV) regularization. The introduced edge-preserving

regularization term serves as a penalty for the TV regularization that reduces the amount

of smoothing close to edges. Differently to that, the work in [63] combines the concept

of a generalized TV regularization and a penalized weighted least-squares scheme to im-

prove the quality of sparse-view reconstructed CT images. An important advantage of

generalized TV over TV is the relieved piecewise constant assumption leading to a better

reduction of artifacts and an improved preservation of structural details.

4.4.3 Sparse Sinogram-to-Image Learning based Approaches

The approaches described in the following used a sparse sinogram and directly learned

to reconstruct a CT image without relying on any classical reconstruction method as ex-

plained in Section 4.1.4. The work in [67] represents an early approach to replace the FBP

method by an Artificial Neural Network (ANN) to improve the reconstruction quality from

a sparse sinogram, where they viewed the ANN as a combination of multiple FBP oper-

ations. While they provided early insights into using ANNs instead of the FBP method,

they only worked with two dimensional (2D) phantom images and did not investigate

CNNs. In contrast to that, the work in [17] proposed a learning based reaction diffusion

model for image restoration which represents a learned regularizer that was extended in

their follow-up work in [13] to solve the task of CT image reconstruction from sparse-view

projection data. Their CNN is optimized using L2 loss and their architecture consists of a

number of iteration-inspired layers. The work in [17] also inspired the work in [42], where

they call their CNN a variational network. Their follow-up work proposed in [43] utilizes

a variational network to reconstruct three dimensional (3D) CT images from either tube

current reduced or sparse-view CT images. Since variational networks only require a small

model size, they consequently also reduce the amount of data necessary to train the CNN

which is advantageous. In contrast to the previous methods, the work in [2] is based on

the well known primal-dual algorithm proposed in [12], where the proximal operators are

replaced by a learned reconstruction operator trained by a CNN . The proposed method

extends their previous work in [1] by increasing the complexity and flexibility of the CNN

which alternately optimizes the primal and dual, i.e. the forward and back projection for

a fixed number of iterations.

4.4.4 Limited Angle Computed Tomography

Limited angle CT represents a special case of sparse-view CT reconstruction. While the

projection images are acquired from uniformly distributed angles and 360◦ around the

object in default sparse-view CT , in limited angle CT the projection images are acquired

from less than 360◦ due to physical restrictions of the object or the scanner. As such,

limited angle CT also leads to a reduction of ionizing radiation exposure, however, limited
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angle CT leads to the introduction of a different kind of artifacts to the reconstruction

result than non-limited angle CT .

The work in [97] extends the previous joint work on limited angle CT reconstruction

in [31] to a CBCT geometry. By introducing a novel back projection layer it is possible to

formulate the Feldkamp-Davis-Kress algorithm as a CNN which allows learning in both,

projection and volume domain and consequently expands current post processing methods

to benefit from projection data. A non-CNN limited angle CT reconstruction approach is

proposed in [18], where an anisotropic TV based method is utilized to optimize the ART

based reconstruction of the image. They show that the missing projection data leads to

an imbalance between the anisotropic data fidelity constraint and the TV minimization,

which can be improved by minimizing the sparsity of the image according to the scanning

range.

4.4.5 Approaches Using Generative Adversarial Networks

The CT reconstruction method proposed in [5] optimizes sinogram-to-sinogram recon-

struction as described in Section 4.1.1 and learns to complete a sparse sinogram to solve

a limited angle problem. Their proposed method is composed of three stages: First, a

generator CNN is used to reconstruct a CT image from the limited angle sinogram data,

second, a full-view sinogram is generated from that CT image and finally, a well estab-

lished classical reconstruction technique like the FBP method is used to reconstruct the

final CT image from the generated full-view sinogram. The utilized generator CNN is op-

timized by an adversarial LGAN loss based on a GAN as introduced in [26] and a content

L2 loss.

4.5 Accelerated Magnetic Resonance Imaging

While CT faces the problem of ionizing radiation exposure to the patient, MRI opposes

the problem of long data acquisition time necessary for a good reconstruction result which

is explained in more detail in Section 2.1. This similarity between low-dose CT and

accelerated MRI allows to easily interchange methods between these imaging modalities,

which is the reason why this section is dedicated to contributions that have been made to

the MRI community.

4.5.1 Typical Accelerated Magnetic Resonance Imaging Approaches

The work in [78] utilized a deep cascade of CNNs to improve the quality of a reconstructed

MRI image from undersampled data. The utilized cascading network consists of multiple

concatenated CNNs and intermediate data consistency terms yielding state-of-the-art re-

sults for heavily undersampled data. Another approach was proposed in [30], which uses

variational networks, a combination of variational models with deep learning, to learn

the reconstruction of accelerated MRI data and showed that the natural appearance and



4.5. Accelerated Magnetic Resonance Imaging 61

pathologies not present in the training set are preserved. The approach in [48] utilized

deep residual learning composed of a separate magnitude and phase network that solves

image reconstruction in framelet representation. This separation allows the utilization of

data samples without having access to the full k-space data making it possible to pre-train

the magnitude network on magnitude MRI images which serves as a postprocessing step

due to the formulation. Differently to the aforementioned approaches, the work in [32]

learned to improve the accelerated MRI reconstruction utilizing a domain adapted CNN

to increase the amount of accessible data. This CNN was pre-trained on CT and synthetic

radial MRI data, the domain adpation was conducted by fine-tuning the trained model

using real radial MRI data.

4.5.2 Generative Adversarial Networks in Magnetic Resonance Imaging

The MRI reconstruction method proposed in [55] utilizes a GAN of which the generator

receives a highly undersampled MRI image and learns to improve the quality of this

image by reducing the contained artifacts. The generator’s loss function consists of a

least-square adversarial loss and a content L1 loss and the architecture of the generator

is represented by a residual CNN that contains skip connections. Differently to that, the

work in [81] proposes to use a two stage procedure which separates the content loss and

the adversarial loss into two sequentially performed optimizations. While it is sensible to

combine a content loss and an adversarial loss due to their complementary nature, they

argue that the different training objectives of the two loss functions compete with each

other which leads to the convergence to a suboptimal solution. The first stage consists of

the reconstruction network that receives a reconstructed undersampled MRI image and

has a sequential network architecture trained to optimize the L2 loss. The second stage

is the visual refinement network, which uses the output of the reconstruction network

and refines the quality of the MRI image utilizing a U-Net [72] based architecture which

is optimized utilizing an adversarial LGAN and a LV GG [85] loss. Another GAN based

approach is represented by the work in [99] which also utilizes a U-Net [72] based network

architecture for the generator. To reduce the complexity of the model, the work in [99]

proposes to use a refinement connection which adds the generator’s input to the generator’s

output before calculating the loss. Their loss function combines an adversarial LGAN loss

and a content loss assembled from three parts, which are an image domain L2 loss, a

frequency domain L2 loss and a LV GG [85] loss retrieved through transfer learning.
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This chapter is dedicated to the method we implemented to solve the demanding

task of low-dose Computed Tomography (CT) reconstruction from undersampled data,

which is motivated by reducing the amount of ionizing radiation exposure to the patient.

The term undersampling refers to a sampling rate that violates the Nyquist-Shannon

sampling theorem explained in Section 2.2.3 and is insufficient to correctly reconstruct a

CT image yielding reconstruction results that are burdened by artifacts, especially when

classical reconstruction methods are used for CT image reconstruction as described in

Section 2.6. The success of deep learning and especially Convolutional Neural Networks

(CNNs) explained in Section 3.2 lead to an increased interest in the domain of medical

imaging and consequently also for medical image reconstruction, where CNNs are used to

compensate the reduced amount of information by introducing a prior that was learned

from data. Nowadays, many recently published approaches tackling the task of medical

and CT image reconstruction from undersampled data rely on deep learning, Chapter 4

is dedicated to related work in this field.

To reduce the amount of ionizing radiation exposure, our method follows the definition

of sparse-view CT reconstruction, where the number of projection views that are acquired

and used for reconstruction is reduced as explained in Section 4.4. To circumvent the

necessity of using a classical reconstruction method on which many recent reconstruction

methods rely on, our method utilizes a CNN that directly learns to reconstruct a CT

image from sparse projection data, i.e. the sparse sinogram as described in Section 4.1.4.

Related work that is based on sparse-view CT reconstruction and also uses a CNN to
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directly learn CT image reconstruction from the sinogram is summarized in Section 4.4.3.

More precisely, we experimented with multiple setups of which our three dimensional

(3D) pipeline uses 3D data and network architectures, whereas our two dimensional (2D)

pipeline respectively utilizes the data and network architectures in 2D . While we optimize

both pipelines using L1 loss, we also experimented with an additional adversarial LwGAN
loss for our 2D pipeline, where LwGAN comes from a Wasserstein Generative Adversarial

Network (WGAN) as explained in Section 3.6. The essential differences between the 3D

and the 2D pipeline as well as the differences between the 2D pipeline without and with

a WGAN are pointed out in the following subsections.

First, the preprocessing of the already reconstructed normal-dose CT images is de-

scribed in Section 5.1. Since our approach requires not only normal-dose CT images

but also projections of the CT images, we implemented a projection image generator

explained in Section 5.2, which synthesizes projections and prepares them for further pro-

cessing. Next, in Section 5.3, we give more insight into the core idea of our method and

explain the CNNs we utilized. Finally, the experimental setup consisting of the material

and the implementation details is given in Section 5.4.

5.1 Preprocessing of the Data

In this section we will give insight into the preprocessing of the available 3D CT images

which we employed in our method, detailed information on the used material is given

in Section 5.4.1. While we used the same base material for all our experiments, the

preprocessing of the data for our 3D and 2D pipeline is different. The data preprocessing

for our 2D pipeline is described in Section 5.1.1, while the data preprocessing for our 3D

pipeline is given in Section 5.1.2.

5.1.1 2D Computed Tomography Slice Extraction for our 2D Pipeline

For our 2D pipeline we utilized 2D CT slices in the axial plane see Figure 2.10, which

we extracted from the 3D CT images as shown in Figure 5.1a. Due to the reduced

dimensionality it is feasible to train our CNNs with an image size of 128×128, which lead

to a good resolution preserving small structural details. An additional advantage of using

2D CT slices is that the number of samples increases from the number of 3D CT images

to the number of slices contained in these images, which leads to approximately 4.000

training and 1.000 test samples, see Section 5.4.1. The canonical position of our 2D CT

slice images is defined by the center position of the slice and the unchanged orientation of

the 3D CT image. The 2D CT images are further processed according to this position.

5.1.2 3D Vertebra Extraction for our 3D Pipeline

For our 3D pipeline we found a CT image size of 64×64×64 to be the largest still feasible

to work with. However, simply downsampling the full CT image to this rather small size
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3D Spine CT

2D CT Slice

(a) 2D CT slice extraction.

3D Spine CT

3D Cropped

Vertebrae

(b) 3D CT vertebra extraction.

Figure 5.1: Visualizations of the data extraction procedures. Image (a) shows the extraction of
a 2D CT slice, (b) shows the extraction of a 3D CT vertebra.

leads to a huge amount of details lost in the downsampled CT image. Furthermore,

the very small size of just eight training and two test CT images also represents a huge

limitation even for highly self-similar medical images when utilizing a CNN . To solve

both of these problems, we decided to crop individual 3D vertebra images including their

surroundings from the 3D CT images and use these 3D CT vertebra images as the training

and test data for our CNN . First, cropping the smaller 3D vertebra images from the full

3D CT image leads to a higher remaining resolution when downsampling the images to

a size of 64 × 64 × 64 with less details lost in these regions. Second, using the 3D CT

vertebra images increases the number of samples from the number of images to the number

of vertebrae present in these images and as such, increases the total number of samples

from 10 to 176 with a training and test split of 141 and 35 respectively. The individual

vertebrae have a high self-similarity due to similar anatomical properties, while showing

inter- as well as intra-subject variability which we aim to exploit.

Before cropping a 3D CT vertebra image from the full 3D CT image, the vertebra is

brought into a canonical position. To calculate the canonical position of a vertebra, we

utilize the segmentations that came with the dataset as explained in Section 5.4.1. First

of all, the center of the canonical position of a vertebra is calculated as the center of mass

of the respective vertebra’s segmentation. The orientation of the vertebra is given by the

relative position of the center of mass to the tip of the spinous process, which is the point

that is farthest from the center of mass, and by the vertebra’s relative position to the

other vertebrae in the spine. After calculating the canonical position, the vertebra image

is further processed relatively to that canonical position.

Lastly, considering the 3D vertebra images as a stack of 2D CT slices brings us to
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the analogy between our preprocessed 3D and 2D data as shown in Figure 5.2. This

analogy allows us to simplify the explanations in the following sections to which we will

refer accordingly.

3D Cropped

Vertebrae
2D Sliced

Vertebrae
2D Vertebrae

CT Slices

Figure 5.2: A visualization of the analogy between 3D CT images and 2D CT slices.

5.2 On-the-fly Projection Data Generation

As explained in Section 2.3, a CT scanner utilizes X-radiation to acquire the sinogram

consisting of multiple forward projection views from different angles of a patient, which

is then used to reconstruct the interior body structure of that patient. Our method uses

the forward projection views contained in the sinogram and directly learns to reconstruct

the CT image without the need of any classical reconstruction method as described in

Section 4.1.4. To accomplish this, our method requires not only normal-dose reconstructed

CT images but also the corresponding projection data used for CT image reconstruction,

however, most available datasets do not incorporate the original projection data. Thus,

we simulated the projection data from already reconstructed CT images by generating the

forward projections from different angles on the axial plane of the CT images, similarly to

the real forward procedure in CT imaging which is explained in Section 2.4. Simulating

the projection images leads to important advantages: First, generating projection views

at will also allows to augment the CT images before generating the forward projections

at will, which maximizes the variability of the available data. Second, the angle from

which the simulated projection views are generated can be chosen arbitrarily, while for

real projection data the angles that can be used are limited to the angles that have been

acquired during CT imaging. Lastly, simulating the projection data allows to generate

projection views from cropped CT images which would be impossible otherwise.

Up to now we explained how we attain the 3D vertebra respectively the 2D CT

slice images as well as the corresponding canonical position from the available material,

see Section 5.1. As a next step, the canonical position is used to augment the training

data samples explained in Section 5.2.1, which is followed by masking data samples as

described in Section 5.2.2. The procedure to generate the forward projections is explained
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in Section 5.2.3 and the back projection to finally arrive at the input used for our CNNs

is given in Section 5.2.4.

5.2.1 Augmentation

We performed a random data augmentation for any sample drawn from the training set to

increase the variability of the available training data, which decreases the risk of the CNN

to overfit to the training data and helps it to generalize as explained in Section 3.7. Each

training sample is augmented on the fly, i.e. without the need of storing the respective

augmented sample on the hard drive, by a random translation, rotation and scale. The

data augmentation for both, our 3D and 2D pipeline is directly applied to the canonical

position of the given sample in 3D space before a 3D vertebra image respectively a 2D

CT slice is extracted. This procedure allows rotational data augmentation on three axes

instead of just one also for our 2D CT image slices and further increases the number

of possible outcomes. The operations used to augment the training data are explained

in Section 3.7.3, more details regarding the parameters for augmentation are given in

Section 5.4. In contrast to the training samples, test samples are not augmented.

5.2.2 Masking

The next step after augmenting training samples and extracting training or test samples

is to mask the respective image with a circular shape, in this section, we will follow the

analogy between the 3D and 2D data as shown in Figure 5.2. Masking is required to ensure

that all forward projections generated from that CT image as explained in Section 5.2.3

have the same properties, which is consequently necessary to correctly reconstruct the

CT image from the projections. These properties are twofold, first, a one dimensional

(1D) projection from any arbitrary angle on the axial plane has to have the same size

as every other 1D projection from that 2D image and second, every 1D projection has

to contain the same amount of information of the 2D image. Figure 5.3a shows the

problem of varying projection size with the vertically and diagonally acquired projection

of a 2D square image resulting in a different 1D projection size, which is dependent on the

projection angle. Simply enforcing the same size for each 1D projection, however, leads

to different amounts of image information contributing to the projections. As shown in

Figure 5.3b, the diagonally acquired 1D projection would not incorporate the upper left

und lower right corners of the image, whereas the vertically acquired projection would

contain them. Masking the 2D CT image with a circular shape solves both of these

problems as shown in Figure 5.3c, where each generated 1D projection has the same size

and also contains the same image information of the 2D CT slice.

As such, masking of an exemplary 2D CT slice as given in Figure 5.4a is accomplished

by utilizing the largest possible circle contained in the given square image as shown in

Figure 5.4b and setting all pixels outside of this circle to zero. This procedure results in

a circular masked 2D CT slice as given in Figure 5.4c, which prevents the contribution
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Figure 5.3: Visualization of difficulties encountered when generating projection data. (a) shows
a different size of the individual projections, (b) shows that different image contents contributed
to the projections, (c) shows a solution to both problems.

of image areas outside of this circle to only a subset of projections that are generated

from that image. Replacing these values by zero corresponds to defining them as air in

real CT imaging. As such, masking basically serves the purpose of defining the patient

to be surrounded by air, which eliminates the problem introduced by using images that

are cropped in a rectangular shape. Lastly, while the mask has a circular shape in 2D ,

it extends in 3D to a cylinder, since the individual projections in the 3D case are only

acquired by rotating around the axial plane.

(a) Original. (b) Mask. (c) Masked image.

Figure 5.4: Image (a) shows the original image, (b) shows a circular image mask, (c) shows the
masked image.

5.2.3 Forward Projection

As of now, we augmented samples drawn from the training data to support the CNN to

generalize as explained in Section 5.2.1 and also talked about masking training and test

samples using a circular shaped mask in Section 5.2.2. In the following we will consider a
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3D vertebra image as a stack of 2D CT slices as shown in Figure 5.2 and will only focus

on the 2D case that uses masked 2D CT slices to generate a set of 1D projection views.

The 1D projection views simulate the real projection data that was used to reconstruct

the CT image in the first place and are required by our CNN to learn reconstructing a

CT image from it’s projection data explained in Section 5.3.

Similar to 1D projection generation during real CT imaging, where the local density

of matter of a 2D slice of the patient given a certain direction is basically accumulated

as explained in Section 2.4, we utilize a sum projection in which pixel values of a 2D CT

slice image representing the matter are summed up given a certain angle. More precisely,

we reformulate the parametric version of the line integral in Equation (2.13) that defines

how the 1D projection data g(`, θ) is acquired from a 2D slice of the patient µ(x, y) by

applying it in discrete space to a 2D CT image ν(x, y). As such, individual 1D projections

gθ(`) are defined as

gθ(`) =
∑
s

ν(x(s), y(s))

=
∑
s

ν(` · cos θ − s · sin θ, ` · sin θ + s · cos θ),
(5.1)

where θ represents the angle from which a current projection is acquired, x(s) and y(s)

are defined in Equation (2.14). The parametric formulation represents a rotation of the

coordinate system (x, y) around the center of the image ν(x, y), which can be viewed as the

formation of a new coordinate system (`, s). Following this formulation allows to transform

Figure 2.8 representing a visualization in continuous space into a visualization in discrete

space as shown in Figure 5.5 as such, that the patient µ is replaced by a discrete image

ν. In addition to the coordinate system (x, y), we also added the rotation parameter θ as

well as the new coordinate system (`, s) for better visualization. All generated 1D forward

projections g(`, θ) are then used for further processing as described in Section 5.2.4 before

they result in the input of our CNN .

1D Projection

Simulated X-rays

Image ν

y gθ

x

ℓ

θ

ℓ1

ℓM

s

Figure 5.5: A visualization of the discrete forward projection generation.
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5.2.4 Back Projection

After the forward projections have been acquired from the CT images from different

angles around the axial plane, they are used to generate back projection images from

them. Again, we will focus on the 2D case in the following and use the analogy between

2D and 3D CT images where we view 3D CT images as a stack of 2D CT slices that are

processed individually as shown in Figure 5.2.

1D Projection

2D Backprojection bθ

gθ
y

x

ℓ

θ

ℓ1

ℓM

s

Figure 5.6: A visualization of the discrete back projection procedure.

Each 1D forward projection we generate as explained in Section 5.2.3 is back projected

onto a 2D plane similar to the back projection algorithm described in Section 2.5.1. Back

projection is simply done by repeating a 1D forward projection gθ(`) onto an empty 2D

image bθ(x, y), where the size of this image is equivalent to the size of the 2D CT slice

image ν(x, y) from which the set of 1D forward projections has been generated. The

key difference to the simple back projection algorithm – of which the discrete version is

given in Equation (2.21) – is, that our method back projects each 1D forward projection

gθ(`) onto an individual 2D projection image bθ(x, y) to prevent the accumulation of the

individual back projections. Following this formulation, we define a 2D back projection

image bθ(x, y) that corresponds to the forward projection gθ(`) of angle θ as

bθ(x, y) = gθ(`)

= gθ(x · cos θ + y · sin θ),
(5.2)

which is schematically visualized in Figure 5.6. The sequential visualization of the forward

and back projection as we used it is given in Figure 5.7 showing an exemplary target CT

image as well as the corresponding back projected forward projections that are used as an

input by our CNN as explained in Section 5.3.

5.3 Learned Computed Tomography Reconstruction

In this thesis we propose a learning based CT reconstruction method from a reduced set

of forward projections, where the reconstruction itself is learned by a CNN we call the



5.3. Learned Computed Tomography Reconstruction 71

θ1

θN

θ1

θN

2D Projections xθ1D Projections gθ

Target y

Figure 5.7: A visualization of the projection image generation from a target image.

generator G. This generator CNN utilizes a reduced number of back projected forward

projections as explained in Section 5.2 as an input and the corresponding full-view re-

constructed CT image as a target to optimize CT image reconstruction. As such, the

generator CNN falls into the category of approaches that learn a domain transfer from

projection to image domain as explained in Section 4.1.4. The forward projections have

been simulated to allow data augmentation and increase the variability of the available

data as explained in Section 5.2.1 as well as to allow a broader variety of experiments.

First, we proposed our 3D pipeline which we later extended by utilizing a WGAN as

explained in Section 3.6, however, utilizing a WGAN in 3D turned out to be unfeasible

due to the vastly increased complexity. Thus, we decided to reduce the dimensionality of

the data from 3D to 2D which additionally allowed to increase the resolution for our 2D

experiments as well as the number of training iterations, more details regarding the setup

parameters are given in Section 5.4. While Figure 5.8 visualizes our 3D pipeline, the 2D

pipeline we utilized is shown in Figure 5.9.

The generator CNN used by our 3D and 2D pipeline is explained in Section 5.3.1,

while the discriminator only utilized by our 2D pipeline is described in Section 5.3.2.

Finally, Section 5.3.3 is dedicated to the loss functions used to optimize the CNNs.

5.3.1 Generator Network Architecture

Our generator G expects a set of N projections generated from the target image y ∼
Pr as explained in Section 5.2.4 as input. Optimized by the loss function explained in

Section 5.3.3, the generator learns to reconstruct an estimation image ŷ ∼ Pg, which is

as similar as possible to y. The network architecture we used for G is based on the U-

Net [72] representing an image-to-image network as explained in Section 3.5.2.1, the U-Net

is visualized in Figure 3.11.
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Figure 5.8: A schematic visualization of our 3D method.
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Figure 5.9: A schematic visualization of our two 2D methods.
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5.3.2 Discriminator Network Architecture

The discriminator D is required for the WGAN based training scheme as explained in

Section 3.6 and is utilized only in our 2D pipeline to support optimizing the generator by

providing an additional adversarial LwGAN loss explained in Section 5.3.3. The discrimi-

nator expects either an image y from the real data distribution or a reconstructed image

ŷ from the generator’s reconstructed data distribution. The task of the discriminator is to

decide, whether an observed image is coming from Pr or Pg by computing a scalar value,

which represents the probability of any observed image {y, ŷ} belonging to the set of real

images Pr. The network architecture of the discriminator represents a binary classification

network as described in Section 3.5.1.1, a visualization is given in Figure 3.9.

5.3.3 Loss Function

The generator CNN in our 3D pipeline was optimized utilizing only L1 loss as defined in

Equation (3.10), while for our 2D pipeline we extended the generator CNN to also use an

adversarial LwGAN loss coming from a Wasserstein Generative Adversarial Network with

Gradient Penalty (WGAN-GP) similar to [28]. For that purpose a second CNN , namely

the discriminator D was introduced which helps to optimize the generator G as explained

in Section 3.6.2. Since Generative Adversarial Networks (GANs) have been introduced

for data generation from random noise, we modified the loss function as such that a prior

instead of a random noise vector is used as explained in Section 3.6.3. This brings us to

the formulation defined in Equation (3.35), in our simplified notation we express the loss

function used to optimize the discriminator D as

LD = −D(y) +D(ŷ) + ρ, (5.3)

where D(y) represents the predicted probability by the discriminator of a real sample y

coming from the real distribution Pr. D(ŷ) is defined as the predicted probability for a

generated sample ŷ coming from the real data distribution Pr and not from the distribution

of generated samples Pg. The gradient penalty is given by ρ, which stabilizes the training

of the WGAN-GP similar to [28]. The simplified notation of the loss function of the

generator G according to Equation (3.35) and also to [28] is defined as

LwGAN = −D(ŷ), (5.4)

however, we additionally combined the adversarial loss of the generator G with a content

loss as described in Section 3.6.3. We define this combined loss function as

LG = L1 + λ · LwGAN , (5.5)

where L1 represents the content loss as in Equation (3.10) and LwGAN is the adversarial

loss as in Equation (5.4). The weight between the two loss functions is given by λ and
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represents a hyperparameter for which we conducted a variety of experiments explained

in detail in Chapter 6.

5.4 Experimental Setup

The experimental setup gives insight into the material that we used in this work as well

as into implementation details regarding our method. While the material is explained

in Section 5.4.1, we separated the implementation details into three parts, where Sec-

tion 5.4.2 represents details that are identical for all experiments. Section 5.4.3 focuses

on implementation details that are only valid for our 3D pipeline, while the Section 5.4.4

introduces details specific to the 2D pipeline.

5.4.1 Material

The material we used consists of 10 already reconstructed normal-dose 3D CT images each

from a different patient. The data was published for a challenge at the Computational

Methods and Clinical Applications for Spine Imaging (CSI) 2014 Workshop1 at Medical

Image Computing and Computer Assisted Intervention (MICCAI). Each of these 3D CT

images contains information from neck to pelvis of the patient and is cropped around

the spine. Furthermore, a segmentation of every vertebra contained in each image is also

available, which we utilized for our 3D pipeline as explained in Section 5.1.2.

The CT images have a size of 512× 512× {507, . . . , 625}, however, since utilizing the

CT images at full size is not feasible due to hardware limitations and immense execution

time for training, we downsampled the data to a more reasonable size, i.e. 64×64×64 for

our 3D pipeline and 128 × 128 for our 2D pipeline. The huge downsampling factor that

is required by our 3D pipeline leads to the loss of a significant amount of information,

which is not neglectable. However, since it is sufficient to proof the concept of the 3D

implementation of our approach, we decided to solve this problem by cropping individual

3D vertebra images from the full 3D CT images before downsampling them to a resolution

of 64× 64× 64, see Section 5.1.2. This solution allowed us to decrease the downsampling

factor which consequently reduces the amount of lost information. For our 2D pipeline

we directly extracted the axial 2D CT slices from the full size CT images without any

cropping. The downsampling was conducted after extracting the 2D CT slices to increase

the number of different slices.

The 10 3D CT images are separated by patient into a training and a test set, where

the training set consists of eight and the test set of two 3D CT images. Since our 3D

pipeline uses 3D vertebra images that are cropped from the full 3D images, the number of

samples increases to the number of vertebrae contained in the images yielding 141 training

samples and 35 test samples. Similarly, for our 2D pipeline the number of available samples

1The dataset we used in this work: csi-workshop.weebly.com/challenges.html

csi-workshop.weebly.com/challenges.html
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increases to the number of axial slices in the full size CT images, i.e. to approximately

4.000 training and 1.000 test samples.

For the experiment conducted in Section 6.2.2.6 where we evaluated the performance

of our method on a site unseen during training, we required an additional dataset. We

decided to use 2D head CT slices which we extracted from an in-house dataset that

consists of a number of full-body CT images of corpses. After cropping the head from

these CT images, we downsampled them to a resolution of 128× 128.

5.4.2 Setup Parameters for All Experiments

Both, our 3D and our 2D pipeline utilized a U-Net [72] based architecture for the generator

which is described in Section 5.3.1. The generator is trained with a depth of four levels

and He normal [33] is used as a kernel initializer. All convolution layers except for the

discriminator use a zero padding. Intermediate convolutions utilize a kernel size of 3 × 3

respectively 3 × 3 × 3, 64 filters and Rectified Linear Unit (ReLU) [60] as an activation

function. For the final convolution a kernel size of 1 × 1 respectively 1 × 1 × 1, only

one filter and no activation function is used. Upsampling was conducted using nearest

neighbor. The kernel size of the upsampling layer and the pooling layer was set to 2 × 2

and 2×2×2 respectively. For all experiments we utilized data augmentation as explained

in Section 3.7.3, which consists of a random translation, rotation and scale sampled from a

uniform distribution, where newly introduced image areas were defined as zero representing

air. Adaptive Moment Estimation (ADAM) [41] was used as an optimizer for all networks,

however, the ADAM parameters were chosen differently.

5.4.3 Setup Parameters Specific to 3D Experiments

Our 3D experiments are conducted using images with a size of 64 × 64 × 64. The 3D

target images used as network input are cropped as such that they incorporate 120 mm in

each dimension. The networks are trained for 40.000 iterations with a mini-batch size of

one. ADAM was used as an optimizer with a learning rate of 0.0002, the first and second

momentum estimates are set to β1 = 0.9 and β2 = 0.999. As a loss function L1 was used,

see Equation (3.10), and as weight regularization L2 was utilized with a factor of 0.0005.

Average pooling was utilized to downsample the images. Agumentation was conducted

with a translation defined in physical coordinates by 15 Millimeter, a rotation defined by

30◦ and a scale defined by 15 percent in either direction.

5.4.4 Setup Parameters Specific to 2D Experiments

For our 2D experiments we used an image size of 128×128. The generator was trained for

80.000 iterations, while the discriminator was trained five times per generator iteration.

The mini-batch size was set to 16 for all 2D experiments. All networks are optimized

using ADAM , the learning rate was set to η = 10−3, while β1 = 0.5, β2 = 0.9 and
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ε = 10−8. Different loss functions were used for different experiments. The generator

was either trained solely on L1 loss, see Equation (3.10), or on a combination of L1 and

an adversarial loss LwGAN loss, see Equation (5.5). We also conducted some experiments

where we only utilized an adversarial loss LwGAN loss. The discriminator was trained

using Equation (5.3), similar to [28]. Image downsampling was done using max pooling

layers. The discriminator utilized Leaky Rectified Linear Unit (Leaky ReLU) [33] as an

activation function and was trained using five levels. Data augmentation was done utilizing

a translation defined in pixel space with a value of 20, rotation was defined in radiant with

a value of 0.1 and scale in percent with a value of 20. Scale, however, was not applied along

the homogenous axis of the axial plane since that would interfer with a translation along

this axis and also would be obsolete due to the slices extraction anyways. Furthermore,

rotational augmentation was done directly on the 3D volume before 2D slices have been

extracted to vastly increase the augmentation possibilites for our 2D slices.
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The proposed Convolutional Neural Networks (CNNs) include a three dimensional

(3D) or a two dimensional (2D) CNN trained only on L1 loss. We also trained a 2D CNN

on a combined loss function consisting of L1 loss and LwGAN loss utilizing a Generative

Adversarial Network (GAN) as proposed in [28]. Section 6.1 represents the evaluation of

our 3D method 3D-L1-only, while in Section 6.2 we give insight into our 2D methods, i.e.

2D-L1-only and 2D-L1-LwGAN .

6.1 Evaluation of 3D Experiments

The results generated using our 3D pipeline where CNNs are optimized utilizing L1 loss

as explained in Section 5.3 are called 3D-L1-only. We compare the results of 3D-L1-

only quantitatively and qualitatively to the results of the Filtered Backprojection (FBP)

method, which is a non-learning based analytical method and explained in Section 2.5.3.

Evaluation is conducted using a different number N ∈ {1, 2, 4, 6, 8, 15, 30, 60, 120, 180} of

projection views utilized for reconstruction. The quantitative evaluation of our 3D method

is given in Section 6.1.1, while the qualitative evaluation is shown in Section 6.1.2.

6.1.1 Quantitative Evaluation

We evaluated the quantitative results of our 3D-L1-only and the FBP method by calcu-

lating the Mean Absolute Error (MAE) between the target volume and the reconstructed

prediction generated using the respective method for a different number of projection

views. As such, Figure 6.1 compares the results generated by our 3D-L1-only method

to the results of the non-learning based FBP method. Additionally, Table 6.1 shows the

77
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N L1 FBP

1 6.06± 2.24 41.5± 7.39

2 3.59± 0.8 31.77± 5.43

3 3.59± 0.72 19.07± 3.32

4 3.17± 0.58 17.11± 2.87

5 3.12± 0.58 11.9± 1.88

6 2.99± 0.63 12.04± 2.07

7 2.76± 0.51 8.9± 1.43

8 2.68± 0.53 8.95± 1.46

15 2.02± 0.38 4.63± 0.73

30 1.69± 0.33 2.62± 0.37

60 1.4± 0.26 1.76± 0.23

120 1.27± 0.21 1.74± 0.23

180 1.43± 0.3 1.74± 0.23

Table 6.1: Quantitative results evaluating the MAE of our 3D method compared to the FBP
method. The results are multiplied by 102.

exact results of the MAE and the standard deviation that have been generated from both

methods.

0

5

10

15

20

25

30

35

40

45

1 2 3 4 5 6 7 8 15 30 60 120 180

M
A

E

Projection Views

L1

FBP

-2[10 ]

Figure 6.1: Quantitative results evaluating the MAE of our 3D method compared to the FBP
method.
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6.1.2 Qualitative Evaluation

In this section we evaluate the results of our 3D-L1-only method qualitatively. Since the

resolution of the cropped vertebra volumes we utilized in our 3D method as explained in

Section 5.1.2 is rather small and each volume contains a vertebra and it’s surroundings,

we will focus on a qualitative comparison of the reconstructed vertebra to the target

volume’s vertebra. All images correspond to one another by sharing the same brightness

setting, however, some values are truncated to yield a better contrast, especially true for

the visual representation of the FBP results generated from a very small number of views.

Furthermore, all results correspond to one another by having the same center pixel, which

is also true for the different views. In Section 6.1.2.1 we give some insight into how we

conducted the qualitative evaluation in this work. Different qualitative results using a

different number of views for a selected axial and sagittal slice are given in Section 6.1.2.2.

Lastly, reconstructed images of some additional slices are shown in Section 6.1.2.3.

6.1.2.1 Overview of a Selected Volume Used for Evaluation

To demonstrate the qualitative results, we selected a representative vertebra including

it’s surrounding structures of which we extracted the central axial and sagittal slice. An

overview of the selected axial and sagittal view with an additional visualization of different

substructures of the vertebra as well as the corresponding plane in the other view is shown

in Figure 6.2. To compare the different results, each reconstructed volume is visualized

showing the center slice of the axial and sagittal view. Furthermore, we focus on the

reconstruction quality of the vertebra and the largest substructures of it, which are the

vertebra’s body, the left and right transverse process as well as the spinous process.

Axial View Sagittal View

Vertebra

Transverse Process

Spinous Process

Body

Vertebra

Spinous Process

Body

Corresponding Plane in other View

Figure 6.2: A visualization of important structures considered in the qualitative evaluation of
our 3D method.
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6.1.2.2 Varying the Number of Projection Views for a Selected Volume

For the evaluation of our 3D results we generated images using a different number of pro-

jection views N ∈ {1, 2, 4, 6, 8, 15, 30, 60}, where we trained an individual CNN for each

N . We simulated the real projection data by generating projection views from already re-

constructed normal-dose Computed Tomography (CT) images as explained in Section 5.2.

The number of projection views used by our CNN to reconstruct a CT image correlates

to the amount of information that is available and heavily influences the quality of the

reconstructed CT image. In the following, we observe the influence of the different number

of views to the resulting reconstruction quality.

Up to Eight Views Using only one projection view for reconstruction does not lead to

a meaningful result for either 3D-L1-only or the FBP method, see Figure 6.3. However,

by increasing the number of views utilized to two, our 3D-L1-only method is able to

visualize the silhouette of the vertebra giving a coarse shape of the vertebra’s body. Further

increasing the number of views leads to more details visible in our 3D-L1-only results as

shown in Figure 6.3. While six views are sufficient to clearly visualize the vertebra’s body,

eight projection views are enough to represent all relevant structures of the vertebra. I.e.

the vertebra’s body, the left and right transverse process and the spinous process are

clearly indicated and distinguishable structures using eight views and our method, while

the results of the FBP method still suffers from introduced streaking artifacts.

Up to 60 Views By using 15 projection views, the results of 3D-L1-only are already

quite good with the transverse and spinous processes being clearly visible as given in

Figure 6.3. The FBP method is now able to visualize the vertebra and give indications of

the largest structures of it, however, streaking artifacts are still introduced and degrade

the reconstructed image’s quality. Our 3D-L1-only method is able to give a very good

reconstruction using 30 views showing sharper edges and small details of the vertebra’s

exact structure as well as the surrounding area as shown in Figure 6.3. The FBP method

was able to reduce the amount of streaking artifacts to an amount where all relevant

structures of the vertebra are clearly shown and some smaller details become visible. Using

60 views leads to very similar results for both methods, while the 3D-L1-only results are

very similar to those generated using 30 views, the FBP method was able to reduce the

amount of streaking artifacts to a degree where they are not visible anymore. The quality

of the reconstructed images using our 3D-L1-only and the FBP method can be considered

equivalent from that point on.

6.1.2.3 Evaluation of Additional Slices

As of now, we only showed qualitative results of a selected slice, thus, in the following we

will also present qualitative results of additional slices. The qualitative results of these

slices are presented in Figure 6.4, where the center slice in the axial and sagittal view for
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Figure 6.3: Qualtitative results of our 3D method and the FBP method for a different number
of views.
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different vertebrae is shown. The results have been generated by our 3D-L1-only method

using eight and 30 projection views.

Eight Views The reconstructed images show that eight projection views are enough

to yield a reconstruction that overall corresponds to the target, however, the results look

blurry. While the general structure of the spine is visible in all images, the sagittal view

shows that vertebrae located in the lung area look blurrier than vertebrae above and below

the lung.

30 Views Increasing the number of projection views to 30 yields results of a very similar

quality independent of the exact location of the vertebra. The anatomical structure of the

reconstructed vertebrae generated using 30 projection views is very similar to the target

vertebrae, however, some streaking artifacts are visible in the reconstructed volumes.

Target 8 30

Figure 6.4: Qualtitative results of our 3D method showing additional slices for eight and 30
views.
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N L1 + LwGAN L1 FBP

1 4.62± 1.8 3.71± 1.5 42.14± 1.98

2 2.97± 1.01 2.35± 0.79 37.1± 1.71

4 2.4± 0.65 1.85± 0.53 22.77± 1.37

6 2.12± 0.55 1.63± 0.43 16.89± 0.71

8 1.81± 0.42 1.44± 0.34 12.67± 0.65

15 1.39± 0.27 1.25± 0.24 7.38± 0.34

30 1.16± 0.2 0.83± 0.14 4.81± 0.13

60 0.73± 0.1 0.65± 0.09 3.49± 0.04

120 0.51± 0.06 0.46± 0.05 3.09± 0.06

180 0.5± 0.06 0.43± 0.05 3.06± 0.06

Table 6.2: Quantitative results evaluating the MAE of our 2D methods compared to the FBP
method. The results are multiplied by 102.

6.2 Evaluation of 2D Experiments

The evaluation of our 2D experiments incorporates two methods using different loss func-

tions as explained in Section 5.3. While one method solely utilizes L1 loss which we call

2D-L1-only, the other method uses a combined loss function consisting of L1 loss and

LwGAN loss called 2D-L1-LwGAN . We compare the results of both methods quantita-

tively and qualitatively to one another as well as to the results of the non-learning based

FBP method, which is explained in Section 2.5.3. Both proposed methods are evalu-

ated using a different number N ∈ {1, 2, 4, 6, 8, 15, 30, 60, 120, 180} of projection images

for reconstruction. Furthermore, for our 2D-L1-LwGAN we conducted experiments using

a different weight λ ∈ 10{−6,−5,−4,−3,−2,−1} between the LwGAN loss and the L1 loss. As

default values we chose N = 8 and λ = 10−3. The quantitative evaluation of 2D-L1-only

and 2D-L1-LwGAN is shown in Section 6.2.1, while the qualitative evaluation is given in

Section 6.2.2.

6.2.1 Quantitative Evaluation

The quantitative evaluation of our 2D methods was conducted by computing the MAE

as well as the Structural Similarity Index Metric (SSIM) of 2D-L1-LwGAN , 2D-L1-only

and the FBP method to the target image. A visualization of the MAE measurements of

the three methods using a different number of projection views is shown in Figure 6.5, the

exact values are given in Table 6.2. Furthermore, we evaluated the results calculating the

SSIM measurements of each method again using a different number of views as shown in

Figure 6.6 – exact numbers are given in Table 6.3. SSIM was calculated only from the

image area inside of the circle mask described in Section 5.2.2.



84 Chapter 6. Results

1 2 4 6 8 15 30 60 120 180

0

5

10

15

20

25

30

35

40

45

Projection Views

M
A

E
L1

L +L1 wGAN

FBP

-2[10 ]

1 2 4 6 8 15 30 60 120 180

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Projection Views

M
A

E

L1

L +L1 wGAN

-2[10 ]

Figure 6.5: Quantitative results evaluating the MAE of our 2D methods compared to the FBP
method.

6.2.2 Qualitative Evaluation

The qualitative evaluation of our 2D methods, i.e. 2D-L1-LwGAN and 2D-L1-only is con-

ducted in this section. We carefully evaluated the quality of the reconstructed images by

comparing them to the target images focusing on the overall anatomical structure as well

as on small details and give a detailed description of small changes in the images also

evaluating different hyperparameter settings. We scaled all CT slices used in this section

to a specific brightness range to achieve visual correspondence and a good contrast. How-

ever, to accomplish this, we truncated some values which is especially visible for the FBP
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N L1 + LwGAN L1 FBP

1 0.12± 0.02 0.14± 0.02 0.02± 0.01

2 0.22± 0.03 0.25± 0.03 0.01± 0.01

4 0.28± 0.04 0.31± 0.04 0.08± 0.02

6 0.33± 0.04 0.36± 0.05 0.13± 0.02

8 0.37± 0.05 0.39± 0.05 0.16± 0.03

15 0.48± 0.06 0.47± 0.07 0.25± 0.05

30 0.6± 0.07 0.6± 0.08 0.37± 0.06

60 0.73± 0.06 0.73± 0.07 0.55± 0.07

120 0.83± 0.04 0.83± 0.05 0.75± 0.05

180 0.86± 0.03 0.85± 0.04 0.81± 0.04

Table 6.3: Quantitative results evaluating the Structural Similarity Index Measure of our 2D
methods compared to the Filtered Backprojection method.
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Figure 6.6: Quantitative results evaluating the Structural Similarity Index Measure of our 2D
methods compared to the Filtered Backprojection method.

method reconstructed images using a very small number of views. In Section 6.2.2.1 we

give an overview of the selected slice used to visualize the qualitative evaluation in this

work. Results generated from a varying number of views are given in Section 6.2.2.2 for

both methods, while Section 6.2.2.3 focuses on our GAN based method 2D-L1-LwGAN
showing different results achieved by utilizing a different weight between the two loss func-

tions. In Section 6.2.2.4 we show results for additional slices that have been reconstructed

by our method and after stacking the reconstructed 2D axial slices, we evaluate the qual-

ity of the results by observing the coronal and sagittal view in Section 6.2.2.5. Finally,

in Section 6.2.2.6 we evaluate the performance of both methods on 2D head CT slices
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representing a site that the network has never seen during training.

6.2.2.1 Overview of a Selected Slice Used for Evaluation

For the evaluation of the visual reconstruction quality of our 2D methods we selected a

representative slice from the test set which is used to observe the influence of different

hyperparameters in this work. The selected slice including visualizations of all relevant

structures of that slice are as shown in Figure 6.7. The criteria to observe the various

anatomical structures of the given slice include the presence, location, shape and integrity

of the respective structure as well as the correspondence to the target image. The struc-

tures we observed and described in the following consist of bones, soft tissues and the lung

visible in that specific slice. The bones present in the observed slice are the vertebra, two

ribs as well as two heads of ribs and the spinous process of the vertebra located above,

however, the right rib is occluded due to a zoom box we utilized in the upcoming images

for better visibility of small details. Furthermore, we observed the descending aorta, the

heart and the pulmonary artery, and the three bronchi present in the image. Also, the

two lung lobes as a whole structure as well as the blood vessels contained in them were

observed. For the blood vessels we distinguished between vessels having a large, medium

and small size.

Vertebra

Rib

Bronchus

Pulmonary Artery

Descending Aorta

Head of Rib

Lung

Spinous Process

Blood Vessels

Heart

Figure 6.7: A visualization of important structures considered in the qualitative evaluation of
our 2D method.

6.2.2.2 Varying the Number of Projection Views for a Selected Slice

The number of views represents the number of projections used to reconstruct the tar-

get image, projection image generation is explained in Section 5.2. The number of views

correlates to the amount of information that is available and can be utilized by the CNN

and thus, has a major influence on the quality of the reconstructed image. In the fol-

lowing we observed a different number of views N ∈ {1, 2, 4, 6, 8, 15, 30, 60}, separated
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into different paragraphs. For the FBP method we also appended results generated using

N ∈ {120, 180, 360}.

One View The visualization of the lung as distinguishable structure from soft tissues

and bones shown in Figure 6.8 is accomplished by the two learning based methods 2D-

L1-only and 2D-L1-LwGAN already by utilizing one projection view, whereas the FBP

method requires eight views to reduce the amount of streaking artifacts enough to visualize

anything that is meaningful. Furthermore, while 2D-L1-only and 2D-L1-LwGAN using

only one view both place bones near the image borders at the top and bottom of the image

due to extreme uncertainty, 2D-L1-LwGAN is able to locate the vertebra as well as both ribs

in the image, the reconstructed structures are, however, anatomically not corresponding

to the target. While the learning based methods are able to roughly visualize the general

anatomical structure of the slice, due to the extremly sparse information, none of the

images produces anything clinically meaningful by using only one view.

Two Views The reconstructed image’s quality is already much better when two views

are utilized for reconstruction, see Figure 6.8. Especially the ambiguity of bone placement

for the learning based methods has decreased as bones are not placed at the image borders

where they do not belong as observed on the reconstructed images using only one view.

By utilizing two views, 2D-L1-only is able to visualize the silhoutte of the vertebra and

the ribs, while 2D-L1-LwGAN was able to improve on the vertebra’s structure and the ribs

look already quite believeable though placed incorrectly. Furthermore, the right and left

bronchus, that split from the airway to supply both lung lobes with air, are also identified

in both learning based reconstructions. While the right bronchus is clearly visible, the left

one is indicated by a slightly darker image region in comparison to the rest of the lung.

Also, while 2D-L1-LwGAN using two views is already able to visualize structures within

the lung representing blood vessels, these introduced structures do not correspond to the

target image.

Four Views By utilizing four projection images as shown in Figure 6.9, 2D-L1-LwGAN
is able to drastically reduce the amount of larger misplaced structures and thus improves

the similarity to the target image. Both learning based methods were able to improve

on the vertebra’s shape, although neither the result generated from 2D-L1-only nor 2D-

L1-LwGAN looks like the target image’s vertebra. The shape of the right bronchus has

improved for both learning based methods and the darker area containing the left bronchus

is now even better distinguishable from the rest of the lung area. While 2D-L1-only

starts to show some blood vessels in the lung, 2D-L1-LwGAN was able to improve on the

placement and size of the blood vessels, they look more realistic but, as the rest of the

image, do not correspond well to the target image.
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Figure 6.8: Qualtitative results of our 2D methods and the FBP method for one and two views.

Six Views Further increasing the number of views from four to six projection images

as shown in Figure 6.9 did not affect the results too much, while the overall anatomical

structures improved for 2D-L1-only, the reconstructed image generated by 2D-L1-LwGAN
has a similar quality as the one generated using four views. 2D-L1-only managed to

visualize the left rib, which was clearly identified as a bone but, however, slightly misplaced.

Both learning based methods are able to indicate the thin soft tissue border of the left

bronchus and can distinguish the descending aorta from other soft tissues. Lastly, 2D-L1-

LwGAN connected the right bronchus to the rightmost bronchus, although they are not

connected in this slice.

Target

FBPL1
L +L1 wGAN

4

6

Figure 6.9: Qualtitative results of our 2D methods and the FBP method for four and six views.
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Eight Views All relevant structures of the vertebra are visible for 2D-L1-only and

2D-L1-LwGAN , when reconstruction is done utilizing eight projection images leading to

believable vertebra shapes, see Figure 6.10. Furthermore, the left rib is represented well for

both methods, which is also true for the left and right bronchus with the left being clearly

distinguished from the rest of the lung by both CNNs. Also, the rightmost bronchus is

now visualized by both methods and additionally, 2D-L1-LwGAN started to differentiate

between single substructures of the heart. Both methods approximate larger blood vessels

present in the projection images which can be matched to the larger anatomical structures

of the target image, nevertheless, while the position of the blood vessels is close to the

original position, the exact shape of these fine details is not and some structures are

wrongly introduced by 2D-L1-LwGAN . At this stage, the reconstructed images generated

by both learning based methods are very similar to the target image where all larger

structures are represented roughly correct resulting in a pretty clear correspondence to

the target image, however, fine details are not reconstructed in a sufficient quality. Up to

this point the FBP did not result in anything meaningful, however, by using eight views

the FBP method managed to reduce the amount of streaking artifacts enough to allow

the distinction between lung and other tissues.

15 Views Further increasing the number of views to 15 as shown in Figure 6.10 allows

the FBP method to distinguish the lung and the bronchi from the soft tissues and bones

and gives an indication of the vertebra, however, the reconstructed image is still heavily

burdenend by streaking artifacts. In contrast to that, the learning based methods improved

the quality of the reconstructed image to a point at which the correspondence to the target

image is clearly given. In both, 2D-L1-only and 2D-L1-LwGAN , the bones, i.e. the vertebra

as well as both ribs, the bronchi, the descending aorta and even some of the larger blood

vessels in the lung are represented very well and contribute to a high similarity to the target

image. While 2D-L1-only also started to distinguish between the different substructures of

the heart, 2D-L1-LwGAN shows further improvements in the heart area. Additionally, the

head of rib is also visualized in both learning based methods and clearly separated from

the vertebra, which is especially good visible in the result generated by 2D-L1-LwGAN .

Lastly, both methods managed to represent the spinous process of the vertebra located

above.

30 Views The results generated by 2D-L1-only and 2D-L1-LwGAN further improved in

visualizing the different substructures of the heart when 30 projection views are utilized

as given in Figure 6.11, however, some errors in this region are made, e.g. the misin-

terpretation by 2D-L1-LwGAN leading to a separation of the pulmonary artery. The fine

structures of the blood vessels in the lung are represented very well by both learning based

methods leading to correctly placed and very similarly shaped blood vessels of large and

medium size. By using 30 projection views, the FBP method managed to clearly visualize

the vertebra and the ribs. Furthermore, it is able to represent all bronchi as well as to
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Figure 6.10: Qualtitative results of our 2D methods and the FBP method for eight and 15 views.

separate the left bronchus from the lung and even shows some of the large blood vessels

in the lung. However, the FBP method still contains many streaking artifacts and thus,

a distinction between different soft tissues can not be done.

60 Views Both learning based methods managed to represent the various substructures

of the heart by using 60 projection views as shown in Figure 6.11, especially the pulmonary

artery is now displayed correctly. The FBP method greatly reduced the amount of intro-

duced streaking artifacts allowing a well representation of the target image that manages

to visualize the descending aorta and some finer blood vessels in the lung, however, other

soft tissues can not be distinguished.

Target

FBPL1
L +L1 wGAN

30

60

Figure 6.11: Qualtitative results of our 2D methods and the FBP method for 30 and 60 views.
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120, 180 and 360 Views By further increasing the number of views shown in

Figure 6.12, the FBP is able to eliminate the presence of streaking artifacts allowing

fine details to be visualized. When increasing to 120 views, the FBP method’s result

represents all discussed fine details like the distinction between the various substructures

of the heart as well as medium sized blood vessels in the lung. However, while streaking

artifacts are not present anymore, the reconstructed image still contains some artifacts

similar to noise, which can be reduced by increasing the number of views to 180 and even

further by using 360 views.

Target

F
B
P

120 180 360

Figure 6.12: Qualtitative results of the FBP method for 120, 180 and 360 views.

6.2.2.3 Varying the Weight λ between Losses for a Selected Slice

The weight λ represents a hyperparameter which is required by our 2D-L1-LwGAN method

and defines the contributed influence of the L1 loss and the LwGAN loss to the utilized

loss function defined in Equation (5.5). All results of 2D-L1-LwGAN we showed up to now

have been generated using the default weight λ = 10−3, however, we also experimented

with different values. More precisely, we conducted experiments using different weights

λ ∈ 10{−6,−5,−4,−3,−2,−1}, where a low value for λ leads to a low contribution of the

LwGAN loss and a high value leads to a high contribution, shown in Figure 6.13. All

reconstructed images using 2D-L1-LwGAN with a different λ as well as 2D-L1-only have

been generated using eight views, since a smaller number of views leads to a larger variance

in the reconstructed images due to a higher uncertainty in value distribution.

Weight λ as 10−6 and 10−5 The results acquired using a small weight of λ = 10−6 and

λ = 10−5 are due to the strong influence of the L1 loss very similar to the result generated

by 2D-L1-only. The only noticeable difference to 2D-L1-only is that the reconstruction

generated by λ = 10−5 connected the right and rightmost bronchus. Both 2D-L1-LwGAN
results using a λ = 10−6 and λ = 10−5 yield a very similar anatomical structure compared

to the target slice, however, most of the fine details are lost due to oversmoothing yielding

blurry looking reconstruction images.
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Figure 6.13: Qualtitative results of our 2D-L1-LwGAN method generated using different weights
between the loss functions.

Weight λ as 10−4 and 10−3 Increasing the weight to λ = 10−4 leads to sharper recon-

structed images containing fine details and still yields a clear correspondence to the target

slice. In contrast to smaller values of λ, some structures like the head of ribs become

distinguishable from the vertebra. Utilizing λ = 10−3 leads to even more distinguishable

structures present in the reconstructed image, e.g. some subregions of the heart, while the

correspondence to the target is still pretty clear.

Weight λ as 10−2 and 10−1 Further increasing the contribution of the LwGAN loss by

setting the weight to λ = 10−2 leads to a diminishing anatomical correspondence to the

target with too many GAN specific artifacts being present as well as newly introduced

structures that are anatomically not feasible. Using a weight of λ = 10−1 ultimately

destructs the anatomical feasibility leading to bad and unrealistic reconstruction results

due to the generative influence and possibilities being to large.

6.2.2.4 Evaluation of Additional Slices

The qualitative results we showed up to now have been limited to one selected slice. To

give insight into the reconstruction quality of some additional slices as well, we extracted

additional slices from the test data, which are presented in Figure 6.14. The reconstruction

results have been generated by our 2D-L1-only and 2D-L1-LwGAN method using eight and

30 projection views and a λ setting of 10−3.
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Eight Views By using eight projection views it is observable that the results gener-

ated using 2D-L1-only appear to be blurry, while the results generated by 2D-L1-LwGAN
achieve sharper images that contain more structural details. The correspondence of these

structural details to the target image using just eight projection views is, however, not

clear. Especially soft tissues cannot be reconstructed well when only eight projection views

are used. High contrast structures like bones, the airways and the lung yield better recon-

structions, however, some small bone-like structures have been introduced when looking

at the results generated by 2D-L1-LwGAN using eight projection views in the first row in

Figure 6.14.

30 Views Increasing the number of projection views to 30 results in more reliable re-

constructions of the target images for both, 2D-L1-only and 2D-L1-LwGAN . While high

contrast regions yield a good resemblance of the target, low contrast regions like the soft

tissues are reconstructed less accurately and also look more blurry when using 2D-L1-only.

In contrast to that, 2D-L1-LwGAN achieves sharper reconstruction results.

6.2.2.5 Evaluation of the Coronal and Sagittal View

As explained in Section 5.1.1, for our 2D method we extracted the axial 2D CT slices and

reconstructed each slice independently of which we presented the results in the preceding

sections. As a next step, these independently reconstructed 2D axial CT slices can be

stacked to yield a complete 3D CT volume that represents the patient. In this section, we

evaluate the integrity of these 3D CT volumes generated by stacking the reconstructed

2D CT slices by looking at the coronal and sagittal view, which are orthogonal to the

axial view as visualized in Figure 2.10. We compare these orthogonal views generated

from results using eight and 30 projection views reconstructed by 2D-L1-LwGAN and 2D-

L1-only.

Eight Views Using eight projection views leads to clear discontinuities in the stacked

image as shown in Figure 6.15, which is especially visible in the sagittal view when look-

ing at the spine. The result generated by our 2D-L1-LwGAN method suffers more from

discontinuity than 2D-L1-only due to yielding sharper images that look less blurry. Addi-

tionally, these discontinuities seem to be strongest for slices that also contain larger parts

of the lung which becomes apparent when comparing individual regions of the spine in

sagittal view to the corresponding position in coronal view.

30 Views Increasing the number to 30 projection views as shown in Figure 6.16 solves

the problem of discontinuity for both, 2D-L1-LwGAN and 2D-L1-only. When again observ-

ing the spine in sagittal view, the result generated by either method now looks continuous

and both appear sharp yielding a visually good reconstruction of the target image.
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Figure 6.14: Qualtitative results of our 2D methods showing additional slices for eight and 30
views.
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L +L , 8 Views1 wGAN L , 8 Views1Target

Figure 6.15: Qualtitative results of our 2D methods when showing the coronal and sagittal view
of the stacked 2D results using eight views.

Target L +L , 30 Views1 wGAN L , 30 Views1

Figure 6.16: Qualtitative results of our 2D methods when showing the coronal and sagittal view
of the stacked 2D results using 30 views.

6.2.2.6 Evaluation of a Site Unseen During Training

As of now, we have evaluated the performance of our methods using CT slices taken from

the same region as the networks saw during training. In this section, we give insight into

the quality of the reconstruction results of CT slices acquired from a different site. As such,

we reused the networks from above that have been trained on CT slices from the thoracic

and abdominal region to generate the reconstruction results of head CT slices presented

in this section. We compare the results generated by 2D-L1-LwGAN and 2D-L1-only using
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one, eight, 30 and 60 views to the target CT image.

One View The results generated using just one view shown in Figure 6.17 and

Figure 6.18 do not carry any meaningful information independently of the method used

for reconstruction. Both methods, 2D-L1-LwGAN and 2D-L1-only seem to reproduce an

image that looks more similar to those the networks saw during training.

Eight Views When the number of views used to reconstruct the head CT image is

increased to eight, the reconstruction results appear to be more meaningful and roughly

resemble the target image, see Figure 6.17 and Figure 6.18. However, the reconstructed

results are still very bad and contain a lot of flaws.

30 Views Using 30 projection views as an input for 2D-L1-LwGAN and 2D-L1-only

to reconstruct a CT image improves the quality of the reconstructed head CT slices.

While the reconstruction result of the more complex head CT slice shown in Figure 6.17

is burdened by many artifacts, the result of the less complex head CT slice in Figure 6.18

is visually very similar to the target image yielding a good reconstruction.

60 Views The results generated from 60 projection views improved the sharpness of the

reconstructed head CT images as shown in Figure 6.17 and Figure 6.18. However, both

2D-L1-LwGAN and 2D-L1-only still introduce artifacts to the reconstructed image and

also introduced an additional artifact to the result in Figure 6.18.
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Figure 6.17: Qualtitative results of our 2D methods when evaluating a site unseen during traing
using a different number of views.
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Figure 6.18: Qualtitative results of our 2D methods when evaluating a site unseen during traing
using a different number of views.
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Motivated by reducing the amount of ionizing radiation exposed to the patient during

Computed Tomography (CT) imaging, we proposed a sparse-view reconstruction method

that reduces the number of projection views used to reconstruct a CT image, see Chapter 5.

Highly reducing the number of projection views leads to a violation of the Nyquist-Shannon

sampling theorem explained in Section 2.2.3, which we aim to compensate by using a

Convolutional Neural Network (CNN).

7.1 Comparison to Related Work

While CT reconstruction in clinical practice still relies on classical reconstruction methods

like the analytical Filtered Backprojection (FBP) method, most of the research conducted

in the field of medical image reconstruction that was recently published is based on deep

learning and especially CNNs, see Chapter 4. These approaches can be categorized by

distinguishing between them according to the implemented strategy of applying deep learn-

ing as well as by the approach used to actually reduce the amount of ionizing radiation

exposure.

7.1.1 Strategies to Apply Deep Learning

Most approaches follow the strategy of applying a CNN to learn image-to-image recon-

struction as explained in Section 4.1.2, which means that the CNN receives an already

reconstructed low-dose CT image and learns an image enhancement procedure to im-

prove the reconstruction quality. Consequently, this type of approaches still relies on a

99



100 Chapter 7. Discussion

classical reconstruction method like the FBP method to provide the input for the CNN .

Since classical reconstruction methods are known to heavily introduce artifacts when the

Nyquist-Shannon sampling theorem is violated, we argue that a CNN following the image-

to-image reconstruction strategy is required to learn removing the artifacts that have been

introduced by the classical reconstruction method.

In contrast to that, our method falls into the category of learning sinogram-to-image

reconstruction as given in Section 4.1.4 and as such, our CNN directly learns CT im-

age reconstruction from the projection data circumventing the need of using any other

reconstruction method. Thus, the strategy of sinogram-to-image reconstruction does not

suffer from any classical reconstruction method, which we view as an advantage over the

image-to-image reconstruction strategy.

7.1.2 Types of Approaches to Reduce Ionizing Radiation

We identified three different types of approaches to accomplish a reduction of ionizing ra-

diation exposure in literature. The first type of approaches is represented by reducing the

tube current used when acquiring the projection views as explained in Section 4.2. Since

tube current reduced approaches acquire the full projection data, they homogeneously

degrade the quality of the reconstructed image when using classical reconstruction meth-

ods and to the best of our knowledge, exclusively follow the strategy of image-to-image

reconstruction.

A second type of approaches uses beam blockers that act as physical barriers between

the X-ray tube and the patient as described in Section 4.3. To be of practical use, this

type of approaches requires to define the properties of physical beam blockers which then

need to be implemented in CT scanners representing an additional difficulty in comparison

to the other types of approaches. As of now, beam blocking based approaches are rarely

found in Fan Beam Computed Tomography (FBCT) and in most cases used in Cone Beam

Computed Tomography (CBCT) to increase the contrast by reducing the amount of beam

scatter which is typical to CBCT .

The method we proposed falls into the last type of approaches to reduce the amount

of ionizing radiation exposure called sparse-view, where the number of projection views is

reduced as explained in Section 4.4. Many sparse-view approaches are based on the strat-

egy image-to-image reconstruction and thus, rely on a classical reconstruction method like

the FBP method which leads to the introduction of streaking artifacts that are inhomo-

geneous. Since the sparsity of the data leads to inhomogeneously distributed artifacts,

we argue that the strategy of image-to-image reconstruction is suboptimal for the type of

sparse-view reconstruction methods. Furthermore, sparse-view approaches only require to

reduce the number of projection views that are acquired during CT imaging which can

easily be implemented by defining a sparse-view protocol for image acquisition. In contrast

to beam blocking based approaches, changes to the actual hardware are not necessary for

sparse-view reconstruction approaches to be of practical use.
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7.2 Discussion of Our Method

Many other low-dose CT reconstruction approaches that rely on a classical reconstruction

technique like the FBP aim to remove the artifacts that have been introduced by the clas-

sical reconstruction technique. In contrast to that, our method directly learns CT image

reconstruction from the projection data and circumvents the need of using any classical

reconstruction technique. Since publicly available datasets typically do not incorporate

the projection data used for CT image reconstruction, we decided to simulate the pro-

jection views by generating them from the normal-dose CT image to proof the concept

of our approach. Beneficially, since the number of data samples in medical imaging is

usually very low, simulating the projection data allowed us to use data augmentation of

the target CT images without invalidating the correspondence to the projection data and

also allowed us to generate the projection views from any arbitrary angle. To generate the

simulated projection data, we implemented a procedure that is very similar to real data

acquisition in CT imaging explained in Section 5.2.

We conducted a variety of different experiments to evaluate our approach and the

performance of the trained CNNs. First, we implemented our approach using three di-

mensional (3D) data, where the CNN optimizes the L1 loss function and directly learns to

reconstruct a 3D CT volume. However, the vast execution time and memory requirements

when training CNNs to directly learn 3D CT image reconstruction represents a limitation

that forced us to reduce the resolution of the reconstructed images to 64× 64× 64. To in-

crease the resolution of the images we adapted our initial approach to use two dimensional

(2D) CT slices instead of 3D CT volumes, which allowed us to increase the resolution to

128× 128 as well as to increase the number of training iterations of the CNN . Addition-

ally, changing to 2D allowed us to extend the CNN used in our approach to a Generative

Adversarial Network (GAN) which uses a combined loss function consisting of a content

L1 and an adversarial LwGAN loss coming from a Wasserstein Generative Adversarial Net-

work (WGAN) as proposed in [28]. While some other approaches nowadays also rely on

the contribution of a GAN to a combined loss function, in contrast to our approach, most

of them also rely on the strategy of image-to-image reconstruction and additionally fall

into the category of tube current reduced reconstruction approaches.

7.2.1 3D Experiments

The quantitative results of our 3D experiments shown in Section 6.1.1 demonstrate that

our CNN based 3D-L1-only method performs significantly better than the non-learning

based FBP method when heavily reducing the number of projection views available for CT

image reconstruction. In contrast to the FBP method, our 3D-L1-only method benefits

from prior knowledge that was acquired beforehand by learning from the training data.

Increasing the number of views available to both methods reduces the gap in performance

between them to a point where the reconstruction quality can be considered the same
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which is reached when using 60 views and more.

This observation is supported by our qualitative results presented in Section 6.1.2, the

results generated by our 3D-L1-only method as well as by the FBP method using 60 views

are visually very similar to one another and represent good reconstructions of the target.

When using a smaller number of views, the FBP method starts to introduce streaking

artifacts degrading the quality of the reconstructed image, while our method is able to

achieve a better visual reconstruction quality in comparison to the FBP method. E.g.,

when using eight views for reconstruction, our 3D-L1-only method is able to visualize

all relevant structures of the vertebra, whereas the image content of the FBP method

reconstructed image is barely recognizable due to the amount of introduced streaking

artifacts.

We show that our CNN based sparse-view CT reconstruction method is able to achieve

a good reconstruction quality from a very small number of projection views without being

heavily burdened by artifacts as the FBP method is. When using a very small number of

views the reconstruction results of our method, however, look increasingly blurry loosing

more and more details which we aimed to improve by using a combined loss function which

we implemented for our 2D pipeline.

7.2.2 2D Experiments

The quantitative results of our 2D experiments show that both 2D-L1-only and 2D-L1-

LwGAN perform significantly better than the FBP method when using a reduced number

of projection views to reconstruct the target image, see Section 6.2.1. The observation of

the Mean Absolute Error (MAE) shows that 2D-L1-only performs slightly better than 2D-

L1-LwGAN which is to be expected, since 2D-L1-only is directly optimized to minimize L1

loss, i.e. MAE . The Structural Similarity Index Metric (SSIM) result demonstrates that

2D-L1-only achieves the best results up to eight projection views, while from that point

on, the results generated by 2D-L1-only and 2D-L1-LwGAN can be considered equivalent.

When looking at the qualitative results shown in Section 6.2.2, we can see that the FBP

method increasingly suffers from the introduction of streaking artifacts when reducing the

number of projection views. In contrast to that, our 2D methods are able to visualize the

overall structure of the given slice and yield visually more appealing and more realistic

looking images. However, reducing the number of views available for reconstruction leads

to increasingly blurry looking images when reconstructing using only L1 loss, while an

additional LwGAN loss leads to sharper reconstruction results that may contain deviated

anatomical structures.

When experimenting with a different contribution of the adversarial LwGAN loss to

the combined loss function by changing the weight λ and using the same number of

projection views, it becomes apparent that a higher contribution of the adversarial loss

leads to a higher disruption of the anatomical correspondence to the target image as

shown in Section 6.2.2.3. As such, the 2D-L1-LwGAN reconstructed images gradually lose
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the correspondence to the target image and in extreme cases, the reconstructed images

even become anatomically infeasible. However, when weight λ is chosen carefully, the

combined loss function and the influence of the GAN allows our 2D-L1-LwGAN method

to result in sharper images that look more realistic compared to the results generated

using 2D-L1-only and still show a clear correspondence to the target image with only

minor discrepancies.

Since our 2D methods learn to reconstruct axial 2D CT slices independently from one

another, we also evaluated the reconstruction quality along the orthogonal axis of the axial

slice in Section 6.2.2.5. To conduct this evaluation, we independently reconstructed all

axial 2D CT slices of a 3D CT volume and stacked them after reconstruction as such, that

they again yield a 3D CT volume. By looking at the coronal as well as the sagittal view,

this procedure allows to evaluate the integrity of the reconstruction results in 3D . The

result generated by 2D-L1-LwGAN using eight projection views shows larger discontinuities

compared to the target than the result generated by 2D-L1-only, however, the result of

2D-L1-only is less sharp leading to an obfuscation of the discontinuities. This observation

confirms that using L1 loss leads to a more consistent anatomy, while an additional LwGAN
loss yields a sharper but not necessarily anatomically consistent result. When increasing

the number of projection views to 30, both 2D methods are able to resolve the problem

of discontinuity. We argue that the required number of views to solve the problem of

discontinuity can be reduced using 3D methods that provide 3D data to the CNN , like

our 3D-L1-only method. However, since using 3D data is very resource intensive, they

become infeasible when large image resolutions are involved.

Another experiment we conducted is based on evaluating the performance of our CNNs

when images from other sites that have been unseen during training are provided as an

input. In Section 6.2.2.6 we reused the CNNs that have been trained using 2D CT slices

from the thorax and the abdomen and observed their reconstruction quality when the

projection data from 2D CT slices from the head are used as an input. The results

generated by 2D-L1-LwGAN and 2D-L1-only using a very low number of projection views

showed to be bad with both methods having severe difficulties to yield a reconstruction

that is not heavily burdened by artifacts. Increasing the number of views to 30 or 60

shows, that both methods are able to yield a reconstruction that resembles the target,

however, slices that contain more complex anatomical structures are still burdened by

streaking-like artifacts. In contrast to that, slices that contain less complex anatomical

structures can be reconstructed better, but still suffer from artifacts in some cases, which

leads to the conclusion that our method can not be directly used on data containing sites

that have never been seen by the CNN during training. Fine-tuning the CNNs using data

from the target site represents a possible solution to this problem.
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7.3 Future Work

Up to now we evaluated our method only using simulated projection data, as such, in our

future work we aim to conduct an evaluation when real projection data is used. This,

however, opposes the problem that publicly available data does typically not include the

projection data used for reconstruction that is required by our CNN . For those datasets

that include the real projection data, it is very questionable whether they contain enough

data samples for our CNN to optimize considering that data augmentation possibilities of

real projection data are very limited. However, since real and simulated projection data

is very similar, this problem can be circumvented by extending the method proposed in

this thesis to use an additional fine-tuning step. As such, the CNN can be trained on a

large amount of simulated projection data, while a small amount of real projection data

is sufficient in the fine-tuning step, where the CNN is optimized to adapt the features

learned from simulated projection data to real projection data. Additionally, to improve

the integrity of our 2D methods in 3D , we also plan to investigate the performance of

a multi-slice approach, where the CNN still learns to reconstruct one axial 2D CT slice

but is also provided with the projection data of neighboring slices. To further investigate

potential real world applications, we also aim to investigate the performance of our method

for registration tasks as well as it’s performance on locating instruments within the body

of a patient, which represents an important task during minimally invasive and image

guided surgery. We also plan to contact radiologists to evaluate the reconstruction results

generated by our method to aquire a professional and objective opinion on their quality.

Finally, we aim to evaluate our method on other datasets consisting of more data samples

and also on datasets that contain other sites or multiple different sites.
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We proposed a machine learning based sparse-view Computed Tomography (CT) recon-

struction method from a reduced number of projection views that achieves decent recon-

struction results even from undersampled data according to the Nyquist-Shannon sam-

pling theorem and compressed sensing. Many other approaches rely on traditional re-

construction algorithms like the Filtered Backprojection (FBP) method, utilize already

reconstructed sparse-view CT images and learn to improve the quality of these images

by removing the undersampling artifacts that have been introduced when reconstructing

the CT image using the traditional algorithm. In contrast to that, our approach directly

utilizes the projection data to train a Convolutional Neural Network (CNN) that learns

to reconstruct the CT image itself without relying on any traditional reconstruction algo-

rithm.

The data we utilized consists of ten already reconstructed CT images, however, since

our method requires not only access to the already reconstructed normal-quality CT im-

ages but also to the corresponding projection data, we simulated the projection data by

generating it from the already reconstructed CT images from different angles on the axial

plane similarly to CT scanners. Simulating the projection data gave us two benefits, first

it allowed us to augment the data by rotation, translation and scale completely at will in-

creasing the variety of the available data samples which is important when training CNNs

to counteract overfitting. Furthermore, the simulation of the projection data enabled us

to freely experiment with the number of projection views and the angles from which they

are utilized which was beneficial for this work we consider a proof of concept.

The generated projection images are utilized as the input for our CNN , while the cor-

responding CT image from which the projection images have been generated is treated as

the target image for our CNN to optimize. We experimented with different dimensional-

ities of the image data separately utilizing two dimensional (2D) and three dimensional

(3D) CT images optimized on L1 loss. Additionally, on our 2D data we tested the per-

formance of a combined loss function consisting of a content L1 loss and an adversarial

LwGAN loss that comes from a Generative Adversarial Network (GAN). For convenience,
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these methods are called 3D-L1-only, 2D-L1-only and 2D-L1-LwGAN respectively. The

evaluation was conducted by comparing the results generated by our method quantita-

tively and qualitatively to the well known FBP method as well as to each other, however,

the results generated by our 2D and 3D method have not directly been compared due to

larger differences in hyperparameters that would lead to an unfair comparison.

The quantitative results show that our approach performs significantly better than the

FBP method when reconstructing the CT images from heavily undersampled projection

data. The qualitative results reveal that the FBP method gradually suffers from streaking

artifacts when reducing the number of projection views. In contrast to that, the results

generated by our methods optimized on L1 loss convey more useful information than the

FBP method’s results, but look gradually blurrier when the number of projection views is

reduced, while the results of 2D-L1-LwGAN look sharper and more realistic. However, the

results generated by our GAN based method gradually lose the anatomical correspondence

to the target image potentially causing the introduction artifacts that look similar to

anatomical structures.

We conclude that the results generated from a highly reduced number of views utilizing

our methods and especially our GAN based method 2D-L1-LwGAN have to be treated with

caution especially when used for diagnosis, since particularly small and subtle anatomical

details of the target image can not be guaranteed to be reconstructed correctly from

highly undersampled data with a large amount of missing information. When a high

undersampling rate is used, the FBP method heavily introduces streaking artifacts, while

our methods optimized on L1 prefer blurring and our 2D-L1-LwGAN method potentially

introduces anatomical structures that do not correspond to the target image. As such,

while our CNN based methods are able to improve the quality of the reconstructed images,

they still suffer from the sparse information available when using high undersampling

rates but, in contrast to the FBP method, our methods learned to optimize the visual

representation of the reconstructed CT slice. While it remains questionable whether or not

our learning based methods can be utilized in diagnostic clinical practice, we see practical

applications in image registration tasks where a reduced amount of ionizing radiation

exposure to the patient is necessary or only a reduced number of projection views can

be acquired and a perfect reconstruction is not necessary. An exemplary application is

represented by locating the instruments inside of the patient during minimally invasive

and image guided surgeries.
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List of Acronyms

1D one dimensional

2D two dimensional

3D three dimensional

ADAM Adaptive Moment Estimation

ANN Artificial Neural Network

ART Algebraic Reconstruction Technique

CBCT Cone Beam Computed Tomography

CNN Convolutional Neural Network

CS Compressed Sensing

CSI Computational Methods and Clinical Appli-

cations for Spine Imaging

CT Computed Tomography

DFR Direct Fourier Reconstruction

EM Earth Mover

FBCT Fan Beam Computed Tomography

FBP Filtered Backprojection

FNN Feedforward Neural Network

FT Fourier transform

GAN Generative Adversarial Network

GD Gradient Descent

HU Hounsfield Unit

Hz Hertz

IFT Inverse Fourier transform

JS Jensen-Shannon

KL Kullback-Leibler

kVp kilovoltage peak

Leaky ReLU Leaky Rectified Linear Unit
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MAE Mean Absolute Error

MICCAI Medical Image Computing and Computer As-

sisted Intervention

MRI Magnetic Resonance Imaging

MSCT Multi-Slice Computed Tomography

MSE Mean Squared Error

MVUS Many-View Undersampling

PBCT Parallel Beam Computed Tomography

PGD Projected Gradient Descent

ReLU Rectified Linear Unit

SGD Stochastic Gradient Descent

SSIM Structural Similarity Index Metric

TV Total Variation

VGG Visual Geometry Group

VMAT Volumetric Modulated Arc Therapy

WGAN Wasserstein Generative Adversarial Network

WGAN-GP Wasserstein Generative Adversarial Network

with Gradient Penalty
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Work presented in this master’s thesis led to the following peer-reviewed publications. For

the sake of completeness of this thesis, they are listed in chronological order along with

the respective abstracts.

B.1 2018

Volumetric Reconstruction from a Limited Number of Digitally Recon-

structed Radiographs Using CNNs

Franz Thaler, Christian Payer and Darko Štern

In: Proceedings of the OAGM Workshop 2018

May 2018, Hall/Tyrol, Austria

(Accepted for oral presentation)

Abstract: We propose a method for 3D computed tomography (CT) image reconstruc-

tion from 3D digitally reconstructed radiographs (DRR). The 3D DRR images are gener-

ated from 2D projection images of the 3D CT image from different angles and used to train

a convolutional neural network (CNN). Evaluating with a different number of input DRR

images, we compare our resulting 3D CT reconstruction to those of the filtered backpro-

jection (FBP), which represents the standard method for CT image reconstruction. The

evaluation shows that our CNN based method is able to decrease the number of projection

images necessary to reconstruct the original image without a significant reduction in image

quality. This indicates the potential for accurate 3D reconstruction from a lower number

of projection images leading to a reduced amount of ionizing radiation exposure during

CT image acquisition.
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B.2 2018

Sparse-View CT Reconstruction Using Wasserstein GANs

Franz Thaler, Kerstin Hammernik, Christian Payer, Martin Urschler and Darko Štern

In: MICCAI Workshop on Machine Learning for Medical Image Reconstruction - MLMIR

2018

September 2018, Granada, Spain

(Accepted for poster presentation)

Abstract: We propose a 2D computed tomography (CT) slice image reconstruction

method from a limited number of projection images using Wasserstein generative ad-

versarial networks (wGAN). Our wGAN optimizes the 2D CT image reconstruction by

utilizing an adversarial loss to improve the perceived image quality as well as an L1 content

loss to enforce structural similarity to the target image. We evaluate our wGANs using

different weight factors between the two loss functions and compare to a convolutional

neural network (CNN) optimized on L1 and the Filtered Backprojection (FBP) method.

The evaluation shows that the results generated by the machine learning based approaches

are substantially better than those from the FBP method. In contrast to the blurrier look-

ing images generated by the CNNs trained on L1, the wGANs results appear sharper and

seem to contain more structural information. We show that a certain amount of projection

data is needed to get a correct representation of the anatomical correspondences.
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[73] Röntgen, W. C. (1896). On a new kind of rays. Science, 3(59):227–231. (page 5)

[74] Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage

and organization in the brain. Psychological review, 65(6):386. (page 31)

[75] Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., and Chen, X.

(2016). Improved techniques for training GANs. In Advances in Neural Information

Processing Systems, pages 2234–2242. (page 42)

[76] Scarfe, W. C. and Farman, A. G. (2008). What is cone-beam CT and how does it

work? Dental Clinics of North America, 52(4):707–730. (page 11)

[77] Scarfe, W. C., Farman, A. G., Sukovic, P., et al. (2006). Clinical applications of cone-

beam computed tomography in dental practice. Journal-Canadian Dental Association,

72(1):75. (page 12)

[78] Schlemper, J., Caballero, J., Hajnal, J. V., Price, A. N., and Rueckert, D. (2018). A

deep cascade of convolutional neural networks for dynamic MR image reconstruction.

IEEE transactions on Medical Imaging, 37(2):491–503. (page 60)

[79] Schulze, D., Heiland, M., Thurmann, H., and Adam, G. (2004). Radiation exposure

during midfacial imaging using 4-and 16-slice computed tomography, cone beam com-

puted tomography systems and conventional radiography. Dentomaxillofacial Radiology,

33(2):83–86. (page 12)

[80] Schulze, R., Heil, U., Groß, D., Bruellmann, D., Dranischnikow, E., Schwanecke, U.,

and Schoemer, E. (2011). Artefacts in CBCT: A review. Dentomaxillofacial Radiology,

40(5):265–273. (page 12)

[81] Seitzer, M., Yang, G., Schlemper, J., Oktay, O., Würfl, T., Christlein, V., Wong, T.,

Mohiaddin, R., Firmin, D., Keegan, J., et al. (2018). Adversarial and perceptual refine-

ment for compressed sensing MRI reconstruction. In International Conference on Med-

ical Image Computing and Computer-Assisted Intervention, pages 232–240. (page 61)

[82] Shannon, C. E. (1949). Communication in the presence of noise. Proceedings of the

IRE, 37(1):10–21. (page 8)

[83] Shepp, L. A. and Logan, B. F. (1974). The Fourier reconstruction of a head section.

IEEE Transactions on nuclear science, 21(3):21–43. (page 18)

[84] Simard, P. Y., Steinkraus, D., Platt, J. C., et al. (2003). Best practices for con-

volutional neural networks applied to visual document analysis. In Icdar, volume 3.

(page 47)

[85] Simonyan, K. and Zisserman, A. (2014). Very deep convolutional networks for large-

scale image recognition. arXiv preprint arXiv:1409.1556. (page 54, 61)



118

[86] Smith-Bindman, R., Lipson, J., Marcus, R., Kim, K.-P., Mahesh, M., Gould, R.,
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