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Abstract

Tutorials pervade our daily lives. Be it from building a shelf at home or something more

complex as repairing mechanical machinery. Current systems for the automatized creation

of tutorials focus on one type of media. This thesis outlines a system for the automatized

creation of XML based construction manuals, which can be used as a basis for tutorials

of any type of media. The inputs to our proposed system are common videos depicting

the assembly or disassembly of known objects. We use a CNN in combination with a

6 DoF pose estimation framework to extract information from such a video. By drawing

conclusions from that information and by validating it against a disassembly graph of the

known object, we build an XML based construction manual for the sequence shown in

the video. We present two sample applications which create tutorials for different types

of media based on one such an XML based construction manual.
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Kurzfassung

Täglich kommen wir in Kontakt mit Gebrauchsanweisungen, beim Aufbau eines Regals

zu Hause oder beim Reparieren von Komplexerem wie mechanische Maschinen. Derzeit-

ige Systeme zur automatischen Erstellung von Gebrauchsanweisungen beschränken sich

auf ein Medium. Diese Diplomarbeit beschreibt ein System zur automatischen Erstellung

von XML basierten Anleitungen, die als Basis für Gebrauchsanweisungen beliebiger Me-

dien verwendet werden können. Dieses System benötigt eine Videoaufnahme der Montage

bzw. Demontage eines bekannten Objekts. Wir benutzen ein CNN und ein Framework

zur Schätzung von Posen in 6 Freiheitsgraden, um Informationen aus der Videoaufnahme

zu gewinnen. Mit den Informationen aus der Videoaufnahme und der anschließenden

Validierung mit einem Graphen, der die Demontage des bekannten Objekts beschreibt,

werden Rückschlüsse gezogen. Diese ermöglichen uns eine XML basierte Anleitung, die

die Sequenz aus der Videoaufnahme widerspiegelt, zu erstellen. Wir präsentieren zwei An-

wendungen, für unterschiedliche Medien, die Gebrauchsanweisungen auf XML basierenden

Anleitungen erzeugen.
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1
Introduction

People often come across tutorials, independent on their field of work. Tutorials often try

to simplify a particular subject matter such that non-experts can complete an otherwise

difficult task without the need to understand the underlying and often complex details

fully. For example, that is the case for mechanical machinery, where recordings are used

to demonstrate how mechanical machinery can be repaired in case of damage.

With display devices becoming smaller while also being able to support more

computing-intensive applications, new types of tutorials are becoming more popular. Not

only methodologies of tutorials have to be rethought, but also new concepts and new

ways to interact with a tutorial arise as those display devices also support a wide range

of different interactions with them. That often allows creating more concise and easier to

understand tutorials.

There has been research on the automatized creation of tutorials based on given me-

dia like images or videos by Mohr et al. [22, 23] and Chi et al. [7] or recorded interac-

tions by Wang et al. [45] for different types of tutorials. The focus of this thesis is the

automatized creation of an XML based construction manual based on a given video tutorial

for known 3D objects. Using one such XML based construction manual, it is then possible

to target multiple different types of media like print or augmented reality to display guided

instructions. Especially in the case of displaying guided instructions via augmented reality

technologies, it is an improvement over plain video recordings, when, e.g., trying to repair

mechanical machinery as virtual instructions can be directly overlayed over real objects.

One of the challenges in creating an XML based construction manual is the extraction

of meaningful data from a given video. That is why we specifically focus on known 3D

objects, where we then can try to extract information like visibility and occlusions and

pose. By extracting information from the video and by drawing conclusions about the

relations between the known 3D objects, we hope to create a meaningful XML based

construction manual.

As mentioned above, tutorials try to hide complex details, and as such we propose a

system that automatizes the creation of such a construction manual. That means no in-

1



2 Chapter 1. Introduction

trinsic knowledge about the automatization system itself is required and only the necessary

input data has to be provided.

1.1 Conceptional Workflow

When we further lay out a plan based on the mentioned concepts, we arrive at the fol-

lowing involved parties input provider, system and tutorial creator. See Figure 1.1 for a

conceptional overview of the workflow and the interfaces between these parties. Note that

the result of this system is an XML based construction manual. Following we describe

each party in more detail.

Input Provider. We mentioned that tutorials simplify a specific subject matter and

as such often provide step by step instructions. From the input provider we require a

video and a 3D object. The video should depict, e.g., some mechanical machinery being

disassembled by an expert or a person with domain knowledge. The provided 3D object

should be a virtual representation of this real-world mechanical machinery. Either that

is the original Computer Aided Design (CAD) data or an adequate reconstruction. Both

this video and the related 3D object are then given to the system.

System and XML based construction manuals. The primary part of this thesis

is this system which creates XML based construction manuals. Given a video and a

3D object from any input provider as a basis, this system creates such an XML based

construction manual.

Tutorial Creator. Finally, based on an XML based construction manual and its

related 3D object, any type of tutorial can be created by any tutorial creator. The structure

depicted by Figure 1.1 illustrates how tutorial creators only need to concern themselves

with the actual presentational parts of a tutorial. Note that based on one XML based

construction manual, any number of different tutorials can be built.

Input Provider Tutorial Creator(s)

Tutorial 1

Tutorial 2

Tutorial . . .

System
XML based
construction
manual

Figure 1.1: An overview of the conceptional workflow and the involved parties.
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Related Work

Inferring from what was mentioned in the previous chapter, we need algorithms or frame-

works which can detect predefined 3D objects in 2D space. Specifically, allowing us to

determine if a 3D object is visible in a given image and if possible even get its pose.

Evaluating if an object is visible in a given image can be treated as an image classifi-

cation problem, and we propose using a Convolutional Neural Network as they have long

been established as powerful tools to solve this specific type of problem.

Estimating the pose of a 3D object in 6 Degrees of Freedom (DoF ) is a well-defined

research problem. While Convolutional Neural Networks are used to solve this type of

problem as well, there exist solutions that use image segmentation on RGB images and

calculate a 6 DoF pose by, e.g., detecting the 2D contours of known 3D objects.

2.1 Image Classification and

Convolutional Neural Networks

We described earlier that Convolutional Neural Network (CNN ) have long been estab-

lished as powerful tools to solve image classification problems. The basic architecture of a

Convolutional Neural Network usually consists of multiple layers and input passes through

these layers in batches. In the training phase, a dataset containing images, which have

annotations for the classes the CNN should recognize, is given to the CNN , and it trains

on the dataset until a convergence criterion is met. After validating the training phase,

a new image can be given to the CNN . Depending on the setup of the CNN the result

will be a prediction if and where one of the trained classes is in this new image. When

making predictions over consecutive images, e.g., when the input is a video, note that one

can validate the prediction of a frame with its predecessor and successor.

3



4 Chapter 2. Related Work

2.1.1 Synthetic Datasets

The different classes Convolutional Neural Networks can detect are only limited by the

datasets one can provide for training. While there are many annotated datasets available,

often you need to create a dataset on your own. That is when you want to customize your

CNN for your purposes and detect sometimes unusual classes in images.

On the one hand, you want a comprehensive dataset, where each class is covered from

every possible angle and in different scenarios. On the other hand annotating is a very

time-consuming task as it has to be done manually. For this reason, there exist tools to

make this labeling process as frictionless as possible like, e.g., LabelMe [36]. A prominent

example is the Google-Image-Labeler [11] which is a web-tool where you can label random

images to help Google build its datasets. Building, specifically annotating, datasets can

be seen as a problem of its own. Apart from specific tools, which try to aid the labeling

process, it also is possible to build whole synthetic datasets.

The quality of 3D object renderings is gradually improving year by year. This can be

observed when trying to tell apart two images, where one is a photograph and the other

a rendering of the same object. Exploiting this fact, one approach to synthetic datasets is

to create a virtual environment for each class and create renderings from different angles

and in different scenarios. Note that in a virtual environment objects can be annotated

algorithmically, which is an improvement over annotating images by hand. The drawback

in this scenario is that you need to set up a realistic virtual environment and require 3D

representations of the object classes you, later on, want the CNN to be able to detect.

The more realistic these synthetic images are, the better the quality of the dataset. Keep

in mind that in the end your CNN will classify real photographs.

Ways to create those renderings of 3D objects are, e.g., the engine Unity3D [42] or the

3D modeler Blender [4]. Examples, where CNN s are trained on synthetic datasets, are

presented by Jensen and Selvik [15], Rajpura et al. [30] and Peng et al. [26]. Note that

it is also possible to create mixed datasets where real images are mixed with synthetic

images as shown by Tian et al. [40].

2.1.2 Choosing a Convolutional Neural Network

There exists a wide variety of CNN which try to solve the image classification prob-

lem. The Pascal Visual Object Classes (VOC ) Challenge tries to evaluate those CNN

by providing standardized annotated datasets and standardized evaluation procedures, in

the end comparing how well each CNN solves the problem of image classification [10].

Similar to the Pascal VOC Challenge, there are also other competitions which share the

same goal like, e.g., the ImageNet Large Scale Visual Recognition Challenge [35]. Aside

from those competitions many datasets like, e.g., the Caltech256 dataset [12] or the Lotus

Hill dataset [46] are available to the community to provide comparable training data for

their CNN s.
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Real-Time Detectors Train mAP FPS

100Hz DPM 2007 16.0 100
30Hz DPM 2007 26.1 30
Fast YOLO 2007+2012 52.7 155
YOLO 2007+2012 63.4 45

Less Than Real-Time

Fastest DPM 2007 30.4 15
R-CNN Minus R 2007 53.5 6
Fast R-CNN 2007+2012 70.0 0.5
Faster R-CNN VGG-16 2007+2012 73.2 7
Faster R-CNN ZF 2007+2012 62.1 18
YOLO VGG-16 2007+2012 66.4 21

Table 2.1: A comparison of real-time detectors on the Pascal VOC datasets stated by Redmon
et al. [31, chapter Experiments, pp 6].

The Pascal VOC challenge itself was held annually starting from 2005 to 2012 [9].

For every challenge, a new dataset containing publicly available images were annotated

and used as ground truth. Every competition was split into the two main categories of

classification, where the presence or absence of an object is predicted, and detection, where

bounding boxes around objects are predicted. The results of each competing CNN are

then evaluated in the form of a report.

One criterion to keep in mind is the average time of detection on one image. For

example for real-time applications that means you want to process images as fast as

possible. Table 2.1 shows a comparison of real-time CNN s, where Pascal VOC datasets

were used. Note that the mean Average Precision (mAP) can be in the range from 0

to 100 – the higher the mAP , the better the image classification capabilities of a CNN .

Together with the frames per second (FPS ), those two values are a good indicator of the

real-time performance of a CNN . Note that state of the art CNN s are implemented to

run on GPU s, specifically Nvidia R© graphics cards.

2.1.3 You Only Look Once

The Convolutional Neural Network You Only Look Once (YOLO) by Redmon et al. [31]

is a state-of-the-art object detector, which stands out among other image classification

CNN s due to its overall good prediction and fast detection rates – see Table 2.1 for a

comparison.

YOLO takes a new approach to object detection and reasons globally about objects

in a given image instead of, e.g., using the sliding window technique like other CNN s.

One could say that YOLO predicts bounding boxes straight from image pixels – see

Figure 2.1 for an example. For more examples, one can visit the website of YOLO

https://pjreddie.com/darknet/yolo/.

https://pjreddie.com/darknet/yolo/
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Note that while YOLO makes fast predictions, it lags behind state of the art CNN s

in terms of accuracy. It also struggles to localize objects in new or unusual configu-

rations as stated by Redmon et al. [31, chapter Limitations of YOLO, pp 4]. Still, it

outperforms other real-time object detection systems in terms of the ratio of accuracy and

detection time.

(a) YOLO Prediction Example 1 (b) YOLO Prediction Example 2

Figure 2.1: Both pictures present bounding boxes where YOLO predicted an object class. For
these predictions a pre-trained weight and example images were used. Note that in Figure 2.1a
dog was predicted with 100%, bicycle with 99%, car with 25% and truck with 92%, while in
Figure 2.1b person was predicted with 100%, dog with 99% and horse with 100%. It is noteworthy
that truck and car feature the same predicted bounding box, but with vastly different prediction
rates.

2.1.3.1 Different Versions

Since first publishing You Only Look Once (YOLO) in 2015 [31], the object detection

system has been continuously researched on and currently its third version YOLOv3 [33]

is available. YOLOv3 still has the same basic characteristics as its initial version, but its

accuracy has been improved and its detection times got faster.

Based on YOLO , there has been research on its applicability in different real-time

contexts. For example Shafiee et al. [38], show how YOLOv2 [32] can run on an embedded

device where computation power is limited. Pedoeem and Huang [25] present how YOLO

even runs in real-time on non-GPU devices. This is especially useful for, e.g., augmented

reality applications, where devices are usually small and computation power is limited and

strictly non-GPU .
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2.2 Pose Estimation

While pose estimation is a core research problem, it has gained more attention in recent

time due to its applicability in the context of augmented reality, where pose estimation is

a basic problem [20]. Note that in this context additional means like sensors can be used

to confirm or falsify predictions on the pose of 3D objects.

Looking at the types of input, 2D images or point clouds or a combination of both, and

what is estimated, general poses like, e.g., human shapes or poses of specific 3D objects,

there exist a variety of approaches to estimating 6 DoF for an object. For example, while

Ye et al. [47] show how the pose of a human body is estimated, Aldoma et al. [1] estimate

the 6 DoF pose for known CAD models. Note that both use point clouds, e.g., captured

by a depth camera like the Microsoft Kinect, as input.

In this chapter, we want to further explore one specific approach which estimates a

6 DoF pose of a 3D object over a given video. By having continuous 2D images, one

can reason about the pose of an object with prior or posterior knowledge. Following is

an outline of the above-mentioned method called 2D-3D pose estimation [6, 8, 29, 37]. It

requires that the 3D object is known and an initial pose for the first frame of the video,

e.g., a recording of the 3D object, is set. Now for every frame, the 3D object is projected

onto the 2D video frame. This projection is then used for image segmentation and the

resulting contour for pose estimation – see Figure 2.2. The estimated pose is then used in

the next frame and iteratively a 6 DoF pose is estimated for every frame of the video.

Segmentation

Contour

Pose Estimation

Pose

Projection
Matching

Frame 1

Initial Pose Initial Pose for Next Frame

Figure 2.2: Pose estimation by image segmentation adapted from Brox et al. [6, chapter Intro-
duction, pp 3]. The workflow of this 2D-3D pose estimation requires an initial pose for the first
image in a continuous image stream like, e.g., a video. By projecting this initial pose onto the first
frame, segmenting a contour and matching this to a pose of the known 3D object, an initial pose
for the next frame is calculated.
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2.2.1 PWP3D

One such 2D-3D pose estimation system is PWP3D by Prisacariu and Reid [29][28]. While

PWP3D tries to solve the problem of simultaneous image segmentation and pose estima-

tion as other similar 2D-3D pose estimation systems, it achieves this in real-time. Note

that for 2D-3D pose tracking over multiple frames, an accurate 3D model of the object to

be tracked is required.

Figure 2.3 shows how PWP3D successfully recovers the pose of a 3D object – the

initialized pose on the left, the final result on the right. Note that PWP3D can recover from

positional misalignments in x, y and z of up to about 40% and rotational misalignments of

about 50 degrees on the x- and y-axis and 70 degrees on the z-axis as stated by Prisacariu

and Reid [29, chapter Results, pp 12].

Figure 2.3: Typical PWP3D run for one frame presented by Prisacariu and Reid [29, chapter
Results, pp 12] with left – initialization, middle – intermediate iteration, right – final result.

So far we have only discussed the case of monocular pose estimation. Note that

PWP3D is capable of processing multiple views as stated by Prisacariu and Reid [29,

chapter Multiple Views, pp 7]. Multiple views make it easier to discern ambiguous 2D

projections as different poses of a 3D object can lead to the same projection. In general,

multiple views are beneficial and contribute towards more accurate pose estimation.

2.3 Exploded View Diagrams

Conceptional drawings of objects or exploded view diagrams have cemented themselves

as valuable visualization methods for presentational purposes. Initially exploded view

diagrams were drawings on papers and made their transition to 3D with the coming of

Computer Aided Design (CAD). In recent time exploded view diagrams transitioned even

further, namely into the field of augmented reality as shown by Kalkofen et al. [17], which

opened new ways of, e.g., interacting with them.
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2.3.1 Explosion Graphs

The main challenges when creating and designing virtual exploded view diagrams are the

handling of occlusions, interaction with the diagram and the creation based on CAD or

3D object data itself. For this reason, the automatized creation of exploded view diagrams

is topic of research and, e.g., Tatzgern et al. [39] describe a system which automatically

creates an exploded view diagram based on given unmodified CAD data. While Tatzgern

et al. [39] further define an algorithm to compute a disassembly sequence, Li et al. [18]

create an explosion graph based on constraints derived from given 3D object data.

(a) Input Model (b) Exploded Model

(c) Explosion Graph (d) Exploded View Diagram of a Turbine [18]

Figure 2.4: Explosion graphs are based on a given 3D object which is used as input model.
Figure 2.4a shows such an input model and Figure 2.4b its related exploded model. This exploded
model can be more formerly encoded as an explosion graph as presented by Figure 2.4c. One
application of explosion graphs is the automated generation of exploded view diagrams. One such
exploded view diagram of a turbine presented by Li et al. [18] is shown in Figure 2.4d.

Specifically, Li et al. [18] derive constraints by verifying at each step of a disassembly

what parts can be removed. This results in a directed explosion graph, where each node

represents one part of a given 3D object. See Figure 2.4a, where the input model results

in the explosion graph seen in Figure 2.4c. Note that Figure 2.4b illustrates every possibly

disassembly of the input model and the directed edges of an explosion graph encode the

dependencies between the different parts of a given 3D object.
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As previously mentioned, one practical application of explosion graphs is the auto-

mated generation of interactive exploded view diagrams as shown in Figure 2.4d. Every

node in the explosion graph also encodes the unconstrained direction of its related 3D

object part. Note that all this additional information about the parts of a given 3D ob-

ject can be used in visualizations and presentations of this object. Therefore, this generic

exploded-view-diagram graph-description is well suited as a foundation for further research

on applications of exploded view diagrams.



3
System Overview

In Chapter 1 we outlined the focus of this thesis and in Chapter 2 we discussed its core

challenges. In the following chapter we combine the frameworks outlined in Section 2.1.3,

Section 2.2.1 and Section 2.3.1 to build a system which is capable of the automatized

creation of an XML based construction manual based on a given video tutorial for known

3D objects.

Figure 3.1 shows how the different parts of our proposed system build on each other.

In a first step You Only Look Once (YOLO) trains on a synthetic dataset based on

the known 3D objects. After training is finished, the video tutorial is fed to YOLO as

input. The results of this detection are then used in the initialization step of PWP3D.

Again, the video tutorial is fed as input, but this time to PWP3D, resulting in pose

estimations for each frame of the video for the known 3D object. Together with the

explosion graph of the 3D object, all previously created information is processed by a

Unity3D [42] application resulting in an XML based construction manual. Note that

the resulting construction manual can then be used as a basis to create different types

of tutorials as the manual contains a (dis)assembly sequence of the known 3D object

matching the recorded (dis)assembly sequence of this object.

3.1 Terminology

Following are explanations for terms, that will be used in later sections of this chapter.

Assembly. The goal of this XML based construction manual is to be able to build

tutorials for a specific known 3D object. When we talk about an assembly, we will be

referring to this known 3D object. As such sub-parts of this known 3D object, we refer to

as sub-assembly.

Assembly Video. The corresponding video tutorial depicting a (dis)assembly of the

assembly. Note that our use-case assumes that an expert is recorded (dis)assembling the

object resulting in high-quality content as we already mentioned in Chapter 1.

11
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You Only Look Once PWP3D

Unity 3D

XML based Construction Manual

Explosion Graph

Figure 3.1: Following is an overview of the system, this Figure illustrating its workflow. The
results of processing 2D information with You Only Look Once (YOLO), together with the 3D
object, are used in PWP3D to calculate 6 DoF poses. An Unity3D uses the explosion graph
corresponding to this 3D object and these 6 DoF poses as basis to build a XML based construction
manual.

Constraints Assembly Graph. In Section 2.3.1 we have described explosion graphs.

In the context of this thesis, it is more fitting to refer to this explosion graph as constraints

assembly graph. Based on the constraint assembly graph one can build a graph which

depicts all possible (dis)assembly sequences of an assembly.

Author Assembly Graph. The author assembly graph refers to a specific traversal

through this graph which depicts all possible (dis)assembly sequences – see Figure 3.2.

This traversal corresponds to the (dis)assembly sequence depicted in the assembly video.

(a) All Possible (Dis)assembly Se-
quences

(b) Author Assembly Graph

Figure 3.2: Based on a constraint assembly graph, one can build a graph which encodes all
possible (dis)assembly sequences. The author assembly graph in 3.2b describes a specific traversal
through this graph in 3.2a which encodes all possible (dis)assembly sequences.
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3.2 Requirements

There are two requirements for the system we propose. We need a 3D representation of the

object we want to create an XML construction manual for and we need a video tutorial.

Following are some details.

Assembly. The 3D representation has to match the actual object as much as possible.

That means the assembly needs a mesh that at least has the same proportions as the actual

object. Textures are also required as parts of the system rely on color information.

Assembly Video. Note that YOLO and PWP3D operate on pixels and rely on

color information. Therefore, the lighting in the assembly video should not be over- or

underexposed. The camera has to be static. Hence it should be in a position where every

sub-assembly is clearly visible, and the distance to the assembly is not too far off. The

type of camera itself does not matter as much as long as it can record a high enough

quality video, which most smartphones nowadays are capable of. Note that the intrinsic

camera parameters have to be known or calibrated as shown by Heikkilä and Silvén [13]

and Pollefeys et al. [27], because PWP3D requires them for tracking.

3.3 2D Tracking

The entry point of our proposed system is You Only Look Once (YOLO), a Windows ver-

sion [3]. In this section, we outline the necessary steps for our system to be able to

2D track assemblies – specifically every sub-assembly of an assembly. Note that PWP3D

needs an initial frame for 2D-3D pose estimation. After training YOLO and validating the

resulting weights, the best weight is chosen. Using the best weight, we feed the assembly

video to YOLO resulting in a (class name, prediction rate, predicted bounding

box) triple for each detected object class for each frame of the assembly video. Note that

multiple detections for the same object class are possible during the same frame. After

filtering this information, we algorithmically pick one frame for each sub-assembly where

the sub-assembly is not occluded. Hence we get the required initial frames for 2D-3D pose

estimation with PWP3D.

3.3.1 Parameters and Configuration

We only made minor adjustments to the existing YOLO configuration file yolo.cfg. For

one we raised width and height from 416 to 608. Note that by design width and height

should be set to the same value, while the actual value must be a multiple of 32. The

advantage of a higher input image resolution on the one hand is the improved quality

of the individual class features YOLO trains. The drawback of a higher input image

resolution on the other hand is the higher GPU memory usage. If you not yet use your

GPU memory to the full or simply can replace your graphics card with one that has more

built-in memory, there is no drawback at all. For every other case, the GPU memory that
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YOLO requires during one training iteration can be adjusted by compensating higher

input image resolution with higher values of subdivision in the YOLO configuration.

sub-batches =
batch

subdivision

Together with batch, subdivision determines how many images are processed at a time

during one training iteration of YOLO . Higher values of subdivision result in higher

values of sub-batches, which reduces the strain on the GPU memory as less images are

loaded and processed at a time. Note though that the more sub-batches there are, the

longer one iteration takes to complete. In general, you want to configure YOLO s.t. you

utilize your GPU memory to the full to improve the quality of the individual class features

YOLO trains.

So far we have discussed entries of the configuration file that trade quality of trained

features for GPU memory usage. Following we detail entries of the configuration file that

are specific to the dataset that is used for training. The values for the entries classes

and filters are calculated as follows [3]:

classes = {# of classes}
filters = (classes + 5) ∗ 3

Note that both classes and filters depend on the number of object classes contained

in the dataset.

Another entry that is specific to the dataset used for training is the anchors entry.

The anchors represent initial sizes for the bounding boxes YOLO predicts. As stated

by Redmon and Farhadi [33, chapter Bounding Box Prediction, pp 1] the most likely

width and height ratios in the dataset are used as anchors. See Listing 3.1 for the

command which invokes the built-in calculation of the anchors for YOLO .

For a more concrete overview of the original yolo.cfg see Listing B.1. Also note

Listing B.2 for a more concrete overview of our adjusted configuration of YOLO .

darknet . exe de t e c t o r c a l c a n c h o r s {path }/{dataSetName } . data

−n u m o f c l u s t e r s 9 −width {width} −he ight { he ight }

Listing 3.1: YOLO Command To Calculate Anchors

3.3.2 Creating a Synthetic Dataset

In Section 2.1.1 we outlined how synthetic datasets can be created by using renderings of

3D models. Keeping in mind our goal of creating a fully automatic system, we propose

training YOLO on a synthetic dataset as prior research by Jensen and Selvik [15]. For

this purpose, we created a Unity3D application which takes as input all sub-assemblies

which we want YOLO to be able to detect.
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3.3.2.1 Scene Setup

Figure 3.3 shows the general scene setup. There are seven cameras, starting at the top over

to the side of the object, plus eight spotlights, placed at the corners of the sub-assembly.

Note Figure 3.3b where for each camera also its field of view is indicated.

Using Unity3D to create renderings for our synthetic dataset is a trade-off of runtime

and quality of renderings. Since Unity3D is a real-time engine, we can produce synthetic

datasets very fast, but do not have the quality of renderings that would be possible with,

e.g., Blender. We made this choice to have faster iteration cycles. That being said, the

quality of the renderings of Unity3D is quite good as they can be improved by applying,

e.g., post-processing effects like Antialiasing, Ambient Occlusion and others.

(a) Scene Setup Perspective View (b) Scene Setup Orthogonal View

Figure 3.3: The scene setup we use for creating synthetic datasets showing a generic cube. 3.3a
shows a perspective, while 3.3b an orthogonal view of the same scene. We use each of these
cameras for sampling images when creating a synthetic dataset. Note that the camera array is
rotated during this process s.t. the object is sampled from different perspectives.
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3.3.2.2 Workflow

Initially, all sub-assemblies are imported into the application. Then for each sub-assembly,

the camera array rotates around it and at each step every camera takes one screenshot.

Additionally, the intensity of all spotlights, the camera positions along forward and the

background is randomized – see Algorithm 1 for a more precise overview.

Algorithm 1: Creating a Synthetic Dataset for YOLO

Result: Synthetic Dataset
foreach SubAssembly do

foreach Rotation of numberOfFullRotations do
foreach Step of b360◦/stepSizec do

foreach Camera c do
RandomizeCameraAlongForward();
RandomizeSpotLightIntensities();
PickRandomBackground();
CalculateObjectBounds();
TakeScreenshot();
Rotate(c, stepSize);

SaveDataset();

Parameters mentioned in Algorithm 1 like stepSize, numberOfFullRotations and

BackgroundImages, as well as other parameters like width and height can be adjusted to

fit the current setup. Note how width and height of the images in the resulting synthetic

dataset should be of the same ratio as the ratio of the assembly video. That is because each

frame of the video is fed as input to YOLO , which downsamples the images during training

and testing according to what is set in the yolo.cfg. In the end it is recommended that

for each object class there are at least 2000 images in the dataset.

The basic structure of every YOLO dataset is the same. Following is a definition of

this folder-based structure. Note that {datasetName} is replaced by the actual name of

the dataset.

• backup/. YOLO is setup to save its weights every 100 iterations in this directory.

• Images/. This directory holds all images contained in the dataset. Note that all

labels are saved near their related image.

• {datasetName}.data. A plaintext file describing the buildup of the dataset. It

defines the number of classes and the paths to backup, train.txt, valid.txt and

the names file.

• {datasetName}.names. One line in this file corresponds to one class’ name in the

dataset.
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• traint.txt. Each line in this file contains the path to one image that will be used

for training.

• valid.txt. Similar to train.txt, each line in valid.txt contains the path to one

image that will be used for validation.

• yolo.cfg. The YOLO configuration file, which we detailed in Section 3.3.1.

The scene setup shown in Figure 3.3 and the randomizations presented in Algorithm 1

guarantee that each object is captured in different scales, different rotations under different

lighting conditions and different backgrounds. This ensures robust object tracking by

YOLO .

A more detailed explanation of the CalculateObjectBounds method in Algorithm 1

is shown in Algorithm 2. The vertices of the 3D object are first transformed to 2D camera

screen space coordinates. Then, based on the minimum and maximum 2D coordinates, the

camera specific 2D bounds of the 3D object are calculated. Listing 3.2 shows how YOLO

labels its images and see Listing 3.3 for an example. Given the resulting 2D bounds of

CalculateObjectBounds, we only have to calculate its center to be able to label an image

such that YOLO understands it. There exists one YOLO labeling file per annotated

image. Multiple annotations per image are represented by one labeling entry per object.

Algorithm 2: Calculating 2D Bounds

Input: A camera looking at a 3D object and the vertices of the same 3D object
Result: Camera specific 2D bounds of the given 3D object
vertices2D = VerticesTo2dSpace(camera, vertices3D);
min2D = Min(vertices2D);
max2D = Max(vertices2D);
size.x = max2D.x - min2D.y;
size.y = max2D.y - min2D.y;
bounds.upperLeft = min2D;
bounds.size = size;

{ c l a s s . ID} { cente r . x} { cente r . y} { s i z e . x} { s i z e . y}

Listing 3.2: YOLO Labeling Format

0 0.507894 0.4906442 0.1222284 0.4406239

Listing 3.3: YOLO Labeling Format Example

After setting up the parameters and creating the dataset, YOLO can start training

on the synthetic dataset and afterward validating the resulting weights. Note that the

Unity3D application randomly picks 20% of all the images as the validation set.
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3.3.3 Training and Validating

Assuming that a synthetic dataset was created based on the given assembly, the next step

is the training with YOLO . As previously mentioned in Section 3.3.2, every 100 iterations

YOLO creates one weight file as backup. Validation aims to pick the best weight of these

weights for detection.

During the training of a CNN , at some point the question of when to stop training

arises. For this purpose, one can either define a convergence criterion based on the aver-

age error of each iteration or define a maximum number of training iterations. For our

purposes, we chose the latter and set

maximum iterations = {# of classes} ∗ 2000

as indicated by AlexeyAB [3].

After training finishes, we validate every weight resulting in a (mAP , IoU ) tuple for

each weight. We opt to chose the best weight for detection based on a good (mAP , IoU )

tuple. The mAP and IoU are defined based on the following definitions stated by Ever-

ingham et al. [10][3, 24].

• True Positive (TP). A correct detection. Detection with IoU ≥ threshold.

• False Positive (FP). A wrong detection. Detection with IoU < threshold.

• False Negative (FN). Ground truth was not detected.

• True Negative (TN). This equals the case of all possible bounding boxes being

correctly not detected. It represents a correct misdetection, which does not apply

for the following metrics.

The threshold in YOLO is set to 0.24 per default.

Mean Average Precision (mAP). As stated by Everingham et al. [10, chapter

Evaluation of Results, pp 11], the average precision is a measure for the area under the

precision/recall curve and is defined as the mean precision of eleven equally spaced recall

levels [0, 0.1, . . . , 1]:

Precision =
TP

TP + FP
=

TP

all detections

Recall =
TP

TP + FN
=

TP

all ground truths

AP =
1

11

∑
r∈{0,0.1,...,1}

pinterp(r)
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with

pinterp(r) = max
r̃≥r

p(r̃)

where p(r̃) is the measured precision at recall r̃. Following the mean average precision is

the average of maximum precision at these 11 recall levels [14, 24].

Intersection-over-Union (IoU ). The Intersection-over-Union measures how good

a prediction actually is. Looking at the illustration below, which shows the relation of a

predicted bounding box in red and a ground truth bounding box in green and their area of

overlap [24]. The IoU , combined with a predefined threshold, determines if a detection

is correct or wrong, see the definition of TP and FP above.

IoU =
area of overlap

area of union
=

We chose to prioritize mAP over IoU , meaning we pick the weight with the best overall

mAP . In case there are two weights with the same mAP we pick the one with the higher

IoU .

3.3.4 Interface to PWP3D

After having chosen the best weight for detection, YOLO is used over the assembly video

resulting in a prediction for every frame of the video. Note that a prediction of one frame

possibly consists of multiple detections of the same or different object classes. We made

slight changes to the output format of YOLO such that it is easier to process its results.

Processing all these predictions over the assembly video, our goal is to filter one good

frame for each object class which we then can use to initialize PWP3D.

The basic idea of Algorithm 3 is to look for consecutive predictions over

framesRangeThreshold frames. Note that lookupRange usually is set to a value way

lower than framesRangeThreshold, in case the predictions of YOLO fall under the

predictionThreshold for a few frames during a good detection streak. We aim to filter

detection streaks for each object class and save the frame with the highest prediction

value of such a streak. Finally, each class has a list with its highest prediction values,

and we pick the frame of the entry with the highest prediction value in each list to be

used as an initial frame in PWP3D.

Another way of looking at our filtering process is to reason in terms of occlusions why

an object was detected over consecutive frames. An object is detected with low probability

or not at all if it diverges too heavily from what YOLO was trained to detect based on
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the given dataset. Since we did not train YOLO to detect partially occluded objects, we

reason that our method of filtering detection streaks only filters such consecutive frames

where the detected object is likely not occluded at all.

Having gone through the whole process of setting up YOLO , building a synthetic

dataset, training this dataset, validating the results of the training, using YOLO to detect

objects over the assembly video and finally filtering its results, we now obtain one specific

frame of the assembly video for each sub-assembly we are interested in tracking its 6 DoF

pose. The chosen frames are very likely to depict an unoccluded sub-assembly which is

ideal for initializing PWP3D.

Algorithm 3: Filtering Good Frame for PWP3D Initialization

Input: Predictions for each frame of the assembly video; predictionThreshold;
lookupRange; framesRangeThreshold

Result: One good frame for each object class
foreach class of ObjectClasses do

predictions = allPredictionsOver(class, predictionThreshold);
// picking the best prediction, if there are multiple detections

of the same class in one frame

uniquePredictions = uniquifyClasses(predictions);
foreach uniquePrediction of uniquePredictions do

frame1 = GetFrameAtOffsetStartingAt(uniquePrediction, -lookupRange);
frame2 = GetFrameAtOffsetStartingAt(uniquePrediction, lookupRange);
framesRange = abs(frame1 - frame2);
if framesRange ≤ framesRangeThreshold then

bestPredictions(class).Append(PickBestPredictionInRange());

GetBestPredictions(bestPredictions);

3.4 2D-3D Pose-Tracking over Assembly Video

In the previous Section 3.3 we described how we chose the initial frames for each sub-

assembly required for 2D-3D pose tracking. The next step in the pipeline of our proposed

system is the 2D-3D pose tracking over the assembly video with PWP3D. First we outline

the steps necessary to initialize PWP3D, then we aim to estimate a pose for every frame

of the assembly video for each sub-assembly one at a time.

3.4.1 Intrinsic Camera Parameters

Part of the requirements of PWP3D is that the intrinsic camera parameters of the device

used to capture the video that is fed into PWP3D have to be known. One of the most

common ways to calibrate a camera is to use OpenCV [5]. Since OpenCV is compiled for
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multiple platforms, there exist camera calibration applications for every current platform,

if you just look for them on, e.g., app stores or GitHub.

Usually some type of checkerboard is printed on paper, and, e.g., OpenCV extracts the

intrinsic camera parameters of the device by correlating features of this checkerboard in

snapshots made from different angles. The calibration extracts intrinsic camera parameters

like focal length (fx, fy) and optical center (cx, cy). Those parameters can be summarized

in the 3x3 matrix

camera matrix =

fx 0 cx
0 fy cy
0 0 0


which can be used to remove distortion from every image captured by the calibrated

camera [27].

Additionally to the focal length and optical center the camera calibration files of

PWP3D also contain the resolution that was used during calibration. See Listing 3.4

for such a PWP3D camera calibration and Listing 3.5 for an example with actual values.

Note that once a camera is calibrated for some resolution, it can be transformed into a

calibration of any other resolution.

Pe r s eu s Ca lF i l e

{width} { he ight }
{fx} {fy}
{cx} {cy}

Listing 3.4: PWP3D Camera Calibration

File

Per s eu s Ca lF i l e

640 360

530.019 530.019

319 .5 179 .5

Listing 3.5: PWP3D Camera Calibration

File Example

For example, we opted for an Android smartphone to record our sample assembly

videos. Hence we used an Android application to calibrate the camera [34].

3.4.2 Initializing PWP3D

For 2D-3D pose estimation, an initial frame and an initial 6 DoF pose for the sub-assembly

in this initial frame is required, as further described in Section 2.2. Additionally to this

initial frame and initial 6 DoF pose, PWP3D also requires an initial mask. Following we

describe how we manually set these 6 DoF poses and automatically create these initial

masks.

3.4.2.1 Setting an Initial Pose

At this point we are not able to automatize this process, so we manually set the initial

6 DoF pose required for 2D-3D pose tracking with PWP3D. Note that PWP3D has

its own rendering implementation, at each iteration of 2D-3D pose tracking returning

visualizations relevant to this process. Among others, this includes a visualization of the
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current frame with the wireframe of the tracked sub-assembly in its current pose rendered

on top. We use this specific visualization when manually setting an initial pose.

Before starting 2D-3D pose tracking, we run a pre-processing step in which no new

frames are fed to PWP3D, and the optimization used for 2D-3D pose tracking is disabled.

Basically, we run PWP3D for its visualizations only. Iteratively we look at the wireframe

visualization of the current pose of the sub-assembly and adjust its position and rotation

until it fits the 2D representation of the same object in the current frame.

See Figure 3.4 for this wireframe visualization of PWP3D showing a visualization when

first running this pre-processing step on the initial frame and the manually set final-initial-

pose of the sub-assembly in this initial frame.

(a) Step 1: Initial Pose (b) Step 2: Final Initial Pose

Figure 3.4: We run PWP3D in visualization mode only, the optimization related to 2D-3D pose
tracking disabled, not feeding any new frames to the PWP3D. Iteratively we manually adjust the
position and rotation of this 3D object whose wireframe is rendered on top of the initial frame. In
the end this wireframe fits the 2D representation of the same object in the initial frame as shown
in Figure 3.4b, giving us the initial 6 DoF pose PWP3D requires for 2D-3D pose tracking.

3.4.2.2 Creating an Initial Mask

The second part of the initialization of PWP3D is the creation of an initial mask. We can

create an initial mask automatically given the initial frame and initial 6 DoF pose of the

3D object we want to 2D-3D pose track.

Similarly to the manual setting of the initial pose, which we described in Section 3.4.2.1,

we use parts of the rendering implementation of PWP3D that returns visualizations during

each iteration of the 2D-3D pose tracking. The specific visualization we use for creating

an initial mask is a depth-image encoding depth-information about the 3D object in its

initial pose.
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We create a new initial mask every time before we start the actual 2D-3D pose tracking

in a pre-processing step. Using this depth image and the following functions provided by

OpenCV, we can create an initial mask:

1. OpenCV.normalize(..., NORM MINMAX)

2. OpenCV.bitwise not(...)

3. OpenCV.threshold(..., THRESH BINARY)

First we normalize the values we get from PWP3D resulting in a depth image as shown

in Figure 3.5a. Applying bitwise not simply inverts the depth image as depicted by

Figure 3.5b. Finally, we use binary thresholding to get a binary image from our grayscale

image. The final result of these operations in the proposed order results in an initial mask

as illustrated in Figure 3.5c. Note that the resulting initial mask corresponds to the initial

6 DoF pose of the 3D object in the initial frame shown in Figure 3.4b.

(a) Step 1: Depth Image (b) Step 2: Inverting Depth Image

(c) Step 3: Thresholding Depth Image

Figure 3.5: By using OpenCV and the initial 6 DoF pose of a 3D object in its initial frame, we
are able to automatize the creation of an initial mask which is required by PWP3D for its 2D-3D
pose tracking of this 3D object. First we normalize the results of the PWP3D depth calculation as
shown in Figure 3.5a. After inverting this image in a second step and applying a binary threshold
afterwards, we get the final initial mask depicted by Figure 3.5c.
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3.4.3 Pose Tracking

After manually setting the initial 6 DoF pose and the automatized creation of a related

initial mask, every requirement for 2D-3D pose tracking with PWP3D is met. Following

is a complete overview of those requirements:

• sub-assembly (3D object)

• initial frame

• initial mask

• initial 6 DoF pose of the sub-assembly in the initial frame

• assembly video

• intrinsic camera parameters of the device the assembly video was captured with

Finally feeding all this information into PWP3D, we then get a 6 DoF pose for each

frame of the assembly video. Note that we 2D-3D track one sub-assembly at a time. Using

the initial frame as a starting point, we move forward and backward through the assembly

video. By further processing of the gathered information, we want to create the author

assembly graph in the next step.

3.5 Building the Author Assembly Graph

In previous sections, we explained the flow of information through different software frame-

works and the resulting outcomes. This following section will go into more detail on how

the results of the 2D-3D pose estimation with PWP3D and a given constraint assembly

graph are used to build an author assembly graph. Note our definition of a constraint

assembly graph in Section 3.1 and its relation to author assembly graphs depicted in

Figure 3.2. We further pre-define basic patterns which our system uses to detect con-

straining components. That enables the author assembly graph also to feature what we

call tool constraints. Author assembly graph based tutorials are then not only able to

show a (dis)assembly sequence but also correctly indicate where tools have to be applied

at each step.

In the following section, we will only refer to disassemblies and disassembly sequences

for the sake of readability. Note that the algorithms and methods described can also be

applied on assembly sequences; it depends on your point of reference.

Graph structure. For the constraint assembly graph we use a graph structure based

on the Directed Graph Markup Language (DGML) by Microsoft [21] as it is a very flexible

standard. Most notably is that this graph structure only saves Nodes and Links. The

advantage of only saving lists of the elements Node and Link is the flat and more readable

hierarchy in the resulting serialized file. Although a DGML graph is saved in a flat



3.5. Building the Author Assembly Graph 25

hierarchy, through Links the directed structure of the graph itself is encoded. Note

that one such Link contains the two Ids of the two Nodes it connects. The original

DGML standard also features other elements such as Category or Property and additional

attributes like Label, Background, Stroke, etc. which are not needed for our purposes.

For an example of such a DGML graph see Listing B.3.

The application. For the actual application, we use Unity3D to build the author

assembly graph. Using Unity3D allows us to more easily illustrate applications of the

author assembly graph and still have everything essential gathered in one application.

3.5.1 Finding Movement Candidates

The first step in building the author assembly graph is the filtering of the results of the 2D-

3D pose estimation with PWP3D described in Section 3.4. We are interested in knowing

when a sub-assembly starts moving because a moving sub-assembly indicates that this

object is being removed from the assembly right now. We calculate multiple so-called

start-of-movement-candidates for each sub-assembly.

Later we validate the start-of-movement-candidates against the constraint assembly

graph to get the author assembly graph. In the end, we want to build an author assembly

graph which describes the same disassembly sequence as depicted in the assembly video.

Algorithm 4 shows how the start-of-movement-candidates for one sub-assembly are

calculated. By determining when a sub-assembly starts moving, we later get the ac-

tual order of removal by validating against the constraint assembly graph. Note that in

Algorithm 4 we first calculate the distances between the estimated pose positions of every

frame. One way of looking at this list of distances is as a time series and the problem of

determining when a sub-assembly starts moving turns into a problem of finding peaks in

this time series. For this reason, we apply the Z-Score algorithm by van Brakel [43] on this

time series of distances. The results of this Z-Score algorithm are then filtered to get the

start-of-movement-candidates. Note that the Z-Score algorithm returns either {0, 1,−1}
for each entry in the time series. We filter the positive peaks, which indicate a moving

sub-assembly to get the final list of start-of-movement-candidates. We use Algorithm 4 to

calculate the start-of-movement-candidates for each sub-assembly.
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Algorithm 4: Filtering Sub-Assembly Start of Movement Candidates

Input: Pose for each frame of the assembly video for a sub-assembly; Z-Score
parameters: lag, influence, threshold

Result: Start of movement candidates for this sub-assembly
// VideoPose is a tuple (frame, position, rotation)

foreach videoPose of VideoPoses do
distances.Append(

(Previous(videoPose).position - videoPose.position).magnitude);

peaks = ZScore(distances, lag, threshold, influence);
// either 0, 1, -1 is signaled by ZScore; we only care about the

positive signals

candidates = GetPositivePeaks(peaks);

Z-Score algorithm by van Brakel [43]. The algorithm constructs a separate mov-

ing mean and standard derivation and signals a peak if a new datapoint is x number of

standard derivations off the current mean. Following we detail the input parameters of

the algorithm:

• lag: Defines the number of prior datapoints considered in the calculation of the

moving mean and standard derivation. Essentially, low values of lag allow the

algorithm to more quickly adapt to new trends.

• influence: Determines the influence of peaks on the algorithm’s detection thresh-

old. Setting influence to, e.g., 0 assumes stationarity and the calculation of the

moving mean and standard derivation stays uninfluenced.

• threshold: New datapoints are detected as peaks if they are a threshold number

of standard derivations off the current mean. Generally lower threshold values will

result in more detected peaks, while higher threshold values in less detected peaks.

3.5.2 Validating against the Constraint Assembly Graph

We mentioned that by knowing when a sub-assembly starts moving, we can establish

an order of removal by validating against the constraint assembly graph. Note that the

directed graph structure of the constrained assembly graph is based on the Directed Graph

Markup Language (DGML) as previously described. We further enhance a Node of this

graph by adding the element UnconstrainedDirection. This UnconstrainedDirection

is related to the sub-assembly the Node represents. It is a direction vector indicating in

which direction the sub-assembly can be removed without being blocked or constrained

by any other parts of the assembly. This graph definition is shown in Listing 3.6.
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<ConstraintAssemblyGraph>

<Nodes>

<SubAssemblyNode id =”...”>

<Unconstra inedDirect ion>

<x> . . .</x>

<y> . . .</y>

<z> . . .</ z>

</Unconstra inedDirect ion>

</SubAssemblyNode>

. . .

</Nodes>

<Links>

<Link sourceNodeId = ” . . . ” targetNodeId = ” . . . ” />

. . .

</Links>

</ConstraintAssemblyGraph>

Listing 3.6: Constraint Assembly Graph Definition

Note that in Algorithm 5 we are referring to a candidate as an object with the tuple

(nodeId, start-of-movement-candidates). Algorithm 5 describes the actual valida-

tion against the constraint assembly graph. First, we order all candidates by the frame

of their first start-of-movement-candidate to establish a timeframe. After that, we check

if the first candidate CanBeRemoved. For a candidate/sub-assembly to be removable, it

either has to be a leaf in the constraint assembly graph, or its constraining sub-assemblies

have all been removed previously. We assert this for each node reachable from the cur-

rent candidate/sub-assembly. If the current candidate can be removed, we do so by

adding this candidate to our chronologically ordered list of instructions and removing

all its remaining start-of-movement-candidates. In case a candidate cannot be removed,

we remove the corresponding start-of-movement-candidate and order the candidates with

SortByFirstFrame again to establish a new timeframe. That results in a new candidate

at the top of the list which we then again can try to remove. Algorithm 5 terminates when

we have a start-of-movement-candidate for each sub-assembly in our list of chronologically

ordered instructions, or we run out of start-of-movement-candidates. Previously we men-

tioned that one can build a graph which encodes all possible disassembly sequences based

on the constraint assembly graph. Note that this list of instructions describes a specific

traversal through this graph that encodes all disassembly sequences.
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Algorithm 5: Validating against the Constraint Assembly Graph

Input: The start-of-movement-candidates of each sub-assembly and the constraint
assembly graph.

Result: The author assembly graph.
// a candidate contains a tuple of

(nodeId, start-of-movement-candidates)

// SortByFirstFrame orders the candidates by the first frame of their

containing start-of-movement-candidates

candidates = SortByFirstFrame(candidates);
for i = 0; i < candidates.Length; do

candidate = candidates[i];
if CanBeRemoved(candidate, instructions) then

instructions.Append(candidate);
else

RemoveFirstStartOfMovementCandidate(candidate);
candidates = SortByFirstFrame(candidates);
continue;

i++;

3.5.3 Detecting Constraining Components

By applying Algorithm 5 we calculate the order of removal of the sub-assemblies matching

the sequence depicted in the assembly video as described in the previous section. In this

section, we further enhance the resulting author assembly graph by detecting constraining

components.

Constraining component. We define a constraining component as a specific part of

a sub-assembly. Such a constraining component can only be removed by using a specific

tool.

Tool database. Our system features a fixed set of pre-defined tools. Through pattern

matching, we can identify constraining components and derive the required tool for this

specific component.

Tool constraints definition. Additionally to the tool database we also pre-define

the patterns used for matching. We define one or more patterns for each tool in the tool

database. When detecting such a pre-defined pattern in a sub-assembly, we can infer the

tool of the tool database required for the disassembly. See Table 3.1 for an example of such

a tool constraints definition. The serialized version of the same tool constraints example

is shown in Listing B.4.

In Algorithm 6 we use the patterns of a tool constraints definition to identify if a

sub-assembly contains constraining components. The algorithm searches through the hi-

erarchical structure of a given sub-assembly to assess if any part of the sub-assembly

matches any patterns defined in the given tool constraints definition. At this point, we
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Tool of Tool Database Patterns

Wrench nut

. . .

Screwdriver screw

. . .

. . .

Table 3.1: An example of a tool constraints definition. One tool is mapped to one or more
patterns. We look for constraining components based on the patterns defined in a tool constraints
definition. This allows us to infer a related tool, if a pattern is matched in a sub-assembly. We can
further enhance the author assembly graph with this additional information.

check if any of the series of literals defined as patterns are part of any names of the parts

of a sub-assembly. For example when applying Algorithm 6 with the tool constraints

definition in Table 3.1, we detect a constraining component if any part of a sub-assembly

matches the pattern nut or screw, inferring the tools Wrench or Screwdriver respectively.

Algorithm 6: Matching Tool Constraints

Input: The sub-assembly and a tool constraints definition.
Result: An author assembly graph enhanced by tool constraints.
foreach part of sub-assembly do

foreach constraintDefinition of constraintDefinitions do
foreach pattern of constraintDefinition.Patterns do

if Match(part, pattern) then
instruction.ToolConstraint.Append(constraintDefinition);

Building this relation of constraining components in sub-assemblies and our tool

database via a tool constraints definition we can further enhance the author assembly

graph. Note that by detecting these constraining components we also extract their

position in relation to their sub-assembly. Therefore the author assembly graph also

contains the positions of these constraining components and tutorials based on such an

author assembly graph can correctly indicate which and where a tool is needed for each

instruction.

3.5.4 Final Definition of an Author Assembly Graph

The basic structure of an author assembly graph is defined by the ordered list of instruc-

tions we generate by validating the start-of-movement-candidates against a constraint

assembly graph. Each instruction is describing how its related sub-assembly can be re-

moved from the overall assembly, the order of this list indicating the order of removal of
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these sub-assemblies. We include the unconstrained direction of the related sub-assembly,

obtained from the constraint assembly graph, in an instruction of an author assembly

graph. Note that the unconstrained direction is a direction vector indicating in which

direction a sub-assembly can be removed without being blocked or constrained by any

other parts of the assembly.

Using a tool constraints definition we can relate the tools of our tool database to

constraining components. By detecting constraining components, we infer not only the tool

necessary for further disassembly, but also the positions of these constraining components.

We further enhance each instruction of an author assembly graph by adding information

about constraining components, if any are detected. That allows indicating where tools

have to be applied at each step of a disassembly.

In the end each Instruction encodes an UnconstrainedDirection and a list of

ToolConstraints. In Listing 3.7 we show a generic serialization of the final definition

of an author assembly graph containing Instructions ordered by their order of removal.

<ArrayOfInstruct ion>

<I n s t r u c t i o n id =”...”>

<Unconstra inedDirect ion>

<x/><y/><z/>

</Unconstra inedDirect ion>

<ToolConstra ints>

<ToolConstraint>

<Tool > . . .</ Tool>

<Const ra intPos i t i on>

<x/><y/><z/>

</Const ra in tPos i t i on>

</ToolConstraint>

. . .

</ToolConstra ints>

</In s t ruc t i on>

. . .

</ArrayOfInstruct ion>

Listing 3.7: The final definition of an author assembly graph. While the unconstrained direction

of each instruction is derived from the constraint assembly graph, the tool constraints are inferred

by detecting constraining components. The list of instructions is ordered s.t. the first instruction

in this list describes the first step of the disassembly sequence, the last instruction the final step

of the disassembly sequence.



4
Results

So far we described the motivation of our proposed system and its inputs and workflow.

For an overview of all its frameworks and the interfaces between them see Chapter 3. In

this chapter, we present the results of using the involved frameworks leading up to the

creation of an author assembly graph. We also outline how an author assembly graph can

be used to automatically build tutorials for different types of media, as initially proposed in

Chapter 1. Specifically we describe the creation of a 2D Print Tutorial and an Augmented

Reality Tutorial based on an author assembly graph. While the result of the 2D Print

Tutorial is a PDF, which can be printed, the result of the Augmented Reality Tutorial is

an Android smartphone application.

4.1 Basic Tutorial Elements

We not only wanted to show that tutorials of two different media types can be built by

basing them on the same author assembly graph but also wanted to show that this is

possible while also sharing the same basic tutorial elements. In its essence, both the 2D

Print Tutorial and the Augmented Reality Tutorial use the same basic set of tutorial

elements although one is a static print tutorial and the other a real-time smartphone

application. Following we describe these basic tutorial elements in more detail.

User interface. We designed a generic user interface featuring a textbox and a panel

used to display additional tool related information. See Figure 4.1 for an illustration of this

generic 2D canvas. At each step of an instruction, the textbox is filled with appropriate

text to help accomplish the instruction. Optionally we also display a panel illustrating

the required tool with its accompanying additional information as text to be able to carry

out the instruction.

Tool indicators. In close connection to the optional panel for tool related instruc-

tions, we indicate where tools have to be applied. Specifically, we display a ring as billboard

rendered on top of every other object. In Figure 4.1 an example of such a billboard is

shown. Note that a billboard will always face the main camera, which effectively ensures

31
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that it stays a circle and is not warped into an ellipse through distortion caused by a

different perspective.

Figure 4.1: The generic 2D canvas is featuring a textbox and an optional panel which displays
tool related information if necessary. During each instruction the textbox and panel are set up
to display information, offering guidance to the user. The bottom right corner features a cube
highlighted by a 2D ring as billboard rendered on top of every other object. We use these billboard
rings to indicate constraining components s.t. the user knows where to apply tools following the
displayed instruction.

Glyphs. We use 3D glyphs to indicate directions of removal. The specific direction

of removal is derived from the unconstrained direction of the current instruction. In

Figure 4.2a we illustrate an arrow-style 3D glyph.

Color grading. Regular print tutorials often only use black colors on white paper for

their illustrations. We chose to apply color grading to achieve a similar look and feel as is

the case for regular construction manuals. For an example of color grading see Figure 4.2b.

Toon shading and outline. It is common in tutorials to highlight the relevant parts

of the current instruction. We follow the same principles and highlight the sub-assembly of

the current instruction by applying a toon shader. In Figure 4.2c we show a toon shaded

sphere, comparing it to a regular sphere with diffuse shading. Note the outline at the

edges of the toon-shaded sphere making it more distinct.



4.2. Engine 33

(a) 3D Glyph with
a Cube

(b) Color Grading (c) Toon Shading with Outline

Figure 4.2: While Figure 4.2a shows how we use 3D glyphs to indicate directions of removal,
the same setup is used in Figure 4.2b to illustrate the effects of black and white color grading. In
Figure 4.2c we depict a regular sphere with diffuse shading on the left, and a toon shaded sphere on
the right. Note that we use toon-shading to highlight the sub-assembly of the current instruction.

4.2 Engine

In this section, we detail how we build an author assembly graph for an engine based on

an assembly video depicting the disassembly of this engine in the real world. We also

illustrate how to create both a 2D Print Tutorial and an Augmented Reality Tutorial

based on the same author assembly graph of this engine and the basic elements described

in the previous section. Note that the subsections are named and chronologically ordered

after the parts and the workflow of our proposed system described in Section 3 and its

two applications.

The assembly we use in this example is an engine consisting of the following six sub-

assemblies bing, cylinder, head, lower shell, upper shell and wheel. See Figure 4.3

for the virtual representation and a photograph of the engine. Note that the 3D represen-

tation was created using photogrammetry. While photogrammetry is straightforward to

use, it is prone to create mesh artifacts. Hence it is preferable to use a virtual represen-

tation created with any CAD model software over photogrammetry to not have to deal

with these mesh artifacts or acquire, if possible, the original CAD data of the assembly.

4.2.1 You Only Look Once

In Section 3.3 we described You Only Look Once (YOLO), how we set it up and how to

create a synthetic dataset for training. See Figure 4.4 for the default configuration that

is used when creating a synthetic dataset. We use 2000 randomly selected background

images from the images of the Pascal VOC Challenges [10] of 2007 and 2012. Note that
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(a) Photograph Engine (b) Virtual Engine

Figure 4.3: While Figure 4.3a shows a photograph of the engine in the real world, Figure 4.3b
shows its virtual representation created with photogrammetry. Note that both the photograph
and the screenshot were taken from similar perspectives, making it easier to compare them.

each sampled image will have the resolution 960x540 pixels and the sub-assembly depicted

by the sampled image will be annotated algorithmically. In Section 3.3.2 we described the

scene setup with its six rotating and its one static cameras and the folder-based structure

of a YOLO dataset. With the default configuration shown in Figure 4.4 this results in a

total of
360

45
∗ 60 ∗ rotating cameras + 60 ∗ static cameras = 2940

sampled images per sub-assembly which is sufficiently large for a dataset. Note that 20%

of all the images in the dataset are used for validation. The actual images for validation

are selected at random. When creating such a synthetic dataset, we do so by considering

the folder-based structure of YOLO datasets. Therefore the created synthetic dataset can

be used as is for training with YOLO .

Figure 4.4: The default configuration we use for creating a synthetic dataset. Following this
configuration the sampled images will have a resolution of 960x540 pixels. The 6 rotating cameras
described in the previous chapter will make 60 rotations with a stepsize of 45 degrees resulting in
a total of 2940 sampled images per object class. Note that we randomly select 2000 background
images from a pool of available background images.
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Figure 4.5 shows images from a generated synthetic dataset. There is one example for

each of the sub-assemblies. Note the algorithmically annotated bounding boxes which are

visualized by YOLO Mark [2]. While YOLO Mark usually is used to manually annotate

images, in our case we use the visualized bounding boxes to validate our annotation

algorithm.

The latest synthetic dataset we trained contained six object classes corresponding

to the six sub-assemblies with 2940 images per object class. In total that were 17640

images of which 3528 randomly selected images were selected as the validation set and the

remaining 14112 images as the training set. We trained YOLO with this training set for

12000 iterations, 2000 for each object class.

(a) bing (b) wheel

(c) cylinder (d) head

(e) upper shell (f) lower shell

Figure 4.5: Annotated images taken from a synthetic dataset visualized by YOLO Mark [2].
One example for every object class in the synthetic dataset. Each object class corresponds to a
sub-assembly of the engine. Note that the sub-assemblies were annotated algorithmically during
the generation of the synthetic dataset.
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Iterations mAP IoU

1 11600 98.35 80.24
2 7800 96.87 77.98
3 10600 96.73 76.30
4 5200 96.39 75.38
5 8000 96.11 79.78
6 5400 95.57 73.85
7 11200 95.36 80.93
8 10500 95.32 76.76

Table 4.1: We present this table with the best weights, evaluating the validation of each trained
weight of our latest synthetic dataset. The entries are ordered by mAP and IoU . Note that the
training resulted in a high mAP relatively early looking, e.g., at the 5200th iteration with a mAP
of 96.39%. That is why we conclude that later iterations are likely to be overfit. For a better
overview of the validation and the progress of mAP and IoU through the iterations see Figure 4.6.

Following is a complete overview of the necessary steps that result in detecting an

initial frame for each sub-assembly, required for the initialization of PWP3D:

1. Create the synthetic dataset

2. Calculate the anchors of the synthetic dataset

3. Training

4. Validation

5. Detection on the assembly video with the best weight

6. Filter initial frames

Note that all of the above steps are automatized except for the manual selection of the

best weight for detection on the assembly video.

We have shown samples from and presented the latest synthetic dataset we trained

above and detailed the benefits of anchors in Section 3.3. The results of validating the

training with YOLO of this synthetic dataset are illustrated by the graph in Figure 4.6.

When looking at this graph one can argue that the training could have stopped earlier

since a high mAP is achieved quite early, but we set a maximum number of iterations as

our convergence criteria as described in the previous chapter. That is why we pick the

best weight for detection solely based on the results of validating each weight. Drawing

conclusion from Figure 4.6 and Table 4.1 we chose the weight of the 5200th iteration as

weight for detection on the assembly video, since weights of later iterations are likely

overfit. Note that Table 4.1 shows the best validated weights ordered by mAP and IoU

of this synthetic dataset trained with YOLO .
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Figure 4.6: This graph depicts the results of validating each trained weight. Note that a high
mAP is achieved quite early at around the 5300th iteration indicating that the training could have
stopped at this point, since later iterations do not improve the mAP significantly. This is slightly
different for the IoU which keeps improving steadily right to the last validated weight. Note that
we prioritize mAP over IoU when picking a weight for detection. We also present an ordered view
with the actual values of the validation in Table 4.1.

Feeding the assembly video as input to YOLO results in predictions for each frame.

In Section 3.3.4 we described Algorithm 3 that finds suitable frames for the initialization

of PWP3D. Note that in Algorithm 3 we set

predictionThreshold = 60.00

lookupRange = 8

framesRangeThreshold = 80

per default. In Table 4.2 we show the predictions of YOLO for the 25th frame of the

assembly video. Note that upper shell and lower shell were detected multiple times in

this single frame, while cylinder, wheel and bing were detected only once. Algorithm 3

deals with multiple predictions for the same object class by only considering the prediction
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upper shell lower shell cylinder wheel bing

99.05% 86.92% 92.49% 79.53% 74.58%
39.54% 32.89%
95.63%

Table 4.2: We show an excerpt of the results of the predictions of YOLO over the assembly
video. Specifically, we show the predictions for the 25th frame of assembly video. Note that
upper shell and lower shell were detected multiple times in this single frame, while cylinder,
wheel and bing were detected only once. We evaluate all the predictions of all frames by applying
Algorithm 3. For the original excerpt see Listing B.5.

with the highest mAP . After iterating over every frame and evaluating the gathered data,

one initial frame for each sub-assembly is chosen. The initial frames for the current

synthetic dataset after applying Algorithm 3 on the results of the detection of YOLO over

the assembly video are presented in Figure 4.7.

(a) bing: frame 56 (b) cylinder: frame 85 (c) head: frame 304

(d) lower shell: frame 516 (e) upper shell: frame 22 (f) wheel: frame 292

Figure 4.7: We present the results of evaluating the predictions of YOLO over the assembly
video by applying Algorithm 3. The initial frames shown here are the initial frames for 2D-3D
pose tracking with PWP3D in the next step. There is one initial frame for each of the sub-
assemblies of the engine. The frame number indicates the position of the frame in the assembly
video.

4.2.2 PWP3D

In the previous section, we describe how to use YOLO to acquire initial frames for each

sub-assembly. Using the initial frame as a starting point, we set an initial pose and auto-

matically create a mask for the sub-assembly we want to track throughout the assembly

video. Note that our proposed system for creating author assembly graphs in its current
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state is not able to estimate an initial 6 DoF pose automatically. See Figure 4.8 for the

initial frame, initial mask and initial 6 DoF pose of the wheel sub-assembly. Note the

initial pose visualized by the wireframe of the associated wheel 3D model projected onto

the initial frame in Figure 4.8c.

(a) initial frame (b) initial mask

(c) initial pose

Figure 4.8: The initial frame, initial mask and initial 6 DoF pose required of the wheel sub-
assembly. All sub-assemblies require their own for 2D-3D pose tracking with PWP3D.

See Section 3.4 for a more in-depth explanation of 2D-3D pose tracking with PWP3D.

Using the initial frame as a starting point, we track each sub-assembly forward and back-

ward through the assembly video. That results in a 6 DoF pose for each frame of the

assembly video for the currently tracked sub-assembly. We 2D-3D pose track one sub-

assembly at a time. In Figure 4.9 we visualize the results of 2D-3D pose tracking the bing

and upper shell sub-assemblies. Note that Listing B.6 shows a snippet of the serialized

results of 2D-3D pose tracking the wheel sub-assembly. We use the following format to

describe the position and rotation of the tracked object in the current frame. Following

is a description of the tuple we defined describing the results of 2D-3D pose tracking with

PWP3D.

frame : (position.x,position,position.z, rotation, rotation.y, rotation.z)

We opted to represent a rotation as a three component vector given in degrees. This

allows us to more easily validate results due to the superior readability compared to a

quaternion representation. Note that the implementation of PWP3D we use [28] also
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features a Nvidia R© CUDA R© implementation. Enabling GPU acceleration allows PWP3D

to run in real-time as stated by Prisacariu and Reid [29]. Keeping this in mind we are

able to calculate 6 DoF poses for the whole assembly video very fast, although we process

one sub-assembly at a time.

(a) Result Pose Tracking bing (b) Result Pose Tracking upper shell

Figure 4.9: In Figure 4.9a and Figure 4.9b we visualize the results of 2D-3D pose tracking with
PWP3D. We visualize paths between a starting point and a final position where the corresponding
sub-assembly is placed.

4.2.3 Author Assembly Graph

So far we presented the results of the different parts of our proposed system leading up

to building an author assembly graph for the engine assembly. In this section, we present

the results of the final step, the actual creation of an author assembly graph, by applying

the algorithms described in Section 3.5.

See Table 4.3 for a full definition of the constraint assembly graph for the engine assem-

bly given by a system based adapted from Li et al. [18]. The format of the graph is a variant

of Directed Graph Markup Language (DGML) as mentioned in Section 3.5. In Figure 4.10

a visualization of the same graph is depicted. Note the leaves bing, head and wheel which

are unconstrained by any other sub-assemblies. By removing these leaves along their

unconstrainedDirection other parts become unconstrained and can be removed in turn.

Following the default setting of defined by Li et al. [18], the unconstrainedDirection

of each sub-assembly is given as a vector parallel to the coordinate frame axes of the

assembly.
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Nodes

Id Unconstrained Direction

lower shell (0,0,0)
upper shell (0,1,0)

cylinder (1,0,0)
head (1,0,0)
wheel (0,0,1)
bing (0,1,0)

Links

Source Node Id Target Node Id

lower shell upper shell

lower shell cylinder

lower shell wheel

upper shell bing

upper shell cylinder

upper shell wheel

cylinder head

Table 4.3: The full definition of the constraint assembly graph of the engine. Each node defined
by an Id and its Unconstrained Direction and each Link linking together two nodes by their Id.
Note that the graph structure of constraint assembly graphs is based on DGML and similarly to
this structure we present a table with nodes and a table with links. In Listing B.7 we show the
serialized file of the same constraint assembly of the engine.

Figure 4.10: An illustration of the constraint assembly graph corresponding to the engine as-
sembly. The dependencies between the individual nodes represented as directed edges between
them.

The first step in building the author assembly graph is the filtering of the start-of-

movement-candidates with Algorithm 4. For this reason, we first calculated the distances

of each sub-assembly between the estimated poses of each frame. See Figure 4.11 for a

visualization of the distances for the sub-assemblies bing and cylinder. We first evaluated

the distances for all sub-assemblies to determine the following parameters for the Z-Score

algorithm by van Brakel [43]:

lag = 15

influence = 0.0

threshold = 7.0
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Based on the results of the 2D-3D pose tracking with PWP3D and after applying

Algorithm 4, we get the following start-of-movement-candidates for each sub-assembly.

Note that this list is already ordered by the first start-of-movement-candidate frame.

bing = {[52, 60], 406}
lower shell = {160, 225, 265}

cylinder = {238, 239, [403, 408], 434, 435, 506, 509, 517, 518, 521, [524, 527]}
head = {[399, 402], 467, [518, 598]}

wheel = {446, 574}
upper shell = {[505, 598]}

Next, we validate this list against the engine constraint assembly graph illustrated in

Figure 4.10. In Table 4.4 we show the steps of Algorithm 5, the list above the starting

point for the first iteration. We use the first letter of each sub-assembly to denote them

in this table and the following paragraph. The iteration indicates which sub-assembly is

validated against the constraint assembly graph. We validate by asserting if the current

sub-assembly is unconstrained. If so this sub-assembly can be added as instruction and

iteration is incremented. In case the current sub-assembly is constrained, we remove the

start-of-movement-candidate of this sub-assembly and sort all candidates by their start-

of-movement-candidates again, establishing a new order of sub-assemblies. By ordering,

different sub-assemblies will be validated against the constraint assembly graph, since

iteration is only incremented if a sub-assembly can be added as instruction. Note that in

the table the sorted candidates in the table also contain the current start-of-movement-

candidate for this sub-assembly.

The first sub-assembly in the sorted candidates list is bing, which is a leaf in the con-

straint assembly graph, hence it can be added as instruction and iteration is incremented.

In the next two steps two of the start-of-movement-candidates of the lower shell sub-

assembly are crossed out, since lower shell is the root of the engine constraint assembly

graph and is constrained by every other sub-assembly. After sorting, we obtain the fol-

lowing new sorted candidates {b = 52, c = 238, l = 265, h = 399, w = 446, u = 505}, where

cylinder is now validated against the constraint assembly graph. Since the cylinder is

constrained by head, two start-of-movement-candidates of cylinder are eliminated. The

new order of sorted candidates has the last start-of-movement-candidate of lower shell

as the next sub-assembly to validate the constraint assembly graph against. This last

start-of-movement-candidate is crossed out as well, since lower shell is still constrained.

Again the candidates are sorted, resulting in the order {b = 52, h = 399, c = 403, w =

446, u = 505, l} giving us head as the next sub-assembly for validation against the con-

straint assembly graph. We can add head as instruction, since it is a leaf in the constraint

assembly graph. Subsequently all remaining sub-assemblies are added as instructions,

starting with cylinder, which is not constrained anymore because head has previously
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(a) Distances bing

(b) Distances cylinder

Figure 4.11: In Figure 4.11a and Figure 4.11b we visualize the distances between the estimated
poses of each frame. By applying Algorithm 4 we aim to detect the peaks in these graphs as peaks
indicate a moving sub-assembly.
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Iteration Sorted Candidates Note Instruction List

0 {b = 52, l = 160, c = 238, bing is a leaf, {}
h = 399, w = 446, u = 505} adding it as instruction

1 {b = 52, l = 160, c = 238, lower shell is {b}
h = 399, w = 446, u = 505} constrained

1 {b = 52, l = 225, c = 238, lower shell is {b}
h = 399, w = 446, u = 505} constrained

1 {b = 52, c = 238, l = 265, cylinder is {b}
h = 399, w = 446, u = 505} constrained

1 {b = 52, c = 239, l = 265, cylinder is {b}
h = 399, w = 446, u = 505} constrained

1 {b = 52, l = 265, h = 399, lower shell is {b}
c = 403, w = 446, u = 505} constrained

2-5 {b = 52, h = 399, c = 403, all sub-assemblies are added {b, h, c,
w = 446, u = 505, l} as instruction subsequently w, u, l}

Table 4.4: An overview of the validation of the start-of-movement-candidates against the engine
constraint assembly graph with Algorithm 5. The sub-assemblies are denoted by their first letter,
the Sorted Candidates displaying the current start-of-movement-candidate of this sub-assembly.
The Iteration indicating which sub-assembly is validated against the constraint assembly graph.
Only if validation succeeds the current sub-assembly is added as instruction and Iteration is in-
cremented. In case it does not succeed the current start-of-movement-candidate is eliminated and
we sort the candidates again. By following this, subsequently all sub-assemblies are added as
instructions encoding the disassembly sequence depicted in the assembly video.

been added as instruction, over to wheel, upper shell and lower shell. The order of

removal encoded in the instruction list {b, h, c, w, u, l} corresponds to the disassembly se-

quence depicted in the assembly video. This order of removal is the author assembly graph

we are looking for.

In Section 3.5.3 we outlined how to further enhance the author assembly graph by

detecting constraining components. See Figure 4.12 for the tools that are currently con-

tained in our pre-defined tool database. The related tool constraints definition is shown in

Table 3.1. By applying Algorithm 6 on the engine sub-assemblies, we detect the following

constraining components:

bing = {nut,nut} head = { }
lower shell = { } cylinder = { }

wheel = { } upper shell = {screw, screw}

Based on these results we now are able to encode additional information in the au-

thor assembly graph. Since two nut constraining components in bing and two screw

constraining components in upper shell are detected, we now can enhance each related
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(a) Tool Screwdriver (b) Tool Wrench

Figure 4.12: The tools Screwdriver and Wrench of our pre-defined tool database. We use these
3D representations to indicate the required tool at each instruction.

# Sub-Assembly Unconstrained Tool Required
Direction Vector + Position

1 bing (0, 1, 0) Wrench (3.77, 2.13, 1.39),
Wrench (3.91, 2.13,−0.62)

2 head (1, 0, 0) -
3 cylinder (1, 0, 0) -
4 wheel (0, 0, 1) -
5 upper shell (0, 1, 0) Screwdriver (−9.63, 0.1, 0.13),

Screwdriver (−9.63, 0.1,−2.68)
6 lower shell (0, 0, 0) -

Table 4.5: The author assembly graph of the engine corresponding to our assembly video. Each
row corresponds to one instruction of the author assembly graph. The row entries are sorted by
order of removal of the sub-assemblies. Every instruction not only contains the unconstrained
direction of the related sub-assembly but also information about required tools and the positions
of the corresponding constraining components.

instruction. Specifically, according to our tool constraints definition in Table 3.1, the tool

Wrench is required to remove two constraining components, before one is able to remove

bing along its unconstrained direction and proceed to the next instruction. The same

applies to upper shell where the tool Screwdriver is required.

We conclude the presentation of all these results of our system by showing the author

assembly graph of the engine corresponding to our assembly video in Table 4.5. The sub-

assemblies are sorted by their order of removal. Note the unconstrained direction of each

sub-assembly derived from the related constraint assembly graph and the encoded informa-

tion about required tools and the positions of the corresponding constraining components.

In Listing 4.1 we present a serialization of the same author assembly graph.
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We talked about the motivation of this thesis in Chapter 1 and want to reiterate further

that Listing 4.1 can be used as a basis to create tutorials, as the author assembly graph

encodes step by step descriptions as instructions.

<ArrayOfInstruct ion>

<I n s t r u c t i o n id=”bing”>

<unconst ra inedDirec t ion>

<x>0</x><y>1</y><z>0</z>

</unconst ra inedDirec t ion>

<ToolConstra ints>

<ToolConstraint>

<Tool>Wrench</Tool>

<Const ra intPos i t i on>

<x>3.77127647</x><y>2.12999988</y<z>1.39133453</z>

</Const ra in tPos i t i on>

</ToolConstraint>

<ToolConstraint>

<Tool>Wrench</Tool>

<Const ra intPos i t i on>

<x>3.91409445</x><y>2.12999988</y><z>−0.6169067</z>

</Const ra in tPos i t i on>

</ToolConstraint>

</ToolConstra ints>

</In s t ruc t i on>

<I n s t r u c t i o n id=”head”>

<unconst ra inedDirec t ion>

<x>1</x><y>0</y><z>0</z>

</unconst ra inedDirec t ion>

<ToolConstra ints />

</In s t ruc t i on>

<I n s t r u c t i o n id=”c y l i n d e r”>

<unconst ra inedDirec t ion>

<x>1</x><y>0</y><z>0</z>

</unconst ra inedDirec t ion>

<ToolConstra ints />

</In s t ruc t i on>

<I n s t r u c t i o n id=”wheel”>

<unconst ra inedDirec t ion>

<x>0</x><y>0</y><z>1</z>

</unconst ra inedDirec t ion>
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<ToolConstra ints />

</In s t ruc t i on>

<I n s t r u c t i o n id=”u p p e r s h e l l ”>

<unconst ra inedDirec t ion>

<x>0</x><y>1</y><z>0</z>

</unconst ra inedDirec t ion>

<ToolConstra ints>

<ToolConstraint>

<Tool>Screwdriver </Tool>

<Const ra in tPos i t i on>

<x>−9.625</x><y>0.100000009</y><z>0.125</z>

</Const ra intPos i t i on>

</ToolConstraint>

<ToolConstraint>

<Tool>Screwdriver </Tool>

<Const ra in tPos i t i on>

<x>−9.625</x><y>0.100000009</y><z>−2.6825</z>

</Const ra intPos i t i on>

</ToolConstraint>

</ToolConstra ints>

</In s t ruc t i on>

<I n s t r u c t i o n id=” l o w e r s h e l l ”>

<unconst ra inedDirec t ion>

<x>0</x><y>0</y><z>0</z>

</unconst ra inedDirec t ion>

<ToolConstra ints />

</In s t ruc t i on>

</ArrayOfInstruct ion>

Listing 4.1: The serialized author assembly graph of the engine corresponding to our assembly

video. The encoded instructions are sorted by their order of removal. Each instruction also encodes

the unconstrained direction of the related sub-assembly and information about required tools and

the positions of the corresponding constraining components
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4.2.4 2D Print Tutorial

In the previous section we detailed the author assembly graph of our engine assembly – for

a representation see Table 4.5, for a serialization see Listing 4.1 – and how it was build.

This section presents the first example application which makes use of such an author

assembly graph to create a tutorial. Specifically, we present an application which uses the

basic tutorial elements described in Section 4.1 to build a 2D Print Tutorial based on the

author assembly graph of our engine assembly. Note that this example application can

automatically build a 2D Print Tutorial given an author assembly graph based on any

assembly.

For the 2D Print Tutorial, we created a setup with three cameras that differentiate

themselves through the layers they render.

• Main Camera. Renders everything, which also includes all the elements of the

user interface. This camera also applies the black-and-white color grading.

• Instruction Camera. This camera is used to render all the highlighted objects.

That is the case for the relevant sub-assembly of the current instruction and its

related glyph.

• Tool Indicator Camera. We use this camera to render the billboard tool indicators

on top of everything else.

We build the 2D Print Tutorial by iterating through every instruction of the author as-

sembly graph. During each instruction, we set up the correct position and direction of the

glyph, place tool indicators if required, outline the current sub-assembly and finally set the

correct layers s.t. each camera renders the right objects. There are five steps necessary to

get to the lower shell object, each described by one instruction. See Figure 4.13 which

illustrates these instructions and the final 2D Print Tutorial for the engine assembly. We

also create a PDF version of this 2D Print Tutorial where each page features one of the

images shown in Figure 4.13.

4.2.5 Augmented Reality Tutorial

The second example application we present is an Augmented Reality Tutorial running

on Android smartphones. The basic tutorial elements are the same we described in Sec-

tion 4.1. Similar to the 2D Print Tutorial, we base this Augmented Reality Tutorial on

the same author assembly graph of the engine assembly. We present this author assembly

graph in Table 4.5 and a serialization in Listing 4.1. Note that this second example appli-

cation can create an Augmented Reality Tutorial given an author assembly graph based

on any assembly.

We use Vuforia
TM

Model Targets [44] as the underlying framework to integrate aug-

mented reality capabilities into our application. Note that Vuforia
TM

is built into Unity3D

making it comfortable to use. When working with Vuforia
TM

Model Targets, it is necessary
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(a) Step 1 (b) Step 2

(c) Step 3 (d) Step 4

(e) Step 5 (f) Step 6

Figure 4.13: The instructions of the 2D Print Tutorial based on the author assembly graph of
the engine assembly. The actual print version features each step on its own page.
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to define views of the target 3D object in an external application provided by Vuforia
TM

in a pre-processing step. Those views are defined as specific snapshots of the target 3D

object from one or more different perspectives by the user. For every view Vuforia
TM

detects features and saves this feature information into a database, which can be exported

from this external application and imported into a Unity3D project. Now when setting up

the actual augmented reality application and running it, the real object is detected when

viewing it from a perspective similar to a pre-processed view. Note that this additional

pre-processing cannot be automatized. Hence, when using another author assembly graph

based on a different assembly, a new Model Target database has to be created s.t. this

new assembly can be tracked by Vuforia
TM

in our example application.

In contrast to the setup of the 2D Print Tutorial, we only use one camera, which is for

augmented reality purposes. The user interface, glyphs, and tool indicators are rendered

on top of the incoming video stream after registering the Model Target. After building

and installing the application on a smartphone, we have the following workflow.

When first starting the Augmented Reality Tutorial app on a smartphone, the

Model Target has to be registered. That is done by aligning the outline of the

pre-processed view with the real object in the camera stream. After this alignment

and the subsequent registration of the real object, the user taps the Start button to

start displaying augmented instructions. Note that these instructions are based on the

author assembly graph of the engine assembly. Now for every instruction we display,

we set up the correct position and direction of the glyph and place tool indicators if

required. Figure 4.14 shows a filmstrip of a screen capture of a smartphone running this

Augmented Reality Tutorial app. After applying tools if necessary and then removing

a sub-assembly, a tap on the screen displays the next instruction. This way we iterate

through every instruction of the author assembly graph of the engine assembly, finally

getting to the lower shell sub-assembly after five steps.
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Figure 4.14: This filmstrip shows a screen capture of a smartphone running the Augmented
Reality Tutorial. Before starting the actual tutorial, first the pre-processed Vuforia

TM

view has to
be aligned with the real object s.t. it is registered. Note that this Vuforia

TM

view is visualized
by white edges based on the virtual 3D object. After registration the user taps the Start button
to launch the actual tutorial to start displaying augmented instructions. Subsequently for each
instruction we setup the correct position and direction of the glyph and place tool indicators if
required. The next instruction is displayed as soon as the user taps the screen. Iterating through
every instruction of the author assembly graph of the engine assembly, we reach the lower shell

after five steps.
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Evaluation

We started with an idea of a system that creates XML based construction manuals and

detailed its specifics in Chapter 3. In Chapter 4 we showed how we practically built such

an XML based construction manual and illustrated how the same XML based construction

manual can be used to target different media types of tutorials. In the following chapter,

we further evaluate specific parts of this system and discuss possible limitations. For an

overview of the used terminology see Section 3.1.

5.1 Quality of Input

The system we propose requires two inputs to be able to create an author assembly

graph. Namely, that is a 3D representation of the real object and a video depicting

the (dis)assembly of this object by an expert.

We argue that the quality of these inputs can have a significant impact on the quality of

the 2D object detection with You Only Look Once (YOLO) and the 2D-3D pose estimation

with PWP3D. Hence following is an overview of our key findings regarding the impact on

tracking and pose estimation with these frameworks based on our experience using them.

Light and exposure. Note that both YOLO and PWP3D operate on the pixels

of images. Therefore it is crucial that the captured assembly video is neither over- nor

underexposed. In our experiments, both frameworks did not produce as good results

when processing assembly videos with too much or too little lighting. We argue that this

is in line for systems that operate on pixels and rely on color information for 2D object

detection and 2D-3D pose estimation.

Specular reflections. We discussed over- and underexposure and want to take special

note of specular reflections that can occur on the assembly when capturing an assembly

video. Specular reflections occur when an object reflects rays of light. The intensity of

these reflections depends on the intensity of the incoming light and the complexion of the

surface this incoming light hits. Be aware of these specular reflections when capturing

53
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an assembly video as this effect has an impact on the quality of the 2D object detection

and 2D-3D pose estimation of the assembly for the same reason as light and exposure in

general.

Matching virtual representation of the real object. In Section 4.2 we men-

tioned that the engine assembly we presented was created with photogrammetry. The

resulting mesh artifacts impact the quality of the synthetic dataset we use for training

YOLO . Therefore it is preferable to use the original CAD data, if available, or create a

virtual representation of a real object from the ground up with a 3D modeling software.

See Figure 5.1 for images that were sampled by our application, which we detailed in Sec-

tion 3.3.2, that creates such synthetic datasets. In the following section, we further argue

the impact of mesh artifacts on 2D object detection with YOLO .

(a) Synthetic Dataset Sample 1 (b) Synthetic Dataset Sample 2

(c) Photogrammetry Mesh Artifacts (d) Photogrammetry Mesh Artifacts Repaired

Figure 5.1: The 3D objects were build using photogrammetry, which is prone to create mesh
artifacts. In Figure 5.1a and Figure 5.1b we show sampled images from our synthetic dataset with
respect to mesh artifacts. The same 3D objects are shown in Figure 5.1c and Figure 5.1d where
it is easier to distinguish these mesh artifacts. In Figure 5.1d some of these artifacts were covered
up by filling holes.
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5.2 Detection and Tracking Quality

We described the quality standard for the inputs to our system in the previous section.

This section focuses on the impact of subpar input on You Only Look Once (YOLO)

and PWP3D. Both frameworks rely on different characteristics concerning their input for

satisfactory results.

Robust 2D object detection through training dataset. The previous section

described the mesh artifacts of our engine assembly. Although using 3D objects with mesh

artifacts to create synthetic training datasets was not optimal, our method of filtering with

Algorithm 3 still proved to be successful in finding good frames for initializing each sub-

assembly for PWP3D. It also should be noted that the other 3D representations of the

sub-assemblies contain negligible mesh artifacts in contrast to the two 3D sub-assemblies

illustrated in Figure 5.1. Following is an overview of all the detections per object class

over all the 600 frames of our assembly video, corresponding to the results we presented

in Section 4.2.1. Note the possibility of multiple detections of the same object during one

frame.

bing = 131

head = 18

cylinder = 213

wheel = 357

lower shell = 1592

upper shell = 1897

It is very likely that the high number of detections of the objects upper shell and

lower shell are caused by the mesh artifacts of these 3D objects resulting in YOLO

training rather generic features for these two object classes. Note the order of removal

for this disassembly sequence depicted by the assembly video: bing, head, cylinder,

wheel, upper shell and lower shell. This aligns with the number of detections for the

objects bing, cylinder and wheel. The earlier an object is removed, moved outside the

frame of the video, the lower the number of its detections. Unfortunately head did not

result in many detections. We reason that this is due to the similarity between head and

cylinder, which is illustrated by Figure 5.2, leading YOLO to mistake one object for the

other. Nonetheless Algorithm 3 successfully found two satisfactory initial frames for both

sub-assemblies.

Relation between synthetic dataset and assembly video. It is essential to note

the relation between the images of a synthetic dataset and the assembly video. YOLO

scales every input image to the resolution defined by its configuration. For YOLO to yield

satisfactory results, the aspect ratio of the input video has to be equal to the aspect ratio

of the input images YOLO uses for training. Although per default we set the input images
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(a) Sub-Assembly Head (b) Sub-Assembly Cylinder

Figure 5.2: The sub-assemblies head and cylinder share a similar structure. We argue that this
can lead YOLO to mistake one object for the other.

to a different width and height as the assembly video, both have the same aspect ratio.

That is in line with the architecture of YOLO and the findings of [15, chapter Discussion,

pp 48].

Robust 2D-3D pose estimation. In Section 2.2.1 we outlined the robustness of

PWP3D to its initialization as it can recover from initial misalignments. [29] also argue

that PWP3D is robust to motion blur, noise, occlusion and approximated models. The

last collaborates with our engine assembly, which is an approximated model as it contains

mesh artifacts due to photogrammetry. Our experiments confirm this by resulting in

accurate pose estimations over the frames of the assembly video for each sub-assembly.

5.3 Complexity of Constraint Assembly Graphs

The order of removal encoded by an author assembly graph is calculated by validating

start-of-movement-candidates against a related constraint assembly graph. We outlined

our methodology of this validation as part of Section 3.5 and designed Algorithm 5 for

this purpose. Note though that the validation against a constraint assembly graph relies

on Algorithm 4 to find suitable start-of-movement-candidates.

On the one hand we argue that the default values of Algorithm 4 presented in Sec-

tion 4.2.3 can be used for any assembly, while still producing suitable start-of-movement-

candidates. On the other hand, it is likely that further research on Algorithm 5 is neces-

sary to extend its capabilities to consider the bigger picture of a more complex constraint

assembly graph. In Section 6.1 we further address this in more detail.

Despite this Algorithm 5 performed well for our task of calculating the order of removal

for the engine assembly as the primary goal of this thesis is to show the feasibility of
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building an author assembly graph solely based on a 3D object and a video as input to

our proposed system.

5.4 Showcasing the Tool Database

In addition to the order of removal of the sub-assemblies, author assembly graphs produced

by our proposed system also encode information about constraining components. We

first discussed constraining components, tool databases and tool constraint definitions in

Section 3.5.3 and presented practical results in Section 4.2.3.

While the extent of this part of our system is minor compared to others, it has sig-

nificant impact on the outcome. Especially when looking at the example applications, we

presented in Chapter 4, it is beneficial being able to indicate constraining components to

a user. The calculation of the position of these constraining components is straightfor-

ward as we use the position of each constraining component in each sub-assembly to place

the tool indicators illustrated in the example applications. The actual challenge is the

detection of such constraining components.

That is why we believe that further research in this field to have great impact on other

3D tutorial related systems or future versions of our proposed system. We further discuss

possible scenarios in Section 6.1.

5.5 Requirements when building upon an Author Assembly

Graph

We have described in great detail how we arrive at an author assembly graph in previous

chapters. In this section, we discuss the modularity of our approach and requirements

when building a tutorial based on an author assembly graph.

Assembly. So far we have been detailing the author assembly graph. Note though

that when building an illustrative tutorial, also the related 3D assembly to this author

assembly graph is required.

Software framework. The example applications we presented in Chapter 4 were

created using Unity3D. Note that also any other similar software can be used to build

a tutorial based on an author assembly graph. From this software, it is only required

that it can read in the author assembly graph and handle 3D objects, namely the related

assembly.

Relation between instruction and sub-assembly. One part of the encoded infor-

mation in the author assembly graph is the instruction-id. Using this instruction-id

we can relate an instruction to its sub-assembly. For this reason, we encode the name of

the sub-assembly corresponding to the instruction as instruction-id. When creating a

tutorial based on an author assembly graph a data structure containing this relation is

required.
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Generic descriptions of tools. As part of the example applications we show 3D

representations of necessary tools corresponding to the constraining components of the

current instruction. Although we encode the required tools in the author assembly graph,

the same 3D representations of these tools as shown in our examples do not need to be

provided. We argue that depending on the domain of the assembly the look and handling

of these tools can vary considerably. That is why we define a generic description, as

is encoded in the author assembly graph, for each tool to be sufficient to identify and

illustrate it in tutorials.

Benefits of this modular approach. In Chapter 3 we detailed the different parts of

our proposed system – see Figure 3.1 for a visualization. As soon as an author assembly

graph is created, together with the related assembly, it can be used as a basis to create

any media type of tutorial. We believe this to be an aid to tutorial creators because the

requirements to build a tutorial of an author assembly graph are kept low, while the author

assembly graph itself still encodes all relevant information about a particular (dis)assembly

sequence. The many different practical applications based on such author assembly graph

are reserved for future work.

5.6 Extent of Automatization

We have outlined the goals of this thesis in Chapter 1 and proposed a system to achieve

these goals in Chapter 3. In both chapters, we highlighted the set goal of an automatized

system. While we may not have reached this goal at this time, we achieved promising

partial results. Following an overview of the extent of automatization of each part of the

system.

You Only Look Once. In Section 4.2.1 we gave an overview of the necessary steps

that result in initial frames for each sub-assembly for the initialization of PWP3D. By re-

iterating these steps we evaluate the extent of automatization of this part of the system.

The creation of the synthetic dataset is fully automatized, meaning when starting the

corresponding application a new synthetic dataset for the 3D object you fed into it is

created. When it comes to You Only Look Once (YOLO) itself, we created a script which

re-calculates the anchors, invokes training with YOLO , the validation of the resulting

weights, starts detection with the best weight on the assembly video and filters initial

frames for the initialization of PWP3D. One downside to this is that we always chose the

best weight for detection based on the highest validated mean Average Precision (mAP) –

see Section 4.2.1 for more details. We are aware that this approach likely picks an overfit

weight as our convergence criteria for stopping training is the number of trained iterations,

and later weights will have a higher mAP than earlier weights. That is why we chose the

best weight by manually looking at charts like Figure 4.6 and tables like Table 4.1 and

manually invoke detection and the subsequent filtering of initial frames at this time.

PWP3D. We outlined the requirements and involved steps resulting in a 6 DoF

pose for each sub-assembly for every frame of the assembly video by using PWP3D in
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Section 3.4 and presented its results in Section 4.2.2. At the time of writing, we manually

set the initial 6 DoF pose in the initial frame and invoke 2D-3D pose tracking on the

assembly video for every sub-assembly. Note that the process itself is automatized in the

PWP3D framework, meaning you start PWP3D once for each sub-assembly. This manual

step, unfortunately, restricts the use of our system. We hope to amend this in future

versions and outline possible approaches in the following chapter.

Building the Author Assembly Graph. Given a constraint assembly graph and

the results of 2D-3D pose tracking over the assembly video, we can automatically build

an author assembly graph at this time. Note possible limitations due to more complex

constraints assembly graphs which we discussed in Section 5.3.

The same example tutorials with new underlying content. The example ap-

plications presented in Chapter 4 further illustrate the benefit of the modular approach of

our proposed system, which we described in Section 5.5. Taking the 2D Print Tutorial as

a basis, the underlying author assembly graph and its related assembly can be seamlessly

exchanged for an author assembly graph based on a different assembly or assembly video.

Without any adjustments necessary a new 2D Print Tutorial based on this new author

assembly graph and new assembly with the same tutorial characteristics can be created.

We can achieve the same with the Augmented Reality Tutorial. However, one additional

step is required. In Section 4.2.5 we detailed the Vuforia
TM

Model Target tracking, which

we use to track and augment assemblies in the real world. Since it is not possible to

automatize the generation of the database that Vuforia
TM

uses to model-track objects,

this additional pre-processing step has to be handled manually. After importing this pre-

processed database and adding the new author assembly graph with its new assembly, a

new smartphone application featuring this new content can be built.





6
Conclusion

In this thesis, we set out to build a system which is capable of automatically processing

videos and related 3D objects to create XML based construction manuals. We further in-

vestigated practical applications of XML based construction manuals, i.e. build tutorials

using such an XML based construction manual and its related 3D object. Our work is ev-

idence of the feasibility of such a system, and our results illustrate the various possibilities

for its applications.

In contrast to current systems for the automatized creation of tutorials which focus

on retargeting one type of media to another, we developed a conceptional workflow that

interacts through interfaces between its various parts. As a result, we are able to retarget

a video tutorial to tutorials of any type of media, if also the virtual 3D representation of

the real world object depicted in this video is given.

While we show the feasibility of such a system, we are aware that this system we

proposed is not yet fully automatic. Specifically parts of the initialization of the 2D-3D

pose estimation offer an area for future research. During our work on practical applications

of XML based construction manuals, we found the area of augmented reality tutorials to

be a promising field of research in and of itself.

We believe our system and its conceptual idea to be a promising field for future research

and want to conclude our thesis with final remarks on possible improvements and new ideas

for our system.
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6.1 Future Work

6.1.1 Initialization of 2D-3D Pose Tracking

With further research in this area, we hope to automatize the whole process of 2D-3D pose

tracking with PWP3D. We believe that an approach similar to the external application

Vuforia
TM

uses to set up their views for model tracking, which we detailed in Section 4.2.5,

to be worthwhile looking into. That is, creating snapshots of a 3D object from different

perspectives and matching this to a pose. Following this approach, it is crucial to note the

influence of lightning on the detection quality. Therefore we believe that a combination

of this Vuforia
TM

application and a system like that of Mandl et al. [19], which learns

lightprobes for mixed reality illumination, to be a promising starting point to estimate a

6 DoF pose.

6.1.2 Extending the Concept of Tool Databases

We showcased the general concept of tool databases in this thesis. Further work could

treat this part of our system, as a system of its own. A more comprehensive framework

that, e.g., can be used as a plugin in tutorial related software looks to be an aid to such

systems. In this context, we refer to more advanced algorithms for matching constraining

components and a survey of CAD data to be able to pre-define the most common terms

for constraining components in a generic way with, e.g., regular expressions.

6.1.3 Improving the Validation against Constraint Assembly Graphs

In Section 5.3 we evaluated Algorithm 5 in the context of this thesis. For future ver-

sions, this algorithm might need to consider the bigger picture of more complex constraint

assembly graphs. We propose to extend this algorithm by looking at multiple start-of-

movement-candidates at a time and also validate their related 3D paths. In future versions,

a matching of these 3D paths against the unconstrained directions to establish an order

of removal of sub-assemblies might be worthwhile.

6.1.4 Custom Glyph Paths

We adopt the unconstrained directions encoded in constraint assembly graphs in resulting

author assembly graphs. Note that these unconstrained directions are vectors parallel

to the coordinate frame axes of the assembly and as such not necessarily are the actual

directions of removal depicted in the assembly video. Therefore we suggest extracting

these actual directions of removal from the results of the 2D-3D pose tracking in future

versions.
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6.1.5 Applications of XML Based Construction Manuals

Future work likely will also explore new fields of application or take a deeper dive on

the type of tutorials we presented as examples. Surveys about the current state of 2D

Print Tutorials and Augmented Reality Tutorials might be a place to start when further

pursuing this topic. Using these surveys as a basis our example applications can surely be

enhanced.

Unity3D Asset Bundles. Assuming that future tutorials are also build using

Unity3D, it is worthwhile looking at the possibilities of Unity3D itself, when trying to

enhance our existing example applications. As such, e.g., Unity3D Asset Bundles [41] are

a compelling concept which allows the import of assets into an existing application – no

rebuilding of the application as a whole required. Pursuing this, future versions could deal

with new author assembly graphs and their related assemblies in a more dynamic way

resulting in a more automatized workflow.

Augmented Reality. We mentioned that tutorials enhanced with the capabilities of

augmented reality to be a promising area of research in and of itself. The main benefits

of such interactive Augmented Reality Tutorials being that, e.g., a user can view the

real object from all directions, while the instructions and additional information are still

anchored on the real object. As such, existing visualization techniques as, e.g., presented

by Kalkofen et al. [16] would level up our existing example of an Augmented Reality

Tutorial.

Tutorial Tool Case. The present findings regarding the creation of tutorials for

different types of media based on author assembly graphs suggests that, e.g., dedicated

applications focused on the aided creation of tutorials are also an area of future research.

Another way of referring to this would probably be calling it power point for tutorial

creation based on a pre-defined instruction order. That might lead to the development of

a whole tool case to be applicable at each instruction of an author assembly graph.





A
List of Acronyms

CAD Computer Aided Design

CNN Convolutional Neural Network

DGML Directed Graph Markup Language

DoF Degrees of Freedom

FPS frames per second

GPU Graphics Processing Unit

IoU Intersection-over-Union

mAP mean Average Precision

VOC Visual Object Classes

YOLO You Only Look Once
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. . .

7 s u b d i v i s i o n s=8

8 he ight =416

9 width=416

. . .

603 f i l t e r s =255

. . .

609 anchors =10 ,13 . . . 373 ,326

610 c l a s s e s =80

. . .

689 f i l t e r s =255

. . .

695 anchors =10 ,13 . . . 373 ,326

696 c l a s s e s =80

. . .

776 f i l t e r s =255

. . .

782 anchors =10 ,13 . . . 373 ,326

783 c l a s s e s =80

. . .

Listing B.1: This shows the relevant lines

of the original configuration of YOLO .

. . .

7 s u b d i v i s i o n s =32

8 width=608

9 he ight =608

. . .

603 f i l t e r s = . . .

. . .

609 anchors = . . .

610 c l a s s e s = . . .

. . .

689 f i l t e r s = . . .

. . .

695 anchors = . . .

696 c l a s s e s = . . .

. . .

776 f i l t e r s = . . .

. . .

782 anchors = . . .

783 c l a s s e s = . . .

. . .

Listing B.2: We present the adjusted lines

of the configuration of YOLO .

67



68 Chapter B. Supplemental Material

<?xml v e r s i on =”1.0” encoding=”utf−8”?>

<DirectedGraph T i t l e=”Driv ingTest ” Background=”Blue” xmlns=”http

:// schemas . m i c ro so f t . com/ vs /2009/dgml”>

<Nodes>

. . .

</Nodes>

<Links>

. . .

</Links>

<Categor ie s>

. . .

</Categor ies>

<Proper t i e s>

. . .

</Proper t i e s>

</DirectedGraph>

Listing B.3: A serialized example of the Directed Graph Markup Language (DGML) by Microsoft

[21].

<ArrayOfConst ra intDe f in i t i on >

<Cons t ra in tDe f in i t i on>

<Pattern>

<s t r i ng>nut</s t r i ng>

</Pattern>

<too l>Wrench</too l>

</Cons t ra in tDe f i n i t i on>

<Cons t ra in tDe f in i t i on>

<Pattern>

<s t r i ng>screw</s t r i ng>

</Pattern>

<too l>Screwdriver </too l>

</Cons t ra in tDe f i n i t i on>

</ArrayOfConstra intDef in i t ion>

Listing B.4: We use a tool constraints definition to map tools of our tool database to patterns.

This allows us to infer a related tool, if a pattern is matched in a sub-assembly. Here we show a

serialization of such a tool constraints definition.
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. . .

u p p e r s h e l l : 99.05%; f 25 ; 493x 325y ; w: 908 , h : 277

u p p e r s h e l l : 39.54%; f 25 ; 537x 436y ; w: 1023 , h : 364

l o w e r s h e l l : 86.92%; f 25 ; 531x 545y ; w: 761 , h : 278

u p p e r s h e l l : 95.63%; f 25 ; 845x 323y ; w: 749 , h : 411

c y l i n d e r : 92.49%; f 25 ; 342x 535y ; w: 630 , h : 368

wheel : 79.53%; f 25 ; 766x 546y ; w: 500 , h : 333

bing : 74.58%; f 25 ; 474x 242y ; w: 496 , h : 342

l o w e r s h e l l : 32.89%; f 25 ; 1005x 255y ; w: 476 , h : 348

. . .

Listing B.5: We show an excerpt of the results of the predictions of YOLO over the assembly

video. Specifically, we show the predictions for the 25th frame of assembly video. Note that

upper shell and lower shell were detected multiple times in this single frame, while cylinder,

wheel and bing were detected only once. We evaluate all the predictions of all frames by applying

Algorithm 3.
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. . .

35 : (0 . 808423 , 0 .045217 , 21 .299782 , −132.738297 , 6 .859068 ,

−24.283009)

36 : (0 .808423 , 0 .045217 , 21 .299782 , −132.738297 , 6 .859068 ,

−24.283009)

37 : (0 .808423 , 0 .045217 , 21 .299782 , −132.738297 , 6 .859068 ,

−24.283009)

. . .

236 : (0 . 842073 , −0.605555 , 19 .083961 , −119.048218 , 19 .910362 ,

−27.806824)

237 : (0 .842073 , −0.605555 , 19 .083961 , −119.048218 , 19 .910362 ,

−27.806824)

238 : (0 .842073 , −0.605555 , 19 .083961 , −119.048218 , 19 .910362 ,

−27.806824)

. . .

492 : (0 . 418461 , −0.192556 , 23 .527088 , −128.202835 , 7 .023273 ,

−29.541023)

493 : (0 .418461 , −0.192556 , 23 .527088 , −128.202835 , 7 .023273 ,

−29.541023)

494 : (0 .418461 , −0.192556 , 23 .527088 , −128.202835 , 7 .023273 ,

−29.541023)

. . .

Listing B.6: We present an excerpt of the results of 2D-3D pose tracking the wheel sub-

assembly with PWP3D. Each result is given as a tuple of (frame: position.x, position.y,

position.z, rotation.x, rotation.y, rotation.z).

<DirectedGraph>

<l i nk s>

<Link sourceNodeId=” l o w e r s h e l l ” targetNodeId=”u p p e r s h e l l ”

/>

<Link sourceNodeId=” l o w e r s h e l l ” targetNodeId=”c y l i n d e r ” />

<Link sourceNodeId=” l o w e r s h e l l ” targetNodeId=”wheel ” />

<Link sourceNodeId=”u p p e r s h e l l ” targetNodeId=”bing ” />

<Link sourceNodeId=”u p p e r s h e l l ” targetNodeId=”c y l i n d e r ” />

<Link sourceNodeId=”u p p e r s h e l l ” targetNodeId=”wheel ” />

<Link sourceNodeId=”c y l i n d e r ” targetNodeId=”head” />

</ l i nk s>

<nodes>
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<Node id=” l o w e r s h e l l ”>

<unconst ra inedDirec t ion>

<x>0</x><y>0</y><z>0</z>

</unconst ra inedDirec t ion>

</Node>

<Node id=”u p p e r s h e l l ”>

<unconst ra inedDirec t ion>

<x>0</x><y>1</y><z>0</z>

</unconst ra inedDirec t ion>

</Node>

<Node id=”c y l i n d e r”>

<unconst ra inedDirec t ion>

<x>1</x><y>0</y><z>0</z>

</unconst ra inedDirec t ion>

</Node>

<Node id=”head”>

<unconst ra inedDirec t ion>

<x>1</x><y>0</y><z>0</z>

</unconst ra inedDirec t ion>

</Node>

<Node id=”wheel”>

<unconst ra inedDirec t ion>

<x>0</x><y>0</y><z>1</z>

</unconst ra inedDirec t ion>

</Node>

<Node id=”bing”>

<unconst ra inedDirec t ion>

<x>0</x><y>1</y><z>0</z>

</unconst ra inedDirec t ion>

</Node>

</nodes>

</DirectedGraph>

Listing B.7: The serialized constraint assembly graph of the engine assembly. Note the DGML

based graph structure featuring nodes and links. Each node also encoding an unconstrained

direction of removal of the related sub-assembly.
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