
Marco Manfred Starke, BSc

Identifying IP Siblings on Public Network Devices

to achieve the university degree of

MASTER'S THESIS

 Master's degree programme: Computer Science

submitted to

Graz University of Technology

Univ.-Prof. Dipl.-Ing. Dr.techn. Stefan Mangard

Institute of Applied Information Processing and Communications

 Diplom-Ingenieur

Supervisor

Advisor
Dipl.-Ing. Dr.techn. Johanna Ullrich, BSc

Graz, May 2019

AFFIDAVIT

I declare that I have authored this thesis independently, that I have not used other

than the declared sources/resources, and that I have explicitly indicated all ma-

terial which has been quoted either literally or by content from the sources used.

The text document uploaded to TUGRAZonline is identical to the present master‘s

thesis.

Date Signature

Identifying IP Siblings on Public
Network Devices

Marco Starke

May 2019

In Memory of my beloved Grandpa

VITA NON TOLLITUR SED MUTATUR

Abstract

In the year 2011 the last /8 IPv4 address block was assigned to a Regional Internet
Registry. The Internet ran out of IPv4 addresses. Hence, network infrastructure providers
deploy IPv6. The transition process and the steadily increasing number of network devices
frequently leads to simultaneous usage of IPv4 and IPv6 protocol stacks on the same
physical machine. Such deployments are referred to as Dual Stack technology. A Dual
Stack device has at least one IPv4 as well as one IPv6 address assigned. The combination
of these two addresses results in the formation of an address pair which is named IP
Siblings. In this thesis we show that such IP Siblings are encountered not only on
web servers but also on critical network infrastructure devices like (core) routers. This
introduces new attack vectors since previous work has revealed that IPv6 channels often
apply less strict security policies than their respective IPv4 counterpart.

To identify an IP address pair as IP Siblings, the deviation of the clock from its expected
values, the clock skew, is investigated by acquiring TCP timestamps employed by the
TCP High Performance Extension. We observe that the majority of devices meanwhile
employs randomized TCP timestamp offsets. On that account, new approaches for
IP Sibling detection are necessary. We propose a model that allows to predict the IP
Sibling property on randomized TCP timestamp offsets and improve prediction on non-
randomized timestamp offsets. We show that even with only few timestamps the same
prediction results are achievable. The small number of required timestamps also enables a
drastic reduction of acquisition runtime from formerly several hours down to few minutes
which facilitates practical application. For a current estimation of IP Siblings among
critical infrastructure devices, we employ two common top-million domain lists and
investigate IP pairs along routes to these targets yielded by these lists. Investigations
show that between 10% and 20% of the responsive network node pairs are IP Siblings,
whereat significantly more edge network devices than core network devices are identified
as IP Siblings.

i

Acknowledgments

This master thesis is the final result of the joint supervision of two prestigious institutions,
the Institute of Applied Information Processing and Communications (IAIK) at Graz
University of Technology and SBA Research gGmbH in Vienna. On this behalf, I would
like to express my sincerest thank to Johanna Ullrich at SBA Research for her continuous
support and engagement. She gave me the intellectual freedom I needed in order to
complete this thesis. During this time, she was always open for any questions or concerns
and assisted me in any idea I brought up, notwithstanding the fact that due to joyful
circumstances she had other responsibilities. Once more, thank you very much for your
commitment! Many thanks to Stefan Mangard at IAIK who ultimately enabled me the
collaboration with Johanna Ullrich and hence the implementation of this work. I would
also like to thank Johannes Feichtner at IAIK who assisted me in all organizational and
technical belongings concerning the finalization of this work.

Above all, I would like to thank my parents and grandparents with all my heart. All
the character I’m today is owed to them, my family, which supports me with their
endless love, patience and dedication to enable me the realization of my dreams. My
untiring interest in the wonderful things in this world was first awakened by their steadily
respectful handling of fauna and flora. I owe gratitude to my family for opening me
these doors in order to find a true, happy and fulfilled path of life. Always spotting the
right way is not an easy task, but thanks to their eternal assistance learning from any
kind of decision I make becomes a pleasing experience for me, no matter whether the
decision was right or wrong. Thank you for everything you have done so far and will do
for me in the future. Without your help, neither of my biggest dreams would have come
to reality.

My deepest gratitude goes to the love of my life, Evelyn, for her everlasting allegiance,
consideration and perseverance while I was working on this thesis. She continuously
encouraged me with advices and tips which accompanied me during the course of my
entire work. In every imaginable situation she is always at my side and enables me to
realize my passion for the things I appreciate most in my life. Thank you for all your
love and support. Together we can achieve anything! Moreover, I would like to express
my gratitude to her family in Styria as well as in Vienna for their help throughout the

ii

journey of my studies. They always helped us to overcome tough times whenever we
needed their assistance.

Additionally, I would like to thank my childhood friends at home, who I have been
knowing for ages and still accompany me today, though. I will never forget the incredible
time full of adventures those days. I am grateful for the awesome experiences we were
allowed to go through together. Growing up with you all at this wonderful place situated
in the heart of the Alps was absolutely a privilege for me! Likewise, I want to thank
those friends who I got to know and appreciate during my studies. The enormous team
spirit which always led us together through all encountered challenges made the loads of
study time unforgettable and exciting. I already miss the hours in 25/D a bit, even if
they sometimes were quite tiringly, but all the more I miss the P&B sessions following
the hard work carried out in the cellar.

Without my fluffy family members, the implementation of this work would have been
only half that pleasing and exciting for me. Thank you Nelson that you take care of
my physical condition and that you remind me again and again about your trust and
deeply felt loyalty which you put in me day by day. Monty, you are the one who enabled
me my very first insights into the secrets of your communication in order to teach me
to understand and speak your language. Thank you that we were able to overcome all
occurred difficulties together. Karo, the incredible nose, thank you for your unbroken
help keeping up good mood in all belongings within the daily routine at home. Chico,
the youngest and active whirlwind, thank you for the continuous exercise therapy if
you are not trapped in the land of dreams. Osito, the calming influence, thank you for
your honorable nature. Finally, I would like to wholeheartedly thank my horses Carlos,
Kaiser and Nepomuk. You are the ones who accompanied me since my early childhood
and bestowed me many wonderful joint hours. I hope we will spend many more hours
together. Once more, thank you all my four-legged furry companions who make my life
a pleasure every day anew.

Lastly, I want to thank all people out there who raise their voice for those who are not
able to express their feelings in a spoken language. You are the inspiration for my lifestyle
and the treatment of living beings, nature and the planet on which we are allowed to
live on. All your motivation which ultimately results in success shows over and over
again that never giving up is the only option we have available to keep the faith in true
humanness alive. During my whole life and especially while studying, your tireless fight
for the weakest in our world always proved to me that it is definitely worth to stand up
for one’s goals.

The pure� form of insanity is to leave everything as it is
and at the same time hope that something will change.

Albert Einstein

iii

Contents

Abstract i

Acknowledgments ii

1 Introduction 1
1.1 Motivation . 2
1.2 Objectives . 3
1.3 Thesis Outline . 4

2 Background 5
2.1 The OSI and TCP/IP Reference Models 6
2.2 Packet Transmission and Data Encapsulation Principles 7
2.3 Protocols . 8

2.3.1 Internet Protocol - IP . 8
2.3.2 Internet Control Message Protocol - ICMP 20
2.3.3 Transmission Control Protocol - TCP 25
2.3.4 Secure Shell - SSH . 33

2.4 Routing . 35
2.4.1 Routing Basics . 36
2.4.2 Edge and Intermediate Routers 38

2.5 Tracerouting . 38
2.6 IP Siblings . 39
2.7 Related Work . 40

2.7.1 Network Performance . 41
2.7.2 Network Security . 41
2.7.3 IP Sibling Detection . 41

3 Methodology 44
3.1 Data Sources . 44
3.2 Data Acquisition . 46

3.2.1 Prerequisites . 46

iv

Contents

3.2.2 Acquisition Workflow . 47
3.2.3 Ground Truth and Top List Server Data Acquisition 50

3.3 Classification Features . 50
3.3.1 TCP Timestamp Features . 50
3.3.2 TCP Options Signature Feature 53
3.3.3 SSH Keys and Agents Features 54
3.3.4 Geolocation Feature . 54

3.4 Model Training and Feature Processing 54
3.4.1 Test Data Construction . 55
3.4.2 Feature Selection . 55
3.4.3 Evaluation Metrics . 56

3.5 Determining Edge and Intermediate Routers 57
3.6 Low-Runtime and Randomized Timestamps 57

3.6.1 Low-Runtime Approach . 58
3.6.2 Special Timestamp Acquisition Methods 58

3.7 Decision Processes . 59
3.8 Limitations . 61

4 Evaluation 64
4.1 Preparation and Acquisition Evaluation 64

4.1.1 Measurement Runtime Decisions 64
4.1.2 Path Discovery . 65
4.1.3 Port Identification . 66
4.1.4 Timestamp Acquisition and Data Analysis 66

4.2 Model Performance . 67
4.2.1 Feature Evaluation . 68
4.2.2 Randomized Timestamps Model Evaluation 71
4.2.3 Complete Model Evaluation . 75

4.3 Special Acquisition Methods Evaluation 76
4.4 Network Node IP Pairs Evaluation . 77

5 Conclusion 81
5.1 Summary of Key Concepts . 81
5.2 Conclusion . 82
5.3 Future Work . 84

Bibliography 85

Abbreviations 96

v

Chapter 1

Introduction

In the year 2011, the Internet Assigned Numbers Authority (IANA), which is operated
by the Internet Corporation of Assigned Names and Numbers (ICANN), announced
that they were allocating the last Internet Protocol version 4 (IPv4) address block to
a Regional Internet Registry (RIR). Since this year there have been no more IPv4
address blocks available [69]. Meanwhile, a new version of the Internet Protocol (IP)
had been developed to counteract IPv4 address space exhaustion. The first standard of
Internet Protocol version 6 (IPv6) was already published by the Internet Engineering
Task Force (IETF) in 1995 [35] whereas the latest publication and current standard of
IPv6 was presented with Request For Comments (RFC) 8200 in July 2017 [36]. The
IPv4 protocol is still dominating the Internet and forcing the network companies to
operate infrastructures using both protocol versions for compatibility reasons. These
infrastructures are often implemented as Dual Stack solutions. Whereby Dual Stack
refers to distinct IP stacks (v4/v6) which are implemented on one physical device to host
IPv4 as well as IPv6 network capabilities. In terms of servers, this particular hardware
setup often consists of one physical Network Interface Card (NIC) which has an IPv4
and an IPv6 address assigned. Following prior work [11, 108], we call such IPv4/IPv6
address pairs Siblings or IP Siblings.

Various studies investigate performance, deployment status and security of IPv6 in general
[6, 31, 40, 117, 118]. In this thesis, we focus on the operational behavior of one of the
major devices which are part of modern network infrastructures, routers. Nowadays, it
is indispensable to ship network hardware without comprehensive IPv6 support. This
often leads to severe security threats because network administrators may not keep in
mind the requirement of also configuring the IPv6 capabilities of their newly installed
hardware. Additionally, many devices have their IPv6 network stack enabled by default
without proper set up. This means that a significant number of routers in practice are
operating on both protocol stacks to deliver these IPv4 as well as IPv6 addressed packets
to their desired end node.

In this work, we aim to identify routers which are deploying Dual Stack technology. We
investigate current Dual Stack deployment of network devices on the Internet in order
to gain further insights into the structure of the underlying networks. We separate this
network structure into edge and core networks with their corresponding routers. Moreover,

1

Chapter 1 Introduction

we provide an improved IP Sibling detection method which enables practical use for
attack vector detection. This includes the reduction of necessary Transmission Control
Protocol (TCP) timestamps for decision making as well as simultaneously preserving
the performance of the employed prediction model. Therefore, we develop concepts for a
fast and resource saving TCP timestamp acquisition and an enhanced prediction model.
Based on the fact that many nodes meanwhile implement TCP timestamp randomization
for each connection, the machine learning model must be able to deal with constant as
well as randomized timestamp offsets.

To achieve the aims of this work, we compile a ground truth host list based on data pro-
vided by the Netherlands Network Operator Group (NLNOG) and Réseaux IP Européens
Network Coordination Centre (RIPE NCC) organizations which were also already used
by Scheitle et al. [108]. The NLNOG RING [94] as well as the RIPE Atlas [105] project
offer Application Programming Interfaces (APIs) to query their RING Nodes and Atlas
Anchors, respectively. In order to identify routers on the Internet, we traceroute domains
with IPv4 and IPv6 addresses of the Alexa Top Million [1] and the Cisco Umbrella Top
Million [28] lists. Then, we perform port scanning on discovered routers by sending TCP
Synchronize (SYN) segments and check for any Synchronize Acknowledgment (SYNACK)
response. For the acquisition process, we also employ TCP SYN segments and collect the
SYNACK messages which contain the required TCP timestamps. To exchange routing
information within the same Autonomous System (AS), for example in an Internet Ser-
vice Provider (ISP) network, protocols like Intermediate System to Intermediate System
(IS-IS) or Open Shortest Path First (OSPF), which do not employ any Transport layer
protocol at all, are used. The Border Gateway Protocol (BGP) is the only one which
uses TCP for information exchange between routers. Nevertheless, many devices have
ports for management and monitoring tasks open which we exploit for collecting TCP
timestamps. Based on the collected timestamp sequences of the ground truth data, we
construct a prediction model with competitive performance regarding prior work. We
reduce acquisition time from hours to minutes by splitting the model into two parts of
which one deals with constant and the other with random timestamp offsets. Finally,
we apply this model to the acquired timestamp data of the network nodes to investigate
their IP Sibling property. Last but not least, we deal with edge cases like for example
SYN cookies which may negatively affect timestamp acquisition.
Remark: We intend to apply the terms host and node as defined in RFC 8200 (Section 2) [36] throughout
this document. However, we utilize the term node most of the time in order to avoid any expression
regarding the behavior of the device concerned. The use case of the designated node should be clearly
given by the corresponding context.

1.1 Motivation

Based on the fact that routers constitute the heart of the connection between several
distinct networks, they are indispensable for the Internet as we know it today. It is not
known whether the majority of (core) routers are using Dual Stack techniques or whether

2

Chapter 1 Introduction

they are operating only one of the two IP stacks. Therefore, our main interest concerns
the support of both IP protocols on one and the same physical device.

Prior works, especially Czyz et al. [31], show that strong security policies which are
applied to IPv4 connections are in turn often not identical to IPv6 connections of the
same device. On Dual Stack nodes the security policies for IPv6 are often much weaker
than for IPv4. In other words, if it is not possible for an attacker to gain access to a device
over an IPv4 connection because of strong and correctly applied security policies, it may
be still feasible to access the identical device by communicating over IPv6. Controlling
such a router would allow an attacker to perform malicious actions ranging from Denial
of Service (DoS) or complete Internet outtakes through to BGP hijacking and Man in
the Middle (MitM) attacks. One recent notable malware attack of 2018 or probably even
earlier was discovered by Cisco Talos Intelligence Group and infected more than 500.000
routers [27]. The malware was called VPNFilter and operates mainly on consumer-
grade routers. Therefore, security measures, especially for Dual Stack routers, must be
hardened as much as possible since weak IPv6 security implementations are potential
entry points for controlling the IPv4 network and vice versa. At this point a fast and
reliable detection method for IP Siblings comes into play. Research in the field of IP
Siblings has already been conducted by Berger et al. [10], Beverly et al. [11] and Scheitle
et al. [108] who all solely investigated servers. However, we believe that network devices
apart from servers are becoming more and more attractive to attackers due to the rapid
evolution in the field of the Internet of Things (IoT) where connecting networks plays
an important role.

Knowledge about the IP Sibling property of an IPv4/IPv6 address pair often reveals
attack vectors which were previously hidden or simply not recognized as such. We intend
to help to avoid aforementioned scenarios by actively identifying possible IP Siblings on
public network devices in order to allow related securing actions. Our key motivation
is to raise awareness to network operators on the risks for their Dual Stack network
devices. Additionally, we provide a possibility to identify potential IP Siblings in their
own network which they were perhaps not aware of.

1.2 Objectives

In contrast to related work, we investigate Dual Stack devices which are not end nodes
like conventional web servers for example. In this thesis, our focus is on detecting IP
Siblings on routers and other network devices along paths of different sets of end nodes
which were examined in prior work. More precisely, our purpose is to find out whether
routers along a path are providing Dual Stack technology or whether they exclusively
implement the IPv4 or IPv6 protocol, respectively. Moreover, we aim to significantly
reduce the number of required timestamps and simultaneously achieve comparable quality
concerning IP Sibling detection rates.

3

Chapter 1 Introduction

Therefore, we address the following questions in our work:

⇒ Do routers on paths on the Internet use Dual Stack IP implementations?

⇒ At which location along paths (intermediate or edge) do routers predominantly use
Dual Stack technology?

⇒ Is the routing infrastructure on the Internet for IPv4 the same as for IPv6?

⇒ Is communication negatively impacted (number of hops, geolocation) in any way
by means of routers which solely operate either IPv4 or IPv6?

⇒ Can the timestamp acquisition time be reduced to a practically relevant level by
preserving currently available prediction performance?

By analyzing and answering these questions we make the following contributions:

• We provide a manually validated ground truth host list of NLNOG RING [94] and
RIPE Atlas [105] servers.

• We develop TCP timestamp acquisition strategies for low-runtime applications and
well-secured nodes.

• We analyze, improve and combine prior existing and new IP Sibling detection
methods.

• We investigate routers along paths and identify whether they are using Dual Stack
technology.

• We examine core routers and compare their routing technology with edge routers
in terms of the employed IP version.

• We deliver insights to the present Dual Stack deployment of the Internet’s current
network infrastructure.

1.3 Thesis Outline

This thesis is structured as follows: in Chapter 2, we introduce the essential theory and
provide background information on IP Sibling detection as well as associated network
knowledge. Moreover, at the end of this chapter, we present related work. Following,
Chapter 3 explains the methodology of our work. We discuss how we divide our data sets
and suggest different possibilities to collect TCP timestamps. Additionally, we debate
data acquisition, features used for classification and the decision process itself. In Chapter
4, we evaluate acquired data and discuss results based on conducted investigations.
Finally, we summarize and conclude our thesis in Chapter 5 and discuss future work as
well as potential improvements.

4

Chapter 2

Background

In this chapter, the theoretical prerequisites and necessary background information build-
ing the fundamentals of this work are introduced. First of all, the assignment of the
deployed protocols according to the layers described in the Open Systems Interconnection
(OSI) reference model [32] as well as in the TCP/IP reference model [18, 19] is illustrated
in Section 2.1. According to the OSI reference model, the basics of IP data transmission
are demonstrated in Section 2.2. Related thereto, the packet encapsulation and decap-
sulation steps performed at each network node are described. To understand the node
discovery and timestamp acquisition mechanisms later, information about the in Section
2.3 introduced protocols is provided. The Network Layer protocols IPv4 and IPv6 which
enable global addressing of packets are discussed. Next, the control message protocols
which represent the valuable responses of the node discovery procedure are shown. For
this, the Internet Control Message Protocol (ICMP) and the Internet Control Message
Protocol version 6 (ICMPv6) are used in combination with IPv4 and IPv6, respectively.
Furthermore, basic concepts of the Transport Layer protocol TCP are explained. This
protocol constitutes an essential part in the work because it is responsible for port detec-
tion, timestamp acquisition and nearly any additional and/or necessary communication
with respect to this thesis. The last protocol described is Secure Shell (SSH) and is
located above the IP (v4 or v6) and TCP layers in the reference models. SSH offers
many features but in this context the focus is laid on the key scan capability which is
especially suitable for this work. Devices in distinct networks can only communicate with
each other if those two networks are connected by (at least one) routers. Since, routing
is a vital part for the operation of the public Internet, basic concepts are illustrated in
Section 2.4. An overview how data is exchanged between different networks and how the
global routing process is organized on the Internet is given. In Section 2.5, commonly
used tracerouting methods to identify hops along a path to a specific target are briefly
described. Moreover, in Section 2.6, the evolution of the term IP Sibling in relation to
previous work is discussed and the technical properties of an IP Sibling node are ex-
plained. Finally, Section 2.7 discusses related work in the fields of Network Performance,
Network Security and IP Sibling Detection.

5

Chapter 2 Background

2.1 The OSI and TCP/IP Reference Models

Basically, all protocols can be assigned to distinct layers which are described in defined
standards of two generally recognized reference models. First, the more theoretical model,
which was introduced by the International Organization for Standardization (ISO), is
the OSI reference model [32]. The second one, which is assumed to be more essential for
today’s Internet, is the TCP/IP reference model [18, 19]. This model is more generally
also denoted as Internet Protocol Suite. Both are sectioned into layers whereby the OSI
model consists of seven layers and the TCP/IP model of four. Figure 2.1 illustrates the
layers and the differences of both models.

Figure 2.1: The OSI and the TCP/IP Reference Model

The two lower most layers, Physical and Data Link layers, in the OSI model are rep-
resented by the Link layer in the TCP/IP model. There, protocols like the Address
Resolution Protocol (ARP) and the Neighbor Discovery Protocol (NDP) perform their
tasks. These protocols are responsible for local physical addressing. At the Network
or Internet layer logical and worldwide unique addresses are used to transmit packets
to a desired node within a specific network. This is the main task of IPv4 and IPv6.
For data transmission between nodes both models use the Transport layer. There exist
several protocols, which are assigned to this layer, including TCP and the User Datagram
Protocol (UDP). The OSI model’s three upper most layers (Session, Presentation and
Application) correspond to the TCP/IP model’s Application layer. Protocols like SSH,
BGP or the Hyper Text Transfer Protocol (HTTP) and its encrypted version Hyper Text
Transfer Protocol Secure (HTTPS) operate at this segment. As mentioned earlier, it
can be assumed that the TCP/IP model matches the current operational state of the

6

Chapter 2 Background

Internet more precisely than the OSI model. This means that many protocols perform
tasks which are not assigned to their usual operational layer. For example, HTTPS is an
Application layer protocol, but it also implements authentication principles, though they
are usually assigned to the Session layer. Despite this fact, this work employs the OSI
model since it enables a more detailed representation of the data transmission process.

2.2 Packet Transmission and Data Encapsulation
Principles

When a packet is transmitted over the Internet it traverses several states of encapsulation
and decapsulation on each network node involved. Any instance of an arbitrary protocol
has its own header to provide necessary meta data like for example a destination address
for correct packet routing and delivery or a checksum to ensure data integrity.

Figure 2.2: Packet Transmission - Encapsulation and Decapsulation Process

Figure 2.2 shows the schematic packet transmission between two nodes C and S over a
router R. Assuming, a packet is part of an already established TCP connection where
an HTTP GET request is sent to a web server. The HTTP request data (payload)
corresponds to the User Data in the figure. Since HTTP is able to take over the role of
all three layers in the uppermost part of the OSI model, encapsulation starts with the
Transport layer. Hence, the application payload is encapsulated into a TCP segment.
Next, this TCP segment is packed into an IP datagram. This resulting IP datagram is
embedded into an Ethernet frame and is then ready for transmission over the physical
network interface.

7

Chapter 2 Background

Most of the time, the communicating nodes do not reside on the same network. Therefore,
packets cross several routers which connect distinct networks. A router must decide which
outgoing interface to use in order to route a packet in the most efficient way possible to
its destination. In Figure 2.2 router R receives the previously mentioned HTTP GET
request packet from node C at interface A. The packet is decapsulated until the router
can determine the destination address which is available at the Network layer within
the IP datagram. After extracting the necessary information, the packet is reassembled
and is thus ready again for transmission over the physical data connection. Based on
the collected IP address and the related decision for the most efficient route, the router
sends the packet through interface X to its destination node S.

Finally, Figure 2.2 also shows the receiving case. The target node unpacks the captured
packet starting from the Link layer up to the Application layer and is now able to interpret
the data submitted. Steps taken for the packet’s decapsulation process are identical to
the encapsulation procedure but the order is reversed. The received and decapsulated
User Data is now ready for further usage in an application running on node S.

2.3 Protocols

In this section, the basics and application of protocols used throughout this work are
explained. The presented protocols are sorted in ascending order starting at the physical
level by their occurrence in the OSI as well as in the TCP/IP reference model.

2.3.1 Internet Protocol - IP

The Internet Protocol is the fundamental operational factor for any kind of communication
in IP-based networks. Nearly 40 years passed since the introduction of the Internet
Protocol version 4 in the year 1980 [97]. Only one year later, the last standard of IPv4,
which is still valid today, was published [99]. Due to the IPv4 address exhaustion, the next
generation of the IP protocol, namely IPv6, was presented in 1995 [35]. Consequently,
the IPv6 protocol is also already nearly 25 years old but was most recently updated in
2017 [36]. IPv6 is not just an extension to IPv4 but a totally new implementation of
the IP protocol. Therefore, there are several differences, improvements and new features
which are discussed in the following paragraphs.
Remark: In this work, we employ the term IP if explanations are valid for both protocol versions.
However, if we deal with a specific version of IP, we clearly indicate this by appending the respective
suffix (v4 or v6) to the IP term.

8

Chapter 2 Background

IPv4 Header

As a starting point, Figure 2.3 shows the IPv4 protocol header. This figure demonstrates
all header fields, bit offsets and their corresponding sizes.

Figure 2.3: Internet Protocol Header for version 4

Version Version of the protocol (always 4)

IHL Internet Header Length Size of the IPv4 header measured in
units of 4 octets

Type of Service Service based data traffic management and congestion control

Total Length Entire packet size in octets

Identification Identifier for fragment reassembly

Flags Bit 0: Reserved; Bit 1: Don’t fragment; Bit 2: More fragments

Fragment Offset Position in datagram measured in units of 8 octets

Time to Live Number of hops allowed to pass until discard

Protocol Next layer protocol identifier

Header Checksum Checksum concerning the header only

Source Address Node from which the packet was sent

9

Chapter 2 Background

Destination Address Node to which the packet should be delivered

Options Variable number of options

Padding Padding for possibly present options

IPv6 Header

In the same way like previously for the IPv4 header, Figure 2.4 shows the available fields,
offsets and sizes for the IPv6 header.

Figure 2.4: Internet Protocol Header for version 6

Version Version of the protocol (always 6)

Traffic Class Service based data traffic management and congestion control

Flow Label Single flow packet sequence labeling

Payload Length Payload length in octets including any extension headers

Next Header Next header identifier including any extension headers

Hop Limit Number of hops allowed until the packet is discarded

Source Address Node from which the packet was sent

Destination Address Node to which the packet should be delivered

10

Chapter 2 Background

IPv4 and IPv6 Structure

As already mentioned, IPv6 was completely reimplemented and provides thus a new
header structure as well as therein contained header fields. The minimum link Maximum
Transmission Unit (MTU) of IPv6 (1280 octets [36]) is more than twice as big as the one
of IPv4 (576 octets [99]). Additionally, the checksum calculation in the IPv6 header was
removed and the Pseudo Header, which is used for upper-layer checksum calculations,
adapted to the new address length [36].

IPv4 and IPv6 Header Sizes As shown in Figure 2.3, the IPv4 header may vary
in size because of possible options. The minimum size of the IPv4 header is tied to
the number of mandatory fields, while the maximum length is restricted by the 4 bit
wide Internet Header Length (IHL) field. All required field sizes result in a length of
20 bytes. The IHL field uses a measurement unit of 4 bytes which means that the IHL
value multiplied by 4 yields the actual size of the header in octets (bytes). Consequently,
in a valid IPv4 header the IHL field can only hold values between 5 and 15 (4 high bits
correspond to the value 15). Thus, the maximum available IPv4 header size can be
calculated by multiplying the highest possible IHL field value (15) with 4 bytes which
yields 60 bytes. Additionally, the size of the option data is padded up to a multiple of 4
bytes in order to meet the requirements of the IHL field. In contrast, the IPv6 header is
way less complex and has a fixed size of 40 bytes which is pointed out in Figure 2.4.

IPv4 and IPv6 Header Fields IPv4 and IPv6 header fields that are common in both
versions are compared. Fields, which are not present in the other respective protocol
version, are mentioned depending on the order of their occurrence.

Version The first one, which is the Version field, is in both headers required and holds
the value 4 or 6, respectively.

Internet Header Length As explained in the previous paragraph, the IHL field is used
to calculate the header size and is only necessary in the IPv4 header.

Type of Service / Traffic Class The next IPv4 header field is Type of Service
which corresponds to the IPv6 header field Traffic Class. The IPv6 standard explicitly
states that the current use of this field is specified in [7] and [48]. These RFCs also
update the Type of Service field of the IPv4 standard [99].

Flow Label In the IPv6 header, the Flow Label is provided to label IP datagrams which
belong to a specific sequence of packets (packet flow) and are exchanged between the
same source and destination node [3]. A flow is uniquely identified by its source and
destination address as well as by the Flow Label value. Routers must handle packets,
which belong to the same flow, in an identical way, for example when using Equal-Cost
Multi-Path (ECMP) routing techniques (see Section 2.4) [2]. IPv4 does not provide a

11

Chapter 2 Background

Flow Label itself, but work is in progress to add a Flow Label option header for full
interoperability with IPv6 concerning protocol translation [42].

Total Length / Payload Length IPv4 as well as IPv6 define fields which deal with
sizes of the packet or payload, respectively. An important difference is that the IPv4
field Total Length includes the header size as well as the payload length, whereas
the IPv6 field Payload Length only relate to the actual payload data which may also
include extension headers. Both header fields use one byte as measurement unit.

Identification, Flags, Fragment Offset Fragmentation in IPv4 is managed by
using the Identification, Flags and Fragment Offset header fields which are capable of
determining and reassembling fragments of a split IP datagram. IPv4 packets belonging
to one and the same IP datagram are recognized by holding the same value in the
Identification field. However, there exists an update concerning the IPv4 Identification
field which states that the field should only be set if fragmentation is actually performed
[115]. In all IPv4 packets of the same datagram, the third bit (More Fragments or
MF bit) of the Flags header field is set (bits ordered from most to least significant).
Though, the last packet of a fragmented IP datagram is characterized by a cleared
MF bit. To explicitly forbid fragmentation, the second bit (Don’t Fragment or DF bit)
of the Flags field can be set. In turn, this results in packet drops if the IP datagram
can not be sent without being fragmented. The first bit, which was later named the
“Evil Bit” [8], is still reserved and must be cleared according to the IPv4 standard [99].
The Fragment Offset field holds the offset relative to the initial IP datagram in 8 byte
units and is used to reassemble received packets in the correct order. Opposed to IPv4,
the IPv6 standard defines an extension header for fragmentation in Section 4.5 [36].
Therefore, the IPv6 header itself neither has an own Identification field, a Fragment
Offset field nor associated Flags. Though, the IPv6 extension header (Fragmentation
Header) uses the same fields (except the removed DF bit) with the same characteristics
as already explained above.

Time To Live / Hop Limit Packets, which are undeliverable for whatever reasons,
must be dropped after a defined number of hops to eliminate endless cycling between
nodes in networks and thus to prevent wastage of bandwidth or a possible DoS state
caused by network overload. IPv4 ensures this requirement by providing the Time to
Live header field. Corresponding to that, IPv6 implements the Hop Limit field in its
header. Every network node, which processes an IP packet, must decrease the Time to
Live or Hop Limit value by one. However, the IPv4 standard states that the Time to
Live field is basically measured in seconds and should at least be decremented by one
even if processing takes less than a second. In practice, using seconds as unit is not
suitable anymore. Since, IP packets can be processed on multiple nodes in less than
one second, the Time to Live value also gets decremented multiple times each second.
Consequently, the number of maybe repeatedly visited nodes, which are permitted to
forward a specific IP packet, is limited to a value of 255 which corresponds to the size
(1 byte) of the Time to Live and Hop Limit fields, respectively.

12

Chapter 2 Background

Protocol / Next Header For further packet processing it is necessary to identify the
header which immediately follows the IP header. IPv4 defines the Protocol field for
this purpose. Corresponding to that, IPv6 uses a field named Next Header which
is situated before the Hop Limit field. In the case of IPv4, this field only specifies
the encapsulated protocol which is used in the Transport Layer. Additionally to the
Transport Layer referral, the Next Header field of IPv6 is also capable of pointing to
extension headers like for example the Fragmentation Header. Each extension header
in IPv6 carries a Next Header field in order to identify the immediately following
header. Values which may be assigned to the Protocol field as well as the Next Header
field are defined in a document published by IANA [66]. This document also includes
the extension header numbers specifically for IPv6.

Header Checksum In IPv4, data integrity is provided by the Header Checksum field.
Since all header fields (the checksum field is set to zero) are part of the checksum, it is
necessary to adapt this field during transmission. Therefore, IPv4 requires calculations
at each hop which may cause data traffic delay. The necessary steps for checksum
calculation are explained in Algorithm 2.1 in the last part of this section. After
decrementing the Time to Live value the checksum is calculated and written to the
Header Checksum field. Finally, the packet is ready for further transmission. In
contrast to IPv4, the IPv6 header does not implement data integrity at all.

Source Address / Destination Address Two essential parts for data transmission
in IP networks are the delivery addresses. Both protocol versions use a Source Address
as well as a Destination Address whereby the only difference is the address length.
IPv4 addresses use 32 bit whereas IPv6 addresses use 128 bit. Thus, IPv6 is capable
of a much bigger address space than IPv4.

Options The last but one header field, which is only available in IPv4, is the Options
field whereby an IPv4 packet can carry none or multiple options. Two distinct option
cases are defined in the IPv4 standard [99]. The first option format consists of one
single octet which holds the option type. The second option format represents an
option type and an option length octet as well as the actual option data octets itself.
IANA maintains a document concerning available IPv4 parameters which also lists all
possible option numbers [64].

Padding Finally, in relation with the IPv4 Options header field, the Padding header
field ensures that the header size is divisible by 4 octets. The Padding field is filled
up with zeros.

Addressing Architecture One of the core responsibilities of the IP protocol is global
addressing. The overall usage of IPv6 increases due to IPv4 address space exhaustion
[69]. For example, Google maintains statistics where native IPv6 connections of their
users are measured [55].

13

Chapter 2 Background

IPv4 addresses have a size of 32 bits which corresponds to 4 bytes. They are written as
decimal numbers and represented as four octets which are separated by dots, for example
192.0.2.42. In contrast, IPv6 addresses are 128 bits in size which is 16 bytes. These
addresses are composed by parts of 2 octets each, which are separated by colons. Since
representing IPv6 addresses in decimal notation would be cumbersome, they are written
in hexadecimal notation, for example 2001:db8::1337:42.

In the early years of the Internet, the IPv4 standard introduced the classful addressing
scheme [99]. This architecture sections the IPv4 address space into three network classes,
namely Class A, Class B and Class C. The classes are aligned to each octet boundary
of the IPv4 address structure. Class A networks use the first most significant octet for
network identification, Class B uses the first and the second octet and Class C uses the
first, second and third most significant octet as network prefix. The remaining octets
of each class are used as node identifier. Later, Class D and Class E networks were
introduced whereby the current still valid standard was published in 1989 [33]. Unlike
previous mentioned network classes, those two do not use designated network prefixes.
Instead, the identification of those networks is solely based on the four most significant
bits. Table 2.1 gives an overview concerning the assignments of most significant bits to
the corresponding network classes whereby the CIDR column is part of the currently
applied addressing architecture which will be explained in the following paragraph.

Network Class Bit Representation Network Bits CIDR
Class A 0 nnnnnnn.H.H.H 8 /8

Class B 10 nnnnnn.N.H.H 16 /16

Class C 110 nnnnn.N.N.H 24 /24

Class D 1110 uuuu.U.U.U undefined undefined
Class E 1111 uuuu.U.U.U undefined undefined

n / N . . . Network Bit/Octet H . . . Node Octet u / U . . . Undefined Bit/Octet

Table 2.1: Classful IP Network Architecture and corresponding CIDR Notation

Major disadvantages of this addressing scheme are scalability problems including IPv4
address exhaustion and limited routing capabilities which were already identified in 1993
[58]. To overcome these issues, Classless Inter-Domain Routing (CIDR) was introduced
[50]. CIDR also proposed the new prefix notation of network masks to determine network
numbers. The prefix notation consists of a conventional IPv4 or IPv6 address followed by
a slash (“/”) and a number of bits which are significant for the network mask, for example
192.168.0.0/24 or fc00::/7. The number of significant bits for such a network prefix
is limited by the address length which means IPv4 can use up to 32 bits whereas IPv6
network masks may have lengths up to 128 bits. Additionally, CIDR network masks can
be specified by using only the slash character followed by the corresponding number of
most significant network bits as shown in the last column of Table 2.1. Today, neither

14

Chapter 2 Background

IPv4 nor IPv6 are restricted to apply classful addressing architectures. Instead, the
CIDR architecture, which is capable of a more fine grained distribution and assignment
of IP address pools, is employed. For more details on bit level, Figure 2.5 illustrates the
network prefix determining as well as the specification of network and node part based
on two examples.

Figure 2.5: IP Address Network Prefix Architecture

The network part of an IP address is crucial for packet delivery. Routers identify the
outgoing interface for a packet to forward by looking up the network prefix (see Section
2.4). Additionally, such network nodes are responsible not only for packet delivery but
also for tasks depending on the address type of the packet received. Basically, four types
of addresses can be identified:

Unicast Multicast Broadcast Anycast

Unicast Communication of unicast address type nodes are performed between a single
sender and a single receiver. Thus, two network nodes exchange information in a
one-to-one relationship. IPv4 does not explicitly define an address prefix for unicast
addresses. Though, based on the IANA IPv4 Address Space Registry it is possible to
determine /8 prefixes assigned to RIRs which may be classified as unicast addresses [60].
For IPv6, IANA currently defines Global Unicast addresses with the prefix 2000::/3
which means that all available unicast addresses start with a leading digit of 2 or 3 in
hexadecimal notation for now [65].

15

Chapter 2 Background

Multicast Multicasting is available in IPv4 [33] and IPv6 [37]. The multicast principle
enables communication from a single sender to a specific group of receivers. Hence, IP
multicast implements a one-to-many relationship. Multicasting uses group subscrip-
tions to identify nodes which are registered to receive corresponding data. In IPv4,
the Internet Group Management Protocol (IGMP) is responsible for the organization
of group memberships of network nodes. In IPv6, the Multicast Listener Discovery
(MLD), which is an essential part of ICMPv6, manages multicast group memberships.
One typical example for a multicast application is IP television. The service provider
distributes the corresponding data to customers subscribed to the channel. Multicast
addresses are required to reside in the IPv4 range 224.0.0.0/4 and the IPv6 range
ff00::/8. Several multicast addresses are predefined for special purposes, for example
the “all-hosts” group in IPv4 (224.0.0.1) [33] or the “All Nodes Addresses” in IPv6
(ff01::1 for Interface-Local scope and ff02::1 for Link-Local scope) [37].

Broadcast The function of this address type is to send identical data to each network
node attached. This communication type is denoted as one-to-all relation. IPv4
broadcasting in presence of subnets is defined in [92]. Basically, broadcasting is
only available in IPv4. Though, IPv6 is capable to achieve similar results by using
multicast. Thereby, data packets are transmitted to a multicast group, which was
specifically established for this purpose, in which every network node is a member.
This technique is more efficient than simple broadcasting because network nodes do not
have to mandatorily register at such designated multicast groups if receiving broadcast
packets is not essential for their operation. Additionally, there are predefined multicast
addresses in the IPv6 addressing architecture which must not be used for own groups
and provide similar functions like IPv4’s broadcasting [37].

Anycast In contrast to broadcasting, anycast is clearly defined for IPv6 [37] but can
be implemented in IPv4 as well [91]. An anycast address is syntactically equal to a
unicast address. The only difference between a unicast and an anycast address is that
one and the same unicast address is assigned to multiple nodes on the Internet whereby
this unicast address is turned into an anycast address. For a reasonable application,
the anycast nodes should be distributed across geographically appropriate distances
(distinct continents for example) to ensure that data of a session will always be routed
to the same logically closest destination node. Hence, purposes of anycast are speeding
up communication based on short transmission paths, implementing load balancing as
well as redundancy and consequently the reduction of latency and data traffic across
the Internet. Moreover, malicious data traffic, which originates from multiple sources
spread over the world, as used in Distributed Denial of Service (DDoS) attacks for
example, is routed in the same way as common traffic and is thus distributed across all
anycast nodes operating at distinct geographical locations. This automatically reduces
the attack vector of each anycast server and enables identification of attack sources
more easily.

The distinction of address types also plays a decisive role in the routing process on
the Internet (see Section 2.4). Depending on the address type, routing decisions for

16

Chapter 2 Background

packet forwarding based on shortest path (Unicast), selective links (Multicast) or all
links (Broadcast) are made.

Special-Purpose IP Addresses Besides global addressing, IP provides several ad-
dress ranges which are reserved as Special-Purpose Addresses. Table 2.2 shows excerpts
of these addresses for IPv4 and IPv6 as defined in [37, 61, 65, 88]. The 6to4 transi-
tion mechanisms in conjunction with the corresponding prefixes are deprecated by now
[116].

Purpose IPv4 Ranges IPv6 Ranges
Loopback 127.0.0.0/8 ::1/128

Link-Local 169.254.0.0/16 fe80::/10

Private-Use / Unique-Local
10.0.0.0/8

172.16.0.0/12
192.168.0.0/16

fc00::/7

Multicast 224.0.0.0/4 ff00::/8

Shared Address Space 100.64.0.0/10

“This host on this network” 0.0.0.0/8

Unspecified Address ::/128

IETF Protocol Assignments 192.0.0.0/24 2001::/23

Service Continuity Prefix (DS-Lite) 192.0.0.0/29

Documentation 2001:db8::/32
Documentation (TEST-NET-1) 192.0.2.0/24
Documentation (TEST-NET-2) 198.51.100.0/24
Documentation (TEST-NET-3) 203.0.113.0/24

Benchmarking 198.18.0.0/15 2001:2::/48

Limited Broadcast 255.255.255.255/32

IPv4-IPv6 Translation 64:ff9b::/96

IPv4-mapped Address ::ffff:0:0/96

Discard-Only Address Block 100::/64

TEREDO 2001::/32

ORCHIDv2 2001:20::/28

Table 2.2: Special-Purpose Addresses [37, 61, 65, 88]

Upper-Layer Checksum Calculation Protocols which are embedded in IP data-
grams are usually affected by checksum calculations. The calculation algorithms slightly

17

Chapter 2 Background

differ depending on the underlying IP version. However, both IP versions employ in
combination with designated protocols a so called Pseudo Header for the checksum com-
putation task. Figure 2.6 shows the IPv4 Pseudo Header and Figure 2.7 illustrates the
Pseudo Header of IPv6.

Figure 2.6: IPv4 Pseudo Header

Figure 2.7: IPv6 Pseudo Header

For calculation, the Pseudo Header fields are populated with the values of the underlying
IP datagram. An exception thereto, is the Next Header field of the IPv6 header because
this value may differ from the one which must be used in the Pseudo Header. This may
be due to the fact that the Next Header field does not directly refer to the encapsulated
protocol but to an Extension Header which is situated before the actual Protocol Data
Unit (PDU) for which the checksum should be calculated. However, the Protocol and

18

Chapter 2 Background

Next Header fields in the Pseudo Headers must declare the protocol type for which the
checksum will be calculated. The Upper-Layer Packet Length field holds the full length
of the upper PDU, which includes header and payload. The Zero fields are responsible
for padding.

IPv6 transmissions use the Pseudo Header for checksum calculations when the ICMPv6,
TCP or UDP protocols are involved. Whereby in IPv4 transmissions, the Pseudo Header
is only used in conjunction with TCP and UDP checksum calculations. The data, which
is employed in the calculation, consists of the IP Pseudo Header and the PDU. In this
work this data composition is called a Pseudo Packet. The Checksum field itself is set
to zero during computation.

The basic algorithm is illustrated in Algorithm 2.1 and noted in the underlying document
in more detail [20].

Input: pseudo_packet, pseudo_packet_length
Output: checksum

1: checksum← 0
2: data_index← 0
3: length← pseudo_packet_length
4: // Sum up all 16 bit values of the Pseudo Packet
5: while length > 0 do
6: checksum← checksum + SHORT_INT(pseudo_packet[data_index])
7: data_index← data_index+ 2
8: length← length− 2
9: end while

10: // Handle carry octets
11: while RSHIFT(checksum, 16) > 0 do
12: checksum← SHORT_INT(checksum) + RSHIFT(checksum, 16)
13: end while

Algorithm 2.1: Upper-Layer Checksum Calculation

Additional details on respective checksum calculations are provided in the according
protocol standards [36, 56, 98, 99, 100, 101]. Moreover, the informational paper on the
general computation techniques of the Internet checksum was already published in 1988
[20].

19

Chapter 2 Background

2.3.2 Internet Control Message Protocol - ICMP

The main task of the IP protocol is to manage packet delivery across interconnected
networks like the Internet. If this is for any reason not possible, the ICMP [98] and
ICMPv6 [56] protocols come into play. These protocols are responsible to inform the
sender about delivery failures or any other faulty behaviors by returning error messages.
Moreover, status messages, like for example the heavily used echo request and echo reply
messages, are provided by the ICMP protocols as well as vital operational messages used
in combination with Path Maximum Transmission Unit (PMTU). ICMP is for both IP
versions an indispensable part to ensure flawless operation and therefore should (IPv4)
or must (IPv6) be implemented wherever IP networks are in use.
Remark: In this work, if we only employ the term ICMP we refer to both versions, whereas in practice
ICMP corresponds to the IPv4 protocol and ICMPv6 to the IPv6 protocol, though. However, if we deal
with a specific version of ICMP, we clearly indicate this by appending the respective suffix (v4 or v6) to
the ICMP term.

Operators assume that ICMP is a security threat to their networks since it might expose
information about their infrastructure. Therefore, it is common, especially for IPv4, to
disable ICMP. This means in practice, that IPv4 still works but the network performance
may suffer because of unavailable optimization of TCP connections (see 2.3.3). In terms
of IPv6, switching off ICMPv6 completely disables IPv6 because, to name just one
example, fragmentation is only possible at source nodes [36]. Consequently, ICMPv6,
which is responsible to carry out PMTU, is an absolutely essential part for successful
IPv6 operation.

It is not always clear to which layer in the OSI and TCP/IP reference models a protocol
can be assigned since they are merely models. There are protocols which apparently
operate on lower or upper layers because of their encapsulation level whereby their
functionalities are solely focused to provide additional support for lower or upper level
protocols, respectively. ICMP, as the currently handled protocol, is encapsulated in IP
packets so that one could think it is an Layer 4 (Transport) protocol but it is responsible
for status or error messaging at Layer 3 (Network). Additionally, the ICMPv6 protocol
suite also contains for example the NDP protocol which represents the IPv6 counterpart
to IPv4’s ARP protocol. NDP and ARP operate at Layer 2 (Data Link) by resolving
IP addresses of physically connected Ethernet links in a local network. In this work we,
independently of prior information, lay down that both ICMP protocols reside on the
third Layer in the OSI model because their main purpose is to support the IP protocols.

ICMP Structure

As previously mentioned, ICMP is encapsulated in IP and uses two distinct protocol
numbers depending on the IP version. The protocol number for IPv4’s Protocol header
field is 1 and for the Next Header field in IPv6 is 58 [66]. The ICMP header is in both

20

Chapter 2 Background

IP versions at least for the first four octets identical and always present. Figure 2.8
illustrates the basic ICMP header.

Figure 2.8: Internet Control Message Protocol Header version 4 and 6

ICMP Header Fields Following, the few major header fields of ICMP are discussed.

Type The Type field identifies the type of the message and determines the format of the
remaining message data [56, 98].

Code The Code field depends on the Type field’s value whereby different sets of valid
codes according to the type are available.

Checksum Like the IPv4 header, both ICMP protocols provide a Checksum field to
ensure data integrity. In contrast to the IPv4 checksum, where only the header itself is
summed up, the whole ICMP message is used for calculation. Moreover, the ICMPv6
checksum calculation components differ in a way that the IPv6 Pseudo Header, which
is based on the encapsulating IPv6 datagram, is part of the checksum data [56]. The
Pseudo Header structure and checksum calculation is explained along with the IP
protocol in Section 2.3.1.

Message Body Depending on the Type and Code values of the ICMP message, the
Message Body field is adapted and thus variable in size. Only the first four octets of
the message body are, based on the message type, reserved for special use and thus
required in each message.

ICMP Messages In the ICMPv6 specification the available messages are sectioned
into error messages and informational messages [56]. Since ICMPv6 messages are similar
to ICMPv4 messages, this scheme is adopted for both ICMP versions as follows.

21

Chapter 2 Background

Error Messages: Informational Messages:
Destination Unreachable Echo Request
Packet Too Big (IPv6 only) Echo Reply
Time Exceeded Redirect (IPv6 in NDP)
Parameter Problem Timestamp (IPv4 only)

Timestamp Reply (IPv4 only)

Originally introduced messages like the Source Quench, Information Request and In-
formation Response messages in ICMPv4 are now formally deprecated [51, 54]. The
Redirect message is an explicit part of the ICMPv4 specification [98] while for IPv6
networks this message is defined in the NDP protocol [110] which corresponds to parts
of IPv4’s ARP protocol [96] as well as to the ICMPv4 Router Discovery Messages [34].
While the Packet Too Big message is only available and necessary in ICMPv6 (no frag-
mentation at intermediate nodes), the Timestamp and Timestamp Reply messages are
solely part of ICMPv4.

This work heavily relies on the Time Exceeded ICMP message which is an integral part
of the tracerouting process (see 2.5). The Time Exceeded message may (ICMPv4) [98] or
must (ICMPv6) [56] be sent if a packet processing node receives an IP datagram where
the Time To Live or Hop Limit field is zero or gets decremented to zero.

One might believe that the Timestamp message types would completely fulfill the needs
for this work, but in practice, these types may not be implemented at all. This results
from the fact that the Requirements for Internet Hosts document (RFC1122) of the IETF
states that these types do not necessarily have to be implemented [19]. Hence, there
is no commitment to implement the Timestamp messages along with the IPv4 network
stack. If they are implemented in the used IPv4 network stack, it is common practice
for network administrators to block or disable those ICMPv4 message types because of
security reasons. Moreover, these two message types are only available in ICMPv4 and
thus not suited for this work.

ICMP Types and Codes

As previously mentioned, the listed ICMP messages are sectioned by type and code
values. These predefined values are different in the ICMPv4 and ICMPv6 protocols
and maintained by IANA [62, 63]. Table 2.3 summarizes some of the most frequently
used messages with their corresponding type and code values for ICMPv4 as well as for
ICMPv6.

In the event that a node receives an ICMP Error Message it is necessary for it to identify
the respective service or the responsible application from which the error causing packet
was sent. ICMP solves this by extending the Message Body shown in Figure 2.8, which
already holds the four octets needed for type specific information, and appends additional

22

Chapter 2 Background

Message Name
ICMPv4 ICMPv6

Type Code Type Code

Error Messages
Destination Unreachable 3 0 – 15 1 0 – 7

Packet Too Big (IPv6 only) 2 0

Time Exceeded 11 0 – 1 3 0 – 1

Parameter Problem 12 0 – 2 4 0 – 3

Informational Messages
Echo Request 8 0 128 0

Echo Reply 0 0 129 0

Redirect (IPv6 in NDP) 5 0 – 3 137 0

Timestamp (IPv4 only) 13 0

Timestamp Reply (IPv4 only) 14 0

Table 2.3: Frequent ICMP Message Types and available Codes [62, 63]

data which was extracted from the original invoking IP datagram. In ICMPv4 the header
of the causing IPv4 packet and additional 64 bits of data are appended while in ICMPv6
the IPv6 header and as much data as possible is attached up to the size of the IPv6
minimum link MTU of 1280 bytes [56, 98].

Usually, an ICMP Informational Message, like for example an Echo Request message,
is explicitly initiated by an end node. Additionally, there are informational messages
which are not intended for being actively queried by a node, like for example a Redirect
message. Since it is possible to send a large number of informational request messages, it
is necessary to be able to identify the responses accordingly. This identification possibility
heavily depends on the respective message types. For example, the Echo Request and
Echo Reply message types can hold an arbitrary size of user-defined data in their message
body which can be used for identification.

To provide a suitable overview, the main responsibilities of the in Table 2.3 mentioned
ICMP messages are explained [56, 98]. Error message types are implicitly issued and sent
if an error was caused by a faulty operation or process. In contrast, informational message
types in general are solely sent if they were explicitly requested previously, except for
Redirect messages which are sent autonomously.

Error Messages

Destination Unreachable If a certain end node or gateway is for any reason not
reachable, a Destination Unreachable message should be sent to the origin node of
the undeliverable packet. With the available Code values the error can be specified

23

Chapter 2 Background

more exactly. However, the ICMPv6 standard recommends to disable sending ICMP
Destination Unreachable messages for security reasons.

Packet Too Big Available in ICMPv6 only. This message signals the sender that the
packet must be fragmented because the size of the IP datagram concerned is bigger
than the MTU size of the outgoing link. In other words, without fragmentation, the
packet is too big to be transmitted over the chosen link to the next hop.

Time Exceeded Two codes are available for this error message whereby code 0 points
to packets with expired Time To Live or Hop Limit values, respectively, and code 1
signals a timeout during fragmentation reassembly at a node. Since this error message
can be triggered by setting specific Time To Live or Hop Limit values in a packet, it
is an essential part in traceroute applications to determine hops along a route to a
destination. So, the main purpose of this message is to notify a sender of an expired
IP datagram and to enable the possibility to react accordingly.

Parameter Problem In case an IP datagram can not be processed by a node because of
faulty header or extension header values the packet must be dropped and a Parameter
Problem message should be sent. This message holds a pointer in the first octet or
first four octets, respectively, of the Message Body which indicates the position of the
erroneous parameter.

Informational Messages

Echo Request/Echo Reply The Echo messages are used for diagnostic purposes. Both,
request and reply packets, fill the first four octets of the Message Body whereby the
first two octets act as an Identifier and the last two octets manage a Sequence Number.
Additionally, an arbitrary amount of data may be sent with a request packet which in
turn requires the reply packet to use the identical data.

Redirect If a more efficient route is available the sending node is informed with a Redi-
rect message compiled by the first hop, which usually is a directly linked gateway.
Assuming two gateways G1 and G2 are on the same link with an end node E. Fur-
thermore, G2 is through a further link directly connected to network N. E sends a
packet through its default route, which points to G1, to a node contained in N. G1
correctly recognizes that the next hop for the packet is G2 and forwards the packet
to G2 as usual. Additionally, G1 sends a Redirect message to E in order to inform E
that G2’s distance to X is lower than G1’s distance to X. According to RFC 1122, E
is now required to update its routing information [19].

Timestamp/Timestamp Reply The Timestamp message types only exist in ICMPv4. A
node can request another node’s ICMPv4 timestamp by sending a Timestamp message.
If implemented, the Timestamp Reply consists, besides common header data, of the
timestamp from the initiating message followed by two timestamps of the asked node.
The first timestamp is the receive time of the Timestamp message, the second one
represents the time immediately before the packet was echoed back to the requester.

24

Chapter 2 Background

2.3.3 Transmission Control Protocol - TCP

The protocols of the Transport layer in the OSI model are classified into connection-
oriented (stateful) and connectionless (stateless) protocols. The two most important
representatives of these operation modes are TCP, which is stateful, and UDP, which
is stateless. TCP was standardized in 1981 and is now nearly 40 years old [100]. Since
then, several updates and extensions were introduced and standardized of which the
TCP Timestamps (TS) option and the TCP Window Scale (WS) option are the most
important for us [16]. Moreover, the IETF maintains a document which addresses all
relevant TCP specifications including modifications and extension which are essential
for implementing TCP [43]. In this work, nearly all of the active measurement and
timestamp acquisition tasks are accomplished by employing TCP.

The TCP standard describes six areas in which TCP manifests its characteristics [100]:

1. Basic Data Transfer

2. Reliability

3. Flow Control

4. Multiplexing

5. Connections

6. Precedence and Security

These stated areas represent the terminology regarding the main purpose of a stateful
communication protocol which is capable of connection establishment, maintenance
during data transmission (for example segment order or error correction) and controlled
connection teardown.

Basic Data Transfer The main responsibility of TCP is the bidirectional transfer of
continuous amounts of data between two nodes. TCP determines the chunk sizes, in
which the data is split, before they are packaged into segments and being sent over
the network.

Reliability Reliability is the most important task of TCP. Data received may be
out of order, duplicated, corrupted or even missing and must be corrected by TCP.
Thereto, the Checksum as well as the Sequence and Acknowledgment numbers in
the TCP header are used. Each octet of the data to be sent can be identified by
the sequence number. The receiver acknowledges the amount of data received by
responding with the corresponding acknowledgment number. If the sender did not
receive an acknowledgment within a defined time frame, the respective segment is
retransmitted. In case the calculated segment checksum does not match the received
one in the header, the segment is discarded and thus not acknowledged which in turn
triggers segment retransmission.

Flow Control TCP implements Flow Control by providing a possibility for the receiver
to control the amount of data to be sent by the sender. The receiver specifies with each
returned acknowledgment message the maximum number of octets processable. Hence,
the sender is only allowed to transmit the amount of data, which was stated in the

25

Chapter 2 Background

previous acknowledgment, until a new acknowledgment message was received which
resets this number. In other words, the Window header field defines the maximum
amount of data the sender is allowed to transmit until the receiver answers with a
further acknowledgment and hence resets the maximum possible number of octets to
be buffered.

Multiplexing The concept of ports enables multiple processes, which run on one single
node, concurrent access to the TCP communication unit. To identify the communica-
tion channels, ports are assigned to the respective process whereby the combination of
source port, destination port and network source address as well as network destination
address serves as distinctive feature.

Connections In general, a socket represents an end point of a connection, whereby a
socket consists of a port and the node’s network address. Moreover, a connection
consists of a pair of sockets.

Precedence and Security Both characteristics are directly related to flags and options
residing in the IP header. Those flags and options signal TCP to only accept connec-
tions if specific precedence and security properties match for both ends. Otherwise,
the connection must be rejected and dropped.

TCP Structure

Since TCP resides in the Transport layer, it is encapsulated in IP. The assigned Protocol
or Next Header value, respectively, in IP is 6 [66]. The TCP header is variable in size
and can hold several options to improve performance, for example the Window Scale or
Timestamps option. Figure 2.9 illustrates the current TCP header. One may recognize
that the Nonce Sum (NS) bit is missing in this Figure which is related to the fact
that the status of the corresponding document [120] was moved from Experimental to
Historic. Due to the lack of extensive deployment, the experimental Explicit Congestion
Notification (ECN) nonce was thus deprecated and removed in the beginning of 2018
[13].

As already mentioned, TCP employs port numbers to identify different services. The
source and destination port fields in the header are each limited to 2 octets in size. Hence,
available port numbers reside between 0 and 65535 and are divided into three sections
[30]. The first section are the Well Known Ports (or System Ports) in the range of 0 -
1023. Second, the Registered Ports (or User Ports) which are in range 1024 - 49151.
The third and last section is known as Ephemeral Ports (or Dynamic Ports, Private
Ports) and is dedicated to the remaining numbers from 49152 - 65535. The first and
second port range are assigned and maintained by IANA [67]. These port numbers are
intended for specific applications and should not be used for other purposes than stated.
The third port range is used for ephemeral source ports which are employed by the
underlying Operating System (OS) to assign them to requesting processes. This concept
enables a process to initiate multiple TCP connections simultaneously.

26

Chapter 2 Background

Figure 2.9: Transmission Control Protocol Header

TCP Header Size Similarly to the IPv4 header, the TCP header is variable in size.
The Data Offset field is comparable to the Internet Header Length (IHL) field in the
IPv4 header (see Section 2.3.1). Besides the offset where the carried data starts, the
Data Offset field declares the size of the TCP header. This size is again measured in
units of 4 octets. Since this field is only 4 bits wide and the mandatory header fields
consume 20 octets, the available values are the same as in the IPv4’s IHL field and thus
are also in range of 5 and 15. Multiplied by four octets, this results in a minimum size
of 20 octets and a maximum size of 60 octets. So, the maximum size of options a TCP
segment is able to hold is 40 octets including padding.

TCP Header Fields The TCP header consists of ten different mandatory fields which
sum up to 20 octets in size.

Source Port The Source Port constitutes an end point component and enables the OS
to assign a particular TCP connection to the respective process. The Source Port field
uses two octets.

Destination Port Like the Source Port, the Destination Port also constitutes an end
point component but specifies which service on a remote machine should be addressed.
Again, like the Source Port, the Destination Port field uses two octets.

Sequence Number The Sequence Number enables numbering of TCP segments and
increases by the number of octets transmitted so far. Connection initialization, SYN

27

Chapter 2 Background

flag, and tear down, Finish (FIN) flag, consume one sequence number each. The
Sequence Number field depletes four octets of the header and is thus 32 bits long.

Acknowledgment Number This field is only valid with the Acknowledgment (ACK) flag
set. The Acknowledgment Number field holds the number of the next expected octet
(number octets received + 1) and thereby also acknowledges the number of octets
received so far. For this field, four octets are used.

Data Offset The Data Offset field is compiled by four bits. It points to the start of
the payload in units of four octets and hence also reveals the actual size of the TCP
header.

Reserved Four bits remain for future use which are thus reserved.

Flags The Flags field holds eight bits. Six of the eight bits are part of the initial TCP
standard [100] whereby the remaining two bits were later introduced simultaneously
with IP for the ECN feature [48]. One more experimental bit was added after the two
original ECN bits [120] but having said that it was already removed again [13]. The
Urgent (URG) bit sets the Urgent Pointer field and the ACK bit sets the Acknowl-
edgment Number field in the header to valid. With the Push (PSH) flag set the data
is sent immediately and will not be buffered which would be necessary for a more
efficient transmission. The Reset (RST), SYN and FIN flags are used for connection
reset, initialization and tear down, respectively.

Window The Window field indicates the amount of data measured in octets the sender
is allowed to transmit without receiving any further acknowledgment of the recipient.
Since this two octet sized field is restricted to a maximum value of 216 the WS option
adds a scale factor for the Window field [16].

Checksum Error correction of TCP segments is based on the Checksum field. As already
mentioned in previous sections, the TCP checksum calculation also makes use of the
IP Pseudo Header and the algorithm explained in Section 2.3.1.

Urgent Pointer If the URG bit is set, the value in the Urgent Pointer field is treated
as valid. This field is two octets wide and holds a positive number which represents
an offset to the current segment’s sequence number and points to the first octet after
the as urgent marked data. Such segments must be transmitted as soon as possible
by the underlying TCP stack to the designated recipient.

Options The Options field is variable in size and may be up to 40 octets long. Each
option must be a multiple of eight bits (one octet). The initial TCP standard defines
three options only of which two are control mechanisms for the option list (End of
Option List and No-Operation). The third is the Maximum Segment Size (MSS) which
declares the maximum size of the TCP segment that can be received by the sender.
Later, further options were introduced to improve performance and security.

Padding The Padding field is composed of zeros and is responsible for the size of the
TCP segment to be a multiple of four octets.

28

Chapter 2 Background

TCP Extensions and Options Since TCP is an important transport protocols it
is steadily improved and extended by new options. Except for the End of Option List
and No-Operation kinds which only consist of a single octet, every option employs a
kind octet and a length octet as well as additional octets depending on the kind. The
length octet represents the number of octets of the option including kind and length
octets. A documentation of available option kinds is maintained by IANA [68]. The
most frequently implemented TCP extensions and options are discussed in the following
paragraphs.

Maximum Segment Size This option was one of the initial three and was already in-
troduced in conjunction with the original TCP standard in 1981 [100]. In addition
to the kind and length octets, the MSS option uses two octets for the actual value
which results in a length of four octets in total. The MSS option is an essential part of
TCP and should be sent at each connection initialization according to [19]. After the
negotiation at connection establishment, the MSS value is used for the entire current
communication session. Before the release of a clarification, there had apparently been
misunderstandings related to the most efficient value to choose for the MSS option
[15]. In this explanation, the value to be used as well as its basic calculation is defined
where the fixed IP and TCP header sizes are subtracted from the effective MTU. In
IPv4, the recommended value is 536 octets and results from the minimum link MTU
of 576 minus the 20 octets of the fixed IPv4 header minus the 20 octets of the fixed
TCP header. For IPv6, this value is 1220 octets whereby the minimum link MTU of
1280 minus 40 octets for the fixed IPv6 header and again minus the 20 octets of the
fixed TCP header. The aim of the designated values is to prevent IP datagrams from
being fragmented. Sender and receiver know that the MSS value is calculated based
on fixed header sizes but the IPv4 and TCP options are variable though. Hence, it is
definite that the currently sending party is responsible to decrease the payload size by
the length of the present options to ensure that no fragmentation takes place [15].

Window Scale Since the Window header field only consists of two octets, the maximum
possible size of the sliding window is limited to 216 octets. However, modern com-
munication networks provide enormous bandwidths which TCP could not efficiently
use without proper flow control. At this point the WS option comes into play [16].
With the WS option enabled, TCP is capable of handling window sizes of up to 1GiB.
TCP achieves this by providing the three octet wide WS option of which one octet
represents the shift count acting as a multiplier. Thus, the actual window is calculated
by left shifting the received window value by the WS factor. The WS option must be
negotiated during connection establishment by both participants. The shift count of
a connection remains valid for the whole communication session. Based on the buffer
provided to TCP, the WS factor is adjusted accordingly. Thus, customization of the
sliding window enables efficient data transmission in order to take full advantage of
the available bandwidth.

Timestamps The TS option is primary used for Round Trip Time (RTT) measurements
and Protection Against Wrapped Sequences (PAWS) and was introduced along the

29

Chapter 2 Background

WS option [16]. The TS option consists of ten octets of which the first two are the
usually present kind and length octets and the remaining eight octets are divided into
two equal parts of four octets each. The first four octets are populated by the TCP
Timestamp Value (TSval), the second four are filled by the TCP Timestamp Echo
Reply (TSecr). While the TSval field provides the current TCP timestamp of the
local machine, the TSecr field holds the TSval of the segment which was immediately
received before. The TSecr value in a TS option is only considered valid if the ACK
bit is set, otherwise TSecr should be set to zero. A connection makes use of this option
if it is negotiated during the initialization phase. The initiator sends a SYN segment
with the TS option set and the receiver answers with a SYN/ACK segment with the
TS option set as well. If both participants use the option during initialization, every
following segment exchanged must contain the TS option. By using the TS option it
is easier for TCP to determine the RTT and thus to handle the TCP Retransmission
Timeout timer resets. Moreover, the TS option enables a more reliable decision of
discarding possible duplicate segments received because of retransmission (PAWS).
Due to security concerns, a random offset should be used for the initial timestamp
exchange in each connection. The timestamp clock is supposed to tick once between
1ms and 1 s, thus with a frequency between 1Hz and 1 kHz.

Selective Acknowledgment With the Selective Acknowledgment (SACK) option TCP
receives a mechanism to deal with bad performance if numerous packets of a data
window are missing [49]. SACK uses two kinds of TCP options of which the first is
a two octet option (SACK-permitted) containing only the kind and length octets to
enable the option in the respective imminent communication session. The second kind
is the SACK option itself which has a variable size and is regularly used during active
transmission. The SACK-permitted option must not be used in other segments in
which the SYN flag is not set. Therefore, the SACK negotiation must be performed
during connection initialization. Both participants of a connection may send the
SACK-permitted option solely along with their SYN or SYN/ACK segments. The
basic cumulative ACK algorithm of TCP requires the data receiver to send an ACK
for a specific sequence number which indicates that all octets up to this sequence
number have been received [100]. Consequently, if a single octet in a consecutive
quantity of octets is corrupt or missing, all octets, which immediately follow, will be
retransmitted, no matter if received correctly or not. Common retransmission in TCP
is triggered by a timer if an octet was not acknowledged within a specific amount of
time. As an improvement thereto, the fast retransmission mechanism instructs TCP to
immediately resend the missing octets if the receiver transmits three duplicate ACKs
as a trigger [14]. However, this does not solve the problem of the acknowledgment
of discontiguous octets. Therefore, the TCP SACK option was introduced to enable
the acknowledgment of such octets residing in different windows. This is achieved by
providing multiple left and right edges of octet windows in one ACK segment containing
a SACK option. Thus, the sender is only responsible to retransmit exactly the segment
which is missing. The SACK option consists of the usual two octets holding kind and
length of the option as well as an even number of left and right window edge pairs,

30

Chapter 2 Background

which are four octets long per edge, representing the sequence blocks to acknowledge.

TCP Basic Operation

Nowadays, TCP is the de facto standard for reliable data transmission on the Internet.
In order to distinguish connections, TCP uses a tuple of four values represented by the
combination of source and destination IP addresses as well as source and destination
ports. Additionally, each end of such a communication channel is called a socket which
is constituted by the local IP address and port. Hence, a connection consists of a pair
of socket. For connection management, TCP employs a controlled initialization phase
to keep track of different data streams. During this process, also TCP options must be
negotiated.

TCP Connection Initialization A full communication initialization process between
two nodes is shown in Figure 2.10. Node A represents the active side and acts a client
whereas node B is the passive part and pursues as a server. To initialize a connection,
the active node A transmits a TCP segment, in which the SYN flag is set, to node
B (A1). Node B responds with a SYNACK message to indicate the receive of the
SYN segment and to initialize the connection in the opposite direction (B1). Finally,
node A informs node B about the received SYN segment by returning an ACK segment
(A2). Following the exchange of messages A1, B1 and A2, the three-way-handshake is
successfully performed and the connection passes into the established state. Now, both
participants are ready for data transmission.

Figure 2.10: Transmission Control Protocol - Initialization (Three-Way-Handshake)

31

Chapter 2 Background

TCP Connection Shutdown After the client finished data transmission, Figure 2.11
shows a connection shutdown whereby a segment with the FIN flag set is sent from node
A to node B (A3). This informs the communication partner that no more data will be
sent by its counterpart. Node B, the receiver of the FIN segment, acknowledges the
information of node A (B2). Although, node A stopped sending data to node B, node B
itself is still capable of transmitting data to node A (between messages B2 and B3). In
this example, it is renounced on the additional data which may be sent and continued
with the tear down phase of node B which also sends a FIN segment to indicate that data
submission is completed (B3). The last data transmission is carried out by node A which
sends an ACK segment to node B to acknowledge the ultimate connection shutdown
(A4).

Figure 2.11: Transmission Control Protocol - Connection Shutdown

TCP Octet Numbering During transmission, each octet is numbered whereby these
data indices are used in combination with the sequence number. The Initial Sequence
Number (ISN) should be chosen at random for security reasons and represents an offset
to the octet enumeration. Each TCP communication participant maintains own sequence
and acknowledgment numbers. SYN and FIN segments, which do not hold any data,
consume one sequence number, whereas ACK segments without data do not consume
a sequence number. Assuming node A wants to transfer the octets numbered 512 to
1024 as part of the data to be sent to node B (octets 0 to 511 were already transmitted
and acknowledged). Additionally, node A recently received 0 to 255 octets from node
B which must now be acknowledged. Therefore, in the next TCP segment which node
A transmits to node B, the sequence number is set to 512 and the acknowledgment

32

Chapter 2 Background

number is set to 256. Figure 2.10 shows a numerical example during the three-way-
handshake initialization phase represented by segments A1, B1 and A2. An example of
gracefully closing a connection with general sequence and acknowledgment numbers, is
demonstrated in Figure 2.11.

2.3.4 Secure Shell - SSH

SSH is known as a protocol which enables a user to maintain servers by executing tasks
on a remote command line interface. To ensure secure communication, SSH employs user
authentication and data encryption. However, SSH comprises much more functionalities
and programs than just the aforementioned. It provides for example tools for public
key generation and management, secure file transfer, channel encryption for non secure
Application layer protocols, etc. One tool in the field of public key management is
the ssh-keyscan utility which is employed in this work to quickly collect public keys
of remote nodes with SSH enabled. In general, SSH is situated in the Application
layer since it operates on top of TCP. Independently, the SSH protocol suite [79] is
additionally divided into three protocol components: Authentication [77], Transport [80]
and Connection [78] protocol. Since solely features of the Transport component are
employed, in this work focus is primarily laid on explaining this protocol part.

SSH - Transport Protocol

The Transport component is not only relevant to this work but also the fundamental
part of the SSH protocol itself. According to its proposed standard, the SSH Transport
protocol provides confidentiality, server authentication, integrity protection as well as
data compression [80].

First of all, to establish an SSH session, a TCP connection must be initiated. This is
performed by the client which wants to connect to the SSH daemon running on a remote
machine. After the establishment of the TCP connection, the first data exchange of SSH
itself contains a version string which must be sent by both participants. The string is
formatted as follows:

SSH-protoversion-softwareversion SP comments CR LF

For the current SSH version, the protoversion must be equal to 2.0, the softwareversion
depends on the used software version of SSH which is currently employed for communi-
cation. The SP symbol represents a space character and the comments part may contain
any data. Finally, the CR and LF symbols stand for Carriage Return and Line Feed
characters. The length of the string including all printable and non printable characters
must not exceed 255. SSH uses an own binary packet protocol which must be used after
the version string exchange. Next, the server sends its public key to enable verification of
the fingerprint on client side. If the public SSH key is not present in the known_hosts file,

33

Chapter 2 Background

the client issues a warning to the users and asks for confirmation concerning connecting
to the server. In addition, the public key of the server can be verified for authenticity. To
encrypt the current session, both participants negotiate about an algorithm for session
key generation. Usually, this symmetric key is generated using Diffie-Hellman [41] key
exchange. If compression is requested, it is also negotiated during key exchange. After
the shared session key was generated by both sides, communication must be encrypted
in order to ensure that data, like account passwords for example, will not be transmitted
in plain text during the following user authentication. Moreover, each SSH binary packet
sent should use a Message Authentication Code (MAC) which provides authenticity and
data integrity. Finally, the communication channel used in this session is secure and user
authentication to the server is initiated. This part is performed by the Authentication
protocol component of SSH.

SSH - Authentication Protocol

The Authentication protocol comes into play when the transport session was successfully
established [77]. Hence, its operation is based on the Transport protocol of SSH. It
provides three authentication schemes to log in to remote machines including password-,
key- and host-based authentication. Password-based authentication employs the classic
combination of user name and password to log in. At the key-based scheme, a user is
authenticated at the server by the possession of a private key that matches the corre-
sponding public key which is in turn deposited in the server’s authorized_keys file. The
latter, host-based authentication, is less widespread, though, for example particularly
efficient for the management of clusters. Thereby, the corresponding machine and user
name is kept in the shosts.equiv file on the server. Additionally, the host key of the
client must be verified for a successful login.

SSH - Connection Protocol

After the successful establishment of an encrypted transport channel and the authorized
user login, control is transferred to the Connection protocol of SSH [78]. One of the main
responsibilities of the Connection protocol is the multiplexing of distinct data flows over
a single transport tunnel provided by the underlying SSH protocols. Thereby, the Con-
nection protocol employs the concept of channels which are targets of this multiplexing
mechanism. Each session or forwarding is assigned to exactly one channel which manages
communication. Specific channel messages are used to open sessions and issue forwarding
requests. This SSH packets enable command execution, the opening of interactive shells
as well as port and X11 [121] forwarding. For identification purposes, each channel is
numbered on both ends independently from each other.

34

Chapter 2 Background

SSH - Keyscan

SSH is not limited to the three core protocol components, moreover, it provides several
utilities for key generation and management. One of these tools is the ssh-keyscan
utility which is capable of querying a remote machine for its public host keys [86]. The
number of captured host keys depends on the distinct key types a node offers as well
as on the parameters submitted to ssh-keyscan. The default key types which are
requested by ssh-keyscan are Rivest-Shamir-Adleman (RSA), Elliptic Curve Digital
Signature Algorithm (ECDSA) and Edwards Elliptic Curve Digital Signature Algorithm
using Curve25519 (Ed25519) whereby the latter’s name is based on the prime number
2255 − 19. For each key of a successful query, the output is sliced into two independently
strings whereby the key itself is printed to stdout and the respective host information to
stderr. This enables the automated construction of known_hosts files by scripts. The
host information starts with a pound symbol (#) followed by a space character and the
domain or IP which is currently queried. The target port is appended by using a colon.
This is a common notation for the used port in conjunction with domains and IPv4
addresses. However, one should consider that such a notation might be error prone for
IPv6 addresses because it can be difficult to distinguish the port from a regular address
block. Finally, the version string as used during connection establishment of SSH itself
is appended after a preceding space character. For example, an output might look like
this:

~/ $ ssh-keyscan -t ed25519 2001:db8::1
2001:db8::1:22 SSH-2.0-OpenSSH_7.6p1 FreeBSD2012
2001:db8::1 ssh-ed25519 AAAAPT4gV0UgTE9WRSBBTklNQUxTIDw9IHwgPT
4gV0UgTE9WRSBBTklNQUxTIDw9Cg==

The man page of the ssh-keyscan utility states that the tool is capable of querying a
large number of nodes in a short time even if nodes are down or not running SSH services
[86]. Additionally, no login or encryption is necessary to collect the keys of a node.

2.4 Routing

The Internet is obviously one of the most valuable inventions of the last century. From a
major point of view, it consists of a countless number of networks interconnected with each
other. As already explained in Section 2.3.1, all nodes within these globally connected
networks are uniquely identifiable by their respective IP address(es). Furthermore, there
exist several address types which are directly related to the routing processes by impacting
IP packet treatment and delivery depending on their type.

35

Chapter 2 Background

2.4.1 Routing Basics

In general, each IP address consists of a network part and a host part. The network part
represents an own address block or may be a segment of such which was already assigned
from a RIR to an institution like for example a company, government, etc. The owner of
the assigned address block is identifiable by an Autonomous System Number (ASN) [57]
which is also issued by the RIR. This means in turn that IP address blocks which are
requested by an institution are simultaneously assigned to their respective ASN. Thus,
there exists a two layer registration system which is a crucial part for the global routing
strategy. On this basis, the concept of IP-level (intra-AS) routing and AS-level (inter-AS)
routing is introduced. IP-level routing is employed on networks within the same AS.
For this process, an Interior Gateway Protocol (IGP) like for example OSPF version 2
for IPv4 and version 3 for IPv6 is deployed [47, 93]. Other protocols designed for this
purpose may be used as well: IS-IS or Routing Information Protocol (RIP) and RIPng
[71, 82, 83]. AS-level routing enables communication between distinct ASs over their
respective edge routers. Depending on available peerings, traversal of multiple ASs is
necessary to reach the edge router of the desired network. A peering exists in turn if two
AS owners establish a contract about data exchange between their ASs. The dominating
protocol for inter-AS communication is BGP version 4 and its extension for IPv6 support
[23, 102]. In conventional IP data traffic, which is typically always affected by AS-level
routing, no information about the inter-AS routing operation is disclosed or visible to
the source and destination nodes. Usually, sender and receiver are not actively involved
thereto and thus, are not aware of this AS-layer process.

Nodes within an IP network are ordinarily connected by a switch or router which is
capable of handling all data exchange in a network. Switches are dealing with data at
the Data Link Layer of the OSI model, routers are operating on the Network Layer. This
means that switches are designed for managing data traffic between nodes which are
physically connected to it and identified by Media Access Control (MAC) addresses. Thus,
switches are only applicable within one and the same IP network to provide connectivity
among multiple network participants. In opposite thereto, routers use the destination IP
addresses of packets to decide over which outgoing interface a packet must be transmitted.
In other words, switches maintain tables containing mappings between MAC addresses
and individual physical interfaces whereas routers use forward tables to map IP addresses,
more exactly network prefixes, to respective physical interfaces. Consequently, switches
as well as routers connect nodes within a network whereby the actual main task of a
router is to connect distinct networks with each other. Thus, routers can handle data
traffic on IP-level and AS-level based on their configuration and capabilities.

As an example, Figure 2.12 illustrates a network H which consists of three smaller
networks A, B and C. Assuming, an ISP is operating those distinct networks due to
geographical circumstances of which each is connected over a single physical connection
to one and the same router H. The ISP owns one ASN to which three IP address blocks
respectively for the networks A, B and C are assigned. For packet routing among the

36

Chapter 2 Background

Figure 2.12: Autonomous System and Internet Protocol - Routing Structure

three networks it is necessary to run an IGP like OSPF. This means in the domain of
H, OSPF handles packet redirection to the respective recipient. If data is destined to a
network in a different AS, for example AS L, AS-level routing, commonly in the form
of BGP, comes into play. When a packet leaves network H and thus passes router H,
routing responsibility is handed over to BGP. Based on the destination network prefix
of the packet, router H decides about the next hop and transmits the packet over the
corresponding interface. When a packet, which for example is addressed to the network
managed by router B, is received at router H, routing responsibility is handed over to
OSPF. For this to work, OSPF and BGP routing information must be exchanged on
router H by using default routes or applying mutual redistribution. Thus, data which is
transferred between networks A, B and C is transmitted by employing IP-level routing
only. The remaining data traffic, which therefore represents inter-AS transmissions, is
routed by OSPF in the source AS, followed by AS-level routing using BGP and finally
again OSPF or any other IGP in the destination AS. However, if an AS also acts as a
transit network and thus also forwards data traffic, it is absolutely necessary to deploy,
besides an IGP, BGP within the transit AS. Without BGP deployment within such ASs,
BGP routes can not be distributed across border routers of these ASs. Therefore, BGP
may be configured in two operational modes which are the exterior Border Gateway
Protocol (eBGP) and the interior Border Gateway Protocol (iBGP). Furthermore, each
BGP hop must have one or more IP addresses assigned because BGP employs TCP and
thus also IP to exchange routing information with its direct neighbors. However, due
to security reasons, remote access should be allowed from specific source IP addresses
only.

As routing is a dynamic process, routes keep changing steadily. Due to failure safety
reasons, most physical connections are conducted with redundancy. Additionally, load-
balancing is deployed to distribute traffic across available resources. Another reason
for multiple physical connections is the thereby growing bandwidth. Consequently, this

37

Chapter 2 Background

results in routes which are equal in length but distinct in terms of passed hops. Hence, it
may be possible that for example repeated traceroutes yield different paths. This concept
is known as ECMP routing [59].

2.4.2 Edge and Intermediate Routers

The term edge router normally refers to a device which acts as a gateway within a Local
Area Network (LAN) and connects the LAN to another network for example an ISP
network. At global level, a border router is a device which usually connects networks
based on their ASNs. However, in this case, the term edge router and border router is
used in an identical way since routers within an edge network which is usually hosted
by an ISP are not distinguished. Thus, for this work, routers within an ISP network,
which is not a transit-only AS, are considered as edge routers. Opposed thereto, the
term intermediate router or core router for hops, which are not located within the target
network and only traversed due to transmission, is employed. Intermediate routers are
mostly part of the Default-Free Zone (DFZ). The DFZ consists of routers which are
not required to define a default route for any prefix. Instead, their forward table allows
determining the next hop for all currently defined prefixes. Additionally, it should be
considered that the terms edge router and intermediate router always refer to the current
relative location and situation of a network.

2.5 Tracerouting

A valuable method for network administrators to reveal problems in their infrastructure
is tracerouting. Thereby it is possible to trace a predefined target across several networks
and thus, to identify traversed hops. A complete traceroute corresponds to a routing path
across the Internet. Each node within a traceroute represents a router which forwards
incoming packets towards their destination. In order to be able to identify individual
hops, the ICMP Time Exceeded error message must be triggered at each hop. This can
be achieved by increasing the Time To Live or Hop Limit field in the respective IP header,
starting at 0, by 1 for each hop. To integrate the sent packets into conventional data
traffic, three different protocols can be employed.

ICMP Traceroute ICMP uses conventional Echo Request messages. If a Echo Reply is
received, the traceroute target was reached.

UDP Traceroute UDP traceroute packets usually use an arbitrary port number to trigger
a Destination Unreachable message, when the target is reached.

TCP Traceroute TCP employs SYN packets for traceroute operation. If the target is
reached, either a RST packet or a SYNACK packet is sent back. This depends on the
contacted port if it is closed or open for communication.

38

Chapter 2 Background

ICMP is not as successful as TCP and UDP because ICMP, especially in conjunction
with IPv4, is considered a security risk. Therefore, it is common that error messages are
blocked or silently dropped. UDP and TCP can use arbitrary ports for the tracerouting
packets whereby IANA reserved ports 33434 and 33435 for traceroute and multicast
traceroute [67]. However, in most cases it is advisable to use well-known ports like 80
or 443 because it is less likely that these ports are blocked at the traceroute target (a
webserver for example). The hops can be identified by the received ICMP Time Exceeded
error message which is issued if the Time To Live or Hop Limit field is decremented to
0. As mentioned in Section 2.3.2, this message contains the sending IP address, which
is the IP address of the router, and data fields of the packet which triggered the error
message. With this information, it is possible to assign the sender of the error message
to the correct position in the sequence of a route and to finally construct a complete
traceroute from the source to the destination of a packet.

Some routes end up with only one or two hops which is due to Content Delivery Networks
(CDNs). The purpose of a CDN is to serve any type of data as fast as possible. In other
words, the less hops have to be traversed during transmission, the faster the requested
data can be delivered. Fewer hops mean also less distance to the requesting entity.
Therefore, CDN providers aim to operate data centers at Internet Exchange Points
(IXPs) which are well equipped concerning the number of peerings.

2.6 IP Siblings

An implementation of multiple protocols in an own software component is often referred
to as protocol suite or protocol stack. Protocol suites which are used in network related
tasks are usually called a network stack, for example the IP stack which involves several
protocols like IP itself and ICMP. IPv4 and IPv6 each build an own protocol stack since
they are not mutually compatible. If a network node shall be reachable by an IPv4
as well as an IPv6 address, both protocol stacks must be running on the underlying
operating system. This is called a Dual Stack setup. In previous work, the term IP
Sibling was introduced to denote an address pair consisting of an IPv4 and IPv6 address
which are assigned to one and the same physical machine [11, 108]. This seems to be the
case for domains which return an A record for IPv4 as well as an AAAA record for IPv6
when they are looked up in the Domain Name System (DNS). Even if both address types
are returned by DNS, this does not imply that they are residing on the same physical
node.

In Figure 2.13a an IP Sibling and in Figure 2.13b a non-IP Sibling is illustrated. These
figures show both IP addresses in each case within the same AS. However, it is totally
valid to have the IPv4 and the IPv6 of the sibling settled in different ASs. Another possible
setup would be that IPv4 and IPv6 each use their own gateway for their connection to
the Internet. Consequently, IPv4 and IPv6 may also be connected to their respective

39

Chapter 2 Background

(a) IP Sibling (b) Non-IP Sibling

Figure 2.13: Illustration of an actual IP Sibling and non-IP Sibling

gateway over different physical links. Opposed thereto, nodes of non-IP Siblings may be
distributed across different countries or even continents.

Hardware is always subject to minor production discrepancies. This is also true for clock
register which usually serve as a reference for software related timing tasks. Alike, TCP
uses for its High Performance extension a clock, which must be at least approximately
proportional to real time [16], for timestamp provisioning. Since this clock is also (directly
or indirectly) driven by the underlying hardware, it likewise depends on the deviation
caused by production processes. This deviation of a remote clock can be measured if a
strictly increasing series of TCP timestamps is available to the measuring entity. Relative
to the local clock, it is possible to calculate the values, which are to be expected from
the remote clock, and to compare them to the values which were actually measured.
The evolution of the deviation can then be further compared to other deviations and
conclusions can be drawn. If deviations evolve similarly between an IPv4 and an IPv6
node, it is likely that they are IP Siblings and thus, reside on the same physical machine.
The idea of measuring such clock skews was already introduced with the concept of
remote device fingerprinting by using TCP timestamps in 2005 [75].

2.7 Related Work

Many previous papers perform investigations on servers or examine the deployment
status of IPv6 by dealing with DNS, performance measurements, the distribution of
CDNs, etc. However, some of them are directly influenced by the structure of the
Internet. This means in turn, that some researched aspects, for example the RTT, can
heavily differ depending on the available network routes’ characteristics. In the following
part related work sectioned in the fields of Network Performance, Network Security and
Sibling Detection is introduced.

40

Chapter 2 Background

2.7.1 Network Performance

In 2004, Cho et al. [25] recognize that performance and Quality of Service (QoS) of IPv6
Dual Stack nodes have a severe impact on the distribution of IPv6. They use captured
DNS messages of systems which are actively using IPv4 as well as IPv6 addresses. Nodes
are selected by measuring their IPv4/IPv6 RTT ratio. On the resulting node set they
perform PMTU discovery [38] to reveal occurring problems.

Zhou et al. [122] compare IPv4 versus IPv6 hop count and end-to-end delay in 2005. For
their analysis they use the one way IP delay variation defined in RFC 3393 [39]. They
observe that 36% of the IPv6 paths are affected by a significantly larger delay than IPv4
paths.

A more recent study from 2012 conducted by Dhamdhere et al. [40] is particularly focused
on the maturity of IPv6 deployment. They use data of RIPE’s Routing Information
Service (RIS) [107] and from the RouteViews project [87] to inspect the topology, routing
and performance of IPv6. Results show that IPv6 performance is worse if IPv6 AS-level
paths differ from IPv4 AS-level paths but comparable if they are the same.

2.7.2 Network Security

Kohno et al. [75] are the first who use the Timestamps Option of the TCP Extensions
described in RFC 7323 [16] in order to introduce a novel technique for identifying devices
remotely. They exploit the detectable clock skew of the inspected device over time.
Furthermore, they claim that their technique would work equally well with any other
protocol that reveals information about a system’s clock.

In 2016, Czyz et al. [31] examine the security of the IPv6 interfaces of servers and
routers towards IPv4 connectivity of the same node. They initially use DNS data to
acquire Dual Stack candidates for their investigation. The development of host signatures,
for example SSH host keys, HTTP/HTTPS HEAD requests, etc., facilitates them to
determine if a node is set up with both IP versions for operation. Furthermore, they select
router candidates by extracting the source address of ICMP hop-limit response messages
received by the Center for Applied Internet Data Analysis (CAIDA) Ark measurement
platform [22]. Their results show that the IPv6 stack is often more vulnerable to attacks
because of weaker security policies applied in comparison to IPv4.

2.7.3 IP Sibling Detection

The term IP Sibling was introduced by Beverly et al. in 2015 [11], when they evolved
the detection of Dual Stack servers. Since this publication only few research activities
were conducted on this particular topic.

41

Chapter 2 Background

A similar task to IP Sibling detection is router alias resolution. This technique it is
possible to determine whether distinct IP addresses of the same version are assigned to
one and the same physical router [74]. Luckie et al. [81] use the Monotonic Bounds
Test (MBT) [73] and extend it by obtaining IPv6 fragmentation header ID field values
to infer IPv6 router aliases. They send a big ICMPv6 echo request packet (1300 bytes)
to a router, wait for its response and reply with a Packet Too Big ICMPv6 message.
According to the IPv6 specification [36] (Section 4.5), the router should answer with
(in their case two) fragmented packets which contain the fragmentation ID for packet
reassembly. Received fragmentation IDs are used to deduce associations between distinct
IPv6 addresses. Based on discovered relations a large-scale IPv6 core routing topology can
be generated for further research. Similar research papers also exist for IPv4, for example
[9, 73, 111]. Concerning the IPv6 packet fragmentation there are DoS vulnerabilities
(related to atomic fragments) known [52]. Some time has passed since the mentioned
update to the processing of atomic fragments [52] was accepted as proposed standard.
However, timely before the current IPv6 specification was published the IETF announced
an informational document (RFC 8021) [53] where the generation of atomic fragments is
considered harmful. Therefore, the current IPv6 standard takes precautions in relation
to those dangerous packets [36].

The interest in identifying Dual Stack nodes already evolved during examining perfor-
mance and distribution of IPv6 in its early adoption phase, for example [25, 122]. In 2013,
one of the first works which investigate the relationship between IPv4 and IPv6 address
pairs on one physical machines was published. Berger et al. [10] study DNS resolvers
with assigned IPv4/IPv6 address pairs to discover their associations. They use a passive
as well as an active method for their evaluation. Since they are interested in nameservers
only, they use DNS to identify relationships between IPv4 and IPv6 addresses.

Later, Beverly et al. [11] mention that a DNS name referring to multiple IP addresses
does not imply that these addresses are on the same NIC, device or even AS. They
use an active technique to study webservers from the Alexa Top Sites [1]. As a first
coarse-grained selection step they parse the TCP options signatures of the IPv4/IPv6
addresses of an address pair and compare extracted features. If signatures do not match,
the address pair is not considered to be an IP Sibling. For the accurate decision they use
the TCP timestamps option in a similar way as Kohno et al. [75] did before in order to
calculate a linear clock skew. This skew is analyzed with respect to the angle between
the IPv4 and IPv6 timestamp evolution over time. If this angle is below a predefined
threshold the IPv4/IPv6 address pair can be identified as IP Sibling.

The work of Scheitle et al. [108] includes classification of IP Siblings with variable clock
skew. They extend the work of Beverly et al. by providing a more than ten times bigger
ground truth data set. However, they also focus on servers only. For precise decisions
Scheitle et al. (re)define several features, which they extract from the TCP Extensions
timestamps option, in order to use them in their algorithmic approaches. They test the
performance of their manually crafted algorithm against a machine learning model and
suggest the usage of a Classification And Regression Tree (CART) Decision Tree solution

42

Chapter 2 Background

provided by the scikit-learn [95] Python module. Based on their extensive ground truth
data set, their results look promising because they achieve performance values of above
98% by employing a simple predictive model consisting of only one branch.

In contrast to all previously mentioned works we deal with the detection of IP Siblings on
public network devices, especially on routers. Consequently, we focus on the underlying
network infrastructure itself. For this thesis we use knowledge and experience of the
mentioned authors to merge and extend the already discovered features and recognition
techniques. Since many servers of the provided ground truth host list of Scheitle et al. are
not reachable anymore, we base our newly compiled list on their findings concerning the
RIPE Atlas [105] and NLNOG RING [94] projects. Another challenge, which was already
indicated in previous work [11, 108], is the minimization of measurement points in order
to reduce the time taken for timestamp collection and decision making. In addition to
that, Scheitle et al. already pointed out that the randomization of the initial timestamp
offset, which was introduced to the Linux kernel in May 2017 [45], is problematic for
timestamp acquisition because each connection results in a different timestamp offset.

43

Chapter 3

Methodology

In contrast to previous work, which solely focuses on end nodes, we explore the IP Sibling
property of network nodes in a global context [11, 108]. In particular, we are interested
in the deployment of Dual Stack technology in combination with routers and hence,
investigate also differences between intermediate and edge routers. In this section our
methodology is presented. First, the composition of ground truth data and the acquisition
process is explained. Next, important prerequisites for data acquisition are presented and
followed by our commonly used timestamp acquisition workflow. Afterwards, valuable
features which are later employed for model construction are discussed. We explain how
we perform model training by using preselected features from previously constructed test
data followed by an introduction about the applied evaluation metrics. Then, we develop
a decision metric to determine if a router acts as an edge or intermediate type. Following,
we provide an analysis of low-runtime approaches. We demonstrate how the measurement
time can be reduced from several hours down to several minutes or even seconds. Thereby,
attention is payed to keep the classification quality competitive to previous work. Due to
current efforts of securing TCP timestamps against unintentional information disclosure,
we discuss how timestamps can be acquired based on our acquisition method, although
SYN cookies are activated. Additionally, we show how to force a node which randomizes
timestamps on an initialization basis rather than on a connection basis, to deliver a
large, though dense amount of timestamps. Afterwards, we describe how classification
methods can be applied even if TCP timestamp randomization is implemented. Last but
not least, we briefly explain limitations and link previously discussed solutions thereto.

3.1 Data Sources

The foundation of our data sources is built by these publicly available data:

• Ground Truth Host List (NLNOG RING and RIPE Atlas Anchor nodes [94, 105])

• Alexa Top Million List [1]

• Cisco Umbrella Top Million List [28]

44

Chapter 3 Methodology

We use the NLNOG RING and RIPE Atlas Anchor nodes for evaluation and testing
of our machine learning models. Whereas the Alexa and Cisco Umbrella Top Million
List nodes are employed as targets for tracerouting in order to collect network nodes
along those paths. All lists were queried and compiled in December 2018. Since our
main interest is dedicated to the deployment of Dual Stack technology on public network
devices, we believe that it is more obvious to investigate routes, originating from a Dual
Stack measuring entity, to servers which offer A as well as AAAA DNS records. For our
measurements we employ a virtual private server situated in Germany which is driven by
4 vCores and 8GB of memory running Ubuntu 18.04 LTS. The server is connected over
a 1Gbit network connection and has IPv4 as well as IPv6 on the same NIC configured.
Unless stated otherwise, we perform all tasks for two forms of measurements, full-runtime
and low-runtime. We discuss the properties of the measurement types in Section 3.2.

Ground Truth Since several servers used by Scheitle et al. [108] are not responsive
anymore (for example the *.tum.de domains), we ignored them during constructing our
own ground truth host list. The number of NLNOG RING servers and RIPE Atlas
Anchors however steadily increases and thus, yield a valuable amount of servers to work
with [94, 105]. In December 2018, we queried 851 active servers from the NLNOG RING
and RIPE Atlas projects by using their public APIs. Out of these 851 nodes there are
476 RING nodes and 375 Atlas Anchor nodes. We manually verified this list and ended
up by 718 responsive nodes. From these nodes, 408 nodes are RING nodes and 310 are
Atlas Anchor nodes. We use all 851 nodes as targets for tracerouting.

Alexa Top List The Alexa Top List only contains domains constructed of their second
level and top level part. Resolving the one million domains yielded 145k domains which
have an A and AAAA DNS record for IPv4 and IPv6, respectively, available. Many of
them pointing to multiple IP addresses for the same domain. Constructing all possible
IPv4 and IPv6 address pairs within a domain results in 230k IP address pairs.

Cisco Umbrella Top List Unlike the Alexa domains, the Cisco Umbrella Top List
consists of many subdomains which deliver additional IP addresses which are not rec-
ognized by the second level domain records in DNS. The name resolution of this list
resulted in 150k domains with A and AAAA DNS records. Mixing up all IPs per domain
yielded 496k address pairs which is twice as much as the number of available Alexa
address pairs.

Alexa and Cisco Umbrella Comparison Many publications deal with the Alexa
and Cisco Umbrella Top Million Lists for their investigations [109]. After filtering for
A and AAAA DNS records, they have relatively few domains in common which is an
advantage for our analysis. A brief investigation by using the comm utility [113] delivers
126k domains unique to Alexa and 131k domains only listed by Cisco Umbrella. Both

45

Chapter 3 Methodology

have only 18k domains in common which is 8.1% of the Alexa and 3.8% of the Cisco
Umbrella domains.

3.2 Data Acquisition

Previous works collect TCP timestamps by issuing HTTP requests which are resource
heavy and consequently time consuming [11, 108]. Usually, network devices which do
not deliver web content do not run a web server at all. Thus, these techniques are not
applicable in our case. Since TCP is the de facto standard for reliable data transportation
in IP-based networks, we assume that network devices run at least a TCP stack of their
own. For example, BGP employs TCP to exchange routing information [102]. Instead of
using Application layer approaches, we craft our own TCP SYN data packets to request
connection initializations and receive a TCP timestamp from each SYNACK response.
We acknowledge that such behavior may be considered intrusive and harmful. Therefore,
we actively tested the implementation on our own infrastructure and restricted productive
acquisition runs on public devices to a minimum.

3.2.1 Prerequisites

For efficient acquisition and calculations, we optimize our measurement system in terms
of firewall rules, virtual memory and deactivation of the Network Time Protocol (NTP)
service in a similar way as done in implementations of previous work [108]. We apply
two rules for IPv4 and IPv6, respectively, as an initial task before any other operation:

iptables -t raw -A PREROUTING -p tcp –dport 44242 -j DROP

ip6tables -t raw -A PREROUTING -p tcp –dport 64242 -j DROP

To remove the rules, the -A switch must be exchanged with the -D switch. The purpose
of these rules is that all incoming traffic, which is addressed to port 44242 and 64242, is
dropped before the kernel processes it. The firewall shall prevent arriving packets from
being perceived by the kernel. The ports used in this setup are arbitrarily chosen and
can be determined in the software in conjunction with the employed firewall ports at
will. Since we use sockets in raw mode, all packets are copied to user space before they
are dropped. Therefore, packets in user space can be handled as usual. Another reason
for restricting packets accessing the kernel is that the OS sends out TCP RST packets if
a SYNACK message was received of which the matching SYN part was not transmitted
previously by the OS but by a user space application. Hence, in an ideal situation, the
kernel does not gain any information concerning the ongoing communication regarding
the acquisition process which we control and perform in our user space application. This
limits the undesirable and hardly controllable interaction between kernel and timestamp
acquisition targets.

46

Chapter 3 Methodology

Our calculations and the consequent intermediate results use a lot of memory since most
of the determined data must be stored for further processing or evaluation. In our system
setup we have 8GB of physical memory and 32GB of swap space available. To enable
one single process to work with such amounts of memory, the memory overcommitment
options are set to extensively high values. TCP defines send and receive windows for
traffic management and congestion control. Depending on the buffer sizes provided to
TCP by the kernel, it can be fully taken advantage of the bandwidth available to the
system. In other words, we highly increase the rmem and wmem (receive and send buffer)
values in the network core options section of the Linux kernel to really ensure that TCP
communication is performed as efficient as possible and no packets are being dropped.
These two option groups use the aforementioned buffers and thus are responsible for the
send and receive windows of TCP.

The NTP service on a system is usually responsible to keep the OS clock synchronized.
However, we do not want the system to synchronize its clock during measurements
since it may have an impact on the receive time of packets. Therefore, we disable the
NTP service during the timestamp acquisition process. After execution has finished, all
settings are restored to their previous state.

3.2.2 Acquisition Workflow

Our data acquisition workflow comprises the following tasks:

(1) Name resolution for A and AAAA records

(2) Construction of IPv4/IPv6 target pairs

(3) Tracerouting to identify network hops

(4) Port scan to determine TCP communication ability

(5) TCP timestamp acquisition on all responsive ports

(6) TCP options extraction and SSH key queries

(1) Name Resolution Name resolution of one million domains for each top list is
a time consuming process. Therefore, we resolve all domains for their IPv4 and IPv6
addresses once and keep the resulting addresses in separate files for each list. From the
one million domains of each list only 145k to 150k domains have addresses of both IP
versions deposited in DNS. Some companies, like for example Google, deliver only one
IPv4 and one IPv6 address for their domain. This might be due to the fact, that they
operate enormous company networks which may be comparable to special company-only
CDNs.

47

Chapter 3 Methodology

(2) Target IP Pair Construction It is common that one domain delivers multiple
IPs as a fallback if the hardware of a node fails. We consider this as an advantage since
more IP pairs may result in more routes and thus, more responsive network devices.
From available IPv4 and IPv6 addresses we form all possible IP pair combinations. This
approach results in 230k Alexa and 496k Cisco Umbrella IP pairs.

(3) Tracerouting Before we conduct tracerouting on each of the constructed IP ad-
dress pairs, we check in each case if it is member of a CDN. If either the IPv4 or the IPv6
address is listed in a CDN, we ignore the concerning pair and continue with the next
one. Since a CDN is usually not more than two hops away, it is likely that the network
nodes along these paths have already been captured by other traceroute executions. This
means that in most cases, the nearest IXP is also likely part of many routes which are
collected from repeated tracerouting. Thus, we see no necessity to collect the few hops
along the routes of the CDN member nodes. We filter the following CDN providers which
make their IP address ranges publicly available: Cloudflare [29], Cloudfront [4], Fastly
[46], Incapsula [70], Leaseweb [76] and Stackpath [112].

As mentioned in Section 2.5, the most successive option for tracerouting is to employ
TCP SYN packets in conjunction with well-known ports of common services. We use
port 80 and assume a maximum path length of 30 hops. Hence, for IPv4 as well as IPv6,
30 packets are sent simultaneously, each carrying a TCP SYN segment whereby with
each packet sent, the Time To Live (TTL) or Hop Limit (HLIM) values, respectively,
are increased. If network nodes behave correctly according to the IP standards [36, 99],
packets must be discarded if the TTL or HLIM value is decremented to zero and an
ICMP error message should/must be issued [56, 98]. The returned ICMP error messages
carry discarded packets as a payload which are used for reconstructing the path to the
traceroute target. We collect the traced routes and utilize the identified nodes for further
processing. Since for each target IP pair, an IPv4 and IPv6 route is collected, we combine
these routes into a structure which we call a trace set. Each trace set is assigned to a
unique identifier in order to be able to recompose potential sibling candidates, which
belong to the same trace set.

(4) Port Scans For the conducted port scans, we process the amount of collected
routes by extracting all network hops. Thereby, we build one list for IPv4 and one for
IPv6 nodes of which all occurring nodes are contained only once in the respective list.
This is essential to ensure that each node will be queried only once which in turn enables
an efficient execution of the port scanning and timestamp acquisition processes. Since
each IPv4 or IPv6 node may belong to multiple trace sets, a mapping between each node
and its corresponding trace set(s) is constructed.

For each identified node in both lists, we perform a port scan to check for open TCP
ports of which we can make use of for TCP timestamp acquisition. Depending on the
port scan target, we use two setups of ports to be scanned. For servers we employ

48

Chapter 3 Methodology

a tiny port list containing only the most common ports of services like SSH, SMTP
(Simple Mail Transfer Protocol), DNS, HTTP and HTTPS with the corresponding ports
22, 25, 53, 80 and 443. The port list we use for network nodes consists of 192 ports
containing the server port list as well as additional ports which are usually relevant for
routing or monitoring tasks. For example, BGP uses port 179 and the Simple Network
Management Protocol (SNMP) uses port 161 [67] for communication. In a similar way
as in the tracerouting process, we send for each IP and each port a TCP SYN packet
and capture responses thereto. If we receive a SYNACK response containing an initial
TCP timestamp, we add the responding port to the port list of the corresponding IP.
For closed ports, nodes usually respond with a RST packet which does not contain any
timestamp information and is hence ignored. The port scan process delivers nodes and
their open ports on which TCP timestamp acquisition techniques are applicable.

(5) TCP Timestamp Acquisition Before we start the acquisition, we process the
constructed IPv4 and IPv6 node lists by removing non-responding IPs. The resulting
sets are then used to query the responsive nodes. All packets necessary for the timestamp
collection process are constructed in advance to prevent any delay during transmission.
This may include multiple packets for the same IP since we query all available ports
of a single IP. Depending on the responding ports per node, the number of packets is
not constant and is thus subject to estimation. We define an overall runtime for the
acquisition process and an interval depending on the estimated value of packets to be
sent in each run. The number of acquired timestamps can be calculated by dividing the
overall runtime by the interval chosen. In previous work, runtimes of ten hours are used
with no clearly indicated intervals but with the aim to enable the collection of at least
one timestamp per minute [108]. For our full-runtime measurements we use identical
values and an interval of one minute for comparison reasons. To investigate classification
performance of low-runtime measurements, we use an overall runtime of 80 seconds with
eight seconds interval which results in at least ten timestamps. Depending on the TCP
stack’s SYNACK retries configuration, a SYNACK message is repeatedly transmitted
until an ACK has been received to finalize the 3-way-handshake. We observed two cases
concerning the underlying TCP implementation. In the first case, all retransmitted
SYNACK messages hold identical timestamp values which match the one of the very
first SYNACK packet. The second case, which is the more valuable for us, the repeated
SYNACK messages all contain successive timestamps with accordingly increased values.
In the latter case, we benefit from the additional timestamps which we can use for our
acquisition task. We capture all SYNACK packets and store the timestamp along with
the receive time of the packet for later analysis. Since sending and receiving such a huge
amount of packets within one minute is not feasible, we split our measurements into
batches of 10k and 50k candidates, respectively. We ended up at using a batch size of
50k which we determined by experimenting with the amount of packets that can be sent
and received within one minute.

49

Chapter 3 Methodology

(6) TCP Options and SSH Keys Besides the timestamp acquisition process, we
also collect TCP options to investigate the IPv4 options and the IPv6 options of a
candidate pair. Since each packet delivers a full TCP signature, which is used during
connection initialization, we grab the options during timestamp acquisition. For SSH
keys we do this as a stand-alone task after timestamp acquisition has finished. If a node
has an open SSH port, we query its SSH keys and SSH agent for further inspections.
For this task, we extract all nodes with open SSH port and feed the IP addresses to the
ssh-keyscan utility. For each IP version, we parse the output to construct one SSH
keys file and one SSH agents file in which both IP version’s results are written. Some
nodes respond with an SSH agent entry but no key. This means that for the queried key
type no SSH key is available.

3.2.3 Ground Truth and Top List Server Data Acquisition

Since we do not have access or information about Dual Stack devices which are not
end nodes, we must rely on the in previous work already used and publicly available
ground truth servers [108]. We apply the same techniques for timestamp acquisition,
TCP options collection and SSH key queries as explained before. We conducted a full-
runtime and a low-runtime scan whereby all candidates of the ground truth data fit into
one batch. The collected timestamp data is used afterwards for feature preparation. A
possible drawback might arise with the fact that all available data was gathered from
servers only. However, the employed techniques are primarily the same for any network
device.

For comparison reasons, we also performed full-runtime and low-runtime scans of the
Alexa Top List as well as the Cisco Umbrella Top List servers.

3.3 Classification Features

In the following paragraphs, features introduced in previous work are presented [11, 75,
108]. Modifications are clearly indicated at each respective part in the feature description.
As already mentioned in previous work, there exist features which have a verifying or
falsifying metric by nature. This means on the one hand that a verifying feature can
help to classify the investigated IP pair as a sibling. On the other hand, a feature with
falsifying metric is used to determine whether the current IP pair tends to a non-sibling
relation.

3.3.1 TCP Timestamp Features

The TCP timestamps build the fundamental part of the constructed features which are
then used for machine learning.

50

Chapter 3 Methodology

Clock Frequency The remote clock’s frequency is determined as follows. For the
acquired TCP timestamps Ti, their relative offsets vi are calculated with Equation 3.1
where T1 is the initial TCP timestamp received. To correlate the evolution of these
timestamps over time, a second array is calculated with Equation 3.2. In this equation,
ti is the point in time at which the observer received the corresponding TCP segment
and t1 is the receive time of the TCP segment carrying T1. A two dimensional monotonic
array [xi, vi] is obtained which is used for calculating the slope of the sequence vi by
applying linear regression. The slope corresponds to the frequency, f 4 for IPv4 and f 6

for IPv6, of the remote clock. Moreover, the received R2
f4 and R2

f6 values are a measure
for how close the data fit to the regression line. Additionally, the absolute difference of
the frequencies fdiff and the R2 values R2

freqdiff are calculated with Equations 3.3 and
3.4. Varying clock rates classify a candidate pair as non-sibling.
Features: f 4, f 6, fdiff , R2

f4, R2
f6, R2

freqdiff

vi = Ti − T1 (3.1)
xi = ti − t1 (3.2)

fdiff = |f 4 − f 6| (3.3)
R2

freqdiff = |R2
f4 −R2

f6| (3.4)

Raw Timestamp Value Difference With the raw timestamp value differences of a
candidate pair an absolute difference between these two remote clocks can be calculated.
First, the TCP timestamp values T1 are converted into seconds by using the previously
determined frequency. Then, the difference between them is calculated with Equation
3.5. The next step is to calculate the difference between the local timestamps t1 with
Equation 3.6. To receive a comparison opportunity, the absolute difference ∆tcpraw is
calculated with Equation 3.7. The obtained metric expresses the time difference between
the TCP timestamp counter resets within the IPv4 and IPv6 protocol stacks.
Feature: ∆tcpraw

∆tcp = T 4
1 / f4 − T 6

1 / f6 (3.5)
∆rec = t41 − t61 (3.6)

∆tcpraw = |∆tcp −∆rec| (3.7)

Clock Deviation The following calculations reveal the deviation of the remote clock
from its expected values. First, the relative remote time wi is calculated with Equation
3.8 by using results from the clock frequency calculations. With this value the offset yi

to the observed time is calculated with Equation 3.9. The finally resulting array [xi, yi]
represents the actual offsets of the remote clock’s expected values and is used for further
analysis. The IPv4 and IPv6 arrays are accordingly referred to as offsetsskew.
Intermediate Values: offsets4

skew, offsets6
skew

51

Chapter 3 Methodology

wi = vi / f (3.8)
yi = wi − xi (3.9)

Outlier Removal and Pairwise Point Distance To reduce network related noise,
the previously calculated offset arrays are filtered by removing outliers. Initially, outliers
regarding the mean are stripped by applying a confidence level of 97% resulting in
arrays holding the mean-filtered offsets in offsetsmean. As a next step, the offsets s4

i

and s6
j conforming to two closest packet arrival times t4i and t6j are calculated as shown

in Equations 3.10 and 3.11. The y-values correspond to the y axis in the respective
offsetsmean array. Afterwards, the absolute difference ppdi, the Pairwise Point Distance
(PPD), is calculated from the received offsets s4

i and s6
j as shown in Equation 3.12.

Finally, the median of the resulting PPD array in conjunction with a confidence level of
95.5% is used as an additional filtering step. The respective final offset array offsetsfinal

stores the values within the confidence interval.
Intermediate Values: offsets4

mean, offsets6
mean, ppd, offsets4

final, offsets6
final

s4
i = y4[min(|t4i − t6j |)] (3.10)
s6

j = y6[min(|t4i − t6j |)] (3.11)
ppdi = |s4

i − s6
j | (3.12)

Dynamic Range The range of the offset arrays is dynamic, which means that the skew
of nodes differs over time. In the original work, latency-based outliers are counteracted
before calculating the dynamic range by pruning 2.5% of the offset arrays. However,
especially for low-runtime measurements it does not make much sense to remove such
values. The range between maximum and minimum offset is calculated by applying
Equation 3.13 whereby used y-values correspond to the offsetsfinal y-values. With
Equation 3.14, the absolute range difference is calculated. The average range is given by
Equation 3.15. Finally, the relative difference enables a numerical representation about
the disparity of the two IP stacks and is calculated with Equation 3.16.
Features: rng4, rng6, rngdiff , rngavg, rngreldiff

rng = ymax − ymin (3.13)
rngdiff = |rng4 − rng6| (3.14)
rngavg = (rng4 + rng6) / 2 (3.15)

rngreldiff = rngdiff / rngavg (3.16)

52

Chapter 3 Methodology

Constant Skew As done in previous work, Robust Linear Regression [114] is employed.
The resulting slope α of this regression is used as an estimation of remote clock skew.
As before in the clock frequency step, the R2

skew values, which represent the quality of
the fitted regression lines, are stored. Then, absolute differences of both values as shown
in Equation 3.17 and in Equation 3.18 are calculated.
Features: α4, α6, αdiff , R2

skew4, R2
skew6, R2

skewdiff

αdiff = |α4 − α6| (3.17)
R2

skewdiff = |R2
skew4 −R2

skew6| (3.18)

Variable Skew For investigations on variable skew, polynomial spline interpolation
is applied to the offset arrays. As a next step, y-values of one spline are shifted to
minimize the area between the two splines. The spline feature is denoted as spldiff and
is calculated by the absolute difference between the two mean values splmean of the IPv4
and IPv6 spline arrays as shown in Equation 3.19. The scaled value splscaleddiff of the
spline difference is a direct result of the proportionality to the offset dynamics and is
calculated with Equation 3.20.
Features: spldiff , splscaleddiff

spldiff = |spl4mean − spl6mean| (3.19)
splscaleddiff = spldiff / rngdiff (3.20)

3.3.2 TCP Options Signature Feature

While previous work state that they use the signature, including TCP WS values, and
the order of TCP options as a first filtering step [11, 108], we do not rely on the full
signature for preselection. Network devices, especially routers, may be affected by steadily
changing load which results in performance fluctuations and thus may have an impact on
the available memory provided to running processes etc. Especially for the WS option
of TCP, the underlying buffer is determined by default but may also be set by a user
space program [16]. The WS option is only exchanged during connection initialization
but since we employ TCP SYN packets for timestamp acquisition, we observed that the
WS factor is possibly subject to differ between connections. As a result, we employ TCP
options as an additional metric only, if the machine learning prediction is ambiguous.

53

Chapter 3 Methodology

3.3.3 SSH Keys and Agents Features

During our investigations concerning SSH keys and agents on sibling candidates, we
observed that most of the SSH-enabled nodes provide all three keys which are queried by
default. Moreover, on Dual Stack nodes it seems to be common that only one host key
of each type is configured which is shared between IPv4 and IPv6 connections. We were
able to identify candidate pairs with distinct keys but identical agents to be non-siblings
based on their prediction results and further partial manual verification. Additionally, we
expected that more network nodes have SSH enabled. However, in terms of security we
consider this as an improvement compared to results of previous work [31]. We consult
the explanatory power of this feature only in addition to machine learning predictions.

3.3.4 Geolocation Feature

For our sibling candidates we identify the geolocation of the respective IPs. Thereto, we
employ the freely available geolocation services provided by MaxMind [85]. Their city
databases are updated on a monthly basis and the AS databases are updated weekly.
However, investigations show that only country and continent information seem to be
practicable in the free version. This information might not be useful, because we believe
that network operators who use distinct hardware for IPv4 and IPv6 provisioning have
most of their IPs registered in one and the same country. Consequently, location services
may be not accurate enough because for example, an IPv4 device can operate in a city on
the east side of a country while the IPv6 counterpart could operate in one and the same
country on the west side. Since both are in the same country but operating in different
cities, we can not clearly determine that their locations differ based on the provided
information. As a result, we largely forego of using location based features. However, we
argue that in some cases this might be useful but for large-scale applications it may not
be practicable.

3.4 Model Training and Feature Processing

Our main goal in feature processing is to deliver a machine learning model which relies
on few data points and delivers comparable values concerning previous work’s outcomes.
Unlike previous work, we do not perform any first order filtering due to reasons explained
above. Instead, we employ TCP options and matches of SSH keys as well as agents, if
available, as additional verification. To enable a valuable comparison of model perfor-
mance to previous work, we employ similar approaches and corresponding techniques
[108].

54

Chapter 3 Methodology

3.4.1 Test Data Construction

Previous work explained that they first split their ground truth data into train and test
set and afterwards form non-siblings of each part [108]. We assume that the hardware of
NLNOG RING nodes is similar in some case since minor requirements have to be met for
participation in the project. The same holds for RIPE Atlas Anchor nodes. Hence, we
go one step further and construct the non-sibling candidates by mixing NLNOG RING
IPs or RIPE Atlas Anchor node IPs, respectively, among each other. With this approach
we can build 261k non-sibling pairs consisting of 166k NLNOG RING and 95k RIPE
Atlas Anchor IP pairs. These values result from calculating n∗ (n−1) for each candidate
group where nNLNOG = 408 and nRIP E = 310. For each of the resulting candidate pair
the aforementioned features are calculated.

3.4.2 Feature Selection

Since most of the previously mentioned features rely on one and the same data source, it
is an important task to carefully select the most valuable features for classifier training.
Previous work show that this may also be a straight forward business to come to useful
results. For example, Scheitle et al. found out that their trained classifier model used only
one branch as a verifying metric for decision making by using the ∆tcpraw feature which
only depends on the determined frequency of each node in a candidate pair [108]. After
we applied our data to their technique we expected our resulting trees to be similar to
theirs. Actually, we encountered much deeper trees which however do not use all available
features. This may be a direct result of overfitting which means that the model is heavily
tied to the data which was used for training. In other words, the model performs excellent
on data which was used for training but does not generalize well on newly unseen data.
Consequently, we actively apply feature selection to prevent overfitting before we train
our classifier models for later evaluation.

For this part, we employ the feature selection tools provided by scikit-learn [95]. We utilize
a basic approach by using the k-best features which are calculated by a scoring function.
In our case we apply mutual information scoring which determines the dependencies
between the provided variables. On the one hand, a decision tree implicitly employs
feature scores to determine decisions. Since decisions are based on information provided
by features, it is possible to count the number of features used in splits etc. On the
other hand, complexity and overfitting can be reduced by calculating feature importance
beforehand. A drawback by using scikit-learn is that there is no support for dealing
with missing data. However, there are two options to address this problem. The first is
to substitute missing values by using predefined imputation strategies like for example
filling in the median of the respective column or the most frequently occurring value.
The second one is to simply drop the respective data row. Dropping data means loss of
information which may be problematic with small data sets. Since imputation may lead

55

Chapter 3 Methodology

to biased feature scores, depending on the number of substituted values, we decide to
use a different approach which is able to deal with missing values.

To accomplish this challenge, we employ the Extreme Gradient Boosting (XGBoost)
machine learning model [24] which is an ensemble method. The Extreme Gradient
Boosting (XGBoost) model consists of multiple decision trees similar to a Random
Forest [21]. Different to the aforementioned is that XGBoost can handle all sparsity
patterns, is highly parallelizable and uses extended learning functions [24]. The authors
also state that their model is excessively scalable and thus can handle even billions of
samples by using fewer resources than current implementations. In general, we believe
that for our kind of classification task and data the usage of an ensemble model is the
most successful one in terms of performance.

As a first step we decide to decrease all available features to the absolute differences of the
results obtained from respective calculations of the IPv4 and IPv6 features. The reason
for this is that we want to prevent any bias of features which are mainly calculated as
intermediate results for both IP versions of a certain candidate pair. Absolute differences
of these respective values ensure that from each candidate pair both versions of the
determined values are solely considered as a unit. Thus, the features which we take into
account for selection are summarized in Table 3.1. Since the low-runtime measurements
usually do not yield enough timestamps for a proper spline calculation, we remove the
two spline features for the selection of the low-runtime model. From these features we
investigate feature importance provided by the XGBoost framework. With the selected
features, we perform, like in previous work, cross validation to select the best performing
model and train it with all available samples in order to apply it for classification of
newly and previously unseen data.

Frequency Dynamic Range Constant Skew Variable Skew

fdiff rngdiff αdiff spldiff

R2
freqdiff rngavg R2

skewdiff splscaleddiff

∆tcpraw rngreldiff

Table 3.1: Features by Category

3.4.3 Evaluation Metrics

Previous work prioritizes on the maximization of Precision to minimize the number of
false positives [108]. In other words, the higher the Precision, the lower the number
of wrongly predicted IP Siblings. Precision values are in the range of 0 and 1. As a
second metric, they use the Matthews Correlation Coefficient (MCC) [84] which enables
them a stable and meaningful performance evaluation score for binary classification tasks
especially for imbalanced data [17]. The value range of the MCC is defined from −1

56

Chapter 3 Methodology

to +1 whereby −1 signals a total disagreement, 0 indicates a totally random and +1 a
totally correct prediction. Precision is defined as shown in Equation 3.21 and the MCC
is defined in Equation 3.22.

Precision = TP

TP + FP
(3.21)

MCC = TP × TN − FP × FN√
(TP + FN)(TP + FP)(TN + FP)(TN + FN)

(3.22)

TP . . . True Positives FP . . . False Positives
FN . . . False Negatives TN . . . True Negatives

3.5 Determining Edge and Intermediate Routers

Since we are interested in the Dual Stack distribution concerning edge and intermediate
routers, we use a simple, yet useful metric to determine the position of nodes within
a path on the Internet. As the IPv4 address space is nearly exhausted, the remaining
addresses are issued at a maximum of /22 sized blocks [103]. IPv6 addresses are issued
on the basis of /32 sized blocks [104]. These numbers are based on RIPE NCC policies
only but we believe that the other RIRs are applying similar policies. Thus, from each
collected path, we take the last hop immediately before the target and build a network
prefix by using the respective netmask. We compile two lists which consist of all unique
IPv4 and IPv6 networks. If both IP addresses of a candidate pair are in the respective
list we consider this candidate pair as an edge node. This fact may also be used as a
falsifying feature to assist at the IP Sibling decision process.

3.6 Low-Runtime and Randomized Timestamps

Nowadays, modern TCP stacks conforming to the recommendations in RFC 7323 [16]
should implement a random offset to the timestamp counter on a per connection basis
which has not been considered in previous work. This heavily impacts the acquisition
process itself which we can optimize as described in the following paragraphs. In fact, we
observed that there are still many TCP speaking nodes out there which do not implement
or actively use TCP timestamp randomization. Dealing with such nodes enables us to
apply extremely low runtimes which result in few acquired timestamps only. Though, it
is still possible to successfully determine the sibling property.

57

Chapter 3 Methodology

3.6.1 Low-Runtime Approach

Active measurements with runtimes of ten hours and more are not suitable for practi-
cal applications. When we speak of low-runtime measurements, we define a maximum
runtime of five minutes for the acquisition process whereby any possibly necessary prepa-
ration tasks, for example tracerouting or decision model training, are not included. While
acquisition runtimes of previous work are in the range of hours, we use the term full-
runtime in order to express runtimes which are settled above the defined threshold of
five minutes. Moreover, we refer to a runtime of ten hours if we discuss previous work.
However, the less time taken at comparable performance, the higher the relevance for real
world applications. Thus, we steadily decreased the number of collected timestamps and
simultaneously observed the evolution of the decision model in order to achieve a com-
petitive tradeoff between time taken and prediction performance. In general, a sequence
of two strictly increasing timestamps for both IPs of a candidate pair could already allow
determining the difference of the TCP timestamp counter resets (raw timestamp value
difference ∆tcpraw). Hence, with two values it is possible to apply regression to calculate
the frequency and further the absolute difference of the raw timestamp values. Based on
a previously learned threshold, the decision whether a node is an IP Sibling or not can
be performed.

The number of timestamps depends on the measurement interval which in turn depends
on the number of nodes which should be concurrently investigated. If the measurement
interval is chosen too low, the following transmission and the current transmission may
overlap. This often results in packet loss of the replies at the measurement entity. The less
nodes are subject to simultaneous measurements, the faster the timestamp acquisition
can be performed by reducing the measurement interval. However, this increases the
timestamp density and may reduce the amount of information which in turn is necessary
to derive powerful features.

This approach is only applicable to nodes which do not employ randomized timestamps.
However, independent of the currently implemented timestamp security features, we
assume that we are able to provide enough timestamps for reasonable decision making,
although timestamp offsets are randomized.

3.6.2 Special Timestamp Acquisition Methods

Officially published in 2014, RFC 7323 suggests that for each new connection a random
offset is added to the initially used TCP timestamp value [16]. Already in 2005, the
randomization of TCP timestamps in FreeBSD was suggested [72]. Finally, this technique
was also implemented in the Linux TCP stack in 2017 [45].

Each connection is represented by a tuple which consists of the source and destination
IP addresses and source and destination ports. Hence, the received initial timestamp of

58

Chapter 3 Methodology

an IPv4 or IPv6 connection of a remote node uses a different offset in each case. This
results in two timestamp sequences starting at diverse offsets.

FreeBSD as well as Linux implement a security feature called SYN cookies which is a
countermeasure against SYN flooding attacks [44]. Thereby, information is encoded in
the ISN by hashing connection parameters, a time value and a secret. If the timestamp
option is enabled, the TSval field may additionally be employed for SYN cookie data
which could also yield completely random initial timestamp values because of hashing.
When the corresponding ACK is received, the hash is constructed again and compared
with the received ACK number which was previously decreased by one. Then, the
connection proceeds as normal or in case of mismatch, is dropped by sending an RST
segment. If the ACK is not received within a defined time frame, the segment is simply
dropped. SYN cookies are usually only active if a node runs out of resources and suffers
from high load. In our case, if SYN cookies are active, we are forced to keep a TCP
connection open for timestamp acquisition instead of repeatedly sending SYN segments.
This can be easily achieved if a node offers a service which exchanges some kind of
identification data necessary for communication, for example SSH. The very first data
which is exchanged between two SSH participants is an identification string which may
contain arbitrary characters at the end as a comment [80]. Although, the string is
limited to 255 characters, this enables us to acquire a strictly increasing sequence of 253
timestamps (the final \r\n characters excluded) provided that the TCP stack conforms
to the corresponding suggestions of the proposed standard [16]. We transmit each of the
255 characters in an own TCP segment and collect the timestamps from the received
ACKs.

Since Linux and FreeBSD implement such a behavior, we can cover a wide range of
nodes with this technique [45, 89]. Additionally, FreeBSD recently fixed a case, which
was not compliant to the proposed standard [16, 90]. Previously, identical timestamps
were sent with the performed SYNACK retransmissions. Though, the standard requires
that the current value of the timestamp clock of the TCP sending the option [16] must
be contained in the TSval field which is of course also required for retransmissions.

3.7 Decision Processes

Due to the more or less current evolutions concerning randomized TCP timestamps and
the obstacles in terms of acquisition and predictions thereby, we also provide optimiza-
tions to the decision processes presented in previous work [108]. As already mentioned,
the suggested model of testing the raw timestamp value against a threshold performs well
on full-runtime and low-runtime measurements. Hence, few timestamps already enable
an accurate prediction. However, previous findings depend on the fact that most of the
ground truth nodes do not employ security features like for example randomization of
initial timestamp offsets. Since the software of the RIPE Atlas Anchor nodes is provided
by the project itself, the behavior of the nodes concerning their TCP implementations

59

Chapter 3 Methodology

may be similar. It is not publicly announced which OS is deployed on the hardware
Anchor nodes but for virtual nodes, RIPE requires an installation of CentOS 7 [106].
Opposed thereto, the instructions of NLNOG RING are more generous. The provided
OS should be Ubuntu 18.04 64-bit server edition, where only an OpenSSH server must
be installed [94]. Thus, more care must be taken in the development of the decision
model regarding NLNOG RING nodes since their configuration may differ from node to
node.

In consequence of the deployed timestamp randomization patch for Linux, the suggested
metric of previous work is not applicable to randomized timestamps [108]. This is
due to the fact that the timestamp sequences of IPv4 and IPv6 are forced to use an
identical offset for this metric to work correctly. In former work, many features, which
we presented before, have been provided but were not actively employed in the finally
suggested decision model [108]. This is an advantage for us because nowadays, some of
these previously unused features take the existence of randomization into account if tuned
appropriately. Especially, the dynamic range features seem to be promising in terms
of feature importance. Moreover, the dynamic range features are based on the PPD
array and are determined by considering only values within a confidence interval of the
PPD values. This may reduce for example network jitter but simultaneously may remove
useful information, too. If we are able to collect timestamps for IPv4 and IPv6 of the
same pair in parallel, network delays may be affecting both acquisition processes. Thus,
this may result in correlation of the acquired sequences and provide valuable information.
Consequently, in this case we do not consider it as advantageous to perform extensive
data cleaning since many information may be lost. Based on these facts, we propose a
new decision workflow as generally shown in Figure 3.1.

Considering the low-runtime approach discussed earlier, we explain that the raw times-
tamp value model also works well if applied to few data points. However, we deviate
from this initially discussed decision workflow because we believe that the now presented
complete model is able to generalize all currently occurring cases well. First, the raw
timestamp value difference is checked. If a positive decision can be derived by testing
against a defined threshold, the candidate pair is considered to be an IP Sibling. This
implies that no timestamp randomization was encountered or the data was collected with
the randomization taken into account. On a negative outcome, the prepared machine
learning model classifies the candidate pair. TCP Options Signatures, SSH keys and
agents or Geolocation data is optionally used as falsifying comparative methods which
additionally may be applied. If one of these features is not available, the feature test
concerned is considered as a positive outcome. The result of the optional tests should only
be considered as an additional assistive method for a possibly final manual inspection.
Finally, we believe that for practical applications, this model should be most effective
since for example in a penetration test, the investigated nodes are limited in size. Thus,
manual inspection in such cases should not be excluded.

60

Chapter 3 Methodology

Figure 3.1: Proposed Decision Workflow

3.8 Limitations

Data acquisition often seems to be a ponderously task, if one considers, only about
25% out of one million domains deliver a AAAA DNS record in addition to their A DNS
record. Considering the current state of the IPv4 address exhaustion, we believe that
this is a drawback since there might be no more IPv4 addresses available in future and
thus, solely IPv6 addresses can be deployed. Besides the low amount of AAAA records,
drawbacks for the acquisition process in the case of network devices may already arise
during tracerouting since we encounter a large number of traceroute targets to be member
of a CDN. Hence, the amount of available routes is restricted due to the short paths to
nodes residing in CDNs. Although one should also consider that the tracerouting process
is, like domain name resolution, a time consuming process.

Following, while port scanning of nodes, it may happen that no response from any port
is received and thus, the current node can not be further investigated. This may be due
to the fact that there are well defined and correctly applied security policies in force or

61

Chapter 3 Methodology

that there are simply no services exposed to public. Since at least core routers usually
belong to critical infrastructure, security policies for such devices should be strict. Thus,
there is only a limited number of such network nodes available which talk TCP. Another
reason may be that the packet is dropped or does not even arrive at the measuring entity
because of lacking resources, faulty network or firewall configuration etc.

During the timestamp acquisition process, it may happen that some already successfully
queried nodes stop responding. A possible explanation for that might be an automated
blacklisting or a device reboot. In such cases, it only helps to repeat the process since
there are no practicable solutions available.

While previous work consider the factor of the TCP WS option within the TCP Options
Signatures [11, 108], we decided not to take this value into account. As noted previously
and directly pointed out in the standard, the scaling factor is determined according to
the maximum buffer size provided to TCP [16]. Moreover, it is stated that this buffer
size may be adjusted by a user program or set by default. Thus, depending on the
respective implementation, the WS factor may be impacted by load fluctuations or any
other external circumstances like for example temperature. Consequently, any control
application, which is foreseen to tackle such conditions, can react according to them and
set the WS factor concerning available resources. This should especially be considered
when dealing with network nodes like for example routers.

SSH is primarily used for remote connection to other network nodes. However, if an
SSH party uses for example a different port instead of the standardized port, all other
open ports must be tested by initiating a connection to determine the port which is
bound to SSH. Since this is a cumbersome and time intensive task, only the standard
port can be considered for SSH key scans. As mentioned previously, especially routers
are often underlying strict security policies which exclude remote management and thus,
only allow management and configuration on-site. Consequently, maybe only few nodes
provide SSH connectivity.

After intensively testing the free geolocation services of MaxMind [85], we decided to
use IP geolocations only as an optional and assistive decision feature. We started by
comparing postal codes, cities, countries, membership in the European Union, continents
etc. Finally, we accepted that the free database is limited to a reliable determination of
country and continent. Hence, we consider geolocations as a falsifying metric which may
only help in combination with manual inspections.

If a node has SYN cookies activated, it is not necessarily easy to collect a strictly increasing
timestamp sequence. This is due to the fact that repeated SYN packets within a defined
time frame are silently dropped by the receiver and repeated SYNACK segments may
contain randomized timestamps because of applied hashes. An opportunity is to setup a
valid TCP connection and exchange, depending on the upper layer protocol, some kind
of identification string which is sent on a per byte basis to the node to measure. This
yields as many timestamps as bytes can be sent. However, if there are no Application

62

Chapter 3 Methodology

layer protocols, which employ such a kind of initial data exchange, available it might not
be feasible to collect enough timestamps for accurate decision making.

Randomization of timestamps definitely restricts the possibility of applying the easy to
use raw timestamp value difference threshold for decision making. This problem arises
due to the fact that randomization is usually implemented on a per connection basis.
Hence, the random offsets of the acquired IPv4 and IPv6 timestamps are distinct. For
this problem to solve, a far larger amount of data is required in order to extract expressive
features for accurate decision making. Since there are only 45 ground truth nodes, which
deliver randomized timestamps, available, this seems to be a quite challenging task.
However, we try to address this circumstance by adjusting prediction model parameters,
which were extracted from the little available data, in order to make decisions as accurate
as possible.

63

Chapter 4

Evaluation

In this chapter we discuss our observations and insights gained by applying the method-
ology presented previously. Initially, we evaluate our ground truth data for reasons
of comparison to previous work by using scikit-learn’s CART decision tree [95, 108].
Moreover, we employ the techniques provided by the XGBoost framework, which was
introduced in 2016, as additional verification methods [24]. Since we are convinced of
the advantages based on the combination of multiple machine learning optimization ap-
proaches into one library, we employ the XGBoost framework also for feature processing.
We evaluate our proposed machine learning model and compare the performance between
the acquired full- and low-runtime data sets. Finally, we apply the fully trained model
on the acquired network node candidates to predict their IP Sibling property.

4.1 Preparation and Acquisition Evaluation

The preparations of timestamp measurements and the following evaluations are often
repetitive efforts. Especially in the occurring cases of memory shortage or packet loss, it is
cumbersome to rerun time intensive tasks with parameters optimized. In fact, the overall
runtime of a complete processing pipeline often takes at least half an hour. However, the
analysis of full-runtime data only (without considering acquisition time) may even result
in a time consumption of several hours. Also for low-runtime measurements the time
consumed for evaluations should not be neglected due to the extensive computations of
intermediate values etc.

4.1.1 Measurement Runtime Decisions

First tests of packet transmission speeds shortly lead to limitations concerning the number
of simultaneously investigated nodes. To be compliant with previous work for comparison
reasons, full-runtime measurements are considered to deliver one timestamp per minute.
This is even no problem for batches consisting of 50k nodes. However, for low-runtime
measurements, the batch size as well as the overall runtime heavily depends on the

64

Chapter 4 Evaluation

requested amount of timestamps. For batch sizes of 10k nodes, intervals of eight seconds
are easily achievable. Thus, the runtime solely depends on the number of nodes and
the number of timestamps requested for each node. Based on this fact, we choose a
runtime of 80 seconds and an interval of eight seconds for our low-runtime measurements
resulting in ten timestamps per node. We initially decide for ten timestamps since we
believe that this amount is suitable for practically fast acquisition tasks as well as for the
still following predictions. The conducted full-runtime measurement is identically set up
as in previous work with a duration of ten hours and an interval of one minute [108].

4.1.2 Path Discovery

To discover network nodes along a path, tracerouting is used. In our setup, we employ
the packet manipulation library Scapy [12] to craft packets for our needs. Scapy already
contains a simple but effective tracerouting mechanism based on the TCP SYN method
which we use for node discovery. We collect the path lengths in log files simultaneously
with the tracerouting process. The maximum path length of all investigated routes is 29
hops. A summary of the hop lengths as well as a CDN filtering statistic is shown in Table
4.1. For the sake of simplicity, each traceroute target refers to a complete candidate pair
consisting of the two IPv4 and IPv6 traceroute destinations. We filter nodes of which
the IPv4 or IPv6 address is recognized as a CDN member. Several CDN providers make
their address ranges publicly accessible. We collect these address ranges of the biggest
market players and construct 301 networks which we employ for membership testing of
traceroute targets. Since we filter CDN members, the hop values only take nodes into
account which are not part of such.

Metric Ground Truth Alexa Cisco
IPv4 Hops 8.30813 8.35607 10.0796
IPv6 Hops 7.55217 6.78903 10.1312
Hops Diff 0.75596 1.56704 0.0516
Targets 851 231262 495277
CDN Targets 0 188636 358689
Actual Targets 851 42626 136588
Percentage 100% 18.43% 27.58%

Table 4.1: Traceroute Statistics

As one can see, there only remain 18.43% of Alexa targets and 27.58% of Cisco targets
for each of the overall constructed candidate pairs suitable for trace routing. CDNs
are frequently used as a performance boost or security enhancement to provided web
content.

65

Chapter 4 Evaluation

4.1.3 Port Identification

Since routers are usually not directly accessible, we expected restrictions regarding open
ports. However, we found a quite appropriate number of nodes responding. For example,
port 80 and 443 which are used by HTTP and HTTPS [67] as it is rather unusual that a
network node offers web content. For a quick overview about the number of active nodes
and distinct ports we discovered, we refer to Table 4.2.

Ground Truth Alexa Cisco
IPv4 IPv6 IPv4 IPv6 IPv4 IPv6

Active Nodes 681 839 15638 18608 41927 48311
Distinct Ports 26 27 193 192 193 192

Table 4.2: Port Statistics Network Nodes

We are surprised about the number of 193 recognized IPv4 ports since our list of ports
to scan is limited to 192. A brief analysis reveals an additionally captured port (28869)
which is not in our port list. We identify two IPv4 addresses, whereof one is registered
in Brazil and the other one in Turkey, which actively sent packets to our IPv4 port used
for measuring during timestamp acquisition. However, all 192 ports which we consider
for investigations occur at least once in the two major data sets.

4.1.4 Timestamp Acquisition and Data Analysis

We performed acquisition as described in Section 3.2. Additionally, we identified special
cases which are apparently rare but resulted in strange behavior of our implementation
during analysis. The triggered errors in the software are the reason why we eventually
became aware of SYN cookies and connection-initialization based randomization. We
observe that only some end nodes, which we employ as targets for tracerouting, are
affected whereby the ground truth end nodes are not involved. Therefore, we simply
ignore this little number of nodes while we perform our timestamp acquisition of end
nodes. However, for large-scale applications, these two cases may be subject to difficulties
if they occur more often. Since end node or network node operators may be annoyed
by the huge amount of SYN packets sent in regular intervals, we only conduct as few
measurements as necessary to collect a usable amount of data. Possibly, operators
consider these packets as intrusive or even classify them as malicious which may result
in an IP ban and as a consequence, excludes the concerning node from the acquisition
process.

We especially analyze the timestamps of our ground truth end nodes since we employ
this data later for prediction model construction and evaluation. We found 43 IP Sibling
pairs in the ground truth data set which deliver randomized timestamps. All these IP

66

Chapter 4 Evaluation

Siblings are part of the NLNOG RING project. The data of the 43 siblings is used
for evaluation of our modified prediction model. Moreover, there are many end nodes
which already employ timestamp randomization. A brief summary about the different
candidate types of which we are able to acquire timestamps from is shown in Table 4.3.
The exact number of candidates using randomized timestamps can only be determined
from the set of the ground truth IP Siblings. The values of the other two major data sets
contain non-IP Sibling as well as potential IP Sibling candidates. To quickly identify
those values, we compare the absolute difference of two initial remote timestamps of a
candidate pair against a threshold. For the low-runtime nodes we use a threshold of 10k
and for the full-runtime we use 65k. Since we employ an interval of eight seconds during
our low-runtime measurements, we argue that the time difference in one batch should
only be at maximum 8k if a clock ticks with the fastest rate of 1kHz which is proposed in
the standard [16]. The same is true for full-runtime measurements where the difference
should be at around 60k. For both values, we increase the threshold to ensure that we
only capture the nodes at which the timestamp offsets actually differ. This metric may
be used as a really quick falsifying feature for the applicability of the raw timestamp
absolute difference method.

Ground Truth Alexa Cisco
Runtime full low full low full low
End Nodes 718 718 48447 48116 331855 338276
Random TS Offsets 43 43 31676 32679 313564 320475
Percentage 5.99% 5.99% 65.38% 67.92% 94.49% 94.74%
Network Nodes 1188 1370 11722 14739 36481 42129
Random TS Offsets 995 1150 10448 12814 33668 38300
Percentage 83.75% 83.94% 89.13% 86.94% 92.23% 90.91%

Table 4.3: Timestamp Acquisition Nodes

The proportion of end node as well as network node candidates with distinct timestamp
offsets is at almost each data set above two third. Hence, we are required to find new
possibilities for reliable IP Sibling predictions concerning candidates with these properties.
At this point, our newly proposed prediction model comes into play.

4.2 Model Performance

Previous work suggest a prediction model which is determined by employing a CART
model [108]. The resulting tree of such models can be visualized regarding the structure
and decisions made. It had been observed that most of the inspected trees consist of a
single branch which acts as a verifying feature. These decision trees classify a candidate

67

Chapter 4 Evaluation

IP pair as an IP Sibling if ∆tcpraw is less than a threshold value of 0.2557. Hence, prior
work recommends this model for future use because of its simplicity and the believe
that it will likely generalize best. We analyze this model with our data and improve it
according to the newly acquired insights. Moreover, we show that few timestamps and
thus, low runtimes can yield good results as well. However, first of all, it is necessary
that we investigate the available features.

4.2.1 Feature Evaluation

As shown in the previous section, there are only few nodes in the ground truth which
actually employ randomized timestamps. Meanwhile, most of the end nodes and network
nodes employ randomized timestamps. Additionally, the investigated trees, which were
constructed by the models, are deeper than the ones described in previous work. This
leads us to the conclusion that the simple but previously efficient model of prior work
will no longer generalize best.

Initially, we start feature evaluation with functions provided by scikit-learn [95]. However,
thereby we have quickly reached the limits of the available methods. The drawback of the
feature selection methods and the CART model of scikit-learn are that either one must
drop the rows with missing values or fill missing values by using different imputation
strategies. We do neither prefer one of these options since we can overcome these problems
by using the XGBoost library [24]. Therefore, for feature evaluation and selection we
employ the XGBoost model because it can also deal with missing values. This is a
big advantage when working with sparse data which may occur when investigating low-
runtime captures.

As mentioned earlier in Section 3.4, we preselect all features which express differences
between the IPv4 and IPv6 timestamp sequences. For the full-runtime variant, we include
the spline feature whereby within the low-runtime investigation we think that it does
not make much sense to calculate a spline for only a few points. Thus, we exclude the
spline features from low-runtime evaluations. However, it is definitely worth to note
that the splinediff feature may help for predictions if a suitable amount of timestamps
is available. We believe a number of 150 to 200 timestamps should be considered as a
minimum. Additionally, an advantage for the spline feature may be if the density of the
timestamps is as small as possible. The XGBoost model ranks the splinediff feature at
the fifth position whereby the scaled version is ranked on the last position. Hence, we
do not consider the scaled version for any future use. To perform a valuable comparison,
we employ for the full-runtime as well as for the low-runtime variants the same features.
Finally, the features which we primarily employ, especially for low-runtime, are once
more summarized in Table 4.4.

For the comparison of the full-runtime and low-runtime models we use different test
set sizes starting with 10%, 33% and 66% up towards 90%. Hence, we build four cases
showing the features for the full-runtime as well as four cases for the low-runtime. From

68

Chapter 4 Evaluation

Frequency Constant Offset Random Offset
fdiff ∆tcpraw rngdiff , rngavg, rngreldiff

R2
freqdiff αdiff , R2

skewdiff

Table 4.4: Final Features

these eight feature scores, six have the ∆tcpraw feature ranked with the highest score.
Only the two full-runtime sets with the two smallest test sizes (10% and 33%) rank the
rngavg on the first position followed by the ∆tcpraw feature on the second position. One
important fact, which must be considered concerning the reasoning about the features
to choose, is that the full data set was employed for training. This means there are
43 nodes within this set which use randomized timestamp offsets. Investigating the
evolution of the feature scores regarding the different test sizes reveals that the less
the size of the training set, the higher the score of the ∆tcpraw feature relative to the
remaining features. Thus, we derive that this feature still dominates all of the decisions
made. For visual interpretation, the corresponding figures containing the mentioned
feature scores are provided on Page 70 in Figure 4.1. Based on this, we argue that it is
the most efficient way to split off the ∆tcpraw feature for constant offset determination.
Consequently, we select this feature as a standalone verifying metric for the IP Sibling
decision of candidates with constant offsets like it has already been suggested in prior
work [108].

Before the already evolved ∆tcpraw model can be deployed, we investigate the underlying
trees like in previous work [108]. Their proposed model employs a threshold of 0.2557.
We reconstruct the already previously conducted experiment with our own data by using
the CART model of the scikit-learn framework [95]. After the performed ten-fold cross
validation, we investigate the resulting tree models. Similar to prior work, the constructed
classifiers show one branch in each tree which decides for a positive outcome regarding
the IP Sibling property. The occurring thresholds are all close to the one previously
determined and yield a value of 0.3052. Another interesting fact is that our trees do
not solely contain these two branches. Instead, the trees reveal in the negative outcome
direction substantially more levels using all remaining features for further splits. If we
check the opposed case at which we construct a model containing only nodes which do
not use randomized timestamps, the resulting tree consists indeed only of one decision
split based on the ∆tcpraw feature. Furthermore, also the feature importance as well as
the trees of the corresponding XGBoost model confirm this fact. The feature importance
score incorporates only the ∆tcpraw feature just as the trees whereby each tree consists of
solely one split based on this feature. We consider this as another substantiation to our
statement about the split off of the ∆tcpraw feature from the whole feature set. However,
we extend this constant offset model by employing the remaining features to construct an
additional prediction model which is focused on the identification of IP Siblings among
randomized timestamp offsets.

69

Chapter 4 Evaluation

rng
_av

g raw
_ts

_di
ff

hz_
dif

f alp
ha

dif
f hz_

rsq
rdi

ff rng
_re

ldif
f

rsq
rdi

ff
rng

_di
ff

05010
0

15
0

20
0

25
0

F-Score

25
6

18
9

14
6

11
5

48
47

40
38

Fu
ll-

Ru
nt

im
e

Te
st

 S
ize

 0
.1

rng
_av

g raw
_ts

_di
ff

hz_
dif

f alp
ha

dif
f rng

_re
ldif

f
rng

_di
ff hz_

rsq
rdi

ff
rsq

rdi
ff

025507510
0

12
5

15
0

17
5

20
0

F-Score

21
3

17
1

12
6

97

47
36

30
26

Fu
ll-

Ru
nt

im
e

Te
st

 S
ize

 0
.3

3

raw
_ts

_di
ff

rng
_av

g
alp

ha
dif

f
hz_

dif
f

rsq
rdi

ff
rng

_di
ff hz_

rsq
rdi

ff rng
_re

ldif
f

02040608010
0

12
0

F-Score

13
0

10
7

94

76

25
22

20
15

Fu
ll-

Ru
nt

im
e

Te
st

 S
ize

 0
.6

6

raw
_ts

_di
ff

alp
ha

dif
f

hz_
dif

f
rng

_av
g

rsq
rdi

ff rng
_re

ldif
f

rng
_di

ff hz_
rsq

rdi
ff

020406080 F-Score

93

79

68

59

47

29
29

9

Fu
ll-

Ru
nt

im
e

Te
st

 S
ize

 0
.9

raw
_ts

_di
ff

rng
_av

g hz_
rsq

rdi
ff

hz_
dif

f alp
ha

dif
f rng

_re
ldif

f
rng

_di
ff

rsq
rdi

ff

05010
0

15
0

20
0

25
0

30
0

F-Score

32
5

25
8

22
9

21
8

17
9

12
9

11
7

11
5

Lo
w-

Ru
nt

im
e

Te
st

 S
ize

 0
.1

raw
_ts

_di
ff

rng
_av

g hz_
rsq

rdi
ff

hz_
dif

f alp
ha

dif
f

rsq
rdi

ff
rng

_di
ff rng

_re
ldif

f

05010
0

15
0

20
0

25
0

30
0

F-Score
31

6

22
8

21
7

19
2

14
0

12
0

11
5

95

Lo
w-

Ru
nt

im
e

Te
st

 S
ize

 0
.3

3

raw
_ts

_di
ff hz_

rsq
rdi

ff
hz_

dif
f

rng
_av

g
alp

ha
dif

f rng
_re

ldif
f

rsq
rdi

ff
rng

_di
ff

05010
0

15
0

20
0

25
0

F-Score

24
4

15
7

13
6

10
1

97

68
67

61

Lo
w-

Ru
nt

im
e

Te
st

 S
ize

 0
.6

6

raw
_ts

_di
ff

hz_
dif

f
rng

_di
ff hz_

rsq
rdi

ff
alp

ha
dif

f
rsq

rdi
ff rng

_re
ldif

f
rng

_av
g

02040608010
0

12
0

14
0

16
0

F-Score

16
1

89
79

64
54

39
35

22

Lo
w-

Ru
nt

im
e

Te
st

 S
ize

 0
.9

Fi
gu

re
4.
1:

Fe
at
ur
e
Im

po
rt
an

ce
at

di
ffe

re
nt

Te
st

Si
ze
s

70

Chapter 4 Evaluation

4.2.2 Randomized Timestamps Model Evaluation

After we were able to confirm prior work in terms of constant timestamp offsets, we are
additionally confronted with the significant increase of randomized timestamp offsets
which are meanwhile employed in a huge number of nodes. At the moment, the quantity
of ground truth IP Siblings with randomized timestamps is limited. Thus, the machine
learning model must be able to reduce overfitting as well as to deal with missing data
which we may encounter in low-runtime data sets. The XGBoost model acts against
overfitting by applying regularization whereat a penalty is added to the objective function
[24]. Moreover, an advantage over other binary classification models is that it can handle
missing values and hence it is able to work with any other kind of sparse data as well.
Therefore, we select this already well-approved ensemble method as an underlying strategy
and finally employ it as binary classification model for IP Sibling prediction.

After separating the features into two groups of constant offset and randomized offset
features (including the frequency features), we inspect the remaining features for em-
ployment in our randomized timestamps model. If we cut off the ∆tcpraw bar of the in
Figure 4.1 on Page 70 shown feature evaluation scores, we see that the remaining features
are all actively employed. The scores of these remaining features are almost always below
the constant offset feature score because most of the available ground truth nodes are
based on constant timestamp offsets. However, this does not affect the expressive power
of the frequency and random offset features since they are used in an independent envi-
ronment. Another interesting point is that the full-runtime scores show a clear separation
step between the high ranked and low ranked ones. Opposed thereto, the low-runtime
scores are decreasing nearly linearly from feature to feature. This may be due to the
number of timestamps available which possibly also shows us that more timestamps are
not always delivering better results in terms of overfitting. However, since we are focused
on a wide applicability at full- as well as low-runtime data sets, we do not remove any
further features since all remaining features are used for decision making. Especially in
low-runtime cases, more available features may contribute valuable information which
might not be as relevant in full-runtime data sets. Nevertheless, if overfitting, which is
possibly caused by the data set size, constitutes a problem, it is still possible to restrict
the number of timestamps by simply removing some from the acquired sequences.

Out of the discussed remaining features we construct a model for the group of nodes
which employ randomized timestamps. We prepare two test data sets, a full-runtime data
set and a low-runtime data set. The full-runtime data set contains in each acquisition
sequence around 1500 to 1700 timestamps. The low-runtime data set holds only around
60 timestamps in each sequence. We evaluate both again with the previously defined
test sizes. Figure 4.2 shows a comparison between the full- and low-runtime MCC and
Precision values.

At first sight, the MCC values do not meet the desired results. We believe that this
can be traced back to the new random timestamp offset implementations which usually
use an underlying hardware timer register as well as a random number provided by the

71

Chapter 4 Evaluation

0.1 0.33 0.66 0.9
Test Size

0.0

0.2

0.4

0.6

0.8

1.0
M

CC

0.87

0.96

0.88

0.51

0.0

0.13

0.21 0.23

Full-Runtime Low-Runtime

0.1 0.33 0.66 0.9
Test Size

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

1.0 1.0

0.78

0.43

0.0

0.33

0.21

0.14

Full-Runtime Low-Runtime

Figure 4.2: MCC and Precision Evaluation

OS. Possibly, new artifacts are already introduced if the initial randomized timestamp
is issued for each IP version. However, this may be subject to analysis in future work.

Since we are not satisfied with the results of the reduced feature set application on the
whole ground truth data, we conduct further analysis with randomized candidate pairs
only which are also our main focus in the current evaluation. For the model construction
we employ the 43 IP Siblings with randomized timestamp offsets from the ground truth
data. Thus, the resulting non-IP Sibling set for training consists of a quantity of 1806
by calculating n ∗ (n − 1), n = 43. The 43 candidates correspond to a proportion of
2.33% from the overall number of candidates constructed. As a next step, we evaluate a
new model based on the currently built candidate pairs. Conducting tests with different
test sizes and number of timestamps, one can see a significant increase in performance.
This is also true for a reduced amount of timestamps as we show in Figure 4.3. In
this figure, the MCC performance evolution of the proposed prediction model over a
increasing number of timestamps is demonstrated.

However, a drawback may be the limited number of ground truth nodes employing
randomized timestamp offsets. This may result in negative impacts like overfitting which
we try to take into account by tuning some regularization parameters. Moreover, the
NLNOG RING nodes should provide a level of hardware diversity due to the fact that
the project does not have any specific requirements concerning the deployed devices.
Therefore, we repeat the evaluation several times and almost always achieve similar
results.

72

Chapter 4 Evaluation

10 50 100 150 200
Number of Timestamps

0.0

0.2

0.4

0.6

0.8

1.0
M

CC

1.0

0.87

1.0

0.87 0.87

1.0

0.89
0.85

0.93
0.96

1.0

0.78

0.92 0.91
0.940.92

0.56

0.67
0.63

0.58

Test Size 0.1 Test Size 0.33 Test Size 0.66 Test Size 0.9

Figure 4.3: Randomized Timestamps Model Evolution

For a detailed investigation concerning the calculated performance scores in Figure 4.3,
Table 4.5 on Page 74 shows the confusion matrix values for a given test size of the
respective number of timestamps used for evaluation. Moreover, this table holds the
False Positive Rate (FPR) and the False Negative Rate (FNR) as well as the Precision
and the F1-score as additional performance scores. The FPR represents the proportion
of all actually negative outcomes which however result in a positive outcome by means of
the performed model prediction. Opposed thereto, the FNR represents the proportion of
all actually true outcomes which however result in a negative outcome by means of the
performed model prediction. Precision is expressed as the proportion of actually positive
outcomes of the sum built by the actually positive outcomes and the falsely classified
positive outcomes based on the performed model prediction. The last performance score,
the F1-score expresses the balance between Precision and Recall. Recall is also known
as hit rate and describes the proportion of actually positive outcomes of the sum built
by the actually positive outcomes and the falsely negative determined outcomes based
on the performed model prediction. All formulas which are employed for calculating the
values presented are pointed out in Equations 4.1 and 4.2.

Based on the discussed evaluation results, we deduce that the proposed model gener-
alizes best at candidate pairs with randomized timestamp offsets. To achieve valuable
results one can see that it is most efficient to train the classifier with ground truth data
which solely employs random timestamp offsets. Another important point is that the
provision of a small number of timestamps only, obviously does not have any noticeably
negative impact on the prediction performance. Thus, any low-runtime data set enables
predictions based on randomized timestamps with adequate performance. Consequently,

73

Chapter 4 Evaluation

T
es

t
S

iz
e

10
T

im
es

ta
m

ps
50

T
im

es
ta

m
ps

10
0

T
im

es
ta

m
ps

15
0

T
im

es
ta

m
ps

20
0

T
im

es
ta

m
ps

T
P

T
N

F
P

F
N

T
P

T
N

F
P

F
N

T
P

T
N

F
P

F
N

T
P

T
N

F
P

F
N

T
P

T
N

F
P

F
N

0.
1

5
20

0
0

4
20

0
1

5
20

0
0

4
20

0
1

4
20

0
1

0.
33

15
21

0
0

0
12

21
0

0
3

12
20

9
1

3
14

20
9

1
1

14
21

0
0

1

0.
66

29
81

2
0

0
25

80
2

10
4

28
80

8
4

1
29

80
6

6
0

29
80

8
4

0

0.
9

33
14

82
0

6
22

14
66

16
17

33
14

54
28

6
36

14
37

45
3

35
14

28
54

4

F
P

R
F

N
R

P
re

c
F

1
F

P
R

F
N

R
P

re
c

F
1

F
P

R
F

N
R

P
re

c
F

1
F

P
R

F
N

R
P

re
c

F
1

F
P

R
F

N
R

P
re

c
F

1

0.
1

0.
0

0.
0

1.
0

1.
0

0.
0

0.
2

1.
0

0.
88

9
0.

0
0.

0
1.

0
1.

0
0.

0
0.

2
1.

0
0.

88
9

0.
0

0.
2

1.
0

0.
88

9

0.
33

0.
0

0.
0

1.
0

1.
0

0.
0

0.
2

1.
0

0.
88

9
0.

00
5

0.
2

0.
92

3
0.

85
7

0.
00

5
0.

06
7

0.
93

3
0.

93
3

0.
0

0.
06

7
1.

0
0.

96
6

0.
66

0.
0

0.
0

1.
0

1.
0

0.
01

2
0.

13
8

0.
71

4
0.

78
1

0.
00

5
0.

03
4

0.
87

5
0.

91
8

0.
00

7
0.

0
0.

82
9

0.
90

6
0.

00
5

0.
0

0.
87

9
0.

93
5

0.
9

0.
0

0.
15

4
1.

0
0.

91
7

0.
01

1
0.

43
6

0.
57

9
0.

57
1

0.
01

9
0.

15
4

0.
54

1
0.

66
0.

03
0.

07
7

0.
44

4
0.

6
0.

03
6

0.
10

3
0.

39
3

0.
54

7

Ta
bl
e
4.
5:

C
on

fu
sio

n
M
at
rix

Va
lu
es

an
d
St
at
ist

ic
s

F
P

R
=

F
P

F
P

+
T
N

F
N

R
=

F
N

F
N

+
T
P

(4
.1
)

P
r

e
c
is

io
n

=
T
P

T
P

+
F
P

F
1

=
2
×
T
P

2
×
T
P

+
F
P

+
F
N

(4
.2
)

74

Chapter 4 Evaluation

the necessary timestamp acquisition time can be drastically reduced. One last thing
which should be considered is that maybe the density of the acquired timestamps may
have an impact on the outcome. However, we do not observe any influences although we
deal with different densities in our full-runtime and low-runtime data sets.

4.2.3 Complete Model Evaluation

Finally, we combine the ∆tcpraw predictor and the previously discussed randomized
timestamps model to a complete model which we propose in Section 3.7. Unlike feature
selection, we use the full ground truth data set for this evaluation. Similar to previous
investigations, we use four test sizes of 10%, 33%, 66% and 90%. One should keep in
mind that the model is designed in a way to clearly distinguish the candidate pairs with
random and constant timestamp offsets. Principally, all constructed non-IP Sibling pairs
should have ∆tcpraw values above the determined threshold. Therefore, the model is
heavily confronted with such non-siblings. Nevertheless, only few false positive outcomes
are encountered but in turn also some false negative predictions occur. In our opinion,
the number of incorrect classified pairs is below an acceptable value of five percent.
Consequently, we are convinced that these facts clearly speak for the performance of our
proposed model. Moreover, the performance is obviously almost independent from the
number of available timestamps for prediction. Figure 4.4 demonstrates the MCC and
Precision performance of our complete model on the full ground truth data set. For more
details on the evaluation, Table 4.6 shows the confusion matrix values and additional
performance measures. All presented performance values are calculated employing the
Equations 4.1 as well as Equations 4.2 which both are provided on Page 74.

Test
Size

Full-Runtime Low-Runtime
TP TN FP FN TP TN FP FN

0.1 72 2812 0 1 69 2826 0 5
0.33 238 29893 11 3 230 30042 0 13
0.66 474 118841 39 8 459 119792 0 26
0.9 645 218210 570 12 625 220883 37 36

FPR FNR Prec F1 FPR FNR Prec F1

0.1 0.0 0.014 1.0 0.993 0.0 0.068 1.0 0.965
0.33 0.0004 0.012 0.956 0.971 0.0 0.053 1.0 0.973
0.66 0.0003 0.017 0.924 0.953 0.0 0.054 1.0 0.972
0.9 0.003 0.018 0.531 0.689 0.0002 0.054 0.944 0.945

Table 4.6: Complete Model Confusion Matrix Values and Statistics

75

Chapter 4 Evaluation

0.1 0.33 0.66 0.9
Test Size

0.0

0.2

0.4

0.6

0.8

1.0
M

CC

0.99 0.97 0.95

0.72

0.96 0.97 0.97
0.94

Full-Runtime Low-Runtime

0.1 0.33 0.66 0.9
Test Size

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

1.0
0.96

0.92

0.53

1.0 1.0 1.0
0.94

Full-Runtime Low-Runtime

Figure 4.4: Complete Model MCC and Precision Evaluation

As already pointed out and also confirmed by the evaluation results presented, we believe
that our model may play an important role when it comes to IP Sibling identification in
practically relevant tasks like for example penetration testing. Hence, the performance,
which is based on the diversity of recognition techniques, enables the deployment of our
proposed model in further applications.

4.3 Special Acquisition Methods Evaluation

The already mentioned special acquisition cases like activated SYN cookies or connection
initialization based randomization, which we came across during acquisition and analysis,
are investigated on two common OSs. The activation of SYN cookies can be triggered
on most machines by repeatedly sending SYN packets without proper replying to the
subsequently returned SYNACKs.

In the first case, we test our simple but efficient technique on some remote machines
which we identify as Linux devices by their SSH identification string. By testing sev-
eral configuration or implementation dependent TCP flag settings we have no luck for
retransmissions of ACKs. However, combining the PSH and ACK flag in distinct states
of the connection triggers a retransmission which enables the collection of at least ten
timestamps. As shown previously, the amount of ten timestamps is sufficient for valuable
decision making concerning the IP Sibling property. One drawback may be the fact that

76

Chapter 4 Evaluation

we can not control the density of the delivered timestamps. This solely depends on the
configuration of the retransmission timer at the remote machine. Besides mentioned
obstacles, other problems may occur which make the conventional acquisition process
more difficult. For example, if SYN cookies are deactivated and timestamp randomiza-
tion is implemented on a per connection basis, it is possible to repeatedly perform the
acquisition process which is based on solely one TCP connection and thus, to collect
more timestamps to achieve an increased distribution.

The second case handles FreeBSD machines which are also identified by their SSH
identification string. At those devices we are able to collect up to 253 timestamps due to
the fact that FreeBSD’s TCP implementation apparently behaves completely standard
conform. Additionally, it is possible to decrease the density of the acquired timestamps by
adding a delay between data packets sent. Timestamp acquisition from FreeBSD nodes
with activated SYN cookies is a straightforward task and delivers constant results.

Linux nodes need additional fine-tuning of TCP settings in order to deliver the demanded
result of one timestamp per sent byte. Applying the technique to FreeBSD nodes con-
stantly yield the desired outcome of a suitable amount of timestamps.

4.4 Network Node IP Pairs Evaluation

Finally, we apply the previously investigated combined model to our collected data in
order to identify IP Siblings among the active network node pairs. It is mentionable that
one and the same node occurs within several traceroutes. For example, if tracerouting is
conducted to different targets situated within the same ISP. In Table 4.7 we aggregate
all discovered nodes to their unique occurrence before they are paired together.

Data Set
Overall Nodes Active Nodes Percent Active
IPv4 IPv6 IPv4 IPv6 IPv4 IPv6

Ground Truth 1757 1568 379 472 21.57% 30.1%
Alexa 9664 7950 2355 2385 24.37% 30.0%
Cisco 19142 23212 3720 4547 19.43% 19.59%

Table 4.7: Discovered Nodes and Active Nodes

From these single nodes, we construct candidate pairs per traceroute path. This means,
we only pair IPv4 and IPv6 addresses together which are discovered within routes to the
same traceroute target. We avoid duplicates by using a dictionary data structure. The
candidate pairs are identified by a key which we build from a four value tuple consisting
of the two IPs (IPv4 and IPv6) as well as the corresponding ports. Since the key is unique
to each candidate pair, it enables us to avoid repeated construction of combinations. The
build process does not have any impact on the acquired timestamps, since within the

77

Chapter 4 Evaluation

whole data set, for each IP address and each associated open port, we anyway gather
only one timestamp sequence. In other words, the timestamp sequences are tied to IP
and port and thus, are used for each built combination in which the respective IP address
and corresponding port occur.

Ground Truth Alexa Cisco
Full-Runtime 1188 11722 36481
Low-Runtime 1370 14739 42129
Difference 182 3017 5648

Table 4.8: Unique Candidate Pairs constructed from Network Nodes

Table 4.8 summarizes the number of unique candidate pairs assembled. The number of
constructed pairs reasonably differs between the full- and low-runtime data sets. This
may be due to the fact that routing is a dynamic process and we conduct the full- and
low-runtime acquisitions at different points in time. For further investigation, we split
these candidate pairs into edge and intermediate network node pairs. The distribution of
the edge and core candidate pairs constructed for each data set is shown in Figure 4.5.

103

104

60
1

73
83

27
62

1

58
7

43
39

88
60

Edge Node Pairs Core Node Pairs

Ground Truth Alexa Cisco
0

200

400

600

800

60
1

73
83

27
62

1

58
7

43
39

88
60

0.0 0.2 0.4 0.6 0.8 1.0
Full-Runtime Data Sets

0.0

0.2

0.4

0.6

0.8

1.0

Nu
m

be
r o

f N
et

wo
rk

 N
od

e
Pa

irs

103

104

69
1

83
49

27
01

4

67
9

63
90

15
11

5

Edge Node Pairs Core Node Pairs

Ground Truth Alexa Cisco
0

200

400

600

800

69
1

83
49

27
01

4

67
9

63
90

15
11

5

0.0 0.2 0.4 0.6 0.8 1.0
Low-Runtime Data Sets

0.0

0.2

0.4

0.6

0.8

1.0

Nu
m

be
r o

f N
et

wo
rk

 N
od

e
Pa

irs

Figure 4.5: Edge and Core Network Node Pairs of the respective Data Set

The next step is to apply our proposed model to the constructed candidate pairs. As
previously, we provide results for the full- and low-runtime versions of the respective
data sets. Figure 4.6 shows the classified siblings and non-siblings of the full-runtime

78

Chapter 4 Evaluation

candidate pairs. The same for the low-runtime data set is shown in Figure 4.7. As one
can see, the proportion of IP Sibling pairs, no matter whether edge or core node pairs, is
for full- as well as low-runtime almost equally distributed in each different data set. One
exception is represented by the classified edge siblings of the full-runtime Cisco data set
which nearly double their number compared to the low-runtime data. This may be due
to the fact that during one of the acquisition processes of low- or full-runtime data an
update or outage in a crucial communication hub occurred. Besides this anomaly, the
evaluated data reveal that at least around 10% of the examined candidate pairs are IP
Siblings. For reasons of easier comparison, we provide additional details in Table 4.9.

Ground Truth Alexa Cisco
Runtime full low full low full low
IP Pairs 1188 1370 11722 14739 36481 42129
Edge Pairs 601 691 7383 8349 27621 27014
Percentage 50.59% 50.44% 62.98% 56.65% 75.71% 64.12%
Siblings 151 142 1233 1746 4942 5544
Percentage 25.12% 20.55% 16.7% 20.91% 17.89% 20.52%
Non-Siblings 450 549 6150 6603 22679 21470
Percentage 74.88% 79.45% 83.3% 79.09% 82.11% 79.48%
Core Pairs 587 679 4339 6390 8860 15115
Percentage 49.41% 49.56% 37.02% 43.35% 24.29% 35.88%
Siblings 103 78 641 901 1160 2266
Percentage 17.55% 11.49% 14.77% 14.1% 13.09% 14.99%
Non-Siblings 484 601 3698 5489 7700 12849
Percentage 82.45% 88.51% 85.23% 85.9% 86.91% 85.01%

Table 4.9: Candidate IP Pair Evaluation

The first row in the table, which also represents the first part, shows the number of all
for the prediction intended candidate pairs. The second part describes the proportion
of the edge pairs and is structured as follows. First, the number of edge pairs is stated,
followed by the according percentage of the overall candidate pairs. Then, the as siblings
classified edge pairs and their percentage related to the number of all edge pairs is shown.
In the same way like the siblings before, the non-siblings and their percentage related
to the number of all edge pairs are listed. The third part in the table refers to the core
pairs and is structured in the same way as the second part. As expected, the proportion
of IP Siblings at edge pairs is above the number of core pair IP Siblings. However, all
of them are above 10% whereby the edge IP Siblings are settled at about 20% and the
core IP Siblings are a little bit below at around 14%. The non-IP Siblings of the edge
pairs are at around 71% and the core non-IP Sibling pairs are at above 85%.

79

Chapter 4 Evaluation

103

104

12
33

49
4261

50

22
67

9

11
60

36
98

77
00

Edge Siblings Edge Non-Siblings Core Siblings Core Non-Siblings

Ground Truth Alexa Cisco
0

200

400

600

15
1

45
0

10
3

64
1

48
4

0.0 0.2 0.4 0.6 0.8 1.0
Full-Runtime Data Sets

0.0

0.2

0.4

0.6

0.8

1.0

Nu
m

be
r o

f I
de

nt
ifi

ed
 IP

 P
ai

rs

Figure 4.6: Full-Runtime - Classified Network Node IP Pairs

103

104

12
83

24
29

70
66

24
58

5

13
66

57
45

13
74

9

Edge Siblings Edge Non-Siblings Core Siblings Core Non-Siblings

Ground Truth Alexa Cisco
0

200

400

600

13
4

55
7

75

64
5

60
4

0.0 0.2 0.4 0.6 0.8 1.0
Low-Runtime Data Sets

0.0

0.2

0.4

0.6

0.8

1.0

Nu
m

be
r o

f I
de

nt
ifi

ed
 IP

 P
ai

rs

Figure 4.7: Low-Runtime - Classified Network Node IP Pairs

80

Chapter 5

Conclusion

In the final chapter, we reflect our conducted investigations and the resulting impacts.
Thereto, we summarize main aspects of the concepts applied and their corresponding
outcomes. Furthermore, we conclude this thesis and refer to our research questions by
employing our gained insights to answer them. Finally, we briefly debate possible future
work in relation to our findings.

5.1 Summary of Key Concepts

In this thesis, we started with the investigation of prior work in terms of ground truth
data, classification features and prediction strategies. First, we based our compiled
ground truth host list on the already proposed RIPE Atlas and NLNOG RING projects
which act as a main source for reliable ground truth nodes. Instead of full HTTP requests
conducted in previous work, we exploited simple TCP SYN packets which are less resource
intensive. Moreover, this technique enables the collection of multiple timestamps per
SYN segment since SYNACKs are retransmitted if they are not answered within a proper
amount of time. Provided that the TCP implementation behaves in compliance with the
standard, we were able to acquire at least twice as much timestamps as with comparable
techniques. Beyond, we are able to gain timestamps from devices not providing HTTP.
For the network node acquisition, we conducted common TCP SYN tracerouting and
collected responding nodes by tracerouting targets from the Alexa Top Million and the
Cisco Umbrella Top Million lists. Both data sets were compiled from domains which
have A as well as AAAA DNS records in common. Due to the limited number of hops on
routes to targets which reside in a CDN, we excluded these targets from tracerouting.
We composed a list of 192 ports which may be open for communication on network
nodes. Based on this list, we executed port scans on the nodes which were previously
determined along routes. Following, we acquired TCP timestamps from all active nodes
and their ports. For both data sets, we performed a full- and a low-runtime acquisition.
The full-runtime corresponds to the conducted acquisition time of ten hours as applied in
prior work which resulted in a number of around 1500 timestamps. The low-runtime was
defined for a time of 80 seconds which resulted in a number of ten timestamps. Based on

81

Chapter 5 Conclusion

our timestamp data investigations, we deduced that the prediction model as proposed in
previous work is not well-suited anymore because of the huge number of nodes employing
randomized timestamp offsets nowadays. Therefore, we developed a new model which
consists of two components. The first component represents the prior proposed model
which classifies node pairs with constant timestamp offsets. The second component
consists of a new prediction model which is based on the provided and slightly adapted
features from previous work. We removed the spline features because they result in low
feature importance scores but cause resource heavy computational efforts. The final
model has an excellent performance almost independent of the number of timestamps
provided. We also addressed some edge cases like SYN cookies and randomization offsets
which are based on connection initialization by providing Application layer techniques
for timestamp acquisition. The network nodes were combined to network node pairs on
a per path basis which means we combined only IPv4 and IPv6 nodes which belong to
the same path. To classify these network pairs as edge or core node pairs we used the
network prefixes which were communicated by the RIPE NCC. Thereto, we constructed
networks by employing the last node within a route and the announced prefixes in order
to check the membership of candidate pairs in these networks. In case of a positive
match we considered the investigated pair as an edge pair, otherwise the node pair was
assigned to the core pair set. Finally, we applied our newly designed prediction model
to the network node pairs for an investigation of the current structure of the Internet.

5.2 Conclusion

Research in the field of IP Sibling detection was previously solely conducted on the
basis of end nodes. In contrast, we aim to investigate the often-forgotten actors, which
primary enable the operation of the Internet as we know it today. Hence, we focus
on the examination of network nodes, especially routers, and whether they operate as
Dual Stack devices. In particular, since networks, like for example ISP networks, are
steadily evolving and growing, it is a necessary and important task to identify possible
attack vectors which one was previously probably even not aware of. Based on the prior
statements, we concentrate our interest on five linked research questions. We structure
them in three categories:

1) Network infrastructure

2) Communication impact

3) Practical significance

In the first category we are interested in the usage of Dual Stack technology on network
nodes in general. Therefore, we address the following question: Do routers on paths
on the Internet use Dual Stack IP implementations? We discovered that a tenth of the
revealed network nodes apply Dual Stack configurations. However, there is no doubt
that publicly operating routers employ Dual Stack technology. In addition, we separate

82

Chapter 5 Conclusion

the identified network devices into core and edge types to provide a deeper investigation
about the underlying network structure. This leads us to the second question: At which
location along paths (intermediate or edge) do routers predominantly use Dual Stack
technology? We observe that especially in the edge networks, which are mostly operated
by ISPs, the proportion of IP Siblings is higher than in the Internet core network. The
evaluation of the core and edge network nodes reveals answers to the last question in this
category: Is the routing infrastructure on the Internet for IPv4 the same as for IPv6?
Based on the distinct network node types examined, this question can be answered with
a clear no. This is due to the fact that, especially in a global context, we recognize
different proportions of IP Siblings in distinct parts of the Internet. We discover that
the core network structure of the Internet is more noticeably separated into an IPv4 and
IPv6 part. However, within the edge networks, we observe that network nodes are more
often operated as Dual Stack devices.

In the second category we employ the gained insights from the previous category and
partially rely on our observations during the tracerouting operation. Since the global
network infrastructure is generally speaking divided, one may assume that communication
performance is affected due to IPv4 and IPv6 packets taking different routes. We take
this assumption into account by answering the following question: Is communication
negatively impacted (number of hops, geolocation) in any way by means of routers which
solely operate either IPv4 or IPv6 on one and the same device? We observe that IPv6
paths to the trace route targets are on average roughly one hop shorter than their
IPv4 counterparts. Based on gained insights, we argue that in our case the differing
average number of hops traversed by transmitted packets does not significantly impact
any communication, at least not during our port scans and timestamp acquisition process.
One drawback is that publicly available geolocation services are not accurate enough to
enable valuable statements about the position of a specific IP address. Moreover, the
accuracy of such free services is restricted to the level of countries or even continents which
prohibits the determination of IP addresses located in distinct cities within one and the
same country. Therefore, we decide to exclude geolocation services from our evaluation in
this work. As a result, we do not observe any noticeable negative communication impact
which might be caused by the previously discovered underlying network infrastructure.

The third category deals with timestamp acquisition runtimes which in prior work are in
range of hours and thus not suitable for practical applications like for example penetration
tests. To address the minimization of acquisition times, we ask the following question:
Can the timestamp acquisition time be reduced to a practically relevant level by preserving
currently available prediction performance? Since acquisition time is proportional to the
number of timestamps, the overall time actually depends on the predictive performance
of the model. In other words, it is essential to know how many timestamps are necessary
for the given model to enable an accurate prediction. We show that we can minimize the
acquisition time to minutes by providing an efficient prediction model. Our proposed
model achieves MCC values above 0.95 even for low-runtime applications with only few
timestamps available.

83

Chapter 5 Conclusion

5.3 Future Work

The number of available ground truth nodes is, thanks to the RIPE Atlas and NLNOG
RING projects, sufficient for satisfactory model training. However, most of these nodes
do not employ randomized timestamp offsets although it is, as we observed, already
common in practice. Therefore, it is an important task to increase the number of ground
truth nodes, especially the proportion of nodes which implement randomized timestamp
offsets.

The identified routes in this work are based on simple tracerouting methods. More
advanced tracerouting techniques like for example the Multipath Detection Algorithm
(MDA) and its improvement MDA-Lite, which are proposed in [5, 119], are able to reveal
much more network nodes due to the fact that an increased number of routes to one and
the same target can be discovered.

Since we are able to acquire more than sufficient timestamps by querying FreeBSD nodes
with a single TCP connection per IP version, it may be of interest if this technique can
be extended to not only SSH but also to other Application layer protocols. Additionally,
applicability on multiple OSs may be another related concern.

Recently, the Cisco Talos Intelligence Group presented an article to identify IP Siblings
based on the Universal Plug and Play (UPnP) protocol suite [26]. They send NOTIFY
packets over IPv4 and provide an IPv6-only address for reverse connections. If a response
can be captured from the investigated node it definitely employs IPv4 and IPv6 on the
same device and can be classified as an IP Sibling. This may have severe impacts in
terms of security since this technique enables identification of Dual Stack nodes at end
customer level. A problem may arise in conjunction with the assumption that customers
do not care about the deployment of IPv6 and the related security implications on their
devices as long as they work as expected. Therefore, this may introduce new attack
vectors on UPnP enabled devices which are not configured properly. Since concerned
devices can be clearly identified as IP Siblings, they may also be employed as ground
truth data.

84

Bibliography

[1] Alexa Internet, Inc. Alexa Top Sites. Dec. 2018. url: https://www.alexa.
com/topsites (cit. on pp. 2, 42, 44).

[2] Shane Amante and Brian E. Carpenter. Using the IPv6 Flow Label for Equal
Cost Multipath Routing and Link Aggregation in Tunnels. RFC 6438. Nov. 2011.
doi: 10.17487/RFC6438. url: https://rfc-editor.org/rfc/rfc6438.txt
(cit. on p. 11).

[3] Shane Amante et al. IPv6 Flow Label Specification. RFC 6437. Nov. 2011. doi:
10.17487/RFC6437. url: https://rfc-editor.org/rfc/rfc6437.txt (cit. on
p. 11).

[4] Amazon AWS. AWS IP Address Ranges. Mar. 2019. url: https://docs.aws.
amazon.com/general/latest/gr/aws-ip-ranges.html (cit. on p. 48).

[5] Brice Augustin et al. “Avoiding Traceroute Anomalies with Paris Traceroute.”
In: Proceedings of the 6th ACM SIGCOMM Conference on Internet Measurement.
IMC ’06. Rio de Janeriro, Brazil: ACM, 2006, pp. 153–158. isbn: 1-59593-561-4.
doi: 10.1145/1177080.1177100. url: http://doi.acm.org/10.1145/
1177080.1177100 (cit. on p. 84).

[6] V. Bajpai and J. Schönwälder. “IPv4 versus IPv6 - who connects faster?” In:
2015 IFIP Networking Conference (IFIP Networking). May 2015, pp. 1–9. doi:
10.1109/IFIPNetworking.2015.7145323 (cit. on p. 1).

[7] Fred Baker et al. Definition of the Differentiated Services Field (DS Field) in the
IPv4 and IPv6 Headers. RFC 2474. Dec. 1998. doi: 10.17487/RFC2474. url:
https://rfc-editor.org/rfc/rfc2474.txt (cit. on p. 11).

[8] Steven Bellovin. The Security Flag in the IPv4 Header. RFC 3514. Apr. 2003.
doi: 10.17487/RFC3514. url: https://rfc-editor.org/rfc/rfc3514.txt
(cit. on p. 12).

85

https://www.alexa.com/topsites
https://www.alexa.com/topsites
https://doi.org/10.17487/RFC6438
https://rfc-editor.org/rfc/rfc6438.txt
https://doi.org/10.17487/RFC6437
https://rfc-editor.org/rfc/rfc6437.txt
https://docs.aws.amazon.com/general/latest/gr/aws-ip-ranges.html
https://docs.aws.amazon.com/general/latest/gr/aws-ip-ranges.html
https://doi.org/10.1145/1177080.1177100
http://doi.acm.org/10.1145/1177080.1177100
http://doi.acm.org/10.1145/1177080.1177100
https://doi.org/10.1109/IFIPNetworking.2015.7145323
https://doi.org/10.17487/RFC2474
https://rfc-editor.org/rfc/rfc2474.txt
https://doi.org/10.17487/RFC3514
https://rfc-editor.org/rfc/rfc3514.txt

Bibliography

[9] Adam Bender, Rob Sherwood, and Neil Spring. “Fixing Ally’s Growing Pains
with Velocity Modeling.” In: Proceedings of the 8th ACM SIGCOMM Conference
on Internet Measurement. IMC ’08. Vouliagmeni, Greece: ACM, 2008, pp. 337–
342. isbn: 978-1-60558-334-1. doi: 10.1145/1452520.1452560. url: http:
//doi.acm.org/10.1145/1452520.1452560 (cit. on p. 42).

[10] Arthur Berger et al. “Internet nameserver IPv4 and IPv6 address relationships.”
In: Proceedings of the 2013 conference on Internet measurement conference. ACM.
2013, pp. 91–104 (cit. on pp. 3, 42).

[11] Robert Beverly and Arthur Berger. “Server siblings: Identifying shared IPv4/IPv6
infrastructure via active fingerprinting.” In: International Conference on Passive
and Active Network Measurement. Springer. 2015, pp. 149–161 (cit. on pp. 1, 3,
39, 41–44, 46, 50, 53, 62).

[12] Phillipe Biondi. Scapy. Jan. 2018. url: http://www.secdev.org/projects/
scapy/ (cit. on p. 65).

[13] David L. Black. Relaxing Restrictions on Explicit Congestion Notification (ECN)
Experimentation. RFC 8311. Jan. 2018. doi: 10 . 17487 / RFC8311. url:
https://rfc-editor.org/rfc/rfc8311.txt (cit. on pp. 26, 28).

[14] Ethan Blanton, Dr. Vern Paxson, and Mark Allman. TCP Congestion Control.
RFC 5681. Sept. 2009. doi: 10.17487/RFC5681. url: https://rfc-editor.
org/rfc/rfc5681.txt (cit. on p. 30).

[15] David Borman. TCP Options and Maximum Segment Size (MSS). RFC 6691.
July 2012. doi: 10.17487/RFC6691. url: https://rfc-editor.org/rfc/
rfc6691.txt (cit. on p. 29).

[16] David Borman et al. TCP Extensions for High Performance. RFC 7323. Sept.
2014. doi: 10.17487/RFC7323. url: https://rfc-editor.org/rfc/rfc7323.
txt (cit. on pp. 25, 28–30, 40, 41, 53, 57–59, 62, 67).

[17] Sabri Boughorbel, Fethi Jarray, and Mohammed El-Anbari. “Optimal classifier
for imbalanced data using Matthews Correlation Coefficient metric.” PLOS ONE
12.6 (June 2017), pp. 1–17. doi: 10.1371/journal.pone.0177678. url:
https://doi.org/10.1371/journal.pone.0177678 (cit. on p. 56).

[18] Robert T. Braden. Requirements for Internet Hosts - Application and Support.
RFC 1123. Oct. 1989. doi: 10.17487/RFC1123. url: https://rfc-editor.
org/rfc/rfc1123.txt (cit. on pp. 5, 6).

[19] Robert T. Braden. Requirements for Internet Hosts - Communication Layers.
RFC 1122. Oct. 1989. doi: 10.17487/RFC1122. url: https://rfc-editor.
org/rfc/rfc1122.txt (cit. on pp. 5, 6, 22, 24, 29).

[20] Robert T. Braden, David Borman, and Craig Partridge. Computing the Internet
checksum. RFC 1071. Sept. 1988. doi: 10.17487/RFC1071. url: https:
//rfc-editor.org/rfc/rfc1071.txt (cit. on p. 19).

86

https://doi.org/10.1145/1452520.1452560
http://doi.acm.org/10.1145/1452520.1452560
http://doi.acm.org/10.1145/1452520.1452560
http://www.secdev.org/projects/scapy/
http://www.secdev.org/projects/scapy/
https://doi.org/10.17487/RFC8311
https://rfc-editor.org/rfc/rfc8311.txt
https://doi.org/10.17487/RFC5681
https://rfc-editor.org/rfc/rfc5681.txt
https://rfc-editor.org/rfc/rfc5681.txt
https://doi.org/10.17487/RFC6691
https://rfc-editor.org/rfc/rfc6691.txt
https://rfc-editor.org/rfc/rfc6691.txt
https://doi.org/10.17487/RFC7323
https://rfc-editor.org/rfc/rfc7323.txt
https://rfc-editor.org/rfc/rfc7323.txt
https://doi.org/10.1371/journal.pone.0177678
https://doi.org/10.1371/journal.pone.0177678
https://doi.org/10.17487/RFC1123
https://rfc-editor.org/rfc/rfc1123.txt
https://rfc-editor.org/rfc/rfc1123.txt
https://doi.org/10.17487/RFC1122
https://rfc-editor.org/rfc/rfc1122.txt
https://rfc-editor.org/rfc/rfc1122.txt
https://doi.org/10.17487/RFC1071
https://rfc-editor.org/rfc/rfc1071.txt
https://rfc-editor.org/rfc/rfc1071.txt

Bibliography

[21] Leo Breiman. “Random Forests.” Machine Learning 45.1 (Oct. 2001), pp. 5–32.
issn: 1573-0565. doi: 10.1023/A:1010933404324. url: https://doi.org/
10.1023/A:1010933404324 (cit. on p. 56).

[22] Center for Applied Internet Data Analysis (CAIDA). Archipelago (Ark) Measure-
ment Infrastructure. Dec. 2018. url: https://www.caida.org/projects/ark/
(cit. on p. 41).

[23] Ravi Chandra et al. Multiprotocol Extensions for BGP-4. RFC 4760. Jan. 2007.
doi: 10.17487/RFC4760. url: https://rfc-editor.org/rfc/rfc4760.txt
(cit. on p. 36).

[24] Tianqi Chen and Carlos Guestrin. “XGBoost: A Scalable Tree Boosting System.”
In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining. KDD ’16. San Francisco, California, USA: ACM,
2016, pp. 785–794. isbn: 978-1-4503-4232-2. doi: 10.1145/2939672.2939785.
url: http://doi.acm.org/10.1145/2939672.2939785 (cit. on pp. 56, 64, 68,
71).

[25] Kenjiro Cho, Matthew Luckie, and Bradley Huffaker. “Identifying IPv6 Network
Problems in the Dual-stack World.” In: Proceedings of the ACM SIGCOMM
Workshop on Network Troubleshooting: Research, Theory and Operations Practice
Meet Malfunctioning Reality. NetT ’04. Portland, Oregon, USA: ACM, 2004,
pp. 283–288. isbn: 1-58113-942-X. doi: 10.1145/1016687.1016697. url:
http://doi.acm.org/10.1145/1016687.1016697 (cit. on pp. 41, 42).

[26] Cisco Talos Intelligence Group. IPv6 unmasking via UPnP. Mar. 18, 2019. url:
https://blog.talosintelligence.com/2019/03/ipv6- unmasking- via-
upnp.html (cit. on p. 84).

[27] Cisco Talos Intelligence Group. VPNFilter. Dec. 2018. url: https://blog.
talosintelligence.com/2018/05/VPNFilter.html (cit. on p. 3).

[28] Cisco Umbrella. Cisco Umbrella 1 Million. Dec. 2018. url: https://umbrella.
cisco.com/blog/2016/12/14/cisco-umbrella-1-million/ (cit. on pp. 2, 44).

[29] Cloudflare. Cloudflare - IP Ranges. Mar. 2019. url: https://www.cloudflare.
com/ips (cit. on p. 48).

[30] Michelle Cotton et al. Internet Assigned Numbers Authority (IANA) Procedures
for the Management of the Service Name and Transport Protocol Port Number
Registry. RFC 6335. Aug. 2011. doi: 10.17487/RFC6335. url: https://rfc-
editor.org/rfc/rfc6335.txt (cit. on p. 26).

[31] Jakub Czyz et al. “Don’t Forget to Lock the Back Door! A Characterization of
IPv6 Network Security Policy.” In: NDSS. 2016 (cit. on pp. 1, 3, 41, 54).

[32] J. D. Day and H. Zimmermann. “The OSI reference model.” Proceedings of the
IEEE 71.12 (Dec. 1983), pp. 1334–1340. issn: 0018-9219. doi: 10.1109/PROC.
1983.12775 (cit. on pp. 5, 6).

87

https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://www.caida.org/projects/ark/
https://doi.org/10.17487/RFC4760
https://rfc-editor.org/rfc/rfc4760.txt
https://doi.org/10.1145/2939672.2939785
http://doi.acm.org/10.1145/2939672.2939785
https://doi.org/10.1145/1016687.1016697
http://doi.acm.org/10.1145/1016687.1016697
https://blog.talosintelligence.com/2019/03/ipv6-unmasking-via-upnp.html
https://blog.talosintelligence.com/2019/03/ipv6-unmasking-via-upnp.html
https://blog.talosintelligence.com/2018/05/VPNFilter.html
https://blog.talosintelligence.com/2018/05/VPNFilter.html
https://umbrella.cisco.com/blog/2016/12/14/cisco-umbrella-1-million/
https://umbrella.cisco.com/blog/2016/12/14/cisco-umbrella-1-million/
https://www.cloudflare.com/ips
https://www.cloudflare.com/ips
https://doi.org/10.17487/RFC6335
https://rfc-editor.org/rfc/rfc6335.txt
https://rfc-editor.org/rfc/rfc6335.txt
https://doi.org/10.1109/PROC.1983.12775
https://doi.org/10.1109/PROC.1983.12775

Bibliography

[33] Dr. Steve E. Deering. Host extensions for IP multicasting. RFC 1112. Aug. 1989.
doi: 10.17487/RFC1112. url: https://rfc-editor.org/rfc/rfc1112.txt
(cit. on pp. 14, 16).

[34] Dr. Steve E. Deering. ICMP Router Discovery Messages. RFC 1256. Sept. 1991.
doi: 10.17487/RFC1256. url: https://rfc-editor.org/rfc/rfc1256.txt
(cit. on p. 22).

[35] Dr. Steve E. Deering and Robert M. Hinden. Internet Protocol, Version 6 (IPv6)
Specification. RFC 1883. Dec. 1995. doi: 10.17487/RFC1883. url: https:
//rfc-editor.org/rfc/rfc1883.txt (cit. on pp. 1, 8).

[36] Dr. Steve E. Deering and Robert M. Hinden. Internet Protocol, Version 6 (IPv6)
Specification. RFC 8200. July 2017. doi: 10.17487/RFC8200. url: https:
//rfc-editor.org/rfc/rfc8200.txt (cit. on pp. 1, 2, 8, 11, 12, 19, 20, 42, 48).

[37] Dr. Steve E. Deering and Robert M. Hinden. IP Version 6 Addressing Architecture.
RFC 4291. Feb. 2006. doi: 10.17487/RFC4291. url: https://rfc-editor.
org/rfc/rfc4291.txt (cit. on pp. 16, 17).

[38] Dr. Steve E. Deering and Jeffrey Mogul. Path MTU discovery. RFC 1191. Nov.
1990. doi: 10.17487/RFC1191. url: https://rfc-editor.org/rfc/rfc1191.
txt (cit. on p. 41).

[39] Carlo M. Demichelis and Philip Chimento. IP Packet Delay Variation Metric
for IP Performance Metrics (IPPM). RFC 3393. Nov. 2002. doi: 10.17487/
RFC3393. url: https://rfc-editor.org/rfc/rfc3393.txt (cit. on p. 41).

[40] Amogh Dhamdhere et al. “Measuring the Deployment of IPv6: Topology, Routing
and Performance.” In: Proceedings of the 2012 Internet Measurement Conference.
IMC ’12. Boston, Massachusetts, USA: ACM, 2012, pp. 537–550. isbn: 978-1-
4503-1705-4. doi: 10.1145/2398776.2398832. url: http://doi.acm.org/10.
1145/2398776.2398832 (cit. on pp. 1, 41).

[41] W. Diffie and M. Hellman. “New directions in cryptography.” IEEE Transactions
on Information Theory 22.6 (Nov. 1976), pp. 644–654. issn: 0018-9448. doi:
10.1109/TIT.1976.1055638 (cit. on p. 34).

[42] Thomas Dreibholz. An IPv4 Flowlabel Option. Internet-Draft draft-dreibholz-
ipv4-flowlabel-28. Work in Progress. Internet Engineering Task Force, Sept. 2018.
9 pp. url: https://datatracker.ietf.org/doc/html/draft-dreibholz-
ipv4-flowlabel-28 (cit. on p. 12).

[43] Martin Duke et al. A Roadmap for Transmission Control Protocol (TCP) Spec-
ification Documents. RFC 7414. Feb. 2015. doi: 10.17487/RFC7414. url:
https://rfc-editor.org/rfc/rfc7414.txt (cit. on p. 25).

[44] Wesley Eddy. TCP SYN Flooding Attacks and Common Mitigations. RFC 4987.
Aug. 2007. doi: 10.17487/RFC4987. url: https://rfc-editor.org/rfc/
rfc4987.txt (cit. on p. 59).

88

https://doi.org/10.17487/RFC1112
https://rfc-editor.org/rfc/rfc1112.txt
https://doi.org/10.17487/RFC1256
https://rfc-editor.org/rfc/rfc1256.txt
https://doi.org/10.17487/RFC1883
https://rfc-editor.org/rfc/rfc1883.txt
https://rfc-editor.org/rfc/rfc1883.txt
https://doi.org/10.17487/RFC8200
https://rfc-editor.org/rfc/rfc8200.txt
https://rfc-editor.org/rfc/rfc8200.txt
https://doi.org/10.17487/RFC4291
https://rfc-editor.org/rfc/rfc4291.txt
https://rfc-editor.org/rfc/rfc4291.txt
https://doi.org/10.17487/RFC1191
https://rfc-editor.org/rfc/rfc1191.txt
https://rfc-editor.org/rfc/rfc1191.txt
https://doi.org/10.17487/RFC3393
https://doi.org/10.17487/RFC3393
https://rfc-editor.org/rfc/rfc3393.txt
https://doi.org/10.1145/2398776.2398832
http://doi.acm.org/10.1145/2398776.2398832
http://doi.acm.org/10.1145/2398776.2398832
https://doi.org/10.1109/TIT.1976.1055638
https://datatracker.ietf.org/doc/html/draft-dreibholz-ipv4-flowlabel-28
https://datatracker.ietf.org/doc/html/draft-dreibholz-ipv4-flowlabel-28
https://doi.org/10.17487/RFC7414
https://rfc-editor.org/rfc/rfc7414.txt
https://doi.org/10.17487/RFC4987
https://rfc-editor.org/rfc/rfc4987.txt
https://rfc-editor.org/rfc/rfc4987.txt

Bibliography

[45] Eric Dumazet. tcp: randomize timestamps on syncookies. Dec. 2018. url:
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.
git/commit/?id=84b114b9 (cit. on pp. 43, 58, 59).

[46] Fastly. Accessing Fastly’s IP ranges. Mar. 2019. url: https://docs.fastly.
com/guides/securing-communications/accessing-fastlys-ip-ranges (cit.
on p. 48).

[47] Dennis Ferguson, Acee Lindem, and John Moy. OSPF for IPv6. RFC 5340. July
2008. doi: 10.17487/RFC5340. url: https://rfc-editor.org/rfc/rfc5340.
txt (cit. on p. 36).

[48] Sally Floyd, Dr. K. K. Ramakrishnan, and David L. Black. The Addition of
Explicit Congestion Notification (ECN) to IP. RFC 3168. Sept. 2001. doi:
10.17487/RFC3168. url: https://rfc-editor.org/rfc/rfc3168.txt (cit.
on pp. 11, 28).

[49] Sally Floyd et al. TCP Selective Acknowledgment Options. RFC 2018. Oct. 1996.
doi: 10.17487/RFC2018. url: https://rfc-editor.org/rfc/rfc2018.txt
(cit. on p. 30).

[50] Vince Fuller and Tony Li. Classless Inter-domain Routing (CIDR): The Internet
Address Assignment and Aggregation Plan. RFC 4632. Aug. 2006. doi: 10.
17487/RFC4632. url: https://rfc-editor.org/rfc/rfc4632.txt (cit. on
p. 14).

[51] Fernando Gont. Deprecation of ICMP Source Quench Messages. RFC 6633. May
2012. doi: 10.17487/RFC6633. url: https://rfc-editor.org/rfc/rfc6633.
txt (cit. on p. 22).

[52] Fernando Gont. Processing of IPv6 "Atomic" Fragments. RFC 6946. May 2013.
doi: 10.17487/RFC6946. url: https://rfc-editor.org/rfc/rfc6946.txt
(cit. on p. 42).

[53] Fernando Gont, Will (Shucheng) LIU, and Tore Anderson. Generation of IPv6
Atomic Fragments Considered Harmful. RFC 8021. Jan. 2017. doi: 10.17487/
RFC8021. url: https://rfc-editor.org/rfc/rfc8021.txt (cit. on p. 42).

[54] Fernando Gont and Carlos Pignataro. Formally Deprecating Some ICMPv4 Mes-
sage Types. RFC 6918. Apr. 2013. doi: 10.17487/RFC6918. url: https:
//rfc-editor.org/rfc/rfc6918.txt (cit. on p. 22).

[55] Google. Google IPv6 - Statistics. Jan. 2019. url: https://www.google.com/
intl/en/ipv6/statistics/ (cit. on p. 13).

[56] Mukesh Gupta and Alex Conta. Internet Control Message Protocol (ICMPv6)
for the Internet Protocol Version 6 (IPv6) Specification. RFC 4443. Mar. 2006.
doi: 10.17487/RFC4443. url: https://rfc-editor.org/rfc/rfc4443.txt
(cit. on pp. 19–23, 48).

89

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=84b114b9
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=84b114b9
https://docs.fastly.com/guides/securing-communications/accessing-fastlys-ip-ranges
https://docs.fastly.com/guides/securing-communications/accessing-fastlys-ip-ranges
https://doi.org/10.17487/RFC5340
https://rfc-editor.org/rfc/rfc5340.txt
https://rfc-editor.org/rfc/rfc5340.txt
https://doi.org/10.17487/RFC3168
https://rfc-editor.org/rfc/rfc3168.txt
https://doi.org/10.17487/RFC2018
https://rfc-editor.org/rfc/rfc2018.txt
https://doi.org/10.17487/RFC4632
https://doi.org/10.17487/RFC4632
https://rfc-editor.org/rfc/rfc4632.txt
https://doi.org/10.17487/RFC6633
https://rfc-editor.org/rfc/rfc6633.txt
https://rfc-editor.org/rfc/rfc6633.txt
https://doi.org/10.17487/RFC6946
https://rfc-editor.org/rfc/rfc6946.txt
https://doi.org/10.17487/RFC8021
https://doi.org/10.17487/RFC8021
https://rfc-editor.org/rfc/rfc8021.txt
https://doi.org/10.17487/RFC6918
https://rfc-editor.org/rfc/rfc6918.txt
https://rfc-editor.org/rfc/rfc6918.txt
https://www.google.com/intl/en/ipv6/statistics/
https://www.google.com/intl/en/ipv6/statistics/
https://doi.org/10.17487/RFC4443
https://rfc-editor.org/rfc/rfc4443.txt

Bibliography

[57] John A. Hawkinson and Tony J. Bates. Guidelines for creation, selection, and
registration of an Autonomous System (AS). RFC 1930. Mar. 1996. doi:
10.17487/RFC1930. url: https://rfc-editor.org/rfc/rfc1930.txt (cit.
on p. 36).

[58] Bob Hinden. Applicability Statement for the Implementation of Classless Inter-
Domain Routing (CIDR). RFC 1517. Sept. 1993. doi: 10.17487/RFC1517.
url: https://rfc-editor.org/rfc/rfc1517.txt (cit. on p. 14).

[59] Christian Hopps and Dave Thaler. Multipath Issues in Unicast and Multicast
Next-Hop Selection. RFC 2991. Nov. 2000. doi: 10.17487/RFC2991. url:
https://rfc-editor.org/rfc/rfc2991.txt (cit. on p. 38).

[60] IANA. IANA IPv4 Address Space Registry. Jan. 2019. url: https://www.
iana.org/assignments/ipv4-address-space (cit. on p. 15).

[61] IANA. IANA IPv4 Special-Purpose Address Registry. Jan. 2019. url: https:
//www.iana.org/assignments/iana-ipv4-special-registry (cit. on p. 17).

[62] IANA. Internet Control Message Protocol (ICMP) Parameters. Jan. 2019. url:
https://www.iana.org/assignments/icmp-parameters (cit. on pp. 22, 23).

[63] IANA. Internet Control Message Protocol version 6 (ICMPv6) Parameters. Jan.
2019. url: https://www.iana.org/assignments/icmpv6-parameters (cit. on
pp. 22, 23).

[64] IANA. Internet Protocol Version 4 (IPv4) Parameters. Jan. 2019. url: https:
//www.iana.org/assignments/ip-parameters (cit. on p. 13).

[65] IANA. Internet Protocol Version 6 Address Space. Jan. 2019. url: https:
//www.iana.org/assignments/ipv6-address-space (cit. on pp. 15, 17).

[66] IANA. Protocol Numbers. Jan. 2019. url: https : / / www . iana . org /
assignments/protocol-numbers (cit. on pp. 13, 20, 26).

[67] IANA. Service Name and Transport Protocol Port Number Registry. Feb. 2019.
url: https://www.iana.org/assignments/service-names-port-numbers
(cit. on pp. 26, 39, 49, 66).

[68] IANA. Transmission Control Protocol (TCP) Parameters. Feb. 2019. url:
https://www.iana.org/assignments/tcp-parameters (cit. on p. 29).

[69] ICANN. Available Pool of Unallocated IPv4 Internet Addresses Now Completely
Emptied. Dec. 2018. url: https://www.icann.org/en/system/files/press-
materials/release-03feb11-en.pdf (cit. on pp. 1, 13).

[70] Incapsula. Whitelist Incapsula IP addresses & Setting IP restriction rules. Mar.
2019. url: https://support.incapsula.com/hc/en-us/articles/200627570-
Restricting-direct-access-to-your-website-Incapsula-s-IP-addresses-
(cit. on p. 48).

90

https://doi.org/10.17487/RFC1930
https://rfc-editor.org/rfc/rfc1930.txt
https://doi.org/10.17487/RFC1517
https://rfc-editor.org/rfc/rfc1517.txt
https://doi.org/10.17487/RFC2991
https://rfc-editor.org/rfc/rfc2991.txt
https://www.iana.org/assignments/ipv4-address-space
https://www.iana.org/assignments/ipv4-address-space
https://www.iana.org/assignments/iana-ipv4-special-registry
https://www.iana.org/assignments/iana-ipv4-special-registry
https://www.iana.org/assignments/icmp-parameters
https://www.iana.org/assignments/icmpv6-parameters
https://www.iana.org/assignments/ip-parameters
https://www.iana.org/assignments/ip-parameters
https://www.iana.org/assignments/ipv6-address-space
https://www.iana.org/assignments/ipv6-address-space
https://www.iana.org/assignments/protocol-numbers
https://www.iana.org/assignments/protocol-numbers
https://www.iana.org/assignments/service-names-port-numbers
https://www.iana.org/assignments/tcp-parameters
https://www.icann.org/en/system/files/press-materials/release-03feb11-en.pdf
https://www.icann.org/en/system/files/press-materials/release-03feb11-en.pdf
https://support.incapsula.com/hc/en-us/articles/200627570-Restricting-direct-access-to-your-website-Incapsula-s-IP-addresses-
https://support.incapsula.com/hc/en-us/articles/200627570-Restricting-direct-access-to-your-website-Incapsula-s-IP-addresses-

Bibliography

[71] ISO/IEC. Information technology — Telecommunications and information ex-
change between systems — Intermediate System to Intermediate System intra-
domain routeing information exchange protocol for use in conjunction with the
protocol for providing the connectionless-mode network service. International Stan-
dard ISO/IEC 10589:2002(E). Nov. 2002 (cit. on p. 36).

[72] Michael James Silbersack. “Improving TCP/IP security through randomization
without sacrificing interoperability.” EuroBSDCon (Jan. 2005) (cit. on p. 58).

[73] K. Keys et al. “Internet-Scale IPv4 Alias Resolution With MIDAR.” IEEE/ACM
Transactions on Networking 21.2 (Apr. 2013), pp. 383–399. issn: 1063-6692.
doi: 10.1109/TNET.2012.2198887 (cit. on p. 42).

[74] Ken Keys. “Internet-scale IP Alias Resolution Techniques.” SIGCOMM Comput.
Commun. Rev. 40.1 (Jan. 2010), pp. 50–55. issn: 0146-4833. doi: 10.1145/
1672308.1672318. url: http://doi.acm.org/10.1145/1672308.1672318
(cit. on p. 42).

[75] Tadayoshi Kohno, Andre Broido, and Kimberly C Claffy. “Remote physical
device fingerprinting.” IEEE Transactions on Dependable and Secure Computing
2.2 (2005), pp. 93–108 (cit. on pp. 40–42, 50).

[76] Leaseweb. CDN: IP Ranges. Mar. 2019. url: https://kb.leaseweb.com/
customer-portal/cdn/cdn-ip-ranges (cit. on p. 48).

[77] Chris M. Lonvick and Tatu Ylonen. The Secure Shell (SSH) Authentication
Protocol. RFC 4252. Jan. 2006. doi: 10.17487/RFC4252. url: https://rfc-
editor.org/rfc/rfc4252.txt (cit. on pp. 33, 34).

[78] Chris M. Lonvick and Tatu Ylonen. The Secure Shell (SSH) Connection Protocol.
RFC 4254. Jan. 2006. doi: 10.17487/RFC4254. url: https://rfc-editor.
org/rfc/rfc4254.txt (cit. on pp. 33, 34).

[79] Chris M. Lonvick and Tatu Ylonen. The Secure Shell (SSH) Protocol Architecture.
RFC 4251. Jan. 2006. doi: 10.17487/RFC4251. url: https://rfc-editor.
org/rfc/rfc4251.txt (cit. on p. 33).

[80] Chris M. Lonvick and Tatu Ylonen. The Secure Shell (SSH) Transport Layer
Protocol. RFC 4253. Jan. 2006. doi: 10.17487/RFC4253. url: https://rfc-
editor.org/rfc/rfc4253.txt (cit. on pp. 33, 59).

[81] Matthew Luckie et al. “Speedtrap: Internet-scale IPv6 Alias Resolution.” In:
Proceedings of the 2013 Conference on Internet Measurement Conference. IMC
’13. Barcelona, Spain: ACM, 2013, pp. 119–126. isbn: 978-1-4503-1953-9. doi:
10.1145/2504730.2504759. url: http://doi.acm.org/10.1145/2504730.
2504759 (cit. on p. 42).

[82] Gary S. Malkin. RIP Version 2. RFC 2453. Nov. 1998. doi: 10.17487/RFC2453.
url: https://rfc-editor.org/rfc/rfc2453.txt (cit. on p. 36).

91

https://doi.org/10.1109/TNET.2012.2198887
https://doi.org/10.1145/1672308.1672318
https://doi.org/10.1145/1672308.1672318
http://doi.acm.org/10.1145/1672308.1672318
https://kb.leaseweb.com/customer-portal/cdn/cdn-ip-ranges
https://kb.leaseweb.com/customer-portal/cdn/cdn-ip-ranges
https://doi.org/10.17487/RFC4252
https://rfc-editor.org/rfc/rfc4252.txt
https://rfc-editor.org/rfc/rfc4252.txt
https://doi.org/10.17487/RFC4254
https://rfc-editor.org/rfc/rfc4254.txt
https://rfc-editor.org/rfc/rfc4254.txt
https://doi.org/10.17487/RFC4251
https://rfc-editor.org/rfc/rfc4251.txt
https://rfc-editor.org/rfc/rfc4251.txt
https://doi.org/10.17487/RFC4253
https://rfc-editor.org/rfc/rfc4253.txt
https://rfc-editor.org/rfc/rfc4253.txt
https://doi.org/10.1145/2504730.2504759
http://doi.acm.org/10.1145/2504730.2504759
http://doi.acm.org/10.1145/2504730.2504759
https://doi.org/10.17487/RFC2453
https://rfc-editor.org/rfc/rfc2453.txt

Bibliography

[83] Gary S. Malkin and Robert E. Minnear. RIPng for IPv6. RFC 2080. Jan. 1997.
doi: 10.17487/RFC2080. url: https://rfc-editor.org/rfc/rfc2080.txt
(cit. on p. 36).

[84] Brian W. Matthews. “Comparison of the predicted and observed secondary struc-
ture of T4 phage lysozyme.” Biochimica et Biophysica Acta (BBA) - Protein
Structure 405.2 (1975), pp. 442–451. issn: 0005-2795. doi: https://doi.org/
10.1016/0005-2795(75)90109-9. url: http://www.sciencedirect.com/
science/article/pii/0005279575901099 (cit. on p. 56).

[85] MaxMind Inc. GeoLite2 Free Downloadable Databases. This product includes
GeoLite2 data created by MaxMind, available from https://www.maxmind.com.
Jan. 2019. url: https://dev.maxmind.com/geoip/geoip2/geolite2/ (cit. on
pp. 54, 62).

[86] David Mazieres and Wayne Davison. ssh-keyscan – gather ssh public keys. May
2017. url: https://man.openbsd.org/ssh-keyscan.1 (cit. on p. 35).

[87] David Meyer. RouteViews Project. Dec. 2018. url: http://www.routeviews.
org (cit. on p. 41).

[88] David Meyer, Michelle Cotton, and Leo Vegoda. IANA Guidelines for IPv4
Multicast Address Assignments. RFC 5771. Mar. 2010. doi: 10.17487/RFC5771.
url: https://rfc-editor.org/rfc/rfc5771.txt (cit. on p. 17).

[89] Michael Tuexen. Don’t expose the uptime via the TCP timestamps. Aug. 2018.
url: https://svnweb.freebsd.org/base?view=revision&revision=338053
(cit. on p. 59).

[90] Michael Tuexen. Use updated TCP timestamps when retransmitting SYN-ACK
using the syncache code path. June 2018. url: https://svnweb.freebsd.org/
base?view=revision&revision=335194 (cit. on p. 59).

[91] Walter Milliken, Trevor Mendez, and Dr. Craig Partridge. Host Anycasting Service.
RFC 1546. Nov. 1993. doi: 10.17487/RFC1546. url: https://rfc-editor.
org/rfc/rfc1546.txt (cit. on p. 16).

[92] Jeffrey Mogul. Broadcasting Internet datagrams in the presence of subnets. RFC
922. Oct. 1984. doi: 10.17487/RFC0922. url: https://rfc-editor.org/
rfc/rfc922.txt (cit. on p. 16).

[93] John Moy. OSPF Version 2. RFC 2328. Apr. 1998. doi: 10.17487/RFC2328.
url: https://rfc-editor.org/rfc/rfc2328.txt (cit. on p. 36).

[94] NLNOG. NLNOG RING. Dec. 2018. url: https://ring.nlnog.net/ (cit. on
pp. 2, 4, 43–45, 60).

[95] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python.” Journal of
Machine Learning Research 12 (2011), pp. 2825–2830 (cit. on pp. 43, 55, 64, 68,
69).

92

https://doi.org/10.17487/RFC2080
https://rfc-editor.org/rfc/rfc2080.txt
https://doi.org/https://doi.org/10.1016/0005-2795(75)90109-9
https://doi.org/https://doi.org/10.1016/0005-2795(75)90109-9
http://www.sciencedirect.com/science/article/pii/0005279575901099
http://www.sciencedirect.com/science/article/pii/0005279575901099
https://dev.maxmind.com/geoip/geoip2/geolite2/
https://man.openbsd.org/ssh-keyscan.1
http://www.routeviews.org
http://www.routeviews.org
https://doi.org/10.17487/RFC5771
https://rfc-editor.org/rfc/rfc5771.txt
https://svnweb.freebsd.org/base?view=revision&revision=338053
https://svnweb.freebsd.org/base?view=revision&revision=335194
https://svnweb.freebsd.org/base?view=revision&revision=335194
https://doi.org/10.17487/RFC1546
https://rfc-editor.org/rfc/rfc1546.txt
https://rfc-editor.org/rfc/rfc1546.txt
https://doi.org/10.17487/RFC0922
https://rfc-editor.org/rfc/rfc922.txt
https://rfc-editor.org/rfc/rfc922.txt
https://doi.org/10.17487/RFC2328
https://rfc-editor.org/rfc/rfc2328.txt
https://ring.nlnog.net/

Bibliography

[96] David C. Plummer. An Ethernet Address Resolution Protocol: Or Converting
Network Protocol Addresses to 48.bit Ethernet Address for Transmission on Eth-
ernet Hardware. RFC 826. Nov. 1982. doi: 10.17487/RFC0826. url: https:
//rfc-editor.org/rfc/rfc826.txt (cit. on p. 22).

[97] Jon Postel. DoD standard Internet Protocol. RFC 760. Jan. 1980. doi: 10.
17487/RFC0760. url: https://rfc-editor.org/rfc/rfc760.txt (cit. on
p. 8).

[98] Jon Postel. Internet Control Message Protocol. RFC 792. Sept. 1981. doi:
10.17487/RFC0792. url: https://rfc-editor.org/rfc/rfc792.txt (cit. on
pp. 19–23, 48).

[99] Jon Postel. Internet Protocol. RFC 791. Sept. 1981. doi: 10.17487/RFC0791.
url: https://rfc-editor.org/rfc/rfc791.txt (cit. on pp. 8, 11–14, 19, 48).

[100] Jon Postel. Transmission Control Protocol. RFC 793. Sept. 1981. doi: 10.
17487/RFC0793. url: https://rfc-editor.org/rfc/rfc793.txt (cit. on
pp. 19, 25, 28–30).

[101] Jon Postel. User Datagram Protocol. RFC 768. Aug. 1980. doi: 10.17487/
RFC0768. url: https://rfc-editor.org/rfc/rfc768.txt (cit. on p. 19).

[102] Yakov Rekhter, Susan Hares, and Dr. Tony Li. A Border Gateway Protocol 4
(BGP-4). RFC 4271. Jan. 2006. doi: 10.17487/RFC4271. url: https://rfc-
editor.org/rfc/rfc4271.txt (cit. on pp. 36, 46).

[103] RIPE NCC. IPv4 Address Allocation and Assignment Policies for the RIPE NCC
Service Region. Mar. 2019. url: https://www.ripe.net/publications/
docs/ripe-708 (cit. on p. 57).

[104] RIPE NCC. IPv6 Address Allocation and Assignment Policy. Mar. 2019. url:
https://www.ripe.net/publications/docs/ripe-707 (cit. on p. 57).

[105] RIPE NCC. RIPE Atlas. Dec. 2018. url: https://atlas.ripe.net (cit. on
pp. 2, 4, 43–45).

[106] RIPE NCC. RIPE Atlas - Network Requirements. Dec. 2018. url: https:
//atlas.ripe.net/get-involved/become-an-anchor-host/ (cit. on p. 60).

[107] RIPE NCC. Routing Information Service (RIS). Dec. 2018. url: https:
//www.ripe.net/ris (cit. on p. 41).

[108] Q. Scheitle et al. “Large-scale classification of IPv6-IPv4 siblings with variable
clock skew.” In: 2017 Network Traffic Measurement and Analysis Conference
(TMA). June 2017, pp. 1–9. doi: 10.23919/TMA.2017.8002901 (cit. on pp. 1–3,
39, 42–46, 49, 50, 53–56, 59, 60, 62, 64, 65, 67, 69).

[109] Quirin Scheitle et al. “A Long Way to the Top: Significance, Structure, and
Stability of Internet Top Lists.” In: Proceedings of the Internet Measurement
Conference 2018. IMC ’18. Boston, MA, USA: ACM, 2018, pp. 478–493. isbn:
978-1-4503-5619-0. doi: 10.1145/3278532.3278574. url: http://doi.acm.
org/10.1145/3278532.3278574 (cit. on p. 45).

93

https://doi.org/10.17487/RFC0826
https://rfc-editor.org/rfc/rfc826.txt
https://rfc-editor.org/rfc/rfc826.txt
https://doi.org/10.17487/RFC0760
https://doi.org/10.17487/RFC0760
https://rfc-editor.org/rfc/rfc760.txt
https://doi.org/10.17487/RFC0792
https://rfc-editor.org/rfc/rfc792.txt
https://doi.org/10.17487/RFC0791
https://rfc-editor.org/rfc/rfc791.txt
https://doi.org/10.17487/RFC0793
https://doi.org/10.17487/RFC0793
https://rfc-editor.org/rfc/rfc793.txt
https://doi.org/10.17487/RFC0768
https://doi.org/10.17487/RFC0768
https://rfc-editor.org/rfc/rfc768.txt
https://doi.org/10.17487/RFC4271
https://rfc-editor.org/rfc/rfc4271.txt
https://rfc-editor.org/rfc/rfc4271.txt
https://www.ripe.net/publications/docs/ripe-708
https://www.ripe.net/publications/docs/ripe-708
https://www.ripe.net/publications/docs/ripe-707
https://atlas.ripe.net
https://atlas.ripe.net/get-involved/become-an-anchor-host/
https://atlas.ripe.net/get-involved/become-an-anchor-host/
https://www.ripe.net/ris
https://www.ripe.net/ris
https://doi.org/10.23919/TMA.2017.8002901
https://doi.org/10.1145/3278532.3278574
http://doi.acm.org/10.1145/3278532.3278574
http://doi.acm.org/10.1145/3278532.3278574

Bibliography

[110] William A. Simpson et al. Neighbor Discovery for IP version 6 (IPv6). RFC
4861. Sept. 2007. doi: 10.17487/RFC4861. url: https://rfc-editor.org/
rfc/rfc4861.txt (cit. on p. 22).

[111] Neil Spring, Ratul Mahajan, and David Wetherall. “Measuring ISP Topologies
with Rocketfuel.” In: Proceedings of the 2002 Conference on Applications, Tech-
nologies, Architectures, and Protocols for Computer Communications. SIGCOMM
’02. Pittsburgh, Pennsylvania, USA: ACM, 2002, pp. 133–145. isbn: 1-58113-
570-X. doi: 10.1145/633025.633039. url: http://doi.acm.org/10.1145/
633025.633039 (cit. on p. 42).

[112] Stackpath. IP Blocks. Mar. 2019. url: https://support.stackpath.com/hc/
en-us/articles/360001091666-IP-Blocks (cit. on p. 48).

[113] Richard M. Stallman and David MacKenzie. comm - compare two sorted files line
by line. Jan. 2018. url: http://www.gnu.org/software/coreutils/comm
(cit. on p. 45).

[114] Henri Theil. “A Rank-Invariant Method of Linear and Polynomial Regression
Analysis.” In: Henri Theil’s Contributions to Economics and Econometrics:
Econometric Theory and Methodology. Ed. by Baldev Raj and Johan Koerts. Dor-
drecht: Springer Netherlands, 1992, pp. 345–381. isbn: 978-94-011-2546-8. doi:
10.1007/978-94-011-2546-8_20. url: https://doi.org/10.1007/978-94-
011-2546-8_20 (cit. on p. 53).

[115] Dr. Joseph D. Touch. Updated Specification of the IPv4 ID Field. RFC 6864. Feb.
2013. doi: 10.17487/RFC6864. url: https://rfc-editor.org/rfc/rfc6864.
txt (cit. on p. 12).

[116] Ole Trøan and Brian E. Carpenter. Deprecating the Anycast Prefix for 6to4 Relay
Routers. RFC 7526. May 2015. doi: 10.17487/RFC7526. url: https://rfc-
editor.org/rfc/rfc7526.txt (cit. on p. 17).

[117] Johanna Ullrich and Edgar R. Weippl. “Privacy is Not an Option: Attacking the
IPv6 Privacy Extension.” In: International Symposium on Recent Advances in
Intrusion Detection (RAID). Nov. 2015 (cit. on p. 1).

[118] Johanna Ullrich et al. “IPv6 Security: Attacks and Countermeasures in a Nut-
shell.” In: 8th USENIX Workshop on Offensive Technologies (WOOT). Aug. 2014
(cit. on p. 1).

[119] Kevin Vermeulen et al. “Multilevel MDA-Lite Paris Traceroute.” In: Proceedings
of the Internet Measurement Conference 2018. IMC ’18. Boston, MA, USA: ACM,
2018, pp. 29–42. isbn: 978-1-4503-5619-0. doi: 10.1145/3278532.3278536.
url: http://doi.acm.org/10.1145/3278532.3278536 (cit. on p. 84).

[120] David Wetherall, Neil Spring, and David Ely. Robust Explicit Congestion Noti-
fication (ECN) Signaling with Nonces. RFC 3540. June 2003. doi: 10.17487/
RFC3540. url: https://rfc-editor.org/rfc/rfc3540.txt (cit. on pp. 26,
28).

94

https://doi.org/10.17487/RFC4861
https://rfc-editor.org/rfc/rfc4861.txt
https://rfc-editor.org/rfc/rfc4861.txt
https://doi.org/10.1145/633025.633039
http://doi.acm.org/10.1145/633025.633039
http://doi.acm.org/10.1145/633025.633039
https://support.stackpath.com/hc/en-us/articles/360001091666-IP-Blocks
https://support.stackpath.com/hc/en-us/articles/360001091666-IP-Blocks
http://www.gnu.org/software/coreutils/comm
https://doi.org/10.1007/978-94-011-2546-8_20
https://doi.org/10.1007/978-94-011-2546-8_20
https://doi.org/10.1007/978-94-011-2546-8_20
https://doi.org/10.17487/RFC6864
https://rfc-editor.org/rfc/rfc6864.txt
https://rfc-editor.org/rfc/rfc6864.txt
https://doi.org/10.17487/RFC7526
https://rfc-editor.org/rfc/rfc7526.txt
https://rfc-editor.org/rfc/rfc7526.txt
https://doi.org/10.1145/3278532.3278536
http://doi.acm.org/10.1145/3278532.3278536
https://doi.org/10.17487/RFC3540
https://doi.org/10.17487/RFC3540
https://rfc-editor.org/rfc/rfc3540.txt

Bibliography

[121] X.Org Foundation. X Window System. Mar. 2019. url: https://x.org (cit. on
p. 34).

[122] Xiaoming Zhou and Piet Van Mieghem. “Hopcount and E2E delay: IPv6 versus
IPv4.” In: International Workshop on Passive and Active Network Measurement.
Springer. 2005, pp. 345–348 (cit. on pp. 41, 42).

95

https://x.org

Abbreviations

ACK Acknowledgment

API Application Programming Interface

ARP Address Resolution Protocol

AS Autonomous System

ASN Autonomous System Number

BGP Border Gateway Protocol

CAIDA Center for Applied Internet Data Analysis

CART Classification And Regression Tree

CDN Content Delivery Network

CIDR Classless Inter-Domain Routing

DDoS Distributed Denial of Service

DFZ Default-Free Zone

DNS Domain Name System

DoS Denial of Service

eBGP exterior Border Gateway Protocol

ECDSA Elliptic Curve Digital Signature Algorithm

ECMP Equal-Cost Multi-Path

ECN Explicit Congestion Notification

96

Abbreviations

Ed25519 Edwards Elliptic Curve Digital Signature Algorithm using Curve25519

FIN Finish

FNR False Negative Rate

FPR False Positive Rate

HLIM Hop Limit

HTTP Hyper Text Transfer Protocol

HTTPS Hyper Text Transfer Protocol Secure

IANA Internet Assigned Numbers Authority

iBGP interior Border Gateway Protocol

ICANN Internet Corporation of Assigned Names and Numbers

ICMP Internet Control Message Protocol

ICMPv4 Internet Control Message Protocol version 4

ICMPv6 Internet Control Message Protocol version 6

IETF Internet Engineering Task Force

IGMP Internet Group Management Protocol

IGP Interior Gateway Protocol

IHL Internet Header Length

IoT Internet of Things

IP Internet Protocol

IPv4 Internet Protocol version 4

IPv6 Internet Protocol version 6

IS-IS Intermediate System to Intermediate System

ISN Initial Sequence Number

ISO International Organization for Standardization

ISP Internet Service Provider

IXP Internet Exchange Point

LAN Local Area Network

97

Abbreviations

MAC Media Access Control

Message Authentication Code

MBT Monotonic Bounds Test

MCC Matthews Correlation Coefficient

MDA Multipath Detection Algorithm

MitM Man in the Middle

MLD Multicast Listener Discovery

MSS Maximum Segment Size

MTU Maximum Transmission Unit

NDP Neighbor Discovery Protocol

NIC Network Interface Card

NLNOG Netherlands Network Operator Group

NS Nonce Sum

NTP Network Time Protocol

OS Operating System

OSI Open Systems Interconnection

OSPF Open Shortest Path First

PAWS Protection Against Wrapped Sequences

PDU Protocol Data Unit

PMTU Path Maximum Transmission Unit

PPD Pairwise Point Distance

PSH Push

QoS Quality of Service

RFC Request For Comments

RIP Routing Information Protocol

RIPE NCC Réseaux IP Européens Network Coordination Centre

RIR Regional Internet Registry

98

Abbreviations

RIS Routing Information Service

RSA Rivest-Shamir-Adleman

RST Reset

RTT Round Trip Time

SACK Selective Acknowledgment

SMTP Simple Mail Transfer Protocol

SNMP Simple Network Management Protocol

SSH Secure Shell

SYN Synchronize

SYNACK Synchronize Acknowledgment

TCP Transmission Control Protocol

TS TCP Timestamps

TSecr Timestamp Echo Reply

TSval Timestamp Value

TTL Time To Live

UDP User Datagram Protocol

UPnP Universal Plug and Play

URG Urgent

WS TCP Window Scale

XGBoost Extreme Gradient Boosting

99

	Abstract
	Acknowledgments
	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Thesis Outline

	2 Background
	2.1 The OSI and TCP/IP Reference Models
	2.2 Packet Transmission and Data Encapsulation Principles
	2.3 Protocols
	2.3.1 Internet Protocol - IP
	2.3.2 Internet Control Message Protocol - ICMP
	2.3.3 Transmission Control Protocol - TCP
	2.3.4 Secure Shell - SSH

	2.4 Routing
	2.4.1 Routing Basics
	2.4.2 Edge and Intermediate Routers

	2.5 Tracerouting
	2.6 IP Siblings
	2.7 Related Work
	2.7.1 Network Performance
	2.7.2 Network Security
	2.7.3 IP Sibling Detection

	3 Methodology
	3.1 Data Sources
	3.2 Data Acquisition
	3.2.1 Prerequisites
	3.2.2 Acquisition Workflow
	3.2.3 Ground Truth and Top List Server Data Acquisition

	3.3 Classification Features
	3.3.1 TCP Timestamp Features
	3.3.2 TCP Options Signature Feature
	3.3.3 SSH Keys and Agents Features
	3.3.4 Geolocation Feature

	3.4 Model Training and Feature Processing
	3.4.1 Test Data Construction
	3.4.2 Feature Selection
	3.4.3 Evaluation Metrics

	3.5 Determining Edge and Intermediate Routers
	3.6 Low-Runtime and Randomized Timestamps
	3.6.1 Low-Runtime Approach
	3.6.2 Special Timestamp Acquisition Methods

	3.7 Decision Processes
	3.8 Limitations

	4 Evaluation
	4.1 Preparation and Acquisition Evaluation
	4.1.1 Measurement Runtime Decisions
	4.1.2 Path Discovery
	4.1.3 Port Identification
	4.1.4 Timestamp Acquisition and Data Analysis

	4.2 Model Performance
	4.2.1 Feature Evaluation
	4.2.2 Randomized Timestamps Model Evaluation
	4.2.3 Complete Model Evaluation

	4.3 Special Acquisition Methods Evaluation
	4.4 Network Node IP Pairs Evaluation

	5 Conclusion
	5.1 Summary of Key Concepts
	5.2 Conclusion
	5.3 Future Work

	Bibliography
	Abbreviations

