
Emina Ahmetovic

Enabling PDF Signing on Mobile Devices
Using Qualified Electronic Signatures

Master’s Thesis

to achieve the university degree of

Diplom-Ingenieur

Master’s degree programme: Information and Computer Engineering

submitted to

Graz University of Technology

Supervisor

O.Univ.-Prof. Dipl.-Ing. Dr.techn. Reinhard Posch

Institute for Applied Information Processing and Communications (IAIK)

Graz, August 2019

Affidavit

I declare that I have authored this thesis independently, that I have not used
other than the declared sources/resources, and that I have explicitly indicated
all material which has been quoted either literally or by content from the
sources used. The text document uploaded to tugrazonline is identical to the
present master‘s thesis.

Date Signature

ii

Abstract

Government agencies, as well as the private sector, use qualified PDF signa-
tures to deliver flexibility, cost, and time savings in their services. For this
purpose, the Portable Document Format (PDF) is used in combination with
qualified electronic signatures (QES) to create legally binding e-documents
and assure their integrity, authenticity, and protection against repudiation.
The vast number of PDF processing applications demonstrate the general
availability of PDF signatures and their acceptance among users. Nevertheless,
the existing solutions are mainly tailored for stationary devices, such as per-
sonal computers, as they require additional hardware to provide multi-factor
authentication. The widespread use of mobile handsets in everyday life posed
a need for transaction-based solutions executable only on a single mobile
device. However, this topic remained insufficiently explored inside the mobile
e-Government sector.

In this thesis, we propose a mobile solution for PDF signing. We design
a model that tackles gaps from previous work and provides a user-friendly
and privacy-preserving service for creating qualified PDF signatures on a
single mobile device. Our solution is based on a novel server-side authenti-
cation concept, where the users engage alternative authentication methods
such as a fingerprint, to authenticate themselves against the remote Hardware
Security Module and generate a QES. We show the feasibility of our model by
implementing all the necessary components for our solution. Furthermore, we
demonstrate the practical applicability of our solution by integrating it into
the Austrian e-Government productive system.

iii

Zusammenfassung

Regierungsbehörden und privatwirtschaftliche Unternehmen verwenden qual-
ifizierte PDF-Signaturen, um ihre Flexibilität zu steigern und um Kosten und
Zeit zu sparen. Zu diesem Zweck wird das Portable Document Format (PDF)
in Kombination mit qualifizierten elektronischen Signaturen (QES) verwendet
um rechtsverbindliche elektronische Dokumente zu erstellen, sowie deren
Integrität und Authentizität zu gewährleisten.
Die große Anzahl von PDF-Anwendungen demonstrieren die allgemeine
Verfügbarkeit von PDF-Signaturen und ihre Akzeptanz bei den Nutzern.
Vorhandenen Lösungen sind jedoch hauptsächlich auf stationäre Geräte wie
PCs zugeschnitten, nachdem diese Lösungen zusätzliche Hardware benötigen
um Multifaktor-Authentifizierung zu ermöglichen. Durch die weite Verbre-
itung von Mobiltelefonen sind Regierungen auch daran interessiert PDF-
Signaturen auf diesen Mobilgeräten anzubieten. Dieses Thema wurde jedoch
im Bereich des mobilen E-Government nur unzureichend behandelt.

In dieser Arbeit präsentieren wir eine mobile Lösung für PDF-Signierung.
Wir entwerfen ein benutzerfreundliches Modell zur Erstellung qualifizierter
PDF-Signaturen auf Mobilgeräten mit Hilfe eines Signaturservers, welches
Lücken aus früheren Arbeiten schließt und die Privatssphäre der Nutzer
schützt. Unsere Lösung basiert auf einem neuartigen Konzept zur Authen-
tifizierung, bei dem der Benutzer verschiedene Authentifizierungsmethoden
wie einen Fingerabdruck anwenden kann, um sich gegenüber dem Hardware-
Sicherheitsmoduls des Servers zu authentifizieren, wodurch die Erstellung der
QES ermöglicht wird. Wir zeigen die Machbarkeit unseres Modells, indem wir
die einzelnen Komponenten unserer Lösung implementieren. Darüber hinaus
demonstrieren wir die praktische Anwendbarkeit unserer Lösung durch eine
Integration in das österreichische E-Government-Produktivsystem.

iv

Acknowledgements

First, I would like to thank Arne Tauber for his invaluable contribution
during my master thesis. This work would not have been possible without his
expertise and insights.
I am also most grateful to Thomas Lenz and other work colleagues, who
sacrificed their time to provide me creative feedback.
Lastly, special thanks to my husband Aid, my family, and friends for their
encouragement and support in every aspect of my life.

v

Contents

Abstract iii

Acknowledgements v

1. Introduction 1
1.1. Challenge . 2

1.2. Contribution . 3

1.3. Outline . 3

2. Background 5
2.1. Electronic signatures . 5

2.1.1. Advanced Electronic Signature. 6

2.1.2. Qualified Electronic Signature. 7

2.1.3. Basic principle. 8

2.2. Electronic signatures - standards 10

2.2.1. CAdES. 10

2.2.2. XAdES. 10

2.2.3. PAdES. 11

2.3. PDF basics . 12

2.3.1. File structure . 12

2.3.2. Signing process . 17

2.3.3. Multiple signatures and Incremental update 19

2.3.4. PDF file verification . 19

2.4. Summary of the chapter . 20

3. Related Work 22
3.1. The Citizen Card Concept . 22

3.2. PDF-AS . 23

3.3. PDF-Over . 24

3.4. QES on a single mobile device 26

vi

Contents

3.5. Summary of the chapter . 31

4. Model 32
4.1. Objectives . 32

4.2. Participants . 34

4.2.1. Signer environment . 35

4.2.2. Server environment. 36

4.3. Communication flow . 36

4.3.1. Interfaces . 37

4.3.2. Process steps . 37

4.4. Summary of the section . 40

5. Implementation 41
5.1. PDF Processing . 42

5.1.1. PDF Libary . 43

5.1.2. PDF signatures . 46

5.1.3. Additional settings . 51

5.2. Authentication process . 54

5.2.1. Components . 54

5.2.2. Communication flow . 54

5.3. Summary of the chapter . 62

6. Demonstrator 63

7. Discussion 69
7.1. Integration with Austrian productive solution 70

7.2. Evaluation of requirements . 70

7.2.1. Security . 70

7.2.2. Privacy . 71

7.2.3. Usability . 72

7.3. Summary of the chapter . 73

8. Future work 74

9. Conclusion 76

A. A signed file 79

vii

Contents

Bibliography 86

viii

List of Figures

2.1. Digital signature: sign and verify. 9

2.2. Byte range of a signature. 18

2.3. Multiple signatures and an incremental update. 19

3.1. PDF-Over - desktop application for PDF signatures. 25

3.2. Generation of QES on a single mobile device. 28

3.3. Communication interface between components. 30

4.1. High-level model overview. 34

4.2. Overview of the communication process. 39

5.1. High-level implementation overview. 41

5.2. The appearance of the signature block. 44

5.3. Signature dictionary and the PDF signature. 47

5.4. PDF serial signatures. 48

6.1. The PDF file is open with the PDF signature application, and
the user is presented with the graphically rendered file. 64

6.2. Settings a user can select when signing a PDF file. 66

6.3. Authentication interface provided by the TSP App. 67

6.4. The signed file opened with a PDF viewer. 68

ix

List of Tables

5.1. JSON parameters of the first request. ”M” is mandatory field,
while the ”O” marks the optional fields in the request. 56

5.2. Parameters of the payload field. 56

5.3. Parameters of the params field. 57

5.4. The parameters contained in the response. 59

5.5. The parameters of params field. 59

x

Listings

2.1. Header section of the PDF file. 12

2.2. Body section of the PDF file. Objects structure. 13

2.3. Cross reference table of the PDF file. 13

2.4. Trailer of the PDF file. 14

2.5. Source code of the PDF file - shortened version. 15

5.1. Example of the signature profile. 44

5.2. Signing parameters of the file. 46

5.3. The creation of the signature dictionary and its entries. 50

5.4. The signature dictionary and its entries - shortened version. . . 50

5.5. Signature integration and incremental update. 51

5.6. The JSON body request from PDF Signature App to TSP. 55

5.7. The JSON request from TSP to PDF Signature App. 58

5.8. JSON request from PDF Signature App to TSP App. 60

5.9. JSON request from TSP App to PDF Signature App. 61

A.1. Signed PDF file - source code shortened. 79

xi

1. Introduction

Government sectors all over the world are employing the concept of electronic
signatures to deliver agility, efficiency, cost, and time savings to their ser-
vices. Electronic signatures, more specifically qualified electronic signatures
(QES), provide secure and reliable authentication of users, as a prerequisite
for accessing transactional public services as well as for signing electronic
documents. Qualified electronic signatures are a special type of electronic
signatures that must meet certain requirements and present an only signature
standard that has a special status as being a legal equivalent to the handwrit-
ten signaturec[12]. Once the electronic signature fulfill the requirements of the
qualified electronic signature, they become legal equivalent to the handwritten
signature and assure data integrity, authenticity, and non-repudiation.

One of the most popular and universally recognized standards for electronic
documents is the Portable Document Format (PDF). With trillions of PDFs ex-
isting in the world [3], this de f acto format has undergone many changes since
its initial version in 1993 [28]. Eight billion electronic and digital signature
transactions processed through Adobe Document Cloud in 2017 corroborate
the widespread use of this format in both private and public sector, mainly
for signing contracts, invoices, submitting papers and in legal proceedings [25].

While the e-Government sector has provided a variety of applications for
signing PDF files with qualified electronic signatures, it is noteworthy to
mention that those traditional signature solutions are tailored specifically for
stationary devices like personal computers and laptops. They have been in
use for years and have reached a satisfying level of maturity and acceptance
among users; however, they assume the possession of a smartcard, token, or
smartphone in combination with web or desktop application for generating
QES [9, 36, 29, 30].

1

1. Introduction

1.1. Challenge

Constant growth and popularity of the mobile industry changes these as-
sumptions and set up new challenges for the e-services. The fact that a mobile
handset is a common part of everyday life, in which mobile devices are
more used to access the Internet than PC 1, resulted in a transition from
e-Government to mobile e-Government (m-Government) and allowed citizens
to have convenient access to the information and public services from their
smartphone [24].
These developments also posed a need for signing PDF files on mobile plat-
forms. Although smartphones are generally suitable for the task [39], a simple
solution providing PDF signatures remained insufficiently exploited inside
the m-Government context. There is currently no solution for signing arbi-
trary PDF files on a single mobile device with QES, which strongly satisfies
objectives such as security, privacy, and usability.

The main reason for this lack of technology is the incapability to migrate
the existing concept into the new mobile environment. Smartcards and tokens,
in contrast to stationary devices, cannot be used for authentication purposes
on smartphones or tablets due to the hardware barrier. The server-based signa-
ture solution usually requires smartphones as a second-factor authentication.
An additional obstacle is related to different security features between these
two environments. While the need for a novel authentication concept was
evident, for many years, it was hard to come up with the long-term stable
solution due to constant changes in mobile technology [23, 37].

Finally, the recent advances such as secure element [20, 7] and biometric
authentication brought new possibilities in this direction, and a new authenti-
cation method is introduced by Theuermann at al. [35]. The method is based
on the user-friendly authentication against a remote Hardware Security Mod-
ule (HSM) for creating QES on a single mobile device.

1http://gs.statcounter.com/platform-market-share/desktop-mobile-tablet

2

http://gs.statcounter.com/platform-market-share/desktop-mobile-tablet

1. Introduction

This novel authentication concept was the missing brick for creating PDF
signatures on a mobile device. In this thesis, we propose how to leverage this
concept of generating QES and sign PDF documents on a single mobile device
using user-friendly access to HSM.

1.2. Contribution

This thesis offers the following contributions:

1. We recognize the need for PDF signing service by evaluating the flaws
and limitations of the current solution for signing PDF files on mobile
devices. We conclude that the existing solution does not satisfy security
objectives.

2. We propose a novel model for creating PDF signatures. Our model uses
the server-side HSM for signature creation and the access to the HSM is
granted by the local authentication executed on the single mobile device.
We set up the objectives for our model, such as security, privacy, and
usability.

3. We show the feasibility of our solution by implementing a proof-of-
concept. The implementation consists of the Android application and
can be divided into two parts. The first part is the implementation of
the local PDF file processing, and the second part is the integration of
the novel signing concept into our model.

4. We outline possible improvements in suggested concept as a part of the
future work.

1.3. Outline

This thesis is organized into the following sections:

3

1. Introduction

• Section 2 (Background). We cover the state-of-the-art concepts as the
base to our concept, such as electronic signatures, electronic signature
standards, as well as the structure of PDF files.

• Section 3 (Related work) - We summarize the existing solutions which
provide PDF signatures and outline the differences compared to our
proposed solution.

• Section 4 (The model). We introduce the requirements and concept of
our model, involved entities, a communication flow between them as
well as the objectives the model aims to fulfill.

• Section 5 (Implementation). We provide a detailed description of imple-
mentation steps, as well as used technologies and standards.

• Section 6. (Demonstrator). We demonstrate the solution workflow from
the user's perspective.

• Section 7 (Discussion). We discuss how the stated requirements have
been met through our model and indicate the potential for further im-
provements.

• Section 8 (Future work). We summarize future research directions.

• Section 9 (Conclusion). We provide a conclusion of the thesis.

4

2. Background

In this section, we will provide the high-level knowledge of the technologies
which build the basic and serve as a starting point of our proposed solution.
We start with subsection 2.1, where we explain and introduce fundaments in
e-Government contexts such as electronic signatures and differences compared
to advanced and qualified electronic signatures. Furthermore, in subsection
2.2, we introduce the AdES1 family and explain what the signature formats
are. In subsection 2.3, we will outline the basics of the PDF structure.

2.1. Electronic signatures

The core of e-Government architecture is to provide transaction-based services,
which require secure and reliable authentication of the users. Once the user
has been unambiguously proven her electronic identity, she can use those
services.

The authentication is a compulsory step in vast of e-Government solutions,
and due to its sensitive nature, it has always been a matter of great impor-
tance and continues improvement. Electronic signatures serve as a secure and
reliable way for authentication of users and therefore play an essential role in
e-Government affairs.

By its sole definition, an electronic signature means data in electronic form,
which are connected to other data in electronic form and used by the sig-
natory to sign [33]. In other words, we refer to an electronic signature as
a paperless signature which provides a spectrum of benefits by supporting

1Advanced Electronic Signature

5

2. Background

electronic communication and making e-Government services more agile.
They assure:

• Authenticity - mapping the signed data to the signatory

• Data integrity - the content of the signed document has not been com-
promised

• Protection against repudiation, data manipulation, and forgery

The definition of electronic signatures is a quite general since it does not
specify any requirements in terms of security or technology and intentionally
represents an umbrella of different kinds of electronic signatures and uses
where the proof of authenticity might not be engaged. Therefore, to obtain a
bit narrowed definition of electronic signatures, eIDAS 2 has created standards
which specify how electronic signatures can be used securely [33]. Regulation
(EU) No 910/2014, or just eIDAS Regulation, has established a framework
for electronic transactions. The aim of the regulations is to have convenient
and secure electronic transactions across EU borders. The regulations are
mandatory and wholly adopted in all EU member states, with precedence
over any conflicting national laws.

2.1.1. Advanced Electronic Signature.

Advanced Electronic Signature [13, Article 26] is basically an electronic signa-
ture but with additional requirements:

• it is uniquely linked to the signatory

• it is capable of identifying the signatory

• it is created using electronic signature creation data that the signatory
can, with a high level of confidence use under his sole control

2https://www.docusign.co.uk/learn/eidas-regulation-primer electronic IDentifica-
tion, Authentication and trust Services

6

https://www.docusign.co.uk/learn/eidas-regulation-primer

2. Background

• it is linked to the data signed in such a way that any subsequent change
in the data is detectable

To fulfill the stated requirements, advanced electronic signatures need to be
created in a standardized way using public-key cryptography and infrastruc-
tures. Consequently, they pose a valid signature in legal terms, which are
connected to the data in the way where any change of the data after the
signature is detectable.

2.1.2. Qualified Electronic Signature.

For the understanding the concept of the Qualified Electronic Signature,
we first need to define two terms: a qualified signature creation device or
simply QSCD, and a qualified certificate. QSCD is a specific type of computer
hardware or software able to generate and store cryptographic key material.
This type of device is obliged to meet the requirements specified in Articles
29 and 30 in Annex II of the eIDAS Regulation[13, Annex II].
Smartcards are usually considered to be QSCD, since they store the signature
creation data, for example, private keys and they never leave the device. The
signature creation is executed inside the smartcards. The qualified certificate
refers to the certificate for electronic signature issued by a qualified trust
service provider and meets the requirements laid down in eIDAS regulations
[13, Annex I]. The qualified electronic signature is an Advanced Electronic
Signature created by a QSCD and based on a qualified certificate for electronic
signatures. According to eIDAS Regulation Article 25 [13, Article 25], an
electronic signature is a qualified if meets following three requirements :

• An electronic signature shall not be denied legal effect and admissibility
as evidence in legal proceedings solely on the grounds that it is in an
electronic form or that it does not meet the requirements for qualified
electronic signatures.

• A qualified electronic signature shall have the equivalent legal effect of
a handwritten signature.

7

2. Background

• A qualified electronic signature based on a qualified certificate issued
in one Member State 3 shall be recognized as a qualified electronic
signature in all other Member States.

From the above, we see that the creation of a Qualified Electronic Signature
is not just adding a qualified digital certificate on an Advanced Electronic
Signature, but the creation involves the use of a QSCD.
In the eIDAS regulation, Article 25 [13, Article 25], Qualified Electronic Signa-
ture has the same legal weight as a handwritten signature. In addition to that,
Qualified Electronic Signature must be recognized in all EU Member States.

2.1.3. Basic principle.

Digital signatures 4 are based on public-key cryptography. The generation of
two mathematically connected keys - public and private is done by a public
key algorithm. The private key is used to encrypt signature-related data, and
the public one is used for decryption.
Digital signature presents a one-way hash, calculated from the original data
and encrypted with the signer’s private key. The creation process consists of
the following steps, and it is depicted in figure 2.1. First, the signer calculates
the one-way hash value for the data which need to be signed. Then uses the
private key to encrypt the hash.
The encrypted hash is the digital signature, which the signer along with the
original data, is sending to the receiver. The signature is then to be verified.
For this purpose, the receiver uses the signer’s public key to decrypt the hash,
then generates a new one-way hash of the signature input data. If this hash
matches the original one, the data is not modified after it was signed.

3https://europa.eu/european-union/about-eu/countries/member-countries_en
4While the electronic signature presents a legal concept, digital signatures, on the

other hand, refers to cryptographic technology on which an electronic signature solu-
tion is built. They secure the data connected with a signed document and provide
the verification of the authenticity of a signed data. https://www.esignlive.com/blog/

the-difference-between-e-signatures-and-digital-signatures

8

 https://europa.eu/european-union/about-eu/countries/member-countries_en
https://www.esignlive.com/blog/the-difference-between-e-signatures-and-digital-signatures
https://www.esignlive.com/blog/the-difference-between-e-signatures-and-digital-signatures

2. Background

Figure 2.1.: Digital signature: sign and verify.

9

2. Background

2.2. Electronic signatures - standards

Electronic signatures, as a legal analog to the handwritten ones, can be val-
idated in any of the Member States. The raised challenges in terms of the
interoperability of the process served as a motivation for relying on open
standards and through an eIDAS regulation couple of electronic signature
baseline profiles have been defined.

One additional aspect has been tackled in the process of standardizing elec-
tronic signature profiles - long term validation. It means the ability to verify
the signature a long time after it has been created (e.g., 100 years after). This
approach should take into account the potential problems which could occur
in the future, like loss of key information needed for validation of a weakening
of cryptographic methods and therefore handle the obstacles.

The following signature formats have been defined by the eIDAS regula-
tion:

2.2.1. CAdES.

CMS Advanced Electronic Signatures (CAdES) is defined as an extension to
the Cryptographic Message Syntax (CMS) signed data which makes them
suitable for Advanced Electronic Signature [16]. CMS is a standard for crypto-
graphically protected messages, based on the public key cryptography. CAdES
has multiple profiles available, starting from the basic CAdES (CAdES-B),
and ending with a CAdES-LTA, an advanced level which supports long term
validity.

2.2.2. XAdES.

XAdES stands for an XML Advanced Electronic Signatures and represents a
standard for digital signatures which are XML formatted [15]. Similarly to
the prior profile, we differentiate Basic Electronic Signature defined in the

10

2. Background

XAdES-BES. In addition, XAdES also supports long term validity at more
advanced levels.

2.2.3. PAdES.

PAdES stands for a PDF Advanced Electronic Signature and presents a set of
extensions as well as restrictions defined under ISO 32000-1 for PDF, making
it, similarly to prior profiles, suitable for Advanced Electronic Signatures [14].
Since PDF supports the framework for digital signatures, PAdES defines the
signature profile, which is compliant with eIDAS regulation.

PAdES is a supplement to the other two profiles which have been men-
tioned - CAdES and XAdES, but unlike them, applies only to the PDF files. It
can be interpreted as s set of requirements which must be met by a software
which is processing PDF files with the purpose of integrating digital signature.

One of the advantages of PAdES is the ability to be easily deployed in PDF
processing applications without any additional technological requirements.
The signature data is incorporated directly into PDF signed file and since PDF
is a view-able format and generates a human-readable document, the signa-
ture may have its own graphical representation displayed on the document.
This is one of the main features which distinguish PAdES standard from
CAdES and XAdES, which are usually not used in the forms which involve
visual representations of the signature.
PAdES is also supporting long term validation, since it has been acknowl-
edged that digitally signed files can be and are in use for decades, regardless
of technological changes, and therefore must have the ability for a validation
check in the time they were created.

11

2. Background

2.3. PDF basics

Portable Document Format, or simply PDF [6] is specified by ISO32000
5 and

presents a standard for the digital representation of documents.
It is used by individuals, in businesses, governments, and many other in-
stitutions around the world as an easy and reliable means for viewing and
exchanging electronic documents.

2.3.1. File structure

One of the premises of PDFs is the independence of the environment in which
they were created, viewed, or printed. This also requires a strict structure of
how the document is created, manipulated, and displayed to the user. The
PDF file is structured into four main parts:

• Header. The first line which specifies the version of PDF used is called
header. This is also the only line contained in this section, and it is a
comment. From listing 2.1 below, we can see that the file refers to the
PDF version 1.4.

Listing 2.1: Header section of the PDF file.

1 %PDF -1.4

2 %..

• Body. The body part starts below the header and above the line xre f
and presents the actual content that will be displayed. Objects are the
main parts of the body, and they have a certain structure. They start
with a object number - which is incremented for every new object, then
generation number - which is 0 for all objects not extended with incre-
mental update and end with the string ”obj.”. The example of the Body
section is depicted on listing 2.2.

5https://www.iso.org/standard/51502.html

12

https://www.iso.org/standard/51502.html

2. Background

Listing 2.2: Body section of the PDF file. Objects structure.

1 73 0 obj

2 << /Type /Pages

3 /Count 2

4 /Kids [71 0 R 128 0 R] >>

5 endobj

In general, everything in PDF is an object, except for some parts like
header, cross-reference table and some parts of the trailer. One of objects
are Dictionaries, Streams, Arrays.

• Cross reference table. This table, depicted on listing 2.3, has information
about all PDF objects. Since every object in the PDF has a cross-reference
entry, this table provides quick access to them. It starts with a xre f .
After this line, we have a new line consisting of two characters: the first
one indicates the starting object, and the second one corresponds to a
number of entries - in our case 0 and 4.

Listing 2.3: Cross reference table of the PDF file.

1 xref

2 0 309

3 0000000000 65535 f

4 0000000015 00000 n

5 0000000588 00000 n

6

7 0000067372 00000 n

8 0000067832 00000 n

9 0000067877 00000 n

13

2. Background

• Trailer. The last section of PDF file starts with keyword trailer and gives
us the overall information about PDF file. It is used for the quick access
of the cross-reference table and documents special objects like Catalogs.
Document Catalog presents the root of all objects which are contained
in the file. The entries of this component contain information about PDF.
Since the PDF file is processed into memory from end to the beginning,
trailer is the first processed part of PDF. It contains a dictionary with a
minimum of two entries: root and size. The overview of the trailer is
depicted on listing 2.4.

Listing 2.4: Trailer of the PDF file.

1 trailer

2 <<

3 /Root 306 0 R

4 /Info 1 0 R

5 /ID [<E148BC519F508DF64C4F38F6086FB77E> <E148BC

519F508DF64C4F38F6086FB77E>]

6 /Size 309

7 >>

8 startxref

9 67958

10 %%EOF

Listing A.1 provides the source code of the arbitrary PDF file. We aim to
demonstrate the main parts of the document, such as header, body, cross-
reference table, and trailer.

14

2. Background

Listing 2.5: Source code of the PDF file - shortened version.

1 %PDF -1.4

2 %..

3 1 0 obj

4 <<

5 /Title <FEFF0050007200FC006600620065007200690063006

80074>

6 /Author <FEFF005300690067006E0061007400750072002F00

5300690...60075006E0067>

7

8 /Producer (Apache FOP Version 2.3)

9 /CreationDate (D:20190115111335+01’00 ’)

10 >>

11 endobj

12 2 0 obj

13 <<

14 /N 3

15 /Length 3 0 R

16 /Filter /FlateDecode

17 >>

18 stream

19

20 endobj

21 152 0 obj

22 << /S /P /P 150 0 R >>

23 endobj

24 73 0 obj

25 << /Type /Pages

26 /Count 2

27 /Kids [71 0 R 128 0 R] >>

28 endobj

29 306 0 obj

30 <<

31 /Type /Catalog

32 /Pages 73 0 R

33 /Lang (x-unknown)

15

2. Background

34 /MarkInfo << /Marked true >>

35 /StructTreeRoot 148 0 R

36 /Metadata 5 0 R

37 /PageLabels 307 0 R

38 /ViewerPreferences << /DisplayDocTitle true >>

39 >>

40 endobj

41 72 0 obj

42 <<

43 /Font << /F16 134 0 R /F15 143 0 R >>

44 /ProcSet [/PDF /ImageB /ImageC /Text]

45 /ColorSpace << /DefaultRGB 4 0 R >>

46 >>

47 endobj

48 148 0 obj

49 <<

50 /Type /StructTreeRoot

51 /K [147 0 R]

52 /ParentTree << /Kids [308 0 R] >>

53 >>

54 endobj

55 307 0 obj

56 << /Nums [0 << /S /D >>] >>

57 endobj

58 308 0 obj

59 << /Nums [0 9 0 R 1 66 0 R 2 75 0 R 3 122 0 R] /

Limits [0 3] >>

60 endobj

61 xref

62 0 309

63 0000000000 65535 f

64 0000000015 00000 n

65 0000000588 00000 n

66

67 0000067372 00000 n

68 0000067832 00000 n

69 0000067877 00000 n

16

2. Background

70 trailer

71 <<

72 /Root 306 0 R

73 /Info 1 0 R

74 /ID [<E148BC519F508DF64C4F38F6086FB77E> <E148BC519F

508DF64C4F38F6086FB77E>]

75 /Size 309

76 >>

77 startxref

78 67958

79 %%EOF

2.3.2. Signing process

One of the special features of PDF, starting from version 1.3, is the ability to
add digital signatures, as a means to guarantee integrity, authenticity, and
non-repudiation of electronic documents.
PDF defines signatures to be embedded into the document itself. This allows
viewing applications to modify the file without compromising it [5]. The
signing process consists of the following steps:

• We turn the signing document into the stream of bytes.

• The entire document is written to the disk which has a space left for
signature value or with values defined in ByteRange array.
ByteRange, depicted on figure 2.2, is an array containing four num-
bers, precisely two pairs of bytes. The first number in a pair presents
the offset in a file of the beginning of byte streams, which need to be
included in the hash. The second number defines the length of the
stream. The pairs specify the sequence of the bytes which need to be
hashed, while the actual signature value is stored in the Contents section.

• When we know the location of signature, the ByteArray is overwritten
with correct values.

17

2. Background

• With the hash algorithm and the bytes defined by the ByteRange, the
hash of the entire document is calculated.

• We encrypt this hash value with the signers private key, and we generate
a hex-encoded PKCS#7 signature object.

• The /Content placeholder is overwritten with the signature object and
placed on the disk.

Figure 2.2.: Byte range of a signature.

18

2. Background

2.3.3. Multiple signatures and Incremental update

One of the features of PDF signatures is the detection of modification of the
signed file. This means that any attempt to alter the signed PDF document
will invalidate the existing signature. However, sometimes, it is required to
sign files multiple times and to add multiple signatures. PDF feature that
tackles this issue is called incremental update [10].
The incremental update capability allows modification to the PDF file by
adding the information about the modification to the end of the file in a
special incremental update section. This way, the byte representation of the
previous signature will not be altered. This allows new signatures to be added
without changing the previous version and invalidating existing signatures.

On figure 2.3, we can see how a signed file is structured. Incremental update
modifies the original document by adding the new body, as well as the new
cross-re f erence table and new trailer. The same procedure is then applied for
each incremental update.

Figure 2.3.: Multiple signatures and an incremental update.

2.3.4. PDF file verification

Once the document is signed and opened with an application which supports
digital signatures, the signature validation process starts [5]. This process

19

2. Background

involves the following steps:

• To make sure that the document is not altered after it has been signed,
the corresponding application (e.g., Adobe Acrobat) is comparing the
hash value from the signature with a calculated hash value of the signed
document. Inequality of hash values means that the document has been
corrupted, which results in notifying the user about the outcome. How-
ever, the process continues.

• The signer’s certificate is checked to confirm its connection to a trusted
anchor. For this purpose, a certificate chain is built, and the requirement
in this step is that at least one path is found from the signer certificate
to a trust anchor.

• In this step, the revocation checking is performed for an end-entity
certificate to verify that the signer’s certificate was valid at the time of
signing. This is performed either using Online Certificate Status Protocol
(OCSP) 6 or Certificate Revocation Lists (CRL) 7.

• Lastly, the timestamp is validated. If the timestamps have been embed-
ded into signature from a trusted server, steps 1-3 are performed on the
certificate for the timestamp.

2.4. Summary of the chapter

Electronic workflows all over the world involve signing PDF files, as they
present electronic analog to paper and provide a portable and simple electronic
form of information to users. Electronic signatures, in combination with PAdES
standard, provide long term authenticity and therefore, make organizations
more agile and flexible in terms of business requirements [34]. There is a vast
number of use cases for signing PDF files since this form of a paperless singing
can be used in the same range as the ink signature. Additional advantages
are that PDF provides a visual representation of the document as well as the

6https://tools.ietf.org/html/rfc6960
7https://tools.ietf.org/html/rfc5280#section-5.3.1

20

https://tools.ietf.org/html/rfc6960
https://tools.ietf.org/html/rfc5280##section-5.3.1

2. Background

allocation of a position where the signature will be placed. Finally, users have
a variety of applications to use for creating and verifying PDF signatures, and
these applications will be elaborated in the following section.

21

3. Related Work

In this section, we will introduce the existing state-of-the-art concepts for
qualified PDF signatures to outline differences between approaches. We will
mostly relate to the Austria solution in terms of qualified electronic signatures.
We will start with their state-of-the-art concept - The Citizen Card Concept,
furthermore, we will introduce two software applications for PDF signatures,
and finally, we will provide more information about novel authentication
methods.

3.1. The Citizen Card Concept

The Austrian concept for transferring the identity of a user into an electronic
identity is described in a concept which is called The Citizen Card Concept
[32],[22]. This concept is a core component in e-Government processes, and
one of its significant features is the independence of technologies and tokens.
For the authentication purposes needed by accessing remote services, Citizen
Card can be implemented and used in two forms. In the first approach, the
Citizen Card is a smartcard - this can either be a health insurance card, bank
card, student card, or similar. In the second approach, the Citizen Card is
implemented as a Mobile Phone Signature. Regardless of the option, both
of the implementations are used for two main functions - identification and
authentication of users.

Mobile Phone Signature. The Mobile Phone Signature [26] presents one
form of implementing the Citizen Card. A significant feature of this solution
is the fact that it uses a Hardware Security Module (HSM), located on a
server-side as a secure signature creation unit. The signature creation mate-
rial, such as private keys, is managed by the certification service provider

22

3. Related Work

(A-Trust) and accessible only by the users. Access to private keys is protected
by the multi-authentication mechanism. At the beginning of the authentication
process, the user is prompted to provide the phone number and password,
which presents the factor knowledge. The second factor of authentication,
possession factor, is embedded in the form of token which a user obtains on
their mobile phones. This can be either a QR code or a TAN which is received
via SMS. Once the input data have been positively confirmed, the user has
been successfully authenticated.

Smart card solution. Smart card solutions, on the other hand, require a smart
card, which could be, for example, health insurance card and citizen card
software. Between the citizens who evoke a process of authentication and
the server-side which presents a trusted party, we have a middleware. The
middleware is called citizen card environment, and it is locally installed
on users personal computer. The middleware is a layer, which decouples
all the technical details and security features from both parties and that
way simplifies the communication process. The communication between e-
Government application and citizen is defined according to the security layer
interface 1.

3.2. PDF-AS

PDF-AS [29] is a framework used for digital signing and verifying PDF files.
The created signatures are compliant with the PAdES standard [17]. PDF-AS
implements an authentication based on the Citizen Card Concept - Mobile
Phone Signature and Smart Card, however different signature creation units
can be also used such as MOA-SS2, a PKCS#12

3 file or a Java KeyStore4 .

Regarding the architecture, PDF-AS consists of three components:

1https://www.egiz.gv.at/en/e-government/4-buergerkarte#sub-securitylayer
2https://joinup.ec.europa.eu/solution/moa-spss
3https://tools.ietf.org/html/rfc7292
4https://docs.oracle.com/javase/7/docs/api/java/security/KeyStore.html

23

https://www.egiz.gv.at/en/e-government/4-buergerkarte##sub-securitylayer
https://joinup.ec.europa.eu/solution/moa-spss
https://tools.ietf.org/html/rfc7292
https://docs.oracle.com/javase/7/docs/api/java/security/KeyStore.html

3. Related Work

• PDF-AS Library - Java library, which is the core component and imple-
ments the most important functionalities for PDF processing. Although
they can be observed as separate, the other components of the frame-
work strongly rely on this library.

• PDF-AS Web - Web interface for PDF-AS, usually integrated into an
external application which provides PDF signature.

• PDF-AS Client - Provides a Command-line interface for PDF-AS.

PDF-AS independently verifies the signatures, but it does not include a certifi-
cate check. In addition, PDF-AS represents a modular solution, which allows
other applications to be easily built upon PDF-AS or to be integrated into
other applications.

3.3. PDF-Over

PDF-Over [30] is a Java desktop application used for signing PDF files. It is
implemented as a graphical interface for the user who can select PDF file and
then manually choose a position of the signature on the file. To create the
signed PDF document, the user can choose to use the Mobile Phone Signature
or a Citizen Card.
PDF-Over is based on the previously explained PDF-AS Library, but unlike
PDF-AS, PDF-Over provides the visualization in the entire process of creating
a signature, which makes it suitable to use as a standalone application. The
objectives of this solution are interoperability and modularity. It is available
for Windows, macOS, and Linux, and on figure 3.1 we provide a screenshot
of the software.

24

3. Related Work

Figure 3.1.: PDF-Over - desktop application for PDF signatures.

25

3. Related Work

3.4. QES on a single mobile device

The traditional scenario for creating legally binding PDF documents with the
Austrian Mobile Phone Signature starts on stationary devices and involves
two-factor authentication employed on two different end-user devices (most
commonly PC and smartphone).
However, as we move towards a mobile future, we aim to provide mobile-only
transactional services, which faces quite some challenges. An attempt to use
the same state-of-the-art authentication mechanism on a single mobile device
so far could not be considered successful.

In this case, it is not possible to use smartcards for a qualified electronic
signature generation, since smartcards require card readers, who are typically
inserted into PCs; however, mobile devices do not support these technologies.
Another approach would be to use server-based signature solutions. One
of those solutions is Mobile Phone Signature, where the Hardware Secure
Module (HSM) is used as a qualified signature creation device. The access
to the HSM is provided when the user enters both the password as a knowl-
edge factor, and one-time password (OTP) in the form of a QR code or TAN
send as an SMS to the mobile phone. These two authentication factors use
two different communication channels, and this separation of channels is an
important security factor.
A use-case where the server-side signature solution is used for QES generation
on a single mobile device is theoretically possible. A user could access the
web service for signing PDF files from the mobile browser. That way, the user
would have to do the authentication process entirely on the smartphone or
tablet. The phone number and password would have to be entered from the
same phone as the one on which she receives OTP by the same communication
channel. As smartphones are designed to only participate as a second factor
of authentication, in such a setting we do not have multi-factor authentication.
This approach, even if it appears to utilize the second-factor authentication,
compromises the security of the process [27] and it is not considered as a
high-level security solution. Thus, it is forbidden to be used that way by the
Trust Service Provider.
Due to the differences in security features, it has become evident that the ex-
isting concept tailored for stationary devices could not be just simply mapped

26

3. Related Work

into a concept for a mobile device. The new authentication solutions which
provide multi-factor authentication on mobile devices are required.

Nevertheless, the possibilities in this area have been changed with recent
developments of the mobile industry. One of the most significant technologi-
cal contributions of new generation mobile devices is certainly their support
of Trusted Execution Environments(TEE) [19], e.g., with embedded Secure
Element (SE), and biometric authentication towards the TEE. TEE presents
dedicated, separate tamper-resistant hardware which securely stores cryp-
tographic key material (e.g., keys). The access to key materials is enabled
by the local authentication of a mobile device. The local authentication has
been considerably improved in the last decades with the support of alter-
native biometric authentication methods such as fingerprint, iris scanner,
face recognition. This enabled the multifactor authentication on the single
mobile device by combining different methods like ownership of the crypto-
graphic key material and knowledge of a password. The combined methods
of local authentication and secure element finally resulted in designing and
implementing a novel authentication concept at server-side HSM for creating
qualified signatures on a mobile phone [35]. The authors argue that not only
the solution is feasible, but it also provides high-level security with increased
user-friendliness.

Basic principle. The generation of the remote qualified electronic signature
using a single mobile device presents an eIDAS compliant solution, which is
rolled out in Austria on the national level. Figure 3.2 depicts the main compo-
nents of the novel authentication concept. The whole process distinguishes
Signer and Trusted Service Provider (TSP) environment.

27

3. Related Work

Figure 3.2.: Generation of QES on a single mobile device.

The following components are contained in the signer environment.

• Service Provider App (SP App). - represents the client application from
the Service Provider, which require a qualified electronic signature for
the authentication purpose. From figure 3.2 we see that the SP App is
establishing the inter-process communication with the Signer Interaction
Component (SIC) client.

• Singer Interface. The signer interface presents the component which is
in charge of interacting with a signer. This component consists of the
Signer Interaction Component, locally installed on the mobile device,
and Secure Element.

• Signer Interaction Component (SIC). The SIC presents a mobile client
application provided by the Trust Service Provider. This App establishes
an IP communication with the client from the Service Provider and as
well API call with the Secure Element.

• Secure Element. iOS Security Guide [20] defines the Secure Element, or

28

3. Related Work

precisely Secure Enclave, as a ”coprocessor fabricated within the system
on chip (SoC)”. The SE provides data integrity even in the case of the
compromised kernel. It has an encrypted memory and hardware ran-
dom number generator. The Secure Enclave handles the cryptographic
operations required for the key management. This component is also
taking responsibility for processing biometric factors of authentication
like fingerprint and face data from the Touch ID and Face ID sensors.
The access is granted to the user when the match is determined.

From the Android documentation [7], it is stated that the SE is tamper-
resistant hardware into devices used for storing cryptographic data,
and thus, provides better security features. Android also provides Key-
Store/KeyChain as a way to manage cryptographic key pairs and from
the version 6.0 the API, which determines wheater the keys are kept in
the SE, is provided.
Overall, TEE is considered to be safely used for remote authentication,
since the key material is unlikely to be extracted and abused. The access
to the private key stored in the TEE is granted via local authentication,
such as fingerprint

TSP environment components are the following:

• Server Signing Application (SSA) The SSA is a communication chan-
nel between SIC and SAM, which interprets the commands from the
SIC, and therefore, to perform the authentication process to obtain the
QES.

• Signature Activation Module (SAM) This component provides the
users’ control of the keys. As it is known, the private key from the
user is kept inside the Qualified Signature Creation Device and pro-
tected by the signature PIN.

29

3. Related Work

Figure 3.3.: Communication interface between components.

Now that we have introduced the main entities of the concept, we need
to explain the communication flow between each of them. The interaction
between entities is depicted in figure 3.3 . We define the following:

• Routing inteface The routing interface presents a generic interface be-
tween participants of the process.

• User interface The interaction between the user and its device is cap-
tured in the User interface. The user interacts with the applications
installed on the device in order to get the service she opts.

• Application interface The communication between Service Provider

30

3. Related Work

and Service Signing Application is defined via Application interface
and is implemented as an HTTP request(response) with JSON elements
through TLS connection.

• Authentication interface This interface defines the authentication pro-
tocol between Server Signing Application and the Signer Interaction
Component. After the Service Provider has initiated the authentication
process at Server Signing Application, SSA starts the authentication pro-
cess by sending the authentication command to the SIC App, which after
successful execution, returns the result. The resulting QES is redirected
to the SP via SP App.

• Interface to the service provider The interaction of the application to-
wards the service provider is defined by this interface.

• API or IPC call Depending on the implementation, the interaction be-
tween two Apps is done either by interprocess communication (IPC) or
by API call.

3.5. Summary of the chapter

In this chapter, we have described the related applications for signing PDF
files. However, we have also outlined that those applications, although very
popular, have been used in a more traditional approach having mobile devices
as a second authentication factor. We also introduced the novel authentication
method by [35], which enables QES on a single mobile device. In the next
chapter of this thesis, we will demonstrate how we used the described process
for signing PDF files.

31

4. Model

In this thesis, we propose a usable and privacy-preserving model for signing
PDF files on mobile devices. Such a model is built upon certain objectives and
involves an interaction between components. In this section, we present our
model by explaining the objectives, involved entities, and the communication
flow between them.
The organization of this chapter is the following: In subsection 4.1, we intro-
duce the objectives of our model. Furthermore, subsection 4.2 describes the
involved entities in further detail. In subsection 4.3, we explain the interaction
between involved components. Finally, in subsection 4.4, we summarize the
concept shortly.

4.1. Objectives

The goal this thesis aims to fulfill is strongly based on the objectives we set up.
They serve as a requirement for further architectural and implementational
decisions and also provide a distinguished model which facilitate the gap
from the prior work. We will outline three main objectives and explain their
relevance.

Privacy. In an environment like e-Government, where e-documents with
sensitive personal data are handled, and the misuse of private data can lead to
violation of citizens and business rights, privacy is among the main concerns
[32]. In this thesis, we set privacy as one of the main requirements of our
model, since we argue that this aspect has been neglected in prior work
with PDF signatures. The privacy-preserving model should emphasize the
minimum data disclosure to the third-party apps. Designing the model for

32

4. Model

signing PDF files that satisfies this objective implied that no unnecessary third
parties can be included in the signature creating process. To avoid relying on
the external services, all PDF processing has to be implemented locally inside
the application. This means that the document to be signed by a user is not
send to the web services, which provide PDF processing. Only the user with
its mobile phone and the TSP should be involved.

Usability. Usability, as a merit for user adoption, is another requirement of
our model. In general, the e-Government sector heavily relies on a citizens
experience with public services. The citizen’s satisfaction results in a higher
level of acceptance and usage of e-Government services, increasing the cost
savings and flexibility of e-Government [38]. Intuitive use of the application,
as well as the minimum number of interactions and minimum execution time,
is required, as the user aims to complete the signing process as fast as possible.
Easy means of authentication are also requirements of the model; thus, the
minimal memorization of user credentials is a prerequisite for the overall user
experience.

Security. Security is another perimeter that has a strong impact on the overall
citizen’s communication and engagement with e-Government. As one of the
objectives of our model, security often comes with a trade-off with usability
as the more complex authentication often degrades the user experience. In
our model, we seek to find a balance between two opposite but fundamental
objectives. The strong and reliable multifactor authentication is provided by
the concept of the QES on mobile devices. Furthermore, we focus on satisfying
the security aspect from the application context.

To summarize, we named several objectives which need to be taken into con-
sideration when designing a solution for PDF signatures on mobile devices.
In addition to the proposed objectives, we tend to make our model as generic
as possible, so that it can be easily implemented on both Android, iOS, or any
other mobile platform. The model we propose needs to be as modular in such
a way that it can be easily integrated into another project and also used as a
standalone solution.

33

4. Model

4.2. Participants

In this section, we will provide a high-level description of the entities who
take part in the proposed model. We will define two environments. First one
is the signer side, which consists of a user and the applications with which
the user is interacting to obtain the requested service. The second part is the
TSP server-side with only one component. In figure 4.1, we have provided a
high-level overview of the participants in our model.

Figure 4.1.: High-level model overview.

34

4. Model

4.2.1. Signer environment

User and applications, with which the user is interacting form the signer envi-
ronment. This environment also presents the client-side of the implementation,
and from the user perspective, the entire process is executed on this side. The
user, which requires the service, first interacts with the Service Provider,
which is, in our case an application for signing PDF files. Furthermore, Service
Provider delegates the authentication process to a client application of the
Trust Service Provider. The client application from the Trust Service Provider
is called a Signer Interaction Component and executes the user authentication
against the Trust Service Provider.

User. Although the user does not entirely belong to the model, it is important
to define the role of a user (signer), as an initiator of the process. In a general
model, a user is a natural person who interacts with a Service Provider App
in order to get the requested service. In our case, the user initiates the signing
process from by selecting the desired PDF file to be signed and interacting
with corresponding applications.

Mobile device. The mobile device presents a device such as a smartphone,
tablet, or similar. This component has the role of hosting the applications and
does not depend on any exact specifications. However, it should support the
TSP requirements for TEE and appropriate alternative authentication methods
such as fingerprint, iris scanner, face recognition, or similar.

PDF signature application. The PDF signature application has the role of a
service provider and provides the signing of the PDF files. This is a mobile
application which decouples the interaction with all other components of the
model, such as user as well as with a Signer Component Application and
Trust Service Provider. The PDF Signature Application consists of two parts.
The first part is processing PDF files for signature creation, and a detailed
description is provided in section 5. In the second part, this application initiates
the signature process. The authentication process, which starts from this App,
is delegated to the Signer Component Application to get the signature. Finally,

35

4. Model

the application provides the signed document, when the authentication against
the TSP is terminated successfully.

Signer Component Application (SCA). The Signer Component Application
presents the mobile client part (application or library) from the Trust Service
Provider. The SCA implements the communication with both TSP and PDF
Signature Application, which makes this component as an intermediate. The
Signer Component Application receives the PDF signing request from a PDF
Signature Application and performs an authentication of the signer against
the Trust Service Provider.

4.2.2. Server environment.

In contrast to the client-side, the server-side of the process is hidden from
the final user, and it presents a remote authentication at the HSM in order to
complete the PDF signature process. This environment has only one entity,
namely the TSP.

Trust Service Provider (TSP). Trust Service Provider is a participant who
is generating the eIDAS compliant QES after the authentication performs
successfully.

4.3. Communication flow

The complete process of generating signed PDFs consists of the authentication
process against the TSP and the PDF processing part. While PDF processing is
done within the PDF signature App, the authentication requires the interaction
of the user with other components of the model. The high-level view of the
interaction established by the components is illustrated in figure 4.2.

36

4. Model

4.3.1. Interfaces

• User interface. This interface describes the communication between a
user and the end device. At the beginning of the signing process, the
user is interacting with the PDF Signature APP by selecting the desired
pdf file for the signature process. For authentication purposes, the user
is interacting with the TSP App.

• Application interface. Application interface defines the communication
which PDF signature APP is using for the interaction with TSP, with
an aim to create a qualified signature on PDF file. This phase starts
after the pdf document has been processed and prepared for signature
integration.

• API or IPC call. The PDF signature App is interacting with the TSP
App via IPC call if they are separate apps or via API call if they are run
within the same application.

• Authentication interface. This interface provides the authentication of
users by TSP via TSP App. The user is required to enter its credentials,
and after the authentication is successful, the TSP can provide the desired
service.

4.3.2. Process steps

1. A citizen wants to sign a PDF file on a mobile device. To initiate the
process, the citizen selects the PDF and sends it to the PDF Signature
App.

2. The PDF Signature App, receives and prepares the document, accord-
ingly, for inserting the signature. After completing this part, the App
initiates the required authentication process for obtaining the signature
by sending a request to the Trust Service Provider. The request contains
parameters, which indicate what service is required from the TSP.

3. The Trust Service Provider, after receiving the request and analyzing
parameters, sends the response back to the PDF Signature App. The

37

4. Model

response should contain the URL for IPC (API) call, which redirects the
PDF Signature App to the client app from the Trust Service Provider.

4. PDF Signature App receives the redirect and establishes an interaction
with the Signer Component Application. The interaction, depending
on the implementation and request specifications, can be Inter-process
Communication (IPC) towards the other App. This way, the PDF Signa-
ture App delegates the authentication process to the Signer Component
Application.

5. The following step includes the interaction between the Signer Compo-
nent Application and the Trust Service Provider, to authenticate the user.

6. The user is prompt to provide the credentials for the authentication
process.

7. After the authentication is completed successfully, Trust Service Provider
sends the response with the remotely (by the HSM) created signature to
the client App.

8. The response is forwarded to the PDF Signature App from the Signer
Component Application. The PDF Signature App uses the signature to
complete the process. The file is successfully signed.

38

4. Model

Figure 4.2.: Overview of the communication process.

39

4. Model

4.4. Summary of the section

In this section, a concept for providing a mobile solution of PDF signing has
been proposed. Privacy, usability as well as security are the main objectives
of the model; however, defining them also led to additional objectives, such
as modularity and applicability. These requirements served as a basis for the
design process.

As we aim to design and implement a usable model, service provider - in our
case PDF Signature App, delegates the authentication process to the Signer
Component Application, which performs the authentication with a Trust Ser-
vice Provider with the aim to obtain the signature. The requested signature
is retrieved from the Trust Service Provider after successful authentication.
This way, the amount of interactions required by the user is minimized, as
the user only uses one set of credentials - which consists of a password and a
fingerprint.

Privacy is mainly accomplished through the local implementation of PDF
processing. This implementation reduced the risk of relying on Third Party
Services (e.g., a server-side hosted PDF-AS instance by the service provider)
for PDF manipulation. This way we make sure that the confidentiality file
is not jeopardized and as s a result, the proposed system protects the user’s
privacy.

Security, as the third objective, is guaranteed by the used concept of the
QES on mobile devices. The local authentication is done by the knowledge
factor, that requires the user to enter phone number and password. The re-
mote authentication is done with the hardware element on the phone using
biometric authentication like a fingerprint. The overall process presents secure
and reliable authentication assured by the multifactor authentication.

40

5. Implementation

This section describes the implementation of the proposed model, where
multiple components collaborate in order to complete a multi-step process
for obtaining a signed PDF file on a mobile device. To realize the previously
described model, we have implemented a mobile Android application, namely
PDF Signature App. This application represents the core of our solution and
incorporates both the custom Android library responsible for PDF processing
and a graphical user interface. In addition, for authentication purposes, we
have modified the implementation of a prototype TSP App, that represents
the client mobile Android application of the TSP, and TSP (server-side). Figure
5.1 depicts the high-level overview of the involved components and their
connections.

Figure 5.1.: High-level implementation overview.

41

5. Implementation

This section is organized as follows: Section 5.1 provides a description of the
most important parts of PDF processing. The following section 5.2 explains
the authentication process, which results in a remote signature needed to
finalize the signing process. Lastly, this section is concluded in section 5.3.

5.1. PDF Processing

As we already mentioned, the local implementation of PDF processing, in
comparison to the same remote web service, has a significant impact on fulfill-
ing the requirements of our solution. As we aim to build a privacy-preserving
solution, it required moving the entire implementation of PDF processing to
the client-side. This way, we not only protect input data from sharing it with
the remote web server, but the execution of the singing processes is more con-
trollable in terms of reliability. With the client PDF processing implementation,
we need to maintain only one application, and therefore, we do not depend
on the availability of server-side processing. On the other hand, one could
indicate that this carries an additional burden in terms of performance and
speed of the process; however, we argue that this is a reasonable trade-off since
this decision does not have a significant impact on the overall user signing
experience.

One of the first steps in this phase is the collection and preparation of data: in
other words, we create signing parameters. Signing parameters include a con-
figuration file, a signature profile, a data source, and positioning parameters.
The visible signature has its own visual representation on the file specified by
these signing parameters. After the user has selected a PDF file to be signed,
the App renders the file for showing its pages on the screen. This way, the PDF
file has been rasterized so that a user would have a graphical presentation
while navigating through the file and opting for the desired position. For the
positioning purposes, a user dynamically moves a small signature block that
acts as a placeholder for a signature block. The signature block is a visible
part of the file whose detailed description will be provided in the further
paragraphs. After the user has selected a position of the file, and all necessary
information about signature appearance has been determined, we can proceed

42

5. Implementation

to the next phase.

In the second phase, we draw the signature block, which presents basically a
table with parameters from the configuration. Furthermore, to add a digital
signature on a PDF, we create a signature dictionary with corresponding fields
based on the PAdES specification. The changes on the file have been incre-
mentally updated. With this step, we terminated this phase, and we proceed
to the authentication part. The incremental update operation is done when we
obtain a signature value as a result of successful authentication. This will be
fully explained in subsection 5.2. In the following, we will provide information
about the main components of PDF processing. We start by introducing the
PDF Library.

5.1.1. PDF Libary

The heart of the PDF Signature application is a PDF processing library. The
library implements all manipulation with PDF files, like drawing a table as
a signature block and inserting a signature into a PDF file. It is an Android
library written in Java programming language, which internally uses the
Apache PDFBox library for signature insertion [8]. Apache PDFBox is an
open-source Java framework for manipulation and processing PDF files. The
framework supports adding new PDF documents, extraction, and manipula-
tion of the existing ones. It also supports digital signatures, and it is published
under the Apache License v2.0. In addition, we relied on the architectural con-
cepts of the PDF-AS library, as a state-of-the-art solution for PDF signatures
in desktop and web applications.

For better comprehension, we will outline several components of our library
that describe certain behavior and incorporates certain roles.

Signature position. A signature position, on the implementational level, rep-
resents the coordinates of the file that indicate where the signature block
will be allocated on the file. The signature position contains the three
most important parameters. The x and y values are signature block
coordinates on a specific page, where the x is the left-right coordinate,
and y is top-bottom. Another value of the signature position is the w,

43

5. Implementation

which tells us about the width of the signature block. This value is also
configurable in the signature profiles. The last value we need is p, which
indicates the page on which the signature block will be put.

Signature block. The signature block is implemented as a table. The table
consists of the main and info part. Unless the signature is invisible, the
table (signature block) is presented on the signed file. In the configura-
tion file, we have defined the appearance of the table: this means that
we predefined a font, paddings, margins, column width, height, borders,
alignment. The outlook of the signature block is presented in figure 5.2.

Figure 5.2.: The appearance of the signature block.

Signature profile. A file called ”config.properties” defines which identifiers
will be visible in the signature block. The file also specifies the value
of those identifiers. Some of them are predefined and related to one
specific signature profile, while other values can be inserted by the user
- like the signatory name. In other words, the signature profile gives us
information about the content of the signature block, but it also contains
information linked to the visual appearance of the block.
Since the signature block is, on an implementational level, a table with
values, different signature profiles differ by a style, language, font, and
data included. It is not necessary that all signature profiles have the same
appearance. From the code snippet on listing 5.1, we see the signature
block include data such as signatory name, date, logo, and a note.

44

5. Implementation

Listing 5.1: Example of the signature profile.

#default signature block width

sig_obj.SIGNATUREBLOCK_EN.pos=f:80;w:230

#table main settings

sig_obj.SIGNATUREBLOCK_EN.table.main.ColsWidth=1 4.5

sig_obj.SIGNATUREBLOCK_EN.table.main.Style.font=HELVETICA,5,

↪→ BOLD

sig_obj.SIGNATUREBLOCK_EN.table.main.Style.valuefont=COURIER

↪→ ,5,NORMAL

#table info settings

sig_obj.SIGNATUREBLOCK_EN.table.info.ColsWidth=1 2.7

sig_obj.SIGNATUREBLOCK_EN.table.info.1=SIG_SUBJECT-cv

#signature profile identifiers

sig_obj.SIGNATUREBLOCK_EN.key.SIG_SUBJECT=Signatory

sig_obj.SIGNATUREBLOCK_EN.key.SIG_DATE=Date/Time-UTC

sig_obj.SIGNATUREBLOCK_EN.key.SIG_NOTE=Note

sig_obj.SIGNATUREBLOCK_EN.key.SIG_META=Verification

#values of identifiers

sig_obj.SIGNATUREBLOCK_EN.value.SIG_META=

Information about the verification of the electronic

↪→ signature can be found at: https://www.

↪→ signaturpruefung.gv.at

sig_obj.SIGNATUREBLOCK_EN.value.SIG_NOTE=

This document is signed with a qualified electronic

↪→ signature. According to Art. 25 para. 2 of the

↪→ Regulation (EU) No 910/2014 of 23. July 2014 (\"eIDAS-

↪→ Regulation\") it shall have the equivalent legal

↪→ effect of a handwritten signature.

Listing 5.1 describes the predefined style for one signature profile. Also,
the listing outlines the identifiers of the signature block. In our appli-
cation, a user has an option to choose between two signature profiles,

45

5. Implementation

which differ by the language. However, the architecture makes it easy to
adopt a new profile according to the special requests, with different size
of the signature table or different identifiers.

After we have gathered all relevant information like the signature position, pro-
file, configurations, and the uploaded file, we create our signing parameters,
as seen on listing 5.2.

Listing 5.2: Signing parameters of the file.

signParameter.setOriginalDoc(originalDoc);

signParameter.setSignaturePosition(STANDARD_POSITION_STRING);

signParameter.setSignatureProfileId(PROFILE_ID);

signParameter.setSettings(impl.getSettings());

5.1.2. PDF signatures

In this subsection, we will explain how digital signatures have been integrated
into a PDF file, but first, we need to define the PDF signature.
We refer to the PDF signature as a binary data object based on the CMS
or related syntax, which contains a digital signature placed inside the PDF
file according to the ISO 32000-1 standard, with other signature information
applied when it was first created [14].
Digital signatures in ISO 32000-1 support adding signatures directly to the
document, where the signature with additional information is held in a PDF
structure called the signature dictionary. The signature value is encoded as
a binary object using a CMS or related signature format, depending on the
profile. The digest is calculated over the entire file since the signature is
included in the document. The signature dictionary is included in the calcula-
tion, but the PDF signature is excluded from the calculation. The information
about the range of bytes for the calculated digest is contained in the special
entry called ByteRange. This ensures that all the bytes of the file have been
included in a digest, except for the signature value. The signature dictionary

46

5. Implementation

contains multiple entries, which will be elaborated later on. However, from the
structure illustrated in figure 5.3 one of those entries is Contents - the entry
that contains the signature. ISO 32000-1 also defines multiple forms of CMS
signature integration into a PDF file, and these implementations have been
defined by the entries in the signature dictionary called Filter and SubFilter.

Figure 5.3.: Signature dictionary and the PDF signature.

PDF serial signatures are defined in ISO 32000-1. While other CMS signature
profiles would support parallel signatures, the alternative PDF serial signa-
tures define that each signature in PDF can contain a single signing certificate,

47

5. Implementation

but there can be many signature dictionaries, and each of them has its own
byte-range values. This means that after the signer has signed the file once,
a subsequent signer will also sign the previous signature [14]. Figure 5.4
illustrates the PDF serial signature.

Figure 5.4.: PDF serial signatures.

In following, we will describe the most important features of PDF signature
and relevant process steps for signature integration into the file.

Signature Appearance. Digitally signed PDF files with one signature handler
can be verified with another. To achieve the interoperability between
different signature handlers, a certain syntax for implementing signa-
tures in a PDF file needs to be satisfied [4]. The standard syntax has two

48

5. Implementation

components:

1. The signature dictionary. The signature itself is stored under the
signature dictionary. It contains parameters such as a name of the
signer, time, signed hash of the file, and a certificate from the signer.
The syntax for a signature dictionary is defined by the entry in
the signature dictionary called SubFilter. Further description of the
signature dictionary will be described in the following sections.

2. The signature appearance. The signature appearance refers to the
way how the signature is represented to the user. The annotation
field in a PDF file specifies the signature appearance. However, it
is noteworthy to mention that the appearance of a signature in a
file is not necessary for cryptographic purposes of verifying the
signature but rather to enhance the user experience.

Document restrictions check. PDF signature cannot be applied if the docu-
ment is marked as protected or has any of the accessibility restrictions;
therefore, before the process of signing, we need to check permissions
of the PDF file. The restricted file cannot proceed with the signature
process.

Signature Dictionary. As we already said, the signature value, as well as all
relevant information about the signature, is contained in a signature
dictionary [11]. The signature dictionary contains entries that define
the nature of the signature and its features. The signature value is a
hex-encoded PKCS#7 1 object stored in the Contents entry. Alongside
the signature value, the dictionary also contains ByteRange as an array
of four numbers, which specify for which bytes the signature digest
is calculated. The field Filter is associated with the internal name of
the signature handler, while the Sub f ilter contains valuable data for
signature validator handlers and presents the internal name of a type of
signature, such as adbe.pkcs7.detached.

Other entries can be Reason, a string which explains why the signatory
is signing the file, as well as Location, Name, Date. In our application,
we have defined, filter, subfilter, date of signing as well as reason. On

1https://tools.ietf.org/html/rfc2315

49

 https://tools.ietf.org/html/rfc2315

5. Implementation

listing 5.3 and 5.4, we see how the signature dictionary is implemented
and represented in PDF file.

Listing 5.3: The creation of the signature dictionary and its entries.

PDSignature signature = new PDSignature();

signature.setFilter(filter);

signature.setSubFilter(subfilter);

signature.setSignDate(Calendar.getInstance());

signature.setReason(signerReason);

Listing 5.4: The signature dictionary and its entries - shortened version.

20 0 obj

<<

/Type /Sig

/Filter /Adobe.PPKLite

/SubFilter /ETSI.CAdES.detached

/M (D:20190403142400+02’00’)

/Reason (Signaturpruefung unter http://www.signaturpruefung.

↪→ gv.at)

/Contents <308006092A864886F700000....00000000000>

/ByteRange [0 14587 22781 17992]

>>

endobj

Signature integration. As seen on listing 5.5, one of the last steps in PDF
processing would be to add a created signature on a document and to
save the altered document with an incremental update, so that further
signatures could be applied. However, it is noteworthy to mention that
the signature value should be retrieved from an authentication process
before the process finishes.

50

5. Implementation

Listing 5.5: Signature integration and incremental update.

options.setPreferedSignatureSize(signatureSize);

document.addSignature(signature, this, signatureOptions);

document.saveIncremental(output);

5.1.3. Additional settings

We have implemented additional features as an addition to the basic func-
tionality to assure user satisfaction. Therefore, a user has an option to choose
whether the signature will be visible or invisible. Furthermore, the user can
choose the language of the signature block, but she can also enter her name
that will be visible on the signature block. Lastly, the user can opt to sign
file in such a way that the file remains PDF/A or PDF/UA compliant. More
details on this implementation will be provided in the following section.

Invisible Signature. A signature can be visible or invisible. In case of the
visible signature, the signature block associated with the annotation is
displayed on the file. On the other side, the invisible signature means
that no signature block is presented on the file. However, an invisible
signature is still associated with the annotation, which in this case has a
rectangle array with zero values.

PDF/UA. The PDF/UA, or ISO 14289
2, is a PDF standard for the “Universal

Accessibility”. The purpose of the PDF/UA is to define requirements for
presenting documents in a form that is accessible to the persons who use
assistive technology when reading digital content. The standard defines
a reliable and accessible file, but at the same time hides technical details
from the user.
PDF/UA standard is based on Tagged PDF3, meaning that we have
a marked content, which follows a structural hierarchy. Every item of
the content has its place in the hierarchy, but beside them, we have

2https://www.iso.org/standard/54564.html
3https://www.iso.org/obp/ui/#iso:std:iso:32000:-1:ed-1:v1:en

51

https://www.iso.org/standard/54564.html
https://www.iso.org/obp/ui/##iso:std:iso:32000:-1:ed-1:v1:en

5. Implementation

”Artifact” - an item which does not belong to the vital document content.
In addition, PDF/UA provides technical specifications as a complement
to the WCAG 2.04 conformance regarding the PDF content, by clarifying
the low-level technical details for delivering accessible PDF content. [18]
We will summarize some of the required conditions for the PDF/UA.

• The content of the document needs to be tagged in logical reading
order.

• Fonts in the document need to be embedded, with exception to the
fonts for invisible text.

• Some layer options are not allowed.
• Problematic content is not allowed.
• The document’s metadata needs to specify a title of the document.

PDF/UA specifications are mainly written for the software developers
who are working with the PDF related software. [31].
However, PDF/UA compliant file has additional benefits and can be
a powerful tool for providing navigation options, transforming the ap-
pearance of a text, improving search engine, and more.

PDF/A. PDF Archiving (PDF/A) stands alongside the many standards de-
fined over the umbrella term ”PDF” [2]. It is an ISO5 managed standard
developed to assure the long-term preservation of documents.
This standard provides requirements that enable creation, view, and
print of PDF documents, however, it does not specify any concrete
strategy for archiving documents but rather a profile that enables repro-
duction of the same document in the future [1].
PDF/A can be seen as a guideline of the features that should be con-
tained and the features that should be avoided for long-term archiving
[21].

We will outline five main features of the PDF/A file.

1. Self-contained. Every feature of the file, which will be rendered
or printed, like text, images, vector graphics, fonts, color infor-
mation, needs to be included within the file, or in other words,

4https://www.w3.org/TR/WCAG20/
5International Organization for Standardization

52

https://www.w3.org/TR/WCAG20/

5. Implementation

self-contained. This characteristics also prohibits some of the exter-
nal content references, e.g., JavaScript, audio, and video content.

2. Self-documenting. Self-documenting is a characteristics of the
PDF/A, which provides documentation about the file with the use
of metadata. It suggests documenting identifiers like file prove-
nance, font metadata, and file identifier.

3. Device independent. The device independence means that the pro-
cessing of the file should be the same regardless of a device. For
this purpose, it is suggested to use specific RGB or CMYK color
profiles which are device-independent.

4. Unfettered. The PDF/A compliant file is encryption-free, which
means that the file should not be protected but open and available
for processing. This feature also defines that digital signatures are
applied after the PDF/A content is created.

5. Two levels of compliance. We differ two levels of compliance -
the core one PDF/A-1b, which refers to the basic requirements,
and the higher level, PDF/A-1a. The PDF/A-1a requires tags, a
special document structure which provides many features, where
accessibility for the people with disabilities is among them.

53

5. Implementation

5.2. Authentication process

To generate a qualified electronic signature, a user first needs to au-
thenticate herself. The user authentication and the signature acquisition
require interaction between multiple components. This interaction is
defined by the specifications, which is called the Security Layer 2.0. The
SL2.0 presents the extension of the existing concept called Security Layer.
These interaction steps are, on a high-level, depicted in figure 4.2.
In short, a user shares a PDF file with the PDF Signature App for process-
ing. The App communicates with the Trust Service Provider component
through the application interface to acquire the signature. Furthermore,
the communication is transmitted to the TSP Client App, which interacts
with both the user and TSP component via authentication interfaces.
Lastly, the corresponding authentication result is delegated to the PDF
Signature App.

5.2.1. Components

Three components are involved in the process. The first component is the
PDF Signature App, the core application then follows the TSP compo-
nent, and TSP App, which corresponds to the mobile client application
from the Trust Service Provider. While PDF Signature App has been
previously elaborated, it is noteworthy to mention the basic features
of the remaining two applications. The TSP in our implementation is
a prototype Java web service, which generates the qualified electronic
signatures. The TSP App is client-side application from TSP which im-
plements a graphical user interface for user authentication. TSP App
is an Android application, which defines certain requirements, such as
minimum API 23 and the support of alternative authentication methods
such as a fingerprint.

5.2.2. Communication flow

The communication between components starts with the request, which
requires the signature and ends with a signature value.

54

5. Implementation

(1) PDF Signature App to TSP. First step in the process is the inter-
action between PDF Signature App and the Trust Service Provider. PDF
Signature App sends a request to the Trust Service Provider requesting
a signature. The request contains a JSON object with corresponding
parameters that are indicators for a required service.

Listing 5.6: The JSON body request from PDF Signature App to TSP.

1 {

2 "v":10,

3 "reqID":"e7e1137d -f206 -431e-a64e -60612 d4b8a9c

",

4 "payload":{

5 "name":" createCAdES",

6 "params":{

7 "keyId":" SecureSignatureKeypair",

8 "content":" J V B E R i 0 x L j Q N J U9GCg ==",

9 "contentMode":" detached",

10 "mimeType":" application/pdf",

11 "padesComatibility":true ,

12 "excludedByteRange":[

13 [

14 14579,

15 22772

16]

17],

18 "cadesLevel":" cAdES"

19 }

20 }

21 }

The JSON body consists of the parameters defined by the Security Layer
2.0. Although we will not explain the specification in detail, tables below
will describe the parameters. Table 5.1 depicts the main parameters of
the response, while table 5.2 describes the payload body and table 5.3
describes the params body of the request.

55

5. Implementation

Name Request Response Description
v M M Describes the version protocol
reqID M Describes the unique request

id
respID M Describes the unique re-

sponse id
inResponseTo M Describes the unique ID of

the request for the particular
response ID

transactionID O O Describes the unique ID of
the transaction

payload O O Unsiged payload from the
communication interface

signedPayload O O Signed payload BASE64 en-
coded

Table 5.1.: JSON parameters of the first request. ”M” is mandatory field, while the
”O” marks the optional fields in the request.

Name Optional Description
name Name of the command.In our case the com-

mand is ”createCades”
params This is a JSON object which contains parametes

associated with the name. Parameters that can
be contained will be provided in one of the
following tables.

Table 5.2.: Parameters of the payload field.

56

5. Implementation

Name Optional Description

keyID This parameter is the ID of the sig-
nature key required for the signa-
ture creation.

content X Content present BASE64 encoded
data to be signed.

mimeType Presents the mime type of the data
to be signed

padesCompatibility X The value of this parameter can be
either true of false. If the result-
ing signature is PAdES compatible,
then we set this parameter to true.

excludedByteRange X This parameter desribes the range
of bytes to be excluded from the
signature

cadesLevel X This parameter refers to the differ-
ent version of CAdES standard.

Table 5.3.: Parameters of the params field.

(2) TSP to PDF Signature App. After the initial signature request,
TSP sends a response to the PDF Signature App. The response, among
other parameters, also contains a JSON object with the URL to the TSP
App. The table 5.4 and 5.5 provide the description of the parameters
contained the response.

57

5. Implementation

Listing 5.7: The JSON request from TSP to PDF Signature App.

1 {

2 "v":10,

3 "reqID":"03 b2828b ..371b",

4 "transactionID":" aacd815 ..376 de8",

5 "payload":{

6 "name":" redirect",

7 "params":{

8 "command":{

9 "name":" redirect",

10 "params":{

11 "command":{

12 "name":"call",

13 "params":{

14 "url":"https :// demo.egiz.gv.at/

vda/auth/initial",

15 "method":"get",

16 "includeTransactionID":true ,

17 "reqParams":[

18 {

19 "pendingId":"YTd..

jMtNjY5Zjk2MjU2ZjYx"

20 }

21]

22 }

23 },

24 "url":" APICALL :// call.vda.in.app",

25 "IPCRedirect":true

26 }

27 },

28 "url":" https :// demo.egiz.gv.at/vda/

generic/redirect",

29 "IPCRedirect":false

30 }

31 }

32 }

58

5. Implementation

Name Optional Description
command X The command to be transfered to

the defined URL.
signedCommand X The signed command to be trans-

fered to the defined URL
url X The URL where the request is ad-

dressed
IPC redirect X The true or false value. If true, it de-

fines the interprocess communicatio
between two apps.

Table 5.4.: The parameters contained in the response.

Name Optional Description
url The URL where the request is

addressed
method X The parameter that defines

the HTTP request.
includeTransactionID True or false value parameter.

If set to true, the body has to
contain transactionID.

reqParams X Describes the unique request
identifier

Table 5.5.: The parameters of params field.

59

5. Implementation

(3) PDF Signature App to TSP App. PDF Signature App uses the
forwarded URL to establish the IPC communication with TSP App. For
this purpose, PDF Signature App sends a request to the TSP App and
contains a JSON object with the following structure.

Listing 5.8: JSON request from PDF Signature App to TSP App.

1 {

2 "v":10,

3 "reqID":"03b2828b -48c1 -4e14 -b87e -b78e8677371b

",

4 "transactionID":"aacd815a -e61f -45e9 -8a4f -

c28796376de8",

5 "payload":{

6 "name":"call",

7 "params":{

8 "url":" https :// demo.egiz.gv.at/vda/auth/

initial",

9 "method":"get",

10 "includeTransactionID":true ,

11 "reqParams":[

12 {

13 "pendingId":" YTdiM2E2 ...Yx"

14 }

15]

16 }

17 }

18 }

(4) and (5) PDF Signature App to TSP App. The steps 4 and 5 relate
to the communication between TSP App and TSP. The authentication
process is delegated to the TSP App, which provides a graphical interface
for the user to authenticate. The user needs to provide her credentials in
order to authenticate at the remote HSM. The multifactor authentication
is satisfied when the user enters the password as the knowledge factor
and applies fingerprint (an access to the mobile device hardware security

60

5. Implementation

element) as the possession factor.

(6) TSP to TSP App. After the user entered the credentials, TSP
sends a response to the TSP App, which contains the signature value if
authentication is performed successfully. The signature parameter in the
response presents a CAdES, BASE64 encoded signature value.

(7) TSP App to PDF Signature App. As a last step in the communica-
tion, the TSP App forwards the response from TSP to the PDF Signature
App. The PDF Signature App handles the response and uses the signa-
ture value to finish signing the document. The response is shown on
listing below.

Listing 5.9: JSON request from TSP App to PDF Signature App.

1 {

2 "v":10,

3 "respID":"1ccc8d84 -2dcf -4ded -a039 -8

beb41ccdb19",

4 "inResponseTo":"d9312f16 -b057 -4f98 -8dc7 -

e9752d2f71d4",

5 "transactionID":"c01480ee -e85b -4d32 -82c4 -86

b45d428522",

6 "payload":{

7 "name":" createCAdES",

8 "result":{

9 "signature":" MIAGCSqGSIb3DQ ... AAAA"

10 }

11 }

12 }

61

5. Implementation

5.3. Summary of the chapter

In this section, we have described the implementation of our model for
mobile PDF signing. The implemented solution allows any users from
anywhere to select an arbitrary PDF file and sign it using just a single
mobile device.

The implementation of our solution consists of three components that
interact with each other to process PDF files but also to authenticate
the user. The PDF processing is done inside the PDF Signature Applica-
tion, which presents a core of our implementation. Additional used and
modified implementation is from TSP, which presents a Trust Service
Provider and TSP App, which is an Android App that represents as a
client side of the Trust Service Provider.

As we aim to fulfill our objectives and build a user-friendly solution,
the application for PDF processing provides an interface for signature
positioning on the file. Furthermore, additional rich features have been
added to the implementation. Those features are configurable by users
and allow them to specify the language of the signature block and also
the conformance with PDF/A and PDF/UA. The implementation of
PDF processing is done inside the PDF Signature App as we aim to
create a privacy-preserving solution and avoid relying on remote web
services. The security of our solution is guaranteed by the multifactor au-
thentication concept. The use of alternative methods for authentication,
such as fingerprint, significantly impacts the user experience and makes
the signing process faster and easier. The overall user involvement is
decreased to a minimum number of interactions.

62

6. Demonstrator

In this section, we will illustrate an application flow from a user perspec-
tive. The prerequisites for the user demonstration is to have a mobile
device that supports fingerprint authentication. Two Android applica-
tions need to be installed. First one is the PDF Signature App, and the
other one TSP App. Figures present screenshots taken from the different
stages of PDF signing. In the beginning, the user opens a PDF file with
the PDF Signature App via Share Intent and obtains the following view.

63

6. Demonstrator

Figure 6.1.: The PDF file is open with the PDF signature application, and the user is
presented with the graphically rendered file.

The interface consists of three layers. The first layer is the top layer
implemented as the App Bar, which contains a name of the file as well
as the menu icon. The menu will be explained later. The middle layer
presents the bitmap of the PDF file with a small indicator in the top
central position, which shows the page. This is the biggest part of the

64

6. Demonstrator

interface and has a dynamically draggable icon - signature block.
The signature block can be dragged through the entire file until the user
decides on the signature position. The latest layer is a bottom navigation
bar. This bar consists of five buttons. The first button from the left side is
”x” - for canceling the activity. The button in the middle is for creating
an additional page so that the signature block could be on the entirely
new and blank page. The first button from the right indications that the
user has finished the positioning part and the signing can proceed. The
remaining two buttons are for navigating through the file.

The menu button will navigate the user to the ”Settings” Activity. In this
part, the user can choose between different options for the file, like the
language of the signature block, whether the file should be compliant
with PDF/A, or should the signature be invisible.

Another important option here is that the user can enter its name as
the name of the signatory. The name entered in this field will be visible
on the file and will correspond to the name of the signatory on the
signature block. The decision for the approach, in which a user can
enter its name in the signature block as a signatory name, was made for
usability purposes. The standard procedure for acquiring the name of
a signatory is by extracting it from an obtained certificate. However, to
obtain the certificate would mean that the authentication process would
take be repeated twice, first time for gaining the signatory name from
the certificate, and a second time for obtaining the signature value. This
case is related to the concrete communication between Trust Service
Provider and PDF Signature App, and from technical reasons, the lack of
session management does not allow this that two requests are processed
through one transaction instead of two. Two times repeated authenti-
cation process, means two times the user is required to enter the set of
credentials, which makes the use of application exhaustive and prolongs
execution time.

65

6. Demonstrator

Figure 6.2.: Settings a user can select when signing a PDF file.

After the user chooses the preferred options, she starts the signing
process. Users interaction is required again when the PDF Signature
App established an IPC connection to the TSP App. As we mentioned,
the TSP App opens and carries out the authentication of a user by
providing an authentication interface as visible on figure 6.3.

66

6. Demonstrator

Figure 6.3.: Authentication interface provided by the TSP App.

After successfull authentication, the file has been signed and saved. The
preview of the signed file is shown on figure 6.4.

67

6. Demonstrator

Figure 6.4.: The signed file opened with a PDF viewer.

68

7. Discussion

The importance of signing PDF documents is widely recognized in
both the private and public sector. PDF files are commonly used for
the exchange of electronic documents, while applied PDF signatures
provide the integrity, authenticity, and non-repudiation of electronic doc-
uments. For this reason, there are many applications that offer signing
PDF files. However, they are mostly desktop or web applications. As we
move towards the mobile future, there is a need to provide a solution
for obtaining PDF signatures on mobile devices as well. Nevertheless,
designing such a solution has not been in the focus of research in the
past, due to many reasons. One of them is the fact that it was not easy
to enable multifactor authentication on mobile devices without using
additional hardware. Nevertheless, the aim of this thesis is to bridge
this significant gap in mobile technology and provide a reliable solution
for enabling PDF signing on mobile devices, on the way that satisfies
privacy, security and usability requirements.

During our work, we have designed a model for signing PDF files
on mobile devices, where our concrete implementation has shown the
practical applicability and feasibility of our model. However, it is also
important to discuss how well and to what extent the challenges and
the goals have been addressed and reached. Therefore, in this section,
we will reflect on the requirements and discuss how well they perform.

This chapter is organized as follows: First in section 7.1, we provide
a description of our evaluation where we deploy the productive e-
Government components, then in section 7.2 we discuss how well the
requirements of our model have been satisfied, and lastly, in section 7.3
we provide a conclusion of the chapter.

69

7. Discussion

7.1. Integration with Austrian productive solution

The proof-of-concept implementation of our solution, which has been
explained in section Implementation, has shown the feasibility of our
theoretical model. However, it is also required to evaluate the behavior
of our solution in a real-world scenario. For this purpose, we have prac-
tically evaluated our solution by integrating it with Austrian productive
solution. The created semi-productive environment has enabled us to
further test the application.

Our implementation, as we already mentioned, consists of the three
parts: PDF Signature App, prototype Trust Service Provider, and pro-
totype TSP client mobile application. However, in our semi-productive
environment, the components such as TSP and TSP app are replaced
with already existing e-Government components.

Although we are still in a very early stage of the first pilot period,
the results achieved so far demonstrate that our solution can be easily
integrated into existing infrastructure. This is an important result, as
one of the objectives of our model is applicability and modularity of our
solution.

7.2. Evaluation of requirements

The represented requirements of our model in section 4 are quite general
and broad; therefore, in this section, we will provide a bit narrowed
definition and evaluate the concrete aspects of each of them.

7.2.1. Security

Security, as an important requirement of our model, can be derived into
the following objectives:

Security on the application level. The security on application level refers
to the steps and decisions, which have been taken while implement-
ing the solution, to improve the security of an application. This
aspect will not be thoroughly examined, as we assume that soft-

70

7. Discussion

ware components were implemented and installed correctly, taking
care of the potential security vulnerabilities.

Protocol security. Protocol security refers to the correctness of the Se-
curity Layer 2.0 implementation. We argue that interfaces and
communication between components of our system have been im-
plemented according to the specifications. The integration of our
solution with concrete instances of Austrian solution has shown
that the communication based on the SL2.0 has been satisfied.

Security on authentication level. Although the authentication is a big
part of our solution, as it is obligatory for obtaining QES, the secu-
rity on authentication level is not in the scope of this topic.

PDF signature security. The security of PDF signatures became a big
topic, since it has shown that little research has been done regarding
the security of digital signatures embedded in PDF files in the prior
work. The recent research in this domain introduced three most
prominent attack classes regarding the PDF signatures- Signature
Exclusion, Incremental Update Abuse, and Signature Wrapping
[25]. The common feature of these attacks is the fact that they
aim to manipulate PDF files in such a way that alterations after
signatures are not detectable by the signature validation. Although
the signature validation is not a part of the thesis, it is clear that the
security of PDF signatures must be imperative in PDF processing
applications. In this thesis, we have taken certain steps to harden
the potential attacks on PDF signatures. One of these practices is
already defined by the PAdES specifications and refers to including
the entire document into the byte range calculation.

7.2.2. Privacy

In an environment such as e-Government, privacy is among major
concerns. From the need to build a privacy-preserving solution, we
derive additional objectives.

Data minimalization. The data minimalization refers to minimum data

71

7. Discussion

disclosure to the Service Provider to protect the privacy of the user.
The local implementation of PDF processing aims to satisfy this
objective. The transition of the implementation from the server-side
to the client-side is made with the purpose of preserving users data
by not sharing it with additional service providers.
However, if we evaluate the privacy features like privacy in terms
of users data, tracking data or linking data in communication with
service provider, we would agree that the objectives have not been
satisfied since sharing the users data like PDF file with Trust Service
Provider presents a normal behavior of our application and without
this step it would not be possible to obtain QES. The file is sent to
the Trust Service Provider with the aim that a user has a preview
of the file she is signing. Nevertheless, even though in our concrete
implementation, sharing file with TSP is obligatory, this certainly
leaves a room for improvement, which will be discussed in the next
chapter.

7.2.3. Usability

The general acceptance among users depends on the fact of how simple
the system is to use. This usability requirement leads to additional
objectives.

Signature positioning. The signing processes involves a user choosing
the position for the signature. As this feature has a major role in
overall user experience and it is an inevitable step in signing, the
positioning of the signature block is made in a user-friendly way
where the user can navigate through the file and easily select the
position.

Minimal user interaction. A user aims to finish the signing process as
easy as possible. This means that the time of signing should be min-
imized, as well as the user's interaction. The decision not to obtain
the user's certificate contributes to fulfilling this objective, as we
prevent of repeatedly entering the same credentials and performing
the same process steps. Although we cannot influence the means
for authentication in general, we argue that the involving biometric

72

7. Discussion

form of authentication contributes to the user-friendliness of the
process. On the other hand, it is reasonable to conclude that the
client-side PDF manipulation would extend the execution time, in
comparison to the same server-side computations.

Additional features. Additional features have also been implemented to
enhance users satisfaction. These feature mostly define the appear-
ance of the signature block; however, they can also be extended to
support additional requests. So far, the user has an opportunity to
choose a language of the signature block text. She, also, can specify
whether the signature will be visible or invisible. Furthermore, the
user can also define that file conforms with PDF/A. Additional
feature-rich options will be discussed in section 8.

7.3. Summary of the chapter

To summarize, we tackle different aspects of our objectives on different
abstraction levels, as they have a wide scope of possibly derived sub-
objectives. Therefore, the main aspects of security were the correctness
of implementation together with satisfying SL 2.0 protocol and com-
plying with PAdES standard to harden the potential attacks related to
PDF signatures. Furthermore, preserving the privacy of data has been
tackled by the local implementation of PDF processing. The client-side
implementation for PDF processing serves to minimize data disclosure.
The usability objective, or its derivatives, has been tackled by different
optional features that our application offers, but most importantly, by
embedding an easy mean of authentication on a single mobile device.
However, we also indicate the possibility of our solution to be improved
and further enhanced. In the following section, we will elaborate on the
possible improvements.

73

8. Future work

As we already mentioned, further research on the matter of PDF sig-
natures on mobile devices is necessary to yield improvements in this
direction. The following ideas and approaches are based on the knowl-
edge and experiences gathered during the design and implementation
and can help to enhance the objectives.

Full privacy-preserving feature. The privacy feature of our solution has
been discussed in many sections, and as it has been explained, we
focused on this as an emerging objective for our model, however,
preserving the privacy of our solution could be further enhanced.
We propose that future work could go in the direction of taking
the necessary steps to make our solution fully privacy-preserving,
meaning that the data are not disclosed to any other components
in the process. The current solution is based on the communication
between PDF Signature App and Trust Service Provider, which re-
quires, according to the protocol, that the file to be signed together
with calculated byte ranges is sent to the server.
We propose that we do not send the entire document to the server-
side, but only the hash value of the document. With this approach,
not only we would have a fully privacy-preserving solution, but it
would reduce certain computational steps at the server-side. The
drawback of this approach is the fact that a user would not have
an option to preview the document, which now exists. In that case,
additional measurements need to be taken into account to ensure
the trust between two application, as a guarantee that the correct
file is to be signed on the server-side.

Signature verification. As our application checks the correctness of the
signature only on integration level, a proper signature verification
tool incorporated into PDF signing application would be a benefi-

74

8. Future work

cial function to have in the environment which handles the signed
PDF document. Numerous desktop application for preview PDF
documents offer these features; however, the situation is different
on mobile devices.
The verification tool would provide users the ability to verify all
signed PDF documents. The awareness about verifying documents,
in this case, would be increased, as this topic on mobile devices is
not quite in focus and does not provide a usable option. Integrating
the signature validation tools can be done in two ways: First one is
server-side validation, which means that we use an existing online
web service for validation signatures. The other approach would
be a privacy-preserving approach, in which we would implement
the user validation on the client-side.

In addition to these main two targets for future work, we also suggest
that the part of the future work should contain a proper and detailed
usability evaluation. The usability evaluation would show how good and
what else can be done regarding the speed of the process and graphical
user interface.

In conclusion, this thesis presents a contribution towards building reli-
able m-Government by introducing a solution for generating qualified
electronic signatures for signing PDF files on a single mobile device.
Nevertheless, we find an opportunity to enhance the presented solution
by conducting further research in the above-mentioned directions as
well as other fields of study.

75

9. Conclusion

The chapter summarizes and concludes the content of this thesis. In this
thesis, we have proposed and implemented a solution for signing PDF
files on a single mobile device using remote authentication against HSM
for generating QES. Our solution tackles not only the privacy challenges
from related work but also provides a usable solution as an alternative
to security-critical use cases for qualified signing PDF files in the mobile
domain.

During our work, one of the first steps was to design a model for our
solution. The model is built on well-established requirements, and in this
thesis, we tackle concrete segments of security, usability, and privacy. Pri-
vacy is the first objective of our model. Building the privacy-preserving
solution required moving the implementation to the client-side and
implementing PDF processing inside the mobile client application. This
way, we do not rely on the remote web services for PDF processing, and
users data have minimal disclosure. The decision to move the implemen-
tation on the client side has also contributed to creating reliability in our
solution, as we maintain only one application.

Furthermore, to satisfy an emerging usability objective, the applica-
tion provides an easy and intuitive graphical user interface. A user
can navigate through the file and position the signature block on the
desired place. The user interaction is minimal, as the user aims to finish
the signing process as fast as possible. The user is also provided with
various options regarding the signature appearance.

Security, as an additional objective of the model, is also satisfied with the
novel signing concept which incorporates the remote authentication at
HSM for creating qualified electronic signatures. The novel contribution
in mobile industry such as TTE and its implementation with secure

76

9. Conclusion

element allowed us to utilize the multi-factor authentication at the single
mobile device, making the entire process usable by engaging alternative
authentication mechanism such as a fingerprint.

As an addition to the mentioned requirements, the model we propose is
designed on the way that applies to all mobile platforms, and modular
so that it can be easily integrated into other solutions.

The implementation of our solution consists of three parts. First and the
main part is the PDF Signature App, an Android application which im-
plements PDF processing and authentication. Other components, whose
implementation we have modified for the signing purpose, are demo
TSP and demo TSP App. The demo TSP App provides an interface for
the user’s authentication.
The proof of concept implementation of the mobile PDF signature so-
lution has shown the feasibility of the proposed model; however, we
aim to evaluate the capabilities of our solution in a real-world scenario.
For this purpose, we have deployed the semi-productive components of
the Austrian e-Government infrastructure instead of our prototypes into
our solution and created a semi-productive environment for a mobile
PDF signature service, where we have shown by easily integrating our
solution, the feasibility in a practical environment.

In summary, this thesis improved the state-of-the-art of the mobile
transaction-based services, by recognizing the need, and proposing,
designing and implementing a solution for obtaining qualified PDF sig-
natures on mobile devices. Our implementation serves as a contribution
to building flexible m-Government infrastructure and bridges the gap
between the traditional and mobile approach in terms of PDF signatures.

77

Appendix

78

Appendix A.

A signed file

The listing below represents raw PDF data after the file has been signed.
It demonstrates the creation of the qualified PDF signature. Specific parts
of the PDF file have been intentionally outlined for a better overview of
the file.

Listing A.1: Signed PDF file - source code shortened.

1 %PDF -1.4

2 %

3 6 0 obj <</H[516 141]/ Linearized 1/E 4534/L 8357

/N 1/O 9/T 8191>>

4 endobj

5

6 xref

7 6 11

8 0000004458 00000 n

9

10

11

12 trailer

13 <</Size 17/Prev 8181/Root 7 0 R/Info 5 0 R/ID[<

db7775cce227f6b30c440df4221dc390><b0b3638dea

568846897460db50f305e8 >]>>

14 startxref

15 0

16 %%EOF

17

79

Appendix A. A signed file

18 8 0 obj <</Length 64/Filter/FlateDecode/L 75/S 3

8>>stream

19

20 endstream

21 endobj

22 endstream

23 endobj

24 15 0 obj <</Type/FontDescriptor/FontBBox[-665 -3

25 2028 1037]/ FontName/Arial/Flags 32/StemV

88/CapHeight 718/Ascent 905/Descent -211/

ItalicAngle 0/FontFamily(Arial)/FontStretch/

Normal/FontWeight 400>>

25 endobj

26 16 0 obj <</Type/ExtGState/SA false/OP false/SM

0.02/op false/OPM 1>>

27 endobj

28 1 0 obj <</Nums[0 2 0 R]>>

29 endobj

30 2 0 obj <</S/D>>

31 endobj

32 3 0 obj <</Count 1/Kids[9 0 R]/Type/Pages >>

33 endobj

34 4 0 obj <</Length 3261/Type/Metadata/Subtype/XML

>>stream

35 <?xpacket beom/pdf/1.3/’ pdf:Producer=’Acrobat

Distiller 6.0 (Windows) ’></rdf:Description >

36 ...

37 endstream

38 endobj

39 5 0 obj <</ModDate(D:20060306150633-05’00’)/

CreationDate(D:20060306150633-05’00’)/Title(

Microsoft Word - Document2)/Creator(AdobePS5

.dll Version 5.2.2)/Producer(Acrobat

Distiller 6.0 \(Windows \))>>

40 endobj

41 xref

42 0 6

80

Appendix A. A signed file

43 0000000000 65535 f

44 0000004534 00000 n

45 0000004567 00000 n

46 0000004590 00000 n

47 0000004640 00000 n

48 0000007977 00000 n

49 trailer

50 <</Size 6>>

51 startxref

52 116

53 %%EOF

54 5 0 obj

55 <<

56 /ModDate (D:20060306151233-05’00 ’)

57 /CreationDate (D:20060306150633-05’00 ’)

58 /Title (Blank PDF Document)

59 /Creator (AdobePS5.dll Version 5.2.2)

60 /Producer (Acrobat Distiller 6.0 \(Windows \))

61 /Author (Department of Justice \(Executive

Office of Immigration Review \))

62 >>

63 endobj

64 7 0 obj

65 <<

66 /Pages 3 0 R

67 /Type /Catalog

68 /PageLabels 1 0 R

69 /Metadata 17 0 R

70 >>

71 endobj

72 xref

73 0 1

74 0000000000 65535 f

75 5 1

76 0000008357 00000 n

77 7 1

78 0000008642 00000 n

81

Appendix A. A signed file

79 17 1

80 0000008732 00000 n

81 trailer

82 <<

83 /Size 18

84 /Info 5 0 R

85 /Root 7 0 R

86 /Prev 116

87 /ID[<db7775cce227f6b30c440df4221dc390><4a2b68

cfc7a1eff56fed75af5d28bdac >]

88 >>

89 startxref

90 10850

91 %%EOF

92

93 7 0 obj

94 <<

95 /Pages 3 0 R

96 /Type /Catalog

97 /PageLabels 1 0 R

98 /Metadata 17 0 R

99 /AcroForm <<

100 /Fields [18 0 R]

101 /SigFlags 3

102 /DR <<

103 /XObject <<

104 /FRM1 19 0 R

105 >>

106 0 R

107 >>

108 /TU <48696E776569730...D656E742E0A>

109 >>

110 endobj

111 19 0 obj

112 <<

113 /Length 2171

114 /Type /XObject

82

Appendix A. A signed file

115 /Subtype /Form

116 /Resources <<

117 /XObject <<

118 /Im1 22 0 R

119 >>

120 /Font 23 0 R

121 /ProcSet [/PDF /Text /ImageC /ImageB /ImageI]

122 >>

123 /BBox [231.99998 84.0 0.0 0.0]

124 /FormType 1

125 >>

126 stream

127 1

128 endstream

129 endobj

130

131

132 20 0 obj

133 <<

134 /Type /Sig

135 /Filter /Adobe.PPKLite

136 /SubFilter /ETSI.CAdES.detached

137 /M (D:20190403142400+02’00 ’)

138 /Reason (Signaturpruefung unter http ://www.

signaturpruefung.gv.at)

139 /Contents <308006...00000000000000000000000>

140 /ByteRange [0 14587 22781 17992]

141 >>

142 endobj

143

144

145 9 0 obj

146 <<

147 /Contents 12 0 R

148 /Type /Page

149 /Parent 3 0 R

150 /Rotate 0

83

Appendix A. A signed file

151 /MediaBox [0 0 612 792]

152 /CropBox [0 0 612 792]

153 /Resources 10 0 R

154 /Annots [18 0 R]

155 >>

156 ...

157 /Height 210

158 /ColorSpace /DeviceRGB

159 >>

160 stream

161 endstream

162 endobj

163 23 0 obj

164 <<

165 /F1 24 0 R

166 /F2 25 0 R

167 >>

168 endobj

169 24 0 obj

170 <<

171 /Subtype /Type1

172 /BaseFont /Helvetica -Bold

173 /Encoding /WinAnsiEncoding

174 >>

175 endobj

176 25 0 obj

177 <<

178 /Subtype /Type1

179 /BaseFont /Courier

180 /Encoding /WinAnsiEncoding

181 >>

182 endobj

183 xref

184 0199 00000 n

185 0000040290 00000 n

186 trailer

187 <<

84

Appendix A. A signed file

188 /Size 26

189 /Prev 10850

190 /Root 7 0 R

191 /Info 5 0 R

192 /ID [<DB7775CCE227F6B30C440DF4221DC390> <221E05

06FD34FBB04D8ADEC354F61099 >]

193 >>

194 startxref

195 40374

196 %%EOF

85

Bibliography

[1] 3D PDF Consortium - PDF Standards Overview. url: http : / /

3dpdfconsortium.org/pdf- standards/. Accessed: 2019-04-08

(cit. on p. 52).

[2] 3D PDF Consortium - PDF/A. url: http://3dpdfconsortium.org/
pdf-a/. Accessed: 2019-04-08 (cit. on p. 52).

[3] ADOBE FAST FACTS. url: https://www.adobe.com/about-
adobe/fast-facts.html. Accessed: 2019-03-19 (cit. on p. 1).

[4] Adobe Systems Incorporated. Digital Signature Appearances. url: https:
//www.adobe.com/content/dam/acom/en/devnet/acrobat/

pdfs/PPKAppearances.pdf. Accessed: 2019-06-8 (cit. on p. 48).

[5] Adobe Systems Incorporated. Digital Signatures in Acrobat. url: https:
//www.adobe.com/content/dam/acom/en/devnet/acrobat/

pdfs/digisig_in_acrobat.pdf. Accessed: 2019-03-19 (cit. on
pp. 17, 19).

[6] Adobe Systems Incorporated. PDF Reference — Document management
— Portable document format — Part 1: PDF 1.7. url: https://www.
adobe.com/content/dam/acom/en/devnet/pdf/pdfs/PDF32000_

2008.pdf. Accessed: 2019-03-19 (cit. on p. 12).

[7] Android Security Documentation. url: https://source.android.
com/security/keystore. Accessed: 2019-03-19 (cit. on pp. 2, 29).

[8] Apache PDFBox® - A Java PDF Library. url: https://pdfbox.
apache.org. Accessed: 2019-04-08 (cit. on p. 43).

[9] Cloud Signature Consortium VZW - Architectures and protocols for
remote signature applications Published version 1.0.3.0 (2018-12). url:
https://cloudsignatureconsortium.org/wp-content/uploads/

2019/02/CSC_API_V1_1.0.3.0.pdf. Accessed: 2019-03-19 (cit. on
p. 1).

86

http://3dpdfconsortium.org/pdf-standards/
http://3dpdfconsortium.org/pdf-standards/
http://3dpdfconsortium.org/pdf-a/
http://3dpdfconsortium.org/pdf-a/
https://www.adobe.com/about-adobe/fast-facts.html
https://www.adobe.com/about-adobe/fast-facts.html
https://www.adobe.com/content/dam/acom/en/devnet/acrobat/pdfs/PPKAppearances.pdf
https://www.adobe.com/content/dam/acom/en/devnet/acrobat/pdfs/PPKAppearances.pdf
https://www.adobe.com/content/dam/acom/en/devnet/acrobat/pdfs/PPKAppearances.pdf
https://www.adobe.com/content/dam/acom/en/devnet/acrobat/pdfs/digisig_in_acrobat.pdf
https://www.adobe.com/content/dam/acom/en/devnet/acrobat/pdfs/digisig_in_acrobat.pdf
https://www.adobe.com/content/dam/acom/en/devnet/acrobat/pdfs/digisig_in_acrobat.pdf
https://www.adobe.com/content/dam/acom/en/devnet/pdf/pdfs/PDF32000_2008.pdf
https://www.adobe.com/content/dam/acom/en/devnet/pdf/pdfs/PDF32000_2008.pdf
https://www.adobe.com/content/dam/acom/en/devnet/pdf/pdfs/PDF32000_2008.pdf
https://source.android.com/security/keystore
https://source.android.com/security/keystore
https://pdfbox.apache.org
https://pdfbox.apache.org
https://cloudsignatureconsortium.org/wp-content/uploads/2019/02/CSC_API_V1_1.0.3.0.pdf
https://cloudsignatureconsortium.org/wp-content/uploads/2019/02/CSC_API_V1_1.0.3.0.pdf

Bibliography

[10] Digital Signatures in a PDF. url: https : / / www . adobe . com /

devnet - docs / etk _ deprecated / tools / DigSig / %20Acrobat _

DigitalSignatures_in_PDF.pdf. Accessed: 2019-03-19 (cit. on
p. 19).

[11] Digital Signatures in the PDF Language - Developer Technical Note.
url: https://www.adobe.com/content/dam/acom/en/devnet/
acrobat/pdfs/DigitalSignaturesInPDF.pdf. Accessed: 2019-04-
08 (cit. on p. 49).

[12] eIDAS Regulation - REGULATION (EU) No 910/2014 OF THE EU-
ROPEAN PARLIAMENT AND OF THE COUNCIL of 23 July 2014
on electronic identification and trust services for electronic transactions
in the internal market and repealing Directive 1999/93/EC. url: https:
//www.eid.as/home/#article25. Accessed: 2019-03-19 (cit. on
p. 1).

[13] eIDAS Regulation - REGULATION (EU) No 910/2014 OF THE EU-
ROPEAN PARLIAMENT AND OF THE COUNCIL of 23 July 2014
on electronic identification and trust services for electronic transactions
in the internal market and repealing Directive 1999/93/EC. url: https:
//www.eid.as/Regulation. Accessed: 2019-06-17 (cit. on pp. 6–8).

[14] Electronic Signatures and Infrastructures (ESI); PDF Advanced Elec-
tronic Signature Profiles; Part 1: PAdES Overview - a framework docu-
ment for PAdES. url: https://www.etsi.org/deliver/etsi_ts/
102700_102799/10277801/01.01.01_60/ts_10277801v010101p.

pdf. Accessed: 2019-04-08 (cit. on pp. 11, 46, 48).

[15] ETSI TS 101 903 V1.4.2 (2010-12) Technical Specification Electronic
Signatures and Infrastructures (ESI); XML Advanced Electronic Signa-
tures (XAdES). url: https://www.etsi.org/deliver/etsi_ts/
101900_101999/101903/01.04.02_60/ts_101903v010402p.pdf.
Accessed: 2019-04-08 (cit. on p. 10).

[16] ETSI TS 103 173 V2.1.1 (2012-03) - Electronic Signatures and Infras-
tructures (ESI); CAdES Baseline Profile. url: https://www.etsi.
org/deliver/etsi_ts/103100_103199/103173/02.01.01_60/

ts_103173v020101p.pdf. Accessed: 2019-04-08 (cit. on p. 10).

[17] Andreas Gregor Fitzek et al. “Fortgeschrittene PDF Signaturen mit
PAdES.” In: eGovernment review 15 (2015), pp. 16–17 (cit. on p. 23).

87

https://www.adobe.com/devnet-docs/etk_deprecated/tools/DigSig/%20Acrobat_DigitalSignatures_in_PDF.pdf
https://www.adobe.com/devnet-docs/etk_deprecated/tools/DigSig/%20Acrobat_DigitalSignatures_in_PDF.pdf
https://www.adobe.com/devnet-docs/etk_deprecated/tools/DigSig/%20Acrobat_DigitalSignatures_in_PDF.pdf
https://www.adobe.com/content/dam/acom/en/devnet/acrobat/pdfs/DigitalSignaturesInPDF.pdf
https://www.adobe.com/content/dam/acom/en/devnet/acrobat/pdfs/DigitalSignaturesInPDF.pdf
https://www.eid.as/home/#article25
https://www.eid.as/home/#article25
https://www.eid.as/Regulation
https://www.eid.as/Regulation
https://www.etsi.org/deliver/etsi_ts/102700_102799/10277801/01.01.01_60/ts_10277801v010101p.pdf
https://www.etsi.org/deliver/etsi_ts/102700_102799/10277801/01.01.01_60/ts_10277801v010101p.pdf
https://www.etsi.org/deliver/etsi_ts/102700_102799/10277801/01.01.01_60/ts_10277801v010101p.pdf
https://www.etsi.org/deliver/etsi_ts/101900_101999/101903/01.04.02_60/ts_101903v010402p.pdf
https://www.etsi.org/deliver/etsi_ts/101900_101999/101903/01.04.02_60/ts_101903v010402p.pdf
https://www.etsi.org/deliver/etsi_ts/103100_103199/103173/02.01.01_60/ts_103173v020101p.pdf
https://www.etsi.org/deliver/etsi_ts/103100_103199/103173/02.01.01_60/ts_103173v020101p.pdf
https://www.etsi.org/deliver/etsi_ts/103100_103199/103173/02.01.01_60/ts_103173v020101p.pdf

Bibliography

[18] Importance of WCAG 2.0 and PDF/UA. url: https://commonlook.
com/WCAG- 20- and- PDF- UA- Your- Questions- Answered/. Ac-
cessed: 2019-04-08 (cit. on p. 52).

[19] Introduction to Trusted Execution Environments. url: https : / /

globalplatform.org/wp-content/uploads/2018/05/Introduction-

to-Trusted-Execution-Environment-15May2018.pdf. Accessed:
2019-07-29 (cit. on p. 27).

[20] iOS Security - iOS 12.1. url: https://www.apple.com/business/
site/docs/iOS_Security_Guide.pdf. Accessed: 2019-03-19 (cit.
on pp. 2, 28).

[21] ISO 19005-1:2005 Preview Document management – Electronic docu-
ment file format for long-term preservation – Part 1: Use of PDF 1.4
(PDF/A-1). url: https://www.iso.org/obp/ui/#iso:std:iso:
19005:-1:ed-1:v2:en. Accessed: 2019-04-08 (cit. on p. 52).

[22] Herbert Leitold, Reinhard Posch, and Thomas Rössler. “Media-
break resistant eSignatures in eGovernment: an Austrian experi-
ence.” In: IFIP International Information Security Conference. Springer.
2009, pp. 109–118 (cit. on p. 22).

[23] Thomas Lenz and Lukas Alber. “Towards cross-domain eid by
using agile mobile authentication.” In: 2017 IEEE Trustcom/Big-
DataSE/ICESS. IEEE. 2017, pp. 570–577 (cit. on p. 2).

[24] Desta Mengistu, Hangjung Zo, and Jae Jeung Rho. “M-government:
opportunities and challenges to deliver mobile government ser-
vices in developing countries.” In: 2009 Fourth International Confer-
ence on Computer Sciences and Convergence Information Technology.
IEEE. 2009, pp. 1445–1450 (cit. on p. 2).

[25] Vladislav Mladenov et al. “1 Trillion Dollar Refund–How To Spoof
PDF Signatures.” In: () (cit. on pp. 1, 71).

[26] Mobile Phone Signature. url: https://www.egiz.gv.at/en/e-
government/4- buergerkarte#sub- handysignatur. Accessed:
2019-05-11 (cit. on p. 22).

88

https://commonlook.com/WCAG-20-and-PDF-UA-Your-Questions-Answered/
https://commonlook.com/WCAG-20-and-PDF-UA-Your-Questions-Answered/
https://globalplatform.org/wp-content/uploads/2018/05/Introduction-to-Trusted-Execution-Environment-15May2018.pdf
https://globalplatform.org/wp-content/uploads/2018/05/Introduction-to-Trusted-Execution-Environment-15May2018.pdf
https://globalplatform.org/wp-content/uploads/2018/05/Introduction-to-Trusted-Execution-Environment-15May2018.pdf
https://www.apple.com/business/site/docs/iOS_Security_Guide.pdf
https://www.apple.com/business/site/docs/iOS_Security_Guide.pdf
https://www.iso.org/obp/ui/#iso:std:iso:19005:-1:ed-1:v2:en
https://www.iso.org/obp/ui/#iso:std:iso:19005:-1:ed-1:v2:en
https://www.egiz.gv.at/en/e-government/4-buergerkarte#sub-handysignatur
https://www.egiz.gv.at/en/e-government/4-buergerkarte#sub-handysignatur

Bibliography

[27] Multi-factor Authentication Overview paper about state-of-the-art multi-
factor authentication systems and mechanisms. url: https://www.
egiz.gv.at/files/projekte/2016/whitepaperMFA/Whitepaper-

Multi- Faktor- Authentifizierung.pdf. Accessed: 2019-03-19

(cit. on p. 26).

[28] PDF REFERENCE AND ADOBE EXTENSIONS TO THE PDF SPEC-
IFICATION. url: https://www.adobe.com/devnet/pdf/pdf_
reference.html. Accessed: 2019-03-19 (cit. on p. 1).

[29] PDF-AS. url: https://www.egiz.gv.at/en/schwerpunkte/16-
pdf-as. Accessed: 2019-03-19 (cit. on pp. 1, 23).

[30] PDF-Over. url: https://joinup.ec.europa.eu/solution/pdf-
over. Accessed: 2019-03-19 (cit. on pp. 1, 24).

[31] PDFlib whitepaper: ”A Technical Introduction to PDF/UA”. url:
https://www.pdflib.com/fileadmin/pdflib/pdf/whitepaper/

Whitepaper-Technical-Introduction-to-PDFUA.pdf. Accessed:
2019-04-08 (cit. on p. 52).

[32] Karl Christian Posch et al. “Secure and Privacy-Preserving eGov-
ernment—Best Practice Austria.” In: Rainbow of computer science.
Springer, 2011, pp. 259–269 (cit. on pp. 22, 32).

[33] Regulation (EU) No 910/2014 of the European Parliament and of the
Council of 23 July 2014 on electronic identification and trust services
for electronic transactions in the internal market and repealing Directive
1999/93/EC. url: https://eur-lex.europa.eu/legal-content/
EN/TXT/?uri=uriserv:OJ.L_.2014.257.01.0073.01.ENG.
Accessed: 2019-03-19 (cit. on pp. 5, 6).

[34] The AdES family of standards: CAdES, XAdES, and PAdES Implemen-
tation guidance for using electronic signatures in the European Union.
url: https://blogs.adobe.com/security/91014620_eusig_wp_
ue.pdf. Accessed: 2019-03-19 (cit. on p. 20).

[35] Kevin Theuermann, Arne Tauber, and Thomas Lenz. “Mobile-
Only Solution for Server-Based Qualified Electronic Signatures.”
In: ICC 2019-2019 IEEE International Conference on Communications
(ICC). IEEE. 2019, pp. 1–7 (cit. on pp. 2, 27, 31).

89

https://www.egiz.gv.at/files/projekte/2016/whitepaperMFA/Whitepaper-Multi-Faktor-Authentifizierung.pdf
https://www.egiz.gv.at/files/projekte/2016/whitepaperMFA/Whitepaper-Multi-Faktor-Authentifizierung.pdf
https://www.egiz.gv.at/files/projekte/2016/whitepaperMFA/Whitepaper-Multi-Faktor-Authentifizierung.pdf
https://www.adobe.com/devnet/pdf/pdf_reference.html
https://www.adobe.com/devnet/pdf/pdf_reference.html
https://www.egiz.gv.at/en/schwerpunkte/16-pdf-as
https://www.egiz.gv.at/en/schwerpunkte/16-pdf-as
https://joinup.ec.europa.eu/solution/pdf-over
https://joinup.ec.europa.eu/solution/pdf-over
https://www.pdflib.com/fileadmin/pdflib/pdf/whitepaper/Whitepaper-Technical-Introduction-to-PDFUA.pdf
https://www.pdflib.com/fileadmin/pdflib/pdf/whitepaper/Whitepaper-Technical-Introduction-to-PDFUA.pdf
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.2014.257.01.0073.01.ENG
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.2014.257.01.0073.01.ENG
https://blogs.adobe.com/security/91014620_eusig_wp_ue.pdf
https://blogs.adobe.com/security/91014620_eusig_wp_ue.pdf

Bibliography

[36] Kevin Theuermann et al. “Flexible und benutzerfreundliche Au-
thentifizierungsverfahren zur Umsetzung transaktionaler E-Government-
Services auf mobilen Geräten.” In: Handbuch E-Government: Tech-
nikinduzierte Verwaltungsentwicklung (2019), pp. 1–30 (cit. on p. 1).

[37] Thomas Zefferer. “Towards Transactional Electronic Services on
Mobile End-User Devices-A Sustainable Architecture for Mobile
Signature Solutions.” In: 11th International Conference on Web Infor-
mation Systems and Technologies. . 2015 (cit. on p. 2).

[38] Thomas Zefferer and Vesna Krnjic. “Towards user-friendly e-
government solutions: usability evaluation of austrian smart-card
integration techniques.” In: International Conference on Electronic
Government and the Information Systems Perspective. Springer. 2012,
pp. 88–102 (cit. on p. 33).

[39] Thomas Zefferer and P Teuf. “Opportunities and forthcoming chal-
lenges of smartphone-based mgovernment services.” In: Eduard
Aibar (2011), p. 56 (cit. on p. 2).

90

	Abstract
	Acknowledgements
	Introduction
	Challenge
	Contribution
	Outline

	Background
	Electronic signatures
	Advanced Electronic Signature.
	Qualified Electronic Signature.
	Basic principle.

	Electronic signatures - standards
	CAdES.
	XAdES.
	PAdES.

	PDF basics
	File structure
	Signing process
	Multiple signatures and Incremental update
	PDF file verification

	Summary of the chapter

	Related Work
	The Citizen Card Concept
	PDF-AS
	PDF-Over
	QES on a single mobile device
	Summary of the chapter

	Model
	Objectives
	Participants
	Signer environment
	Server environment.

	Communication flow
	Interfaces
	Process steps

	Summary of the section

	Implementation
	PDF Processing
	PDF Libary
	PDF signatures
	Additional settings

	Authentication process
	Components
	Communication flow

	Summary of the chapter

	Demonstrator
	Discussion
	Integration with Austrian productive solution
	Evaluation of requirements
	Security
	Privacy
	Usability

	Summary of the chapter

	Future work
	Conclusion
	A signed file
	Bibliography

		2019-08-27T18:24:38+0200
	Emina Ahmetovic
	Signature verification at http://www.signature-verification.gv.at

