
 Master's degree programme: Computer Science

Kürzfassung

Eine Informationslandschaft ist eine visuelle Darstellung für die Analyse
großer Textrepositorien, die Zusammenhänge in multidimensionalen Daten
durch räumliche Nähe in der Visualisierung darstellt. Die verwendete Land-
schaftsmetapher stellt die Themenverteilung im Datensatz als natürliche
Umgebung in der Form einer geografischen Karte dar, wodurch diese intuitiv
von der Öffentlichkeit verstanden werden kann. Diese Masterarbeit stellt eine
web-basierte Anwendung vor, die eine interaktive Informationslandschaft Vi-
sualisierung unter Verwendung von WebGL- und HTML5-Technologien
darstellt. Die implementierte visuelle Anwendung erlaubt dem Anwender,
sich einen Überblick über die Daten zu verschaffen, aktuelle Zusammenhänge
zu entdecken und die Verteilung der Themen im Datensatz zu verstehen.
Darüber hinaus ermöglicht die Anwendung dem Benutzer, die Informa-
tionslandschaft interaktiv aus verschiedenen Perspektiven zu betrachten,
und bietet mehrere Möglichkeiten, relevante Daten für eine detailliert-
ere Analyse auszuwählen. Ein wesentliches Merkmal der Arbeit ist das
GPU-beschleunigte, animierte Morphing der Landschaftsgeometrie, die den
Benutzer dabei unterstützt, dynamische Änderungen in den Daten zu ver-
folgen und zu verstehen. Das bekannte Change Blindness Problem, das den
Benutzer daran hindert, die Änderungen zu erkennen und zu verstehen, wird
durch verschiedene aus der Literatur bekannte Techniken adressiert. Darüber
hinaus werden neue Methoden, wie das Morphing der Landscape-Geometrie
oder die Darstellung von Dokument-Traces, vorgeschlagen.

Keywords: Informationslandschaft, Textdokumente, webbasierte Anwen-
dung, WebGL, GPU

i

Abstract

An information landscape is a visual representation for topical analysis
of large text repositories, which conveys relatedness in multidimensional
data through spatial proximity in the visualization. The employed landscape
metaphor represents the topical distribution in the data set as a natural
environment shown in the form of a geographic map; therefore, it is more
likely to be intuitively understood by the public. This Master’s Thesis presents
a web-based application for rendering an interactive information landscape
visualization using WebGL and HTML5 technologies. The implemented visual
application allows the user to obtain an overview, discover topical relation-
ships and understand the distribution of topics in the data set. Furthermore,
the application enables the user to interactively explore the information
landscape from different perspectives, and provides several ways to select
data of interest for more detailed analysis. A major feature of this work is the
GPU-accelerated, smoothly animated morphing of the landscape geometry to
help the user follow and understand dynamic changes in the data. Addressing
the well-known change blindness problem, which prevents the user to notice
the changes, is addressed by various techniques known from the literature,
as well as by introducing novel methods, such as the morphing information
landscape or displaying document trails.

Keywords: information landscape, text documents, web application, WebGL,
GPU

ii

Acknowledgment

First I would like to thank my supervisor Vedran Sabol for his guidance
and great support as well as for his great ideas and time, which helped me a
lot to implement the information landscape way it is.

I also thankful to my two brothers Sucha and Devraj for believing in me
and supporting me throughout my studies. Furthermore, I would like to thank
one of my friends Stefan Schäfback, who was always there to provide me the
technical support.

I would like to dedicate my thesis to my mother Dawarki Devi and to
my father Pal. This thesis would not have been possible without their support
and their belief in me.

Graz, September 17, 2019 Santokh Singh

iii

Contents

1 Introduction 1

1.1 Focus Points . 2

1.2 Structure of the Paper . 3

2 Related Work 4

2.1 Information Landscapes in General – Theoretical Discussion . . . 4

2.1.1 Spatialization . 4

2.1.2 Metaphor . 5

2.1.3 Information Landscape . 5

2.1.4 Morphing Landscape . 6

2.1.5 Change Blindness . 7

2.2 Computation of the Landscape Layout for Text Data 10

2.2.1 Principal Components Analysis 11

2.2.2 Metric Multidimensional Scaling 12

2.2.3 Force Directed Placement (FDP) 13

2.3 Overview of Information Landscape Systems 15

2.3.1 Bead . 15

2.3.2 SPIRE . 17

2.3.3 VxInsight . 19

2.3.4 Galaxy of News . 20

2.3.5 WEBSOM . 22

2.3.6 Infosky . 23

2.3.7 Dynamic Topography Information Landscape 25

iv

3 Morphing Information Landscape 32

3.1 General Concept . 32

3.1.1 Features for computing the layout of information landscape 33

3.1.2 Visual Design Features . 34

3.1.3 Interaction Design Features 35

3.2 Computation of the Landscape Layout 36

3.2.1 Text Processing Pipeline . 36

3.2.2 Morphing Layout Generation 38

3.3 Visual Design . 39

3.3.1 Visual Design of Landscape 40

3.3.2 Visual Concept of Documents 41

3.3.3 Visual Concept of Labels . 42

3.3.4 Visual Brush Concept . 42

3.3.5 Visual Concept of Morphing 43

3.4 Interaction Design . 46

3.4.1 Perspective Category . 47

3.4.2 Selection Category . 47

3.4.3 Morphing Category . 48

3.4.4 Data Exploration, Filtering and Navigation Category 49

3.4.5 Setting a Category . 49

4 Implementation 51

4.1 Programming Languages and Technologies 51

4.1.1 WebGL . 52

4.1.2 GPU . 52

4.1.3 Three.js . 53

4.2 Software Architecture of the Application 54

4.2.1 Initialization Stage . 54

4.2.2 Rendering stage . 55

4.2.3 Updating stage . 55

4.3 Core Details of the Implementation 56

v

4.3.1 Steps for creating 3D objects using three.js 57

4.3.2 Creating 3D information landscapes using three.js 57

4.3.3 Information landscape setup for shaders 58

4.3.4 Vertex shader: scale the information landscape 60

4.3.5 Fragment shader: implementation of height-based texture
mapping . 61

4.3.6 Vertex shader: morphing the information landscape 63

4.3.7 Fragement shader: implementation of brush selection tool 65

4.3.8 Implementation of rectangle-based selection tool 66

4.3.9 Implementation of document and label selection 67

4.3.10Implementation of building perspective interactions 67

4.4 Summary . 67

5 Case Study 68

5.1 Generating and Loading Morphing Data 68

5.1.1 Generating Periodic Morphing Data 69

5.1.2 Structure of the Application 69

5.1.3 Loading Morphing Data in the Application 70

5.1.4 Conclusion . 71

5.2 Data Selection, Exploration And Filtering 72

5.2.1 Individual-Based Selection 72

5.2.2 Content-Based Selection . 72

5.2.3 Position-Based Selection . 74

5.2.4 Conclusion . 77

5.3 Morphing the Information Landscape 77

5.3.1 Perspective selection . 77

5.3.2 Height adjustment . 78

5.3.3 Height Scaling Selection . 79

5.3.4 Design Selection . 80

5.3.5 Morphing Process Execution 80

5.3.6 Conclusion . 85

vi

5.4 Summary . 87

6 Conclusion & Future Work 88

List of Abbreviations 91

Bibliography 92

vii

List of Figures

2.1 Frames from a video demonstrating the change blindness phe-
nomena in the real world (taken from [Simons D. J. & Levin D. T., 1998]) 7

2.2 SPIRE ThemeView Time Slicer (taken from [Nowell L. et al., 2001] 8

2.3 SPIRE moving from one time slice to another with a wireframe
and variable translucency (taken from [Nowell L. et al., 2001] . . 9

2.4 Drawback of principal components analysis in comparison to in-
dependent component analysis (Taken from [BLOHM D. G.,] . . . 11

2.5 Shepard diagram showing relationships between NMDS or-
dination distance and original observed distance (taken from
[Fraga R. et al., 2014]) . 12

2.6 Illustration of attractive and repulsive forces and their sum versus
distance (taken from [Fruchterman T. M. J. & Reingold E. M., 1991]) 14

2.7 A view from far above an ‘island’ of documents constructed by
Bead (taken from [Chalmers M., 1995]) 15

2.8 Dropping down closer to the landscape we can see individ-
ual documents as well as some artificial landmarks (the pole
at the spatial origin, and some distant islands) (taken from
[Chalmers M., 1995]) . 16

2.9 In galaxy visualization, the documents are represented by dots
(stars), where each group of dots (stars) represents a cluster
(galaxy) of similar documents (taken from [Endert A. et al., 2013]) 18

2.10(taken from [Nowell L. et al., 2001]) Representation of ThemView
visualization . 19

2.11Landscapes of patent class 360 for four different five-year time
periods (taken from [Boyack K. et al., 2000]) 20

2.12Galaxy of News the Architecture (taken from [Rennison E., 1994]) 21

viii

2.13Simplified Associative Relation Network Representation(taken
from [Rennison E., 1994]) . 21

2.14(taken from [Krista Lagus S. K. & Kohonen T.,]) WEBSOM user
interface . 22

2.15InfoSys the Visual Explorer (taken from [Kienreich W. et al., 2003]) 23

2.16Search results for “Virus” being displayed (red color as stars)
(taken from [Kienreich W. et al., 2003]) 25

2.17The Webrat interface: global view (left), zooming in (top right),
context menu (bottom right) (taken from [Sabol V. et al., 2002]) . 28

2.18An information landscape (taken from [Sablol V., 2012] showing
3,000 documents on ”terrorism" and providing an overview of
the whole data set in 10 topical clusters (polygonal areas); by
clicking on the label (e.g. ”isreal, palestinian, netanyahu"), the
corresponding cluster is zoomed in and the areas and labels of
underlying clusters are shown (see Figure 2.19) 29

2.19A user can narrow the potential topic of interest by showing a
sub-cluster of a zoomed-in cluster (e.g. ”isreal, palestinian, ne-
tanyahu"). Sub-Clusters are shown as nested voronoi areas within
the area of their parent clusters (taken from [Sablol V., 2012]) . . 30

2.20(taken from [Ulbrich E. et al., 2015]) The user interface with mul-
tiple views . 31

3.1 Representation of workflow for (i) projecting complex, high di-
mensional documents into 2D space, (ii) computing a height map
and labels . 37

3.2 Representation of a workflow for producing a landscape layout
with dynamic changes by applying an incremental method 39

3.3 The layer set in height-mapped texture mapping 40

3.4 Representation of an information landscape using the height-
mapped texture mapping method 41

3.5 Representation of an information landscape with blending 41

3.6 Information landscape with following rendered items: (i) brush as
selection tool, (ii) documents displayed as cubes and (iii) stacked
labels with orientation lines between peaks and labels. 43

3.7 Simulation of a fading topic, which causes islands and hills to
disappear . 44

ix

3.8 Morphing animation: (top-left) beginning phase where a new
landscape is shown as a wireframe, (top-right) on-going ani-
mation phase, (bottom-left) after the animation phase, the old
landscape briefly shown as a wireframe, and (bottom-right) new
landscape after completion of the morphing process 46

3.9 A draggable pop-up window with the following elements dis-
played (i) the selected documents as a list, (ii) the most relevant
keywords of the selected documents, (iii) a selection box contain-
ing two operators (OR and AND) and (iv) a search field to filter
the documents . 50

4.1 Structure of a GPU . 53

4.2 Software architecture of the application with initialization stage
representation . 55

4.3 The overall software architecture of the application 56

4.4 The first picture (left) shows the result of PlaneGeometry contain-
ing the whole computed height map, the second picture (middle)
shows the PlaneGeometry containing computed height map val-
ues on the boundaries, the last picture (right) displays both Plan-
Geometries combined. 58

4.5 Representation of all uniforms passed to the shader 59

4.6 Process of applying a new design to the information landscape . . 62

5.1 Command line for executing the pipeline: (1) name of the jar file,
(2) input folder containing text documents, (3) output folder for
generated periodic morphing data 69

5.2 Structure of the visual application with highlighting of different
functional areas . 69

5.3 Steps needed to load morphing data 70

5.4 Information landscape with a tag cloud of the year 2014: the two
papers classified as outliers are indicated by red arrows, and the
two clusters containing most of papers are indicated by a yellow
arrow . 71

5.5 Individual document exploration: based on document mouse over
(above, document shown enlarged), and based on the single se-
lection method (below, 2 documents shown in yellow). 73

x

5.6 Exploration of documents based on a selected label ("parameter",
on the lef side of the screen) . 73

5.7 Exploration of documents based on a selected keyword in the tag
cloud . 74

5.8 Exploring documents using the brush tool (above), and selecting
them (bellow) . 75

5.9 Setting the size and colour of the brush 76

5.10Exploring documents using the rectangle selection tool 76

5.11Representation of different perspectives: default view (top-left),
view after tilting and rotating (top-right), view after zooming in
(bottom-left), view after panning (bottom-right) 78

5.12Representation of information landscape after setting the maxi-
mum height of the information landscape: "5.1" maximum height
(above) and “15.2” maximum height (below) 79

5.13Representation of information landscape by setting different
types of height scaling: linear scale (top-left), square root
scale (top-right), squared scale (bottom-left), logarithmic scale
(bottom-right) . 80

5.14Representation of information landscape after applying new de-
sign: “greeny” design above and “earthy” design below 81

5.15Status of morphing before the animation is started: The height
map with textures represents the year 2014 and the height map in
wireframe represents the year 2015, which clearly indicates the
emergence of new topics as well the convergence and divergence
of topics . 82

5.16This is the middle phase of the animation, where one can see
the emergence of new elements from 2015 (new documents, new
labels, orientation lines) as well as the fading of elements which
are not part of 2015; the tracing of documents represented as
lines shows the documents that make up new topics as well as
the divergence and convergence of topics 83

5.17Status of morphing when the animation is finshed: The height
map with textures represents the year 2015, whereas the height
map in wireframe represents the year 2014 and indicates the fad-
ing of topics; this allows the user to compare the states of both
periods, where the tracing lines represents the movement of the
documents from the old position (2014) to the new position (2015) 84

xi

5.18Representation after the animated movement of the documents
from the old position (2014) towards to the new position (2015). . 85

xii

List of Tables

2.1 Krusak guidelines for interpretation of the stress value 13

xiii

Chapter 1

Introduction

Large collections of text documents are typically unstructured and contain
complex and multidimensional information. Additionally, the documents of
a collection continuously go through dynamic changes such as the adding,
removing and modification of respective documents. The major challenge
with such collections of text documents is to make the dataset logically un-
derstandable and explorable for a user, for instance allowing the user to get
an overview of the dataset by showing the relatedness and the topical distri-
bution of the documents, letting the user explore the dataset of interest, and
enabling the user to grasp the changes in datasets in an understandable way.

The information landscape is a visual metaphor that can address the men-
tioned challenges for complex, multidimensional and dynamically changing
datasets such as text repositories. The approach is based on the well-known
information landscape metaphor, which is intuitively understood by the pub-
lic because it resembles the natural environment, i.e. the interpretation of
natural landforms is part of people’s biological makeup.

Information landscapes are commonly used for the visualization of large
amount of data and are capable of conveying both topical relatedness and
dynamic change. The spatial proximity in the visualization space shows the
topical relatedness in the form of hills that represent groups or visual clusters
of topically similar documents. Hills are labelled with the most significant
keywords from the underlying documents.

When a collection of text documents changes over time, for example when
documents are modified, new documents are added or old documents are re-
moved, the overall topical structure and consequently the landscape topogra-
phy change as well. To help the user to follow and understand the changes, the
geometry of two different information landscapes are morphed using a smooth

1

CHAPTER 1. INTRODUCTION 2

animation. In this process of morphing, the hills and islands grow or shrink to
indicate the growth or decline of topic prevalence.Hills can also move closer
or futher apart to convey converging or diverging topical clusters.

The aim of this master’s thesis is to develop an interactive and scalable dy-
namic geometry information landscape using WebGL and HTM5 technologies.
WebGL is a fully standardized JavaScript API based on OpenGL ES, which pro-
vides access to hardware accelerated 3D rendering of interactive 3D and 2D
graphics within any compatible web browser without the use of any plug-ins.

1.1 Focus Points

The following aspects have been the focus while developing the information
landscape:

• GPU accelerated information landscape visualization

The creation of a information landscape which matches the realistic nat-
ural environment in order to make the landscape more intuitively under-
standable can be realized by using the height-based texture mapping
method, where a water texture defines the lowest points, with sand,
grass, rocks and snow textures as the height increases. GPUs (i.e. graph-
ics processing units) are more efficient at manipulating computer graph-
ics due to the highly parallel structure of their computations. The main
focus is to utilize this aspect, first off to manipulate the geometry of
the landscape using a shading language (i.e. vertex shader) to create a
smooth 3D accelerated morphing animation of landscape geometry, and
second to apply the height-based texture mapping method to each pixel
of landscape using the shading language (i.e. fragment shader).

• UI design

The goal of this section is to develop an interactive design for the infor-
mation landscape that enables the user (i) to view the landscape from
different perspectives, (ii) to select the documents individually, based on
content as well as their positions in the landscape, (iii) to perform ge-
ometry morphing-related interactions, (iv) to explore, filter or navigate
the documents and (v) to adjust the information landscape configuration,
such as adjusting the brightness and opacity of the information land-
scape, changing the colour and size of the brush-based selection tool,
changing the design of the information landscape, setting the timespan
of animation of morphing and setting the type of height scaling (linear,
square root, squared and logarithmic).

CHAPTER 1. INTRODUCTION 3

1.2 Structure of the Paper

The structure of this master’s thesis is organized as follows. Chapter 2 de-
scribes the related scientific work concerning the most important aspects of
the information landscape, including a general theoretical discussion of in-
formation landscapes as well as a discussion of algorithms for computing the
landscape layout. Furthermore, the second chapter also gives an overview
of landscape visualization on different systems and in different web browsers
using 2D/3D rendering. Chapter 3 introduces geometry morphing of the in-
formation landscape in five separate sections. The first section introduces the
pipeline for computing the landscape layout for textual data. The second sec-
tion explains the general concept of morphing. The third section describes
the visual design of a landscape, while the interactive design is covered in the
next section. Chapter 4 illustrates the implementation of an information land-
scape. Chapter 5 provides the major case studies of the landscape. Chapter 6
presents the conclusions of the master’s thesis and discusses possible future
work in this direction.

Chapter 2

Related Work

This chapter gives an overview of the famous scientific work most relevant
to the thesis. The chapter begins with a general theoretical discussion of
the information landscape, which includes laying out the problems that
the information landscape attempts to solve, describing the metaphor and
morphing of the information landscape as well as discussing their advantages
and drawbacks. Furthermore, this chapter covers various algorithms for
computing the landscape such as principal component analysis (PCA), multi-
dimensional scaling (MDS), force directed placement (FDP). Finally, the last
section of this chapter discusses the visualization of information landscape on
different systems.

2.1 Information Landscapes in General – Theo-

retical Discussion

2.1.1 Spatialization

Use of spatialized user interfaces has started to rise dramatically due to the
arrival of virtual worlds and increasing computation power. Therefore, it is
reasonable to discuss the meaning of spatialization in space in the context of
visualization, user interfaces and interactions.

Spatialization [Kuhn W. & Blumenthal B., 1996] transforms physical space
into spatial metaphors of abstract domains into user interfaces. The spatializa-
tion consists of cognitive and engineering aspects. All of these aspects arise
from the pervasive role of space in human activities, including subconscious

4

CHAPTER 2. RELATED WORK 5

activities like perception, manipulation and motion in space, which involves
little cognitive load and at same time offers great functionality.

From a cognitive domain point of view, space plays an important role
for human reasoning, language and action [Jackendoff R. S., 1985]. Spatial
metaphors form our understanding of abstract domains and this characteristic
can be used to create a wide variety of user interface designs.

The engineering aspects of spatialization represent space and spatial op-
erations in order to produce effective user interfaces. Appropriate means and
tools are thus required to make the spatial metaphors visually perceivable.

2.1.2 Metaphor

The notion of a metaphor is often used in the context of information landscapes
and spatialization.

According to the definition of [Kuhn W. & Blumenthal B., 1996] the notion
metaphor has the following meaning: "The metaphors allow users to under-
stand something in terms of something else, without requiring the users to
believe that the two things are the same”. Vedran Sabol [Sablol V., 2012] de-
fines the notion of metaphor as follows: "The metaphors visualize abstract
information using a well-known equivalent for information which does have a
natural representation in the real world. Metaphors are usually more intuitive
than formalisms, because the user can infer the meaning through analogy".

2.1.3 Information Landscape

Information landscape employs a geographic landscape metaphor for related-
ness analysis of large, complex, multidimensional collections of data, such as
text documents. The relatedness of documents is conveyed through spatial
proximity in the visualization [Krishnan M. et al., 2007].

Document relatedness is based on calculating the similarity of documents
to each other and projecting their relationship into 2D or 3D space in such
a way that similar items are positioned close together, while dissimilar items
are placed far apart. Hills emerge where the density of related documents
is high, indicating a topical cluster. Clusters that are topically similar are
placed spatially close to each other, whereas dissimilar clusters are separated
by larger empty spaces represented as oceans or valleys. Hills are labelled
with the most significant keywords from the underlying documents, allowing
the user to identify the area of interest and eliminate the outliers. The height

CHAPTER 2. RELATED WORK 6

of a hill indicates the number of documents [Sabol V. et al., 2010].

The visual representation of a landscape can be used to get an overall
overview of an unfamiliar dataset, to understand the relationships as well as
topical distribution of the dataset, to find similar documents, and identify out-
liers.

As a visual component, the information landscape must enable the user to
interactively view the information landscape from different perspectives. It
provides several ways to select the data of interest; typical interactions for
viewing data from different perspectives and for item selection are described
here:

• Zoom: The zoom operation increases the sense of proximity and displays
the focused area in more detail, while in contrast zooming out decreases
the level of proximity and displays the areas as smaller and possibly less
detailed. The practical approach for this interaction is to add the ability
to zoom in and out with the mouse scroll wheel.

• Panning: The panning operation is the action of dragging the whole area
by keeping the zoom level the same in order to move the point of view
and reveal the information which was previously outside the displayed
screen area.

• Selection: This operation lets the user choose one or multiple displayed
items so that further operation can be performed on the selected data.

2.1.4 Morphing Landscape

The previous section discussed relatedness analysis in large, complex, multidi-
mensional datasets using the concept of the information landscape. However,
the fact is that documents of a collection often go through dynamic changes,
such as the adding, removing or modification of documents in a collection.
The challenging part is getting the user to understand the changes using an
information landscape.

The solution to this challenge is morphing, whereby morphing is a tech-
nique that constructs intermediate steps between two states by applying some
data from each state to create a sequence of images, where the consequential
state become less like first state and more like second state. When animated,
the sequences appear to be in motion, such that first state is changed into
second state thorough a seamless transition.

The fact is that when a collection of text documents changes over time,
e.g. documents are modified, new documents are added or old documents

CHAPTER 2. RELATED WORK 7

are removed, the overall topical structure and consequently the landscape to-
pography change as well. To help the user to follow and to understand the
changes, the information landscape is typically morphed into a new informa-
tion landscape involving dynamic changes using smooth animation sequence.
In the process of morphing, the rising hills or clusters indicate the emergence
of new topics while the shrinking of hills indicates the fading of topic preva-
lence. The movements of hills towards or away from each other express con-
verging or diverging topical clusters [Sabol V. et al., 2010].

Morphing the landscape allows the user to discover the emergence of new
topics and fading of others, while being able to understand the converging and
diverging topical clusters. However, the user can run into change blindness
phenomena (see section 2.1.5 below), which occurs when the user does not
notice or remember major changes in a visual stimulus.

2.1.5 Change Blindness

Figure 2.1: Frames from a video demonstrating the change blindness phenom-
ena in the real world (taken from [Simons D. J. & Levin D. T., 1998])

CHAPTER 2. RELATED WORK 8

Change blindness is a phenomenon of visual perception that occurs
when the observer does not notice the changes in in a visual stimulus, with
which the observer is actively engaged.([Simons D. J. & Levin D. T., 1997],
([Daniel J. Simons R. A. R., 2005])).

Simons and Levin [Simons D. J. & Levin D. T., 1998] carried out an An ex-
periment to demonstrate change blindness phenomena in the real world. First,
an experimenter started to have a conversation with a pedestrian. The initial
experimenter was then replaced by a different experimenter during a brief in-
terruption. Only half of the subjects realized that their conversational partner
had changed. Figure 2.1 depicts the experiment as a sequence of events.

Users of the SPIRE ThemeView Time Slicer visualization, which also em-
ploys a geographic landscape metaphor, experienced the change blindness
problem. They encountered change blindness when they were using the Time
Slicer and found themselves unable to identify what had changed from one
time period, or slice, to the next, or they were unable to remember what was
different in the previous slice [Nowell L. et al., 2001]. The problem is illus-
trated in Figure 2.2, which shows the data from three different days. The
basic problem was that for recognizing the changes from one slice to the next,
the user had to memorize all the time slices.

Figure 2.2: SPIRE ThemeView Time Slicer (taken from [Nowell L. et al., 2001]

Nowell proposed two criteria to solve the change blindness problem:

• The user should be able to see where the new landscape contours will be
while the old contours are still visible

CHAPTER 2. RELATED WORK 9

• At any point during the change, the user should be able to determine
which landscape contours are emerging and which are vanishing

Furthermore, Nowell investigated three techniques for drawing attention to
changes from one time slice to another:

• Morphing

• Cross fading

• Using a wireframe in combination with changes in colour and translu-
cency.

The investigated technique of morphing had the following finding: Morph-
ing did indeed make the areas of change noticeable, however it did not help
the user to remember the changes because it was not possible for the user to
tell what came before and what is going to appear next. Furthermore, the user
could not determine which characteristics came from which slice (images).

Figure 2.3: SPIRE moving from one time slice to another with a wireframe
and variable translucency (taken from [Nowell L. et al., 2001]

Nowell recommends the third solution, i.e. ‘using a wireframe in com-
bination with changes in colour and translucency’, shown in Figure 2.3 the
authors explain the solution as follows: “The wireframe appears as soon as
the transition from one image begins. At the same time, we begin reducing
the opacity and colour saturation of the vanishing contours. The emerging
contours, shown by the wireframe, begin to fill with translucent colour that

CHAPTER 2. RELATED WORK 10

gradually becomes brighter and less translucent. At the same time, the van-
ishing contours become progressively dimmer and more translucent. When
the emerging image reaches opacity, the wireframe vanishes and the old im-
age has completely faded away”.

The advantage of the recommended technique is that the attention is drawn
to the areas of changes by showing the vanishing (old) and emerging (new)
changes in the form of images or motions at all times. Furthermore, by allow-
ing the user having access to visual difference, the user can recognize what
has changed.

2.2 Computation of the Landscape Layout for

Text Data

An information landscape layout requires positioning of documents in 2D or
3D space in such a way that similar documents are positioned closer together,
while dissimilar documents are placed further apart. The real challenge is
that the datasets are complex and multidimensional. The computation of the
information landscape layout is a process of transforming the complex and
multidimensional dataset into 2D or 3D space while preserving the original
relationships as much as possible, by positioning similar documents close to-
gether and dissimilar ones far apart.

The transforming process is related to the idea of ordination, which in mul-
tipolarity analysis has the following definition: Ordination is a technique that
corresponds to data clustering and is mainly used in exploratory data analy-
sis. The objects of ordination orders are characterized by values on multiple
variables (i.e. multivariate objects) so that similar objects are close to each
other and dissimilar objects are far apart from each other [Davis J. C., 2002].

The ordination algorithms transform the data in the multidimensional
space to a space of fewer dimensions, while still retaining as much informa-
tion as possible.

This chapter covers two major ordination algorithms: the principal com-
ponents analysis (PCA) and metric multidimensional scaling (MDS). Further-
more, this chapter introduces an iterative method known as a force directed
placement algorithm (FDP), which is commonly used for computing informa-
tion landscape layouts.

CHAPTER 2. RELATED WORK 11

2.2.1 Principal Components Analysis

Principal component analysis or PCA [Jolliffe I., 2002] is a linear transform the
data from multidimensional space to a new coordinate system in which the
first coordinate (first principal component) holds the greatest possible vari-
ance in data, and the succeeding coordinates, while being uncorrelated and
orthogonal to the preceding coordinates, have the largest possible variance.

The directions of principal components are determined by computing the
eigenvector and eigenvalues of the covariance matrix and sorting them ac-
cording to decreasing eigenvalue. The magnitude of the eigenvalues indicates
the variance of the data along the eigenvector directions.

PCA is mostly used as a tool in exploratory data analysis, which summa-
rizes the main characteristics of transformed data to fewer dimensions using
visual methods. One of the major drawbacks is that the principal components
are orthogonal, which mean that they overlap in space and are positioned at
90 degrees to each other. However, the assumption that informative dimen-
sions are always orthogonal may not hold. Therefore, an alternative technique
called independent component analysis (ICA) can solve this problem, because
the vectors in ICA do not have to be orthogonal to each other. Figure 2.4
shows the major drawback of principal component analysis in comparison to
independent component analysis.

Figure 2.4: Drawback of principal components analysis in comparison to inde-
pendent component analysis (Taken from [BLOHM D. G.,]

CHAPTER 2. RELATED WORK 12

2.2.2 Metric Multidimensional Scaling

Multidimensional scaling (MDS) is a popular set of ordination techniques that
is often used in exploratory data analysis for representing the data visually
based on its dissimilarity information. The multidimensional scaling algo-
rithm requires a pairwise-distance of a matrix of objects in a set as well as
a chosen number of target space dimensions (n) as inputs to find the new
representation of dataset, into an n-dimension space such that given pairwise
distances between objects are preserved as well as possible. The pairwise dis-
tance of a matrix is calculated by applying similarity coefficients in the original
high-dimensional space, such as Jaccard distance, cosine similarity or distance
measures, such as Euclidean distance.

One of the multidimensional scaling methods is the classical method
of multidimensional scaling (CMDS), which was introduced by Torgerson
[Torgerson W. S., 1952]. The method is based on linear algebra arithmetic
and transforms the distance matrix into a cross-product matrix to yield the
eigendecomposition.

Figure 2.5: Shepard diagram showing relationships between NMDS
ordination distance and original observed distance (taken from
[Fraga R. et al., 2014])

The non-metric multidimensional scaling (NMDS) [Kruskal J., 1964] is a

CHAPTER 2. RELATED WORK 13

Stress Assessment of fit

Very Bad 0.20

Poor 0.10

Fair 0.05

Good 0.02

excellent 0.00

Table 2.1: Krusak guidelines for interpretation of the stress value

nonlinear method which looks for the best fit between the origin proximity
of two objects and their pairwise distance in a low dimensional space based
on a statistical model of least-squares analysis. NMDS constructs an initial
configuration of objects in a chosen number of dimensions. The initial config-
uration is either selected randomly, or it is based on another ordination. In his
work, Shepard ([Shepard R. N., 962a], [Shepard R. N., 962b]) showed a mono-
tone relationship between the experimental dissimilarities or similarities and
the distances in the configuration. Figure 2.5 shows the representation of a
monotone regression by displaying the relationship between NMDS ordination
distance and the original observed distance. Inspired by Shepard’s procedure,
Kruskal introduced the quality of the fit of the regression, called stress, which
measures how well that configuration matches the data, whereby the lowest
stress implies the best matches. The aim is therefore to find the solution with
the lowest possible stress configuration. An iterative procedure is applied un-
til an acceptable minimum stress value is found.

Kruskal provided some guidelines to interpret the stress value with respect
to the quality of the fit of the solution, which are shown in the Table 2.1.

One of the drawbacks of MDS is that it is slow, particularly for large
datasets. Another drawback is that MDS is a numerical optimization tech-
nique, so it can fail to find the true best solution because it can become stuck
on local minima, i.e. solutions that are not the best solution but that are
better than all nearby solutions.

2.2.3 Force Directed Placement (FDP)

The force directed placement algorithm (FDP) is a popular iterative method,
which is used for creating pleasing graphic layouts based on the spring model
as a physical system of rings and springs, in which the nodes are represented
by steel rings and the edges are springs between them. The basic idea is to
place vertices in some initial state and let the spring forces on the rings move

CHAPTER 2. RELATED WORK 14

the system to a minimal energy state [Eades P., 1984].

Figure 2.6: Illustration of attractive and repulsive forces and their sum versus
distance (taken from [Fruchterman T. M. J. & Reingold E. M., 1991])

According to [Fruchterman T. M. J. & Reingold E. M., 1991] in their formu-
lation of the algorithm, the vertices behave as atomic particles or celestial
bodies, exerting attractive and repulsive forces on one another; the forces in-
duce movement. The attractive forces are calculated only between neighbours
while the repulsive forces are calculated between every pair, whereby the sum
of the forces determines which direction a node should move. Figure 2.6 il-
lustrates these forces and their sum versus distance. The nodes are moved
iteratively until the nodes stop moving and the system reaches its minimal
energy state.

One of the advantages of FDP is the projection of multidimensional re-

CHAPTER 2. RELATED WORK 15

lationships into 2D or 3D. Another advantage of FDP is that it is inherently
incremental on a previously computed layout, which means that any modifi-
cation of the dataset can be smoothly assimilated into the old layout without
disrupting a whole landscape representation that the user has already famil-
iarized themselves with. Also, incremental computing requires only a fraction
of the full computation effort.

One of the drawbacks is that FDP is sensitive to becoming stuck at local
minima and having high computational complexity, in particular when the in-
volved dataset is too large. The main issue with the FDP algorithm is that it
does not scale very well and it requires quadric time for repulsive forces.

Optimization of an algorithm can be achieved by applying a grid-variant.
The algorithm divides the space into a grid of cells, and at each iteration each
vertex is placed in its grid cell and repulsive forces are computed only for the
nodes in the neighbouring cells.

2.3 Overview of Information Landscape Systems

2.3.1 Bead

Figure 2.7: A view from far above an ‘island’ of documents constructed by
Bead (taken from [Chalmers M., 1995])

The result of the initial Bead system is presented in Figure 2.7. The metric
was based on co-concurrency of words and on a simulated annealing tech-
nique. In an iterative process, similar documents were pulled towards each

CHAPTER 2. RELATED WORK 16

other while dissimilar documents that were close together were pushed away
from each other ([Chalmers M. & Chitson P., 1992], [Chalmers M., 1995]).

Initially, the work on the Bead system produced layouts of sets of docu-
ments using the metric of similarity or the metric of distances. The 3D point
cloud on which Bead worked was remodelled to create a corpus of documents
in the form of a landscape. The documents were represented by graphical
objects and were placed in the space; the objects were meshed together with
a polygon to make an island. Figure 2.8 illustrates the landscape of a Bead
system.

Figure 2.8: Dropping down closer to the landscape we can see individual doc-
uments as well as some artificial landmarks (the pole at the spatial origin, and
some distant islands) (taken from [Chalmers M., 1995])

In these landscapes, similar documents were placed close to each other.
A click of the mouse allowed the user to browse the individual documents
in detail. The possibilities for searching and browsing were put in place to

CHAPTER 2. RELATED WORK 17

build up a concept of what themes and clusters there were, and insight is
provided concerning where the various types of information could be found
([Chalmers M. & Chitson P., 1992], [Chalmers M., 1995])

The DIVE toolkit ([Fahlén L. E. et al., 1993]) was used for sharing a view
of a landscape with another user by showing the same landscape on the net-
work, so each user could see the other user moving around the landscape, and
changes in colour due to the word search resulted.

2.3.2 SPIRE

SPIRE1 [Thomas J. et al., 2001] is a software tool that was originally devel-
oped by the PNNL2 as part of an assignment from the U.S. Army MRMC3

to apply visualization concepts in a variety of areas of interest to the mili-
tary. SPIRE provides innovative visual tools and approaches to automatically
analyse large sets of textual documents such as technical reports, web data,
newswire feeds and message traffic. SPIRE characterizes each document in n-
dimensional vector space. The documents with n-dimensional feature vectors
are clustered and projected from higher dimension into the lower dimension
of 2D space. The projection in 2D is utilized to represent the data visually.
The two visual interactive tools that spire offers are Galaxy visualization and
ThemeView visualization.

Galaxy visualization uses the metaphor of the stars in the night sky, in
which each star represents an individual document and each cluster of stars
(galaxy) represents a cluster of topically related documents. Similar docu-
ments (stars) are placed near to each other in the galaxy (cluster), whereas
dissimilar documents are separated by large space. The distance between
the stars indicates their thematic similarity. The visualization provides an
overview of the entire dataset. The figure 2.9 shows an example of galaxy
visualization.

The ThemeView visualization employs the geographic landscape metaphor
as described in section (2.1.4) for conveying the main topics in a collection and
providing an overall sense of how the topics and documents are related to each
other. Hills and mountains emphasize the density of documents and topical
terms symbolically representing clusters of related documents – the higher
the peak, the higher the density of documents and topical terms. Colours
also show the density of documents and topical terms. The tops of peaks with

1Spatial Paradigm for Information Retrieval and Exploration
2Pacific Northwest National Laboratory
3Medical Research and Material Command

CHAPTER 2. RELATED WORK 18

Figure 2.9: In galaxy visualization, the documents are represented by dots
(stars), where each group of dots (stars) represents a cluster (galaxy) of simi-
lar documents (taken from [Endert A. et al., 2013])

a higher density of documents are represented with a bright yellow colour.
A moderate density of documents is represented by a red colour, whereas
the minimal density of documents is displayed in blue. Figure 2.2 shows a
representation of ThemeView visualization.

As discussed in Section 2.1.4 the documents of a collection often continu-
ously go through dynamic changes such as the adding, removing or modifica-
tion of documents in a collection, which has to be taken into account when
calculating the visualization and helping the user understand the changes
through visualization (i.e. via a morphing information landscape). SPIRE pro-
vides ThemeView with a "Time Slicer", in which changes are shown from one
slice and transitioning into the next slice. However, the users of SPIRE faced
change blindness issues, when they were using the Time Slicer as they found

CHAPTER 2. RELATED WORK 19

Figure 2.10: (taken from [Nowell L. et al., 2001]) Representation of ThemView
visualization

themselves unable to identify what had changed. This topic has been dis-
cussed in section 2.1.5.

SPIRE can be deployed as a web browser applet and it can also be installed
as a desktop application. Furthermore, it can handle real-time data, incorpo-
rating it very quickly into the equation ([vacommunity,], [SPIRE-PNNL,]).

2.3.3 VxInsight

VxInsight is a knowledge mining and visualization tool, which employs an intu-
itive landscape metaphor as described in Section 2.1.3. The system was built
by projecting analysed and clustered collections of text abstract information
into 2D space. VxInsight, which is similar to the SPIRE-Themeview offers a va-
riety of interactive features to explore and manipulate the landscapes as well
as ways to retrieve details on demand; this enables the user to get a quick and
powerful analysis of the resulting landscapes [Davidson G. S. et al., 1998].

VxInsight was successfully applied in work with the analysis of patent
databases [Boyack K. et al., 2000], and in the analysis of scientific and tech-

CHAPTER 2. RELATED WORK 20

Figure 2.11: Landscapes of patent class 360 for four different five-year time
periods (taken from [Boyack K. et al., 2000])

nological document sets [Boyack K. W. et al., 2002]. Figure 2.11 depicts the
landscape representation of patent databases.

2.3.4 Galaxy of News

Galaxy of News ([Rennison E., 1994]) creates and visualizes an association
network of relations between similar news articles. Galaxy of News illus-
trates the relationships between the articles in a three-dimensional informa-
tion space using dynamically constructed pyramidal structuring, zooming and
panning and animation. The aim of the tool is to provide the user a broad
understand of a news base and interactively let the user refine the details of
the information space for browsing and searching through large databases of
news articles. The construction of information space is processed automat-
ically based on relationships derived from the contents of the news articles
[Krista Lagus S. K. & Kohonen T.,]. The Figure 2.12 shows the architecture
of Galaxy of News. The Figure 2.13 shows the simplified version of associative

CHAPTER 2. RELATED WORK 21

relation network representation.

Figure 2.12: Galaxy of News the Architecture (taken from
[Rennison E., 1994])

Figure 2.13: Simplified Associative Relation Network Representation(taken
from [Rennison E., 1994])

CHAPTER 2. RELATED WORK 22

2.3.5 WEBSOM

WEBSOM [Samuel Kaski K. L. T. K., 1998] is a method to retrieve full-text in-
formation as well as explore the large textual document collections. The docu-
ment collections can be organized onto graphical map display for providing an
overview of document collection and facilitating interactively browsing possi-
bilities. Self-Organizing Map (SOM) [Kohonen T., 1997] algorithm is used to
create a document map based on the statistical analysis of relationships be-
tween the words of documents. Documents of similar content are positioned
close to each other on the document map, which forms a good basis for search
and exploration.

A basic view of a web-based WEBSOM interface is shown in Figure 2.14,
where in the descriptions of the screen captures are as follows: "(1) the whole
map, (2) the zoomed map, (3) the map node, and (4) the document view, pre-
sented in the order of increasing detail. Moving between the levels or to
neighboring areas on the same level is done by mouse clicks on the images
or on the document links. Once an interesting area on the map has been
found, exploring the related documents in the neighboring areas is simple"
[Krista Lagus S. K. & Kohonen T.,].

Figure 2.14: (taken from [Krista Lagus S. K. & Kohonen T.,]) WEBSOM user
interface

CHAPTER 2. RELATED WORK 23

2.3.6 Infosky

InfoSky ([Andrews K. et al., 2002], [Kienreich W. et al., 2003]) is a visualiza-
tion technique that combines a traditional tree representation with a novel
telescopic view of galaxies, helping the user to explore a large, hierarchically
organized document collection. InfoSky employs a planar graphical represen-
tation, which is similar to a real telescope, and therefore it can be panned and
zoomed to any magnification.

Figure 2.15: InfoSys the Visual Explorer (taken from
[Kienreich W. et al., 2003])

In an InfoSky galaxy, documents are represented as stars, whereby within
a collection, documents of similar content are displayed closer to each other
than documents with little similarity to one another. In that way, clusters of
stars are formed that represent similar documents. The collections are rep-
resented by areas (polygons) that surround other areas and stars, resembling

CHAPTER 2. RELATED WORK 24

the boundaries of constellations in the night sky. Again, collections with simi-
lar content are placed closer to each other. Access to both documents and col-
lections may be restricted according to assigned user rights, therefore some
areas (polygons) are displayed as black to a user due to insufficient access
rights for documents, which resemble dark nebulae in real galaxies. The tele-
scope is a metaphor for interacting with the visualization. The magnification
of telescope is variable, therefore a user can point the telescope at specific
objects and get an overview of the entire area, and there is also a "zoom" op-
eration that allows focusing on small details. To make the navigation simple, a
user has access to various tools so that the focused object can be displayed in
the optimal size. An integrated history function allows a user to easily navigate
back to previous views.

InfoSky follows the standard client-server model. The component on the
server side takes the documents, creates galaxy geometry and stores it for
a particular hierarchically structured document collection. The component
on the client side visualizes a subset of a galaxy and makes it explorable for
a specific user. Following this model, InfoSky is able to generate a galaxy
representation of millions of documents within a few hours as well as visualize
it in real time. The Figure 2.15 shows the user interface of InfoSky.

The generation of galaxy geometry is done recursively from top to bottom
in multiple steps:

1. A similarity placement algorithm (FDP) is used to position the centroids
of the sub-collections in a normalized 2D space at each level based on
their similarity to each other.

2. A geometric transformation is used for transforming the layout space to
a polygonal area of a parent collection.

3. For each sub-collection centroid, a polygonal area is calculated based on
the total number of documents and collections in the sub-collection. A
Voronoi diagram algorithm [Okabe A. et al., 2000] is used for partition-
ing the area of the parent collection.

4. Again, the similarity placement algorithm (FDP) is used to position doc-
uments of the collection as points, based on their similarity to vectors
document as well as collection centroids.

Another feature of InfoSky is the possibility for users to search for docu-
ments and collections by issuing a query. The matching documents and collec-
tions are highlighted in shades of yellow and the users can then examine them
in further detail (See Figure 2.16.

CHAPTER 2. RELATED WORK 25

Figure 2.16: Search results for “Virus” being displayed (red color as stars)
(taken from [Kienreich W. et al., 2003])

One of the disadvantages of InfoSky is that it requires an externally defined
hierarchy to generate the layout, which is not always available. One reason-
able solution to that problem is to automatically generate a topic hierarchy
[Muhr M. et al., 2010]. Sabol applied such an approach [?] by constructing a
topical hierarchy using recursive clustering from a large document collection.
The InfoSky projection algorithm is used to create an information landscape
visualization from a hierarchy for exploring and navigating the data.

2.3.7 Dynamic Topography Information Landscape

This Section discusses an incremental and scalable approach for visualizing a
a dynamic landscape as well as approaches to conveying changes. Further-
more, this section introduces algorithms for computing dynamic information

CHAPTER 2. RELATED WORK 26

landscapes. Additionally, this section presents an application on which the
approach was successfully tested.

Incremental and scalable approach in general

Static landscape visualizations cannot convey changes. [Sabol V. et al., 2010]
proposed the visualization of topical changes through information landscapes
with dynamic topographies and morphing.

As discussed in Section 2.1.4, when a collection of text documents changes
over time, e.g. documents are modified, new documents are added or old doc-
uments are removed, the overall topical structure and consequently the land-
scape topography change as well. Sabol [V. S. & Scharl A., 2008] describes
the transition of the landscape topography from an old to a new landscape,
taking the user perspective as well as the overall goal and performance in ac-
count. According to them, the transition of a landscape topography from an
old to a new temporal configuration have to be incremental and adaptive such
that no unnecessary changes are introduced in the topography. Furthermore,
they state taht the parts of the topography which were unaffected by the mod-
ification or are not part of observation in a selected timeslot should remain as
stable as possible with respect to their previous position and shape. In this
way, the user will be able to understand the modified topography immediately
due to the fact that the user has already become familiarized with preserved
elements of the topography. Additionally, the authors argued that to make the
user follow and understand the changes, the adaptive and incremental transi-
tions should be smoothly animated. To achieve the above-described behaviour,
a fast, incremental, scalable layout algorithm is required.

Algorithm for computing a dynamic topography information landscape

The force directed placement approach is one way to accomplish this; it ful-
fils the criteria of adaptive behaviour. The advantage of FDP is that FDP is
inherently incremental for a previously computed layout, which means that
any modification of a dataset can be smoothly assimilated into the old layout
without disrupting a whole landscape representation that the user has already
been familiarized with, and therefore FDP requires only a fraction of compu-
tation efforts for a full recomputation.

The incremental algorithm for computing dynamic information landscapes
contains the following five consecutive steps [Sabol V. et al., 2010]:

1. Document clustering: Topically related documents are clustered into

CHAPTER 2. RELATED WORK 27

groups using an incremental k-means algorithm.

2. Cluster positioning: A force-directed placement algorithm projects topi-
cal clusters into the 2D visualization space.

3. Document positioning: A similar method is used to project documents
into the 2D space depending on their topical similarity to the clusters.

4. Map rendering: An elevation matrix is computed to generate the land-
scape image.

5. Label computation: The most descriptive keywords are computed and
placed in the vacinity of peaks as labels.

Additionally, FDP scales very well in an optimized version [Sablol V., 2012],
where it is applied results of recursive clustering (i.e. cluster hierarchy).

Incremental computation

The initial landscape is computed by applying the algorithm to all of the doc-
uments in a dataset. The computed document layout positions are stored for
future use. When the dataset changes, the FDP algorithm is initialized with
previously computed and stored layout positions before another computation
is carried out. This crucial step is required because the FDP algorithm is very
sensitive to the initial configuration – otherwise the FDP algorithm will most
likely produce completely different results. The time complexity of the entire
process is O(n), it the number of the clusters in constant, which is the case ith
K-Means [Sabol V. et al., 2010].

Webrat

Webrat ([Sabol V. et al., 2002], [Granitzer M. et al., 2003]) was one of the first
incremental and dynamic systems, which employed an animated information
landscape supporting fully dynamic topography. The system visualized and
refined the search result sets. The matched documents of a query were dy-
namically clustered on the fly and visualized as an information landscape. The
thematic visual clusters were assembled, analysed and rendered in real time.
The system provided various interaction possibilities for exploring the visual-
ization, such as refining the queries by selecting from keywords of the visual
clusters. Figure 2.17 gives an example of an information landscape using the
Webrat system.

CHAPTER 2. RELATED WORK 28

Figure 2.17: The Webrat interface: global view (left), zooming in (top right),
context menu (bottom right) (taken from [Sabol V. et al., 2002])

Hierarchal Information Landscape

The concept of an hierarchical information landscape has been adapted
InfoSky (See Section 2.3.6). Sabol [Sablol V., 2012] introduced hierarchical
structures of a large "Flat" data set in the information landscape. It was
designed to interactively explore the relatedness between the documents and
clusters and as well as to navigate the information landscape according to
a hierarchy of topical clusters represented by nested polygonal areas. Each
polygonal area is labelled by the most descriptive terms, which summarizes
the content of the underlying documents and guides the user to explore
areas of interest. Incremental computation of the hierarchical layout is also
possible, as it relies on K-Means and FDP Algorithms.

A representation of a hierarchical information landscape is shown in Figure
2.18.

The information landscape allows the users to zoom in, pan, rotate and tilt
as well as manipulate the visual properties of the document. Furthermore, the

CHAPTER 2. RELATED WORK 29

Figure 2.18: An information landscape (taken from [Sablol V., 2012] showing
3,000 documents on ”terrorism" and providing an overview of the whole data
set in 10 topical clusters (polygonal areas); by clicking on the label (e.g. ”is-
real, palestinian, netanyahu"), the corresponding cluster is zoomed in and the
areas and labels of underlying clusters are shown (see Figure 2.19)

visualization allows the user to select documents individually or as clusters
as well as based on arbitrary subsets using a lasso tool. By zooming in on a
cluster, the corresponding sub-clusters are shown (See Figure 2.19), similarly
to the InfoSky system (See Section2.3.6). The information landscape is imple-
mented in Java, and for critical performance, 3D acceleration has been used
through a (JOGL) library that allows visualization of more than a million items
in real time on a standard PC with integrated graphics processing and 1GB of
main memory.

CHAPTER 2. RELATED WORK 30

Figure 2.19: A user can narrow the potential topic of interest by showing a
sub-cluster of a zoomed-in cluster (e.g. ”isreal, palestinian, netanyahu"). Sub-
Clusters are shown as nested voronoi areas within the area of their parent
clusters (taken from [Sablol V., 2012])

The hierarchical information landscape component was one visualization
of the VisTools Framework from KnowMiner ([Klieber W. et al.,]). KnowMiner
is a knowledge discovery framework for automatically extracting knowledge
from large, text document collections.

Reading through dynamic landscape metaphor

[Ulbrich E. et al., 2015] built an HTML5-based implementation of a dynamic
information landscape for presenting interactive metaphors, inspired by map
reading and visual transitions, which enhanced the landscape representation
for the analysis of topical changes in dynamic text repositories. Figure 2.20
illustrates the user interface with multiple views representing the testing en-

CHAPTER 2. RELATED WORK 31

Figure 2.20: (taken from [Ulbrich E. et al., 2015]) The user interface with mul-
tiple views

vironment.

The interactive metaphors for topic analysis included interactive morpho-
logical transitions, multiple views, trails and traces. Their study concentrated
on building and testing hypotheses using map-reading metaphors. The change
blindness phenomena, which occurs when the user does not notice major
changes as describe in section (2.1.5) was not part of their study. The in-
formation landscape has been integrated into a web browser using scalabe
vector graphics (SVG).

One of the drawbacks of rendering information landscape in SVG in com-
parison to WebGL is that two additional steps are required (i) extracting of
topic mountains by cutting these into contour levels and (ii) computing of
mappings between the corresponding contour lines for pairs of consecutive
landscapes in order to apply a smooth morphing in a later stage. In contrast to
SVG, WebGL requires only elevation maps.The second, and major, SVG draw-
back is performance.

Chapter 3

Morphing Information Landscape

This chapter introduces morphing landscapes, which still roughly match the
realistic natural environment in order to make the information landscape in-
tuitively understandable. The first section introduces all the required features
and aspects for developing an interactive information landscape using WebGL
and HTML5. The second section discusses the pipeline for processing a com-
plex and multidimensional dataset consisting of text documents and showing
in 3D space so that the information landscape can be visualized. The third
section gives an overview of the visual design of a morphing landscape. The
fourth section covers the overall interaction design and the UI of the applica-
tion.

3.1 General Concept

The concept is based on applying an information landscape for analysis of
real-word dynamic data, i.e. text documents of a collection, which typically
contain complex and multidimensional information. The main goal is to make
the collections of text documents logically understandable and explorable for
a user by providing an overview of the dataset, showing the relatedness and
topical distribution of datasets as well as visually showing how the topography
of documents of one period of time is changed to another span of time. This is
achieved by using the morphing concept of an information landscape for allow-
ing the user to grasp the dynamic changes in datasets in an understandable
way.

As was already discussed in Sections 2.1.3 and 2.1.4, an information land-
scape is a commonly used method of conveying topical relatedness and dy-
namic changes through spatial proximity in large, multidimensional and dy-

32

CHAPTER 3. MORPHING INFORMATION LANDSCAPE 33

namically changing datasets, such as a collection of text documents.

This section discusses all the features and aspects for developing an in-
teractive information landscape using WebGL and HTML5, which includes the
features for computing the layout of the information landscape, for creating in-
tuitively understandable visual design as well as for designing the interactions
by taking into account the following aspects: (i) view of the information land-
scape from different perspectives, (ii) selection of documents, (iii) interaction
related to morphing, (iv) exploration, filtering and navigation of documents
and (v) adjusting the configuration parameters of the information landscape
as desired.

3.1.1 Features for computing the layout of information

landscape

The layout of an information landscape first has to be computed by transform-
ing the complex and multidimensional text documents into 2D or 3D spatial
representations while preserving the original relationships in such a way that
similar items are positioned more closely together, while dissimilar items are
placed further apart. Hills emerge where the density of related documents is
high, indicating a topical cluster. Areas of higher elevation are labelled with
the most significant keywords from the underlying documents.

By changing the collection of text documents (e.g. adding new documents)
the overall topical structure and consequently the landscape topography is
changed as well. To help the user to follow and understand the changes,
the geometry of two landscapes are morphed using a smooth animation. In
this process of morphing, the hills and islands grow or shrink to indicate the
growth or decline of topic prevalence, and hills move towards or apart from
each other indicate topical convergence and divergence.The text-processing
pipeline developed by the Know-Center is used to compute the layout of the
landscape. The development of the text-processing pipeline is not part of this
master’s thesis – additional adaption had to be integrated to generate morph-
ing data from periodically organized documents of collection.

For building the use case scenarios for this master’s thesis, 489 available
papers that have been published by the Know-Center were organized tem-
porally in a separate folder. Furthermore, the pipeline takes the folder that
contains all the temporarily organized data in a folder as an input parameter
as well as a folder as an output parameter. The pipeline runs all the steps as
described in Sections (2.1.3 and 2.1.4) and generates the morphing data as a
JSON file for every period. Every JSON file contains the following extracted in-

CHAPTER 3. MORPHING INFORMATION LANDSCAPE 34

formation: (i) the location of documents, (ii) the height map for modelling the
information landscape, (iii) the peak-specific information (labels, locations),
(iv) a list of keywords including the frequency in the specific document. JSON
Files are loaded into the application in order to build an interactive informa-
tion landscape.

3.1.2 Visual Design Features

The first aspect that has to be considered is the designing and the creating of
an information landscape that roughly matches the real natural environment
in order to make the landscape more intuitively understandable. The height
map from the JSON file should be used to model the information landscape.
It is reasonable to involve the human interpretation of landscapes in the gen-
eration of a visual design of the landscape. A human sees a landscape as
different sets of layers, where a water texture defines the lowest points, with
sand, grass, rocks and snow textures as the height increases – such a repre-
sentation is technically called height-based texture mapping. WebGL provides
the possibility to run custom shading code on graphics hardware (GPU). The
efficiency of GPUs (i.e. graphics processing units) in manipulating computer
graphics, due to the highly parallel structure of their computations, should be
utilized in applying the height-based texture mapping method to each pixel of
landscape using the shading language (i.e. the fragment shader).

The peaks of related information from the JSON file (labels, locations)
should be used to place the labels above the peaks as legible and recogniz-
able text in the 3D environment of the information landscape. Furthermore,
the labels should always be readable, regardless the viewpoint of the user.

The documents should be placed in the 3D environment of the information
landscape according to the extracted information in the JSON file.

As discussed in Section 2.1.4, seamless and smooth animation is used to
help the user to follow and understand the changes by morphing the informa-
tion landscape into a new information landscape involving dynamic changes.
While generating the visual design of morphing, the fact that humans interpret
the height as different layers should be kept in mind. Furthermore, the effi-
ciency of the GPUs should again be utilized to manipulate the geometry of the
landscape using a shading language (i.e. a vertex shader) to create a smooth
3D accelerated morphing animation of landscape geometry. As discussed ear-
lier, the concept of morphing can elicit a change blindness problem, which
makes the user unable to identify what has changed. To counteract this, one
of the recommended methods from Novell (e.g. ‘using a wireframe in com-

CHAPTER 3. MORPHING INFORMATION LANDSCAPE 35

bination with changes in colour and translucency’) should be adapted in the
implementation in order to overcome such blindness phenomena as well as
to provide the users with better orientation in terms of emerging and van-
ishing topics. Furthermore, the animation should include the movement of
documents, indicated by drawing a line between the old position and the new
position for a document-based analysis of emergence of convergence and di-
vergence of topics.

3.1.3 Interaction Design Features

The interaction design for the information landscape should be developed by
grouping the interactions into the following five categories:

• Perspective category: Enables the users to interactively view the infor-
mation landscape from different perspectives, i.e. (i) rotate and tilt the
information landscape in any direction, (ii) pan the information land-
scape to reveal the information which was previously outside the dis-
played screen area, (iii) zoom in and out to view the information land-
scape in more or less detail.

• Selection category: Enables the users to select the documents individu-
ally, based on content and as well as based on their positions in the land-
scape, by using either the brush-based selection tool or the rectangle-
based selection tool. For selecting the documents based on their po-
sitions in the landscape, two selection tools should be available. The
brush-based selection tool should be implemented in WebGL by utiliz-
ing the efficiency of graphics processing units. The visual design of the
brush should imitate the effect of a torchlight or flashlight, i.e. a circle
that changes in size and shape based on height. Furthermore, it makes
sense to represent the selected data of interest in a logical arrangement
of keywords – a so-called tag cloud – which displays the keywords in
different sizes based on their prevalence in the selected content. As a
navigation tool, this concept helps the user to easily search the content
by selectiong keywords.

• Morphing category: Enables the users to load the temporal morphing
data processed by the text processing pipeline in the application and
represent it as executable buttons for triggering the morphing in the
form of smooth animation.

• Data exploration, filtering and navigation category: Provides the users

CHAPTER 3. MORPHING INFORMATION LANDSCAPE 36

with possibilities to explore the selected data as well as filter and navi-
gate through the data.

• Settings category: Provides the users with the following basic possibili-
ties to adjust the information landscape according to their desired setup:
(i) adjust the brightness and opacity of the information landscape, (ii)
change the colour and size of the brush-based selection tool, (iii) change
the design of the information landscape, (iv) set the timespan of ani-
mation of morphing and (v) set the height scaling (linear, square root,
squared and logarithmic). The selected option should be applied to the
information landscape with immediate effect. In cases in which mor-
phing is running and the user has applied one of the above-mentioned
options, the morphing should not be hindered.

3.2 Computation of the Landscape Layout

As discussed in chapter 2.2, the landscape layout requires the positioning of
documents in 2D or 3D space in such a way that similar documents are po-
sitioned closer together, while dissimilar documents are placed further apart.
The real challenge is that the datasets are complex and multidimensional.
This section describes the text-processing pipeline for computing information
landscape layouts as well as a process for computing information landscape
layouts with dynamically changing datasets. The general approach presents
all the steps needed to compute the layout of a landscape, beginning with
the process of transforming the complex and multidimensional text dataset
into 2D space while preserving the original relationships as much as possible,
followed by computation of a height map and labels.

3.2.1 Text Processing Pipeline

The figure 3.1 depicts the overall the text processing workflow in following six
steps:

1. NLP feature engineering: A vectorization process is applied to a col-
lection of text documents to turn them into numerical feature vectors
containing terms and their frequencies. Before the vectorization process
is applied to a collection of text documents, a data cleaning process is
carried out on the collection of text documents, which removes features
(i.e. stopwords) from the text of the document that have little or no sig-
nificance.

CHAPTER 3. MORPHING INFORMATION LANDSCAPE 37

Figure 3.1: Representation of workflow for (i) projecting complex, high dimen-
sional documents into 2D space, (ii) computing a height map and labels

2. Similarity metrics: The cosine similarity calculates the similarity of two
document vectors by measuring the cosine of the angle between two
vectors. The result of this process is a similarity matrix in which the
similarity of each pair of documents is in the range of 0 to 1 – a value
closer to 0 indicates less similarity, and for a value closer to 1 there is
greater similarity.

3. Projection: A force-directed algorithm (see Section 2.2.3) is used to
project a multidimensional dataset into 2D space in an iterative process.
The algorithm requires a similarity matrix and the initial position of the
documents for computing.

4. Computing the height map: In this process a height map is computed,
which represents the information landscape model. As mentioned in Sec-
tion 2.1.3, hills emerge where the density of related documents is high.

CHAPTER 3. MORPHING INFORMATION LANDSCAPE 38

Thus, the factor of how dense the documents are positioned together is
a value that is used to calculate the height map.

5. Computing labels: The computation of labels consists of two steps. In the
first step the locations, heights and related documents for each peak are
identified. In the next step, the most significant and descriptive labels
are calculated from the list of documents in relation to a peak.

After completion of the six-step workflow, the following extracted informa-
tion should be known: (i) the location of documents, (ii) the height map for
modelling the information landscape, (iii) the peak-specific information (la-
bels, locations, a list of documents related to each peak), (iv) a list of keywords
along with their frequency in each document. All of the extracted information
is used to visualize the interactive landscape using WebGL and a tag cloud.

3.2.2 Morphing Layout Generation

As discussed in Section 2.1.4, when a collection of text documents changes
the overall topical structure, the landscape topography consequently also
changes.

An incremental and adaptive method is used to convey the changes through
spatial proximity in the visualization by applying a transition of the landscape
topography from an old to a new landscape. The FDP approach, as described
in Section (2.2.3), fulfils the criteria of incremental and adaptive behaviour.
One of the advantages of FDP is that it is inherently incremental for a pre-
viously computed layout, and therefore any modification of a dataset can be
smoothly assimilated into the old layout without disrupting a whole landscape.
Figure 3.2 illustrates the overall workflow.

The initial landscape is computed normally, as described in Section 3.2.1,
whereby the computed layout positions of the documents are stored for future
use. When the dataset changes (e.g. a document is added, removed or mod-
ified) the layout of the information landscape is computed following all the
steps described in the previous section, except a change in the FDP algorithm
before computation is applied. The FDP algorithm is initialized with the pre-
viously computed and stored layout positions. This step is required because
the FDP algorithm is very sensitive to the initial configuration; otherwise, the
FDP algorithm will most likely produce completely different layouts.

To allow the user to follow and understand the changes, the initial infor-
mation landscape is seamlessly morphed into a new information landscape
containing dynamic changes using smooth animation.

CHAPTER 3. MORPHING INFORMATION LANDSCAPE 39

Figure 3.2: Representation of a workflow for producing a landscape layout
with dynamic changes by applying an incremental method

3.3 Visual Design

The information landscape employs a geographic landscape metaphor. Repre-
senting the data as visualizations of natural landforms that imitate the natural
environment, it will be easier and more intuitive for a user to interpret the
visualization. The more the information landscape resembles the natural en-
vironment, the more useful the visualization. Thus, the goal is to create a
landscape in a way that roughly looks like what a real natural environment
might look like. This section consists of five subsections. The first subsec-
tion explains the general approach to generating the visual design of an in-
formation landscape that roughly matches the real natural environment. The

CHAPTER 3. MORPHING INFORMATION LANDSCAPE 40

second and third subsections cover the general and visual representation of
documents and peak labels. The fourth section introduces the visual design of
using a brush for selecting documents. The last section describes the visual
concepts of morphing.

3.3.1 Visual Design of Landscape

A human user interprets the landscape using different layers as follow: the
bottom layer is seen as a sea, the next upper layer is seen as a motion of a
wave hitting the coast, the layers in the middle part viewed as sand followed
by a grass layer. The top layers are rocks followed by snow.

Representing the information landscape as a visualization in layers is ac-
tually a technique called height-based texture mapping. A texture shown in
Figure 3.3 is chosen depending on the height at that part of the information
landscape.

Figure 3.3: The layer set in height-mapped texture mapping

The efficient and highly parallel structure of computations carried out by
graphic processing units are used to apply the height-based texture mapping
method to each pixel of landscape using the shading language (i.e. the frag-
ment shader).

The first representation of an information landscape applying height-based
texture method in a fragment shader is displayed in Figure 3.4, which shows
the water texture as the lowest points, with sand, grass, rock and snow tex-
tures as the height increases. What is noticeable is that information landscape
does not look very realistic due to the fact that no blending is applied between
the layers. To produce a landscape with a more realistic look, a simple blend-
ing method using linear interpolation is applied between the two textures over
a small area around the height layer boundary. The result with applied blend-
ing can be seen in Figure 3.5. Full details of the exact implementation are
provided in Section 4.3.

CHAPTER 3. MORPHING INFORMATION LANDSCAPE 41

Figure 3.4: Representation of an information landscape using the height-
mapped texture mapping method

Figure 3.5: Representation of an information landscape with blending

3.3.2 Visual Concept of Documents

Two concepts have been considered for generating the visual representation
of documents in the landscape. The first intention was to imitate the natural
environment and represent the documents as trees in the information land-
scape. One of the drawbacks of this concept is that the trees will overlap due

CHAPTER 3. MORPHING INFORMATION LANDSCAPE 42

the natural way that the projection places similar documents together, such
that the original shape of the tree will not be recognizable. Instead, the doc-
uments are represented as dots. Another aspect is that the visual representa-
tion of document should be easily scalable and adaptable based on the needs
of the application or the type of information that the document is representing
(See Figure 3.6).

3.3.3 Visual Concept of Labels

The labels describe the underliving documents of a cluster (peak). The labels
are placed above the peak as legible and recognizable text. It is not enough
to only have one label describing all the underlining documents (i.e. in a
cluster), therefore it is reasonable to have at least two labels for describing
each cluster, and it also would be sensible to place the labels stacked over
each other in the 3D environment, instead of placing them in one line due to
the issue of overlaps with other peak labels. Furthermore, an orientation line
between the peak and stacked labels should be rendered such that users can
immediately see which stacked labels belong to which peak.

Another aspect that has to be considered in the generation of visual label
design is making the labels reactive, so whenever the user tilts or rotates
the landscape, the labels adapt their orientation accordingly to always being
readable (See Figure 3.6).

3.3.4 Visual Brush Concept

The general concept behind adding a brush is to interactively select the doc-
uments from the visual representation, whereby the formation of the visual
design of the brush in a 3D environment requires the adaptation of an addi-
tional dimension of height. The visual design of the brush imitates the effect of
a torchlight (i.e. a flashlight) as a circle with the ability to adapt its form to the
height. Once activated, the brush follows the mouse and adapts in shape ac-
cording to the elevation. Users have the possibility to set the size of the brush
in the settings or through the use of a combination of keys on the keyboard.
Furthermore, it would make sense to provide the possibility for changing the
colour of the brush in the settings to make the brush stand out from the se-
lected design of the information landscape. 3.6 illustrates the functionality of
the brush as a selection tool. Section 4.3 describes the full implementation in
detail.

CHAPTER 3. MORPHING INFORMATION LANDSCAPE 43

Figure 3.6: Information landscape with following rendered items: (i) brush as
selection tool, (ii) documents displayed as cubes and (iii) stacked labels with
orientation lines between peaks and labels.

3.3.5 Visual Concept of Morphing

This section discusses the overall concept of morphing by considering the fol-
lowing four concepts: (i) top-down and bottom-up approaches that make the
visual design of morphing more understandable and easy to follow, (ii) intro-
duction of an adapted method for a solution to the blindness problem and for
better orientation for emerging and vanishing topics, (iii) utilization of opacity
in the formation of visual itmes and (iv) analysis of the documents present in
both information landscapes.

Top-down and bottom-up approach

As described in Section 3.3.1, a person interprets the height of a landscape
using different sets of layers as textures. While generating the visual design
of morphing, this aspect has to be considered when attempting to make the

CHAPTER 3. MORPHING INFORMATION LANDSCAPE 44

transition understandable, easy to follow and clearly visible. The morphing of
a fading topic, which may cause islands and hills to disappear, will simulate
the top-down approach in which the top layers of texture will disappear first
and then the lower layers. In contrast, the morphing of new topics, which
causes new islands to appear, will follow the bottom-up approach in which the
bottom layers of texture will appear first then the upper layers.

As described in Section 3.3.1, a shading language (i.e. a fragment shader)
is a method used to apply height-based texture mapping to each pixel of land-
scape, which means that the code of the fragment shader does not require any
other extension for morphing, however the height of every pixel has to be up-
dated accordingly during the process of morphing before the fragment shader
is executed. Therefore, the shading language (i.e. the vertex shader) is used
to manipulate the geometry of the landscape. Depending on the structure of
the GPU, the vertex shader may be executed before the fragment shader. How
often the height of every pixel has to be updated depends on the duration of
morphing and the frame rate. Figure 3.7 simulates the fading of a topic as a
sequence.

Figure 3.7: Simulation of a fading topic, which causes islands and hills to
disappear

CHAPTER 3. MORPHING INFORMATION LANDSCAPE 45

Adapted method to solve change blindness problem

Another aspect that has to be considered is that the concept of morphing can
run into a change blindness problem, which makes users unable to identify
the changes.

As discussed in the Section 2.1.5 Nowell proposed two criteria to solve
the change blindness problem: (i) the user should be able to see where the
new landscape contours will be while the old contours are still visible, and (ii)
at any point during the change, the user should be able to determine which
landscape contours are emerging and which are vanishing. One of the recom-
mended solutions for change blindness was the use of a wireframe in combi-
nation with changes in colour and translucency.

A similarly method should be implemented to overcome the blindness phe-
nomena as well as to give improve user orientation in terms of emerging and
vanishing topics. The basic idea of morphing is to move the height values
(z-properties) of the old landscape towards the height values of the new land-
scape in a seamless and smooth animation. As soon as the animation of mor-
phing begins, a mesh containing the height map of the new landscape styled
as a wireframe is added to the scene, indicating beforehand where the top-
ics are going to emerge. The height values (z-properties) of the landscape
will move towards the height values of the mesh landscape in a seamless and
smooth animation in order to show the emergence of new topics as well as the
fading of topics. As soon the animation ends, the added mesh wireframe will
be removed from the scene, and at same time same new mesh containing the
height map of the old landscape, in the form of a wireframe, is added to the
scene to indicate to the users what topics have vanished.

Utilization of opacity in the design of visual concepts

A new landscape will most probably have new documents and new labels, and
therefore there will be an orientation line between the label and peak. Their
emergence can be shown by adding them to the scene and increasing their
opacity from an initial value of zero toward an opacity value of one. Similarly,
documents, labels and orientation lines that are not part of the new landscape
can be shown by decreasing their opacity from initial value of one toward an
opacity value of zero, i.e. they fade away. After the animation, all fading items
will be entirely removed from the scene.

CHAPTER 3. MORPHING INFORMATION LANDSCAPE 46

Figure 3.8: Morphing animation: (top-left) beginning phase where a new land-
scape is shown as a wireframe, (top-right) on-going animation phase, (bottom-
left) after the animation phase, the old landscape briefly shown as a wire-
frame, and (bottom-right) new landscape after completion of the morphing
process

Analysis of documents present in both information landscapes

The basic idea behind this concept is to show the users how the documents
that are part of the old as well as of the new landscape contributed in the for-
mation of new topics as well as in the convergence and divergence of topics.
Therefore, the animation should include the movement of documents, indi-
cated by drawing a tracing line between the old position and the new position.

Figure 3.8 simulates the morphing animation by taking into account the
above-mentioned four concepts, with tracing lines visible on bottom-left.

The full description of morphing implementation is given in Section 4.3.6.

3.4 Interaction Design

The interaction design concept consists of five categories: (i) perspective cat-
egory, (ii) selection category, (iii) morphing category, (iv) data exploration,
filtering and navigation category and (v) setting category.

CHAPTER 3. MORPHING INFORMATION LANDSCAPE 47

3.4.1 Perspective Category

The perspective category enables the user to view the landscape from differ-
ent perspectives and offers the following possibilities for interaction:

• Zoom: The view in the information landscape can be zoomed in to view
the focused area in more detail, while in contrast the view of the land-
scape can be zoomed out to display more area, possibly in less detail, in
order to provide a view of a bigger section of the landscape and more
general information. A user can zoom in and out using the mouse scroll
wheel.

• Panning: The user can perform the panning operation by clicking on the
right mouse button, holding it and dragging the whole information land-
scape in the desired orientation in order to move the point of view and
reveal the information which was previously outside the displayed screen
area. Another way to perform the panning operation is by using the ar-
row buttons on the keyboard. When performing the panning operation,
the level of zoom remains unchanged.

• Rotation and tilting: The information landscape can be tilted in any di-
rection. The operation can be used to rotate the landscape too. The user
keeps the control-button pressed and drags the area in the direction in
which the landscape is to be tilted or rotated. The effect of rotation or
tilting is based on the distance covered from the start of dragging and to
end of dragging.

3.4.2 Selection Category

The selection category enables the user to choose one or multiple displayed
items so that further operations can be performed on the selected data. By
hovering the mouse over the document, a tool tip is shown to provide the user
with the following details: (i) title of document, (ii) author of the document
and (iii) the name of the conference. The tool tip fades away once the user
moves the mouse out of the document. There are four ways to select one or
multiple documents.

• The user can select a document just by clicking on it, and the document
can be deselected by clicking on it once again.

• The second method of selection for documents is to make use of the rect-
angle selection tool. To do this, users have to click the shift button first,

CHAPTER 3. MORPHING INFORMATION LANDSCAPE 48

hold it down and click the right mouse button, then hold and drag the
mouse to the position of the diagonally opposite corner. Users will imme-
diately be shown the documents within the selection tool as highlighted.
Once the user releases the mouse, the documents within the selection
tool will be selected and the rectangular selection tool will vanish.

• The third way to interactively select the documents from the information
landscape is by using the brush selection tool. By clicking the “brush”
button in the menu bar, the brush-based selection tool will be activated.
Once the brush tool has been activated, it will follow the mouse and adapt
its shape according to the elevation. The documents that are within the
brush will be highlighted, and by clicking on the brush documents within
the brush, they will be selected. Similarly, by clicking once again on the
brush, a deselecting of documents will be performed. Users have the
possibility to set the size of the brush by using the slider in the settings
menu or by using the mouse wheel while holding down the shift key. The
brush-based selection tool can be deactivated by clicking on “brush” in
the menu bar or by pressing the escape key on the keyboard.

• The fourth way to select documents is with a click on a label of a peak,
and the documents that contain the label will be selected. By clicking
on the labels again, the associated documents will be deselected. This
functionality can be disabled in the menu bar. The labels are designed
to be reactive by adapting their respective positions and being always
readable for the users whenever the landscape is rotated, panned or
tilted.

All the documents can be removed from the selection by clicking in an
empty space of the information landscape.

3.4.3 Morphing Category

By clicking on the button “open” in the menu bar, a pop-up dialog appears to
enable users to select the temporal morphing data, that should be loaded in
the application. After confirming the dialog window, the morphing data are
read. The morphing data of a period is represented by a set of actions in
the form of an executable button. By clicking on the executable button, the
current state of the information landscape will be morphed into a new state,
belonging to a period associated with the executable button, using smooth
animation.

CHAPTER 3. MORPHING INFORMATION LANDSCAPE 49

3.4.4 Data Exploration, Filtering and Navigation Category

A user can explore the data by selecting the document as described in Section
(3.4.2). The tag cloud is used to provide an overview of the selected docu-
ments by displaying the keywords in different sizes based on their relevancy
in the selected content. Furthermore, an overview of the whole dataset is pro-
vided when nothing has been selected. Additionally, by hovering the mouse
over a keyword in the tag cloud, the documents that contain the keyword are
highlighted in the landscape.

Another way to explore and filter the documents is to select the documents
first and then click the right mouse button in the landscape. A draggable pop-
up window is displayed which contains the following displayed elements (see
Figure 3.9): (i) the selected documents as a list, (ii) most relevant keywords
of the selected documents, (iii) a selection box containing two operators (OR
and AND) and (iv) a search field to filter the documents. A user has the pos-
sibility to filter the documents by selecting multiple keywords. Depending on
which operator is selected in the selection box, the documents that contain all
the selected keywords or any of the selected keywords are highlighted in the
landscape. Additionally, the search field includes automatic suggestion func-
tionality. As soon as the user types in the search field, the keywords that are
parts of the selected corpus (documents) are suggested to the users. Once
the user selects one of the suggested keywords, the corresponding documents
that contain the selected keyword will be filtered.

3.4.5 Setting a Category

The following settings are provided to the users to adjust the information land-
scape according to their desired setup.

• Changing the size of the brush-selection tool using the slider as well as
changing the colour of the brush by clicking on the colour picker tool and
selecting a colour from the palette.

• Setting the timespan for the smooth animation of morphing using the
slider

• Adjusting the brightness and opacity of information landscape using slid-
ers

• Changing the design of the information landscape by selecting the design
from a selection box, available design are: island as default, earthy and
greeny.

CHAPTER 3. MORPHING INFORMATION LANDSCAPE 50

Figure 3.9: A draggable pop-up window with the following elements displayed
(i) the selected documents as a list, (ii) the most relevant keywords of the
selected documents, (iii) a selection box containing two operators (OR and
AND) and (iv) a search field to filter the documents

• Setting the type of density of height scaling from a selection box, wherein
the following types of scales are provided to users: linear, square root,
squared and logarithmic

• Enabling or disabling the selection of labels in the information landscape
by selecting or deselecting a checkbox

Chapter 4

Implementation

This chapter presents the implementation of the interactive scalable informa-
tion landscape visualization in detail. The first section provides an overview
of the used programming languages and technologies, including their general
purpose, advantages and drawbacks. The second section introduces the soft-
ware architecture of the application. The last section presents the details of
the core parts of the implementation.

4.1 Programming Languages and Technologies

HTML5 and CSS3 have been used to structure and design the layout of the
information landscape on a website. To render the information landscape
as an interactive 3D and 2D image within a browser, the JavaScript WebGL
API has been used. Furthermore, the shading languages of the GPU (vertex
shader and fragment shader) have been employed to utilize the efficient
parallel computing of GPUs for creating information landscapes that mirror a
realistic natural environment.

The following scripting languages and JavaScript libraries have been used:

• ECMASCRIPT(ES6) 1, a scripting language specification standardized by
Ecma International

• Jquery library 2

1https://www.ecma-international.org/
2https://jquery.com

51

https://www.ecma-international.org/
https://jquery.com

CHAPTER 4. IMPLEMENTATION 52

• D3.js visualzation library3

• Three.js 3D rendering library 4

This section moreover provides a short overview of the technologies used,
which includes WebGL, GPU and Three.js library.

4.1.1 WebGL

WebGL is a fully standardized JavaScript API based on OpenGL ES, which
provides access to hardware-accelerated 3D rendering of interactive 3D and
2D graphics within any compatible web browser, moreover without the use of
any plug-ins. The advantages of WebGL in terms of information landscapes
are the following:

• Requires only an height map to render an information landscape, in con-
trast to a SVG solution as described in Section 2.1.3, which requires two
additional steps for properly rendering information landscapes and ap-
plying smooth morphing animation.

• Offers various interactions like zoom, rotation and tilt for viewing data
from different perspectives in 3D.

• Provides possibilities to run custom written shader code on graphics
hardware in order to create landscapes that match the realistic natu-
ral environment as well as smooth 3D accelerated morphing animation
of landscape geometry

• Allows applying textures to 3D objects

4.1.2 GPU

GPUs (i.e. graphics processing units) are more efficient at manipulating com-
puter graphics due to the highly parallel structure of their computations. Fig-
ure 4.1 shows the basic structure of a GPU. Shaders are pieces of code that
run on the GPU and also reside within the unit. Two of these shaders are
the vertex shader and the fragment shader. The vertex shader manipulates
the received attribute data and provides the output to the fragment shader,
while the fragment shader assigns a colour to every fragment. The following
variables are available for shaders:

3https://d3js.org
4https://threejs.org

https://d3js.org
https://threejs.org

CHAPTER 4. IMPLEMENTATION 53

• Uniforms: Uniforms variables are sent to vertex shaders as well as to
fragment shaders. The values of uniform variables stays the same across
the entire frame.

• Attributes: Attributes are values that are provided per vertex and are
only available for the vertex shader.

• Varyings: Varying variables are declared and manipulated in the vertex
shader; they can be shared with the fragment shader, whereby the type
and name of the varying variables should be the same in both shaders

• Textures: Textures are only received by fragment shaders

Figure 4.1: Structure of a GPU

4.1.3 Three.js

Three.js is a popular JavaScript framework that uses WebGL for creating
and displaying interactive animated 3D computer graphics within the web
browser. Every application that is based on the three.js library must have
following basic components:

• Scene: a container for storing and keeping track of all the rendered
objects

• Camera: defines the view based on its position when the scene is ren-
dered

CHAPTER 4. IMPLEMENTATION 54

• Renderer: takes the camera angle into account when displaying the
scene in the browser

The optional component of three.js called OrbitControls allows the use of
the mouse to easily move, pan and zoom around the scene.

The reasons why Three.js library was chosen is because the library is easy
to use, it is very stable, it has a large community, it allows one to run custom
shading code on hardware graphics processors and it has various builds in
terms of features, especially for constructing interactions.

In three.js application, a global function window.requestAnimationFrame
is used to perform any updates of the scene before a new frame is rendered.
The exact definition of the function window.requestAnimationFrame is as fol-
lows: “The window.requestAnimationFrame method tells the browser that you
wish to perform an animation and requests that the browser call a specified
function to update an animation before the next repaint. The method takes a
callback as an argument to be invoked before the repaint"5.

4.2 Software Architecture of the Application

The overall structure of the workflow can be divided into three parts: (i) ini-
tialization stage, (ii) rendering stage and (iii) updating stage

4.2.1 Initialization Stage

In the initialization stage, the application initializes the module landscape, the
purpose of which is to handle the whole application. The module landscape
creates all the required basic components of three.js with initial configura-
tions, which includes scene, renderer, camera and controller, whereby the
component controller is used as an optional component for supporting the for-
mation in terms of functionality, e.g. moving, panning and zooming around
the scene. Furthermore, the user interface is set up for handling the events
related to the settings. Additionally, five others modules are created in the ini-
tial stage: (i) the “TagCloud” to give an overview of the selected documents,
(ii) the “ToolTip” to show the basic information of a selected document in a
tool tip, (iii) the “TraceLine” to help the users understand how the documents
in the initial state of the information landscape have moved to another posi-
tion in the next state of the information landscape, which is shown by drawing

5https://developer.mozilla.org/en-US/docs/Web/API/window/requestAnimationFrame

CHAPTER 4. IMPLEMENTATION 55

tracing lines between the two positions during the morphing phase, (iv) the
“DocumentSelection” to display the selected documents in a pop-up window
as a list, thus providing for exploration, filtering and navigation, (v) the “Rect-
angleSelection” to enable the free rectangle-based selection tool.

After the initialization stage, the application is set up to render the in-
formation landscape with the extracted data. Figure 4.2 illustrates all the
processing sequences of the initial stage.

Figure 4.2: Software architecture of the application with initialization stage
representation

4.2.2 Rendering stage

As described in Section 3.2.1, the text-processing pipeline and layout com-
putation delivers the following data: (i) the height map, (ii) the location of
documents, (iii) the peak-related information (i.e. locations, labels), (iv) a list
of keywords in the document, including their frequency. The rendering stage
converts the extracted data into 3D objects, positions them according to their
computed locations and adds them into the scene, whereby the 3D objects,
which model the information landscape, are linked with shader code in order
to execute their processing on the graphics hardware (GPU). Furthermore,
the list of keywords and their frequency is used to build an interactive tag
cloud that gives an overview of the selected dataset, whereas an overview of
the entire dataset is given when nothing has been selected.

4.2.3 Updating stage

Section 4.1.3 described the global method window.requestAnimationFrame. It
takes a callback as an argument to be invoked before a new frame is rendered.

CHAPTER 4. IMPLEMENTATION 56

Figure 4.3: The overall software architecture of the application

In this application, the startRenderLoop method of the main module is used as
callback argument for the requestinAnimationFrame method, which calls the
update method of the landscape module to update all the changes before a
new frame is rendered. How often the starRenderLoop is to be called depends
on the frame rate of the browser and the computer, but typically it is 60fps.
Synced by the GPU, the animation should be very smooth. Figure 4.3 depicts
the overall workflow of the updating stage.

4.3 Core Details of the Implementation

This section describes the core parts of the implementation in detail. It begins
by introducing all the steps that are required to create a 3D object success-
fully using the three.js library. Then the basic concept of creating information
landscapes in 3D using the three.js library is provided. Furthermore, the most
relevant shader-based implementations are described in detail, which includes
the setup of information landscapes for shaders, the scaling and morphing of
information landscapes and the implementation of the height-based texture
mapping method. Moreover, the details about selecting data of interest and

CHAPTER 4. IMPLEMENTATION 57

realizing perspective-based interactions are given in the final part of this sec-
tion.

4.3.1 Steps for creating 3D objects using three.js

To create a 3D object in the scene of a three.js library, the following four steps
are required:

• Create the geometry of the 3D object

• Create a material to define the look of the 3D object

• Combine the geometry and material into a mesh

• Add the mesh to the scene

4.3.2 Creating 3D information landscapes using three.js

The three.js library provides some geometries that result in a two-dimensional
mesh. PlaneGeometry is one of them; it can be used to create a two-
dimensional rectangle. The creation of PlaneGeometry requires four
parameters: the first parameter is the width, the second parameter is the
height, and third and the fourth parameters are used to divide the width and
the height into segments. The size of the segments has to be equal to the size
of the extracted height map.

To make the information landscape appear as 3D, two PlaneGeometries are
created. In one PlaneGeometry, the z-property of the vertices are filled with
computed height map values, whereas in another PlaneGeometry, z-properties
of the boundaries (the first row, the first column, the last row and the last col-
umn) are filled with corresponding values from the height map, whileother
z-properties of vertices are filled with zeros. With the exception of the geome-
tries, every other configuration must be kept same for both PlaneGeometries.

Once both PlaneGeometries are added as meshes in the scene, the meshes
appear as a combined 3D information landscape in the final result. The figure
4.4 below explains the approach visually.

PlaneBufferGeometry is a low memory alternative for PlaneGeometry. It
is much faster and requires less memory. The geometry is more flexible and
allows one to perform certain operations with greater ease. The PlaneBuffer-
Geometry is ideal for running the related shader code on the GPU.

CHAPTER 4. IMPLEMENTATION 58

Figure 4.4: The first picture (left) shows the result of PlaneGeometry contain-
ing the whole computed height map, the second picture (middle) shows the
PlaneGeometry containing computed height map values on the boundaries,
the last picture (right) displays both PlanGeometries combined.

4.3.3 Information landscape setup for shaders

The height map contains a data set that is not normalized; it has to be nor-
malized between 0 and 1 in order to ease the process of scaling the whole
information landscape between 0 and the optimal maximum height. The fol-
lowing procedure is required to set up the information landscape as a mesh
for shaders: Figure 4.5 shows all the uniforms (i.e. uniform values) that are
passed to the shader.

• The first step is to create a geometry of the information landscape. The
three.js library provides a suitable geometry object called PlaneBuffer-
Geometry – the data structure more directly maps to how data is used
in the shader program (i.e. a vertex shader). A BufferAttribute of a po-
sition called by PlaneBufferGeometry is created with z-properties that
are filled with normalized height map values. Additionally, with the same
size, a BufferAttribute object named displacement is created with zeros
values and attached to the PlaneBufferGeometry – this is used for morph-
ing the landscapes with vertex shaders. The BufferAttribue object stores
the data for an attribute and can be used directly in the shader code.

• In the next step, material that defines the look of an information land-
scape is created. The three.js library provides a custom shader called
ShaderMaterial, which runs on the GPU. ShaderMaterial requires the

CHAPTER 4. IMPLEMENTATION 59

Figure 4.5: Representation of all uniforms passed to the shader

uniform values, the code of vertex shader and the code of fragement
shader as inputs. All the uniform values that are relevant to both the
vertex shader and the fragment shader are passed once in ShaderMate-
rial. The uniform values are used directly in the shader code. Hence, if
a uniform value changes, so does the overall calculation in the shader.
This property can be used to include user input and perform specific
behaviour in the shader.

• Next, the PlaneBufferGeometry and the ShaderMaterial are combined
into a mesh.

CHAPTER 4. IMPLEMENTATION 60

• In the last step, the combined mesh is added into a scene.

The DefaultHeightmap and BoundryHeightmap modules implement the above-
mentioned procedure to create two meshes containing different geometries
that incorporate the previously defined criteria for giving the landscape a 3D
look. The DefaulHeightmap creates a mesh containing the entire extracted
height map, while the BoundryHeightmap module creates a mesh containing
only the boundary values from the extracted height map.

Both meshes share the same uniform values stored in the HeighmapUni-
form module, therefore a change in a uniform value will affect the both meshes
in the shader code. Nonetheless, the shaders of both meshes will work inde-
pendently even if they share the same piece of code.

4.3.4 Vertex shader: scale the information landscape

A range slider is used to provide the user with the option to set the maximum
height of the information landscape. As the user moves the slider with the
mouse, the information landscape is rendered with a new scaled geometry
between 0 and the maximum height value. The following actions are executed
once the range of the mouse slider changes:

• The uniform value "u_scale", which is stored in HeightmapUniform and
is linked with the shader code, is updated with the new maximum height.

• A signal is sent so that the height of all documents and all labels can be
scaled accordingly.

The GPU hardware runs multiple instances of a vertex shader simultaneously,
and the code in a vertex shader is executed once per vertex. As described
in the previous section, two attributes named position and displacement are
passed to the vertex shader. They are used along with the uniform value
"u_scale" to perform scaling by executing the following steps:

• In the vertex shader, a varying variable named "vPosition" is created,
which is shared with the fragment shader such that the height-based
texture mapping method can be applied to each pixel by taking the new
scaled height into consideration.

• The attribute position, which contains the extracted height map in z-
property, is assigned to the varying variable "vPosition".

CHAPTER 4. IMPLEMENTATION 61

The z-property of variable "vPosition" is multiplied by uniform value
"u_scale" and the result is stored in z-property of "vPosition". This snippet of
code includes all the steps for scaling.

1 attribute float displacement;

2 uniform float u_scale;

3 varying vec3 vPosition;

4

5 void main(void) {

6 vPosition = position;

7 vPosition.z = vPosition.z*u_scale;

8 .

9 .

10 gl_Position = projectionMatrix * modelViewMatrix * vec4(vPosition,1.0);

11 }

4.3.5 Fragment shader: implementation of height-based

texture mapping

As discussed in Section 3.3.1, the human interpretation of a landscape in the
form of a visual landscape design has to be considered to make the information
landscape more intuitively understandable. A human sees a landscape as a set
of varied layers, where a water texture defines the lowest points, with sand,
grass, rock and snow textures as the height increases.

As previously described, a varying variable named "vPosition" is created
in the vertex shader, which is shared with the fragment shader such that the
height-based texture mapping method can be applied to each pixel.

To implement the height-based texture mapping, the varying variable has
to be declared in the fragment shader with the same name and type as was
used in the vertex shader. Furthermore, all the textures have to be loaded and
have to be made available in the fragment shader. Figure 4.5 shows how the
textures are loaded as uniform values. In the fragment shader, the uniform
sampler2D are declared in order to reference the textures. Moreover, a build
in function texture2D is used to retrieve the colour composition of each refer-
enced texture. A function called mixNextLayer has been implemented inside
the fragment shader code, which takes five parameters and returns a colour
based on the height of the pixel. The first two parameters are the colours of
the layers (textures), whereby the second parameter is the colour of the next
layer (texture), the third parameter is the height of the pixel ("vPosition"), the
fourth and fifth parameters are the minimum and maximum height levels, be-
tween which the two colours (textures) are linearly interpolated. The function

CHAPTER 4. IMPLEMENTATION 62

mixNextLayer works as follow:

• If the height of the pixel is lower than or equal to the minimum height
level of the blending, then the first parameter is returned as colour.

• Otherwise, if the height of the pixel is greater than or equal to the maxi-
mum height level of the blending, then the second parameter is returned
as colour.

• If, however the height of the pixel is between the minimum and maximum
level of the blending, then two colours are linearly interpolated between
the minimum and maximum level of the blending.

Inside the fragment shader code, the functionality of the function mixNext-
Layer is utilized so that the return value of the function is used as the first
parameter of next mixNextLayer function and the second parameter is the
colour of the next level above.

Figure 4.6: Process of applying a new design to the information landscape

Additionally, the user is provided with the option to select the design of
the landscape from a selection box. The overall design is based on render-
ing the information landscape with a different set of textures, meaning that
the textures of the new design have to be reloaded using the uniform values.
Figure 4.6 illustrates the overall workflow. First off, the user selects a new
design from a selection box, and consequently a corresponding event func-
tion is called that uses the name of the new design to build the path to the
container. The container holds all the textures of the news design. The corre-
sponding uniforms (i.e. uniform values) are updated with the textures of the
new design.

Once the user sets the design in the selection box, the information land-
scape will immediately be rendered smoothly in the browser with the new

CHAPTER 4. IMPLEMENTATION 63

design. Even if the morphing is running and the user changes the design of
the information landscape, the morphing process is not hindered at all and
new design is applied with immediate effect such that rest of the morphing
process will be continued with the new design.

Furthermore, for scaling the landscape or for building the morphing ani-
mation, nothing extraordinary has to be added in the fragment shader because
the implemented height-based texture mapping method assigns the colour to
a pixel based on the height. The vertex shader, which manipulates the height,
is executed before the fragment shader

4.3.6 Vertex shader: morphing the information landscape

The basic idea of morphing is to move the height values (z-properties) of the
old landscape towards the height values of the new landscape in a seamless
and smooth animation. The process of generating a new information land-
scape, which involves dynamic changes, is discussed in Section 2.1.4. To
make the animation smooth, the animation is rendered for every frame over a
timespan of 10 seconds. The timespan can be changed using the slider in the
settings menu.

All the steps of the animation are executed inside the ‘update’ method of
the landscape because ‘update’ is executed before a frame is rendered. Before
the animation starts or the first frame is rendered, the ‘morph’ method of the
landscape module is called on to execute the following steps:

• The new documents, new labels and the orientation lines between the
labels of the new information landscape are added to the scene and their
opacity is set to zero.

• A mesh containing a height map of the new information landscape is
presented as a wireframe and added to the scene.

• The ‘morph’ method of the DefaultHeightmap module and the Bound-
ryHeightmap module is called to calculate the distances between the
height values of the new landscape and the height values of the old land-
scape by subtracting the height values of the old landscape from the
height values of the new landscape. The distances are stored in a Buffer-
Attribue object named displacement, which is directly linked with the
vertex shader.

• A uniform value "u_morph_scale", which is stored in HeightmapUniform
and is linked with shader code, is updated to zero.

CHAPTER 4. IMPLEMENTATION 64

For every frame of the animation, the following steps are executed:

• The opacity of new documents, new labels and orientation lines of the
new landscape changes incrementally towards one.

• The opacity of documents, labels and orientation lines, which are not
part of old landscape, changes towards zero.

• • The uniform “u_morph_scale” is updated with a new scale as shown in
the snippet of code below.

1 let ratio = 1 / Config.frameRate / 5;

2 HeightmapUniform.u_morph_scale.value = HeightmapUniform.u_morph_scale.value +

ratio;

After the animation is finished, the following steps are executed:

• The uniform value “u_morph_scale” is set to zero.

• The documents, labels and orientation lines that are not part of the new
landscape are removed from the scene.

• The mesh containing the height map of new information landscape that is
displayed as a wireframe is removed from the scene, however the mesh
containing the height map from the old information landscape is given
as a wireframe and is added to the scene.

The extended code snippet of the vertex shader is shown below:

1 attribute float displacement;

2 uniform float u_scale;

3 uniform float u_morph_scale;

4 varying vec3 vPosition;

5

6 void main(void) {

7 vPosition = position;

8 vPosition.z=vPosition.z*u_scale+(displacement*u_morph_scale*u_scale);

9 .

10 .

11 gl_Position = projectionMatrix * modelViewMatrix*vec4(vPosition,1.0);

12 }

The equation “(displacement*u_morph_scale*u_scale)” sets how much the
z-property of the landscape changes towards the z-property of new landscape
in terms of elapsed frames of the animation process.

CHAPTER 4. IMPLEMENTATION 65

4.3.7 Fragement shader: implementation of brush selec-

tion tool

As described in Section 3.3.3, the general concept behind brushing is to inter-
actively select the documents from the visual representation. The implemen-
tation of the brush selection tool is based on the possible ways in which the
user can interact with the brush. The following interaction possibilities are
provided to the user:

• Activate and deactivate the brush selection tool

• Select the size of the brush

• Choose a colour for the brush

Once activated, the brush follows the mouse and selects the documents that
are placed inside the brush. The visual design of brush in a 3D environment
imitates the effect of torchlight, i.e. a circle with the ability to adapt its shape
to an additional dimension of height. To achieve the desired visual design, the
fragment shader is utilized to render every pixel of the brush.

As previously described, the uniforms (i.e. uniform values) can be used to
include user input in the shader code in order to perform certain behaviour.
The uniforms are set as follows, depending on user actions.

• If the user activates the brush for a selection, the corresponding uniform
value is set to 1.0 float value as follows:

HeightmapUniform.brush_show.value = 1.0

• On other hand, if the brush is deactivated, the corresponding uniform
value is set to 0.0 float value:

HeightmapUniform.brush_show.value = 0.0;

• The new selected radius size of the brush is set like this:

HeightmapUniform.brush_radius.value = radius;

• The chosen colour for the brush is set in such a way:

HeightmapUniform.brush_color.value = newTHREE.Vector4(rgb,0.5);

• If the mouse is activated, the class Raycaster of three.js is used to get
the exact world coordinates of the mouse position of a moving mouse in
order to set the uniform value as follows:

CHAPTER 4. IMPLEMENTATION 66

HeightmapUniform.brush_center.value.x = vector.x;

HeightmapUniform.brush_center.value.y = vector.y;

HeightmapUniform.brush_center.value.z = vector.z

The code snippet of the fragment shader below checks if the pixel is inside
the circle by incorporating the centre of the brush and the radius into the
equation.

If a pixel is inside the brush and the brush is activated, the colour of the
brush is added to the pixel and normalized afterwards.

1

2 uniform float brush_show;

3 uniform vec4 brush_color;

4 uniform vec3 brush_center;

5 uniform float brush_radius;

6 varying vec3 vPosition;

7

8

9 void main(){

10 .

11 .

12 .

13 if(brush_show == 1.0 && isInsideCircle(vPosition, brush_center,

brush_radius) >0.0) {

14 gl_FragColor.r += brush_color.r;

15 gl_FragColor.b += brush_color.b;

16 gl_FragColor.g += brush_color.g;

17 gl_FragColor.a += 0.9;

18 gl_FragColor = normalize(gl_FragColor);

19 }

20 }

4.3.8 Implementation of rectangle-based selection tool

D3.js library has been used to implement the rectangle-based selection tool
based on SVG, HTML5 and CSS standards. An additional div container, the
only purpose of which is to hold the rectangle-based selection tool, is created
and attached to the body of the application. The container is overlayed on
canvas that contains the information landscape rendered in WebGL. The size
of the container is always kept the same as the size of the canvas. The CSS of
the container is set to “pointer-events: none”, which will have the effect that
the container will not be able to catch any events at all; instead, all events will
fall through to the element below it (i.e. canvas).

CHAPTER 4. IMPLEMENTATION 67

The rectangle element of SVG is defined by position, width, and height.
The basic idea is to update these properties based on the mouse position of
the received events by the canvas. The received position of the mouse by the
canvas is in world coordinates, which has to be converted into screen coor-
dinates before the position or width and height of the rectangle is calculated
and updated.

4.3.9 Implementation of document and label selection

To select an object using the mouse, the following takes place:, the Projector
and Raycaster classes of the three.js library are used together to determine
whether a document or label have been clicked. Based on the position of
the mouse click, a vector is created and its position is converted into world
coordinates afterwards. The Raycaster class is used to send out a ray into
the world from the position of the mouse click. Another Raycaster class is
used to determine whether this ray hits any of the supplied objects. The result
contains of list of hit objects, facilitating further operations.

4.3.10 Implementation of building perspective interac-

tions

OrbitControls, a built-in functionality provided by three.js, has been used to
control the camera throughout the scene. It allows the use of a mouse to
move, pan and zoom around the scene. To make OrbitControls work properly,
the position of the camera has to be updated. This update happens in the
update method of the landscape module before a new frame is rendered. A
three.js object called clock is used to calculate the elapsed time. To update
the position of the camera, the OrbitControls.update() function is called.

4.4 Summary

This chapter described the implementation of the interactive and scalable in-
formation landscape in detail. The first section introduced the programming
languages and technologies used as well as their general purpose, their advan-
tages and drawbacks. Furthermore, the second section gave a broad overview
of the software architecture of the application. The last section discussed the
details of a selected core part of the implementation.

Chapter 5

Case Study

This chapter presents the use of the developed web-based application that vi-
sually renders an interactive information landscape. The chapter introduces
the application using three use case scenarios. The first scenario begins by de-
scribing the steps needed to run the pipeline for generating the morphing data
from a collection of text documents, followed by the steps needed to load the
morphing data in the application. The second scenario introduces the individ-
ual selection of documents as well as selection based on content and position.
The last scenario describes how to choose a suitable design, height and per-
spective for the information landscape before a demonstration of morphing
between two time periods for information landscapes with different topogra-
phies.

5.1 Generating and Loading Morphing Data

All the use case scenarios use real-world data, i.e. a collection of text doc-
uments. As real-world data, 489 available papers that have been published
by the Know-Center in recent years have been organized by year in order to
determine how the topography of papers of one year changes to another year
using the information landscape morphing concept. This use case scenario
explains how to run the pipeline to generate morphing data from sequentially
organized text documents in a collection. Furthermore, this use case describes
how the user interface of the application is structured before the process of
loading the periodic morphing data into the application.

68

CHAPTER 5. CASE STUDY 69

5.1.1 Generating Periodic Morphing Data

The text processing pipeline has been exported as an executable JAR file,
which compresses all the Java files of the used Know-Center framework into an
archive. To generate the morphing data from a collection of text documents,
the exported JAR file is run using the command line as shown in Figure 5.1:

Figure 5.1: Command line for executing the pipeline: (1) name of the jar file,
(2) input folder containing text documents, (3) output folder for generated
periodic morphing data

After execution of the command, the pipeline runs all the steps as described
in sections 3.2.1 and 3.2.2 and generates morphing data for every annual pe-
riod, which can be loaded into the application in order to create an interactive
information landscape

5.1.2 Structure of the Application

Figure 5.2: Structure of the visual application with highlighting of different
functional areas

CHAPTER 5. CASE STUDY 70

The UI of the application is organized into four different areas, as shown
in Figure 5.2. The first area is a menu bar which provides the following func-
tionality: (i) changing settings of the application, (ii) loading morphing data
of different time periods into the application, (iii) activating and deactivating
the brush tool for selecting the data. The second area is the main area, which
contains the actual information landscape. The third area contains the tag
cloud. The fourth area organizes the loaded periodic morphing data into a set
of actions in the form of executable buttons in order to morph the information
landscape of one period into another.

5.1.3 Loading Morphing Data in the Application

The user performs the following actions to load the data into the application
(Figure 5.3):

• Clicks on “open” in the menu bar, consequently a dialog appears

• Selects all the periodic morphing data that has to be loaded in the appli-
cation and closes the dialog window with a confirmation

Figure 5.3: Steps needed to load morphing data

As soon as the user confirms the dialog window, the application reads all
the periodic morphing data and combines the data to build a set of actions in

CHAPTER 5. CASE STUDY 71

the form of executable buttons in order to morph the information landscape of
one period into another. Additionally, as shown in Figure 5.4, the application
renders the information landscape along with a tag cloud representing the
dataset with the most oldest period, i.e. the year 2014, and highlights the
corresponding button in green.

Figure 5.4: Information landscape with a tag cloud of the year 2014: the two
papers classified as outliers are indicated by red arrows, and the two clusters
containing most of papers are indicated by a yellow arrow

5.1.4 Conclusion

The first use case covered the steps when running the pipeline to generate
morphing data from a collection of text documents, the structure of the user
interface, and the process of loading a dataset into the application.

All the steps of the process are easy to follow. After completing this
process, the visual representation of a landscape (Figure 5.4) provides an
overview of all the papers that have been published by the Know-Center in
2014. The visual setup of the information landscape that roughly matches the
real natural environment makes the landscape more intuitively comprehen-
sible and interpretable. The user can understand the relatedness as well as
topical distribution of the papers by looking at hills and labels (clusters). A

CHAPTER 5. CASE STUDY 72

user can also see that there are two topical clusters that contain most of the
published papers. Furthermore, the user can identify two papers (see the red
arrows in 5.4) that can be classified as outliers due to their dissimilarity to
other papers in the collection. Based on the overall summary provided by the
tag cloud, users can see that the main focus points of the research in the year
2014 were as follows: (i) knowledge, (ii), data, (iii) work, (iv) learning, (v)
modal, (vi) management. Once the information landscape has been rendered,
everything is set up for the user to interactively engage with the landscape
and perform further actions.

5.2 Data Selection, Exploration And Filtering

This use case scenario allows the user to explore, filter and navigate docu-
ments of interest. The documents can be selected individually, based on their
association with a keyword in the tag cloud or a displayed label in the land-
scape, as well as based on their positions. A brush-based selection tool as
well a rectangle-based selection tool are used to select the documents that
are within an area. The tag cloud is used to provide an overview of keywords
for the selected documents.

5.2.1 Individual-Based Selection

Once the user moves the mouse pointer over an individual document in the
landscape, the corresponding document tooltip appears that gives basic in-
formation about the document, while at same time the contents of the whole
document is represented in the tag cloud.

A click on an individual document will select it, whereas a second click
removes the selection. The user can select multiple documents just by clicking
on them, and the content of all selected documents will be represented in the
tag cloud. An illustration of these actions is presented in the Figure 5.5.

5.2.2 Content-Based Selection

Label-Based Selection

As demonstrated in Figure 5.6, as soon as the user moves the mouse cursor
over a label, the documents that contain the label are highlighted in the land-
scape by showing them enlarged, and at same time their content is reflected

CHAPTER 5. CASE STUDY 73

Figure 5.5: Individual document exploration: based on document mouse over
(above, document shown enlarged), and based on the single selection method
(below, 2 documents shown in yellow).

Figure 5.6: Exploration of documents based on a selected label ("parameter",
on the lef side of the screen)

CHAPTER 5. CASE STUDY 74

in the tag cloud. By clicking on the label, all the associated documents are se-
lected, which shows them in yellow. A click on a selected document removes
the selection.

Filtering of Documents via a Tag Cloud

As shown in Figure 5.7, as soon as the user moves the mouse over a keyword
in the tag cloud, the documents that contain the keyword are highlighted en-
larged in the landscape. Once the user moves the mouse pointer off the key-
word, the associated documents are no longer highlighted and return to theire
orginal size.

Figure 5.7: Exploration of documents based on a selected keyword in the tag
cloud

5.2.3 Position-Based Selection

Brush-Based Selection

To activate the brush, the user clicks on “Brush” in the menu bar. As soon
as the brush is activated, it will appear in the landscape and will follow the
movement of the mouse. All documents which are within the brush will be
highlighted and the content of these documents will be represented in the tag
cloud. Figure 5.8 shows the results of these actions. A click on the brush will

CHAPTER 5. CASE STUDY 75

select all the documents that are inside brush and clicking again deselects the
documents. Furthermore, the size and the colour of the brush can be adjusted
according to the preference as shown in Figure 5.9.

Figure 5.8: Exploring documents using the brush tool (above), and selecting
them (bellow)

Rectangle-Based Selection

As soon as the users clicks the shift button, hold it pressed and then click
the left mouse button the one corner of the selection rectangle is defined. As
the user drags the mouse to the position of the diagonally opposite corner
the selection rectangle shape changes accordingly. All the documents within
the selection tool will be shown as highlighted and the content of these docu-
ments will be represented in the tag cloud. Once the user releases the mouse
the documents within the selection tool will be selected and rectangle-based
selection tool will vanish. Figure 5.10 depicts the action of this tool.

CHAPTER 5. CASE STUDY 76

Figure 5.9: Setting the size and colour of the brush

Figure 5.10: Exploring documents using the rectangle selection tool

CHAPTER 5. CASE STUDY 77

5.2.4 Conclusion

This use case scenario covers the individual selection of documents as well as
selection based on content and position.

The tag cloud is used very effectively for giving an overview of the selected
documents and moreover an overview of the whole dataset when nothing is
selected.

The brushing tool imitates the effect of a torchlight; i.e. the circle being
highlighted adapts in shape accordingly to the elevation.

The labels are designed to be reactive whenever the user tilts or rotates
the landscape so that they adapt their positions accordingly for the user and
are always readable. However, this feature also has a disadvantage when the
user wants to select the labels because the casting of the ray with labels is an
approximation in the label. Due to this technical issue the user will find it very
hard to select the label. The problem shall be addressed in a future version of
the software.

5.3 Morphing the Information Landscape

This use case scenario demonstrates the morphing process between two pe-
riods of time using an information landscape to help the user follow and un-
derstand the changes. Before the morphing is applied, it is important that the
user selects a suitable design, height and perspective for the information land-
scape, even though all of these settings can be specified during the morphing
phase. Optimal settings will nonetheless make the morphing more under-
standable and easier to follow. This scenario thus covers all the steps needed
to choose a suitable design, height, perspective, and the type of height scaling
before the actual process of morphing is executed.

5.3.1 Perspective selection

The user uses the mouse scroll wheel to zoom in or out in the landscape to view
the areas in more or less detail. Furthermore, the user can pan the landscape
by holding the left mouse button and dragging the information landscape in
any direction so that all areas are in the view and at the same time all the
areas are displayed in required detail. Finally, by holding the Control (CTRL)
keyboard button and dragging the mouse enables tilting and rotating. Figure
5.11 provides the view of the landscape before and after applaying perspective

CHAPTER 5. CASE STUDY 78

changes.

Figure 5.11: Representation of different perspectives: default view (top-left),
view after tilting and rotating (top-right), view after zooming in (bottom-left),
view after panning (bottom-right)

5.3.2 Height adjustment

In the first step the user clicks “Settings” in the menu bar, which consequently
opens a drop-down menu. The drop-down menu provides a range slider as
an option to set the maximum height of the information landscape. As the
user moves the slider with the mouse, the information landscape is rendered
with a newly scaled geometry between zero and the maximum height value.
Furthermore, the height of the documents and labels is adjusted accordingly.
Once the user clicks “Settings” in the menu bar again, the drop-down menu is
closed. Figure 5.12 demonstrates the required steps.

CHAPTER 5. CASE STUDY 79

Figure 5.12: Representation of information landscape after setting the maxi-
mum height of the information landscape: "5.1" maximum height (above) and
“15.2” maximum height (below)

5.3.3 Height Scaling Selection

In the first step the user clicks “Settings” in the menu bar, which consequently
opens a drop-down menu. The drop-down menu contains a selection box (i.e
Scale), which provides the user with following four types of scales: (i) linear,
(2) square root, (3) squared and (4) logarithmic. As soon as the user set one
of the type of the scale, the landscape is rendered with immediate effect with

CHAPTER 5. CASE STUDY 80

newly selected type of scale.

Figure 5.13: Representation of information landscape by setting different
types of height scaling: linear scale (top-left), square root scale (top-right),
squared scale (bottom-left), logarithmic scale (bottom-right)

5.3.4 Design Selection

The user opens the drop-down menu of the settings by clicking on “Settings” in
the menu bar. The drop-down menu contains a selection box, which provides
the user with three options for the design. As soon as the user chooses one of
the designs, the landscape is rendered with immediate effect with the newly
selected design. Figure 5.14 presents all the steps.

5.3.5 Morphing Process Execution

In order to demonstrate the morphing process, the information landscape for
the year 2014 is morphed into the information landscape of the year 2015. As
soon as the user clicks the corresponding execution button for the next period
(i.e. 2015), a smooth animation sequence is initiated, which is rendered for
every frame over a timespan of 10 seconds. Before the animation is started,
the following steps are executed:

CHAPTER 5. CASE STUDY 81

Figure 5.14: Representation of information landscape after applying new de-
sign: “greeny” design above and “earthy” design below

• All the new elements of the next period (new documents, new labels,
orientation lines between labels and peaks) are added into the scene
with an opacity of zero.

• For all documents that are part of the year 2014 as well as part of 2015,
tracing lines starting with the position of old documents are added into
the scene.

• The height map of the next period (i.e. 2015) is added to the scene as
a wireframe, which will indicate where the new topics will emerge or

CHAPTER 5. CASE STUDY 82

where topical convergence and divergence will take place.

Figure 5.15 shows the status of the information landscape before the anima-
tion is started.

Figure 5.15: Status of morphing before the animation is started: The height
map with textures represents the year 2014 and the height map in wireframe
represents the year 2015, which clearly indicates the emergence of new topics
as well the convergence and divergence of topics

For every frame of the animation, the following steps are executed:

• The height values (z-properties) of the current landscape (i.e. 2014) are
moved towards the height values of the next landscape (i.e. 2015).

• The opacity of all the new elements of the next period (new documents,
new labels, orientation lines between labels and peaks) is gradually
scaled towards 1.0 in order to indicate the emergence of new topics,
while the opacity of all the elements that are only part of the year 2014
scales towards 0.0 in order to show the fading of topics.

CHAPTER 5. CASE STUDY 83

• The tracing lines of documents are moved towards new positions to show
their contribution in the formation of new topics as well as in the conver-
gence and divergence of topics.

Figure 5.16 depicts the status of the information landscape in the middle of
the animation.

Figure 5.16: This is the middle phase of the animation, where one can see the
emergence of new elements from 2015 (new documents, new labels, orienta-
tion lines) as well as the fading of elements which are not part of 2015; the
tracing of documents represented as lines shows the documents that make up
new topics as well as the divergence and convergence of topics

After the animation is finished, the following steps are executed:

• The elements (documents, labels, orientation lines between labels and
peaks) that are not part of the periodic landscape (i.e. 2015) are removed
from the scene.

• The added 2015 height map, depicted as a wireframe, is not needed any-
more and it is removed from the scene. Instead, a height map of the

CHAPTER 5. CASE STUDY 84

previous period (i.e. 2014) is added to the scene in the form of a wire-
frame in order indicate the faded topics as well as allow the user have to
visual reference so that one can easily recognize what has changed.

Figure 5.17 shows the status of the information landscape after the animation.

Figure 5.17: Status of morphing when the animation is finshed: The height
map with textures represents the year 2015, whereas the height map in wire-
frame represents the year 2014 and indicates the fading of topics; this allows
the user to compare the states of both periods, where the tracing lines repre-
sents the movement of the documents from the old position (2014) to the new
position (2015)

After the landscape morphing animation, the documents that are included
in both of the periods are moved from the old position toward the new position
in another animation lasting a few seconds (See the Figure 5.18). This step
completes the morphing process.

CHAPTER 5. CASE STUDY 85

Figure 5.18: Representation after the animated movement of the documents
from the old position (2014) towards to the new position (2015).

5.3.6 Conclusion

This use case scenario demonstrated the morphing process between two time
periods in an information landscape. Furthermore, it showed how to choose
a suitable design, height and perspective for the information landscape. The
designed and developed concept of morphing offers the following main advan-
tages in terms of visual design, performance and human interpretability:

• An efficient and highly parallel structure of computations is used to cre-
ate landscapes that match the realistic natural environment as well as
smooth 3D-accelerated morphing animation of landscape geometry.

• The visual design encompasses the fact that human beings interpret a
landscape as different sets of layers, where a water texture defines the
lowest points, with sand, grass, rocks and snow textures as the height
increases. Therefore, the morphing of a fading topic follows the top-
down approach in which the top layers of texture disappear first and
then the bottom layers, whereas an emerging topic follows the bottom-

CHAPTER 5. CASE STUDY 86

up approach.

• Even if the morphing is running and the user changes the design of the
information landscape or adjusts the height of landscape at the same
time, the morphing process is not hindered in any way and the new de-
sign or the new maximum height is applied with immediate effect the
rest of the morphing process will continue with the new design or new
maximum adjusted height.

One of the drawbacks may be that the application can run into a change blind-
ness problem, which makes the users unable to identify the changes. An
adapted method based on Nowell’s recommendation has been implemented
to overcome the blindness problem, however all the aspects still have to be in-
vestigated through the collection of user feedback in an extensive evaluation.
The following steps have been taken to counter the change blindness problem
as well as to improve user orientation in terms of emerging and fading topics:

• The morphing runs as smoothly as possible in order to make the changes
more noticeable.

• The top-down approach as well as bottom-up approach for different sets
of layers helps significantly when it comes to recognizing the changes.

• The users are provided with the option to increase the timespan of the
animation to allow more time to grasp the changes.

• The height map of the next period is displayed as a wireframe from the
beginning to the end of the morphing, showing the user where the new
topics will emerge.

• The height map of the previous period is displayed as a wireframe as
soon as morphing is completed, allowing the user to have access to the
visual differences, the user can recognize what has changed.

• By increasing the opacity of new elements (documents, labels, orienta-
tion lines) of the new period and decreasing the opacity of elements of
old period during the morphing phase, orientation in terms of which top-
ics (peaks) will emerge or fade is provided to the user.

• Tracing lines are shown to follow document moves that occurs due to the
topical shifts in the dataset.

Nevertheless, It has to be mentioned that unforeseen effects can happen
in the short span of the animation which may confuse the user resulting in

CHAPTER 5. CASE STUDY 87

loss of focus.All of these aspects have to be considered in an extensive user
evaluation.

5.4 Summary

Based on three scenarios, this chapter presented how to use the developed
web-based application on real world data. The first scenario described the
steps for running the pipeline in order to generate morphing data. Further-
more, the first scenario included an overview of the structure of the user in-
terface as well as the process of loading the morphing data in the application.
The second scenario introduced the individual selection of documents as well
as selection based on content and position. The third scenario demonstrated
morphing an information landscape over two periods of time having different
topographies. Furthermore, the second scenario included the selection of a
suitable design, height and perspective for an information landscape.

Chapter 6

Conclusion & Future Work

This Master’s Thesis presented a web-based application for visualizing an in-
teractive scalable information landscape using WebGL and HTML5 technolo-
gies. The application provides a comprehensive overview of an unfamiliar
collection of data, and helps the user to understand the relationships, topical
distribution and changes in topography of a complex, multidimensional and
dynamically changing dataset. A text-processing pipeline was introduced to
compute the layout when morphing an information landscape. The computed
information by the pipeline (i.e. the height map, the locations, keywords of
documents and the peak-related information) was used to visualize an infor-
mation landscape that roughly matches the real natural environment.

The efficient and highly parallel structure of computations of graphic pro-
cessing units has been utilized in carrying out following actions: (i) applying
the height-based texture mapping method to each pixel of landscape using the
shading language (i.e. fragment shader) in order to visualize the landscape
in a set of layers of textures that is easy to understand, (ii) manipulating the
geometry of the landscape using a shading language (i.e. vertex shader) to
create a smooth 3D accelerated, smooth animation to help the user to follow
and to understand the data changes. Furthermore, some functionality (i.e.
zooming, rotation and titling) has been integrated to allow the user to inter-
actively view the information landscape from different perspectives. Addition-
ally, the user can select the data of interest in several ways (i.e. individually,
based on their content and based on their position in the landscape). At same
time an integrated interactive tag cloud provides a topical overview of the se-
lected dataset or a topical overview of the whole dataset when nothing has
been selected.

From a development point of view, the library three.js makes it very easy
to attach the shader code, however it is very hard to debug. A developer

88

CHAPTER 6. CONCLUSION & FUTURE WORK 89

has to pay attention to what she or he is doing and has to be precise when
formulating the logic.

A lot of work can be done on further improving the information landscape
application and adding additional features. The most reasonable tasks for
future work are as follows:

- User evaluation: At least two user evaluations should be carried out in
the future, first off a usability evaluation with the aim of identifying areas
for improvement, strengths and limitations of the application, and sec-
ond an evaluation to find out if the main feature of the application – the
smooth morphing animation – helps the user to follow and to understand
the changes and avoids the change blindness problem. The evaluation
should find the answers to the following questions: (i) was the user able
to identify what had changed from one time period to another, (ii) was
the user able to remember what was different in the previous time pe-
riod, (iii) did the user have to remember the changes because it was not
possible for the user to tell what came before and what is going to appear
next, (iv) did the seamless morphing with top-down approach/bottom-up
approach and different set of layers have any impact in making changes
noticeable (v) did increasing and decreasing the opacity of the labelling
(peaks) during the morphing phase have any impact in recognizing the
emergence or decline of topics.

- Improving the interactions between labels in the information

landscape: The labels are not placed exactly above the corresponding
peak and often overlap when the user tilts, pans or rotates the land-
scape. Another issue is that the user might find it hard to select the
label, because the casting of the ray with labels is an approximation in
relation to the label. Adequate steps will be taken to solve these issues
in the future.

- Converting client-based application to client-server-based appli-

cation: Currently, all required information, including a list of keywords
and frequency information for every document, are loaded into the appli-
cation in order to visualize the information landscape and tag cloud. This
is a bad practice, especially when dealing with a larger data set. In the
future, the client-based application should be transformed into a client-
server-based application in which the keywords are loaded on demand
by sending a request to a server.

- Integration of lighting and shading: The lighting and shading could
be added to the information landscape in the future. The technique of
Phong shading could be used to calculate shading per pixel (i.e. frag-

CHAPTER 6. CONCLUSION & FUTURE WORK 90

ment shader) for smoothing and improving the surface detail of the in-
formation landscape.

- Implementation of drag and drop for custom design integration: A
convenient method of drag and drop functionality should be implemented
in the future in order to let the user add a new design to the application.
The functionality will consist of the following three steps: (i) the user
drags and drops the textures of the new design, (ii) the user defines
what texture should be used at which height, (iii) the user gives a unique
name to the design.

List of Abbreviations

GPU Graphics processing unit

HTML Hypertext Markup Language

WebGL Web Graphics Library

CSS Cascading Style Sheets

DOM Document Object Model

SVG Scalabe Vector Graphic

PCA Principal component analysis

MDS Multidimensional scaling

NMDS Non Metric Multidimensional scaling

FDP Force Directed Placement

GUI Graphical User Interface

HTTP Hypertext Transfer Protocol

IDE Integrated Development Environment

JSON JavaScript Object Notation

LOD Linked Object Data

MIT Massachusetts Institute of Technology

API Application Programming Interface

91

Bibliography

[Andrews K. et al., 2002] Andrews, K., Kienreich, W., Sabol, V., Becker, J.,
Droschl, G., Kappe, F., Granitzer, M., Auer, P., and Tochtermann, K. (2002).
The infosky visual explorer: Exploiting hierarchical structure and

document similarities. Information Visualization 2012, volume 1, pp 166–
181.

[BLOHM D. G.,] BLOHM, D. G. Pca vs ica. http://compneurosci.

com/wiki/images/4/42/Intro_to_PCA_and_ICA.pdf. Last checked on
18.03.2019 08:30pm.

[Boyack K. et al., 2000] Boyack, K., Wylie, B., S. Davidson, G., and Johnson, D.
(2000). Analysis of patent databases using vxinsight. New Paradigms in
Information Visualization and Manipulation, a Workshop at the 9 th Inter-
national Conference on Information and Knowledge Management (CIKM)
2000.

[Boyack K. W. et al., 2002] Boyack, K. W., Wylie, B. N., and Davidson, G. S.
(2002). Domain visualization using vxinsight for science and tech-

nology management. J. Am. Soc. Inf. Sci. Technol. 2002, volume 53, pp
764–774.

[Chalmers M., 1995] Chalmers, M. (1995). Design perspectives in visualis-

ing complex information. Visual Database Systems 3: Visual information
management 1995, pp 103–111.

[Chalmers M. & Chitson P., 1992] Chalmers, M. and Chitson, P. (1992). Bead:
Explorations in information visualization. Proceedings of the 15th An-
nual International ACM SIGIR Conference on Research and Development
in Information Retrieval 1992, pp 330–337.

[Daniel J. Simons R. A. R., 2005] Daniel J. Simons, R. A. R. (2005). Change

blindness: past, present, and future.

92

http://compneurosci.com/wiki/images/4/42/Intro_to_PCA_and_ICA.pdf
http://compneurosci.com/wiki/images/4/42/Intro_to_PCA_and_ICA.pdf

BIBLIOGRAPHY 93

[Davidson G. S. et al., 1998] Davidson, G. S., Hendrickson, B., Johnson, D. K.,
Meyers, C. E., andWylie, B. N. (1998). Knowledge mining with vxinsight:

Discovery throughinteraction. J. Intell. Inf. Syst. 1998, volume 11, pp
259–285.

[Davis J. C., 2002] Davis, J. C. (2002). Statistics and Data Analysis in Geology,

Edition 3. Wiley.

[Eades P., 1984] Eades, P. (1984). A heuristic for graph drawing. Congres-
sus Numerantium 1984, volume 42, pp 149–160.

[Endert A. et al., 2013] Endert, A., Bradel, L., and North, C. (2013). Beyond
control panels: Direct manipulation for visual analytics. IEEE Com-
put. Graph. Appl. 2013, volume 33, pp 6–13.

[Fahlén L. E. et al., 1993] Fahlén, L. E., Brown, C. G., Ståhl, O., and Carlsson,
C. (1993). A space based model for user interaction in shared syn-

thetic environments. Proceedings of the INTERACT and CHI Conference
on Human Factors in Computing Systems 1993, pp 43–48.

[Fraga R. et al., 2014] Fraga, R., Stow, A., Magnusson, W., and Lima, A.
(2014). The costs of evaluating species densities and composition of

snakes to assess development impacts in amazonia. PLoS ONE 2014,
volume 9.

[Fruchterman T. M. J. & Reingold E. M., 1991] Fruchterman, T. M. J. and
Reingold, E. M. (1991). Graph drawing by force-directed placement.
Software - Practice and Experience 1991, volume 21, pp 1129–1164.

[Granitzer M. et al., 2003] Granitzer, M., Kienreich, W., Sabol, V., and
Dösinger, G. (2003). Webrat: Supporting agile knowledge retrieval

through dynamic, incremental clustering and automatic labelling

of web search result sets. Proceedings of the Twelfth International
Workshop on Enabling Technologies: Infrastructure for Collaborative En-
terprises 2003, pp 296– 301.

[Jackendoff R. S., 1985] Jackendoff, R. S. (1985). Semantics and cognition

(current studies in linguistics).

[Jolliffe I., 2002] Jolliffe, I. (2002). Principal component analysis. Springer
Verlag.

[Kienreich W. et al., 2003] Kienreich, W., Sabol, V., Granitzer, M., Kappe, F.,
and Andrews, K. (2003). Infosky: A system for visual exploration of

very large, hierarchically structured knowledge spaces. Proceedings

BIBLIOGRAPHY 94

der GI Workshopwoche, Workshop der Fachgruppe Wissensmanagement
2003.

[Klieber W. et al.,] Klieber, W., Sabol, V., Muhr, M., Kern, R., and Granitzer,
M. Knowledge discovery using the knowminer framework. IADIS In-
ternational Conference on Information Systems 2009.

[Kohonen T., 1997] Kohonen, T. (1997). Self-organizing maps. Berlin, Hei-
delberg. Springer-Verlag.

[Krishnan M. et al., 2007] Krishnan, M., Bohn, S., Cowley, W., Crow, V., and
Nieplocha, J. (2007). Scalable visual analytics of massive textual

datasets. IEEE International Parallel and Distributed Processing Sympo-
sium 2007.

[Krista Lagus S. K. & Kohonen T.,] Krista Lagus, Timo Honkela, S. K. and Ko-
honen, T. Websom - a status report. Last checked on 16.08.2019 15:56.

[Kruskal J., 1964] Kruskal, J. (1964). Multidimensional scaling by optimiz-

ing goodness of fit to a nonmetric hypothesis. Psychometrika 1964,
volume 29, pp 1–27. Springer.

[Kuhn W. & Blumenthal B., 1996] Kuhn, W. and Blumenthal, B. (1996). Spa-

tialization: Spatial metaphors for user interfaces.

[Muhr M. et al., 2010] Muhr, M., Sabol, V., and Granitzer, M. (2010). Scal-

able recursive top-down hierarchical clustering approach with im-

plicit model selection for textual data sets. Workshops on Database
and Expert Systems Applications 2010, pp 15–19.

[Nowell L. et al., 2001] Nowell, L., Hetzler, E., and Tanasse, T. (2001).
Change blindness in information visualization: a case study. IEEE
Symposium on Information Visualization (INFOVIS) 2001., pp 15–22.

[Okabe A. et al., 2000] Okabe, A., Boots, B., Sugihara, K., and Chiu, S. (2000).
Spatial tessellations: Concepts and applications of voronoi dia-

grams. Wiley Series in Probability and Mathematical Statistics 1992, vol-
ume 43.

[Rennison E., 1994] Rennison, E. (1994). Galaxy of news: An approach to

visualizing and understanding expansive news landscapes. Proceed-
ings of the 7th Annual ACM Symposium on User Interface Software and
Technology 1994, pp 3–12.

BIBLIOGRAPHY 95

[Sablol V., 2012] Sablol, V. (2012). Visual analysis of relatedness and dy-

namics in complex, enterprise-scale repositories. PhD thesis 2012,
Technische Universität Graz.

[Sabol V. et al., 2010] Sabol, V., Ali Ahmad Syed, K., Scharl, A., Muhr, M., and
Hubmann-Haidvogel, A. (2010). Incremental computation of informa-

tion landscapes for dynamic web interfaces. HIMI 2010, pp 205–208.

[Sabol V. et al., 2002] Sabol, V., Kienreich, W., Granitzer, M., Becker, J.,
Tochtermann, K., and Andrews, K. (2002). Applications of a lightweight,

web-based retrieval, clustering, and visualisation framework. Pro-
ceedings of the 4th International Conference on Practical Aspects of Knowl-
edge Management 2002, pp 359–368.

[Samuel Kaski K. L. T. K., 1998] Samuel Kaski, Timo Honkela, K. L. T. K.
(1998). Websom – self-organizing maps of document collections. pp
101–117.

[Shepard R. N., 962a] Shepard, R. N. (1962a). The analysis of proximities:

Multidimensional scaling with an unknown distance function. i. Psy-
chometrika 1962a, volume 27, pp 125–140.

[Shepard R. N., 962b] Shepard, R. N. (1962b). The analysis of proximities:

Multidimensional scaling with an unknown distance function. ii. vol-
ume 27, pp 219–246.

[Simons D. J. & Levin D. T., 1997] Simons, D. J. and Levin, D. T. (1997).
Change blindness. trends cogn. sci. 1. pp 261–267.

[Simons D. J. & Levin D. T., 1998] Simons, D. J. and Levin, D. T. (1998). Fail-

ure to detect change to people during a real-world interaction. Psy-
chonomic Bulletin Review, 5:644–649.

[SPIRE-PNNL,] SPIRE-PNNL. Spire-pnnl. https://in-spire.pnnl.gov/

faq.stm. Last checked on 28.03.2019 10:00pm.

[Thomas J. et al., 2001] Thomas, J., Cowley, P., Kuchar, O., Nowell, L., Thomp-
son, J., and Wong, P. (2001). Discovering knowledge through visual

analysis. J. UCS, volume 7, pp 517–529.

[Torgerson W. S., 1952] Torgerson, W. S. (1952). Multidimensional scaling:

I. theory and method. Psychometrika 1952, volume 17, pp 401–419.

[Ulbrich E. et al., 2015] Ulbrich, E., Veas, E., Singh, S., and Sabol, V. (2015).
Reading through graphics: Interactive landscapes to explore dy-

namic topic spaces. HIMI 2015, pp 127–137.

https://in-spire.pnnl.gov/faq.stm
https://in-spire.pnnl.gov/faq.stm

BIBLIOGRAPHY 96

[V. S. & Scharl A., 2008] V., S. and Scharl, A. (2008). Visualizing temporal-

semantic relations in dynamic information landscapes.

[vacommunity,] vacommunity. vacommunity (in-spire). http://

vacommunity.org/IN-SPIRE. Last checked on 28.03.2019 09:00pm.

http://vacommunity.org/IN-SPIRE
http://vacommunity.org/IN-SPIRE

	Introduction
	Focus Points
	Structure of the Paper

	Related Work
	Information Landscapes in General – Theoretical Discussion
	Spatialization
	Metaphor
	Information Landscape
	Morphing Landscape
	Change Blindness

	Computation of the Landscape Layout for Text Data
	Principal Components Analysis
	Metric Multidimensional Scaling
	Force Directed Placement (FDP)

	Overview of Information Landscape Systems
	Bead
	SPIRE
	VxInsight
	Galaxy of News
	WEBSOM
	Infosky
	Dynamic Topography Information Landscape

	Morphing Information Landscape
	General Concept
	Features for computing the layout of information landscape
	Visual Design Features
	Interaction Design Features

	Computation of the Landscape Layout
	Text Processing Pipeline
	Morphing Layout Generation

	Visual Design
	Visual Design of Landscape
	Visual Concept of Documents
	Visual Concept of Labels
	Visual Brush Concept
	Visual Concept of Morphing

	Interaction Design
	Perspective Category
	Selection Category
	Morphing Category
	Data Exploration, Filtering and Navigation Category
	Setting a Category

	Implementation
	Programming Languages and Technologies
	WebGL
	GPU
	Three.js

	Software Architecture of the Application
	Initialization Stage
	Rendering stage
	Updating stage

	Core Details of the Implementation
	Steps for creating 3D objects using three.js
	Creating 3D information landscapes using three.js
	Information landscape setup for shaders
	Vertex shader: scale the information landscape
	Fragment shader: implementation of height-based texture mapping
	Vertex shader: morphing the information landscape
	Fragement shader: implementation of brush selection tool
	Implementation of rectangle-based selection tool
	Implementation of document and label selection
	Implementation of building perspective interactions

	Summary

	Case Study
	Generating and Loading Morphing Data
	Generating Periodic Morphing Data
	Structure of the Application
	Loading Morphing Data in the Application
	Conclusion

	Data Selection, Exploration And Filtering
	Individual-Based Selection
	Content-Based Selection
	Position-Based Selection
	Conclusion

	Morphing the Information Landscape
	Perspective selection
	Height adjustment
	Height Scaling Selection
	Design Selection
	Morphing Process Execution
	Conclusion

	Summary

	Conclusion & Future Work
	List of Abbreviations
	Bibliography

