
Johannes Anton Rieder, BSc

Applying Software Engineering Research
with Focus on Testing in an Industry

Project

MASTER’S THESIS

to achieve the university degree of

Diplom-Ingenieur

Master’s degree programme: Software Development and Business Management

submitted to

Graz University of Technology

Supervisor

Univ.-Prof. Dipl.-Ing. Dr.techn. Wolfgang Slany

Institute of Software Technology
Head: Univ.-Prof. Dipl.-Ing. Dr.techn. Wolfgang Slany

Graz, September 2019

This document is set in Palatino, compiled with pdfLATEX2e and Biber.

The LATEX template from Karl Voit is based on KOMA script and can be
found online: https://github.com/novoid/LaTeX-KOMA-template

http://LaTeX.TUGraz.at
http://en.wikipedia.org/wiki/Biber_(LaTeX)
http://www.komascript.de/
https://github.com/novoid/LaTeX-KOMA-template

Affidavit

I declare that I have authored this thesis independently, that I have not
used other than the declared sources/resources, and that I have explicitly
indicated all material which has been quoted either literally or by content
from the sources used. The text document uploaded to tugrazonline is
identical to the present master’s thesis.

Date Signature

iii

Abstract

This thesis will begin by discussing a paper by C.A.R. Hoare in chapter 1,
which will act as a starting point for all the topics discussed in this thesis
with plenty of mentions of another paper by B. A. Kitchenham et al.

The concept of Evidence-Based Software Engineering (ebse) which “is con-
cerned with determining what works, when and where, in terms of software engi-
neering practice, tools and standards”1 will be introduced in chapter 3. While
a lot of the theory behind computer science (which a lot of the current
software infrastructure is based on) can mostly be proven as they often
have deep roots in formal, mathematical definitions stemming from the
early origins of computer science — software engineering or development
(two terms in many cases used interchangeably) practices are frequently
based on anecdotal evidence about what used to work for a certain team,
organization, or company in their specific context, rather than research
and scientific methods which could provide solid proof, or, at least, strong
correlation between project success or failure and certain practices. ebse tries
to apply Systematic Literature Review (slr) as one tool to find empirical
evidence of methods, techniques and processes that can be proven to work
in a defined context.

After this, the very broad subjects of testing in chapter 2, code coverage
in chapter 4 and finally Test-Driven Development (tdd) in chapter 5 will
be discussed. tdd will be covered intensively, taking a look at the benefits
and downsides of a test-first approach and it will be attempted to answer
the question if these methodologies and techniques used by practitioners
can be supported not just by anecdotal, but by scientific evidence. A couple
of industry studies will be discussed, as well as their results and what
conclusions can be drawn for other projects.

1EBSE Website 2012.

iv

Type systems will be briefly discussed as well in chapter 6, which, compared
to the industry studies, have deep roots in formal computer science theory.
In this context, two languages in particular, JavaScript and Ruby will be
discussed with regards to their type system properties because of their
relevance to OSKAR.

At the end in chapter 7 it will be discussed how the acquired knowledge
was applied in an industry project in the context of a server backend of the
software “OSKAR” at NR.Systems GmbH, and to which extend.

v

Contents

Abstract iv

List of Figures viii

List of Tables ix

Listings x

1 Background 1
1.1 The Human Factor . 5

2 Automated Self-Testing Code 7
2.1 Self-Testing . 7

2.2 Automated . 8

2.3 Types of Tests . 10

2.4 Conclusion . 12

3 Testing as a Suitable Goal for EBSE 13
3.1 Lack of tests are Technical Debt 14

4 Code Coverage 17
4.1 Types of Coverage . 18

4.2 “Mythical Unit Test Coverage” 19

4.2.1 The Influence of Code Complexity on Defect Rate and
Code Coverage . 22

4.3 What is Code Coverage measuring, if not Test Sufficiency? . . 24

4.4 SQLite . 25

5 Test-Driven Development 26
5.1 Goals of TDD . 27

vi

Contents

5.2 The TDD Development Cycle 28

5.2.1 Regression Tests . 29

5.2.2 Refactoring . 30

5.3 Criticism . 32

5.3.1 Criticism on Unit Testing 33

5.3.2 Criticism on Refactoring 33

5.3.3 Criticism on Simple Design and Lack of Planning . . . 35

5.4 Efficacy of Test-Driven Development 35

5.4.1 George and Williams, 2004 36

5.4.2 Bhat and Nagappan, 2006 38

5.4.3 Nagappan et al., 2008 40

5.5 Is TDD dead? . 43

5.5.1 3X by Kent Beck . 46

5.5.2 Example of Test-Induced Design Damage 48

5.5.3 Conclusion . 52

6 Type Systems 53
6.1 About Type Systems . 53

6.2 Strict and Dynamic Typing . 54

6.3 Claimed Benefits of Strict Typing 55

6.4 Efforts being made for JavaScript 58

6.4.1 Reason . 59

6.5 Efforts being made for Ruby . 59

6.5.1 Sorbet . 60

6.5.2 Ruby 3.0 . 62

7 OSKAR 64
7.1 Background . 64

7.2 OSKAR-Server Overview . 65

7.3 Principles of the Ruby Community 65

7.4 TDD in OSKAR . 66

7.5 Coverage in OSKAR . 68

7.5.1 Code Complexity in OSKAR 69

8 Conclusion 70

Bibliography 72

vii

List of Figures

2.1 Testing pyramid with the different types of tests 11

3.1 Study overlap of Rios et al.’s tertiary study 16

4.1 Focus of the “Mythical Unit Test Coverage” study 20

4.2 Contour plot showing relation between max. block depth,
coverage and defects . 23

4.3 Contour plot showing relation between no. of versions, cov-
erage and defects . 23

5.1 TDD lifecycle . 28

5.2 Waterfall model . 37

6.1 Error model of Gao et al.’s study 57

6.2 Ruby 3 static analysis . 62

viii

List of Tables

4.1 List of measures with strong correlations 21

5.1 12 key xp practices . 34

ix

Listings

5.1 Original Rails code . 49

5.2 Hexagon-inspired, test-induced, “damaged” controller 49

5.3 Hexagon-inspired, test-induced, “damaged” runner 50

5.4 Hexagon-inspired, test-induced, “damaged” repository 51

5.5 Hexagon-inspired, test-induced, “damaged” model 51

6.1 Ruby’s strong typing results in a TypeError 55

6.2 JavaScript’s type coercion leads to concatenation 55

6.3 A more curious example of JavaScript’s type coercion 55

6.4 Ruby code annotated with Sorbet 61

6.5 The resulting type errors when using the Sorbet runtime . . . 61

6.6 Ruby code without type signatures 63

6.7 Corresponding Ruby Interface file 63

7.1 Writing a failing test . 67

7.2 Running the test to see it fail 67

7.3 Adding the minimal implementation to make the test green . 68

7.4 Running the test again to see it turn green 68

x

1 Background

As an introduction to give this thesis a little background, it will start by cit-
ing a few passages of a paper written by Sir Charles Antony Richard Hoare
(C.A.R. Hoare), more commonly referred to as Tony Hoare, a British com-
puter scientist known for inventing the Quicksort sorting algorithm1, Hoare
logic2 and often quoted for his apology for inventing the null-reference,
calling it his billion-dollar mistake in a talk given in 2009

3. In his paper
“How Did Software Get So Reliable Without Proof?” from 1996 he describes
how — in his opinion — software could grow from programs consisting
of mere tens of thousands loc

4 to millions of loc in recent times5 without
causing too many catastrophic failures that were being predicted at the
time.

His paper will act as a sort of common thread for this thesis, as it touches
topics such as Evidence-Based Software Engineering (ebse, chapter 3), test-
ing and Test-Driven Development (tdd, chapter 5), metrics for measuring
the efficacy of testing methods such as code coverage (chapter 4), regression
testing (subsection 5.2.1), Return on Investment (roi, section 5.4) of testing
software (or rather the cost of not doing so) and several examples of how
research has benefited practitioners of software development over the years
(for example type systems, see chapter 6). Although not all of this is directly
mentioned, one can easily draw parallels of what Hoare wrote in 1996 and
what other researchers have found and how languages, frameworks and
software development practices developed in the years afterwards.

1Quicksort 2019.
2Hoare logic 2019.
3Null References 2009.
4The source code for the Apollo 11 contains about 130.000 loc. (Garry, 2019)
5As mentioned by Hoare in 1996, when this paper was written. But many modern

software projects easily exceed millions of loc.

1

1 Background

Catastrophic disasters caused by software defects

On 4 June 1996, the maiden flight of the Ariane 5 launcher ended
in a failure. Only about 40 seconds after initiation of the flight
sequence, at an altitude of about 3700m, the launcher veered off its
flight path, broke up and exploded.

(Lions, 1996, p. 1)

The primary cause of the explosion in the chain of technical events that
led up the the catastrophe was a software defect, namely an unprotected
(of an “Operand Error” to occur) conversion from a 64-bit floating point
to a 16-bit integer value. (Lions, 1996, p. 4)

In March 2019, aviation regulators and airlines around the world
grounded all Boeing 737 MAX passenger airliners after two MAX
8 aircraft crashed, killing the 346 people aboard.

(Boeing 737 MAX groundings 2019)

The primary cause for the crashes of two Boeing 737 MAX passenger
airplanes was a software flaw in the mcas (Maneuvering Characteristics
Augmentation System). This software was supposed to emulate behavior
of previous generations of 737 airplanes so pilots would not have to be
trained separately for the 737 MAX. (Lion Air Flight 610 2019; Boeing 737
MAX groundings 2019)

The death of Elaine Herzberg was the first recorded case of a pedes-
trian fatality involving a self-driving (autonomous) car, following
a collision that occurred late in the evening of March 18, 2018.

(Death of Elaine Herzberg 2019)

In this case the autonomous driving software detected Herzberg 6 sec-
onds before impact, but did not determine an emergency break was
needed until 1.3 seconds before impact, at which point it did not initiate
the emergency breaking maneuver since these maneuvers were not en-
abled during computer control of the vehicle. (Death of Elaine Herzberg
2019)

2

1 Background

Compilers, operating systems, large telecommunication network software
etc. working without grand failures every day. Hoare asks if this was all
thanks to rigorous application of scientific research results and comes to the
conclusion that while if one were to just take a quick glimpse at software
engineering practices they might think that research has not influenced
practitioners of software development and that a large gap exists between
practice and theory. But taking a closer look, one finds that research has
greatly improved common practice, although technology transfer between
computer science theory and software development practice is very slow.
This can also be seen in today’s efforts to retroactively fit type systems into
languages whose strong selling point was indeed their dynamic nature,
such as Python, Ruby and JavaScript, a topic which will be discussed later
on in sections 6.4 and 6.5.

Coming back to Hoare’s paper from 1996 he states the following:

Above all, the strictest management is needed to prevent premature
commitment to start programming as soon as possible. This can only
lead to a volume of code of unknown and untestable utility, which will
act forever after as a dead weight, blighting the subsequent progress of
the project, if any.

(Hoare, 1996, p. 3)

It can be seen that Hoare advocates quite strongly that proper planning
and testing of software is of the utmost importance when writing software
projects, although he does not mention any particular technique for either.
Some hints towards what Kent Beck will later call Test-Driven Development
in his book from 2003 can also be found in his paper, albeit not limited to
self-testing code, but rather broadly applied to engineering as a whole:

It is to ensure that a test made on a product is not a test of the product
itself but rather of the methods that have been used to produce it —
the processes the production lines, the machine tools, their parameter
settings and operating disciplines.

(Hoare, 1996, p. 5)

3

1 Background

Hoare follows up with a mention that software engineering should take
inspiration from other branches of science and engineering:

A testing strategy for computer programs must be based on lessons
learned from the successful treatment of failure in other branches of
science and engineering.

(Hoare, 1996, p. 5)

This is in line with the paper by B. A. Kitchenham et al. from 2004 which
compares ebse with evidence-based medicine (ebm), or rather uses ebm as
an analogy and proposes adoption of certain practices known from ebm but
also mentions where this analogy breaks down.

B. A. Kitchenham et al. suggest the goal of ebse should be “to provide
the means by which current best evidence from research can be integrated with
practical experience and human values in the decision making process regarding
the development and maintenance of software.” (B. A. Kitchenham et al., 2004,
p. 274) as to have the means to measure, verify and possibly certify that
software has been developed with scientifically proven best practices rather
than the rather vague definition of “enterprise best practices” which can
sometimes be found in marketing language, escaping any actual proper
definition.

Furthermore it is suggested that a standard should be established to make
research more comparable because existing research at the time of the
writing of the paper was fragmented and limited. While having empirical
studies is important, they are often targeted towards individual publications,
researching an area of interest, rather than trying to provide more material
for a reproducible body of studies to make them comparable and providing
the possibility to systematically review them (Systematic Literature Review,
slr).

Without agreed standards. There are no generally accepted guidelines or
standard protocols for conducting individual experiments. . . . empirical
software engineering is badly in need of guidelines and protocols.

(B. A. Kitchenham et al., 2004, p. 277)

It can be seen that both Hoare and B. A. Kitchenham et al. advocate that
software engineering practices should be based on scientific evidence rather

4

1 Background

than fashion and hype. B. A. Kitchenham et al. state that practitioners often
perceive the issues discussed by researchers to be of little relevance to their
work in the industry and papers are often not written in a language which
directly dictate or suggest a way of applying the newly found results. This
is in line with Hoare’s observation that a direct correlation between theory
and practice is often not easy to find, as mentioned above. Hoare gives a
few examples were theory and research have greatly impacted software
development practices, from type theory to data types to the widespread
adoption of structured programming (the avoidance of jumps and gotos)
which can be traced back to the Böhm-Jacopini theorem6 which provided
proof that any program can be expressed in code that uses purely structured
code instead of jumps. This practice has since been widely adopted, although
some usages of goto still remain and are valid7, even though it continues
to pop up in negative contexts, such as the “gotofail”8 which occurred in
security relevant code of Apple’s SSL implementation9.

1.1 The Human Factor

Design and programming are human activities; forget that and all is
lost.

(Stroustrup, 1997, p. 693)

Stroustrup, the inventor of the C++ programming language, said that people
too often forget that the software development process — often defined as
a chain of steps one has to take, with specific inputs resulting in specific
outputs, resulting in the desired results — has a lot of human aspects as
well. And because of the language used, programming language as well as
natural language used to describe the requirements, these aspects are often
concealed.

6Structured Program Theorem (Böhm–Jacopini theorem 2019.
7For example, the tmux program uses it, amongst other use cases, for error and failure

handling. (tmux usage of ”goto” 2019)
8NVD - CVE-2014-1266 2014.
9ImperialViolet - Apple’s SSL/TLS bug 2014.

5

1 Background

Both Hoare and B. A. Kitchenham et al. describe the challenge of the human
factor in their papers, however in quite a different tone. B. A. Kitchenham
et al. describe it more formally.

Although there are opportunities for individual software engineers and
managers to adopt ebse principles, the decision to adopt a technology
is often an organizational issue that is influenced by factors such as
the organizational culture, the experience and skill of the individual
software developers, the requirements of clients, project constraints, and
the extent of training required.

(B. A. Kitchenham et al., 2004, p. 277)

Whereas Hoare is directly, and quite harshly addressing the individual.

The real value of tests is not that they detect bugs in the code, but that
they detect inadequacy in the methods, concentration and skills of those
who design and produce the code. Programmers who consistently fail
to meet their testing schedules are quickly isolated, and assigned to less
intellectually demanding tasks.

(Hoare, 1996, p. 6)

But at the end of the paper he also advises that practitioners should be
taught the basics of computer science theory, such as finite state machines
and the concepts of types and functional programming. Thus further closing
the gap, if not the gap of time, at least the gap of a common terminology
and a common conceptual framework.

Copyright notice
Reprinted by permission from Springer Nature Customer Service Centre
GmbH: Springer Nature, FME’96: Industrial Benefit and Advances in
Formal Methods (“How Did Software Get So Reliable Without Proof?”
Hoare), c© (1996)

Proceedings. 26th International Conference on Software Engineering,
B. A. Kitchenham et al., “Evidence-based Software Engineering,” pp.
273–281, c© 2004 IEEE

6

2 Automated Self-Testing Code

Having established the importance of testing as underlined by Hoare and
B. A. Kitchenham et al. in chapter 1, this chapter will focus on giving a
short introduction about testing software, as done by practitioners. It is
not meant to be a complete overview of testing, intentionally leaving out
onboarding, maintenance, documentation, specification, communication
that are important parts of testing. Instead, the necessary terminology will
be given, including a little background, to serve as a guideline for the
following chapters.

2.1 Self-Testing

Martin Fowler describes self-testing code as a concept that he first came
across during an oopsla conference (Fowler, 1999) where it was described
as a way to have your code self-test itself much like hardware does a few
self-tests during startup, for example the post (power-on self-test1), in
personal computers. (Fowler, 2014b) Classes should have a test method that
when invoked, tested the functionality of the class. Later Fowler, whilst
working with Kent Beck, discovered that Beck and Eric Gamma2 were
working on and later released JUnit, a comprehensive tool of the “xUnit”3

family, providing a better way to have self-testing code without mixing the
production and test code.

1Power-on self-test 2019.
2One of the “Gang of Four” who wrote one of the most widely regarded books about

design patterns in object-oriented programming and software design. (Gang Of Four 2013)
3“xUnit is the collective name for several unit testing frameworks that derive their structure

and functionality from Smalltalk’s SUnit.” (xUnit 2019)

7

2 Automated Self-Testing Code

For Fowler, code is only self-testing when it can be tested by invoking a
single command to run the whole suite of tests and be confident that, with
great certainty, the code does not contain substantial defects that are covered
by the tests and regards any code that does not have tests to be broken.

2.2 Automated

Continuous Integration is a software development practice where mem-
bers of a team integrate their work frequently, usually each person
integrates at least daily — leading to multiple integrations per day.
Each integration is verified by an automated build (including test)
to detect integration errors as quickly as possible. Many teams find that
this approach leads to significantly reduced integration problems and
allows a team to develop cohesive software more rapidly.

(Fowler, 2006)

Having self-testing code is only one part of a bigger picture. If the tests are
not run regularly and often, defects might slip in and are then harder to
track down and possibly to remove if they remain undetected for a long
time. Even worse if they are then shipped to production, with customers
facing the errors. One way to avoid this is having a compact and fast test
suite so that testing does not impact the development cycle too much. There
are no hard numbers on this, but Kent Beck often mentions that 10 minutes
is the maximum time a test suite should run, dedicating a whole chapter
in the second edition of his xp book to this “10 minute rule” (Beck and
Andres, 2004, chapter 7). Of course many software products exist where
the test suites run much longer, even with parallelization, but the point of
the “10 minute rule” is that testing should be able to be done often to give
continuous feedback, even if it is more than 10 minutes. For example, small
parts of the software can usually be tested in under 10 minutes, while the
whole test suite might still take longer. Especially nowadays, software is
often tested on multiple platforms and platform versions, potentially with
multiple versions of the language being used, creating a huge test matrix
that is impossible to test within 10 minutes.

8

2 Automated Self-Testing Code

A build that takes longer than ten minutes will be used much less often,
missing the opportunity for feedback.

(Beck and Andres, 2004)

Another way is automating the tests, for example with “Continuous Inte-
gration” (ci) where typically a ci server exists that checks out, for example,
either every single commit developers made and pushed to a remote repos-
itory, and then continues to build and test the code, or, if the feedback
loop would be too slow given a large enough test suite, run the whole test
suite during the night, creating “nightly-builds”, so that at most there is a
window of less than 24 hours (during a workweek) of when defects can slip
through undetected and can be fixed soon after the fact.

In the last paragraph there are already a few concepts and prerequisites
hidden for employing such a ci strategy, namely having a single source of
truth, usually a version control system (vcs) such as Apache Subversion4,
git5 or Mercurial SCM6 with git seemingly being the winner7, with git not
only being used by the Linux kernel but also within large companies such
as Microsoft, which has one repository (a monorepo) exceeding the size of
300 GB8. The benefits are obvious. Even in distributed teams, defects can
be captured soon as everyone has to integrate their changes back to the
repository, which as a by-product should, in theory, result in the ability to
continuously deliver a working product every day.

Another concept is having the possibility to automate the build process
which implies that everything needed to build a software product is included
in the aforementioned code repository. Within this automation process the
execution of the test suite should already be included, resulting in the
desired automated self-testing code.

4Apache Subversion 2019.
5Git 2019.
6Mercurial SCM 2019.
7Big companies such as Microsoft (recently having bought GitHub, see Microsoft acquires

GitHub 2019) have switched to using git and other companies such as Atlassian sunsetting
Mercurial support in their code management product, Bitbucket (Chan, 2019).

8The largest Git repo on the planet 2017.

9

2 Automated Self-Testing Code

2.3 Types of Tests

There exist different types of categories of tests, each of them serving a
different purpose, but all of them complementing each other. In this section
a brief description of the different types will be given. However this list
does not aim to be exhaustive nor complete, but its aim is to act as a guide
for the following chapters, especially chapter 4 in which code coverage will
be discussed. A hierarchy, called the “testing pyramid”, of these types can
be found in Figure 2.1, with a lot of unit tests at the base and end-to-end
testing at the very top.9

Unit test The definition of what a unit test is, and what it is not, varies
depending on the source. However, there are some typical elements
that they usually have in common, such as that unit tests test only a
very small part of a software, for example a single method or single
object10. They usually execute very fast and there are typically more
of them than other types of tests. The amount can vary depending
on what kind of software is being tested, for example a library might
have a lot of unit tests for their API, while a modern web application
might have more integration or end-to-end tests, extensively testing
its UI. (Fowler, 2014c)

Integration test Compared to a unit test which only tests one component,
for example one class in isolation, an integration test tests how two or
more such components that interact with each other integrate, and if
they do so properly. These are valuable because the individual units
might work 100% correctly, but when the these components interact
with each other they might not behave as expected, as different types
of defects can arise than when tested individually. (Fowler, 2018)

System test System testing verifies that a software program is compliant
with the requirements. It is a form of black-box testing and can be
done automatically as well as manually if some parts are hard or
impossible to automate. (Shinde, 2019)

9Some similar figures in literature add manual testing above e2e testing.
10Testing a whole object is already of a different scope than just testing a single method.

Also questions can arise, for example, if only public or also private methods should be
tested directly.

10

2 Automated Self-Testing Code

End-to-end test Closely related to system testing, end-to-end or e2e tests
test the whole software stack, which includes testing certain workflows
within the software. One example would be the testing of a multi-step
setup process in a web application which includes multiple screens
with possibly different branches of workflows in a workflow tree,
depending on user input. A system test would test the UI by simulating
user input (for example using headless Firefox11 or Chrome12, using
a webdriver like Selenium13), which also exercises the network stack,
the middleware, the backend and business logic, persistence layers
such as a database and other related services, for example mobile push
notifications, email confirmations and other side effects. End-to-end
tests can, to a certain extent, replace manual testing.
Drawbacks include that end-to-end tests have the tendency to be much
more “flaky” (unreliable) than the other types of tests because of
things like animations, asynchronous execution of code etc. making
automation of these type of tests harder. (Shinde, 2019; Ham Vocke,
2018)

Unit Tests

Integration Tests

System Tests

E2E Tests

Figure 2.1: Testing pyramid with the different types of tests

11Firefox Headless mode 2019.
12Getting Started with Headless Chrome — Web 2019.
13Selenium WebDriver 2019.

11

2 Automated Self-Testing Code

2.4 Conclusion

Much more could be written about automated self-testing code, digging into
the details of what a process could look like to introduce ci, “Continuous
Delivery” (cd) into a project, which software could be useful to have and
why, how to build a company culture around testing, avoiding testing-
fatigue, branching strategies for vcs that work for agile development and
many things more such as automated mutation testing14. However, this
thesis will focus on some of the research being done around evidence
based software development and how testing relates to it, adding some
information as necessary.

14Mutation testing is a technique to test existing test suites and identify weak tests and
weakly tested parts of the code as well as generating new tests. (Mutation testing 2019)

12

3 Testing as a Suitable Goal for
EBSE

Thorough testing is the touchstone of reliability in quality assurance
and control of modern production engineering.

(Hoare, 1996, p. 4)

Given the difficulties described in chapter 1 that researchers are facing when
trying to provide evidence based suggestions, there is still one topic which
is both covered by Hoare and B. A. Kitchenham et al., with the latter saying
that while there are many challenges based on the human and more soft
factors of the development lifecycle, that testing is a promising candidate
for ebse and should be studied further. This thesis will mostly cover Test-
Driven Development and the studies that were made around it over the
years, trying to provide a bigger picture of what it is and what it is not, and
how a hybrid (“test-first” and “test-last”) approach can in practice also be of
value, namely when exploring ideas. One such approach, 3x by Kent Beck,
will be described in subsection 5.5.1.

Microsoft Research’s Empirical Software Engineering (ese) group1 tries to
study different topics of the software development process, from human
factors to the influence of organizational structures on software quality and
also testing, as will be discussed in sections 5.4.2 and 5.4.3. They are in
a unique position because unlike many academic researchers they have
access to a plethora of data and software source code from a lot of different
industry projects often spanning multiple years, sometimes decades. (Bird
et al., 2011) Indeed, Hoare is a principal researcher at Microsoft Research in
Cambridge.2

1Empirical Software Engineering Group (ESE) 2019.
2And the Winners Are ... 2006.

13

3 Testing as a Suitable Goal for EBSE

However, besides tdd there is one more topic where it is possible to draw
numbers from, to further analyze the testing effort and try to derive metrics
for code quality or defect rate from, which is the topic of code coverage.
This topic would deserve its own thesis, but will be outlined in chapter 4 in
context to ebse.

According to Hoare it is the goal of an initial test suite to be a coverage test,
meaning that it should be used to drive the program to “execute each line of its
code at least once” (Hoare, 1996, p. 7). Much like what will be discussed later
on when discussing tdd, he suggest “white box” tests, which are tests that
are aware of the underlying implementation and its side effects. For example
when a request is made to a server and creates a resource, a white box test
might also check for other related resources being created and side effects
such as email notifications being sent via an asynchronous background job
and also check which priority the job has in a potential queue. They are
the opposite to a “black box” test, where the implementation is not know,
but known input-output pairs are, usually defined by a specification. Such
a specification could just demand that one resource is created and that an
email is being sent, but makes no mention of the implementation details
(inside the “black box”).

Hoare argues that full coverage is necessary for a test suite to be useful
because errors are being discovered until even the last line of code is tested
(Hoare, 1996, p. 8). And while practices like tdd should automatically lead
to 100% code coverage (Beck, 2003, p. 105), some studies suggest that an
increase in code coverage does not automatically lead to a proportional
decrease in defect rate, as discussed in section 4.2.

3.1 Lack of tests are Technical Debt

The concept of technical debt (td) contextualizes problems faced dur-
ing software evolution considering the tasks that are not carried out
adequately during its development. . . . Nonexecution of tests, pending
code refactoring, and outdated documentation are examples of td.

(Rios et al., 2018, p. 117)

14

3 Testing as a Suitable Goal for EBSE

Technical Debt (td), as described in the previous quote, is often used know-
ingly for its short-term benefits such as increased development speed and
thus possible shorter time to market. However if this debt is not repaid in a
timely manner the amount of work required to pay back this debt increases
until development might even come to a halt. Cunningham describes it like
this in 1992:

Shipping first time code is like going into debt. A little debt speeds
development so long as it is paid back promptly with a rewrite. . . The
danger occurs when the debt is not repaid. Every minute spent on
not-quite-right code counts as interest on that debt.

(Cunningham, 1992, p. 30)

There are different kinds of td which Rios et al. tried to define in a taxonomy
to help practitioners identify, and thus manage td. If td is known, it can be
managed and planned for, but if it goes unmanaged for a prolonged period
of time it can lead to crisis within a software project. The different kinds of
td can be managed in different ways and at different times within a project
lifetime, and to help practitioners with their decision-making process, Rios
et al. performed a tertiary study to help identify the current state of the art
technical debt research to find out what researchers are currently studying
and if any practical recommendations can be derived from it.

A tertiary study aims to synthesize data from secondary studies provid-
ing a comprehensive view of the state of research in a given knowledge
area. It supports the organization of evidence-based body of knowledge
that can be used by practitioners and researchers to support their activ-
ities.

(Rios et al., 2018)3

By reviewing existing research they were able to identify that cost estima-
tion related reviews had the potential of being valuable for ebse and also
for making this knowledge available to practitioners to employ in their
engineering practice (Rios et al., 2018, p. 119). The most recurring types of
debt mentioned in primary studies were design (51 primary studies and
4 secondary studies), code (48 primary, 4 secondary) and architecture (46

3See also B. Kitchenham and Charters, 2007 and Verner et al., 2012

15

3 Testing as a Suitable Goal for EBSE

Figure 3.1: Study overlap of Rios et al.’s tertiary study (Rios et al., 2018, p. 134)

primary, 5 secondary) with tests coming in with a bit of a distance as the
fourth-most discussed type of td with 37 primary studies and 5 secondary
studies, simply called “test debt”. As can be seen in Figure 3.1 there is an
overlap over test and documentation debt and “People”, giving a slight
hint at the human factor, previously discussed in section 1.1. The situations
where this kind of test td could be found were identified as follows (Rios
et al., 2018, p. 128):

• Insufficient test coverage;
• Lack of tests (e.g., unit tests, integration tests, and acceptance tests);
• Deferred testing;
• Lack test case planning.

In the following chapters about test coverage (chapter 4) and tdd (chapter 5)
certain practices will be discussed that can help reducing test debt and if
they are indeed effective.

Copyright notice
Reprinted from Information and Software Technology, Volume 102, Rios
et al., “A tertiary study on technical debt,” pp. 117–145, Copyright (2018),
with permission from Elsevier.

16

4 Code Coverage

Code coverage is a metric which describes how much of a code base was
exercised during the run of a test suite and is usually given in percent.
Using code coverage as a metric enables a project to quantify test success
and the efficiency of their testing strategy.1 Of course, a single metric is
not an absolute measure and has to be used in conjunction with other
metrics, for example defect rate, bugs found during development vs. found
in production, bugs fixed within a certain time unit (for example when
using agile software development methodology, this would be a “sprint”)
etc. Additionally it is important to note that there might not always be a
strong correlation between an increase in code coverage and a decrease in
defect rate as will be discussed later in this chapter.

There are different kinds of code coverage metrics, three of which (statement
coverage, decision coverage and function coverage) will be described here
as a help to further discuss a case study done at Ericsson and described in a
paper released in 2018 by Antinyan et al. which researched the influence of
code coverage on defect rate. The definition of each kind of code coverage
will be taken directly from the paper for better understanding.

Copyright notice
IEEE Software, Volume 35, Antinyan et al., “Mythical Unit Test Cover-
age,” pp. 73–79, c© 2018 IEEE

1Code Coverage Tutorial: Branch, Statement, Decision, FSM 2019.

17

4 Code Coverage

4.1 Types of Coverage

Below, three types of coverage will be described and how they are calculated.
Later in this chapter they will be mentioned again when discussing the
effectiveness of code coverage as a metric for test sufficiency.

Statement coverage “Statement coverage is the percentage of statements in a file
that have been exercised during a test run.” (Antinyan et al., 2018, p. 73).
“A statement is a syntactic unit of an imperative programming language
that expresses some action to be carried out.”2 See Equation 4.13 for the
formula on how to calculate it.

Statement Coverage =
Number o f executed statements

Total number o f statements
(4.1)

Decision coverage “Decision coverage is the percentage of decision blocks in a file
that have been exercised during a test run.” (Antinyan et al., 2018, p. 73).
“In this context the decision is a boolean expression composed of conditions
and zero or more boolean operators.”4 See Equation 4.25 for the formula
on how to calculate it.

Decision Coverage =
Number o f Decision Outcomes exercised

Total number o f Decision Outcomes
(4.2)

Function coverage “Function coverage is the percentage of all functions in a file
that have been exercised during a test run.” (Antinyan et al., 2018, p. 73).
See Equation 4.3 for the formula on how to calculate it. (Antinyan
et al., 2018, p. 73)

Functional Coverage =
Number o f Functions exercised

Total number o f Functions
(4.3)

2Statement (computer science) 2019.
3Code Coverage Tutorial: Branch, Statement, Decision, FSM 2019.
4Code coverage 2019.
5Code Coverage Tutorial: Branch, Statement, Decision, FSM 2019.

18

4 Code Coverage

4.2 “Mythical Unit Test Coverage”

Antinyan et al. conducted a case study at Ericsson to evaluate if the com-
pany’s unit testing strategy is adequate with regard to their measurement
of code coverage. They studied an existing software product with about
two million lines of code (loc) by means of collecting all software defects
per file over the course of a year. If a defect occurred in a file this file was
considered defective and it was counted how many bugs and bug fixes went
into a certain file. For this study, only unit tests were taken into account
with integration and system tests not being measured using code coverage,
but were used as an indicator. That means that they took a look at code
coverage and studied if an increase in unit test code coverage decreases the
number of defects found in integration and system tests (which happen at
a later stage in the development cycle of the product) and consequently if
the opposite, a decrease in unit test code coverage leads to an increase in
defect rate in integration and system tests, see also Figure 4.1 for a graphical
representation of their study focus.

Furthermore, complexity (for example maximum nesting depth), size of
files and the number of changes and their influence was collected to derive
measures of adequacy of Ericsson’s unit testing strategy. Like many other
studies mentioned in this thesis, they intentionally left out other factors
which might have an effect on the outcome of the study, such as “developers’
experience in coding and testing, the programming language in which the product
was developed, and the integrated development environment that offers testing
tools” (Antinyan et al., 2018, p. 75), but these were assumed to be randomly
distributed and thus have only an insignificant effect on the study.

The results found by Antinyan et al. were that they found that all three
coverage metrics (statement, decision, function coverage) had a strong
correlation between each other, meaning that they are very similar to each
other, thus they only took a look at statement coverage.

In their further analysis they found that coverage measures are insufficient
as to provide a measure for test sufficiency, however they noted that they
did not control for size of files. It was assumed that a large file with, for
example, 100 loc and 50% coverage had half of the code untested had to
have the same defect rate as a file with 1000 loc and the same coverage

19

4 Code Coverage

Figure 4.1: Focus of the “Mythical Unit Test Coverage” study (Antinyan et al., 2018, p. 75),
c© 2018 IEEE

20

4 Code Coverage

rate of 50%, which results in 500 lines of untested code. However, quite
intuitively, they found that large files with more loc showed a higher defect
rate than those with fewer lines of code. The same result was observed
when looking at the number of changes a file has undergone, namely a file
with more changes was more prone to more defects than a file with fewer
changes.

Measure Correlation with
defects

Correlation with
stmt. cov.

Statement coverage −0.19/−0.13 1

Decision coverage 0.19/−0.13 0.91/0.87

Function coverage −0.18/−0.14 0.87/0.86

LOC 0.67/0.53 −0.18/−0.12

Maximum block depth 0.42/0.42 −0.40/−0.33

Stmt. cov./LOC −0.06/−0.25 —
Stmt. cov./no. of versions −0.18/−0.30 —

Table 4.1: List of measures with strong correlations from Antinyan et al., 2018, p. 76, c© 2018

IEEE

To account for this, Antinyan et al. introduced two more metrics, average
coverage per loc (Equation 4.4) and average coverage per version (Equa-
tion 4.5). Even after this the Pearson and Spearman correlation coefficients6

showed only a weak correlation between an increase in unit test code cover-
age and a decrease in defects. Some files did show a downwards trend, but
most of the files analyzed had no such association. Some selected measures
and their correlation with defects and statement coverage can be found in
Table 4.1.

Average Coverage per LOC =
Statement Coverage

LOC
(4.4)

6Spearman’s rank correlation coefficient is a measure of statistical dependence between
the rankings of two variables. When the coefficient is negative, it means that variable Y
tends to decrease when X increases. It is positive if X increases and Y tends to increase as
well. Compared to the Pearson correlation coefficient (r) which describes linear relationships,
Spearman’s correlation coefficient (ρ) describes monotonic relationships. It can be useful to
calculate both to see if the two produce a similar or different result to see if one is handling
a linear or monotonic relationship between variables. (Spearman’s rank correlation coefficient
2019; Pearson correlation coefficient 2019; Minitab, LLC, 2019)

21

4 Code Coverage

Average Coverage per Version =
Statement Coverage
Number o f Versions

(4.5)

4.2.1 The Influence of Code Complexity on Defect Rate
and Code Coverage

One result the research yielded was that while some complexity mea-
surements such as cyclomatic complexity, parameter count, percentage of
comments had no tangible effect on coverage, maximum block depth had
a strong negative correlation with code coverage, meaning that if a file
contained code with very deep nesting this actively hindered the increase
of code coverage, since nesting — depending on the language — often
results from conditional statements or control structures, creating a lot of
branches to cover, making it harder to test it. The same files often exhibited
a higher defect rate, meaning that deeply nested code was harder to test and
had a correlation to higher defect rate. See Figures 4.2 and 4.3 for contour
plots showing the relation between maximum block depth, respectively the
number of version of a file, and statement coverage.

The conclusion of the paper was that, at least at Ericsson, unit test coverage
alone did not prove to be an adequate metric for the sufficiency of testing.
This is in line with hat Juristo et al. found out in 2004 in their “Reviewing
25 Years of Testing Technique Experiments” paper. They also concluded
that complexity is usually easier to manage than lines of code or number
of versions made to a file, since active development often naturally results
in both, more lines of code and changes being made and suggest that
practitioners should use complexity as an additional metric for reducing
the defect rate. Lastly, they recommend that testing standards (such as
do-178b, which is briefly discussed in section 4.4) adopt their suggestions
with regards to test sufficiency using code coverage as a metric.

22

4 Code Coverage

0

0.2

0.4

0.6

0.8

1

Maximum block depth

St
at

em
en

t
co

ve
ra

ge

Figure 4.2: Contour plot showing the relation between defects related to maximum block
depth and statement coverage (Antinyan et al., 2018, p. 78), c© 2018 IEEE

0

0.2

0.4

0.6

0.8

1

Number of versions

St
at

em
en

t
co

ve
ra

ge

Figure 4.3: Contour plot showing the relation between defects related to the number of
versions and statement coverage (Antinyan et al., 2018, p. 78), c© 2018 IEEE

23

4 Code Coverage

4.3 What is Code Coverage measuring, if not
Test Sufficiency?

Martin Fowler noted in 2012 what Antinyan et al. later empirically found
out at Ericsson — that code coverage is not a good metric to measure if the
tests being written are good, but serves as a tool to find which parts of the
code are not being tested. Setting a certain goal, for example a minimum
of 90% code coverage will, according to Fowler, lead to developers trying
to optimize their tests for that metric instead of writing tests that make
sense and are of high quality. This can be seen as the analog of Goodhart’s
law (Goodhart’s law 2019), named after British economist Charles Goodhart,
which states:

Any observed statistical regularity will tend to collapse once pressure
is placed upon it for control purposes.

Or as Marilyn Strathern later summarized:

When a measure becomes a target, it ceases to be a good measure.

Fowler also makes a reference to Test-Driven Development, which will be
discussed at length in the next chapter, calling it a “useful, but certainly
not sufficient, tool” (Fowler, 2012) to write valuable test, stating that when
executed properly, he would expect a code base developed in such manner
to have code coverage around 80% or 90% but would be very skeptical of a
code base that has 100% code coverage (although attainable in very small
programs and even huge code bases, such as SQLite, see section 4.4).
However, he does state that low numbers such as 50% and below are a sign
that the risk of undiscovered bugs and that something could be missed
during refactoring could be higher and thus a sign for trouble.

Instead of using code coverage as a measure for test sufficiency, he gives
two statements that should hold true for the development process:

• You rarely get bugs that escape into production, and
• You are rarely hesitant to change some code for fear it will cause

production bugs.

(Fowler, 2012)

24

4 Code Coverage

4.4 SQLite

SQLite deserves its own section since it is a special piece of software. It
is estimated to be used on over 14 billion devices7. It has 100% branch
coverage (see section 4.1) as well as 100% mc/dc coverage.8 mc/dc states
that the following must be true9:

1. Each entry and exit point is invoked
2. Each decision takes every possible outcome
3. Each condition in a decision takes every possible outcome
4. Each condition in a decision is shown to independently affect the

outcome of the decision.

It is used, among other things, in the (de-facto) technical standard for
developing avionics software to ensure adequate testing of critical parts of
the software, do-178b.10

Additionally, SQLite contains 711 times more test code than production
code, which possibly makes it the most well-tested open source software.
However, while SQLite is open source, it is not open-contribution, meaning
that no one can directly contribute to SQLite, rather than suggest new
features. This is to ensure that SQLite can remain in the open domain.
Another fact that makes SQLite special is the fact that while SQLite is fully
open source, most of its tests are proprietary and can only be acquired by
buying a license. This underlines the importance of tests, since in the case of
SQLite, tests are what bring value to the product and not having the whole
test suite makes it much harder to copy it.11

7Every Android device (around 2.5 bn), every Mac and iOS Device (around 1.5 bn),
every Windows 10 machine (around 2 bn), every Chrome and Firefox browser (around
5 bn), Skype, iTunes, WhatsApp (around 3 bn). (Richard Hipp, 2019)

8Richard Hipp about the history of testing SQLite — Hacker News 2019; How SQLite Is Tested
2019.

9Modified condition/decision coverage 2019.
10DO-178B 2019.
11How SQLite Is Tested 2019; SQLite Copyright 2019; SQLite TH3 (Test Harness 3) 2019.

25

5 Test-Driven Development

Test-Driven Development (tdd) is mentioned indirectly1 in the book Extreme
Programming Explained from 1999, but has since then sparked interest of its
own, in a less “extreme” way2. Kent Beck is often cited as the inventor of
tdd, however he claims he did not invent, but rediscovere it (Beck, 2012).
Beck wrote a book about tdd in 2003 called “Test-Driven Development:
By Example” in which he explains the rationale behind tdd and what its
intention is and how certain goals can be achieved using this development
methodology.

tdd is a practice which, much like the name suggests, focuses on driving
development and software design by splitting tasks into testable units (thus,
using unit tests) which are written before the actual code is written, making
sure they fail at least once. By doing so it tries to mandate thinking about
what kind of minimal implementation is needed to make a test succeed, and,
in the case of Object Oriented Programming (oop) which objects would be
useful to have and to which messages they should respond. Beck calls this
“writing a story” (Beck, 2003, p. 30), in the sense that it should be thought
about what is necessary to bring this story to its expected conclusion and
argues that using a test-first strategy, code becomes less coupled and more
cohesive than without employing this strategy (Beck, 2003, p. 142).

Even if I don’t know how to implement something I can almost always
figure out how to write a test for it, and if I can’t figure out how to
write a test for it, I have no business programming it in the first place.

Kent Beck in Is TDD dead? 2014, 07:40

1The practice of writing tests first and that work is not done until all tests pass is one
of the 12 key xp practices, although not called “Test-Driven Development” yet.

2The practice of testing in xp and tdd are the same, however tdd was “extracted” from
xp, with “less extreme” meaning that the other practices of xp are being left out (while not
forbidden), such as pair programming.

26

5 Test-Driven Development

Using tdd, defects are discovered early and quickly during development
and, as a consequence, making it easier to determine the source of the defect.
This is the result of constantly running the tests and very often the whole
test suite. This benefit should compensate for the additional time spent on
writing and executing the tests. (Nagappan et al., 2008, p. 292)

5.1 Goals of TDD

The bigger picture goals of tdd are not unique to tdd but to software
development in general. It aims to provide a better way to plan and estimate
software development, thus also helping project managers, avoiding nasty
surprises by reducing the number of defects discovered only after a product
has been shipped to costumers.

TDD is an awareness of the gap between decision and feedback during
programming, and techniques to control that gap.

(Beck, 2003, p. 10)

Additionally, if tdd can succeed in these goals set by itself, Beck claims
that the result would be software that has much fewer defects than it
would without and could theoretically be shipped every day, because of an
extensive test suite that would at the very least ensure that the defects that
are being tested for do not exist.

Testing shows the presence, not the absence of bugs.
(Buxton and Randell, 1970, p. 16, citing Edsger W. Dijkstra)

Another goal stated by Beck is a bit more informal, which is to reduce
programming stress. He claims that if tdd is followed, a programmer can
rest easy at home after work, knowing that his code did not break anything
else and there should be no unpleasant surprises when returning to work
the next day. (Is TDD dead? 2014, 09:39)

27

5 Test-Driven Development

Figure 5.1: The tdd lifecycle as described by Beck (Xarawn, 2015)

5.2 The TDD Development Cycle

The tdd development cycle is often found in its short version “Red, Green,
Refactor”, but in the book written by Beck it is written as follows (Beck,
2003, p. 5), see also Figure 5.13.

1. Quickly add a test
2. Run all tests and see the new one fail
3. Make a little change
4. Run all tests and see them all succeed
5. Refactor to remove duplication

When starting off with tdd, Beck suggest going in the tiniest steps possible
to get a feeling for what the benefits of tdd can be, for example changing
just the name of a variable and seeing tests fail because of it, then renaming
it everywhere else in a next step and only then using it in a different context
or adding new functionality. Given enough experience these tiny steps can
be squashed into bigger leaps but learning to go in these tiny steps enables

3Xarawn [cc by-sa 4.0 (https://creativecommons.org/licenses/by-sa/4.0)]

28

https://creativecommons.org/licenses/by-sa/4.0

5 Test-Driven Development

a developer to go in tiny steps when needed, for example when debugging
or refactoring a code base to get a better sense of action and consequence.
(Beck, 2003, p. 112)

If these steps are followed religiously, code coverage, more precisely state-
ment coverage, should theoretically be 100%, but as discussed in chapter 4,
code coverage is not a sufficient measure of test quality, as Beck also states
(only providing anecdotal evidence), but is seen as a good starting point.
(Beck, 2003, p. 105) Using these simple techniques should also result in a
simpler design that is easier to test, resulting in a suite of tests that should
inspire confidence4 in the programmer. (Beck, 2003, p. 18)

I conclude that there are two ways of constructing a software design:
One way is to make it so simple that there are obviously no deficiencies
and the other way is to make it so complicated that there are no obvious
deficiencies.

(Hoare, 1981, p. 81)

5.2.1 Regression Tests

The same process can be followed when new defects are being reported.
First, one writes a minimal failing test that reproduces the reported defect,
then writes the minimal changes needed to fix it and refactors if necessary.
Such tests are called regression tests and are a very useful way for users to
explicitly state the behavior they see in an application and which one they
expected, which makes these kinds of tests — however unfortunate as they
were written because a defect occurred — very valuable because they act as
living and maintained documentation of the software, a concept also found
in xp

5.

Nagappan et al. describe the tests written using tdd as “a high-granularity,
low-level, regression test” (Nagappan et al., 2008, p. 292) which help defect
identification early on and avoiding late discovery.

4Indeed, variations of the word “confidence” can be found over 30 times in Beck’s book.
5However, xp does not forbid writing documentation completely, but Beck argues that

there should be less of it and it should be considered who it is for. (Beck and Andres, 2004,
p. 26; Josuttis, 2000)

29

5 Test-Driven Development

5.2.2 Refactoring

In this chapter a brief explanation of what refactoring is will be given as
well as a small section about how tests can help while refactoring, using
Martin Fowler’s Refactoring book from 1999

6 as a basis, since it was written
around the time xp and later tdd became more widely known.

Definition

Refactoring is a disciplined technique for restructuring an existing body
of code, altering its internal structure without changing its external
behavior.

(Fowler, 2019)

Fowler describes “refactoring” — used both as a noun and a verb — as a
small behavior preserving transformation of a piece of code (Fowler, 2004a).
Small, because while sometimes phrases like “refactoring the whole code
base” are thrown around, what is actually meant is a sequence of these
small “refactorings”, making the code easier to understand, extend and
maintain. Refactoring is also behavior preserving because what the software
does should not change, only the way it does it, which should be an imple-
mentation detail. One simple example is exchanging one sorting algorithm
with another that has better performance characteristics or properties. This
way a certain input will still yield the same output, while overall improving
the software. Another example would be to make certain parts of the code
cheaper to modify or enhance in the future. In this sense, refactoring is
different from rewriting/restructuring or changing the code where the pub-
lic interfaces might change and callers of code have to be adapted during
which time a test suite might fail (see also “Refactoring Malapropism” by
Fowler, 2004b). However these two concepts are often conflated, but it is an
important distinction to make, especially with regards to using testing to
aid refactoring which will be discussed in in the next subsubsection.

In many software development methodologies, such as xp and tdd, refac-
toring is not a separate task that will be found on project plans, but should

6A 2nd edition was released in 2018.

30

5 Test-Driven Development

be a constant, day-to-day task. If there is a chance to enhance the code base
it should be refactored immediately. (Fowler, 2019)

Tests as a Way to aid Refactoring

In his book, Fowler describes the importance of tests during refactoring a
code base. According to him, they are not just important, but an essential
precondition before beginning to even attempt to refactor a code base. In
his experience, having tests increases his speed rather than slowing him
down, although this is a counterintuitive thought for many programmers.
Fowler insists that if you want to refactor, you have to have tests, and if
you do not have any, tests have to be written before going on to refactor.
Having these tests in place, even a legacy code base can be transformed
to be more maintainable, have better extensibility or be adapted to more
modern technologies without the fear that every single step might lose the
functionality and contained knowledge that went into writing the code and
coverage of edge cases that were initially written.

Since this book was released in the same year as Extreme Programming
Explained, but four years before Test-Driven Development by Beck was released,
the phrase “tdd” is not explicitly mentioned, while testing as an important
concept in xp is7. However some hints towards tdd exist, such as the mention
that the best time to write a test is before writing the code. Additionally it
is mentioned that one should have fast tests, a concept also found in tdd,
with the note to run the complete test suite often enough so no unpleasant
surprises will arise.

One difference to some modern software development practices can be found,
which is the mention that function tests that test a software as a whole
should not be written by the developers themselves but by a different team,
putting a strong focus on unit tests. Nowadays, while not universally true,
but also due to the advent of better and easier-to-use testing frameworks,
developers can in fact write functional and system tests with relative ease.

7The quote “Development is driven by tests” can be found in the first edition of Extreme
Programming Explained in Beck, 1999, Chapter 2 with tdd being mentioned explicitly
beginning with the second edition of the book.

31

5 Test-Driven Development

Fowler advocates to write tests in a risk-driven fashion. Which tests would
one like to have to know that they will fail in case a new defect is introduced
or a regression happens. For example, this means that simple getters and
setters do not have to be explicitly tested since they are not expected to fail.
(Fowler, 1999, Chapter 4)

5.3 Criticism

George and Williams who conducted a set of experiments in 2004 with 24

professional pair programmers concluded that tdd does yield better code
in terms of code coverage (compared to “test-last” approaches) and that
simple design is indeed achieved by following tdd practices (the study
will be discussed in detail in subsection 5.4.1). They however also list
several shortcomings to the tdd approach, which are mostly equivalent
with sources such as Deursen’s paper “Program Comprehension Risks and
Opportunities in Extreme Programming” from 2001 in which he analyzes
five xp key practices (pair programming, unit testing, refactoring, simple
design, and planning as a team activity (Deursen, 2001, p. 4). See Table 5.1
for an overview of the twelve key xp practices) and shows benefits as well
as risks associated with them in relation to program comprehension.

In the conclusion of his paper Deursen, like many others before and after
him, ask for empirical support of these practices, some of which have already
been discussed in this thesis and some that will be discussed later.

Copyright notice
Proceedings Eighth Working Conference on Reverse Engineering,
Deursen, “Program Comprehension Risks and Opportunities in Extreme
Programming,” pp. 176–185, c© 2001 IEEE

32

5 Test-Driven Development

5.3.1 Criticism on Unit Testing

Leaving out the practices which are not relevant to testing, Deursen pos-
tulates that the practice of having unit tests as living documentation leads
to a paradox situation where a practitioner, in order to comprehend the
code they are reading, must read another piece of code. Code that must
be maintained and is not necessarily correct, as there is no guarantee that
test code is always correct. Furthermore some projects contain not less, but
much more test code than actual production code, so one has to read even
more code than there is production code, with SQLite being a notable open
source software extreme with 711 times more test code than program code
(see section 4.4).

Another concern was that much of the decision making (in the case of xp

often done during pair programming) is made through oral communication
and thus can be lost because of the lack of written documentation in prose
form if the tests are lacking in expressiveness. Of course writing documen-
tation is not forbidden by xp, although mostly reasons for not writing it
are given, thus the inclination to write documentation is low and thus the
likeliness that documentation gets written at all is low as well.

Deursen’s last concern with regard to testing is that parts of the program
that are particularly hard to test such as user interfaces, asynchronous code
etc. are either left untested or “require skill, experience, and determination”
(Deursen, 2001, p. 7) which are not always available within a project’s life.

5.3.2 Criticism on Refactoring

One other key practice of both tdd and xp is refactoring, of which Deursen
said that while it can have a positive influence on a code base, the risk is
that with the constantly changing shape of the code base, practitioners need
to re-learn parts of code they already understood previously.

Furthermore it was mentioned that the lack of comments within a codebase
(Martin Fowler strongly discourages leaving comments and rather recom-
mends refactoring the code so that it does not need comments anymore)
might lead to no comments at all and leave practitioners at a loss as to what

33

5 Test-Driven Development

Pair programming Production code is developed by pairs of pro-
grammers

Testing Unit tests and acceptance tests are run contin-
uously

Refactoring Continuously improve the design without
changing the functionality

Simple Design The guiding design principle is to do the sim-
plest thing that could possibly work

Planning Game Development estimates user stories, and busi-
ness prioritizes them

Collective ownership Developers can modify any piece of code
Continuous integration Integrate changes immediately instead of de-

veloping them in separate branches
40-hour week Programmers work 40 hours max., to keep

them fresh and creative
On site customer A customer is on th team to discuss feature

requests and domain concepts
Frequent releases Release code into production as often as pos-

sible
System metaphor Simple shared story of how the system works
Coding standards Ensure agreement on simple coding conven-

tions

Table 5.1: 12 key xp practices, summarized by Deursen, 2001, p. 5, c© 2001 IEEE

34

5 Test-Driven Development

and why code has certain properties and does certain things (which — in xp

and tdd — should then be explained by a corresponding test, see criticism
in subsection 5.3.1).

5.3.3 Criticism on Simple Design and Lack of Planning

tdd, as described by Beck, should lead to a simple design with the fewest
necessary classes, the fewest necessary methods and the least amount of code
needed to fulfill the requirements (or “making the tests green”). Deursen
finds that this practice might lead to a lack of design, because it only focuses
on small portions of the code with the possibility to miss the “big picture”
or macro view on the program overall. If not done “right”, having many
small different design decisions for different parts of the code might lead to
inconsistent code with a mixture of different styles.

He concludes that adhering to these xp practices (the subset interesting to
this thesis, unit testing, refactoring) play a game with high risks and possible
high returns. If it works, it might work incredibly well, resulting in pro-
grams with superior code quality and better code coverage than programs
developed with an alternative development style, but leave practitioners at
risk that if xp fails them, there is little to no fallback, since no explicit design
and technical documentation were produced.

5.4 Efficacy of Test-Driven Development

After the introduction of the term Test-Driven Development and the claims
made by Beck in his book about the same, researchers and companies alike
studied the practice in detail, trying to find a reproducible environment in
which case-studies could be compared to each other, as well as separate
studies performed with very small programs and multiple participants. The
goal of the research was to find out if what is suggested in the tdd book
(fewer defects, a testable and maintainable code base, simple design etc.,
see section 5.1 about tdd) and what practitioners reported (both positive

35

5 Test-Driven Development

and negative, negatives for example such as additional time overhead and
bending tests to make it testable) was true, and if so, to what extent.

Case studies can be viewed as “research in the typical”, (Barbara
Kitchenham et al., 1995; Fenton and Pfleeger, 1998) increasing
the degree to which the results can be compared with those of other
industrial teams. However, case studies cannot be performed with the
rigor of experiments because they involve real people, real projects,
and real customers over a relatively long period of time. In empirical
research, replication of studies is a crucial factor to building an empirical
body of knowledge about a practice or a process.

(Nagappan et al., 2008, p. 290)

Copyright notice
Reprinted by permission from Springer Nature Customer Service Centre
GmbH: Springer Nature, Empirical Software Engineering, Volume 13,
(“Realizing quality improvement through test driven development,”
Nagappan et al.), c© (2008) Proceedings of the 2006 ACM/IEEE Interna-
tional Symposium on Empirical Software Engineering, (“Evaluating the
Efficacy of Test-driven Development,” Bhat and Nagappan, pp. 356–363),
Copyright 2006 ACM

5.4.1 George and Williams, 2004

In 2004, George and Williams conducted a set of structured experiments to
examine two hypotheses, one being that the tdd practice will result in code
with a higher quality than if it were developed using the more traditional
waterfall practice, where each phase of development is executed after an-
other (requirements, design, implementation, verification, maintenance, see
also Figure 5.28)9. This was verified by measuring the code quality, based on
the number of test cases passed. The second hypothesis was that employing
a tdd style development practice will result in faster code development.

8Kemp and Smith [cc by 3.0 (https://creativecommons.org/licenses/by/3.0)]
9Waterfall model 2019.

36

https://creativecommons.org/licenses/by/3.0

5 Test-Driven Development

Figure 5.2: The (unmodified) waterfall model (Kemp and Smith, 2010). Compare with
Figure 5.1.

37

5 Test-Driven Development

The experiment was carried out with 24 professional pair programmers,
developing a small Java program. George and Williams found that the tdd

approach does yield higher quality code, when measured by the number of
tests passed, but their second hypothesis was wrong as it was shown that
the tdd group took on average 16% more time than the waterfall group.

Two other conclusions were drawn, first, 80% of the developers answered
in a survey that tdd was an effective approach and that it improved their
productivity. Second, it could also be observed that the group using the tdd

approach did in fact come up with a simpler design and that the missing,
separate design phase at the beginning was not an impediment.

Concerns regarding the validity of the research are of course that this
experiment was a controlled study with the practitioners knowing that
they were being observed and their code would be analyzed. George and
Williams suggested that further studies in industrial environments should
take place. Such a study can be found in sections 5.4.2 and 5.4.3.

5.4.2 Bhat and Nagappan, 2006

In 2006, Bhat and Nagappan from Microsoft discussed the tdd methodology
in two different environments at Microsoft. The environments were the
Windows Operating System and MSN division to study the methodology
in two different contexts to increase the chance that if tdd works in both
contexts, that the results would be more easily validated or at least plausible,
than looking at just one type of software product. They found that the
code produced in projects employing tdd had an increase in quality of
up to more than two times compared to projects that did not use the tdd

methodology. But they also found that the projects took about 15% longer
when using tdd

10, but had the additional benefit of having documentation
for the code in the form of unit tests in the case of libraries and public
apis (Application Programming Interface). Furthermore in a follow-up
paper from 2008 Nagappan et al. imply that by using tdd and making
small changes in code, design and adding new functionality in tiny steps

10This is in line with the 16% George and Williams observed in their set of structured
experiments

38

5 Test-Driven Development

a developer can retain “intellectual control” over what they are doing at a
certain point in time at a relatively consistent rate. (Nagappan et al., 2008,
p. 291)

They enhanced the explanation of the tdd process of Beck as follows (Bhat
and Nagappan, 2006, p. 356):

1. Writing a (very) small number of automated unit test case(s);
2. Running the new unit test case(s) to ensure they fail (since there is no

code to run yet);
3. Implementing code which should allow the new unit test cases to

pass;
4. Re-running the new unit test cases to ensure they now pass with the

new code;
5. Refactoring the implementation or test code, as necessary, and
6. Periodically (preferably once a day or more) re-running all the test

cases in the code base to ensure the new code does not break any
previously-running test cases.

As discussed in the introduction of this chapter, their goal was to set a
kind of framework to scientifically research the tdd methodology with their
contributions to it listed below (Bhat and Nagappan, 2006, p. 358):

• tdd evaluation using commercial software in two different divisions
at Microsoft
• Accurate quality measurements with comparable projects in terms of

defect density to measure quality
• Quantification of increase in development time due to adoption of tdd

• Contribute to strengthening the existing empirical body of knowledge
regarding investigations of tdd

To measure quality they used the measure of defect density, which was
introduced in this thesis as “defect rate” in chapter 4, meaning they mea-
sured the number of defects and normalized it per thousand lines of code
(kloc). The amount of defects was extracted from Microsoft’s bug tracking
system.

For the first project which was a networking library written in C++ they
found that while block coverage was 79% (compare with the 100% in an ideal

39

5 Test-Driven Development

scenario mentioned by Beck and keeping in mind the lack of test sufficiency,
even given an increase in code coverage mentioned in the paper by Antinyan
et al., see section 4.2), with test loc being 66% of the actual program source
loc, the defects/kloc were 2.6 times less than in a comparable project
that did not use the tdd methodology with an estimated (by management)
increase in development time of 25–35%.

In the other project in the MSN division that develops web services applica-
tions a similar effect was discovered by Bhat and Nagappan. This project
had more than four times the source loc than the first project in the Win-
dows division and also had a higher ratio of test loc with 89% test loc and
88% test coverage. It was observed that in a similar project not using tdd

the defect density was 4.2 times as high as in the project using tdd with an
estimated increase of development time of 15% in the tdd team.

In summary, while there was additional time needed to write tests (estimated
between 15% and up to 35%), code quality measured in defect density was
much lower in the projects using a tdd approach. However, drawing general
conclusions from an individual, empirical study is always prone to variation
caused by effects not assessed, such as skill factor, human factors and the
simple fact that while projects might be similar in context and scope, no
two projects are directly comparable to each other.

Bhat and Nagappan suggest in 2006, that more studies should be done in
a similar fashion as to build up an empirical body of knowledge on the
efficacy of tdd and looking into possible cost-benefit tradeoff analyses to see
if the return on investment (roi) is worth taking the tdd approach, with the
investment being the additional development time needed and the return
being higher software quality.

5.4.3 Nagappan et al., 2008

In 2008, Nagappan et al. published another paper in which they reiterated
most of the paper by Bhat and Nagappan from 2006, adding some more ex-
planations and giving more detail to the goals stated in the 2006 paper. One
big addition in the 2008 paper was the inclusion of a case-study conducted
at IBM. The IBM case study compared a legacy product from 1998, a device

40

5 Test-Driven Development

driver with seven releases and a newly developed product that targeted the
same devices, but with a new architecture from 2002.

The new product that was developed using the tdd methodology had a
ratio of 70% test loc compared to source loc and a block coverage from
unit tests of 95%. Complete unit testing was enforced, meaning that all
public classes and public methods had to be tested. IBM set a target goal
of at least 80% coverage. The legacy project showed an over 60% higher
defect density when compared to the newly developed product which had
a 15–20% time overhead caused by writing the tests.

These results are in line with what has been observed at Microsoft and
further strengthen the argument that using tdd does reduce the mainte-
nance cost and increase software quality (when measured as defect density).
However it was mentioned again that one threat to validity is that empirical
studies cannot be generalized.

. . . a family of case studies is likely not to yield statistically significant
results, though Harrison (2004) observes that statistical significance
has not been shown to impact industrial practice.

(Nagappan et al., 2008, p. 298)

Another strong hint that tdd does decrease defect rate was that the IBM
team reported that because some team members took shortcuts and did not
run the tests they did temporarily increase defect rate compared to the time
before shortcuts were made. (Nagappan et al., 2008, p. 299)

Nagappan et al. end their research paper with a few recommendations,
listed below, as they extend on what Beck wrote in his book, derived from
case studies of various software products at IBM and Microsoft. (Nagappan
et al., 2008, pp. 299–300)

• Start tdd from the beginning of projects. Do not stop in the middle and
claim it doesn’t work. Do not start tdd late in the project cycle when
the design has already been decided and majority of the code has been
written. tdd is best done incrementally and continuously.
• For a team new to tdd, introduce automated build test integration towards

the second third of the development phase — not too early but not too late. If
this is a “Greenfield” project, adding the automated build test towards

41

5 Test-Driven Development

the second third of the development schedule allows the team to adjust
to and become familiar with tdd. Prior to the automated build test
integration, each developer should run all the test cases on their own
machine.
• Convince the development team to add new tests every time a problem is

found, no matter when the problem is found. By doing so, the unit test
suites improve during the development and test phases.
• Get the test team involved and knowledgeable about the tdd approach. The

test team should not accept new development release if the unit tests
are failing.
• Hold a thorough review of an initial unit test plan, setting an ambitious goal

of having the highest possible (agreed upon) code coverage targets.
• Constantly running the unit tests cases in a daily automatic build (or contin-

uous integration); tests run should become the heartbeat of the system
as well as a means to track progress of the development. This also
gives a level of confidence to the team when new features are added.
• Encourage fast unit test execution and efficient unit test design. Test exe-

cution speed is very important since when all the tests are integrated,
the complete execution can become quite long for a reasonably-sized
project and when using constant test executions. Tests results are im-
portant early and often; they provide feedback on the current state
of the system. Further, the faster the execution of the tests the more
likely developers themselves will run the tests without waiting for
the automated build tests results. Such constant execution of tests by
developers may also result in faster unit tests additions and fixes.
• Share unit tests. Developers’ sharing their unit tests, as an essential

practice of tdd, helps identify integration issues early on.
• Track the project using measurements. Count the number of test cases,

code coverage, bugs found and fixed, source code count, test code
count, and trend across time, to identify problems and to determine if
tdd is working for you.
• Check morale of the team at the beginning and end of the project. Conduct

periodical and informal surveys to gauge developers’ opinions on the
tdd process and on their willingness to apply it in the future.

42

5 Test-Driven Development

5.5 Is TDD dead?

Any headline that ends in a question mark can be answered by the word
no.

Betteridge’s law of headlines11

In 2014 David Heinemeier Hansson (often referred to simply as DHH)
wrote a blog post12 in which he described his discontent with the tdd

methodology, saying that people took it to an extreme, adding abstraction
layers over abstraction layers rather than writing clear, direct and concise
code, in the name of testability and decoupling. It was meant as a general
note, but examples were given in the context of Ruby on Rails, a mvc (Model
View Controller) web-application framework written in Ruby. People argued
that testing Rails — at that point in time — was not decoupled enough,
making unit tests hard, because different components of the framework
could not be tested in isolation or have dependencies, such as a database.
Heinemeier Hansson argued that some coupling makes sense and that
people’s test-first approach was leading to a “test-induced design damage”,
which is also the name of the article he wrote.

This article sparked some controversy on the internet, with some people
arguing that tdd is dead (among other sources, also an article by Heinemeier
Hansson (Heinemeier Hansson, 2014a)) and led to a five-part video chat
between David Heinemeier Hansson, Kent Beck and Martin Fowler, where
points were further clarified and discussed (Fowler, 2014a).

In the video chat Heinemeier Hansson began with the statement that there
is no overall consent over the definition of “unit test”, whereas some people
argue only if there are no dependencies and no coupling and if code can be
tested in absolute isolation it is a unit test, others have broader and looser
definitions over what a “unit” is. Further he argues that heavy mocking and
intense use of abstraction leads to above mentioned “test-induced design
damage”, with tdd being used as an argument to justify such an architecture.
His second argument is that the red-green-refactor loop is not comfortable
for him in a lot of situations where he is exploring the problem, which for

11Betteridge’s law of headlines 2019.
12Heinemeier Hansson, 2014b.

43

5 Test-Driven Development

him goes against what the Ruby and Ruby on Rails (Heinemeier Hansson,
2016) community is about and what Ruby’s creator, Yukihiro Matsumoto
calls “developer happiness” (Venners, 2003). However he also states that he
agrees that a feature is not done until automated tests are written for it. He
differentiates between “test-first” and “test-last” as “going through the test”
and “going to the test”.

Kent Beck answered by saying that tdd is mostly about what has already
been described at the beginning of this chapter, summarized as the question
if a developer can sleep at night, knowing their code still works, giving
them confidence going further. tdd is especially useful to produce a “nice
sequence of tests” as he calls it, for data structures or any sort of code where
given inputs and their corresponding outputs are known.

Martin Fowler’s response is best described by quoting him directly:

[It is] really important to have self-testing code, the ability to be able
to run a single command, have your whole system self-test itself in
an acceptable amount of time. That is really powerful, because then if
you can do that, you can refactor with confidence, you’ve got a good
chance of keeping your code base healthy and that means you can be
fast, deliver new features etc. etc. . . . tdd is one way to approach that.
tdd is a very particular technique, and if done well, one of the benefits
is that it gives you self-testing code . . . which for me is the primary
benefit.

Martin Fowler in Is TDD dead? 2014, 24:10

It was argued by Heinemeier Hansson that additional code and levels
of indirection result in more code, and in a gross oversimplification that
more code means it is harder to comprehend, giving an example from
Jim Weirich’s talk “Decoupling from Rails” from 2013, comparing the two
proposed solutions, one being the “Rails-way” and one being an approach
of hexagonal architecture13, abstracting away models from the persistence
layer, data retrieval away from the database queries, resulting in a design

13Hexagonal architecture, is a software architecture which tries to loosely couple com-
ponents of a software to make them easily testable and replaceable. It was invented by
Alistair Cockburn in 2005 as an attempt to clearly separate business logic from other layers
of the software, such as the user interface. (Hexagonal architecture (software) 2019)

44

5 Test-Driven Development

that enables a practitioner to, for example, replace the database with an
in-memory store or a web service. However, since in this example, the three
possible persistence layers have very different performance characteristics
and properties, Heinemeier Hansson argued that they would also be used
in a very different way, but these implementation details were now hidden
behind a repository pattern14, for the sake of testability in isolation. Fowler
and Beck countered that saying that tdd is causing these effects and the
overuse of mocks is a conflation of cause and effect, with Fowler saying that
in these cases, isolation, not tdd is the driver of this design.

While Heinemeier Hansson did admit that tests do sometimes reveal a good
design, he believes that where people end up with tdd is rarely the best
solution, calling it “faith-based tdd”, as in having faith that using tdd will
eventually lead you to the correct or best solution, to which Beck countered
that tdd is not taking a developer anywhere, since tdd does not create the
design, but the developer is making the design decisions, which are being
made with any software development practice.

Another topic that was covered in the discussion and also mentioned in
Beck, 2003, p. 9, was that many companies including Basecamp shifted from
having dedicated Quality Assurance (qa) teams to relying more heavily on
automated testing and building up confidence that no serious bugs would
slip through from one release to the next. But Basecamp does still have qa,
but the role of the qa team transformed from doing what automated tests
are now doing — following a list of actions and checking if no new defect or
regressions happened — to testing softer goals, such as User Experience (ux).
qa in this sense is a very powerful and valuable thing to have as a company,
since there are dedicated people testing the software who are not intimate
with the code. This kind of qa can only be replaced with automated tests
with much more effort than normal unit, functional and system testing.

At the time of the video chats Beck said that at Facebook15 had no qa

beyond the fact that they have a motto that no problem is a single person’s
responsibility, so everyone is being accountable for quality and defects that

14Maybe not really a software pattern in the classical sense, it is used to abstract away
data access via a repository, so that the persistence layer for storing data can be replaced
and remain an implementation detail.

15Beck worked at Facebook for 7 years between 2011 and 2018.

45

5 Test-Driven Development

might occur. Fowler added, that at his workplace, ThoughtWorks, qa is
still happening, but it has shifted from being a completely separate team to
something much more collaborative.

At last, the topic of “overtesting” was covered, where Heinemeier Hansson
argued that testing everything in multiple places, for example testing a
validation of an attribute or class member in a unit test, again in an inte-
gration test and yet again in an end-to-end test made it hard to change the
behavior of software. While this is not true for refactoring and might have
huge benefits for it, he argued that developers are more likely to add new
functionality or change existing behavior, rather than refactoring existing
code in a behaviour preserving way.

Beck concurred, saying that overtesting is definitely something that exists
and mentioned a metric for this, the so called “delta coverage”. This metric
is used to evaluate how much unique value a test adds to a test suite that
no other test provides. If there are lots of tests that add 0% delta coverage,
these tests can usually be safely deleted, unless they serve a communication
purpose, for example to show how a feature is to be properly used. Covering
the same functionality with more than one test leads to coupling within the
tests and in an extreme scenario could lead to testing-fatigue if developers
find themselves spending more time adapting or rewriting tests than writing
actual production code. However, there should always be enough coverage
and tests that code can be written or changed, knowing that at least one test
will fail if a new defect is introduced.

5.5.1 3X by Kent Beck

After joining Facebook Beck had the chance to give a course at one of Face-
book’s internal hackathons. Of course, given his reputation and expertise in
the field, he decided to give a talk about tdd. Much to his surprise nobody
signed up16, which made him question why. After some wondering he
came to the conclusion that Facebook works in a different way and that

16According to Beck, the course right above his on the sheet where people could write
their course names, “Advanced Excel” and the course below him, “Argentinian Tango”
were full, whereas his course had zero sign-ups. (Beck, 2016, 02:00)

46

5 Test-Driven Development

IBM Black Team

Compared to what has been found out about the importance of testing
and the shift from exclusively dedicated software testers to developers
writing their own tests and qa teams being reduced, there is an anec-
dote about an infamous team of testers at IBM, the Black Team. They
were testers that achieved slightly better than the rest of testers at IBM
and were put together in a team. The result was that they performed
exceptionally well, but also build a culture and a certain reputation
around them. The goal shifted from testing software, to trying to break
it. They took pride in breaking and torturing the software written by
others. Soon they were feared and little comradery was left towards
the programmers of the software. (DeMarco and Lister, 2013; Romero,
2002)

This is a counter example of what tdd and xp offer, which is a much
more collaborative approach and to find bugs before they occur at all.

engineers there often do things in a different fashion, often in a waterfall
model approach, something he thought he killed over a decade ago. So he
asked himself, maybe the others are not wrong, but maybe they are solving
a different problem than what he was trying to solve with tdd.

This thought process resulted in the creation of 3x, where the three x stand
for Explore, Expand, Extract. These describe different phases of a software
product development lifecycle that will be briefly discussed here.

Explore This phase is used to experiment. A lot. Beck says that one should
do a hundred little experiments, in the hopes that one might yield an
extraordinary result. It can be ideas for work or for a new startup. In
this phase, Beck says, that the rules of normal software development
do not apply. For example instead of using a tdd approach here, one
should do without tests, because if an experiment takes two days with
testing and one without, one more experiment could have been done
in the time spent on testing. And in this phase, the experiments create
the value.

47

5 Test-Driven Development

Expand The Expand phase is where projects hit obstacles that prevent them
from growing (expand). During this phase, all bottlenecks and hurdles
should be removed to aid in expansion and growth.

Extract During extraction, goals, problems and solutions to them are be-
coming clear. The project that started as an experiment and expanded
beyond it can now be extracted. Extraction can mean many things,
for example pulling out some services, features etc. and putting them
into their own project. This is also where the more “classical” software
development methodologies such as tdd can come to fruition.

Startups, as well as grown companies, can make use of 3x, as well as
tdd in later stages or more mature products. Both approaches have their
validity and place and create value in their own way, but do not contradict
themselves in the sense that practitioners must choose between one or the
other and use them exclusively. (Beck, 2016)

5.5.2 Example of Test-Induced Design Damage

Listing 5.117 is an example of idiomatic Rails code without any additional
abstractions added to aid better unit testing. It is a typical controller class
with a controller action named create. Testing this class mixes testing of
the model and thus the persistence layer as well as the networking layer, if
exercised through a system test.18

Listings 5.2 to 5.517 show a “damaged” version of the code in Listing 5.1.
Concerns have been separated in different classes, sometimes referred to as
“Service Objects”19. The controller does not know anything about a model
anymore, but rather simply calls a CreateRunner.

17Usage rights granted by David Heinemeier Hansson.
18Controller tests do exist in Rails, but they are discouraged from being used as they in

fact do mock some parts of the middleware stack of Rails and thus do not actually reflect
what is happening in a real world scenario. (RSpec 3.5 has been released! 2016; Deprecate
assigns() and assert template in controller testing · Issue #18950 · rails/rails 2015)

19A “Service Object” is a poro (Plain Old Ruby Object), which is just a normal object,
but was given the “service” name in the Ruby on Rails community, because it is usually
used to execute business logic, sometimes involving more than one model, talking to third
party APIs etc. It can be thought of as a variation of the “command pattern” (Command
pattern 2019).

48

5 Test-Driven Development

class EmployeesController < ApplicationController

def create

@employee = Employee.new(employee_params)

if @employee.save

redirect_to(

@employee ,

notice: "Employee #{ @employee.name} created"

)

else

render :new

end

end

end

Listing 5.1: Original Rails code

class EmployeesController < ApplicationController

def create

CreateRunner.new(self , EmployeesRepository.new)

.run(params [: employee])

end

def create_succeeded(employee , message)

redirect_to employee , notice: message

end

def create_failed(employee)

@employee = employee

render :new

end

end

Listing 5.2: Hexagon-inspired, test-induced, “damaged” version of a Ruby on Rails
controller action: Controller (Heinemeier Hansson, 2019)

49

5 Test-Driven Development

The CreateRunner (see Listing 5.3) which uses dependency injection20 (di)
to inject an EmployeesRepository (see Listing 5.4) which abstracts away the
persistence layer using the repository pattern.

class CreateRunner

attr_reader :context , :repo

def initialize(context , repo)

@context = context

@repo = repo

end

def run(employee_attrs)

@employee = repo.new_employee(employee_attrs)

if repo.save_employee

context.create_succeeded(

employee ,

"Employee #{ employee.name} created"

)

else

context.create_failed(employee)

end

end

end

Listing 5.3: Hexagon-inspired, test-induced, “damaged” version of a Ruby on Rails
controller action: Service Object (Heinemeier Hansson, 2019)

The CreateRunner also does not know about the model directly, it merely
orchestrates the creation via the EmployeesRepository and depending on the
success of the saving of a Biz::Employee (see Listing 5.5) record it calls the
appropriate methods of the controller which renders the results back to the
user.

20“Dependency Injection” means that an object gets its dependencies from another
object, for example objects that need to talk to a json (JavaScript Object Notation) api over
http get their http-client “injected” instead of creating an instance of one themselves.
(Dependency injection 2019)

50

5 Test-Driven Development

class EmployeesRepository

def new_employee (*args)

Biz:: Employee.new(Employee.new(*args))

end

def save_employee(employee)

employee.save

end

end

Listing 5.4: Hexagon-inspired, test-induced, “damaged” version of a Ruby on Rails
controller action: Repository (Heinemeier Hansson, 2019)

require ’delegate ’

module Biz

class Employee < SimpleDelegator

def self.wrap(employees)

employees.wrap { |e| new(e) }

end

def class

__getobj__.class

end

Business logic

end

end

Listing 5.5: Hexagon-inspired, test-induced, “damaged” version of a Ruby on Rails
controller action: Model (Heinemeier Hansson, 2019)

This kind of design allows for unit testing each class in isolation, resulting
in faster tests since individual components can be injected with mocks. For
example the repository would typically be backed by some sort of database,
while during testing it can just be a Ruby object or an in-memory database
that acts like one.

However, while it is a contrived “Hello World” example (which was also
mentioned in Jim Weirich’s talk), it shows what Heinemeier Hansson meant

51

5 Test-Driven Development

by test-induced design damage. He argues that the first version is much
clearer to write but also to read, leading to a lower cognitive load since only
one class has to be kept in mind while reading and writing instead of four or
more. Nagappan et al. called this “intellectual control”, see subsection 5.4.2.

5.5.3 Conclusion

In conclusion, like most discussions titled “Is X dead?” the answer in en-
gineering is often “it depends”. Valid concerns regarding “test-induced
design damage” have been raised, such as people justifying certain software
architectures that make for easily testing code in isolation, often introducing
layers of indirection in the process which might make understanding the
code harder. The counter argument was that tdd does not force any design
on its own and that design decisions are still left to the developer, but using
tdd might lead you to a design that is easily testable, also arguing that if
some code is hard to test, it might not be the best design.

Other arguments such as tdd leading to overtesting and tdd not lending
itself to all sorts of code being written were also discussed and resulted in
agreement, even if not in all points. tdd is just one of many tools available
to a developer, and teams have to carefully evaluate which process they
want to adopt and carefully weigh the cost-benefit factor for the kind of
work they do. For explorative work, the 3x model was mentioned as one
alternative to tdd.

However as was shown in the previous sections of this chapter (for example
section 5.4), there are measurable benefits for certain kinds of software
development projects which adopted tdd.

52

6 Type Systems

Already mentioned in chapter 1, Hoare wrote in 1996 that one of the many
advancements for software engineering were type systems. In this chapter a
few kinds of categories of type systems will be briefly discussed and their
claimed benefits and if they have been shown to improve the development
of software in a measurable way. This includes static versus dynamic typing
and within dynamic typing weak and strong typing will be discussed.
Since this is not the main topic of this thesis, some parts are intentionally
described in an informal way, since type systems can be discussed at length
and warrant their own theses and books.

Most notably JavaScript — given its recent rise in popularity and the amount
of work being done by software giants such as Google, Microsoft and Face-
book, to alleviate some of the pain points that stem from its dynamic nature
— and Ruby — since this is the language used in the server backend of
OSKAR, which will be discussed in chapter 7 — will be shortly described.

6.1 About Type Systems

The fundamental purpose of a type system is to prevent the occurrence
of execution errors during the running of a program.
A program variable can assume a range of values during the execution
of a program. An upper bound of such a range is called a type of the
variable.

(Cardelli, 2004, pp. 2277–2278)

A type system is a collection of type rules, whereas a type rule is a rule
that states under which conditions forbidden errors will not occur in a
particular program. Forbidden errors are errors that occur when certain

53

6 Type Systems

invalid operations are applied to a value. One example of such a forbidden
error is not(3), where the boolean operator not was applied to an integer
(3). (Cardelli, 2004, p. 2278) However, typed languages exist where such an
operation is allowed such as Ruby and JavaScript.

Type systems are checked by a type checker, which, as the name suggests,
checks if all types and operations that are being applied to them make sense.
For compiled languages this is mostly done during the compile phase, with
some type checking going on during the runtime as well, for example Java’s
instanceof can check a type during runtime.

But even if a type checker concludes that all operations are permitted, a
program might still contain errors if the type system is not sound. Soundness
means that a type checker might catch all type errors during the static
analysis and none during runtime. For example, TypeScript does not have
a sound type system and cannot guarantee a variable has a certain type at
runtime.

This very brief and mostly informal, often — due to brevity — not com-
pletely accurate description shall suffice to go into the differences of certain
type systems and how they correlate with research about their positive
benefits and negative downsides.

6.2 Strict and Dynamic Typing

Strong and weak typing are concepts that describe how a programming
language handles situations where incompatible types are combined with
an operator they both share.

One such example can be given for Ruby, which is strongly typed, and
JavaScript which is weakly typed and uses implicit type coercion. Type
coercion means the usage of one type as if it were another. It is “a controversial
feature that enriches a language’s expressivity at the cost of undermining type safety
and code understandability” (Gao et al., 2017, p. 3). In the below example it can
be seen that adding a string to an integer is a TypeError in Ruby, while in
JavaScript the integer is silently converted to a string and then concatenated
to the string "0", which can result in subtle bugs.

54

6 Type Systems

> 3 + "0"

Traceback (most recent call last):

5: from irb :23:in ‘<main >’

4: from irb :23:in ‘load ’

3: from irb :11:in ‘<top (required)>’

2: from (irb):1

1: from (irb):1:in ‘+’

TypeError (String can ’t be coerced into Integer)

Listing 6.1: Ruby’s strong typing results in a TypeError

> 3 + "0"

’30’

Listing 6.2: JavaScript’s type coercion leads to concatenation

> (’b’ + ’a’ + + ’a’ + ’a’).toLowerCase ()

’banana ’

Listing 6.3: A more curious example of JavaScript’s type coercion

6.3 Claimed Benefits of Strict Typing

JavaScript being a trending programming language1, no longer restricted
to the browser due to JavaScript runtime environments like Node.js2, was
in need for better tooling regarding its type system which is both dynamic
and weak. Maintenance, while entirely possible, and refactoring with very
clever tooling was no longer sufficient for big projects, which resulted in
a lot of new tools and new languages being developed that either compile
(or “transpile”3) to JavaScript or extend the JavaScript language, among

1Metrics used to measure the popularity of programming languages are always up to
controversy, but nonetheless two sources using different metrics are the GitHub Octoverse
Report 2018 and the The RedMonk Programming Language Rankings (O’Grady, 2016)

2Node.js Foundation, 2019.
3“Transpilation” is the process of taking the source code of one programming language

and transforming (“transpiling”) it into equivalent source code of either the same or a
different programming language. (Source-to-source compiler 2019)

55

6 Type Systems

them Google’s Closure compiler, Microsoft’s TypeScript4 and Facebook’s
Flow5 that sought to fix some of the shortcomings of JavaScript or reduce
unwanted behavior.

One of the downsides when refactoring huge codebases of dynamically
typed code, in case of JavaScript and Ruby, is that one has to run the
code, or a test suite if one exists, to see if everything was moved, renamed,
refactored correctly, since due to the dynamic nature of these languages and
the metaprogramming6 possible in Ruby, certain passages of code might
make sense during the runtime but are hard to examine statically. With
added types, for example going through Flow or TypeScript’s compiler tsc,
at least some potential errors can be caught immediately.

Gao et al. conducted a study in 2017 called “To Type or Not to Type,”
researching if adding type declarations would help in reducing the defect
rate for JavaScript codebases. More precisely, detecting defects before code
is made public, either via a commit in a version control system such as git,
or worse, being shipped to customers of a software product or consumers
of a library.

Their study focused on public defects, meaning defects that were fixed
after being published, but they assume that via typing many private defects
would have been caught even earlier, reducing the number of public defects.
Private in this context means that during the writing of code or refactoring,
many little defects and errors can occur and are already caught during
development, for example typographical errors, missing import statements,
etc. Using types an additional class of errors can be potentially be caught,
from nullability errors (variables that can potentially be null or undefined in
JavaScript) to type errors (for example trying to assign a string to a number
variable) etc. But to detect these sort of private errors, deep integration into
the workflow of a practitioner would be needed for example via editor or
ide (Integrated Development Environment) integration. Since this is a very
intrusive and often infeasible technique, Gao et al. concentrated on public

4TypeScript - JavaScript that scales. 2019.
5Flow 2019.
6In the case of Ruby this is, for example the ability to write programs that can modify

themselves during runtime.

56

6 Type Systems

Figure 6.1: Error model of Gao et al.’s study (Gao et al., 2017, p. 3), c© 2017 IEEE

defects on open source projects available on GitHub. See Figure 6.1 for their
error model. (Gao et al., 2017, pp. 1, 9)

Four hundred projects were selected and sampled, collecting the hash value
of the commit that potentially fixes the defect and a potential parent commit
that still contains the defect. Using this database of defects each of the
researchers was given a maximum of ten minutes to decide if adding types
would have resulted in this defect not being made in the first place. Flow
and TypeScript annotations were added and the samples were split into
three categories, ts-detectable, ts-undetectable and unknown, where ts stands
for type system. After the initial classification, the unknown defects were
discussed among the group and some more defects were reclassified from
unknown to ts-detectable or ts-undetectable.

As a result, Gao et al. found that 15% of defects could have potentially
be prevented by using a type system, which suggests that there is some
evidence that type systems could help reduce the defect rate of dynamically

57

6 Type Systems

typed code bases. As a manager at Microsoft noted — when being presented
the result of the study — that a 15% decrease in defects is almost a “no-
brainer”, since few other technologies can have the same impact. However,
what has not been studied in the paper was the added time needed to type
a code base and if these errors could have been prevented if the code base
had an adequate test suite. Type errors can be covered to some extent via
unit tests, but as has been found out by Nagappan et al. in 2008, using a
tdd approach can result in 15–35% longer development time. It has to be
noted that the study done by Nagappan et al. was also done on statically
typed languages, such as Java.

Copyright notice
2017 IEEE/ACM 39th International Conference on Software Engineering
(ICSE), Gao et al., “To Type or Not to Type,” pp. 758–769, c© 2017 IEEE

6.4 Efforts being made for JavaScript

Two such efforts have been indirectly discussed in section 6.3, Flow and
TypeScript. In simple terms, Flow is a static type checker for JavaScript,
using type inference and annotations otherwise, while TypeScript is its own
language, and a superset of JavaScript7.

Other solutions exist that do not try to augment the JavaScript language
but rather provide their own syntax and type guarantees during develop-
ment which are much stronger than those of the gradual typing solutions
mentioned above. Notable examples are Elm8, PureScript9 and Reason10.

7Although not all JavaScript code is valid type-correct TypeScript, tsc will still output
valid JavaScript, given syntactically valid JavaScript as input. (Earwicker, 2019)

8Elm - A delightful language for reliable webapps 2019.
9PureScript 2019.

10Reason 2019.

58

6 Type Systems

6.4.1 Reason

Reason (previously ReasonML) provides a familiar syntax for JavaScript
developers to make the onboarding easier and builds on top of OCaml,
providing a different syntax for the OCaml language, which has a very
strong type system and type inference. OCaml has a strong academic
background and has been in development for almost 25 years, suggesting a
very mature and robust language.

Like all solutions presented, it is used in production, but Reason is (with
a high degree of certainty) used in one of the products that is used by the
largest amount of users11, which is the Facebook Messenger12, resulting in
little to no runtime errors for the parts written in Reason13.

6.5 Efforts being made for Ruby

Ruby is dynamically typed and has strong metaprogramming capabilities
that make it possible, among other things, to build methods and even whole
classes at runtime that are very hard if not impossible to statically analyze
before running the code. However, since it is used in some big and popular
projects such as the macOS package manager Homebrew (McQuaid et al.,
2019) and the web framework Ruby on Rails (used by companies such as
GitHub, Shopify, Airbnb, Netflix) there exist large codebases generating
billions of revenue every year. This fact and the advent of gradual typing
introduced in other languages via third party solutions such as TypeScript
and Flow for JavaScript, or officially in other languages such as Python since
version 3.5 (Rossum et al., 2014) lead to some discussions in the past14 and
development of some third party solutions, most notably Sorbet by Stripe
(Stripe, 2019). Types will be introduced in Ruby 3 and will be an optional
feature (for more information, see subsection 6.5.2).

11According to Facebook, Messenger had over 1.3 billion monthly active users in 2019.
(Facebook, 2019)

12Messenger 2019.
13Messenger.com Now 50% Converted to Reason · Reason 2017.
14Feature #9999: Type Annotations (Static Type Checking) - Ruby Issue Tracking System 2019.

59

6 Type Systems

6.5.1 Sorbet

Sorbet is a gradual type checker for Ruby with backwards compatible syntax.
The advantage here is for large and old codebases where a complete rewrite
in a different language is either infeasible or would come with a great risk,
gradual typing can be a solution, because type checking can be introduced
file by file and team by team.15

Sorbet has a static type checker16 as well as a runtime, because not all type
errors can be caught statically in highly dynamic languages like Ruby17. A
runtime also enables constant checking of type signatures as they will be
exercised constantly, during development and testing. Types can be inferred
to a certain degree, but also manually written type signatures18 can be
used, in addition to rbi files19, “Ruby Interface” files, that can contain type
information. See Listing 6.420 for such annotated code and Listing 6.5 for
the resulting errors. All this is done to have it work and be compatible with
existing Ruby versions. rbi files will be part of Ruby 3 (Endoh, 2019b, p. 5)
and the Sorbet and Ruby developer teams are in close contact to combine
their efforts to introduce typing into Ruby 3.

15Gradual Type Checking & Sorbet · Sorbet 2019.
16Enabling Static Checks · Sorbet 2019.
17Enabling Runtime Checks · Sorbet 2019.
18sigs in Sorbet.
19RBI Files · Sorbet 2019.
20Copyright 2017–2019 Stripe Inc.

60

6 Type Systems

class A

extend T::Sig

sig {params(x: Integer).returns(String)}

def bar(x)

x.to_s

end

end

def main

A.new.barr (91) # error: Typo!

A.new.bar("91") # error: Type mismatch!

end

Listing 6.4: Ruby code annotated with Sorbet

editor.rb:11: Method barr does not exist on A

11 | A.new.barr (91) # error: Typo!

^^^^^^^^^^^^^^

Autocorrect: Use ‘-a‘ to autocorrect

editor.rb:11: Replace with bar

11 | A.new.barr (91) # error: Typo!

^^^^

editor.rb:12: Expected Integer but found String ("91") for

↪→ argument x

12 | A.new.bar ("91") # error: Type mismatch!

^^^^^^^^^^^^^^^

editor.rb:4: Method A#bar has specified x as Integer

4 | sig {params(x: Integer).returns(String)}

^

Got String ("91") originating from:

editor.rb:12:

12 | A.new.bar ("91") # error: Type mismatch!

^^^^

Errors: 2

Listing 6.5: The resulting type errors when using the Sorbet runtime

61

6 Type Systems

Figure 6.2: Ruby 3 static analysis (Endoh, 2019b, p. 4)

6.5.2 Ruby 3.0

Ruby 3 will have types, as announced at RubyKaigi 2019 in Japan. It will
consists of several layers. First of all, a standard type signature format
is being developed (the aforementioned rbi files21), which is planned to
then cover the whole Ruby standard library. On top of this there will be
two kinds of type checkers. First a “Level-1” type checker that tries to
suggest types using type inference for code that is not annotated. It can
find potential NoMethodErrors and TypeErrors. One such potential solution
is the ruby-type-profiler being developed by Endoh, but it is still in an
experimental stage as of writing.22 Then, there will be a “Level-2” type
checker that checks code according to given type signatures. One such
possible solution, Sorbet, was discussed in subsection 6.5.1. An example of
Ruby code without type annotations can be found in Listing 6.623 with the
corresponding rbi file in Listing 6.723 that contains the type annotations.
(Endoh, 2019b, pp. 5–10). See also Figure 6.223 for an overview of the type
checking efforts being made for Ruby 3.

21Progress can be followed on GitHub. (Type signature for Ruby classes. 2019)
22Progress can be followed on GitHub. (Endoh, 2019a)
23Usage rights granted by Yusuke Endoh.

62

6 Type Systems

class Foo

def inc(num)

num + 1

end

end

Listing 6.6: Ruby code without type signatures (Endoh, 2019b, p. 5)

class Foo

def inc : Integer ->Integer

end

Listing 6.7: Corresponding Ruby Interface file (Endoh, 2019b, p. 5)

63

7 OSKAR

7.1 Background

In 2013 Norbert Rabl Ziviltechniker GmbH started developing the app
OSKAR in collaboration with the University of Technology Graz, which re-
sulted in two master’s theses being written: “Implementing reliable Android
applications” by Markart, 2014 and “Agile Entwicklung einer Anwendung
zur Kontrolle und Dokumentation der Umsetzung von sicherheitstechnis-
chen Maßnahmen aus dem Bereich des Arbeitnehmerschutzes für Bauar-
beiten” by Taferner, 2015. These investigated, among other topics, how the
digitalization of requirements faced by health and safety requirements on
construction sites could look like.

The result was OSKAR, which simplifies the implementation of safety-
related requirements such as identification of dangerous situations, setting
measures to avoid dangerous situations and allows documentation of the
results to achieve the legally required “effective control system”1.

Between 2016 and 2017 OSKAR received research funding from the FFG
(Österreichische Forschungsförderungsgesellschaft) in connection to the
program AT:net.

1The Supreme Administrative Court (VwGH) has — over the years — asked for an
“effective control system” (“Wirksames Kontrollsystem”), without specifying how such a
system could look like. OSKAR is, or at the very least gets very close to, being such
a system. (Österreichischer Verwaltungsgerichtshof - Arbeitnehmerschutz: Feststellungen zum
wirksamen Kontrollsystem erforderlich 2018)

64

7 OSKAR

7.2 OSKAR-Server Overview

The OSKAR2 project which is implemented using the Ruby on Rails frame-
work, consists of more than 2.400 automated tests. In this project tests are
written for the majority of features although not always first, as a test-driven
development style would mandate, depending on context.

Out of the over 2.400 tests in the OSKAR test suite, about 900 are unit tests,
270 are e2e tests, and the rest are integration and system tests. The ratio of
production code to test code is 1:2.8.

In the following sections, some examples of the development of the project
will be given and how they relate to the lessons learned from the research
discussed in the previous chapters applies to it.

7.3 Principles of the Ruby Community

Ruby and its community have a strong focus on developer happiness (Ven-
ners, 2003) — as does Ruby on Rails (Heinemeier Hansson, 2016) — and
testing, which manifests not only in the community itself (Elliott, 2018) but
also in the tools that were written to make testing easy and tests a joy to
write, such as RSpec3, a bdd (Behavior-Driven Development)4 framework,
that is used in OSKAR for a total of over 2.400 tests using an easily readable
dsl (Domain Specific Language)5.

2When talking about OSKAR in the context of this thesis, only the backend server is
meant, not the Android or iOS app.

3RSpec 2019.
4
bdd, in very broad terms, evolved out of tdd and focuses on getting all parties

(developers, qa, business participants etc.) involved in the formalization of requirements
and specifications, typically using natural language constructs (stories) that almost read
like English. (North, 2006)

5A dsl is a computer language tailored towards a specific domain of an application.
For example RSpec is tailored towards bdd. (Domain-specific language 2019)

65

7 OSKAR

7.4 TDD in OSKAR

tdd is used not exclusively for development of OSKAR, depending on the
task, but is still heavily employed during the development of new features
and the fixing of defects. One such example will be given, where the tdd

methodology was used to add a new field to the payload of the json api.
First, the test that already exists is adapted, see Listing 7.1. Then, the tests
are run, with the result that the test indeed fails, as expected, see Listing 7.2.
After this step, the minimal implementation that will make the test pass is
added in Listing 7.3. The tests are run again, and indeed, they are green
and the feature has been implemented successfully, see Listing 7.4. After
pushing this to the companies git repository, all tests are being run by a ci

system.6

Just as the research mentioned in chapter 5, this practice has proven very
useful during the development of OSKAR. So far, over 2.400 tests have been
written, many using a tdd approach, especially regression tests for reported
defects. In extreme cases, it took hours to get a failing test while the fix for
the defect took less than 5 minutes. But over the course of over 5 years7,
these tests have proven invaluable, time and time again.

Also during the time when the code responsible for sending push notifica-
tions to the mobile clients of OSKAR for Android and iOS got more complex
to create different payloads depending on platform, app version etc. the
class was first extended, making it a very hard to reason about because so
many conditionals and control statements were being used. But during that
time, over 70 tests were written, documenting the intended behavior. When
it was then refactored during the same development cycle and the code
rewritten to use a oop style to get rid of all the conditionals and control
statements, the tests found many edge cases, not covered by the refactored
code during development. Using small iterations and behavior preserving
transformations, as recommended by Beck and Fowler (see sections 5.2
and 5.2.2) the refactoring was completed without introducing any new
defects.

6Code has been simplified for better results in print.
7The first commit was on June 10th 2014.

66

7 OSKAR

--- a/spec/api/v3/controllers/projects_api_spec.rb

+++ b/spec/api/v3/controllers/projects_api_spec.rb

@@ -100,7 +100 ,7 @@ RSpec.describe Api::V3::

↪→ ProjectsController , type: :controller do

it ’returns the correct data ’ do

get :show , params: { id: project.encoded_id }

- expect(payload.size).to eq 10

+ expect(payload.size).to eq 11

expect(payload[’id ’]).to eq project.encoded_id

expect(payload[’name ’]).to eq project.name

+ expect(payload[’has_map ’]).to eq project.has_map

expect(payload).to have_key ’address ’

expect(payload).to have_key ’users ’

Listing 7.1: Writing a failing test

1) Api::V3:: ProjectsController returns the correct data

Failure/Error: expect(payload.size).to eq 11

expected: 11

got: 10

./spec/api/v3/controllers/projects_api_spec.rb:103

2) Api::V3:: ProjectsController returns the correct data

Failure/Error: expect(payload[’has_map ’]).to eq

↪→ project.has_map

expected: false

got: nil

./spec/api/v3/controllers/projects_api_spec.rb:112

Finished in 0.59078 seconds

1 example , 1 failures

Listing 7.2: Running the test to see it fail

67

7 OSKAR

--- a/app/views/api/v3/projects/_project.json.jbuilder

+++ b/app/views/api/v3/projects/_project.json.jbuilder

@@ -9,6 +9,7 @@

json.id project.encoded_id

json.name project.name

+json.has_map project.has_map

if project.archived?

json.archived_at project.archived_at.utc.iso8601 (3)

Listing 7.3: Adding the minimal implementation to make the test green

Finished in 0.49149 seconds

1 example , 0 failures

Listing 7.4: Running the test again to see it turn green

7.5 Coverage in OSKAR

OSKAR uses SimpleCov8 to measure test coverage. The reported coverage is
95.92%, which is not 100% as the diligent use of tdd would result in, but the
reason for this is easy to give. For one, there are features which only exist
for internal users and developers, such as internal dashboards with statistics
or data export features. Some of them are one-off features which remain
dormant or are at an incubation phase, where too many things change too
fast to justify a tdd approach. This is similar to what Kent Beck describes as
the exploration phase in his 3x concept (see subsection 5.5.1 for details).

It is important to note which parts of the code are untested. Typically
a codebase is not tested in an evenly distributed way. For example, not
every class is 95.92% covered but the majority of user-facing features has a
coverage of 100%, while other internal features are dark spots on the map,
having as little as 33% code coverage. So when a codebase reports less than
100% coverage it is important to check how coverage is distributed.

8SimpleCov 2019.

68

7 OSKAR

7.5.1 Code Complexity in OSKAR

One of the parts that is theoretically well tested and has high coverage is the
pdf report that OSKAR can generate for its users. The test code generates
almost 1.000 (not part of the 2.400 mentioned at the beginning) test cases,
which take almost two hours to run. Deep nesting in the production as
well as the test code make it hard to impossible to trace back errors to their
origin and fixes are hard to write. The maximum block depth in the whole
OSKAR code base is in the pdf report code, as well as most other code
complexity measures such as cyclomatic complexity9, abc size10 and method
length11 report their maximum in this part of the codebase. To measure
these, the Ruby linter RuboCop12 is used. Anecdotal evidence suggests that
what Antinyan et al. found out about the correlation of defects and code
complexity also holds true for this project (see also section 4.2), with many
of the metrics used my Antinyan et al. also being measured by RuboCop in
OSKAR.

Because of the long time the pdf report tests run, they are never run,
supporting the argument Beck makes with his “10 minute rule” (see also
section 2.2).

It has been an ongoing effort to remedy the situation by splitting methods
into smaller ones, reducing block depth and writing fewer, more valuable
tests that run in an appropriate amount of time, be it local or on a ci

system13.

9Cyclomatic complexity is a quantitative metric, using the control flow graph of a
program as its base. (Cyclomatic complexity 2019)

10
abc size counts the numbers of Assignments, Branches and Conditionals, hence abc.

(ABC Software Metric 2018)
11Number of lines a method has.
12RuboCop 2019.
13Some ci providers charge per minute, so faster tests can also save money.

69

8 Conclusion

This thesis began with a lot of quotes by Hoare and B. A. Kitchenham et al.
which served as background and motivation for the other chapters.

In chapter 2 it was explained what automated self-testing code is with a
short description of the different types of tests that exist. Later in chapter 3 it
was argued that testing is a suitable goal for Evidence Based Software Engi-
neering (ebse), with the definition and goals of ebse being given. In chapter 4

one metric that lends itself to research, code coverage, was discussed and
the question answered if a high enough unit test coverage implies adequacy
of test suites. However Antinyan et al. were able to show in a case study
done at Ericsson that code coverage alone is not a suitable metric.

Microsoft Research’s own Empirical Software Engineering (ese) group’s
research was at the center of chapter 5, which talked about Test-Driven
Development (tdd) at length. The efficacy of tdd was discussed as well
as its potential risks and downsides. However, at least for Microsoft the
research showed the clear benefit of using tdd to develop software. Code
quality was much higher and defect rate much lower compared to projects
using a test-last approach or not testing at all. Although this development
style takes 15–35% longer the benefits outweigh the costs.
At the end of this chapter some controversy that occurred in 2014 was dis-
cussed, where the question was raised if tdd was dead. Different standpoints
were being described as well as an alternative development methodology,
3x by Kent Beck, that can be used in situations where tdd might not be
suitable, was described.

A short introduction to type systems was given in chapter 6 with a paper
by Gao et al. from 2017 serving as a discussion point to see if strict typing
can be useful for development and if its benefits can be measured. It was

70

8 Conclusion

shown that in the case of JavaScript, adding types can eliminate up to 15%
of bugs that occurred due to its dynamically and weakly typed nature.

Lastly, in chapter 7 everything that has been described so far was put into
context to a software product being written at NR.Systems GmbH named
OSKAR and how practices and results from research have been employed
and how they affected quality and the development process of the project.

71

Bibliography

ABC Software Metric (Jan. 27, 2018). In: Wikipedia. Page Version ID: 822653124.
url: https://en.wikipedia.org/w/index.php?title=ABC_Software_
Metric&oldid=822653124 (visited on 09/10/2019) (cit. on p. 69).

And the Winners Are ... (Sept. 26, 2006). Microsoft Research. url: https:
//www.microsoft.com/en-us/research/blog/and-the-winners-are/

(visited on 09/06/2019) (cit. on p. 13).
Antinyan, Vard et al. (May 2018). “Mythical Unit Test Coverage.” In: IEEE

Software 35.3, pp. 73–79. issn: 0740-7459. doi: 10.1109/MS.2017.3281318.
url: https://ieeexplore.ieee.org/document/8354427/ (visited on
07/14/2019) (cit. on pp. 17–21, 23, 24, 40, 69, 70).

Apache Subversion (2019). url: https://subversion.apache.org/ (visited
on 08/28/2019) (cit. on p. 9).

Beck, Kent (1999). Extreme Programming Explained: Embrace Change. Boston,
MA, USA: Addison-Wesley Longman Publishing Co., Inc. isbn: 978-0-
201-61641-5 (cit. on pp. 26, 31).

Beck, Kent (2003). Test-Driven Development: By Example. The Addison-Wesley
signature series. Boston: Addison-Wesley. 220 pp. isbn: 978-0-321-14653-
3 (cit. on pp. 14, 26–29, 31, 45).

Beck, Kent (May 11, 2012). Kent Beck answering why he redsicovered, not invented
Test-Driven Development. url: https://www.quora.com/Why-does-Kent-
Beck- refer- to- the- rediscovery- of- test- driven- development-

Whats- the- history- of- test- driven- development- before- Kent-

Becks-rediscovery/answer/Kent-Beck (visited on 08/26/2019) (cit. on
p. 26).

Beck, Kent (Nov. 14, 2016). 3X with Kent Beck. url: https://www.youtube.
com/watch?v=YX2XR73LnRY (visited on 09/10/2019) (cit. on pp. 46, 48).

72

https://en.wikipedia.org/w/index.php?title=ABC_Software_Metric&oldid=822653124
https://en.wikipedia.org/w/index.php?title=ABC_Software_Metric&oldid=822653124
https://www.microsoft.com/en-us/research/blog/and-the-winners-are/
https://www.microsoft.com/en-us/research/blog/and-the-winners-are/
https://doi.org/10.1109/MS.2017.3281318
https://ieeexplore.ieee.org/document/8354427/
https://subversion.apache.org/
https://www.quora.com/Why-does-Kent-Beck-refer-to-the-rediscovery-of-test-driven-development-Whats-the-history-of-test-driven-development-before-Kent-Becks-rediscovery/answer/Kent-Beck
https://www.quora.com/Why-does-Kent-Beck-refer-to-the-rediscovery-of-test-driven-development-Whats-the-history-of-test-driven-development-before-Kent-Becks-rediscovery/answer/Kent-Beck
https://www.quora.com/Why-does-Kent-Beck-refer-to-the-rediscovery-of-test-driven-development-Whats-the-history-of-test-driven-development-before-Kent-Becks-rediscovery/answer/Kent-Beck
https://www.quora.com/Why-does-Kent-Beck-refer-to-the-rediscovery-of-test-driven-development-Whats-the-history-of-test-driven-development-before-Kent-Becks-rediscovery/answer/Kent-Beck
https://www.youtube.com/watch?v=YX2XR73LnRY
https://www.youtube.com/watch?v=YX2XR73LnRY

Bibliography

Beck, Kent and Cynthia Andres (Nov. 16, 2004). Extreme Programming Ex-
plained: Embrace Change, Second Edition. Second. Addison-Wesley Pro-
fessional. 224 pp. isbn: 978-0-321-27865-4. url: https://proquest.
techbus.safaribooksonline.de/0321278658 (visited on 08/28/2019)
(cit. on pp. 8, 9, 29).

Betteridge’s law of headlines (Aug. 4, 2019). In: Wikipedia. Page Version ID:
909347429. url: https://en.wikipedia.org/w/index.php?title=
Betteridge % 27s _ law _ of _ headlines & oldid = 909347429 (visited on
08/29/2019) (cit. on p. 43).

Bhat, Thirumalesh and Nachiappan Nagappan (2006). “Evaluating the Effi-
cacy of Test-driven Development: Industrial Case Studies.” In: Proceed-
ings of the 2006 ACM/IEEE International Symposium on Empirical Software
Engineering. ISESE ’06. event-place: Rio de Janeiro, Brazil. New York, NY,
USA: ACM, pp. 356–363. isbn: 978-1-59593-218-1. doi: 10.1145/1159733.
1159787. url: http://doi.acm.org/10.1145/1159733.1159787 (visited
on 07/15/2019) (cit. on pp. 36, 38–40).

Bird, Christian et al. (Mar. 19, 2011). “Empirical Software Engineering at
Microsoft Research.” In: url: https://www.microsoft.com/en-us/rese
arch/publication/empirical-software-engineering-at-microsoft-

research/ (visited on 09/04/2019) (cit. on p. 13).
Boeing 737 MAX groundings (Sept. 2, 2019). In: Wikipedia. Page Version

ID: 913611919. url: https://en.wikipedia.org/w/index.php?title=
Boeing_737_MAX_groundings&oldid=913611919 (visited on 09/02/2019)
(cit. on p. 2).

Buxton, J. N. and B. Randell, eds. (1970). Software Engineering Techniques:
Report of a Conference Sponsored by the NATO Science Committee, Rome,
Italy, 27-31 Oct. 1969, Brussels, Scientific Affairs Division, NATO (cit. on
p. 27).

Cardelli, Luca (2004). “Type Systems.” In: Computer Science Handbook, Second
Edition. Second. Chapman & Hall/CRC. Chap. 97, pp. 2277–2308. isbn:
978-1-58488-360-9 (cit. on pp. 53, 54).

Chan, Denise (Aug. 20, 2019). Sunsetting Mercurial support in Bitbucket. Bit-
bucket. url: https://bitbucket.org/blog/sunsetting-mercurial-
support-in-bitbucket (visited on 08/28/2019) (cit. on p. 9).

Code coverage (Aug. 7, 2019). In: Wikipedia. Page Version ID: 909756417. url:
https://en.wikipedia.org/w/index.php?title=Code_coverage&

oldid=909756417 (visited on 08/26/2019) (cit. on p. 18).

73

https://proquest.techbus.safaribooksonline.de/0321278658
https://proquest.techbus.safaribooksonline.de/0321278658
https://en.wikipedia.org/w/index.php?title=Betteridge%27s_law_of_headlines&oldid=909347429
https://en.wikipedia.org/w/index.php?title=Betteridge%27s_law_of_headlines&oldid=909347429
https://doi.org/10.1145/1159733.1159787
https://doi.org/10.1145/1159733.1159787
http://doi.acm.org/10.1145/1159733.1159787
https://www.microsoft.com/en-us/research/publication/empirical-software-engineering-at-microsoft-research/
https://www.microsoft.com/en-us/research/publication/empirical-software-engineering-at-microsoft-research/
https://www.microsoft.com/en-us/research/publication/empirical-software-engineering-at-microsoft-research/
https://en.wikipedia.org/w/index.php?title=Boeing_737_MAX_groundings&oldid=913611919
https://en.wikipedia.org/w/index.php?title=Boeing_737_MAX_groundings&oldid=913611919
https://bitbucket.org/blog/sunsetting-mercurial-support-in-bitbucket
https://bitbucket.org/blog/sunsetting-mercurial-support-in-bitbucket
https://en.wikipedia.org/w/index.php?title=Code_coverage&oldid=909756417
https://en.wikipedia.org/w/index.php?title=Code_coverage&oldid=909756417

Bibliography

Code Coverage Tutorial: Branch, Statement, Decision, FSM (2019). url: https:
//www.guru99.com/code-coverage.html (visited on 08/26/2019) (cit.
on pp. 17, 18).

Command pattern (Aug. 21, 2019). In: Wikipedia. Page Version ID: 911818765.
url: https://en.wikipedia.org/w/index.php?title=Command_
pattern&oldid=911818765 (visited on 09/02/2019) (cit. on p. 48).

Cunningham, Ward (1992). “The WyCash Portfolio Management System.”
In: Addendum to the Proceedings on Object-oriented Programming Systems,
Languages, and Applications (Addendum). OOPSLA ’92. event-place: Van-
couver, British Columbia, Canada. New York, NY, USA: ACM, pp. 29–
30. isbn: 978-0-89791-610-3. doi: 10.1145/157709.157715. url: http:
//doi.acm.org/10.1145/157709.157715 (visited on 08/27/2019) (cit.
on p. 15).

Cyclomatic complexity (Sept. 1, 2019). In: Wikipedia. Page Version ID: 913449633.
url: https://en.wikipedia.org/w/index.php?title=Cyclomatic_
complexity&oldid=913449633 (visited on 09/10/2019) (cit. on p. 69).

Death of Elaine Herzberg (Aug. 5, 2019). In: Wikipedia. Page Version ID:
909453995. url: https://en.wikipedia.org/w/index.php?title=
Death_of_Elaine_Herzberg&oldid=909453995 (visited on 09/02/2019)
(cit. on p. 2).

DeMarco, Tom and Tim Lister (2013). Peopleware: Productive Projects and Teams
(3rd Edition). 3rd. Addison-Wesley Professional. isbn: 978-0-321-93411-6
(cit. on p. 47).

Dependency injection (Aug. 9, 2019). In: Wikipedia. Page Version ID: 910131552.
url: https://en.wikipedia.org/w/index.php?title=Dependency_
injection&oldid=910131552 (visited on 09/02/2019) (cit. on p. 50).

Deprecate assigns() and assert template in controller testing · Issue #18950 ·
rails/rails (Feb. 15, 2015). GitHub. url: https://github.com/rails/
rails/issues/18950 (visited on 08/29/2019) (cit. on p. 48).

Deursen, Arie van (2001). “Program Comprehension Risks and Opportuni-
ties in Extreme Programming.” In: Proceedings Eighth Working Conference
on Reverse Engineering, pp. 176–185. doi: 10.1109/WCRE.2001.957822
(cit. on pp. 32–35).

DO-178B (July 21, 2019). In: Wikipedia. Page Version ID: 907233189. url:
https://en.wikipedia.org/w/index.php?title=DO-178B&oldid=

907233189 (visited on 09/03/2019) (cit. on p. 25).

74

https://www.guru99.com/code-coverage.html
https://www.guru99.com/code-coverage.html
https://en.wikipedia.org/w/index.php?title=Command_pattern&oldid=911818765
https://en.wikipedia.org/w/index.php?title=Command_pattern&oldid=911818765
https://doi.org/10.1145/157709.157715
http://doi.acm.org/10.1145/157709.157715
http://doi.acm.org/10.1145/157709.157715
https://en.wikipedia.org/w/index.php?title=Cyclomatic_complexity&oldid=913449633
https://en.wikipedia.org/w/index.php?title=Cyclomatic_complexity&oldid=913449633
https://en.wikipedia.org/w/index.php?title=Death_of_Elaine_Herzberg&oldid=909453995
https://en.wikipedia.org/w/index.php?title=Death_of_Elaine_Herzberg&oldid=909453995
https://en.wikipedia.org/w/index.php?title=Dependency_injection&oldid=910131552
https://en.wikipedia.org/w/index.php?title=Dependency_injection&oldid=910131552
https://github.com/rails/rails/issues/18950
https://github.com/rails/rails/issues/18950
https://doi.org/10.1109/WCRE.2001.957822
https://en.wikipedia.org/w/index.php?title=DO-178B&oldid=907233189
https://en.wikipedia.org/w/index.php?title=DO-178B&oldid=907233189

Bibliography

Domain-specific language (July 27, 2019). In: Wikipedia. Page Version ID:
908097306. url: https://en.wikipedia.org/w/index.php?title=
Domain-specific_language&oldid=908097306 (visited on 09/06/2019)
(cit. on p. 65).

Earwicker, Daniel (2019). ES6 should be valid TypeScript · Issue #2606. GitHub.
url: https : / / github . com / Microsoft / TypeScript / issues / 2606 #

issuecomment-89266470 (visited on 09/04/2019) (cit. on p. 58).
EBSE Website (Mar. 15, 2012). url: http://community.dur.ac.uk/ebse/

(visited on 08/26/2019) (cit. on p. iv).
Elliott, Thomas (Dec. 7, 2018). The State of the Octoverse: communicating with

emoji on GitHub. The GitHub Blog. url: https://github.blog/2018-
12-07-octoverse-emoji-on-github/#percent-of-reactions-by-

emoji-type-and-programming-language (visited on 09/04/2019) (cit.
on p. 65).

Elm - A delightful language for reliable webapps (2019). url: https://elm-
lang.org/ (visited on 09/04/2019) (cit. on p. 58).

Empirical Software Engineering Group (ESE) (2019). Microsoft Research. url:
https://www.microsoft.com/en- us/research/group/empirical-

software-engineering-group-ese/ (visited on 09/06/2019) (cit. on
p. 13).

Enabling Runtime Checks · Sorbet (2019). url: https://sorbet.org/ (visited
on 09/05/2019) (cit. on p. 60).

Enabling Static Checks · Sorbet (2019). url: https://sorbet.org/ (visited on
09/05/2019) (cit. on p. 60).

Endoh, Yusuke (Sept. 9, 2019a). An experimental type-level Ruby interpreter for
testing and understanding Ruby code. original-date: 2019-02-22T07:26:19Z.
url: https://github.com/mame/ruby- type- profiler (visited on
09/09/2019) (cit. on p. 62).

Endoh, Yusuke (Mar. 26, 2019b). Ruby 3 Progress Report. url: https://docs.
google.com/presentation/d/1z_5JT0-MJySGn6UGrtdafK1oj9kGSO5sGl

TtEQJz0JU/view#slide=id.g57cf166414_14_5 (visited on 09/05/2019)
(cit. on pp. 60, 62, 63).

Facebook, Inc (Apr. 27, 2019). F8 Messenger Fact Sheet 2019. url: https:
//messengernews.fb.com/wp-content/uploads/2019/04/3-2019-

Messsenger-F8-Fact-Sheet-1.pdf (visited on 08/28/2019) (cit. on
p. 59).

75

https://en.wikipedia.org/w/index.php?title=Domain-specific_language&oldid=908097306
https://en.wikipedia.org/w/index.php?title=Domain-specific_language&oldid=908097306
https://github.com/Microsoft/TypeScript/issues/2606#issuecomment-89266470
https://github.com/Microsoft/TypeScript/issues/2606#issuecomment-89266470
http://community.dur.ac.uk/ebse/
https://github.blog/2018-12-07-octoverse-emoji-on-github/#percent-of-reactions-by-emoji-type-and-programming-language
https://github.blog/2018-12-07-octoverse-emoji-on-github/#percent-of-reactions-by-emoji-type-and-programming-language
https://github.blog/2018-12-07-octoverse-emoji-on-github/#percent-of-reactions-by-emoji-type-and-programming-language
https://elm-lang.org/
https://elm-lang.org/
https://www.microsoft.com/en-us/research/group/empirical-software-engineering-group-ese/
https://www.microsoft.com/en-us/research/group/empirical-software-engineering-group-ese/
https://sorbet.org/
https://sorbet.org/
https://github.com/mame/ruby-type-profiler
https://docs.google.com/presentation/d/1z_5JT0-MJySGn6UGrtdafK1oj9kGSO5sGlTtEQJz0JU/view#slide=id.g57cf166414_14_5
https://docs.google.com/presentation/d/1z_5JT0-MJySGn6UGrtdafK1oj9kGSO5sGlTtEQJz0JU/view#slide=id.g57cf166414_14_5
https://docs.google.com/presentation/d/1z_5JT0-MJySGn6UGrtdafK1oj9kGSO5sGlTtEQJz0JU/view#slide=id.g57cf166414_14_5
https://messengernews.fb.com/wp-content/uploads/2019/04/3-2019-Messsenger-F8-Fact-Sheet-1.pdf
https://messengernews.fb.com/wp-content/uploads/2019/04/3-2019-Messsenger-F8-Fact-Sheet-1.pdf
https://messengernews.fb.com/wp-content/uploads/2019/04/3-2019-Messsenger-F8-Fact-Sheet-1.pdf

Bibliography

Feature #9999: Type Annotations (Static Type Checking) - Ruby Issue Tracking
System (2019). url: https://bugs.ruby-lang.org/issues/9999 (visited
on 09/05/2019) (cit. on p. 59).

Fenton, Norman E. and Shari Lawrence Pfleeger (1998). Software Metrics: A
Rigorous and Practical Approach. 2nd. Boston, MA, USA: PWS Publishing
Co. isbn: 978-0-534-95425-3 (cit. on p. 36).

Firefox Headless mode (2019). MDN Web Docs. url: https://developer.
mozilla.org/en-US/docs/Mozilla/Firefox/Headless_mode (visited
on 08/28/2019) (cit. on p. 11).

Flow (2019). Flow: A Static Type Checker for JavaScript. Flow. url: https:
//flow.org/en/ (visited on 09/04/2019) (cit. on p. 56).

Fowler, Martin (1999). Refactoring: Improving the Design of Existing Code. In
collab. with Kent Beck. Boston, MA, USA: Addison-Wesley Longman
Publishing Co., Inc. 431 pp. isbn: 978-0-201-48567-7 (cit. on pp. 7, 30, 32).

Fowler, Martin (Sept. 1, 2004a). Definition of Refactoring. martinfowler.com.
url: https://martinfowler.com/bliki/DefinitionOfRefactoring.
html (visited on 09/02/2019) (cit. on p. 30).

Fowler, Martin (Jan. 3, 2004b). Refactoring Malapropism. martinfowler.com.
url: https://martinfowler.com/bliki/RefactoringMalapropism.
html (visited on 09/02/2019) (cit. on p. 30).

Fowler, Martin (May 1, 2006). Continuous Integration. martinfowler.com. url:
https://martinfowler.com/articles/continuousIntegration.html

(visited on 08/28/2019) (cit. on p. 8).
Fowler, Martin (Apr. 17, 2012). TestCoverage, Martin Fowler. martinfowler.com.

url: https://martinfowler.com/bliki/TestCoverage.html (visited
on 08/26/2019) (cit. on p. 24).

Fowler, Martin (May 9, 2014a). Is TDD Dead. martinfowler.com. url: https:
//martinfowler.com/articles/is-tdd-dead/ (visited on 08/29/2019)
(cit. on p. 43).

Fowler, Martin (Jan. 5, 2014b). Self Testing Code. martinfowler.com. url:
https://martinfowler.com/bliki/SelfTestingCode.html (visited on
09/06/2019) (cit. on p. 7).

Fowler, Martin (May 5, 2014c). UnitTest. martinfowler.com. url: https:
//martinfowler.com/bliki/UnitTest.html (visited on 08/28/2019)
(cit. on p. 10).

76

https://bugs.ruby-lang.org/issues/9999
https://developer.mozilla.org/en-US/docs/Mozilla/Firefox/Headless_mode
https://developer.mozilla.org/en-US/docs/Mozilla/Firefox/Headless_mode
https://flow.org/en/
https://flow.org/en/
https://martinfowler.com/bliki/DefinitionOfRefactoring.html
https://martinfowler.com/bliki/DefinitionOfRefactoring.html
https://martinfowler.com/bliki/RefactoringMalapropism.html
https://martinfowler.com/bliki/RefactoringMalapropism.html
https://martinfowler.com/articles/continuousIntegration.html
https://martinfowler.com/bliki/TestCoverage.html
https://martinfowler.com/articles/is-tdd-dead/
https://martinfowler.com/articles/is-tdd-dead/
https://martinfowler.com/bliki/SelfTestingCode.html
https://martinfowler.com/bliki/UnitTest.html
https://martinfowler.com/bliki/UnitTest.html

Bibliography

Fowler, Martin (Jan. 16, 2018). IntegrationTest. martinfowler.com. url: ht
tps://martinfowler.com/bliki/IntegrationTest.html (visited on
08/28/2019) (cit. on p. 10).

Fowler, Martin (2019). Refactoring Home Page. url: http://refactoring.com
(visited on 08/28/2019) (cit. on pp. 30, 31).

Gang Of Four (Oct. 16, 2013). url: http://wiki.c2.com/?GangOfFour
(visited on 08/28/2019) (cit. on p. 7).

Gao, Zheng et al. (May 2017). “To Type or Not to Type: Quantifying De-
tectable Bugs in JavaScript.” In: 2017 IEEE/ACM 39th International Con-
ference on Software Engineering (ICSE). 2017 IEEE/ACM 39th Interna-
tional Conference on Software Engineering (ICSE). Buenos Aires: IEEE,
pp. 758–769. isbn: 978-1-5386-3868-2. doi: 10 . 1109 / ICSE . 2017 . 75.
url: http://ieeexplore.ieee.org/document/7985711/ (visited on
07/14/2019) (cit. on pp. 54, 56–58, 70).

Garry, Chris (Sept. 2, 2019). Original Apollo 11 Guidance Computer (AGC) source
code for the command and lunar modules.: chrislgarry/Apollo-11. original-date:
2014-04-03T15:45:02Z. url: https://github.com/chrislgarry/Apollo-
11 (visited on 09/02/2019) (cit. on p. 1).

George, Boby and Laurie Williams (Apr. 15, 2004). “A structured experiment
of test-driven development.” In: Information and Software Technology.
Special Issue on Software Engineering, Applications, Practices and Tools
from the ACM Symposium on Applied Computing 2003 46.5, pp. 337–
342. issn: 0950-5849. doi: 10.1016/j.infsof.2003.09.011. url: http:
//www.sciencedirect.com/science/article/pii/S0950584903002040

(visited on 07/15/2019) (cit. on pp. 32, 36, 38).
Getting Started with Headless Chrome — Web (2019). Google Developers. url:

https://developers.google.com/web/updates/2017/04/headless-

chrome (visited on 08/28/2019) (cit. on p. 11).
Git (2019). url: https://git-scm.com/ (visited on 08/28/2019) (cit. on

p. 9).
GitHub Octoverse Report (Oct. 16, 2018). The State of the Octoverse. url:

https : / / octoverse . github . com / projects # languages (visited on
08/28/2019) (cit. on p. 55).

Goodhart’s law (July 26, 2019). In: Wikipedia. Page Version ID: 907945035. url:
https://en.wikipedia.org/w/index.php?title=Goodhart%27s_law&

oldid=907945035 (visited on 08/26/2019) (cit. on p. 24).

77

https://martinfowler.com/bliki/IntegrationTest.html
https://martinfowler.com/bliki/IntegrationTest.html
http://refactoring.com
http://wiki.c2.com/?GangOfFour
https://doi.org/10.1109/ICSE.2017.75
http://ieeexplore.ieee.org/document/7985711/
https://github.com/chrislgarry/Apollo-11
https://github.com/chrislgarry/Apollo-11
https://doi.org/10.1016/j.infsof.2003.09.011
http://www.sciencedirect.com/science/article/pii/S0950584903002040
http://www.sciencedirect.com/science/article/pii/S0950584903002040
https://developers.google.com/web/updates/2017/04/headless-chrome
https://developers.google.com/web/updates/2017/04/headless-chrome
https://git-scm.com/
https://octoverse.github.com/projects#languages
https://en.wikipedia.org/w/index.php?title=Goodhart%27s_law&oldid=907945035
https://en.wikipedia.org/w/index.php?title=Goodhart%27s_law&oldid=907945035

Bibliography

Gradual Type Checking & Sorbet · Sorbet (2019). url: https://sorbet.org/
(visited on 09/05/2019) (cit. on p. 60).

Ham Vocke (Feb. 26, 2018). The Practical Test Pyramid. martinfowler.com. url:
https://martinfowler.com/articles/practical-test-pyramid.html

(visited on 08/28/2019) (cit. on p. 11).
Heinemeier Hansson, David (Apr. 29, 2014a). TDD is dead. Long live testing.

url: https://dhh.dk/2014/tdd-is-dead-long-live-testing.html
(visited on 08/29/2019) (cit. on p. 43).

Heinemeier Hansson, David (Apr. 29, 2014b). Test-induced design damage. url:
https://dhh.dk/2014/test-induced-design-damage.html (visited on
08/29/2019) (cit. on p. 43).

Heinemeier Hansson, David (Jan. 2016). The Rails Doctrine. Ruby on Rails.
url: https://rubyonrails.org/doctrine/ (visited on 08/29/2019)
(cit. on pp. 44, 65).

Heinemeier Hansson, David (2019). Test Induced Design Damage example.
url: https://gist.github.com/dhh/4849a20d2ba89b34b201 (visited
on 09/02/2019) (cit. on pp. 49–51).

Hexagonal architecture (software) (Aug. 14, 2019). In: Wikipedia. Page Version
ID: 910783815. url: https://en.wikipedia.org/w/index.php?title=
Hexagonal_architecture_(software)&oldid=910783815 (visited on
09/06/2019) (cit. on p. 44).

Hoare logic (June 18, 2019). In: Wikipedia. Page Version ID: 902408484. url:
https://en.wikipedia.org/w/index.php?title=Hoare_logic&oldid=

902408484 (visited on 08/29/2019) (cit. on p. 1).
Hoare, C. A. R. (Feb. 1981). “The Emperor’s Old Clothes.” In: Commun.

ACM 24.2, pp. 75–83. issn: 0001-0782. doi: 10.1145/358549.358561. url:
http://doi.acm.org/10.1145/358549.358561 (visited on 09/03/2019)
(cit. on p. 29).

Hoare, C. A. R. (1996). “How Did Software Get So Reliable Without Proof?”
In: FME’96: Industrial Benefit and Advances in Formal Methods. Ed. by
Marie-Claude Gaudel and James Woodcock. Red. by Gerhard Goos
et al. Vol. 1051. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 1–
17. isbn: 978-3-540-60973-5. doi: 10.1007/3-540-60973-3_77. url:
http://link.springer.com/10.1007/3-540-60973-3_77 (visited on
07/14/2019) (cit. on pp. 1, 3–7, 13, 14, 53, 70).

How SQLite Is Tested (2019). url: https://www.sqlite.org/testing.html
(visited on 08/26/2019) (cit. on p. 25).

78

https://sorbet.org/
https://martinfowler.com/articles/practical-test-pyramid.html
https://dhh.dk/2014/tdd-is-dead-long-live-testing.html
https://dhh.dk/2014/test-induced-design-damage.html
https://rubyonrails.org/doctrine/
https://gist.github.com/dhh/4849a20d2ba89b34b201
https://en.wikipedia.org/w/index.php?title=Hexagonal_architecture_(software)&oldid=910783815
https://en.wikipedia.org/w/index.php?title=Hexagonal_architecture_(software)&oldid=910783815
https://en.wikipedia.org/w/index.php?title=Hoare_logic&oldid=902408484
https://en.wikipedia.org/w/index.php?title=Hoare_logic&oldid=902408484
https://doi.org/10.1145/358549.358561
http://doi.acm.org/10.1145/358549.358561
https://doi.org/10.1007/3-540-60973-3_77
http://link.springer.com/10.1007/3-540-60973-3_77
https://www.sqlite.org/testing.html

Bibliography

ImperialViolet - Apple’s SSL/TLS bug (Feb. 22, 2014). url: https://www.imp
erialviolet.org/2014/02/22/applebug.html (visited on 08/27/2019)
(cit. on p. 5).

Is TDD dead? (May 9, 2014). url: https://www.youtube.com/watch?v=
z9quxZsLcfo (visited on 09/03/2019) (cit. on pp. 26, 27, 44).

Josuttis, Nicolai (Jan. 2000). eXtreme Programming An interview with Kent
Beck. url: https://accu.org/index.php/journals/509 (visited on
09/02/2019) (cit. on p. 29).

Juristo, Natalia et al. (Mar. 2004). “Reviewing 25 Years of Testing Technique
Experiments.” In: Empirical Software Engineering 9.1, pp. 7–44. issn: 1382-
3256. doi: 10.1023/B:EMSE.0000013513.48963.1b. url: http://link.
springer.com/10.1023/B:EMSE.0000013513.48963.1b (visited on
07/14/2019) (cit. on p. 22).

Kemp, Peter and Paul Smith (June 14, 2010). Waterfall Model of System
Development. url: https://commons.wikimedia.org/wiki/File:Water
fall_model.svg (visited on 09/02/2019) (cit. on pp. 36, 37).

Kitchenham, B. A. et al. (2004). “Evidence-based Software Engineering.” In:
Proceedings. 26th International Conference on Software Engineering, pp. 273–
281. doi: 10.1109/ICSE.2004.1317449 (cit. on pp. iv, 4–7, 13, 70).

Kitchenham, B. and S. Charters (2007). Guidelines for performing Systematic
Literature Reviews in Software Engineering (cit. on p. 15).

Kitchenham, Barbara et al. (July 1995). “Case Studies for Method and
Tool Evaluation.” In: IEEE Softw. 12.4, pp. 52–62. issn: 0740-7459. doi:
10.1109/52.391832. url: https://doi.org/10.1109/52.391832
(visited on 09/02/2019) (cit. on p. 36).

Lion Air Flight 610 (Aug. 26, 2019). In: Wikipedia. Page Version ID: 912578683.
url: https://en.wikipedia.org/w/index.php?title=Lion_Air_
Flight_610&oldid=912578683 (visited on 09/02/2019) (cit. on p. 2).

Lions, Jacques Louis (1996). “ARIANE 5 Flight 501 Failure: Report by the
Enquiry Board.” In: (cit. on p. 2).

Markart, Daniel (2014). “Implementing reliable Android applications.” Dis-
sertation/Thesis. PhD thesis (cit. on p. 64).

McQuaid, Mike et al. (Sept. 3, 2019). Homebrew: The missing package manager
for macOS (or Linux). original-date: 2016-03-06T05:08:38Z. url: https:
//github.com/Homebrew/brew (visited on 09/03/2019) (cit. on p. 59).

Mercurial SCM (2019). url: https://www.mercurial-scm.org/ (visited on
08/28/2019) (cit. on p. 9).

79

https://www.imperialviolet.org/2014/02/22/applebug.html
https://www.imperialviolet.org/2014/02/22/applebug.html
https://www.youtube.com/watch?v=z9quxZsLcfo
https://www.youtube.com/watch?v=z9quxZsLcfo
https://accu.org/index.php/journals/509
https://doi.org/10.1023/B:EMSE.0000013513.48963.1b
http://link.springer.com/10.1023/B:EMSE.0000013513.48963.1b
http://link.springer.com/10.1023/B:EMSE.0000013513.48963.1b
https://commons.wikimedia.org/wiki/File:Waterfall_model.svg
https://commons.wikimedia.org/wiki/File:Waterfall_model.svg
https://doi.org/10.1109/ICSE.2004.1317449
https://doi.org/10.1109/52.391832
https://doi.org/10.1109/52.391832
https://en.wikipedia.org/w/index.php?title=Lion_Air_Flight_610&oldid=912578683
https://en.wikipedia.org/w/index.php?title=Lion_Air_Flight_610&oldid=912578683
https://github.com/Homebrew/brew
https://github.com/Homebrew/brew
https://www.mercurial-scm.org/

Bibliography

Messenger (2019). Facebook. url: https://www.messenger.com/ (visited on
08/28/2019) (cit. on p. 59).

Messenger.com Now 50% Converted to Reason · Reason (Sept. 8, 2017). url:
https://reasonml.github.io/blog/2017/09/08/messenger- 50-

reason (visited on 08/28/2019) (cit. on p. 59).
Microsoft acquires GitHub (2019). Stories. url: https://news.microsoft.com/

announcement/microsoft-acquires-github/ (visited on 08/28/2019)
(cit. on p. 9).

Minitab, LLC (2019). A comparison of the Pearson and Spearman correlation
methods. url: https://support.minitab.com/en-us/minitab-express
/1/help-and-how-to/modeling-statistics/regression/supporting-

topics/basics/a-comparison-of-the-pearson-and-spearman-corre

lation-methods/ (visited on 09/03/2019) (cit. on p. 21).
Modified condition/decision coverage (Mar. 16, 2019). In: Wikipedia. Page Version

ID: 888092011. url: https://en.wikipedia.org/w/index.php?title=
Modified_condition/decision_coverage&oldid=888092011 (visited
on 09/03/2019) (cit. on p. 25).

Mutation testing (Aug. 23, 2019). In: Wikipedia. Page Version ID: 912170781.
url: https://en.wikipedia.org/w/index.php?title=Mutation_
testing&oldid=912170781 (visited on 09/03/2019) (cit. on p. 12).

Nagappan, Nachiappan et al. (June 1, 2008). “Realizing quality improve-
ment through test driven development: results and experiences of four
industrial teams.” In: Empirical Software Engineering 13, pp. 289–302. doi:
10.1007/s10664-008-9062-z. url: https://doi.org/10.1007/s10664-
008-9062-z (cit. on pp. 27, 29, 36, 38–41, 52, 58).

Node.js Foundation (2019). Node.js. Node.js. url: https://nodejs.org/en/
(visited on 08/28/2019) (cit. on p. 55).

North, Dan (Sept. 20, 2006). Introducing BDD. Dan North & Associates. url:
https://dannorth.net/introducing-bdd/ (visited on 09/05/2019)
(cit. on p. 65).

Null References (Aug. 25, 2009). Null References: The Billion Dollar Mistake.
InfoQ. url: https://www.infoq.com/presentations/Null-Reference
s-The-Billion-Dollar-Mistake-Tony-Hoare/ (visited on 08/27/2019)
(cit. on p. 1).

NVD - CVE-2014-1266 (Feb. 22, 2014). url: https://nvd.nist.gov/vuln/
detail/CVE-2014-1266 (visited on 08/27/2019) (cit. on p. 5).

80

https://www.messenger.com/
https://reasonml.github.io/blog/2017/09/08/messenger-50-reason
https://reasonml.github.io/blog/2017/09/08/messenger-50-reason
https://news.microsoft.com/announcement/microsoft-acquires-github/
https://news.microsoft.com/announcement/microsoft-acquires-github/
https://support.minitab.com/en-us/minitab-express/1/help-and-how-to/modeling-statistics/regression/supporting-topics/basics/a-comparison-of-the-pearson-and-spearman-correlation-methods/
https://support.minitab.com/en-us/minitab-express/1/help-and-how-to/modeling-statistics/regression/supporting-topics/basics/a-comparison-of-the-pearson-and-spearman-correlation-methods/
https://support.minitab.com/en-us/minitab-express/1/help-and-how-to/modeling-statistics/regression/supporting-topics/basics/a-comparison-of-the-pearson-and-spearman-correlation-methods/
https://support.minitab.com/en-us/minitab-express/1/help-and-how-to/modeling-statistics/regression/supporting-topics/basics/a-comparison-of-the-pearson-and-spearman-correlation-methods/
https://en.wikipedia.org/w/index.php?title=Modified_condition/decision_coverage&oldid=888092011
https://en.wikipedia.org/w/index.php?title=Modified_condition/decision_coverage&oldid=888092011
https://en.wikipedia.org/w/index.php?title=Mutation_testing&oldid=912170781
https://en.wikipedia.org/w/index.php?title=Mutation_testing&oldid=912170781
https://doi.org/10.1007/s10664-008-9062-z
https://doi.org/10.1007/s10664-008-9062-z
https://doi.org/10.1007/s10664-008-9062-z
https://nodejs.org/en/
https://dannorth.net/introducing-bdd/
https://www.infoq.com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare/
https://www.infoq.com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare/
https://nvd.nist.gov/vuln/detail/CVE-2014-1266
https://nvd.nist.gov/vuln/detail/CVE-2014-1266

Bibliography

O’Grady, Stephen (Feb. 19, 2016). The RedMonk Programming Language Rank-
ings. tecosystems. url: https://redmonk.com/sogrady/2016/02/19/
language-rankings-1-16/ (visited on 08/28/2019) (cit. on p. 55).

Österreichischer Verwaltungsgerichtshof - Arbeitnehmerschutz: Feststellungen zum
wirksamen Kontrollsystem erforderlich (July 4, 2018). url: https://www.
vwgh.gv.at/rechtsprechung/aktuelle_entscheidungen/2018/ra_

2017020240.html?0 (visited on 09/11/2019) (cit. on p. 64).
Pearson correlation coefficient (Aug. 25, 2019). In: Wikipedia. Page Version

ID: 912485501. url: https://en.wikipedia.org/w/index.php?tit
le=Pearson_correlation_coefficient&oldid=912485501 (visited on
09/03/2019) (cit. on p. 21).

Power-on self-test (Apr. 7, 2019). In: Wikipedia. Page Version ID: 891389351.
url: https://en.wikipedia.org/w/index.php?title=Power-on_self-
test&oldid=891389351 (visited on 08/28/2019) (cit. on p. 7).

PureScript (2019). url: http://www.purescript.org/ (visited on 09/04/2019)
(cit. on p. 58).

Quicksort (Aug. 27, 2019). In: Wikipedia. Page Version ID: 912786103. url:
https://en.wikipedia.org/w/index.php?title=Quicksort&oldid=

912786103 (visited on 08/29/2019) (cit. on p. 1).
RBI Files · Sorbet (2019). url: https://sorbet.org/ (visited on 09/05/2019)

(cit. on p. 60).
Reason (2019). url: https://reasonml.github.io/ (visited on 09/04/2019)

(cit. on p. 58).
Richard Hipp (June 25, 2019). Richard Hipp SQLite ViennaDB Talk 2019.06.25

(cit. on p. 25).
Richard Hipp about the history of testing SQLite — Hacker News (2019). url: http

s://news.ycombinator.com/item?id=18686695 (visited on 08/26/2019)
(cit. on p. 25).

Rios, Nicolli et al. (Oct. 2018). “A tertiary study on technical debt: Types,
management strategies, research trends, and base information for prac-
titioners.” In: Information and Software Technology 102, pp. 117–145. issn:
09505849. doi: 10 . 1016 / j . infsof . 2018 . 05 . 010. url: https : / /

linkinghub.elsevier.com/retrieve/pii/S0950584918300946 (visited
on 07/14/2019) (cit. on pp. 14–16).

Romero, Tim (Dec. 17, 2002). Tangled Webs 7.6 - The Black Team. url: http:
//www.t3.org/tangledwebs/07/tw0706.html (visited on 09/03/2019)
(cit. on p. 47).

81

https://redmonk.com/sogrady/2016/02/19/language-rankings-1-16/
https://redmonk.com/sogrady/2016/02/19/language-rankings-1-16/
https://www.vwgh.gv.at/rechtsprechung/aktuelle_entscheidungen/2018/ra_2017020240.html?0
https://www.vwgh.gv.at/rechtsprechung/aktuelle_entscheidungen/2018/ra_2017020240.html?0
https://www.vwgh.gv.at/rechtsprechung/aktuelle_entscheidungen/2018/ra_2017020240.html?0
https://en.wikipedia.org/w/index.php?title=Pearson_correlation_coefficient&oldid=912485501
https://en.wikipedia.org/w/index.php?title=Pearson_correlation_coefficient&oldid=912485501
https://en.wikipedia.org/w/index.php?title=Power-on_self-test&oldid=891389351
https://en.wikipedia.org/w/index.php?title=Power-on_self-test&oldid=891389351
http://www.purescript.org/
https://en.wikipedia.org/w/index.php?title=Quicksort&oldid=912786103
https://en.wikipedia.org/w/index.php?title=Quicksort&oldid=912786103
https://sorbet.org/
https://reasonml.github.io/
https://news.ycombinator.com/item?id=18686695
https://news.ycombinator.com/item?id=18686695
https://doi.org/10.1016/j.infsof.2018.05.010
https://linkinghub.elsevier.com/retrieve/pii/S0950584918300946
https://linkinghub.elsevier.com/retrieve/pii/S0950584918300946
http://www.t3.org/tangledwebs/07/tw0706.html
http://www.t3.org/tangledwebs/07/tw0706.html

Bibliography

Rossum, Guido van et al. (Sept. 29, 2014). PEP 484 – Type Hints. Python.org.
url: https : / / www . python . org / dev / peps / pep - 0484/ (visited on
09/03/2019) (cit. on p. 59).

RSpec 3.5 has been released! (July 1, 2016). url: http://rspec.info/blog/
2016/07/rspec-3-5-has-been-released/ (visited on 08/29/2019)
(cit. on p. 48).

RSpec (2019). RSpec: Behaviour Driven Development for Ruby. url: http://
rspec.info/ (visited on 09/05/2019) (cit. on p. 65).

RuboCop (Sept. 10, 2019). original-date: 2012-04-21T10:09:58Z. url: https:
//github.com/rubocop-hq/rubocop (visited on 09/10/2019) (cit. on
p. 69).

Selenium WebDriver (2019). url: https://www.seleniumhq.org/projects/
webdriver/ (visited on 08/28/2019) (cit. on p. 11).

Shinde, Vijay (2019). What Is END-TO-END Testing. url: https://www.
softwaretestinghelp.com/what-is-end-to-end-testing/ (visited on
08/28/2019) (cit. on pp. 10, 11).

SimpleCov (Sept. 8, 2019). original-date: 2010-08-15T15:28:56Z. url: https:
//github.com/colszowka/simplecov (visited on 09/10/2019) (cit. on
p. 68).

Source-to-source compiler (July 16, 2019). In: Wikipedia. Page Version ID:
906556977. url: https://en.wikipedia.org/w/index.php?title=So
urce-to-source_compiler&oldid=906556977 (visited on 08/28/2019)
(cit. on p. 55).

Spearman’s rank correlation coefficient (Aug. 1, 2019). In: Wikipedia. Page Version
ID: 908824374. url: https://en.wikipedia.org/w/index.php?titl
e=Spearman%27s_rank_correlation_coefficient&oldid=908824374

(visited on 09/03/2019) (cit. on p. 21).
SQLite Copyright (2019). url: https://www.sqlite.org/copyright.html

(visited on 09/03/2019) (cit. on p. 25).
SQLite TH3 (Test Harness 3) (2019). url: https://www.sqlite.org/th3.html

(visited on 09/03/2019) (cit. on p. 25).
Statement (computer science) (June 16, 2019). In: Wikipedia. Page Version ID:

902154255. url: https://en.wikipedia.org/w/index.php?title=Stat
ement_(computer_science)&oldid=902154255 (visited on 08/26/2019)
(cit. on p. 18).

82

https://www.python.org/dev/peps/pep-0484/
http://rspec.info/blog/2016/07/rspec-3-5-has-been-released/
http://rspec.info/blog/2016/07/rspec-3-5-has-been-released/
http://rspec.info/
http://rspec.info/
https://github.com/rubocop-hq/rubocop
https://github.com/rubocop-hq/rubocop
https://www.seleniumhq.org/projects/webdriver/
https://www.seleniumhq.org/projects/webdriver/
https://www.softwaretestinghelp.com/what-is-end-to-end-testing/
https://www.softwaretestinghelp.com/what-is-end-to-end-testing/
https://github.com/colszowka/simplecov
https://github.com/colszowka/simplecov
https://en.wikipedia.org/w/index.php?title=Source-to-source_compiler&oldid=906556977
https://en.wikipedia.org/w/index.php?title=Source-to-source_compiler&oldid=906556977
https://en.wikipedia.org/w/index.php?title=Spearman%27s_rank_correlation_coefficient&oldid=908824374
https://en.wikipedia.org/w/index.php?title=Spearman%27s_rank_correlation_coefficient&oldid=908824374
https://www.sqlite.org/copyright.html
https://www.sqlite.org/th3.html
https://en.wikipedia.org/w/index.php?title=Statement_(computer_science)&oldid=902154255
https://en.wikipedia.org/w/index.php?title=Statement_(computer_science)&oldid=902154255

Bibliography

Stripe (Sept. 3, 2019). A fast, powerful type checker designed for Ruby. original-
date: 2018-06-26T18:13:06Z. url: https://github.com/sorbet/sorbet
(visited on 09/03/2019) (cit. on p. 59).

Stroustrup, Bjarne (1997). The C++ Programming Language, Third Edition. 3rd.
Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc. isbn:
978-0-201-88954-3 (cit. on p. 5).

Structured Program Theorem (Böhm–Jacopini theorem (Aug. 17, 2019). In: Wikipedia.
Page Version ID: 911286009. url: https://en.wikipedia.org/w/index.
php?title=Structured_program_theorem&oldid=911286009 (visited
on 08/27/2019) (cit. on p. 5).

Taferner, Philipp (2015). “Agile Entwicklung einer Anwendung zur Kon-
trolle und Dokumentation der Umsetzung von sicherheitstechnischen
Maßnahmen aus dem Bereich des Arbeitnehmerschutzes für Bauar-
beiten.” Dissertation/Thesis. PhD thesis (cit. on p. 64).

The largest Git repo on the planet (May 24, 2017). Brian Harry’s Blog. url:
https://devblogs.microsoft.com/bharry/the-largest-git-repo-

on-the-planet/ (visited on 08/28/2019) (cit. on p. 9).
tmux usage of ”goto” (2019). GitHub. url: https://github.com/tmux/tmux

(visited on 09/09/2019) (cit. on p. 5).
Type signature for Ruby classes. (Sept. 9, 2019). original-date: 2019-03-10T08:22:27Z.

url: https://github.com/ruby/ruby-signature (visited on 09/09/2019)
(cit. on p. 62).

TypeScript - JavaScript that scales. (2019). url: https://www.typescriptlang.
org/ (visited on 09/04/2019) (cit. on p. 56).

Venners, Bill (Sept. 29, 2003). The Philosophy of Ruby. url: https://www.
artima.com/intv/rubyP.html (visited on 08/29/2019) (cit. on pp. 44,
65).

Verner, J. M. et al. (May 2012). “Systematic literature reviews in global
software development: A tertiary study.” In: 16th International Conference
on Evaluation Assessment in Software Engineering (EASE 2012). 16th Inter-
national Conference on Evaluation Assessment in Software Engineering
(EASE 2012), pp. 2–11. doi: 10.1049/ic.2012.0001 (cit. on p. 15).

Waterfall model (Aug. 30, 2019). In: Wikipedia. Page Version ID: 913171517.
url: https://en.wikipedia.org/w/index.php?title=Waterfall_
model&oldid=913171517 (visited on 09/02/2019) (cit. on p. 36).

83

https://github.com/sorbet/sorbet
https://en.wikipedia.org/w/index.php?title=Structured_program_theorem&oldid=911286009
https://en.wikipedia.org/w/index.php?title=Structured_program_theorem&oldid=911286009
https://devblogs.microsoft.com/bharry/the-largest-git-repo-on-the-planet/
https://devblogs.microsoft.com/bharry/the-largest-git-repo-on-the-planet/
https://github.com/tmux/tmux
https://github.com/ruby/ruby-signature
https://www.typescriptlang.org/
https://www.typescriptlang.org/
https://www.artima.com/intv/rubyP.html
https://www.artima.com/intv/rubyP.html
https://doi.org/10.1049/ic.2012.0001
https://en.wikipedia.org/w/index.php?title=Waterfall_model&oldid=913171517
https://en.wikipedia.org/w/index.php?title=Waterfall_model&oldid=913171517

Bibliography

Weirich, Jim (Oct. 15, 2013). October CincyRb - Jim Weirich on Decoupling from
Rails. url: https://www.youtube.com/watch?v=tg5RFeSfBM4 (visited
on 09/03/2019) (cit. on p. 44).

Xarawn (Nov. 4, 2015). Lifecycle of the Test-Driven Development method. url:
https://commons.wikimedia.org/wiki/File:TDD_Global_Lifecycle.

png (visited on 09/02/2019) (cit. on p. 28).
xUnit (Aug. 7, 2019). In: Wikipedia. Page Version ID: 909756510. url: https:

//en.wikipedia.org/w/index.php?title=XUnit&oldid=909756510

(visited on 08/28/2019) (cit. on p. 7).

84

https://www.youtube.com/watch?v=tg5RFeSfBM4
https://commons.wikimedia.org/wiki/File:TDD_Global_Lifecycle.png
https://commons.wikimedia.org/wiki/File:TDD_Global_Lifecycle.png
https://en.wikipedia.org/w/index.php?title=XUnit&oldid=909756510
https://en.wikipedia.org/w/index.php?title=XUnit&oldid=909756510

	Abstract
	List of Figures
	List of Tables
	Listings
	Background
	The Human Factor

	Automated Self-Testing Code
	Self-Testing
	Automated
	Types of Tests
	Conclusion

	Testing as a Suitable Goal for EBSE
	Lack of tests are Technical Debt

	Code Coverage
	Types of Coverage
	"Mythical Unit Test Coverage"
	The Influence of Code Complexity on Defect Rate and Code Coverage

	What is Code Coverage measuring, if not Test Sufficiency?
	SQLite

	Test-Driven Development
	Goals of TDD
	The TDD Development Cycle
	Regression Tests
	Refactoring

	Criticism
	Criticism on Unit Testing
	Criticism on Refactoring
	Criticism on Simple Design and Lack of Planning

	Efficacy of Test-Driven Development
	George and Williams, 2004
	Bhat and Nagappan, 2006
	Nagappan et al., 2008

	Is TDD dead?
	3X by Kent Beck
	Example of Test-Induced Design Damage
	Conclusion

	Type Systems
	About Type Systems
	Strict and Dynamic Typing
	Claimed Benefits of Strict Typing
	Efforts being made for JavaScript
	Reason

	Efforts being made for Ruby
	Sorbet
	Ruby 3.0

	OSKAR
	Background
	OSKAR-Server Overview
	Principles of the Ruby Community
	TDD in OSKAR
	Coverage in OSKAR
	Code Complexity in OSKAR

	Conclusion
	Bibliography

