
Johannes Singer, BSc

Algorithms for Recommending
Music to Groups

Master’s Thesis

to achieve the university degree of

Master of Science

Master’s degree programme: Software Engineering and Management

submitted to

Graz University of Technology

Supervisor

Univ.-Prof. Dipl.-Ing. Dr.techn. Alexander Felfernig

Institute for Softwaretechnology
Head: Univ.-Prof. Dipl.-Ing. Dr.techn. Wolfgang Slany

Graz, September 2019

This document is set in Palatino, compiled with pdfLATEX2e and Biber.

The LATEX template from Karl Voit is based on KOMA script and can be
found online: https://github.com/novoid/LaTeX-KOMA-template

http://LaTeX.TUGraz.at
http://en.wikipedia.org/wiki/Biber_(LaTeX)
http://www.komascript.de/
https://github.com/novoid/LaTeX-KOMA-template

Affidavit

I declare that I have authored this thesis independently, that I have not
used other than the declared sources/resources, and that I have explicitly
indicated all material which has been quoted either literally or by content
from the sources used. The text document uploaded to tugrazonline is
identical to the present master‘s thesis.

Date Signature

iii

Abstract

In recent years the way of listening to music has changed due to streaming
services. This made it necessary to develop systems which can recommend
music out of a huge amount of songs. There are often situations in which it
is useful to recommend songs for more than one person. For example, on
a road trip, in a learning group or on a party it is great to have a playlist
matching the preferences of a whole group. The focus of this thesis is to
create a system which is accessible for many people, which is easy to use and
which creates playlists all group members are happy with. The thesis starts
with the theoretical background followed by the algorithms to recommend
music to groups. Furthermore, the app M’Usic is introduced, which is the
implementation of the defined goals. An evaluation of the app is also part
of this thesis. The conclusion sums up the findings and contains an outlook
of the future work in this topic.

v

Contents

Abstract v

1. Introduction 1

2. Techniques for Recommender Systems 5
2.1. Collaborative Filtering . 5

2.1.1. User-Based Nearest Neighbor Recommendation 6

2.1.2. Item-Based Nearest Neighbor Recommendation 7

2.2. Content-Based Filtering . 8

2.3. Context-Aware Recommender Systems 9

2.3.1. Context in Recommender Systems 10

2.3.2. Representing Contextual Information in Recommender
Systems . 11

2.3.3. Integrating Contextual Information into Recommender
Systems . 11

2.4. Data Mining . 12

2.4.1. Data Preprocessing . 13

2.4.2. Model Learning . 16

2.4.3. Result Evaluation . 18

2.5. Music Recommender Systems 19

2.5.1. Content-Based Music Recommendation 20

2.5.2. Contextual Music Recommendation 22

2.5.3. Hybrid Music Recommendation 23

2.5.4. Automatic Playlist Generation 24

2.6. Evaluating Recommender Systems 25

2.6.1. Experimental Settings 25

2.6.2. Recommender System Properties 27

2.7. Group Recommender Systems 32

2.7.1. Preference Aggregation Strategies 32

vii

Contents

2.7.2. Aggregation Goals . 34

2.7.3. Recommendation Techniques for Groups 35

2.7.4. Evaluating Group Recommender Systems 38

2.7.5. Explanations for Groups 40

2.7.6. Personality, Emotions and Group Dynamics 41

3. Recommending Music to Groups 45
3.1. Existing Approaches . 46

3.1.1. MusicFx . 46

3.1.2. Flytrap . 46

3.1.3. Jukola . 46

3.1.4. Adaptive Radio . 47

3.1.5. In-Vehicle Multimedia Recommender 47

3.1.6. PartyVote . 47

3.1.7. jMusicGroupRecommender 48

3.1.8. GroupStreamer . 48

3.2. Information Retrieval . 48

3.2.1. Information Retrieval Approaches 48

3.2.2. Information Retrieval of M’Usic 52

3.3. Personal Suggestion List . 53

3.3.1. Personal Suggestion List Approaches 53

3.3.2. Personal Suggestion List of M’Usic 56

3.4. Aggregation Strategies . 57

3.4.1. Aggregation Strategy Approaches 58

3.4.2. Aggregation Strategies of M’Usic 59

3.5. Sequence Order of Recommended Items 61

3.5.1. Sequence Order Approaches 61

3.5.2. Sequence Order of M’Usic 62

3.6. Long-term Fairness . 62

3.6.1. Long-term Fairness Approaches 63

3.6.2. Long-term Fairness in M’Usic 63

3.7. Recommender System Properties in M’Usic 64

3.7.1. Prediction Accuracy . 64

3.7.2. Coverage . 64

3.7.3. Trust . 65

3.7.4. Novelty . 65

3.7.5. Serendipity . 65

viii

Contents

3.7.6. Diversity . 66

3.7.7. Utility . 66

3.7.8. Robustness . 66

3.7.9. Adaptivity . 67

3.7.10. Scalability . 67

3.8. Algorithms of M’Usic . 68

4. The App “M’Usic” 73
4.1. Functionality . 73

4.1.1. Account Management 74

4.1.2. Menu . 78

4.1.3. GroupManagement . 78

4.1.4. Recommendations . 81

4.2. Architecture . 85

4.2.1. Xamarin . 86

4.2.2. Azure . 90

4.2.3. Spotify . 92

4.3. Data Source . 95

4.3.1. Provided Information 95

4.3.2. Context of a Track . 97

4.4. Testing and Monitoring . 98

4.4.1. Client-Side Continuous Delivery 98

4.4.2. Monitoring the App . 100

4.4.3. Server-Side Continuous Delivery 100

5. Evaluation of the Algorithm 103
5.1. Evaluation Environment . 103

5.1.1. Evaluation Technique 103

5.1.2. Study Participants . 104

5.1.3. Execution Environment 104

5.1.4. Questions . 105

5.2. Evaluation Execution . 107

5.2.1. Preparation . 107

5.2.2. Survey Conduction . 108

5.2.3. Reflection . 109

5.2.4. Expected Conclusions 109

5.3. Evaluation Results . 111

ix

Contents

6. Outlook 125
6.1. Conclusion . 125

6.1.1. Usable for a large Number of People 125

6.1.2. Recommendation without Explicit User Feedback . . . 126

6.1.3. Create Accurate Group Recommendations 127

6.1.4. Easily Listenable Playlists 128

6.1.5. Availability of the App M’Usic 128

6.2. Future Work . 129

6.2.1. Explicit User Information 129

6.2.2. Improved Preference Learning 130

6.2.3. Time-Aware Recommendation 131

6.2.4. Collaborative Techniques 131

6.2.5. Long-Term Evaluation 131

Appendix 133

A. Survey 135

Bibliography 157

x

List of Figures

4.1. M’Usic SignIn Screen on iOS 75

4.2. M’Usic Registration Screen on iOS 75

4.3. M’Usic Spotify Registration Screen on iOS 75

4.4. M’Usic Successfull Registration Screen on iOS 75

4.5. M’Usic LogIn Screen on iOS . 76

4.6. M’Usic GroupList Screens . 77

4.7. M’Usic Settings Screen on iOS 77

4.8. M’Usic Forgot or Reset Password Screen on iOS 77

4.9. M’Usic Menu Screens . 79

4.10. M’Usic Group Detail Screens 80

4.11. M’Usic New Group Members Screen on iOS 80

4.12. M’Usic New Group Name and Image Screen on iOS 80

4.13. M’Usic Group Members Screens 81

4.14. M’Usic Manage Members Screen on iOS 82

4.15. M’Usic Delete Group Screens 83

4.16. M’Usic Playlists Screen on iOS 83

4.17. M’Usic New Playlist Screen on iOS 83

4.18. M’Usic Personal Recommendation Screens 85

4.19. M’Usic Add New Song to Personal Recommendation Screens 86

4.20. M’Usic Delete Song of Personal Recommendation Screens . . 87

4.21. M’Usic Playlist Detail Screen on iOS 88

4.22. M’Usic Infrastructure Overview 88

4.23. The Music Streaming Landscape 93

4.24. Spotify Authorization Code Flow 94

5.1. Evaluation Result - How much do you like your personal
recommendation? . 112

5.2. Evaluation Result - How many songs of your personal rec-
ommendation fit to your taste in music for this event? 113

xi

List of Figures

5.3. Evaluation Result - Do the songs of your personal recommen-
dation correlate to the time of the event? 113

5.4. Evaluation Result - Do the songs of your personal recommen-
dation correlate to the reason of the event? 114

5.5. Evaluation Result - How diverse is your personal recommen-
dation? . 115

5.6. Evaluation Result - Would you like to get more diversity in
your personal recommendation? 115

5.7. Evaluation Result - How bad is the worst song in your per-
sonal recommendation? . 116

5.8. Evaluation Result - Did you get an unknown song of an
unknown interpret which you like in your personal recom-
mendation? . 116

5.9. Evaluation Result - Did you get an unknown song which you
really like in your personal recommendation? 117

5.10. Evaluation Result - How many songs of your personal rec-
ommendation did you already know? 118

5.11. Evaluation Result - Would you like to get more unknown
songs in your personal recommendation? 118

5.12. Evaluation Result - How much do you like the playlist? . . . 119

5.13. Evaluation Result - How many songs of the playlist do you
like? . 120

5.14. Evaluation Result - Do the songs in the playlist correlate to
the time of the event? . 120

5.15. Evaluation Result - Do the songs of the playlist correlate to
the reason of the event? . 121

5.16. Evaluation Result - How diverse is the playlist for you? 121

5.17. Evaluation Result - Would you like to have more diversity in
the playlist? . 122

5.18. Evaluation Result - How bad is the worst song in the playlist? 123

5.19. Evaluation Result - Would you use this algorithm again? . . . 123

5.20. Evaluation Result - Are you used to listen to songs mostly in
the order of the playlist, or in shuffle mode? 124

5.21. Evaluation Result - Would you listen to these playlists in the
recommended order or in shuffle mode? 124

6.1. Global mobile OS market share 126

xii

1. Introduction

This thesis is related to the topic of recommending music to groups. An
environment to recommend items is called recommender system (RS). Such
systems suggest items based on available information to single users or
groups. Jannach (2011) and Ricci, Rokach, and Shapira (2015) are great
references for RSs as an introduction to the topic and also provide detailed
information in several topics of RSs. Whereas systems recommending items
to single users are wide-spread in the daily life, group recommender systems
(GRSs) are not according to Felfernig, Stettinger, et al., 2018. Especially in
the domain of music, environments for suggesting music are getting more
and more important with the increase of streaming services. Although there
are many situations where people wishing to listen to music have a similar
taste in music, there are still often situations where people with different
music preferences want to listen to music that everyone likes. Examples
for such situations are friends meeting together up, colleagues working or
studying together, or the family who is driving in the car. Furthermore,
there are situations in which group members are not knowing each other
like customers in a shop or people exercising in a gym. Unfortunately, all
the existing services just provide recommendation techniques for single
users. In an entrepreneurial environment it is easy to solve this problem: An
employee creates a playlist which should go well with the preferences from
most customers. Within a group of friends or within the family selecting
music can be more frustrating caused by different tastes in music and the
decision which group member is allowed to select the tracks. The solution
is a system recommending music to the whole group’s taste in music. As
the system needs to know the preferences of the users, former RSs asked
the users about them via ratings, which can be annoying. Nowadays, many
people use music streaming services for listening to their favorite songs.
The outcome is a big data collection about the preferences of users. This
leads to the idea to create a RS which connects users with other users and

1

1. Introduction

creates playlists that correlate to the preferences of the whole group. The
aim for the system, implemented within the extent of this thesis, are the
following:

• Create a system to recommend music to groups.
• The system should be available for a large number of users.
• The recommendations should have a high value of accuracy.
• Groups are able to get music suggestions without answering explicit

questions about their preferences.
• Suggested playlists should be playable in a straightforward fashion.
• The system should work without the need of any music licenses or

fees.

To achieve these aims the current research in GRSs and recommending music
has to be analyzed and improved. After this, a software has to be developed,
which implements a group recommendation approach and fulfills the aims
defined above. A survey should be conducted to evaluate the software’s
performance.

The thesis is structured as follows:

In Chapter 2 techniques to develop a RS are described. Starting with different
basic approaches to suggest items, the chapter continues with data mining
techniques. Further, the special characteristic of recommending music is
discussed. There is also described how to evaluate a RS. In the final section
the adoptions to recommend items to groups are explained.

Chapter 3 considers the possibilities to use the previously described tech-
niques to create a system which recommends music to groups. It starts with
existing approaches and how they are implemented. The following sections
describe the procedure from a request for a recommendation to the final
playlists including the approaches which are developed for the app M’Usic.
In the last section the developed algorithm’s properties are discussed.

In Chapter 4 the developed system, which should agree with the defined
aims, is presented. It is divided into the sections functionality, where the
use cases of the system are explained, the section architecture, where the
components of the systems and their connections are described, the section
data source, where the handled data is explained, and finally the section

2

testing and monitoring, where the development approach is discussed in
detail.

Chapter 5 presents the algorithm’s evaluation. It starts with the presenta-
tion of the evaluation’s environment, where the used technique, the study
participants, the execution environment, and the questions are introduced,
it continues with the description of the study execution and finally presents
the evaluation’s results in detail.

Chapter 6 consists of the résumé of the study including positive and negative
aspects of the music recommender system for groups discovered during the
development of the thesis, and additionally, includes thoughts about issues
for future work.

3

2. Techniques for Recommender
Systems

In this chapter techniques for RSs are described. It starts with the ba-
sic recommendation approaches Collaborative Filtering 2.1 (see Goldberg
et al., 1992), Content-Based Filtering 2.2 (see Pazzani and Billsus, 1997),
and Context-Aware Recommender Systems 2.3 (see Gediminas Adomavicius,
Sankaranarayanan, et al., 2005) describing different possibilities to find
preferences with the given information and trying to find items accord-
ing to the preferences. In Data Mining 2.4, supporting techniques for RSs
are introduced. The section Music Recommender Systems 2.5 is related to
the singularity of recommending music. In Evaluating Recommender Sys-
tems 2.6, techniques for evaluating RSs and attributes which play a role in
an evaluation are described. Finally, the Section Group Recommender Sys-
tems 2.7 explains the case of recommending items to groups including the
aggregation challenge, special techniques for group recommendations and
additional appraisal criteria on evaluating GRSs. This chapter should give
an insight and at the same time an overview of recommending items and
it should create the basis for recommending music to groups, which is
explained in detail in the next chapter.

2.1. Collaborative Filtering

Collaborative filtering (CF) is a recommendation technique based on the
assumption that there are users with the same preferences on items. In
terms of music, this means that if both, user A and user B, have liked
the same songs in the past, and then user A likes a new song, the RS
suggests user B this song subsequently. This is one of the most popular

5

2. Techniques for Recommender Systems

technologies used for RSs. On the one hand, pure CF can be implemented
without the knowledge of any information of the item. On the other hand,
item information can be used to improve the recommendation. These types
of systems have been researched over the last twenty years and so their
advantages, performances, and limitations are well-known. The result of a
collaborative recommendation is either a prediction rating of a specific item
or a list of recommended items. Jannach, 2011, p. 13

CF is widely known from amazon.com1, where suggestions are made, based
on products which other selected customers have bought. These customers
are the ones who bought similar products as the users in the past.

The background data to calculate a recommendation are a set of users and a
set of items. Mostly, the connection between these two groups is expressed
by terms of ratings. These ratings have been made by users in the past. As
a matter of course, not every connection between users and items is rated.
The CF RS tries to predict the unknown rating of a user for a specific item Ia.
The first step in this prediction is to find the “nearest neighbors” which are
the ones with similar ratings compared to the user. The ratings of the similar
users for the item Ia are used to predict the rating of the user. Felfernig,
Jeran, et al., 2014, pp. 2–3

CF is typically separated in the two categories, such as user-based CF
and item-based CF. The aim in user-based CF is to find users who have
correlating preferences to a specific user (so called “nearest neighbors” of
the user). The proposed items are the ones the neighbors has liked. Whereas
in item-based CF, the intention is to find items with the same ratings
(“neighbors” of the item). In both cases the main task is to measure the
similarity of users or items. Y. Cai et al., 2014, p. 766

2.1.1. User-Based Nearest Neighbor Recommendation

As mentioned above, the aim is to find the nearest neighbors of the user who
has had similar preferences in the past. The RS tries to find the rating for
each unrated item according to the nearest neighbors. The basic assumption

1https://www.amazon.com

6

2.1. Collaborative Filtering

of this method is that the preferences of users do not change over time.
Jannach, 2011, pp. 13–18

Jannach (2011, p. 14) calculates the similarity between user Ua and another
user with the Pearson correlation coefficient shown in Formula 2.1.

similarity(Ua, Ux) =
∑i∈I(ra,i − ra)(rb,i − rb)√

∑i∈I(ra,i − ra)2
√

∑i∈I(rb,i − rb)2
(2.1)

In this formula, I is the set of items both users have rated. ra,i is the rating
of user Ua for the item i and ra is the average rating of user Ua. The result of
this formula is a value between -1 and 1. The higher the result, the more
similar are the preferences of the users. This leads to the nearest neighbors.
Felfernig, Jeran, et al. (2014, p. 4) assume that at least two items per user
pair should be rated to get a convincing value of similarity.

To get the predicted rating for an item of the user Ua, only nearest neighbors
(NN) with a rating for this item can be used. With the ratings of these
users, Jannach (2011, p. 16) tries to predict the rating with the following
Formula 2.2.

prediction(Ua, item) = ra +
∑Uj∈NN similarity(Ua, Uj)× (rj,item − rj)

∑Uj∈NN similarity(Ua, Uj)
(2.2)

The highest prediction of an item is the one to be recommended.

2.1.2. Item-Based Nearest Neighbor Recommendation

User-based CF was widely used in e-commerce as the most successful
technology for building RSs. But with the growth of the world wide web
and its millions of users, unfortunately the computational complexity of
user-based CF methods grew linearly with the number of customers. This
lead to the development of scalable item-based recommendation algorithms.

7

2. Techniques for Recommender Systems

In such algorithms, the first step is to find similarities between items, and
then to identify the set of items recommended to the user. Deshpande and
Karypis, 2004, p. 143

Jannach (2011, p. 19) used the adjusted cosine measure to calculate the simi-
larity shown in Formula 2.3.

similarity(Ia, Ix) =
∑u∈U(ru,a − ru)(ru,b − ru)√

∑u∈U(ru,a − ru)2
√

∑u∈U(ru,b − rb)2
(2.3)

U is the set of all users that have rated both the items. ru,a is the rating of
user u to item a, and ru is the average rating of user u. As in the Pearson
correlation coefficient, the result of this formula can be between -1 and 1.

To predict the rating for user Ua for an item, Jannach (2011, p. 20) calculates
as follows:

prediction(Ua, item) =
∑i∈NN similarity(item, i)× (ra,i

∑i∈NN similarity(item, i)
(2.4)

The set of items with a similar rating pattern compared to the item are the
nearest neighbors (NN) which are the basis for the prediction of the rating. In
this case NN only represents items which have already been rated by user
Ua. Felfernig, Jeran, et al., 2014, pp. 5–6

2.2. Content-Based Filtering

Content-based filterings (CBFs) are RSs with one of the most successful
outcome. The similarity between items are calculated based on their con-
tents. The item information is represented as attributes. To recommend
items, the CBF uses the description of items and the user’s preferences. For
each active user the CBF employs a personal profile to generate accurate
recommendations. Through that there is always a result, even if there are

8

2.3. Context-Aware Recommender Systems

no ratings of other users. The disadvantages of CBFs are the necessity of
ratings of the current user and the high effort to extract the information of
an item. Son and Kim, 2017, p. 404

Such RSs can recommend items only with the description of the item
characteristics and a description of the interests of a user (user profile) in
terms of preferred item characteristics. The suggested items are the ones
with the best match to the user’s preferences. In practice, there are two types
of attributes. On the one hand, technical descriptions such as the list of actors
in a movie or the genre of a music track which are widely available. On the
other hand, there are subjective qualitative features. For example, there is
not always a connection between the items that a user should like based on
their characteristics and those that a user actually likes. Such information
is difficult to obtain, and the expenditure is often not affordable. Typical
examples of CBFs recommend text documents because the extraction of the
content and its description is easily automatically realizable. Jannach, 2011,
pp. 51–79

In terms of music, CBFs try to find similarities in tracks the user has rated
high in the past such as the genre or the interpreter, and recommend songs
with these attributes. This also shows the problem of this type of RSs: the
overspecialization. A user who always listens to the same genre would never
get a recommendation of an other. A way to solve this issue is to implement
functions to recommend random items of other genres. Furthermore, items
which are too similar to others in the recommendations should be ignored.
For example, if a recommended song is available as an album version and
as a radio edit, only one should be in the final recommendation list. G.
Adomavicius and Tuzhilin, 2005, pp. 735–737

2.3. Context-Aware Recommender Systems

Both already introduced types of RSs have in common that only users and
items are observed to recommend items. Context-aware recommender sys-
tems (CARSs) include, in addition, the context to provide recommendations.
This allows to vary the recommendations depending under certain circum-
stances. For example, songs recommended for playing during working time

9

2. Techniques for Recommender Systems

should be other ones than playing at a party. That requires to gain contextual
information to improve the recommendation process. Such information in
terms of music can be the mood of the user like “calm”, “dark”, “energetic”,
“positive”, etc. In this case, CARSs only recommend songs according to the
chosen mood. G. Adomavicius and Tuzhilin, 2015, pp. 191–192

2.3.1. Context in Recommender Systems

Context, in term of RSs, are circumstances which affect the preferences of
the users. Contexts need to have a structure. For example, the location in the
user’s country can be classified. This is needed to categorize items in these
contextual factors. One task of the CARS is to define such factors. Contextual
factors can be classified into three categories, such as fully observable, partially
observable and unobservable. Factors are fully observable if all information
about the context, which are needed for the recommendation, is available at
this time. They are partially observable when only a part of the information
is known explicitly. And, if factors are unobservable, there is no information
of the context available. If there are partially unobservable factors, they can
be predicted with methods like hidden Markov models. For unobservable
factors, the only way to model context is by using latent variables. Another
way to categorize contextual factors is to classify their importance or their
structure for a certain period of time. This means that contextual factors
also can be divided in static and dynamic factors. Static factors are stable
over the lifetime of a RS. For example, genres such as rock, pop, etc., do
always have the same structure, now and in the future. Dynamic factors
can change their structure. For example, the RS realize that the structure of
the time should change from weekday and weekend to the time of the day
(morning, midday, afternoon, evening and night). Gediminas Adomavicius,
Mobasher, et al., 2011, pp. 67–69

10

2.3. Context-Aware Recommender Systems

2.3.2. Representing Contextual Information in
Recommender Systems

Rating-based algorithms typically use existing ratings to predict how a user
votes an item. The rating function R is defined as follows:

R : User× Item→ Rating (2.5)

As soon as the function R is defined, the RS can predict all unknown
ratings. These systems are called two-dimensional because only Users and
items are considered as dimensions. Rating-Based CARSs add contextual
attributes to this function. They affect the ratings and are defined as sets. The
precondition is the knowledge of the contextual information. The function
R could be represented as following:

R : User× Item× Context→ Rating (2.6)

Context in this case defines the application’s associated known contextual
information. This leads to a multidimensional contextual model, because
each contextual attribute is represented as a single dimension. Gediminas
Adomavicius, Mobasher, et al., 2011, pp. 70–71

2.3.3. Integrating Contextual Information into
Recommender Systems

Basically, there are two ways of using contextual information in RSs. Context-
driven querying and search is used widely in travel/tourist RSs, for example
to recommend near restaurants. And secondly, there are CARSs that use
contextual preference elicitation and estimation. On the contrary to the first
approach, the second mentioned system try to model and learn preferences
of the user based on contextual information. For two-dimensional RSs, the
recommendation process can be split in three parts. The first part is the data

11

2. Techniques for Recommender Systems

part which represents the user preferences as its input. The second compo-
nent is the two-dimensional RS called function, and the third component is
the recommendation list called output. CARSs based on Contextual preference
elicitation and estimation influence one of these components. Depending on
the component, the three forms are called:

• Contextual pre-filtering. In this case, only relevant data according to the
contextual information is collected. The rest of the recommendation
process is unchanged to two-dimensional RSs.
• Contextual post-filtering. The process starts like a two-dimensional RS

and results in a set of recommendations. The contextual information
is afterwards used to adjust the result set.
• Contextual modeling. In this process, the two-dimensional recommen-

dation function is exchanged by a multi-dimensional recommendation
function to include the contextual information in the rating estimation.

Techniques, which are based on contextual user preferences, observe users
and their interaction with the system to figure out the user’s preferences
and model them. This context-sensitive preferences and the resulting rec-
ommendations are calculated either by adopting CF, or CBF methods or
by intelligent techniques to analyze data from machine learning or data
mining. G. Adomavicius and Tuzhilin, 2015, pp. 206–209

2.4. Data Mining

Due to the exploding amount of data available for RSs, it is getting more
and more important to find techniques to deal with this. The aim is to
exploit the information and model it. The models can be used for learning
preference models. Gemmis et al., 2009

RSs tend to adopt techniques of neighboring areas. To handle the amount of
data, these systems use algorithms stemming from the field of data mining.
The steps to get preference models out of data are called Data Preprocessing,
Model Learning and Result Interpretation. Amatriain and Pujol, 2015, p. 227

12

2.4. Data Mining

2.4.1. Data Preprocessing

Before starting to preprocess data, the task is to gather user feedback. Feedback
can happen in two ways. Either as Explicit Rating where the user rates an
item on a defined range, or Implicit Rating. Implicit feedback is gathered
passively by monitoring the user interactions in a specific environment
with the system. In order to get implicit ratings, the user interests from the
feedback must be estimated on a value in a predefined scale. Gemmis et al.,
2009, pp. 8–10

Due to the amount of dimensions and scales of the explicit and implicit
ratings, in real-life situations the data has to be preprocessed to match
the prerequisites of machine learning techniques. Preprocessing techniques
are, for example, similarity measures or dimensionality reducing and, in this
area, especially the Matrix Factorization and Singular Value Decomposition.
Amatriain and Pujol, 2015, p. 229

Similarity Measures

Similarity measurement is used to calculate the distance between two items
or two users. It is more a tool than a step in preprocessing data. There are
several methods to calculate the similarity and the following are the most
common ones:

• Euclidean distance. This is probably the most common and simplest
example.

d(x, y) =

√
n

∑
k=1

(xk − yk)2 (2.7)

• Cosine similarity. The cosine of the angle of two vectors, which is repre-
senting the items in an n-dimensional space, describes the similarity
of two objects.

cos(x, y) =
(x • y)
‖x‖‖y‖ (2.8)

13

2. Techniques for Recommender Systems

• Pearson correlation. The Pearson correlation measures the similarity of
ratings by removing the effects of mean and variance.

PC(Ua, Ux) =
∑i∈I(ra,i − ra)(rb,i − rb)√

∑i∈I(ra,i − ra)2
√

∑i∈I(rb,i − rb)2
(2.9)

It depends on many aspects which similarity measure function performs
best, and additionally, differences are often not measurable. Amatriain and
Pujol, 2015, pp. 229–230

Matrix Factorization and Singular Value Decomposition

Reducing dimensionality is used when the data set includes too many
features leading to a high-dimensional space combined with a limited
number of values of this features per object. This usually happens when
explicit feedback is not, or hardly available, and implicit feedback is used
to get a user’s preferences. Implicit ratings are commonly represented as a
dense matrix. Y. Koren, Bell, and Volinsky, 2009, pp. 31–32

CF systems compare users and items to achieve recommendations. This can
be done in two different ways. The classical neighborhood approach where
relationships between users or between items are computed based on the
ratings. The alternative approach is the latent factor model, such as Singular
Value Decomposition (SVD), where items and users transformed to the
same latent factor space to make them comparable. The entries in the latent
space represents the rating calculated from the factors of the user feedback.
In the field of music recommendation, possible factors for dimensions can
be obvious, like genre or interpret up to total uninterpretable dimensions.
Yehuda Koren, 2008, p. 426

Matrix factorization is the base for many, very successful, latent factor model
realizations. The mapping of users and items in an f -dimensional latent fac-
tor space allows the matrix factorization to model the user-item interactions
as inner products in the space. The vectors for the item i and the user u in the
space are qi ∈ R f and pu ∈ R f . The vector qi shows the match to all factors
both positive and negative and the vector pu indicates the preferences of the
user to these factors. The dot product of these two vectors represents the

14

2.4. Data Mining

interaction between the item and the user, and is defined as qT
i pu. Predicted

values are notated as r̂ui, known rating as rui. The hardest part is to compute
all mappings between pu and qi. Afterwards, the estimated ratings can be
calculated with the previously mentioned Equation 2.10. Y. Koren, Bell, and
Volinsky, 2009, p. 32

r̂ui = qT
i pu (2.10)

The described model is very similar to SVD. In the domain of CF, the SVD
factorizes the user-item matrix. As in conventional SVD missing information
in the matrix leads to an undefined status, earlier systems made assumptions
accompanied by a heavy increase of the amount of data and the possibility
of distortion of the underlying data. For this reason, current works suggest
focusing on the observed data only. These systems learn the factor vectors (qi
and pu) by minimizing the regularized squared error of the known ratings:

min
p∗,q∗ ∑

(u,i)∈K
(r(ui)− qT

i pu)
2 + λ(‖qi‖2 + ‖pu‖2) (2.11)

K is the set of user-item pairs of which the rating is known. This is seen as
the training set. λ is a constant to control the extension of regularization.
It is usually determined by cross-validation. Y. Koren, Bell, and Volinsky,
2009, p. 32

Matrix factorization contains the benefit of including different aspects into
the system. This allows to add biases in the calculation. Biases are character-
istics of users or items. For example, the average rating of users differs. The
approximate formula for the bias bui of the rating rui is as follows:

bui = µ + bi + bu (2.12)

µ represents the overall average rating, bu and bi are the deviation of the
item i and user u from the average. Including the biases in the formula to
minimize the squared error function comes to following:

min
p∗,q∗,b∗ ∑

(u,i)∈K
(r(ui)− µ− bu − bi − qT

i pu)
2 + λ(‖qi‖2 + ‖pu‖2 + b2

u + b2
i)

(2.13)

15

2. Techniques for Recommender Systems

Such systems allow to decrease the observed signal to get a vital accurate
model. Y. Koren, Bell, and Volinsky, 2009, p. 33

2.4.2. Model Learning

Learning user profiles can be categorized in two different types: Offline and
online learning techniques. In online learning the model is build online and
updated frequently to achieve real-time recommendations. Offline learning
builds a model once and can be used in domains with slowly changing user
preferences compared to the time the model building takes. User profiles
are typically learned with machine learning techniques. Such a technique is
used to build a classifier by learning from a training set to label items. For
example, with c+ and c- to categorize items in user-likes and user-dislikes.
Machine learning strategies are for example probabilistic algorithms, neural
networks, decision trees and nearest neighbor algorithms. Gemmis et al.,
2009, pp. 10–11

Näıve Bayes

Naı̈ve Bayes is a probabilistic method for classification. It is usually used for
recommending textual documents. The classifier determines the probability
that an item i belongs to a class Cj given feature values of the item. In the
field of textual documents, this represents the probability that a user is
interested in a text which contains or does not contains specific words:

P(classj | word1&word2& . . . &wordn) (2.14)

word1...n stand for Boolean values if the word appears in the text or not.
Bayes Classifier take the assumption that the appearance of words in texts
are independent events given the class of the text. This can be expressed as
follows:

n

∏
i

P(wordi | classj) (2.15)

16

2.4. Data Mining

This leads to the probability of an item given classj is proportional to:

P(classj)
n

∏
i

P(wordi | classj) (2.16)

The item is assigned to the class with the highest probability. Even though
the assumption of independent attributes in the field of text classification is
completely unrealistic, the performance of Naı̈ve Bayes is very well. Billsus
and Pazzani, 1996, pp. 237–238

Decision Trees

Decision Trees are methods to classify attributes by making decisions in the
path of a tree. The non-leaf nodes test a single attribute-value to determine
in which sub-tree the classification continues until a leaf node is reached.
They indicate the class to assign the item. Concrete algorithms like ID3 have
features to deal with noise or unknown attribute values. Quinlan, 1986

Decision trees are implemented very easily but are not very effective in
the field of RS. Although in combination with other techniques decision
trees can improve recommendations efficiently or accurately. Jannach, 2011,
pp. 70–72

Nearest Neighbors

The Nearest neighbor classifier (kNN) is an instance-based classifier which
needs training records to predict class labels of new cases. For a new point
to classify the kNN looks for the k closest points of the training set. The new
point gets the class label of the class with the largest number of points in
this neighborhood. The trickiest part is to choose the size of k. A too small
size is sensitive to noise points, a too big size can include too many points
from another class. Cover and Hart, 1967

The results of kNN are quite accurate and the algorithm is still simple and
intuitive. For a long time the kNN was the de facto standard in CF, but is
challenged by Matrix factorization nowadays because it is not protected

17

2. Techniques for Recommender Systems

against bias and relatively expensive in classifying new records. Amatriain
and Pujol, 2015, pp. 237–238

Support Vector Machines

Support vector machines (SVMs) try to find linear hyperplanes with a maxi-
mum margin to separate data in two classes. The basic idea behind SVM is
that the maximum margin decreases the probability of misclassification of
unknown items. Cristianini, Shawe-Taylor, et al., 2000

Clustering

Clustering is dedicated to the category of unsupervised learning. It com-
bines the strength of different techniques to recommend closely related
individuals associated to a group. The use of clusters which represent the
computed groups, enables to select the closest clusters instead of the nearest
neighbors and so make the system scalable. Moreover, it allows to predict
unrated items of a user by using the rating information of the user’s group.
A popular implementation of clustering is the K-means algorithm, where
the K defines the desired number of clusters. Xue et al., 2005, pp. 114–116

2.4.3. Result Evaluation

Widely accepted as an evaluation of a RS is the mean absolute error (MAE). It
measures the difference between the predicted and the users actual rating.
The formula to calculate is:

|E| = ∑N
i=1 |pi − ri|

N
(2.17)

This allows to compare the significance of a difference between the MAEs
of two RSs by well-studied statistical properties. Root mean squared error
(RMSE) is related to the MAE and emphasizes the difference between the
predicted and the actual rating. Larger errors result in a higher RMSE-value.
Herlocker et al., 2004, pp. 20–21

18

2.5. Music Recommender Systems

There are classification accuracy metrics to measure the correctness of decisions
a classifier makes. Such metrics do not measure the predicted rating, but
rather qualify a classification as correct if the item has assigned to the correct
class. In a RS where items can be classified in relevant and not-relevant, and
the RS select several items as recommendation, the precision is defined as
follows:

P =
Nrs

Ns
(2.18)

The result of this formula is the probability that a recommended item
is relevant. Whereas recall is the probability, recommendation contains a
relevant item:

R =
Nrs

Nr
(2.19)

Depending on the separation of the items in relevant and non-relevant, the
precision and recall value can be different. Herlocker et al., 2004, pp. 22-24

2.5. Music Recommender Systems

To enable users of online music services the experience to have a huge
amount of titles under control, it is necessary to provide music recom-
mender systems. The unique characteristic of recommending music is that
consuming one track is very short, additionally, a user can decide within
seconds whether a song is satisfying. Furthermore, songs are listened re-
peatedly and typically recommendations contain a set of tracks where many
of them are listened to. Due to the low number of ratings per song, a music
recommender tends to use content-based and context-based techniques. A.
Schedl et al., 2015, pp. 453–455

In the following sections techniques for music recommendations are de-
scribed, and, additionally, ways to order the recommended tracks as playlists
are mentioned.

19

2. Techniques for Recommender Systems

2.5.1. Content-Based Music Recommendation

With the availability of millions of songs in internet stores it becomes im-
portant to offer RSs dealing with this. The problem in CF is that the number
of rated songs by a user compared to the available songs is extremely small.
This leads to recommend items only out of a small popular track set and
fewer known songs are ignored. Instead, content-based music recommenda-
tion (CBMR) recommend the full set of available tracks by finding similar
songs compared to a user-model. D. Bogdanov, Haro, and Fuhrmann, 2011,
p. 249

This leads to another disadvantage of CF, the so called cold-start problem.
New items are not part of the possible recommended items until there are
ratings for the item. And non-recommended items are less likely to get
rated. McFee, Barrington, and Lanckriet, 2012, p. 2207

Content Creation

In CBMR the first step is to create structured meta-data out of the un-
structured music-source. One way is to extract automatically semantic
information and relations from music-sources based on arbitrary textual
sources. The relation between entities can be, for example, the track, artist or
genre. Especially in the domain of music the number of possible relations is
very high. In web-based sources, containing meta-data and the song-text, it
is possible to create models of the items with the help of linguistic features.
Knees and M. Schedl, 2011, pp. 18–19

Another way to extract information out of music is to analyze the audio
signal. This allows to get timbral, temporal, and tonal features as high-level
semantic descriptions. With the use of classification tasks, it is possible to
get information about rhythm, tempo, instrumentation, genres, musical
culture and moods. This enables to create a model for recommendation.D.
Bogdanov, Haro, and Fuhrmann, 2011, pp. 249–250

On this approach Soleymani et al. (2015) developed a system including
five attributes known as Mellow, Unpretentious, Sophisticated, Intense and
Contemporary (MUSIC) which results are much better compared to CF

20

2.5. Music Recommender Systems

recommendations when no user ratings are available and this increases the
possibility that songs, that are less popular but appealing to the user will be
recommended.

Preference Set

To create a user-model, it is necessary to know the preferences of a user.
There are different ways to get this information. Either the user can create
a preference set with several tracks representing the taste of the user. Or
the preferences of a user’s most popular songs can be get out of the ratings
a user made on tracks. Another way is to simply take a user’s top tracks
which could be the most played tracks in a music system, or the one marked
as favorites. D. Bogdanov, Haro, and Fuhrmann, 2011, pp. 249–250

Model Building

The recommendation task itself contains two steps. The first step is to
create a user model and subsequently finding similar songs to this user
model. There are several ways modeling the preferred recommendation
outcome. One way is to create a model as the mean point of all items in
the preference set. The recommended songs are the nearest to this point.
Another way is, that every item of the preference set is a single model and
the recommendation would be the item closest to one of these models. A
third way is to build clusters with a Gaussian mixture model using the
preference set as the training set. Clusters containing more training items are
bigger, and so the probability a recommended item is part of this clusters is
higher. Dmitry Bogdanov et al., 2013, pp. 19–21

Similarity Measurement

To calculate the similarity the model and each track are represented as
a d-dimensional vector ∈ Rd. The distance between the model and the
single tracks can be calculated for example with the Euclidean distance which
is defined in Formula 2.7. Techniques like SVMs allow to optimize the

21

2. Techniques for Recommender Systems

performance of similarity measurement. McFee, Barrington, and Lanckriet,
2012, pp. 2207–2210

2.5.2. Contextual Music Recommendation

As listening to music can influence the emotion of a user, the context can
play a big role in recommending music. R. Cai et al., 2007, p. 553

Although in CARSs there are many different possibilities to categorize the
context, when dealing with music it makes sense to categorize factors which
are in relation to the environment and to the user. A. Schedl et al., 2015,
p. 460

Examples for environmental context are weather and time, or situation based
factors like a landscape, a road type or traffic conditions when driving a
car. Examples of user-related context are mood, activities, or social context.
Some of these factors have more and some of these have less influence on the
recommendation. The main disadvantage in CARSs is the fact that ratings in
different contextual situations are necessary to get the correlation between
the context and the item. Furthermore, it is vague if different factors have
side effects to each other. A methodology for CARSs could comprises four
steps: context factors relevance assessment, where the importance of each factor
is analyzed, and the relevance defined. The in-context acquisition of ratings,
where users rate tracks under a defined context. Context-aware rating predic-
tion, where missing ratings of items under several contextual situations are
predicted and finally the context-aware recommendation generation, where the
user gets a recommendation under a specific contextual situation. Baltrunas
et al., 2011, pp. 89–90

Contextual music recommendation can also be seen as an improvement
of existing CBF. To achieve improvements through contextual information,
it is necessary to gain the information in different ways, such as emotion
detection/recognition, emotion description, and low-level feature-based
classification like energy or the audio spectrum. Emotion representation as-
sumes that every emotion can be mapped to a set of numbers. This allows
to update the user-model depending on the contextual situation. Han et al.,
2010, p. 434

22

2.5. Music Recommender Systems

Thayer (1990), for example, defined a model of emotions with the two
dimensions arousal and valence which allows to divide the model in four
quadrants including eleven emotions. Felfernig, Stettinger, et al. (2018,
pp. 157–159) present different models of emotions.

A third way of recommending music with contextual information is to
label music with context attributes. This approach is cost-intensive since
tracks have to be labeled. Furthermore, the results show no significant
improvements. Ankolekar and Sandholm, 2011

2.5.3. Hybrid Music Recommendation

As shown in the previous sections, each recommendation technique has
its pros and cons. CF outperforms CBF but has the disadvantage of the
cold-start problem. CARS need height effort to get the underlying data. In
this sense, the next step in RS is to develop hybrid systems combining the
pros of two or more RSs and reduce the weaknesses of them. A. Schedl
et al., 2015, p. 465

Music recommender systems are successful when they consider different
aspects such as music content, context and user-context. The research in mu-
sic information retrieval (MIR) is widely explored and enables applications
such as semantic music search engines, music recommender systems, or
automated playlist generation systems. MIR allows to identify correlations
between the perception of music and contextual information beyond the
audio signal of tracks. Due to the subjective perception of music, it also
depends on user-specific factors. User-aware music recommender systems
consider user context and user properties. They differ in the changing char-
acteristics. User properties like age or genre preferences slowly change
whereas user contexts such as current activity or mood change dynamically.
M. Schedl, 2013, pp. 3–4

The music perception can be defined as the dependency of four categories:
User context can include the mood, social context, or physiological aspects
of the user. Music preferences, musical experience, or demographics are
aspects of user properties. Music content in the form of rhythm, timbre, melody,
harmony, and loudness. And finally the category music context contains song

23

2. Techniques for Recommender Systems

lyrics, artist’s background, semantic labels or music video clips. M. Schedl,
Flexer, and Urbano, 2013, p. 526

As discussed in Burke (2002, pp. 339–344), there are seven ways of com-
bining recommendations in a hybrid fashion that has been developed so
far: The weighted method combines the scores of several RSs to a single
recommendation. switching is defined as the dependency of the selected
recommendation on the current situation. Mixed hybrid recommendations
shows the recommendations of each RS at the same time. Feature combination
combines the approaches of different RSs taking several data sources as
input. In the Cascade mode one RS refines the recommendation of another
RS. This is not to be confused with feature augmentation, where an input
feature of a RS is the recommendation of another RS. Finally, the meta-level
method uses one recommender to define a model which is the basis for
another RS.

2.5.4. Automatic Playlist Generation

As tracks are consumed in a row, an improvement of recommending music
is the implementation of a playlist generation. Typically, users listen to
music in a sequence order and the first track is consumed immediately after
the recommendation is finished. As music can influence the current emotion
of a user, the change of the mood should be considered in the selection of
the following tracks. An approach to consider the different music moods
is trying to find a smooth transition between tracks. This can be achieved
by taking the current track and compare the set of candidates to pick the
one with the smallest Euclidean distance. The main disadvantage is the
contemplation of only two songs. Another approach is frequent pattern like
association rule and sequential pattern where the association between item
sets are considered. Either it is possible to consider playlists as users. The
ranking represents the track order. Content-based approaches use additional
information such as lyrics, genre, user tags, or musical features to find
the nearest neighbors. It is hard to evaluate such playlists, but possible
strategies are human opinion surveys, comparison to hand-crafted playlists
or semantic cohesion. Bonnin and Jannach, 2013

24

2.6. Evaluating Recommender Systems

2.6. Evaluating Recommender Systems

In this section, techniques to evaluate RSs are described. It presents different
ways how evaluations can be carried out, and it shows parameters which
can be investigated to measure evaluations.

2.6.1. Experimental Settings

There are several environments to evaluate a RS. From easy to manage
offline testing, to an executed user study under a controlled setting, to
online testing with a big set of participants different variants are possible.
All three follow the same basic approach: The first step is to form a hypothesis.
For example, algorithm A gives better recommendations than algorithm
B. So only the prediction accuracy should be tested. The next step is to
define controlling variables to check that the preconditions of evaluating
two different algorithms are the same. For example: Are the data set and
the influencing context the same in all comparing tests? To persist the
result against other evaluations, the experiment needs generalization power.
This means that the preconditions must be defined in such a way that the
algorithm produces the same results in the testing environment and in real
situations. It is not valuable to create a data set to gain the perfect result for
the preferred algorithm in the test but recommend incorrect items in the
real application. Gunawardana and Shani, 2015, pp. 267–268

Offline Experiments

For offline experiments there is a need of a precollected data set which
contains a set of items rated previously by users. With this dataset, offline
experiments can be compare the result of the algorithm with the ratings of
the data set. This has the benefit that there is no need of test users during
the tests and it allows a cost-effective comparison of different algorithms.
The disadvantage of offline experiments is the restricted amount of testable
hypotheses. Furthermore, the fact that ratings differ caused by the way of
presenting the recommendations is not taken into consideration. So offline

25

2. Techniques for Recommender Systems

experiments are used to pick a small set of possible algorithm candidates
to make further tests with user studies or an evaluation with the actual
conditions. Gunawardana and Shani, 2015, pp. 268–269

User Studies

Due to the fact that many applications including RSs are based on interac-
tions with users, offline tests are limited. User studies offers the possibility
to evaluate the system including the interaction with users, which allows to
not only gain information about the accuracy of the recommended items,
but also information about the performance or the user experience can be
collected. To conduct a user study, a set of test users is asked to perform
several previously defined tasks. During the execution, participants were
observed to collect different quantitative measurements. Before, during, and
after each task, the users were asked to answer several qualitative questions
not directly observable during the tasks. A huge amount of information
can be collected during the evaluation. But there are also disadvantages,
like the high effort. The evaluation takes a lot of time and the analysis of
the collected data is demanding. This typically leads to a small number of
testing subjects. Furthermore, pilot user studies were made to avoid failing
experiments, as the failure of the application under specific circumstances.
The test subjects should represent the users of the application as close as
possible. Nevertheless, there is the possibility of a bias of the results caused
by the knowledge of the subjects taking part in an experiment. It is possible
to let the users test all variations of the system called within subjects or let
each user test only one variation to compare between subjects. When prepar-
ing the questions, there is to contemplate that the kind of the question can
influence the answer. It is important to ask neutral questions avoiding the
suggestion of ”correct” answers. It is also important to guarantee that the
answers are treated as confidential and anonymous, and convince the test
group that there are no wrong answers. Gunawardana and Shani, 2015,
pp. 271–274

26

2.6. Evaluating Recommender Systems

Online Evaluation

To test different variants of RSs in real situations, online evaluation offers
the possibility to test different algorithms by providing them to different
users. All users use the same application, only the underlying system is
divers, and so users are not able to differentiate. To test the interface, it
is the other way around, the underlying algorithm is the same in every
version, only the interface changes. This is necessary to get a comparable
evaluation result. For these reasons it is a very popular evaluation approach
in productive systems. The circumstance that the evaluation participants are
real users, makes it mandatory to test such algorithms in offline experiments
and even in user studies, because a bad behaviour of the system can lead to
lose customers. Nevertheless, online test evaluation provides results closest
to real world situations with the highest amount of test subjects and allow
to test over a longer period to evaluate the changes in time. Due to the
excessive effort, which is necessary to bring a variant of the system to
the stage of online evaluation, only few variants were typically evaluated.
Gunawardana and Shani, 2015, pp. 274–275

2.6.2. Recommender System Properties

When testing different RSs, it is necessary to define which properties are
important, and to rank them. There is no general solution, it depends on
various factors such as the kind of recommended items or the goal behind
the recommender. Some properties can have a negative impact on others,
like accuracy on diversity where a higher focus on accuracy can result in
more similar results. To find the correct ratio of such properties, online
tests can help to find a good balance between the properties. In such online
tests, there typically is a basic recommendation algorithm including tunable
parameters that can effect certain properties allowing to find an appropriate
configuration. Concerning a property, it is important that on evaluation the
participant does not recognize the intentions especially in the questions.
Gunawardana and Shani, 2015, p. 280

27

2. Techniques for Recommender Systems

User Preferences

The simplest way to evaluate different RSs is to let the subject choose one
of the systems. Such tests do not investigate a specific evaluation property.
The advantage is that users would rather make decisions between two
opportunities than rating a system. The disadvantage is that the reason
for the decision is not observable. The user’s opinion as well is uncertain
about the inferior system. In this way it is possible that one system beats
another, but the acceptance for the loosing system is higher. The possibility
that not every user’s decision is valuable for the evaluation has to be taken
into account. The missing of information why one system is better than the
other makes it impossible to improve the system in such a way. The solution
is to break the components of the system into smaller pieces, to get more
detailed information and better understand the system. Gunawardana and
Shani, 2015, pp. 280–281

Prediction Accuracy

The most discussed property in RSs is prediction accuracy. It is also the
property which is easiest to compare and to bring it into a countable form.
The common opinion is that a better prediction accuracy leads to a better
user acceptance. It is, furthermore, independent of the user interface and
is therefore testable in offline experiments. It can be measured in different
ways like accuracy of ratings prediction, shown in Section 2.4.3, the accuracy of
usage prediction, which comes into effect when RSs are not trying to predict
the value of the rating, but tries to make recommendation getting chosen by
the user, and finally the accuracy of rankings of items, concerning the order of
the recommendation. Gunawardana and Shani, 2015, pp. 281–285

Coverage

Coverage can be item space coverage defining the recommendable items of a
RS or it can be user space coverage describing the number of users the RS can
provide accurate recommendations. Especially CF systems have problems
with coverage because items can be unrated, or users have not rated items.

28

2.6. Evaluating Recommender Systems

Due to the increasing amount of ratings, the coverage of items and users rise
over time. Related to the coverage is the cold-start problem, where new user or
items without any information cannot be included in the recommendation
process. Gunawardana and Shani, 2015, pp. 292–293

Confidence

In the field of RSs, confidence is the probability that a rating for an item is
correct. With knowing a recommendation’s confidence, the user can collect
further information for recommended items with low confidence. This can
lead to a higher user satisfaction. Gunawardana and Shani, 2015, p. 294

Trust

When many users belief in the results of a RS, it has a high value of trust. A
user gets confident to a system by getting repeatedly good recommendations
over time. This can be reached besides good recommendations through
recommending items; a user has already rated high. A user with a high
value of trust in a RS tends to accept even not so accurate recommendations.
Gunawardana and Shani, 2015, pp. 295–296

Novelty

Recommended items, which are new to a user, are novel recommendations.
An increase of novelty can be achieved through filtering out known items by
the user, for example the ones which where rated already. Nevertheless, it
can not be guaranted that items are new for users since it can be consumed
on other platforms before. Only user studies provide the possibility to
check if an item is new to a user. Note that novelty is independent from
accuracy, following that it always has to be evaluated in combination with
the relevance of items. Gunawardana and Shani, 2015, p. 296

29

2. Techniques for Recommender Systems

Serendipity

Serendipity is the combination of a surprising and successful recommen-
dation. A recommendation is surprising if it is unlikely that the user will
find this item on his/her own. For example, when the user is unaware of
a track’s artist, or the track is in a genre, the user is usually not listening
to. As surprising itself is not hard to achieve, it has to be combined with
accuracy to reach serendipity. It can be described as the amount of new and
useful information. Defining a recommended item as serendipitous is not
as easy because the user tends to follow unknown recommended items. To
be sure that the item is appropriate, there has to be an observation over a
certain period of time. Gunawardana and Shani, 2015, pp. 297–298

Diversity

Diversity describes how different recommended items are. It can be defined
as the opposite of similarity. There are several domains for RSs where it is
important to provide divers recommendations. For example, on RSs recom-
mending holiday destinations it is not helpful to recommend several cities
in the same country. Higher diversity can decrease the value of accuracy, so
a balance between both has to be found. Diversity can be measured with
item-item similarity like in Section 2.4.1. Gunawardana and Shani, 2015,
p. 299

Utility

The utility of a RS has to be defined in an early state of the development.
Examples are the increase of the revenue in an e-commerce system, or an
extended user experience. Utility can either be seen as the value the user
or the system gets from a recommendation. Gunawardana and Shani, 2015,
p. 300

30

2.6. Evaluating Recommender Systems

Risk

Some RSs work in a domain where it is important to know how risky a
recommendation is. Like in the recommendation of stocks. In addition to
the possible profit, it is necessary to know the risk of failure. Gunawardana
and Shani, 2015, p. 301

Robustness

Robustness can be seen as the system’s defense against all variants of
manipulations. Manipulation of data can be done by fake users making fake
ratings, or by attacking the system. Both can have affect on the stability and
the data security. Developing a 100 percent robust system is unrealistic and
the effort in preventing attacks is often a factor of cost. Gunawardana and
Shani, 2015, pp. 301–302

Privacy

A RS is respecting the users privacy as long as it is impossible for a third
party to get information about the ratings a user has made. People give RSs
preferences about items to get good recommendations but are unwilling
to share this information with other people. In certain situations, even
recommending items that other users have previously consumed may violate
the user’s privacy. Implementing arrangements protecting privacy in RSs
can affect the accuracy and so evaluations are necessary comparing the
system with this implementation and without. Gunawardana and Shani,
2015, p. 302

Adaptivity

The adaptivity of a RS describes how rapidly a system can react on changing
conditions. For example, changing preferences of a user or trends. It can
also be seen as the ability of a system to consider newly made ratings of
a user in recommendations. For a user it is very annoying adding ratings

31

2. Techniques for Recommender Systems

without any changes of the recommendations. Gunawardana and Shani,
2015, p. 303

Scalability

Nowadays, due to the huge amount of data it is getting more and more
important to get recommendation immediately after the request. Developer
of RSs are focused on the accuracy or coverage and reach good response
times on small test sets. When working with real data such systems often
do not get the performance as they should, or only with increasing the
computation power or memory. Scalability can, for example, be improved
by reducing the complexity of a model. A measurable value for scalability
can be the amount of recommendations per second or the response time
getting a recommendation. Gunawardana and Shani, 2015, pp. 303–304

2.7. Group Recommender Systems

RSs discussed so far are for individual users. But there are also many scenar-
ios with the need of suggesting items to groups. Felfernig, Stettinger, et al.,
2018 For group recommendations, existing techniques for recommending
items have to be adapted and extended. For this purpose, the preferences
of all group members must be aggregated. This section explains different
aggregation strategies, recommendation techniques adopted for groups,
evaluations factors which additionally have to be considered in GRSs, and,
finally, this section is about which social factors affect the accuracy of rec-
ommendations in groups.

2.7.1. Preference Aggregation Strategies

To get recommendations for a group, the preferences of the individual
members of the group have to be aggregated. There are three different
schemas nearly all group recommendation approaches use. There are the
aggregation of the ratings of the users, the merging of the recommended items for

32

2.7. Group Recommender Systems

the individual users and the construction of a group preference model. Jameson
and Smyth, 2007, p. 605

User Rating Aggregation

For this case the assumption is that each user has rated the items, or at
least, the rating can be predicted. The rating for an item is computed
by aggregating the ratings of all group members, and the items with the
highest ratings are recommended. There are different strategies to calculate
the resulting rating which are described later in this section. Jameson and
Smyth, 2007, pp. 606–607

Merging Individual User Recommendation Items

In case of recommending a set of items, it is possible to calculate items for
each user and it can merge the results to a group recommendation. It is a
very simple adoption of recommender systems for individuals. The problem
in such approach is that each recommended item is accurate for a single
group member. This leads to the possibility that the items are perfect for a
single group member, but unacceptable for all of the others. Jameson and
Smyth, 2007, pp. 605–606

Construction of Group Preference Models

This approach is not focused on the prediction of the user ratings, instead
it generates a preference model for the group based on the individual
preferences of the group members. With the help of the group preference
model it is possible to predict ratings of items and recommend the items
with the highest values. The advantage of this strategy is that different
approaches are possible to generate the group model, like distance between
preference models. Furthermore, it increases the privacy of users. Due to
the recommendations based on a group preference model it is not possible
to draw conclusions about the preferences of the single group member.
Jameson and Smyth, 2007, pp. 607–608

33

2. Techniques for Recommender Systems

2.7.2. Aggregation Goals

There are different opportunities to compute the aggregation of the prefer-
ences with the previously described general strategies. Each of them intends
to achieve a specific goal of user satisfaction. Which kind of aggregation is
selected often depends on the given situation. The field of aggregation strate-
gies has reached attention in group recommendation. Some approaches are
discussed as follows. Jameson and Smyth, 2007, p. 609

Maximizing Average Satisfaction

Maximum Average Satisfaction is achieved by calculating the predicted sat-
isfaction of the single users and recommend the items with the highest
average. In some cases, it is necessary to transform ratings to represent
satisfaction accurately. Jameson and Smyth, 2007, p. 609

Aggregation strategies following this approach in the broadest sense are
Additive Utilitarian, Average, Borda Count, Most Pleasure and Multiplicative.
Felfernig, Stettinger, et al., 2018, p. 32

Minimizing Misery

The disadvantage of maximizing average satisfaction is that some users can
be left very dissatisfied. And, if the members of the group are consuming
the recommended item together, frustrated group members can decrease the
satisfaction of the whole group. Another possibility is that such users refuse
to consume the recommended item, bringing the whole group in trouble.
Minimizing misery is a strategy to recommend items with the least misery-
function. A possible way to reach this strategy would be to recommend
items only over a defined threshold. Jameson and Smyth, 2007, p. 609

A typical scenario for this strategy are shopping centers, avoiding customers
getting dissatisfied caused by playing music the customers don’t like. Be-
sides the fact that such recommendations often gain low average satisfaction,
furthermore, they are easy to manipulate by rating bad all disliked items.
Felfernig, Stettinger, et al., 2018, p. 33

34

2.7. Group Recommender Systems

Concrete strategies following this approach are Average without Misery and
Least Misery. Felfernig, Stettinger, et al., 2018, p. 32

Fairness

The goal in reaching fairness is that no one is being preferred by the expense
of others. Additionally, fairness is combined with another goal. For example,
it makes no sense to achieve fairness by recommending items which all
group members equally dislike. Jameson and Smyth, 2007, p. 610

Fairness can be measured for single items or for a group of recommenda-
tions. Felfernig, Stettinger, et al., 2018, pp. 68–69

An example of an aggregation strategy reaching fairness is Fairness. Felfernig,
Stettinger, et al., 2018, p. 32

Treating Group Members Differently

In some cases, it is desirable to treat separate group members differently.
For example, if someone has a birthday party, this group member could be
preferred on the condition not to annoy others with the recommendations.
Jameson and Smyth, 2007, p. 610

Another situation could be that one member is more respected than others.
And in this way, a recommendation preferring the preferences of this group
leader could lead to a higher overall satisfaction. Felfernig, Stettinger, et al.,
2018, p. 33

Exemplarily for this strategy is Most Respected Person. Felfernig, Stettinger,
et al., 2018, p. 32

2.7.3. Recommendation Techniques for Groups

As already mentioned, there have to be adaptations on single user RSs to
recommend items to groups. In the following sections, several approaches
are explained.

35

2. Techniques for Recommender Systems

Collaborative Filtering for Groups

As in Section 2.1 explained, CF is based on predicting the preference of
a user by finding the nearest neighbors. Both aggregate models and aggregate
predictions are possible strategies of applying CF for groups. Felfernig,
Stettinger, et al., 2018, p. 34

When using the aggregate models’ strategies, the rating of the group members
are aggregated to a group profile (gp). The gp contains item-specific ratings.
Unknown ratings are calculated with collaborative filtering finding similar
groups. The similarity between groups can be calculated with the Pearson
correlation. Formula 2.20 shows an adaption for groups. rgx represents the
average rating of group gx, TDc is the set of items rated by both groups
and rgx,ti is the known rating for item ti from group gx. Felfernig, Stettinger,
et al., 2018, pp. 35–37

similarity(gp, gx) =
∑ti∈TDc(rgp,ti − rgp)× (rgx,ti − rgx)√

∑ti∈TDc(rgp,ti − rgp)2 ×
√

∑ti∈TDc(rgx,ti − rgx)2

(2.20)

On the basis of the similarity of the nearest neighbors NN the rating can
be predicted. This is shown in Formula 2.21 by Felfernig, Stettinger, et al.
(2018, p. 37)

prediction(gp, t) = r̂(gp, t) = rgp +
∑gj∈NN similarity(gp, gj)× (rgj,t − rgj)

∑gj∈NN similarity(gp, gj)
(2.21)

Aggregating predictions starts with predicting items or ratings of individuals.
This predictions were aggregated to recommendations for groups. The
predicted items, calculated by individual recommenders, are aggregated to
a collection of proposed items without a ranking, whereas rating predictions,
calculated with approaches like matrix factorization, are aggregated to get a
ranking of candidate items. Felfernig, Stettinger, et al., 2018, pp. 34–35

36

2.7. Group Recommender Systems

Content-Based Filtering for Groups

Section 2.2 explains that CBF recommend unknown items like items pre-
ferred by the user. Similar to Section 2.7.3, Content-Based Filtering for groups
can also follow the strategies of aggregated predictions and aggregated models.
Felfernig, Stettinger, et al., 2018, p. 37

The individual results of the CBF applied on the group members are used
by Aggregated Predictions to aggregate them to a group recommendation.
The aggregation results are represented as similarity values between items
and user profiles. The result is a user× item similarity matrix. Based on this
matrix aggregation functions can determine the recommended items for the
group. Felfernig, Stettinger, et al., 2018, pp. 37–39

The Aggregated Models strategy aggregates user profiles into a gp and deter-
mine the recommendations based on the similarity between the items and
the gp. Felfernig, Stettinger, et al., 2018, p. 39

Hybrid Recommendations for Groups

As mentioned in Section 2.5.3, hybrid RSs try to combine the advantages
of different systems and to reduce the negative aspects. This approach can
also be adopted in RSs for groups. Following, there are two approaches to
combine GRSs explained. The first is the weighted approach, where the scores
or predicted ratings of items calculated by two or more RSs are combined
to a single result. The second approach is mixed, where the recommended
items of different RSs are combined into one recommendation of items. This
can be done by the fairness approach, for example by taking the best fitting
item of each individual recommendation followed by the second ones and
so on. Felfernig, Stettinger, et al., 2018, pp. 51–52

Matrix Factorization for Groups

As matrix factorization is nowadays very popular in CF, there are several
approaches adopting it for GRSs. Matrix factorization for single users is
described in Section 2.4.1.

37

2. Techniques for Recommender Systems

Two possible approaches are after factorization and before factorization. After
factorization aggregates the user specific factors performed by matrix fac-
torization, whereas before factorization performs matrix factorization with
aggregated user-specific item ratings. After factorization is simple and effi-
cient and provides a solid baseline, but especially on large datasets with
large groups before factorization performs significantly better on predicting
results. Ortega et al., 2016, pp. 314–317

2.7.4. Evaluating Group Recommender Systems

In general evaluation techniques for GRSs are not different to the ones for
single user recommendation shown in Section 2.6. But there are properties
which should be more in focus for recommending items to groups, or they
can be differently interpreted for groups. Felfernig, Stettinger, et al., 2018,
pp. 59–71

Coverage and Serendipity

Coverage in term of user RSs can be item or user space coverage, showing
how many items have been rated from users. Group coverage (GC) can be
defined as the number of groups with at least one group recommendation
compared to the number of groups overall. Formula 2.22 shows a possible
calculation. Catalog coverage (CC) shows the number of recommended items
in comparison to the whole catalog. A suggestion for calculation is shown
in Formula 2.23. Felfernig, Stettinger, et al., 2018, pp. 59–60

GC =
|groupswithprediction|

|groups| (2.22)

CC =
|recommendeditems|

|groups| (2.23)

38

2.7. Group Recommender Systems

The value of Serendipity in RSs for single users is described in Section 2.6.2.
In GRSs, it can be seen as advantage of a GRS against a primitive prediction
model PM(g). This can be a system simply recommending popular items
in an easy way. The serendipity value of a GRS is the average value over
all group specific values SER(g) calculated with Formula 2.24. Ge, Delgado-
Battenfeld, and Jannach, 2010, pp. 259–260

SER(g) =
|RS(g)− PM(g)|

|RS(g)| (2.24)

Consensus and Fairness

Consensus in GRSs is the similarity between a user and a group preference.
This can be measured by the item preferences in collaborative filtering
systems or by model comparison in model-based RSs. Formula 2.25 shows
the calculation of the consensus. Felfernig, Stettinger, et al., 2018, pp. 67–68

consensus(g, t) = 1−
∑(ui,uj)∈g(i 6=j) |r(ui, t)− r(uj, t)|
|g| × (|g| − 1)/2× rmax

(2.25)

Groups to recommend items, which can either be homogeneous or stake-
holders, have different interests. This leads to a different view of fairness.
Also, the number of recommended items plays a role in fairness. In collabo-
rative filtering, fairness can be measured by the number of users who rate
the recommended item with a value higher than a defined threshold. Rec-
ommending a set of items, it can be measured in the number of items a user
likes in the recommendation. Felfernig, Stettinger, et al., 2018, pp. 68–69

Fairness can also be reached over time. Users which were discriminated in
previous recommendations can get a greater weight for future recommen-
dations. This is called long-term fairness. O’connor et al., 2001, p. 206

39

2. Techniques for Recommender Systems

2.7.5. Explanations for Groups

As for single users, explanations of the results for groups can improve RSs.
In this chapter, the motivation for explanations as well as the possibilities to
visualize them are described.

Motivation

There are several reasons a designer of a RS wants to explain recommenda-
tions. Especially in groups the potential for a conflict could be decreased by
explaining the fairness of the recommendation. Felfernig, Stettinger, et al.,
2018, pp. 107–109

Additional information can help to understand recommendations easier.
Developers of RSs try to gain more confident in the system, increase the
satisfaction or achieve a higher benefit with additional explanations of
recommendations. Felfernig, Stettinger, et al., 2018, pp. 105–106

Visualization of Explanations

The simplest form of visualization is verbal. RSs for single users often
describe recommendations as ”user x bought this product and also product y” or
”because you like category x we recommend product y”. On the one hand, GRSs
can explain this group based like ”group x like this item also and additionally
like item y” or, on the other hand, member based like ”we recommend item
x because group members y and z like this”. Felfernig, Stettinger, et al., 2018,
pp. 106–109

Another possibility is to visualize explanations in diagrams. This can be a bar
chart showing the predicted values of different items or multidimensional
graphs showing the distance to the nearest neighbors. Felfernig, Stettinger,
et al., 2018, pp. 111–112

But there are many other possibilities. An example is the tag-cloud repre-
sentation by Gedikli, Jannach, and Ge (2014). It is often domain specific

40

2.7. Group Recommender Systems

or in the context of the underlying recommendation paradigms. Felfernig,
Stettinger, et al., 2018, pp. 122–123

Hybrid Explanations for Hybrid Recommender Systems

Especially in the context of hybrid RSs the explanation is difficult to illustrate.
The result of a hybrid RS can be differently calculated depending on the
information available for the recommendation. This makes it necessary to
provide various visualizations. Venn diagrams for example support this and
perform outstanding against other visualizations like Concentric Circles.
Kouki et al., 2017

2.7.6. Personality, Emotions and Group Dynamics

There are factors in recommending items which are hard to measure but
affect the accuracy of a recommendation. Personality, emotions, and group
dynamics can positively or negatively influence the opinion about a rec-
ommended item or even the trust in a RS. Felfernig, Stettinger, et al., 2018,
p. 157

Personality

The Thomas-Kilmann model is designed to show the interactions between
members of a group. This makes it possible to define conflict resolution
styles of humans. The model has two axes of aspects: the assertiveness and
the cooperativeness resulting in five different personality types. The types
are competing (uncooperative and assertive), collaborative (cooperative and
assertive), compromising (moderate in both aspects), avoiding (not assertive
and uncooperative), and finally, accommodating members (cooperative and
not assertive). Knowing the personality types of the group members and
including this information when recommending items can achieve higher
overall satisfaction. Kilmann and Thomas, 1977

41

2. Techniques for Recommender Systems

In GRSs the values of assertive and cooperative can be used to weight the
values of the single group members. Felfernig, Stettinger, et al., 2018, pp. 161–
162

Emotions

Emotions are usually a result of stimulation. Examples for emotions, which
are often used in base models, are anger, disgust, fear, happiness, sadness,
and surprise. Valence and arousal are measurable factors which can be
used to estimate the current emotional state. This could be anger expressed
with a high arousal and low valence. The emotional state can be used as
contextual dimension in CARSs to improve the predictive performance.
Felfernig, Stettinger, et al., 2018, p. 159

Group Dynamics

Group decisions can sometimes be not rational and/or they are possibly
not assignable to the individual group members. This is caused by group
dynamics. GRSs have to take this into account for accurate item recommen-
dation. There are two aspects, emotional contagion and conformity which are
mainly responsible for influences in the group decision process. Felfernig,
Stettinger, et al., 2018, p. 159

Emotional contagion is the mood’s influence of a single group member on the
whole group. This can be both in a negative and in a positive aspect and
not every group member is equally susceptible to emotional influences of
other group members. Due to higher interaction between group members in
consuming music than in watching TV, listening to music has more influence
on the affective state. Masthoff and Gatt, 2006, pp. 299–300

Conformity is the adjustment of a group member to others. Users often
support the decision of the majority of the group or of a member with a
strong personality. Humans tend to conform with the opinions of others. The
reason for conformity can either be the informational influence, by trusting
other people’s opinion, or the normative influence, that group members do

42

2.7. Group Recommender Systems

not want to stand out, or because of group pressure. Masthoff and Gatt,
2006, pp. 299–303

43

3. Recommending Music to
Groups

This chapter presents techniques to recommend music to groups. In the
first Section 3.1, existing approaches on the topic of GRS for music are
introduced. Followed by the parts of describing the recommendation pro-
cess which begins with the request of a new recommendation and ends
with a group recommendation. The Section 3.2 shows techniques to gain
information about the users’ music preferences. Section 3.3 describes the
approach to calculate a list of tracks for each user which contains songs
based on the users’ preferences. The songs of these lists are the candidates
for the group recommendation. In the area of RSs, candidates are items from
which the elements for the recommendation are selected. The Section 3.4
shows aggregation functions to rate the recommendation candidates. Sec-
tion 3.5 shows an approach to order tracks. By listening the tracks in the
recommended order, the pleasure is consistently increasing. The Section 3.6
describes the problem of users feeling discriminated over time and how
to solve this problems. The last Section 2.6.2 reviews the recommendation
algorithm of the app M’Usic based on the properties of RSs.

At the end of all sections, except the first and the last one, you can find a
description of how the approach is implemented in the app M’Usic. Initially
one algorithm had been developed which was the basis for several different
variants. In Chapter 5, an evaluation of these variants is shown. Based on
the results of the evaluation, a final algorithm is implemented and described
in this chapter.

45

3. Recommending Music to Groups

3.1. Existing Approaches

In this section existing approaches are presented. The solutions are ordered
by the year they were published.

3.1.1. MusicFx

MusicFx is a group arbitration system that decides which music is played in
a fitness center based on the current visitor’s preferences. The calculated
user preferences are based on a database where user ratings of categories
are stored. The group preference is calculated by a summation formula of
the individual preferences. McCarthy and Anagnost, 1998

3.1.2. Flytrap

Flytrap is a group music environment that knows the taste of its users and
can detect, with the help of radio frequency ID badges, the present users.
The system tries to play music that satisfies all members who are currently
in the room. The preferences of the users are gathered from the tracks the
users have been listening. With the knowledge of the interrelation of genres,
it decides which tracks the users want to listen to. Crossen, Budzik, and
Hammond, 2002

3.1.3. Jukola

Jukola is an interactive MP3 jukebox offering possible songs to play. It
contains a voting system, allowing users to select their preferred songs out
of the offered ones. The song with the highest votes is played next. O’Hara
et al., 2004

46

3.1. Existing Approaches

3.1.4. Adaptive Radio

Adaptive Radio is a system in a shared environment where music is played.
It follows the principal that it is easier to find songs which users do not like
than songs which the users like. This allows the system to generate a list
of songs. For each song there is at least one group member who does not
like it. The technique is called negative preferences. Additionally, CF allows
to find similar songs to the list and extend it. All other songs are possible
candidates to be recommended. Chao, Balthrop, and Forrest, 2005

3.1.5. In-Vehicle Multimedia Recommender

In-Vehicle Multimedia Recommender is a RS for passengers of a vehicle. This
can be a car, a bus, or even a plane. The system merges individual user
profiles with the help of feature selection and weight assignment to a common
user profile. This is the basis for the recommended songs. feature selection
is a technology to reduce the total distance by SVM, weight assignment
is the combination of weight normalization where the weights of the user
profiles are normalized, and weight calculation where the average weight of
all normalized user weights for each feature are calculated. Yu, Zhou, and
Zhang, 2005

3.1.6. PartyVote

PartyVote is a music jukebox with a democratic aspect. Every user can give
votes for songs and at least one voted song is played per user. Similar songs
are more likely to be played. This leads to a potentially playable song region.
Songs outside of this region will not be played. The distance between songs
are calculated with the Euclidean distance. Sprague, Wu, and Tory, 2008

47

3. Recommending Music to Groups

3.1.7. jMusicGroupRecommender

jMusicGroupRecommender is a GRS following the approaches merging of
individual recommendations, individual rating aggregation and the con-
struction of group preference models. Additionally, a data model based on
the preferences and the correlation among songs helps to estimate ratings
of unrated tracks. Christensen and Schiaffino, 2011

3.1.8. GroupStreamer

GroupStreamer1 is an app provided on Google Play Store2. The user pref-
erences are based on their music library with the use of Last.fm3 to get
key words corresponding to these songs. It models the user’s preferences
using a Gaussian mixture model. To reduce the number of distinct tags, a
latent semantic analysis is used to get a smaller concept space. With the use
of aggregation strategies, the recommended tracks are calculated. Maystre,
2012

3.2. Information Retrieval

This section examines the possibilities of a RS to gain information about the
users’ preferences, the context information of songs and the relationship
between songs, between users, and between songs and users.

3.2.1. Information Retrieval Approaches

In the following, several approaches to information retrieval are discussed.

1https://play.google.com/store/apps/details?id=ch.epfl.unison
2https://play.google.com/store
3https://www.last.fm/

48

3.2. Information Retrieval

Explicit Information Retrieval

If there is no data about the users’ preferences available, GRSs for music
have to ask the users about their preferences. This can be done in different
ways:

• Initially ask for favorite genres, interpreters or songs. This is a possibility to
query the basic music taste of the user with little effort. The disadvan-
tage of this method is that the system cannot get deeper information
about the user’s preferences. The system has to implement further
mechanisms to gain more knowledge of the user’s taste. For example,
to improve the results of following recommendations by asking the
user about his/her opinion about the recommended songs.
• Ask for ratings of songs. A higher number of rated songs leads to a better

knowledge of the user’s preferences. This is a very time-consuming
process for users, and so they are often not willing to do that. There
have to be incentives to get a satisfactory amount of ratings. This can
be better personal recommendations, under the circumstance that the
GRS is integrated in a music player which also includes a RS making
personal recommendations for each user. The less ratings available,
the worse the recommendations are. The worst case is a user without
ratings. This case is discussed in Section 3.2.1.

Explicit user action to get information about music preferences has no high
acceptance, especially because of the fact that a high value of knowledge
needs more user action. Another disadvantage is that preferences can change
over time and it is hard to determine if all ratings are still correct. Checks
lead to an even higher user effort. Because of the music’s diversity, it is also
possible that users overlook genres they would like to rate or to select as
favorite.

Implicit Information Retrieval

If the GRS for music is integrated in a music player or has an interface to
a music service, it is possible to improve recommendations by provided
information. The following items are examples of information a system can
gather.

49

3. Recommending Music to Groups

• played music. A system can grab information about all songs a user
listened to, and additionally, the date and the time of the day it
was played. At least the top tracks and interpreters are provided by
interfaces.
• playlists. Most music services provide the possibility to create playlists.

It can be assumed that the users like the songs in their own playlists.
• favorite interpreters and genres. Some music services allow users to define

or follow their favorite interpreters or genres. The advantage for users
is to get recommended songs which are similar to this interpreters
or genres. Some services, additionally, provide information about
news like new songs or albums, or even tour dates of users’ favorite
interpreters as an incentive to like or follow artists.
• region based top songs and interpreters. Some interfaces provide informa-

tion, filtered by regions or overall, about how popular songs are and
which are the most listened to songs respectively artists.
• recommended playlists. Spotify4, for example, suggests public playlists

for a specific time and location to users.
• track information. Music services have big music collections including

contextual information as a basis. A GRS for music can use this to get
track information of an enormous amount of songs.
• similar songs and artists. Some music services like Last.fm5 provide the

possibility to get similar songs or artists to a given one.
• songs similar to track features. Spotify provides the possibility to get

tracks with features similar to the requested ones. This allows to
receive songs with a small distance to a track model.

Information Retrieval over Time

Information Retrieval can be improved by continuous observation of user
preferences and getting new songs. The more information a system gets,
the better the recommendations can be.

User preferences change over time which leads to wrong ratings or assump-
tions. A GRS for music has to recognize changes and react. Unfortunately,

4https://spotify.com/
5https://www.last.fm/

50

3.2. Information Retrieval

the system can not conclude that a user does not like a rarely played song
any more which was listened frequently in the past. A system has to decide
how to deal with these changes.

Music recommendation is a topic where both, new songs and old songs,
have to be possible suggestions. As the charts changing within a few weeks,
music recommenders are outdated and mainly not accurate if the underlying
music database is a few months old.

Cold Start Problem

The Cold Start Problem describes the obstacle that a RS does not have any
collaborative information about a new song, or any collaborative and pref-
erences information about a new user. There are several ways to deal with
this problem. As CF recommender systems are depending on collaborative
information, a way would be to combine approaches to a hybrid RS. Another
way would be to explicitly ask new users about their preferences.

In groups, there are additional ways to deal with new users:

• mainstream user. If a new user in a RS for individuals is treated like a
mainstream user, this could lead to completely wrong suggestions and
dissatisfaction of the user. In a group, a single member’s preferences
are balanced by the preferences of the other group members. Assuming
that a new user is listening to the region based most popular songs
can improve the results of a music recommendation to such groups.
• average group member. A new user can be seen as an average group

member. In this case, the preference model of the new user is the
calculated preference model of the group. This could be a successful
opportunity in cases where the system provides personal suggestions
and the user can modify them. Afterwards, the modified list is used
as the preference list of this user.
• ignore the user. A simple approach, which does not sophisticate the

results, is to ignore the user. Often it is better to ignore the preferences
of a user than assuming wrong preferences. Under the circumstance
that a user is informed that due to a lack of information his/her

51

3. Recommending Music to Groups

musical taste is not included in the group preferences and how he/she
can supplement these, the user would accept this.

All approaches have the same disadvantage. Only if the preferences of
the large majority are known, new individual users can be handled with
them.

3.2.2. Information Retrieval of M’Usic

The app M’Usic retrieves information with the help of the Spotify for
Developers6 application programming interface (API). It is collecting the
information about the top tracks of the users short, medium and long term.
Furthermore, it requests special playlists based on a specified time and
region from the API. For the cold start, it also uses the featured playlist
interface, letting Spotify7 recommend the preferences of the new user. To get
detailed information of each song, M’Usic requests the track information of
all songs. In further steps it also requests similar songs to a given preference
model.

Advantages

The advantage of the chosen information retrieval approach is that no
explicit information retrieval is necessary. As Spotify is widely used, a big
user basis and their preferences are available. This allows millions of users
to use the app out of the box without any questions to answer about their
preferences, and then can initially access to the information from the first day
on using Spotify. Either, the amount of tracks and their information is nearly
impossible to get through other ways. The Spotify Company has invested a
lot of effort in recommending music to single users and additionally, to give
a wide range of popular playlists, even to new users. This allows the app to
use these suggestions as the basis for the cold start problem. Such playlists
are recommended in the context of date and time. This allows to get songs
typically played at this time. Since the moment a song is listened to, Spotify

6https://developer.spotify.com/
7https://spotify.com/

52

3.3. Personal Suggestion List

knows which song was played at what time. Each track is analyzed by an
algorithm, for filtering the track information out of a song. This allows to
create a preference model and calculate the distance between the model and
tracks.

Disadvantages

The disadvantage is that Spotify for Developers does not provide the pos-
sibility to get a user’s played tracks and the time the tracks were listened.
As compensation the app uses the top tracks of the users to calculate the
preference model. Anyway, the top tracks are available for three different
time ranges. Another disadvantage of the API is that there is no possibility
to access all songs which are available on Spotify. Track information can only
be received when the id is known. The ids are received by other interfaces
of the API, like the top tracks or recommended playlists. This prevents the
possibility to find tracks near a group preference model with the help of
SVD. Fortunately, the API provides the possibility to get recommended
tracks similar to a track model.

3.3. Personal Suggestion List

A personal suggestion list is a set of recommended items for a single group
member. Such lists can be calculated for each user in a group to take the
result as the basis of the group recommendation. Users can manipulate their
lists to get a set of items matching the taste of them. Different approaches of
creating and handling personal suggestion lists are discussed in Section 3.3.1.
Afterwards, the developed technique of the app M’Usic is presented.

3.3.1. Personal Suggestion List Approaches

A common way to calculate a music recommendation to groups is to start
with the generation of a personal suggestion list. This is a collection of song
candidates for the recommendation, fitting to the preferences of a group

53

3. Recommending Music to Groups

member. The first step is to figure the music taste of the group members.
With these preferences the RS tries to form a model. Based on this, the RS
find a set of possible tracks. Finally, the RS selects the best fitting songs of
this set to create a personal suggestion list.

User Preferences

User preferences can be extracted out of different kind of data. This can
be a set of ratings of tracks made by the user on the one hand, or on the
other hand, the list of played songs. In the first case, techniques explained in
Section 2.1 can be used to calculate user preferences. In the second case, the
data needs to be preprocessed. The most played tracks have to be figured
out, and additional attributes can be extracted, for example, the time of
the day the tracks were played, or even the day of the week. Furthermore,
the set of played songs can be prefiltered in time ranges, for example, by
counting only tracks listened in the last year. Another useful information is
the range of genres the user has listened to and their properties in common.
And, of course, all contextual information which can be extracted out of the
underlying data.

Model Creation

In the step of Model Creation, the RS tries to form a model out of the user
preferences gained before. As described in Section 2.4.2, this can be a single
calculation or a continuous process. The process of model creation can
be affected by the contextual situation considered in CARSs described in
sections 2.3 and 2.5.2. For example, a preference model could be different
on Monday morning and on Saturday evening.

In GRSs this is the first step in recommending items, in which other members
of a group can influence the result of a user. The tastes of all members can be
aggregated to affect the preference model of the users. An example would
be that the furthermost values of the model compared to the aggregated
model are weakened.

54

3.3. Personal Suggestion List

Collecting Possible Tracks

Possible tracks are candidates for the personal suggestion list. One type of
candidates are the positively rated songs of a user respectively the played
songs of a user. These are basically good candidates. Successful RSs have to
set a focus on the properties Novelty and Serendipity. So only the top tracks
would not satisfy a user, and furthermore, there are highly likely songs
fitting better to the taste of all group members.

Additional songs of the candidate list are the ones fitting to the preference
model calculated before. With the help of SVD described in Section 2.4.1,
relevant tracks can be effectively selected out of big song databases.

To receive unknown songs for users, an approach is to find songs which
correlates to the top genres of a group, based on the preference model of
the users.

Song Selection

In the step of Song Selection the RS has to select the most relevant songs out
of the candidate set calculated before. The amount of the songs should be
large enough to represent the taste of the user, and additionally, as large as
the requested amount of songs of the recommendation. To calculate the best
fitting songs, Similarity Measures described in Section 2.4.1 are used.

There are different ways to order the candidates:

• Order by the user preference model. The whole list of possible tracks is
ordered by the distance between the user preference model and the
individual songs.
• Order by the group preference model. Another way is to order the tracks

by the distance between the aggregated group preference model and
the individual song. This would bring songs to the top which are
fitting best to the taste of the group.
• Fix amount of songs of the top tracks and filtered tracks. The order of both

lists is made with one of the possibilities above, and the resulting
selection is a combination of the lists in a fixed ratio. This has the
advantage that top tracks of a user will definitely stay in the suggestion

55

3. Recommending Music to Groups

list, and additionally, there are songs to improve the RS in Novelty and
Serendipity.

3.3.2. Personal Suggestion List of M’Usic

The basis for the user preferences are the top tracks of the user. There were
variations of the algorithm using the most listened songs of the user in the
short history, medium term or overall. The evaluation results in 5.1 and 5.12

show that long term top tracks and especially short-term top tracks result
in a good recommendation. Furthermore, the diagrams in 5.7 and 5.18 show
that a recommendation based on the top tracks of overall result in higher
satisfaction. As a result of the evaluation, the final algorithm is based on
the combination of the top tracks of the last four weeks and the overall top
tracks.

In the initial algorithm there was the intention to bring the context of time
into the recommendation. As there were no data available showing how
songs differ due to the time of the day or the day of the week, another
way had to be found. As the preference model is defined as the Audio
Feature Object in Spotify for Developers8, the idea was to define some of the
values as time depending. These were the loudness, the tempo, the valence,
the danceability and the energy. To get target values for these attributes, the
calculation was based on the suggested playlists for a specific time provided
by the API of Spotify for Developers. Nevertheless, the results in 5.3, 5.4,
5.14, and 5.15 show that the approach was not perceptible better than the
time independent algorithm. The reason can be a wrong assumption of the
time depending attributes or caused by unsuitable calculated values for
these attributes.

The initial algorithm, additionally, adds a set of songs to the candidate list
based on the preference model in combination with the five most common
genres of all group members, and a set of songs by artists which are similar
to the top artists of the user and to the preference model. As it is not possible
to get songs only based on the preference model from the API, the app has
to get songs based on the model in combination with five genres and five

8https://developer.spotify.com/

56

3.4. Aggregation Strategies

artists. As variant, the algorithm was modified that either only genres or
only top artists are considered. But neither the recommended songs based
on the genres nor the recommended songs based on the artist were more
successful than the initial algorithm which is shown in the Figures 5.1 and
5.12.

The initial algorithm orders the tracks by the Euclidean distance between the
individual songs and the preference model. Additionally, there is a fixed
ratio between top tracks and tracks found by the model of 3:7.

A variation is to prefer songs with a high value of valence. The assumption
is that songs listened to in groups should transmit a positive feeling, because
in groups everyone wants to be happy. The evaluation shows in 5.1 and in
5.12 a noticeable increase of satisfaction. In 5.7 and 5.18 it is obvious that
inappropriate songs decrease significantly. This variant is implemented in
the final algorithm.

Another approach is to prefer songs which can be associated with the top
five genres of the group. Unfortunately, as 5.1 and 5.12 show, the correctness
of the recommendation can not be increased. Only light decreasing of
dissatisfaction can be observed in 5.7 and 5.18. The results show no clear
improvements, so the variation is not included in the final algorithm.

As a result of the big music database of Spotify, same songs are multiple
times in the database. The reason is that songs can be released in a single
and in an album. Sometimes there are variations of the same song available,
like an album version and a radio edit. The algorithm filters double entries
out of the candidate’s suggestion list, leaving only the best fitting version in
the collection of possible tracks.

3.4. Aggregation Strategies

In the field of GRS, Aggregation Strategies are methods to combine the
individual user preferences to a group preference model. In the following,
different approaches are discussed. Afterwards, the strategy, which was
developed for the app M’Usic, is presented.

57

3. Recommending Music to Groups

3.4.1. Aggregation Strategy Approaches

In this section, strategies are discussed to aggregate the users’ individual
song lists into a set of candidates for the resulting group recommendation
including a rank or a value to order the tracks.

The system has to form a group preference model out of the personal
suggestion lists. All songs have to be compared with this model. The closest
to the model are the recommended tracks.

Manipulation of the Suggested List by the User

The GRS can give the users the possibility to manipulate the individual
suggested list of songs. This approach has multiple advantages. A list of
recommended tacks is presented to the user. The system would add this
list to the candidate list of the final recommendation on behalf of the user.
This gives an insight into the type of music the system recommends to
the user as a member of the group. The user has the possibility to remove
unliked tracks. Additionally, songs can be added, for example, when the
user especially likes them or the user would like to suggest them to the
group to listen to. The disadvantage of giving the user this possibility
is that a group member can try to manipulate the personal suggestion
list maliciously to dissatisfy other users. A RS has to prevent that single
users can have too much influence in the resulting recommendation by
manipulating the individual set of suggestions.

Model Creation

After making available all suggestion lists, the RS can start to form a pref-
erence model to compare all songs with. There are several strategies to
calculate such a model. In the following some are described.

• Aggregation model of all initial user models. The system can create the
group preference model based on the preference models of all group
members calculated previously.

58

3.4. Aggregation Strategies

• Aggregation model of updated user models. In this case, the system ini-
tially creates new individual user preference models based on the
manipulated song list. The group preference model is calculated by
the aggregation of these models.
• Group preference model based on all candidates. A group preference model

can be calculated based on all sets of track candidates provided by the
users.
• Group preference model based on initial candidates. It is also possible to

calculate the preference model on the initial suggestion list provided
to the users.

The resulting model should represent the music taste of the whole group.
Based on this, the recommended tracks are calculated.

Distance Calculation

The distance calculation is the step to choose the resulting recommended
songs out of the candidates provided by the users. This can be done by
comparing the list of possible tracks with the preference model of the group.
Another way is to compare the song candidates with the user models of
each group member and sum up the results to a single comparable result
value.

Due to the possibility that songs can be multiple times in the set by contain-
ing in the suggestion list of different group members, the RS has to define a
strategy to deal with these tracks.

3.4.2. Aggregation Strategies of M’Usic

The app M’Usic lets users manipulate their personal suggestion list. There
are two possible ways of confirming the list. Either by confirming explicit the
manipulation, or alternatively by doing nothing. For unanswered personal
suggestion lists, a service checks the time of the event. If this is imminent,
these lists are automatically confirmed. When all lists are either confirmed
or declined, the final step of the recommendation starts.

59

3. Recommending Music to Groups

The initial algorithm calculates the group preference model based on all
song candidates provided by the group members in combination with the
time-based values calculated in the previous step. Each track is compared
to the group preference model resulting in different distances. If there are
songs that are included more than once in the candidate set, each time,
except the first one, the distance value is decreased by ten percent. The list
is ordered by the resulting distance value and the ones with the smallest
distance will be selected.

The variation of the algorithm ignoring the time context already discussed
in Section 3.3.2, calculates the group preference model based on the selected
songs by the group members only. As mentioned above, the factor of time
could not reach the expected results in comparison to the variation which is
time independent.

At this point, the variation where songs from the five most common genres
are preferred has an impact. Each song, which is classifiable to one of the
genres, is preferred by reducing the distance value by ten percent. But this
approach is only slightly more successful than the basic algorithm. Whereas
the variation has similar results than the initial algorithm for the personal
recommendation as seen in 5.1, the results of the final recommendation
show widespread user ratings in 5.12 and is therefore not qualified to be
implemented in the final algorithm.

Also, the factor of valence was considered during this step. Valence describes
the positiveness of a song. Tracks with a higher value of valence are more
happy, cheerful, or euphoric. The variation reduces the distance between the
group preference model and the individual songs by the factor of valence.
A high valence shrinks the distance more than a low value. As mentioned
in Section 3.3.2, the variation has a high positive impact on the results of all
evaluated attributes.

A variation of the algorithm is the user-based aggregation. In this approach,
the sum of the distances between a song and the individual user models
of all group members is calculated. The variation was more like a test to
confirm the approach to calculate a group preference model. Both algorithms
reach the same results on evaluating the personal suggestion list shown
in 5.1, which is expected because there is no difference in the algorithm
up to this step. Unfortunately, the initial approach reaches better overall

60

3.5. Sequence Order of Recommended Items

results in the final recommendation shown in 5.12. An interesting aspect
of the user-based aggregation version is that it reaches better results in the
prevention of dissatisfaction. This is shown in 5.18. This is probably because
in the comparison between the users and songs, much disliked songs have
such a big distance that the sum is also that high that it is not part in the
final recommendation. The approach is effective on reaching least misery,
which is discussed in Section 2.7.2.

3.5. Sequence Order of Recommended Items

As in most of the cases only one recommended item is consumed, the best
results are presented first. When recommending music this is different. In
the following, different approaches are discussed how to order the pre-
sented items. Afterwards the way of calculating the sequence order of the
recommended items in the app M’Usic is presented.

3.5.1. Sequence Order Approaches

When consuming only one item, the best recommendations are presented
first. Recommending music is a special case. People prefer to listen to songs
as a playlist rather than separately. Either the tracks are quite similar, so
the order of them is not that important, or the tracks are from different
genres. In this case tracks should be ordered by their similarity. For example,
at a party, members get dissatisfied when fast and calm tracks are played
alternatingly. Another point that has to be taken into account is the fact
that the best fitting songs should not be played at the beginning. A user
tends to remember things in the immediate past more than things before.
Another approach is to select a following song as the best fitting track to
the most dissatisfied group member. So, the system has to take into account
different points, where some can be converse. For example, if a member
listens to completely other music than the others, over time the user gets
dissatisfied. When the next song is appropriate to the taste of this user, there
is a hard break in the flow, which is divergent to the approach that similar

61

3. Recommending Music to Groups

songs should be played one after another. The resulting order should be a
continuous set without disregarding the other points.

3.5.2. Sequence Order of M’Usic

The underlying approach of the algorithm is to measure the similarity of
songs by the amount of the same assignable genres. This is done by creating
connected weighted graphs, where the vertexes are the tracks and the edges
are the similar genres between two songs. The weight of the edges is defined
by the number of similar genres. The result is always a set of contiguous
weighted graphs. The number of graphs can be between one if all songs are
connected, and the number of songs if no genres match. The algorithm is
using the Kruskal (1956)’s algorithm to calculate minimum-spanning-trees.
Within these spanning-trees the algorithm computes the longest connecting
chain of songs by finding the two deepest leaves and add this list to a result
list. The algorithm repeats the finding of the longest connection chain in the
remaining now split trees and for all minimum-spanning-trees. The result
is a set of lists. The algorithm tries to combine lists by finding endpoints
of two lists having at least one similar genre, starting with the highest
number of similar genres. At this point, another approach is used to form
a final playlist: to increase the positive atmosphere in the group over time,
the measure of musical positiveness should increase track by track. The
algorithm orders the chain by the increasing positiveness and calculates the
mean value of this. The resulting playlist is the combination of all chains
ordered by the average value of positiveness ascending. The goal of this
method is to get long coherent sub-lists in the playlist and overall increasing
happiness over time. As shown in Figure 5.21 75 percent of the survey
participants, who mostly listen to the playlists in the given order, prefer the
order of the recommended playlist to the shuffle mode.

3.6. Long-term Fairness

Long-term Fairness is a possibility in GRSs to avoid dissatisfaction. This
section includes a brief discussion about approaches in this field followed

62

3.6. Long-term Fairness

by the solution, the app M’Usic has implemented.

3.6.1. Long-term Fairness Approaches

Long-term Fairness is a desired goal to equally satisfy every member of a
group over time. The approach has to be considered from the second request
of a playlist of the same group. Fairness is described in Section 2.7.4. Not
every member of a group can be equally satisfied with a single recommen-
dation. A system, which considers a long-term fairness approach, has to
define a calculation of fairness. This calculation should include a value of
fairness before the recommendation and a satisfaction value of the current
recommendation of every group member. This allows to adjust a value of
fairness for each member after every recommendation. This value is initially
the same for everyone in the group. On calculating a new recommendation,
the group members can be treated differently based on the value of fairness.
Over time, this results in a balanced satisfaction of all group members. As
the group members can change over time, the system has to define a way to
deal with this.

3.6.2. Long-term Fairness in M’Usic

In M’Usic on creating a new group, every member gets the same initial
value. After a recommendation, every user preference model is compared
to every track, and an aggregated value of the differences to the tracks is
calculated. The adjusting value is the percent-based variation of the indi-
vidual aggregation values compared to the average value of all aggregation
values. The fairness value is decreased by this percentage. When the next
recommendation comes to the part of the aggregation of the personal sug-
gestion lists, the distance between the track and the group preference model
is multiplied by the fairness value of the users’ which have included this
track in their personal suggestion list. A smaller fairness value comes to
a smaller distance value and this increases the possibility that this track
is part of the final recommendation. As the evaluation of fairness would

63

3. Recommending Music to Groups

need an investigation over a period, it has not been taken into account when
evaluating the algorithm.

3.7. Recommender System Properties in M’Usic

In this section, the algorithm of M’Usic is considered by some of the proper-
ties of RSs which were described in Section 2.6.2.

3.7.1. Prediction Accuracy

The evaluation includes the investigation of how the accuracy differs when
recommending a different number of songs. The algorithm was tested
with 30, 50 and 80 tracks. The outcome of the survey is quite similar, but
surprisingly, the best results are reaching playlists with 30 and 80 songs
as shown in 5.12 and 5.19. A reason for this phenomenon could be that
a shorter playlist includes the favorite songs of the group members and
therefore the list is rated higher. If the list contains more elements, the
number of songs not liked by users can increase, which decrease the ratings.
Large playlists include a higher number of tracks, which are not loved by
single members of the group but appreciated by the group as a whole. This
could lead to a higher rating. The explanation is only an assumption which
has to be further evaluated.

3.7.2. Coverage

As shown in Section 2.6.2, Coverage can be seen as item space coverage and
user space coverage. The algorithm of M’Usic is able to recommend all items.
Therefore, the Item space coverage is the number of tracks available on Spotify9.
As the algorithm has a fallback to recommend songs a user has even not
listened to music in Spotify before, the user space coverage is one hundred

9https://spotify.com/

64

3.7. Recommender System Properties in M’Usic

percent with the limitation that the recommendations are getting better for
users who are listening to music in Spotify frequently.

3.7.3. Trust

Trust is a factor which can be reached over time. Therefore, it is hard to
state if users trust in the algorithm of M’Usic or not. An indication for
this property can be the question Would you use this algorithm again? in the
evaluation. The results are shown in Figure 5.19. The initial algorithm is
not rated high, but variations which are implemented in the final algorithm
reach significantly better results. This is an indicator for a high value of
trust.

3.7.4. Novelty

As described in Section 2.6.2, novelty is a factor that describes how many
items of a recommendation are new to a user. The property is evaluated
based on the individual recommendation caused by a typically high level
of novelty in a group recommendation when users with different tastes of
music are in the same group. Additionally, at this stage, the RS can suggest
songs the user would not have thought about, but like. The results in 5.10

show that the proportion of known songs in all variations of the algorithm
are about 50 percent or slightly higher. Correlated to the results in 5.11, the
candidates do not want to have more unknown songs.

3.7.5. Serendipity

Serendipity in RSs for music is when a user surprisingly spots a new song
he/she likes. This is already discussed in Section 2.6.2. To evaluate the value
of Serendipity, the question Did you get an unknown song from an unknown
interpret which you like in your personal recommendation? was asked. The result
displayed in Figure 5.8 shows that all variations of the final algorithm
up to the long term have surprisingly liking songs in more than the half

65

3. Recommending Music to Groups

of the individual recommendations. In correlation with the results of the
question Did you get an unknown song which you really like in your personal
recommendation?, which are shown in Figure 5.9, it can happen that most of
the unknown songs are from unknown interprets.

3.7.6. Diversity

The factor of Diversity is described in Section 2.6.2 and is part of the eval-
uation as well. The results in Sections 5.5 and 5.16 show that the value of
diversity increases from the individual recommendation to the final group
recommendation. Furthermore, the participants of the evaluation were asked
if they want more diversity in their recommendations. The results, displayed
in Figures 5.6 and 5.17, show clearly that there is at least sufficient diversity
for the participants.

3.7.7. Utility

The Utility, defined in Section 2.6.2, of the app M’Usic’s algorithm is to
increase user satisfaction while listening to the recommended music. Fur-
thermore, it should decrease the effort in creating playlists. The utility for
the app M’Usic’s, is the ability to make further research based on the col-
lected data. Further, Spotify10 can have a benefit caused by the obligatory
Spotify account to use the app.

3.7.8. Robustness

The app M’Usic has integrated an manipulation avoidance, caused by the
architecture of the system. The basic information about the preferences of
the users are stored in Spotify and the security of the data is therefore not
the purpose of the app. The manipulation by faking the preferences of the
own user on Spotify is not that effective in a group recommendation and
has no impact on recommendations the user is not part of. Furthermore,

10https://spotify.com/

66

3.7. Recommender System Properties in M’Usic

this results in bad recommendations on Spotify for the user itself. As all
communications between the internal parts and external services of the app
are encrypted, the maximum effort in security was made compared to the
risk.

3.7.9. Adaptivity

The algorithm reacts on changes of the user preferences over time. Each
listening to a song is observed by Spotify and is therefore included in the
data the algorithm uses to create recommendations. As the algorithm is
using the top tracks of a user, listening to a few songs will not change
the preference model. Nevertheless, the top tracks of the last four weeks
are part of the adduced data, so the changes in the preference would
quickly change the preference model of the user. Other factors of Adaptivity,
which were discussed in Section 2.6.2, have not to be considered, because
recommendations are based on the amount of listened songs and not on
ratings.

3.7.10. Scalability

Scalability as described in Section 2.6.2 is in the app M’Usic not as difficult
to reach than in other RSs, due to the fact that the high computing power
needing calculations is made by Spotify for Developers11. The response time
of the API is quite good. Additionally, the use case of the app is to request
for recommendations for the near future, when the group wants to listen to
music. Therefore, immediate recommendations are not as important as in
recommendations for individual users.

11https://developer.spotify.com/

67

3. Recommending Music to Groups

3.8. Algorithms of M’Usic

In this section, the basic algorithm and its variations are described formally
in Table 3.1. qup is a time-independent vector of the user profile up, whereas
pup is a time-dependent vector of up. The user profile vector rup and the
group profile vector rgp can both be time-dependent and time-independent.
Section 3.3.2 lists which attributes are time-dependent and which are time-
independent. The function top delivers a set of most listened songs. The
first parameter indicates the number of songs, the second the time span
in which the songs were listened to. s returns the most listened songs of
the last two weeks, m the songs of the last months, and l the most listened
songs without a time limit. The function time returns a required number of
songs that perfectly suit for the given date and time. The distance function
d calculates the distance value between the user profile or the group profile
and a song. sv and cv are the values of the valence of the songs s and c.
A song s is part of a set of candidates for the user profile. The candidate
list for the users consists of the top tracks of the user and songs which are
similar to the user profile. Preference is given to songs that match the most
common artists and genres of the entire group. The songs sa and sg are part
of special candidate lists, which either prefer only common artists or only
common genres. The function genre returns the value 0.9, if the given song
is assignable to the five most common genres of the group, otherwise 1.
To get a user’s suggestion list, the function topUP returns the songs of the
candidate list with the lowest distance value according to the user profile.
The songs c from the candidate list for the group recommendation are the
songs of the group member’s suggestion list. The recommended songs for
the group are those from the candidate list which have the smallest distance
value to the group profile.

68

3.8. Algorithms of M’Usic

Table 3.1.: Formulas of the variations
Variation Formula

Basic Algorithm

qup = 1
30 ∑i∈top(30,m) qi

pup = 1
30 ∑i∈time(30) pi

d(up, s) =
√

∑9
k=1(upk − sk)2

qgp = 1
30 ∑i∈topUP(30) qi

pgp = 1
30 ∑i∈time(30) pi

d(gp, c) =
√

∑9
k=1(upk − ck)2

Basic50

qup = 1
50 ∑i∈top(50,m) qi

pup = 1
50 ∑i∈time(50) pi

d(up, s) =
√

∑9
k=1(upk − sk)2

qgp = 1
50 ∑i∈topUP(50) qi

pgp = 1
50 ∑i∈time(50) pi

d(gp, c) =
√

∑9
k=1(upk − ck)2

Basic80

qup = 1
80 ∑i∈top(80,m) qi

pup = 1
80 ∑i∈time(80) pi

d(up, s) =
√

∑9
k=1(upk − sk)2

qgp = 1
50 ∑i∈topUP(80) qi

pgp = 1
50 ∑i∈time(80) pi

d(gp, c) =
√

∑9
k=1(upk − ck)2

ShortTerm

qup = 1
30 ∑i∈top(30,s) qi

pup = 1
30 ∑i∈time(30) pi

d(up, s) =
√

∑9
k=1(upk − sk)2

qgp = 1
30 ∑i∈topUP(30) qi

pgp = 1
30 ∑i∈time(30) pi

d(gp, c) =
√

∑9
k=1(upk − ck)2

69

3. Recommending Music to Groups

Continuation of Table 3.1
Variation Formula

LongTerm

qup = 1
30 ∑i∈top(30,l) qi

pup = 1
30 ∑i∈time(30) pi

d(up, s) =
√

∑9
k=1(upk − sk)2

qgp = 1
30 ∑i∈topUP(30) qi

pgp = 1
30 ∑i∈time(30) pi

d(gp, c) =
√

∑9
k=1(upk − ck)2

UserBasedAggregation

qup = 1
30 ∑i∈top(30,m) qi

pup = 1
30 ∑i∈time(30) pi

d(up, s) =
√

∑9
k=1(upk − sk)2

d(gp, c) = ∑u∈groupmembers d(gpu, c)

TimeIndependent

rup = 1
30 ∑i∈top(30,m) ri

d(up, s) =
√

∑9
k=1(upk − sk)2

rgp = 1
30 ∑i∈topUP(30) ri

d(gp, c) =
√

∑9
k=1(upk − ck)2

Valence

qup = 1
30 ∑i∈top(30,m) qi

pup = 1
30 ∑i∈time(30) pi

d(up, s) = 1
sv
∗
√

∑9
k=1(upk − sk)2

qgp = 1
30 ∑i∈topUP(30) qi

pgp = 1
30 ∑i∈time(30) pi

d(gp, c) = 1
cv
∗
√

∑9
k=1(upk − ck)2

Genre

qup = 1
30 ∑i∈top(30,m) qi

pup = 1
30 ∑i∈time(30) pi

d(up, s) = genre(s) ∗
√

∑9
k=1(upk − sk)2

qgp = 1
30 ∑i∈topUP(30) qi

pgp = 1
30 ∑i∈time(30) pi

d(gp, c) = genre(s) ∗
√

∑9
k=1(upk − ck)2

70

3.8. Algorithms of M’Usic

Continuation of Table 3.1
Variation Formula

RecommendGenre

qup = 1
30 ∑i∈top(30,m) qi

pup = 1
30 ∑i∈time(30) pi

d(up, sg) =
√

∑9
k=1(upk − sgk)2

qgp = 1
30 ∑i∈topUP(30) qi

pgp = 1
30 ∑i∈time(30) pi

d(gp, c) =
√

∑9
k=1(upk − ck)2

RecommendArtist

qup = 1
30 ∑i∈top(30,m) qi

pup = 1
30 ∑i∈time(30) pi

d(up, sa) =
√

∑9
k=1(upk − sak)2

qgp = 1
30 ∑i∈topUP(30) qi

pgp = 1
30 ∑i∈time(30) pi

d(gp, c) =
√

∑9
k=1(upk − ck)2

71

4. The App “M’Usic”

This chapter presents M’Usic, what stands for an app to support groups
finding songs that match the taste in music of all members. All accounts
are connected to Spotify1, so the app knows the taste in music of all users.
This allows M’usic to find appropriate playlists for groups without explicit
information retrieval. This can be useful when groups make parties, road-
trips, or when group members are studying together. M’Usic is based on
the implementation of the algorithm developed in Chapter 3. The chapter is
divided into the Section 4.1, where the use-cases of the app are shown, the
Section 4.2, which shows the technical background of the app and the used
technologies, the Section 4.3, describing the information which is used to
calculate the recommendations followed by the last Section 4.4, where the
tools to increase the quality of the app are shown.

4.1. Functionality

In this section, the use-cases are shown, and we explain how the app
works. M’Usic is generally divided into the account-management, the group-
management, and the playlist-management. In the playlist part, existing
playlists and playlists, which are currently in the creation process, are shown.
Further, new recommendations can be requested. An overview of creating
a new group playlist is explained in the following. Initially, the user has
to register on the app and connect his profile to Spotify. In the case of an
existing account, the user can use the app by logging in. The next step is to
create a group. It is possible to manage the users of a group afterward by
the creator of a group. On the group detail page, a user can request a new

1https://spotify.com/

73

4. The App “M’Usic”

recommendation for the group. After the calculation of the user-specific
songs for the group recommendation, the user gets a notification and can
add or remove items and confirm or refuse the item collection. After each
group member has confirmed or rejected the collection, the aggregation
calculation is triggered. Each user is notified and receives the tracks of the
playlist presented when the calculation is finished. The user can transfer the
playlist to Spotify to listen to the songs.

The following use cases are beside the textual description shown by screen-
shots of the app. Most figures are only shown in the iOS version only. There
are some navigation items that typically differ between iOS and Android. The
app takes care of these peculiarities which leads in some cases to different
screens. In such cases, screenshots in the following sections show both, the
iOS and the Android views.

4.1.1. Account Management

The account management use-cases are related to tasks concerning on the
account of the users. This includes the registration process, the login and
logout, and the forgotten password process flow.

Registration

When starting the app the first time, a login screen (4.1) is shown. If the
user is not registered, a registration is yet necessary. The registration starts
by clicking the link Sign up now. The registration view (4.2) opens. The first
step is to insert the users email address and press Send verification code to
receive the verification code necessary for the check, if the email address is
one of the users’. The verification code has to be verified by clicking Verify
code. After filling all input fields correctly, the user can create his account
and is forwarded to a Spotify authentication page (4.3), to connect the user
profile with Spotify. There, the user has to click on sign up for Spotify. On
the forwarded page, the user has to fill in the login information and press
the login button. The app confirms the connection to Spotify by showing a
registration finished page (4.4).

74

4.1. Functionality

Figure 4.1.: M’Usic SignIn Screen on iOS
Figure 4.2.: M’Usic Registration Screen

on iOS

Figure 4.3.: M’Usic Spotify Registration
Screen on iOS

Figure 4.4.: M’Usic Successfull Registra-
tion Screen on iOS

75

4. The App “M’Usic”

Figure 4.5.: M’Usic LogIn Screen on iOS

Login

If a user is already registered and starts the app on a smartphone for the
first time, or even after a logout, the app shows a login page (4.5). In this
case, the user can insert his credentials and press the Sign in button. In the
case of a correct input, the groups page is shown (4.6) listing all the groups
in which the user is a member.

Logout

To logout, the user has to open the settings page (4.7). On pressing the Logout
button, the app logs out the user and deletes the stored user information
for automatic sign in.

76

4.1. Functionality

Figure 4.6.: M’Usic GroupList Screens

Figure 4.7.: M’Usic Settings Screen on
iOS

Figure 4.8.: M’Usic Forgot or Reset Pass-
word Screen on iOS

77

4. The App “M’Usic”

Forgot/Reset Password

If a user has forgotten the password or he/she needs the change of the
password, the user can renew this. If the user has forgotten his password
during the login process, it is possible to press the Forgot your password? link
and get forwarded to the forgot password page (4.8). The same page is shown,
if the user press on the settings page (4.7) Reset Password. On the landing
page, the user can send a verification code to his email address confirming
his identity and enter a new password.

4.1.2. Menu

The menu differs between iOS and Android. The screens are shown in
Figure 4.9. In iOS the user can switch between the different sections by
selecting the respective item on the bottom section. Android user have to
open the menu by clicking on the menu bar icon on the upper left and select
the respective menu item.

4.1.3. GroupManagement

The groups page (4.6) is the first page the user sees after the login. It shows
the list of groups the user is member. On this page the user has the possibility
to open a single group detail page, create a new group, or switch to another
part of the app over the menu. By clicking on one of the list items, the group
detail page (4.10) of the corresponding group item opens. This page shows
the group information and the list of playlists, and additionally, the ones,
the calculation process has not finished yet. From this page, the user can
visit the members page of the group, create a new request for a group music
recommendation or go back to the groups page.

Create a Group

A user can create a new group by pressing the plus button on the groups
page (4.6). The add member to group page (4.11) opens. The user can add

78

4.1. Functionality

Figure 4.9.: M’Usic Menu Screens

members by selecting known users in the list or add them by entering the
email address or the username of registered users. By clicking the right
arrow button, the user can fill the group form, containing the name of the
group and optionally a group image on the add group details page (4.12). The
process of creating a new group can be finished by pressing the Create new
Group button. Every member of the group gets a notification that the new
group is created.

Manage Group Members

The members of a group can only be managed by the creator of a group.
To enter the manage group members page (4.14), the founder has to click on
the manage group members button on the members page (4.13) of a group.
The button is only visible for creators of a group. On this page, the user can
remove or add members by selecting the items of the user-list or entering

79

4. The App “M’Usic”

Figure 4.10.: M’Usic Group Detail Screens

Figure 4.11.: M’Usic New Group Mem-
bers Screen on iOS

Figure 4.12.: M’Usic New Group Name
and Image Screen on iOS

80

4.1. Functionality

Figure 4.13.: M’Usic Group Members Screens

the email address or username in the search field. The changes are adopted
by the click on the save button.

Delete or Leave Group

The creator can delete a group and every other member can leave a group
by pressing long on the group item in the groups page (4.15) on Android,
or by sliding the item to the left on iOS. A button, titled either delete group
or leave group, appears. By pressing this button, the user either deletes or
leaves the group.

4.1.4. Recommendations

There are two possible ways to see recommendations in M’Usic. First, on
the group detail page (4.10) there is a list of recommendations according

81

4. The App “M’Usic”

Figure 4.14.: M’Usic Manage Members Screen on iOS

to the specific group. Second, on the playlists page (4.16), which shows all
recommendations of groups the user is a member. In both pages, the list is
split in finished recommendation calculations called playlist and requests of
playlists not completed at this point.

Request for a Recommendation

To create a new request for a group recommendation, the user has to open
the corresponding group detail page. Pressing the plus button opens the
New Playlist page (4.17). The user enters the data of the Event name, Event
date and Expected starting time. The click on the Create new Playlist starts the
calculation of the request.

82

4.1. Functionality

Figure 4.15.: M’Usic Delete Group Screens

Figure 4.16.: M’Usic Playlists Screen on
iOS

Figure 4.17.: M’Usic New Playlist Screen
on iOS

83

4. The App “M’Usic”

Personal Recommendation

In the first step of a group recommendation, each user gets a notification for
receiving his/her personal recommendation. This is a specific item collection
containing tracks the app would suggest for the group in the name of the
user and is shown on the personal recommendation page (4.18). The user has
the possibility to manipulate this collection by adding and deleting items.
Adding items is done by clicking the Add new Song button. This opens
the Add new Song page (4.19) with a search field on the top of the page.
Inserting a part of the name of a track or an artist of a track and pressing the
search button lists all found songs on Spotify. The user can add now one of
these songs by selecting the item. Deleting is done in Android by pressing
the item for a short time, opening a context menu, and clicking the delete
button. In iOS, a slide to the left side on the item opens the context menu,
and by clicking on the appearing delete button, the item is removed shown
in Figure 4.20. Most of the items have an icon on the list item showing a
speaker. This symbol shows that an audio sample for the song is available.
The app starts playing thirty seconds of the track with a click on the item.
It stops on a second click on the item. On pressing the right arrow button,
the list is confirmed. There are also opportunities to refuse the collection or
to ignore it. Refusing the collection removes the user from the members of
the group, but only for this recommendation and not for all the following.
This result is not taking care of the taste of the user in the final playlist, and
additionally, the possibility of the user to see the finished playlist. A reason
for refusing a track suggestion would be that the user is not taking part in
consuming the playlist in the special event. A service checks the personal
recommendations three hours before the event starts. If a user has either
refused nor confirmed the suggestion list, the service confirms the personal
recommendation in the name of the user.

Playlist

At the moment every member has confirmed or refused the personal rec-
ommendation, the group aggregation algorithm starts and calculates the
resulting recommendation. Every remaining member gets notified and can

84

4.2. Architecture

Figure 4.18.: M’Usic Personal Recommendation Screens

view the playlist on the playlist detail page (4.21). If a speaker icon is dis-
played on an item, the user can play an audio example of the track with a
click on them. To listen to the whole playlist in full length, the user can press
the share button to transfer the list to Spotify. The user gets a notification
when the transmission is finished. The playlist is then available on Spotify in
the section Playlists with the name of the event.

4.2. Architecture

In this section, the used technologies and the interaction between the tech-
nologies is described. Figure 4.22 shows an overview of the infrastructure
and the connection between the components.

85

4. The App “M’Usic”

Figure 4.19.: M’Usic Add New Song to Personal Recommendation Screens

4.2.1. Xamarin

Xamarin2 is a tool to develop cross-platform mobile applications. The whole
code is written in C# and allows to use its native frameworks. It is devel-
oped to implement apps for iOS, Android and Windows Phone. There are
different possibilities to develop the user-interface for these apps. Either
separately for each platform or by using Xamarin.Forms. This allows using
the same code for all platforms. Xamarin is developed by Microsoft3. As a
result, there is a very good integration of connections to tools of Microsoft’s
cloud solution Azure4. The advantage of Xamarin is the increased produc-
tivity developing of one single app instead of one for each platform and the
performance benefit compared to HTML with Javascript solutions. Peppers,
Taskos, and Bilgin, 2016

2https://dotnet.microsoft.com/apps/xamarin
3https://www.microsoft.com/
4https://azure.microsoft.com/

86

4.2. Architecture

Figure 4.20.: M’Usic Delete Song of Personal Recommendation Screens

It is highly recommended to use the design pattern MVVM in Xamarin.
MVVM stands for Model View ViewModel. The Model layer is responsible
for the business objects, and therefore it is the backend business logic of
the application. Additionally, the Model manages all connections to external
parts of the app. This can be a web request or an interface to hardware
sensors of the mobile phone. The View is the layer for the user interface.
It manages the interaction with the user and is responsible for all items
being displayed. Additionally, it handles the events fired by user actions.
The ViewModel is the link between the Model and the View. It sends the data
created by the user from the View to the Model and provides the needed data
from the Model for the View. Additionally, it calls operations of the Model
triggered by the View. Peppers, Taskos, and Bilgin, 2016

87

4. The App “M’Usic”

Figure 4.21.: M’Usic Playlist Detail Screen on iOS

Figure 4.22.: M’Usic Infrastructure Overview

88

4.2. Architecture

Xamarin.Forms

Xamarin.Forms is a framework for Xamarin to develop a single user interface
for different mobile platforms. It can be implemented in pure C# code or in
the markup language Extensible Application Markup Language (XAML).
This cross-platform solution allows to write most of the code once, and
additionally, enables the possibility to design custom elements for different
platforms. This is necessary to give the user a native app experience, caused
by different design guidelines of each platform. Xamarin.Forms supports the
development by custom renderers, styling the provided elements differently
for each platform. Peppers, Taskos, and Bilgin, 2016

Figure 4.10 shows screenshots of the same page of the app M’Usic. The first
is the Android app, the second one shows the iOS app. With Xamarin.Forms
such look and feel of native apps is easy to achieve.

Android

Although Xamarin in combination with Xamarin.Forms allows to write most
of the code once, some parts have to be written for the Android version of
the app M’Usic separately:

• Authentication - To open the view for the authentication with Spotify,
the webpage has to be displayed in a browser. This browser is platform
specific for Android. Additionally, the account storage to remember
the users’ account information is developed separately for Android.
• Images - To load images stored locally on the mobile phone, the image

selector and the import had to be developed specific for Android
separately.
• Audio - To play and stop song previews in the app, a specifically

service had to be implemented in Android.
• Notification - To get notifications, Android uses a service called Fire-

base Cloud Messaging (FCM). This is the access point to retrieve the
notifications. The implemented service manages the registration of the
respective Android phone and the appearance and handling of the
receiving notification.

89

4. The App “M’Usic”

• Floating Action Button - It is a commonly used button in Android to
trigger an action in a list view. The round button has an icon and is
placed on the bottom right of a scrollable list view. This kind of button
is not part of the provided elements of Xamarin.Forms and is therefore
self-implemented.
• Icons - Every icon in the app has to be provided in different resolutions

in special intended folders in the Android app project.

iOS

As in Android, there are a few adaptions on the app M’Usic necessary to
achieve a look and feel of a native app:

• Authentication - As for Android, a service for the authentication
on Spotify had to be implemented. In case of a successful login, the
authentication information is stored in the iOS specific account store.
• Images - The image selection and import service is implemented for

iOS separately.
• Audio - As in Android to play previews of the song, an extra audio

service was necessary for iOS.

4.2.2. Azure

Microsoft Azure5 is a cloud solution and is the optimal back end for apps
developed with Xamarin. This is caused by the fact that both products are
from Microsoft6 and so the integration of Azure in Xamarin is intuitive.
In the following, the resources of Azure, used for the app M’Usic, are
introduced.

5https://azure.microsoft.com/
6https://www.microsoft.com/

90

4.2. Architecture

App Service

The App Service is the core service and connection point to all other parts
of the whole solution. It contains the interfaces to the app, the database,
Spotify and to all other following listed parts. In the App Service solution,
the algorithm for the whole recommendation process is implemented.

SQL-Database

The database contains all information of users, except the security critical
authorization data, groups, tracks, and all information regarding the recom-
mendation process. Only the App Service has a connection to the database
and is authorized to get, create, update and delete data.

B2C Tenant

The B2C Tenant was designed to guarantee safety and secure management
of accounts for a business to customer relationship. It provides the storage
of the accounts and manages all use cases connected to the authentication
of the user. This can be the registration, login, logout or password reset
process. The B2C Tenant uses the Azure Active Directory in the background
to store the accounts and provide only interfaces for the App Service and
the M’Usic App itself.

Scheduler

The Scheduler is a timing job, running every hour. It checks all currently
calculated playlists if there are personal recommendations that are still not
answered. When the start event of these playlists is closer than three hours,
the job confirms all open requests. This triggers the App Service to start the
group aggregation algorithm.

91

4. The App “M’Usic”

Notification Hub

The Notification Hub is the connection point between app and App Service
for notifications. The app registers the client on the Notification Hub and the
App Service sends the notifications to the hub. This manages the connection
with the FCM and the iOS notification provider which are sending the
notifications to the mobile phones.

Blob Storage

The Blob Storage is designed to store files in a cloud storage. The app M’Usic
stores the group images in the Blob Storage.

Application Insights

Application Insights is a service of Azure to monitor diverse metrics regard-
ing to performance and failure. It allows to recognize problems of the app
or the App Service in an early stage, even when the app is rolled out to end
users.

4.2.3. Spotify

Shown in Figure 4.23, Spotify7 is by 2017 the music streaming service with
the most paying subscribers worldwide.

This, and the fact that Spotify provides the API Spotify for Developers9 to get
information about the user and all songs available on Spotify, led to the
decision to use it as the data source for the app M’Usic.

7https://spotify.com/
8https://www.statista.com/chart/5152/music-streaming-subscribers/
9https://developer.spotify.com/

92

4.2. Architecture

Figure 4.23.: The Music Streaming Landscape8

Authorization

To get information over the API of Spotify10, they provide three different
authorization flows to grant access. The implicit grant flow is a flow designed
for JavaScript and only for short-life-circle applications suitable because
an access token is not included. The client credentials flow is used for user-
independent information and is used in server-to-server authentication. A
lot of information requested by the app M’Usic is user-independent, indeed
also available without authorization, but authorized requests can be done
more often before they get rejected than unauthorized. The last one is
the authorization code flow which allows getting long-term access to user
information with a onetime user log-in granting permission. This is possible
with a refresh token, allowing to get a new access token in case of an expired
one. The flow is defined in RFC-6749

11 and is shown in Figure 4.24.

Cause of the appropriate features, the app M’Usic has implemented the
authorization code flow.

10https://spotify.com/
11https://tools.ietf.org/html/rfc6749#section-4.1

93

4. The App “M’Usic”

Figure 4.24.: Spotify Authorization Code Flow

94

4.3. Data Source

To protect specific information of users from third-party applications, they
have to define the scope of information they need. The user sees the re-
quested scope in the authorization flow and can decide to grand access to
this information or not. Each application, which wants to use the API, has
to be registered. A signed-up application gets a Client ID and a Client Secret
which are needed in the authorization flow.

Web API

After a successful authorization, the app can use the granted scope of the
Spotify Web-API. This is based on REST principles and secured by standard
HTTPS with the base-address https://api.spotify.com. It provides the HTTP
methods GET, POST, PUT and DELETE. The API is protected with a Rate
Limit to avoid that the API block the request of the app. The structure
of objects returned by the endpoints is defined in an Object Model and
is formatted in JSON. There are several libraries of the API for different
programming languages available.

4.3. Data Source

When recommending music to groups it is a big advantage to know the
preferences of the group members without asking them. Spotify, as men-
tioned in Section 4.2.3, is the biggest music streaming service, and therefore
the largest knowledge base for the music preferences of users. Section 4.3.1
shows the available information about the music taste of users over the
Spotify API. Section 4.3.2 further lists the contextual information of the tracks
provided by Spotify.

4.3.1. Provided Information

With the permission of the user, the Spotify API provides different interfaces
to get information about the user and his/her preferences. The following list
is an extract of endpoints of the API which are used in the app M’Usic:

95

4. The App “M’Usic”

• User’s Top Artists and Tracks This request provides either the users
top artists or tracks. With the help of parameters, the number of artists
or tracks can be defined, and also the time range. The time range can be
long term which are the top tracks or artists from several years ago till
now, medium term includes the listened songs from the last six months,
or the top tracks or artists of the last four weeks defined as short term.
• User’s Followed Artists This endpoint provides a list of all artists a

user is following.
• User’s Playlist A list of a user’s playlist can be requested over this

endpoint.

Additionally, the following non-personalized information is provided by
Spotify:

• List of Featured Playlists This endpoint returns a list of featured
playlists specified by the country and the timestamp. This allows to
get appropriate tracks for a certain time and location.
• Recommendations Based on Seeds To get similar tracks the API offers

this endpoint. The seeds can be artists, genres, or tracks, and are in
sum up to five. They and a tunable track are the base to get the similar
tracks. The properties of the tunable track are concurrent to the Audio
Features Object which is explained in Section 4.3.2.
• Search for an Item The Spotify API provides a search for playlists,

tracks, or artists.
• Audio Analysis for a Track This endpoint provides an audio analysis

of a track and is described in detail in Section 4.3.2.
• Audio Features for a Track Audio Features contain context informa-

tion of a track. This endpoint is described in Section 4.3.2.

Finally, there are two endpoints to create a playlist containing the recom-
mended tracks of a group on Spotify to provide the possibility to listen to
the playlist.

• Create a Playlist By this endpoint, it is possible to create an empty
playlist.
• Add Tracks to a Playlist This endpoint is used to add tracks to a

user’s playlist.

96

4.3. Data Source

4.3.2. Context of a Track

The Spotify API defines several object models for receiving and sending in
JSON format. The following two objects are described, the Audio Feauters
Object and the Audio Analysis Object. Both represent a track with different
contextual information. Based on this information, the recommendation
algorithm of the app M’Usic calculates results.

Audio Features Object

The object values described in this section are an extract of the audio features
object only consisting of the important values for the app M’Usic. These val-
ues are also part of the tunable track object, which is therefore not additionally
mentioned.

• acousticness Measure the accusticness of a track.
• danceability The value of danceability is a combination of the ele-

ments rhythm stability, tempo, beat strength and overall regularity
and described how danceable a track is.
• energy The energy is a measure of activity and intensity. A high energy

value stands for loud, noisy, and fast tracks.
• instrumentalness High values of instrumentalness have no vocals

in all probability. Samples for vocal tracks are rap or spoken word
tracks, but sounds like ”ooh” and ”ahh” are in this context treated as
instrumental.
• liveness If the presence of audience is noticed in a recording, the value

of liveness is higher.
• loudness The loudness is the average value of loudness in decibels

across the entire track.
• speechiness Speechiness is the opposite of instrumentalness.
• tempo The tempo is the estimated tempo in beats per minute over the

whole track.
• valence Valence describes if a positive or negative mood is conveyed

to the listener of the track. High values stand for happy, euphoric or
cheerfull songs, whereas low values indicating a sad, angry or even
depressive song.

97

4. The App “M’Usic”

Audio Analysis

The audio analysis object contains all measurable context information, which
is not part of the full track object. This information is wide-ranging from
timbre and pitches to bars and beats.

4.4. Testing and Monitoring

To deliver good software in short update-iterations, continuous integration
and delivery is absolutely essential. During the software development pro-
cess, many developers test applications only in one environment and risk to
overlook side effects caused by other environments leading to bugs in the
software. Continuous integration is a process to test the software immediately
on different environments, which allows to write and test the software in
small steps going only further in the development if all tests pass. This
leads to high quality software from the beginning. Continuous delivery goes
one step further and includes the software delivery in the process. Only
software which passed all tests is automatically deployed in production
environment and is rolled out to end users. Versluis, 2017

The app M’Usic uses several approaches to reach continuous delivery.
Caused by the two main parts, the app and the backend, there are two
different processes to deliver the software.

4.4.1. Client-Side Continuous Delivery

To make client-side continuous delivery possible, three steps are necessary.
The first step is to write the tests. These are the basis to set up a automated
test environment. This environment can release the software to make it
available in the app stores.

98

4.4. Testing and Monitoring

Writing Tests

Writing the tests is probably the most important step in continuous delivery.
The process is only that good as the tests for it. Xamarin apps can be tested
with Unit Tests and UI Tests.

• Unit Tests A Unit Test is typically split into three steps. The first step is
the initialization of the objects and the setting of the values needed for
a test. The second step is the act, which is an invoke of the method to
test. Finally, step three is the verification, which tests if the behavior of
the method was as expected. The main focus of the Unit Tests should be
on the MVVM pattern implementation, testing the interaction between
the components, and additionally, the platform-specific functions.
• UI Tests Xamarin provides a testing framework to test the user inter-

face (UI) of an app called Xamarin.UITest. Similar to Unit Tests, the
UI Tests are based on three steps called Arrange, Act and Assert. The
framework allows to interact with the UI and therefore to test if the
assumed behavior happens.

Test Automation

To set up an environment for automating tests for Xamarin, it requires the
following two cloud applications:

• Azure DevOps Azure DevOps12 is a cloud-based platform developed
to facilitate the development of software in a team. A main part is
the provision of repository services. These are the interface to the
described following App Center. Commits in defined branches of the
repository trigger the App Center to start tests on these commits.
• Visual Studio App Center Visual Studio App Center13 is also a cloud-

based platform which provides a lot of functionality around testing,
continuously build, releasing, and monitoring apps for mobile appli-
cations. The interaction between the App Center and Azure DevOps is
deeply linked, resulting in an easy setup for automated tests.

12https://azure.microsoft.com/en-us/services/devops/
13https://appcenter.ms/

99

4. The App “M’Usic”

The App Center allows to test apps on many different smartphone devices,
even physically in a hosted device lab. Besides the test results, the App
Center provides full-resolution screenshots and performance metrics.

Releasing the App

Releasing apps in the App Stores is also part of the functionality of the App
Center. To enable the releasing process it is necessary to connect the App
Center with the iTunes Connect14 for apps published in the Apple App
Store15 and with the Google Play Console16 for publishing apps in Google
Play Store17. There is the possibility to define different branches in the Azure
DevOps to publish the apps either in testing channels for bigger groups of
testers or in releasing channels to provide the app for everyone.

4.4.2. Monitoring the App

There are two different kinds of monitoring an app. Either by concentrating
on crashes, daily user counts by device and session duration. Or on code-
base, by logging several states or failing functions insight the app to avoid
a crash of the app with nearly endless possibilities of analysis. The App
Center provides the first variant of monitoring. In Xamarin it is possible to
use Application Insights18, a service of the cloud solution Microsoft Azure,
to integrate a powerful analytic tool.

4.4.3. Server-Side Continuous Delivery

As the app M’Usic, the backend server application was developed in an
agile development process including continuous integration and later on a

14https://itunesconnect.apple.com/
15https://www.apple.com/at/ios/app-store/
16https://developer.android.com/distribute/console/
17https://play.google.com/store
18https://azure.microsoft.com/en-us/services/application-insights/

100

4.4. Testing and Monitoring

continuous delivery. Similar to the app, the process contains tests, automatic
testing, and delivery.

Unit Tests

The backend software has no UI and so there is only the need for testing
the code. The principle is the same as in client-side unit tests containing the
arrange, act and assert sections. The tests should focus on code coverage,
trying to reach every line of code in the tests, and additionally, the boundary
conditions. These are tested by initializing the tests with values under, on
and above barriers in conditions.

Test Automation

The important point on successful development is to run automatic tests
after every small step in the development process and go only further when
passing all tests. Versluis, 2017

The backend software of the app M’Usic is developed in C# and uses Azure
DevOps19 as the source control system. The advantage of this solution is the
provision of services for test automation. This allows to test automatically
commits on previously defined branches without setting up an additional
service.

Continuous Deployment

Also, continuous delivery has an underlying premise. Only builds, that
are successfully tested by test automation, are released for deploying on
productive systems. The app M’Usic uses Azure DevOps also to deploy the
builds automatically on the server after committing changes of the source
code in a specific branch and passing all tests.

19https://azure.microsoft.com/en-us/services/devops/

101

4. The App “M’Usic”

Monitoring

To monitor the backend application, the same tool is used as for the app:
Application Insights20. It allows implementing a logging system, to super-
vise the performance of the application and to observe the data transactions
between parts of the software and external services. It informs about fail-
ures and resource consumption. To reach this, Application Insights is deeply
integrated in the source-code of the backend application. An additional
benefit is to analyze failures of the software by a snapshot debugger, where
it is possible for developers to debug code in the same environment as the
failure occurred.

20https://azure.microsoft.com/en-us/services/application-insights/

102

5. Evaluation of the Algorithm

There has been an evaluation to validate the performance of the app M’Usic.
The system under test was a modification of the app to allow the selection
of the algorithm. There was the base algorithm and some variations of
this. In this chapter the environment, the execution, and the results of the
evaluation are shown and explained.

5.1. Evaluation Environment

To get comparable results out of evaluation it is important to define an
environment, and additionally, several categories that can be determined
from the environment. The evaluation of the app M’Usic is defined with
regard to the dimensions of Evaluation Technique, Test Users, and Execution
Environment.

5.1.1. Evaluation Technique

The evaluation is a mixture of a User Study and an Online evaluation, both
described in Section 2.6.1. The study participants had to perform defined
tasks and answered questions at specific points in time during the execution.
As the results of the evaluation were investigated under the aspect of a
group, all members had to synchronize their tasks. Uncommon for User
Studies, the participants were not observed and so, only the results of the
questionnaires were investigated. Characteristic for the Online Evaluation is
the use of the final app with variations of the algorithm. This is necessary
for the comparability of the modifications without an extraneous influence.

103

5. Evaluation of the Algorithm

The evaluation was a within-subject study, so each participant tested each
variation.

5.1.2. Study Participants

The study participants had to fulfill several criteria, to avoid biases:

• Familiar with the use of smartphones and apps. The users have to
be confident in dealing with smartphones and apps. This is important
to avoid frustration on executing the tasks, which can result in bad
scores.
• Spotify account and regularly listening to music on the platform.

To use the app M’Usic a Spotify account is necessary. Indeed, the app
has a fallback for users not listening to music on Spotify, but to get
appropriate recommendations, a knowledge about the user’s taste is
required.
• Time and pleasure. Evaluations take time and are not always funny.

Therefore, it is important that the participants take part on the evalua-
tion voluntarily, without stress and thinking positive to avoid falsifica-
tion of the answers.

The participants are between 20 and 29 years old and are all interested in
music. All members within a group know each other. Overall there were
eleven participants, split into one group of three members and two of four
members. As the study was within-subject, all participants tested every
variation.

5.1.3. Execution Environment

Execution Environment is in this case defined as the tools used to perform the
evaluation. This is, on the one hand, the platform, the app is running on, and
on the other hand, the survey tool.

104

5.1. Evaluation Environment

Platform

All participants used their own smartphone to run the test. This is an
important point because of the familiarity with the platform. The ratio
between Android and iPhone users was balanced. On the smartphones the app
M’Usic was installed with a small modification, which made it possible to
choose different variations of the algorithm on requesting a new playlist.

Survey Tool

The tool LimeSurvey1 was used to create the survey. It is an open-source
application to create online surveys. The participants answered their ques-
tions in a form and the results were exported to Microsoft Excel2. Closed
questions with the possible answers Yes and No were rendered in Excel
whereas other questions were rendered with the tool Plotly Online3.

5.1.4. Questions

The questions of the survey aim at the properties of RSs discussed in
Section 2.6.2. The variations of the algorithm are split into different sections
in the survey. The basic algorithm section contains all questions whereas
the adaptions of the algorithm contain the main questions, and additionally,
questions related to the properties, the adaption tries to improve. The closing
questions deal with the listening habits and the order of the tracks of the
recommended playlist.

Questions about the Algorithm

The following questions were asked according to the results of the per-
sonal recommendation and the final playlist recommended by the basic
algorithm:

1https://www.limesurvey.org/
2https://products.office.com/excel
3https://plot.ly/

105

5. Evaluation of the Algorithm

• What is the name of the playlist to answer the questions for this type
of algorithm?
• How much do you like your personal recommendation? From 1 (very

much) to 5 (not at all)
• How many songs of your personal recommendation fit to your taste

in music for this event?
• Do the songs of your personal recommendation correlate to the time

of the event? From 1 (perfect for this event) to 5 (don’t fit)
• Do the songs of your personal recommendation correlate to the reason

of the event? From 1 (perfect for this event) to 5 (don’t fit)
• How diverse is your personal recommendation? From 1 (very different

song styles) to 5 (only one genre)
• Would you like to get more diversity in your personal recommenda-

tion?
• How bad is the worst song in your personal recommendation? From 1

(really bad) to 5 (quite good)
• Did you get an unknown song of an unknown interpret which you

like in your personal recommendation?
• Did you get an unknown song which you really like in your personal

recommendation?
• How many songs of your personal recommendation did you already

know?
• Would you like to get more unknown songs in your personal recom-

mendation?
• How much do you like the playlist? From 1 (very much) to 5 (not at

all)
• How many songs of the playlist do you like?
• Do the songs of the playlist correlate to the time of the event? From 1

(perfect for this event) to 5 (don’t fit)
• Do the songs of the playlist correlate to the reason of the event? From

1 (perfect for this event) to 5 (don’t fit)
• How diverse is the playlist for you? From 1 (very different song styles)

to 5 (only one genre)
• Would you like to have more diversity in the playlist?
• How bad is the worst song in the playlist? From 1 (really bad) to 5

(quite good)
• Would you use this algorithm again?

106

5.2. Evaluation Execution

Questions about the Order of the Tracks

The following questions try to identify if the study participant usually
listens to music in the shuffle mode or in the recommended order, and check
the improvement of the order of the tracks in the recommended playlist.

• Are you used to listen to songs mostly in the order of the playlist, or
in shuffle mode?
• Please do have a look at the order of the songs in the calculated

playlists - Would you listen to these playlists in the recommended
order, or in shuffle-mode?

5.2. Evaluation Execution

In this section, the execution of the evaluation is described. It contains the
parts Preparation, Conduction, and Reflection.

5.2.1. Preparation

To perform a successful survey, thorough preparation is necessary. This has
shown the conduction of the survey with the first test group. It ended with
a termination causing multiple reasons: The users were not familiar with
the app, so they had troubles to handle it at the beginning. The app and
the algorithm were too slow resulting in frustrated test participants. Finally,
the participants had no earphones, so for playing the recommended songs
all members of the test group had to take the speaker of their smartphones
resulting in extremely loud background noise, and no one could concentrate
on their songs.

Because of these recently mentioned reasons, the following tasks were
defined:

• Provide the app the test users early enough. Give the user enough
time to get familiar with the app and let them test it and perform real
world scenarios to understand the functionality of the app.

107

5. Evaluation of the Algorithm

• Performance improvements. Although the development of the algo-
rithm and its variations were finished, the first test was in a too early
stadium of the app development what caused a poor performance.
A special effort on increasing performance resulted in an acceptable
response time of the recommendations.
• Let the participants use earphones. To avoid a loudness overload, it

is important that the participants of the study use earphones. Either
they bring their own or they have to be provided.
• Provide activities. A user study can take up to a few hours and the

concentration of the users cannot be that long. It is important to make
breaks and provide them activities helping them to calm down and
relax to go further focused and efficient after the break.

5.2.2. Survey Conduction

The members of a team met up to perform the survey. They choose a team
leader and agreed on a real-life scenario using the app M’Usic. The team
leader created a group in the app and added all members. For the base
algorithm and each adaption the team leader had to create a request for a
new playlist with the time of the listening defined in the real-life scenario
and the amount of 30 songs. Additionally, the base algorithm was tested
with the amount of 50 and 80 songs to proof the change of the results based
on the number of tracks. The survey started with some initial questions like
the username and the group’s name in the app M’Usic. For each playlist
request, the app calculated a personal recommendation per member. Every
section in the survey belongs to a variation of the algorithm and each
section is split up in two parts. The personal recommendation was the
first one. After they had answered these questions, the members confirmed
their personal recommendation without removing or adding songs. This is
important to get the results of the algorithm. In the following, all members
confirmed their personal recommendation for an algorithm. At this point
the corresponding final playlist was calculated. The result is evaluated with
questions in the second part of the appropriate algorithm section of the
survey. After the participants had answered all questions to the personal
recommendation and the resulting playlist of all requested playlists, some

108

5.2. Evaluation Execution

closing questions about the listening habits had to be answered.

5.2.3. Reflection

The reflection of the survey resulted in the following insights:

• To conduct a survey a thorough preparation is necessary.
• Various aspects have to be considered in order to ask questions that

do not have an influential effect.
• Even participants with a positive attitude towards the survey can get

frustrated by too long surveys.

5.2.4. Expected Conclusions

The focus of the evaluation was on the basic algorithm and its variation,
and additionally, on the order of the playlist. The variations differ from the
original algorithm either on the used user information or follow different
approaches to calculate the playlist. These variations have no explicit ex-
pected outcome. The aim is to form an aggregated algorithm by combining
the approaches of the successful variations. Other variations have the goal
to improve some properties of RSs. The expected outcome is to reach better
results in the properties of a GRS.

In the following, all algorithms are listed:

MediumTerm

The MediumTerm algorithm is the basic one. It was developed first and uses
the most listened tracks of the user of the last six months. It also includes
techniques trying to recommend songs fitting to the planned date and time
of the listening. The tracks for the final playlists are the ones with the lowest
distance between the song and the group’s preference model.

109

5. Evaluation of the Algorithm

ShortTerm

The ShortTerm algorithm differs from the basic algorithm in the data source
which is used to calculate the user preferences. It uses the most listened
tracks by the user the past four weeks.

LongTerm

The LongTerm algorithm distinguishes from the basic algorithm by the use
of the top tracks over all time as the basis to calculate the preferences of the
users.

UserBasedAggregation

The UserBasedAggregation algorithm calculates a specific preference model for
each member of the group. The tracks of the final playlists are the songs
with the lowest sum of distances between a model representing the song
and the specific user preference model.

TimeIndependent

The basic algorithm implements approaches to reach better results consider-
ing the date and time of the event. To proof this approaches, the TimeIndepen-
dent algorithm was implemented. Both differ only on the approaches based
on date and time. The expected conclusion is that the questions relating
to the correlation between time and playlist result in poorer rates than the
basic algorithm.

110

5.3. Evaluation Results

Valence

The Valence algorithm includes the value of valence of the songs in the
recommendation. The sense of valence is described in Section 4.3.2. The ex-
pected conclusion is that the algorithm reaches higher ratings in satisfaction
as the basic algorithm.

Genre

The Genre algorithm prefers songs which are attributable to genres, listened
by many members of a group. The expected outcome is a higher overall
satisfaction.

RecommendGenre

The RecommendGenre algorithm calculates possible songs for the playlist
based on the preference model of the group correlating to the genres most of
the group members listen to.

RecommendArtist

The RecommendArtist algorithm calculates possible songs for the personal
recommendation of each member which are close to the preference model of
the group and similar to the top interpreters of the member.

5.3. Evaluation Results

In this section the results of the questions are shown. The yes/no questions
are presented in a bar chart, the results of the other questions are shown in
box plot diagrams.

The result of the question How much do you like your personal recommendation?
is shown in Figure 5.1. The variations ShortTerm, LongTerm, and Valence

111

5. Evaluation of the Algorithm

Figure 5.1.: Evaluation Result - How much do you like your personal recommendation?

got the best results. All variations received an at least similar or better
outcome.

The result of the question How many songs of your personal recommendation
fit to your taste in music for this event? is shown in Figure 5.2. The variation
Valence received the best results. Additionally, there were no negative outliers
on the variations LongTerm and Genre.

The result of the question Do the songs of your personal recommendation correlate
to the time of the event? is shown in Figure 5.3. Not all questions were asked
for each variation. Besides the basic algorithm, questions concerning specific
properties were only asked on the variations which try to improve these
properties. In this question, the focus was on the accuracy of time. As
the basic algorithm is the only algorithm that implemented approaches to
improve the recommendations in the accuracy of time, only the variation
of TimeIndepended was, additionally, evaluated to confirm the approach.
Furthermore, the basic algorithm was evaluated with a different number
of recommended tracks to proof the independence of them. Unfortunately,
there were no significant better results on the basic algorithm than on the
TimeIndependend.

The result of the question Do the songs of your personal recommendation correlate
to the reason of the event? is shown in Figure 5.4. Like in 5.3, the basic algo-
rithm did not receive better results than the TimeIndependend. All evaluated

112

5.3. Evaluation Results

Figure 5.2.: Evaluation Result - How many songs of your personal recommendation fit to
your taste in music for this event?

Figure 5.3.: Evaluation Result - Do the songs of your personal recommendation correlate to
the time of the event?

113

5. Evaluation of the Algorithm

Figure 5.4.: Evaluation Result - Do the songs of your personal recommendation correlate to
the reason of the event?

variations received similar results.

The result of the question How diverse is your personal recommendation? is
shown in Figure 5.5. All evaluated variations received similar results. Only
the basic algorithm got a wide range of results containing some high rates
of diversity.

The result of the question Would you like to get more diversity in your personal
recommendation? is shown in Figure 5.6. The figure shows that most of the
participants would not get more diversity in any variation. Only in the
RecommendGenre variation, the difference between the number of yes and no
answers is not that high.

The result of the question How bad is the worst song in your personal recom-
mendation? is shown in Figure 5.7. The worst results got the basic algorithm
and the variations TimeIndependend and ShortTerm. The variations Valence
and Genre have the fewest bad songs in their recommendation.

The result of the question Did you get an unknown song of an unknown interpret
which you like in your personal recommendation? is shown in Figure 5.8. Often
participants found unknown songs they like in the basic algorithm and the
variation RecommendArtist.

114

5.3. Evaluation Results

Figure 5.5.: Evaluation Result - How diverse is your personal recommendation?

Figure 5.6.: Evaluation Result - Would you like to get more diversity in your personal
recommendation?

115

5. Evaluation of the Algorithm

Figure 5.7.: Evaluation Result - How bad is the worst song in your personal
recommendation?

Figure 5.8.: Evaluation Result - Did you get an unknown song of an unknown interpret
which you like in your personal recommendation?

116

5.3. Evaluation Results

Figure 5.9.: Evaluation Result - Did you get an unknown song which you really like in your
personal recommendation?

The result of the question Did you get an unknown song which you really
like in your personal recommendation? is shown in Figure 5.9. Similar to the
previous question, the figure shows that the basic algorithm recommends
many unknown songs the users like. Additionally, ShortTerm received good
results.

The result of the question How many songs of your personal recommendation did
you already know? is shown in Figure 5.10. The results of the variations are
very similar. Only some participants did know fewer songs in the variation
ShortTerm and the basic algorithm with a higher number of recommended
tracks.

The result of the question Would you like to get more unknown songs in your
personal recommendation? is shown in Figure 5.11. Most of the variations
got a slightly higher vote for no further unknown songs. Only the basic
algorithm with 50 recommended tracks and the variation RecommendGenre
got a clear result to avoid further unknown songs.

The result of the question How much do you like the playlist? is shown in
Figure 5.12. The variation Valence is the winner of this evaluation. Addition-

117

5. Evaluation of the Algorithm

Figure 5.10.: Evaluation Result - How many songs of your personal recommendation did
you already know?

Figure 5.11.: Evaluation Result - Would you like to get more unknown songs in your
personal recommendation?

118

5.3. Evaluation Results

Figure 5.12.: Evaluation Result - How much do you like the playlist?

ally, the variations ShortTerm and Genre got good results from some of the
participants.

The result of the question How many songs of the playlist do you like? is
shown in Figure 5.13. Only in the variation Valence, nearly all participants
like the majority of the recommended songs. Some of the participants also
liked the majority of the songs in the variation Genre, but the result is very
widespread.

The result of the question Do the songs in the playlist correlate to the time of
the event? is shown in Figure 5.14. As the results of the similar question
on personal recommendation (5.3) also show, the time-dependent basic
algorithm does not achieve better results than the variation TimeIndependend.

The result of the question Do the songs of the playlist correlate to the reason of the
event? is shown in Figure 5.15. As well as in the evaluation of the previous
question, the results show no differences between the basic algorithm and
the variation TimeIndependend.

The result of the question How diverse is the playlist for you? is shown in
Figure 5.16. The results show that the basic algorithm recommend the most
diverse songs. In the variation ShortTerm the results are not that clear because
the received ratings are very scattered.

119

5. Evaluation of the Algorithm

Figure 5.13.: Evaluation Result - How many songs of the playlist do you like?

Figure 5.14.: Evaluation Result - Do the songs in the playlist correlate to the time of the
event?

120

5.3. Evaluation Results

Figure 5.15.: Evaluation Result - Do the songs of the playlist correlate to the reason of the
event?

Figure 5.16.: Evaluation Result - How diverse is the playlist for you?

121

5. Evaluation of the Algorithm

Figure 5.17.: Evaluation Result - Would you like to have more diversity in the playlist?

The result of the question Would you like to have more diversity in the playlist?
is shown in Figure 5.17. Conforming with the previous question, all par-
ticipants agree to have enough diversity in the basic algorithm. This is the
majority opinion on nearly all other variations. The variation UserBasedAg-
gregation is the only one which received the opposite results to the majority.

The result of the question How bad is the worst song in the playlist? is shown
in Figure 5.18. In the variations ShortTerm and Genre the worst songs are not
as bad as in the other variations.

The result of the question Would you use this algorithm again? is shown in
Figure 5.19. The final question for each variation shows that the variations
ShortTerm, Valence, and Genre convince the participants the most.

The result of the question Are you used to listen to songs mostly in the order of
the playlist, or in shuffle mode? is shown in Figure 5.20. The result shows that
nearly half of the participants listen to songs in shuffle mode most of the
time.

122

5.3. Evaluation Results

Figure 5.18.: Evaluation Result - How bad is the worst song in the playlist?

Figure 5.19.: Evaluation Result - Would you use this algorithm again?

123

5. Evaluation of the Algorithm

Figure 5.20.: Evaluation Result - Are you used to listen to songs mostly in the order of the
playlist, or in shuffle mode?

Figure 5.21.: Evaluation Result - Would you listen to these playlists in the recommended
order or in shuffle mode?

The participants who answered the question Are you used to listen to songs
mostly in the order of the playlist, or in shuffle mode? with order of the playlist
were asked if they would listen to the given playlist in the recommended
order or in shuffle mode. The result of the question is shown in Figure 5.21.
The result shows that the approach to order the tracks is successful. More
than 70 percent of the participants, who answered this question, see an
improvement in the order.

124

6. Outlook

In this chapter, the first part includes a summary of the essential findings of
this thesis. The second part includes a discussion of the future work which
can be done to improve the recommendation of music to groups.

6.1. Conclusion

The aim of this thesis was to create a system which recommends music to
groups. The system should be usable for many people. Further aims were
to create a system which reaches a high value of accuracy without asking
the users about their preferences, and the results should be easily playable
without the need of music licenses for the system.

This section reflects the aims and summarizes the insights made during the
process of creating this thesis.

6.1.1. Usable for a large Number of People

The system was created as an app for iOS and for Android, which cover
now 100 percent of the global mobile OS market as shown in Figure 6.1. A
constraint of the system is that it is usable only with Spotify1. This is caused
by another aim what means to reach good recommendations without asking
the user for the preferences. Nevertheless, Spotify is currently the biggest
music streaming service by the amount of paid subscriptions as seen in
Figure 4.23. Additionally, Spotify is usable without a paid subscription. This
lead to a high number of people who can use the system.

1https://spotify.com/

125

6. Outlook

Figure 6.1.: Global mobile OS market share in sales to end users from 1st quarter 2009 to
2nd quarter 2018

6.1.2. Recommendation without Explicit User Feedback

An aim was to create a system without an annoying initial rating of several
tracks up to the moment a recommendation can be created. Additionally, in
GRSs all members of a group have to initially rate items. The solution was to
find a service with a high number of users which has already a knowledge
of the preferences of the users, and additionally, provide this information to
external systems. Fortunately, the music streaming services with the highest
amount of paid subscriptions provide an API called Spotify for Developers2

to request the needed information over interfaces. This allows the system
to get enough information about the preferences of users to create accurate
recommendations.

2https://developer.spotify.com/

126

6.1. Conclusion

6.1.3. Create Accurate Group Recommendations

Creating good recommendations is the basic aim of a RS. The accuracy
of the system was evaluated by the execution of a user study including
a survey. There is a basic algorithm and different variations which follow
different approaches. The original algorithm creates a user preference model
based on the top tracks of a user. As an additional step, it calculates the
top five genres of the whole group. In the next step, the algorithm creates
a user individual candidate list based on the user’s preferences assignable
to the top genres. Out of the top tracks in combination with the candidate
list, a user individual suggestion list is created. In this step, the group
members have the possibility to manipulate this suggestion list. When the
users finish this step, the algorithm creates a group preference model based
on all manipulated suggestion lists. The songs with the shortest distance
to the group preference model have been part of the final recommendation.
An approach to avoid unfairness over time is additionally implemented.

The evaluation pointed out the successful variations which were finally
integrated in the resulting algorithm. The successful approaches are the
following.

• Using short-term top tracks as a part of information for user preferences.
The evaluation shows increasing accuracy on results compared to
medium-term top tracks.
• Using long-term top tracks as a part of information for user preferences. Ad-

ditionally, short-term top tracks and long-term top tracks can improve
the performance of the algorithm. This lead to a combined source for
the preference model of a single user which now has a stable factor
of user preference in addition to a fast-changing factor of the user
preference based on the music the user has listened to the last four
weeks.
• Genre The results of the variation show mostly a wide range of answers.

Nevertheless, it reaches consistently positive answers in the question
of using this variation again.
• Valence. This approach reached outstanding improvements in the accu-

racy of the RS. The thought was that groups want to listen to happy,

127

6. Outlook

euphoric and cheerful songs rather than to sad and depressive songs.
As the evaluation showed, the assumption was correct.

The evaluation shows that even the initial algorithm achieves quite good
results. Different variations reach improvements on various properties of a
RS. The combination of these will achieve very appropriate music recom-
mendations for groups.

6.1.4. Easily Listenable Playlists

The last aim is an essential one. A system can make perfect accurate music
recommendations for groups, but it is useless without the possibility to
listen to these songs. The problem in such systems is the license to play
music and the costs of dues when a user is listening to songs. The system
of this thesis solves this, by exporting the playlist to the music streaming
service Spotify3 and not playing the songs itself. As every user of the system
has to have an account on Spotify, the user can switch to the streaming
service app and listen to the playlist immediately. Additionally, the system
integrates an algorithm to order the recommended tracks for the playlist.
The approach was to link similar songs based on the amount of similar
classifiable songs and finally orders these linked sub-lists by the value of
happiness of the individual songs.

6.1.5. Availability of the App M’Usic

The app M’Usic is currently only available for selected test-users in the
Google Play Store4 as well as in the TestFlight5 app. This is a way to share
a beta version of an app with test-users in iOS. The app is still in the beta
stores because there has to be done an evaluation of the usability of the app,
which is part of another thesis.

3https://spotify.com/
4https://play.google.com/store
5https://developer.apple.com/testflight/

128

6.2. Future Work

6.2. Future Work

This section discusses the possible topics of future work in recommending
music to groups.

6.2.1. Explicit User Information

A benefit of the algorithm presented in this thesis is that the RS achieves
good results without any explicit user information. However, this also means
that except the manipulation of the personal suggestion list, an explicit user
feedback is not possible. A possible improvement of the algorithm would be
to give users the possibility to tell the system their preferences. This could
be in different situations. Moreover, the impacts of such feedback on the
results have to be clarified. Furthermore, explicit user feedback can be a
weakness in the term of manipulation. Possibilities to add user feedback
are:

• Ask the group to define their preferred Genres. This would be a possibility
to replace the top genres of the group with the ones from the selection.
The problem is that the majority or a group leader define these genres
which can result in decreasing the value of the preferences of some
members.
• Ask the group member about the preferred Genres for this Group. Some users

might have widespread musical preferences, but want to influence
the group preferences only with a part of these genres. For example,
if a user likes to listen to rock and classical music and knows that
the other group members like to listen to rock, the user can prevent
classical music from being included in the group recommendation as
one of his/her preference.
• Ask the user about the event type of the recommendation. Group recom-

mendations can be requested in different situations. For example for a
party, a study group or a road trip. Depending on the event type, a
user has different expectations about the resulting playlist. For study
groups, calm songs are preferred whereas on a party, songs should be
danceable. The challenge on defining event types is to define a model
appropriate to the type.

129

6. Outlook

• Ask the group members about the accuracy of the recommended playlist. This
can be done in two different ways. Either ask the user about the overall
accuracy or let the user rate individual songs. The results can be com-
pared with the predicted accuracy. This is the final playlist compared
to the group member preference model. If there are differences, the
preference model of the user can be adjusted.

As mentioned before, the only feedback the app is getting from the users is
the manipulation of the personal suggestion list. Currently the algorithm
of the app is not using this information to adapt future preference models.
This is because it has to be clarified which reason the deletion of a track or
the adding of a song has. Reasons can be that a song like this one is not
accurate for this special event, for the group, or the song is not accurate
to the preferences of the user. Each of these reasons has to be handled
differently by the algorithm.

Although explicit user feedback can improve the accuracy of the recom-
mendation, users often are sensitive in giving a reply. Too many requests
on feedback can have a negative affect. This means that user feedback has
to be requested meticulously to reach the maximum information with a
minimum number of questions.

6.2.2. Improved Preference Learning

Preference Learning can be a process over time to improve the calculation of a
preference model. It handles user feedback to adopt the model. Techniques
for model learning were described in Section 2.4.2. Especially the manipula-
tion of the personal suggestion list and a feedback about the accuracy of
the recommended playlist can be used to improve the preference learning.
Additionally, in the app M’Usic it is possible to observe the exported playlist
in Spotify6 to check if the track lists were manipulated and let this affect the
preference learning.

6https://spotify.com/

130

6.2. Future Work

6.2.3. Time-Aware Recommendation

An unfortunately failed improvement of the algorithm was the approach
of an impact on the recommendation based on the time. As the evaluation
brings no clear result why the implementation failed, there could be made
further researches. Especially in the field of music the inclusion of the time
of the event can play a big role. Another approach is to adjust the preference
model based on the type of the event. Both approaches have unfortunately
the same challenge, to investigate how the time or type affects the preference
model.

6.2.4. Collaborative Techniques

Another improvement would be the integration of collaborative techniques
in the algorithm. As the data basis is stored in Spotify for Developers7 and
not accessible as needed, the collaborative approaches can only be made
with the data the app has already requested and calculated. The similarity
between group preference models can be used to improve the algorithm. In
combination with explicit user feedback, groups can profit by ratings on
recommending playlists of members of similar groups.

6.2.5. Long-Term Evaluation

An important task for the future is to evaluate the performance of the
algorithm over time. Especially the impacts of long-term fairness have to be
investigated. The focus of the evaluation in Chapter 5 was the comparison
of different algorithm variations. The goal was to combine all approaches,
which led to positive feedback, to an aggregated RS. Further evaluations
should investigate the improvements made by combining these approaches,
besides long-term fairness. Additionally, further evaluation should be done
on the phenomenon of different results of short and long playlists compared
to playlists with a medium number of tracks.

7https://developer.spotify.com/

131

Appendix

133

Appendix A.

Survey

135

Welcome to the survey about the performance of the algorithm to recommend music
to groups. We would like to answer each question honestly and objective. The survey
has opening questions, some questions for each variation of the algorithm, and a few

closing questions.

This survey is part of the master's thesis of Johannes Singer

Section A: Initial questions

A1. What is your name?

A2. What is your username or email address in M'Usic?

A3. In which group do you add your events to answer the questions of the
survey?

Section B: ShortTerm

B1. What is the name of the playlist to answer the questions for this type
of algorithm?

B2. How much do you like your personal recommendation? From 1 (very
much) to 5 (not at all).

1
2
3
4
5

B3. How many songs of your personal recommendation fit to your taste
for this event?

0%-35%
35%-55%
55%-75%
75%-90%

90%-100%

B4. How diverse is your personal recommendation? From 1 (very different
song styles) to 5 (only one genre).

1
2
3
4
5

B5. Would you like to get more diversity in your personal
recommendation?

Yes
No

B6. How bad is the worst song in your personal recommendation? From 1
(really bad) to 5 (quite good).

1
2
3
4
5

B7. Did you get an unknown song from an unknown interpret which you
like in your personal recommendation?

Yes
No

B8. Did you get an unknown song which you really like in your personal
recommendation?

Yes
No

B9. How many songs of your personal recommendation did you already
know?

0%-35%
35%-55%
55%-75%
75%-90%

90%-100%

B10. Would you like to get more unknown songs in your personal
recommendation?

Yes
No

B11. How much do you like the playlist? From 1 (very much) to 5 (not at
all).

1
2
3
4
5

B12. How many songs of the playlist do you like?

0%-35%
35%-55%
55%-75%
75%-90%

90%-100%

B13. How diverse is the playlist for you? From 1 (very different song styles)
to 5 (only one genre).

1
2
3
4
5

B14. Would you like to have more diversity in the playlist?

Yes
No

B15. How bad is the worst song in the playlist? From 1 (really bad) to 5
(quite good).

1
2
3
4
5

B16. Would you use this algorithm again?

Yes
No

Section C: MediumTerm30

C1. What is the name of the playlist to answer the questions for this type
of algorithm?

C2. How much do you like your personal recommendation? From 1 (very
much) to 5 (not at all).

1
2
3
4
5

C3. How many songs of your personal recommendation fit to your taste
for this event?

0%-35%
35%-55%
55%-75%
75%-90%

90%-100%

C4. Do the songs of your personal recommendation correlate to the time of
the event? From 1 (perfect for this event) to 5 (don't fit).

1
2
3
4
5

C5. Do the songs of your personal recommendation correlate to the reason
of the event? From 1 (perfect for this event) to 5 (don't fit).

1
2
3
4
5

C6. How diverse is your personal recommendation? From 1 (very different
song styles) to 5 (only one genre).

1
2
3
4
5

C7. Would you like to get more diversity in your personal
recommendation?

Yes
No

C8. How bad is the worst song in your personal recommendation? From 1
(really bad) to 5 (quite good).

1
2
3
4
5

C9. Did you get an unknown song from an unknown interpret which you
like in your personal recommendation?

Yes
No

C10. Did you get an unknown song which you really like in your personal
recommendation?

Yes
No

C11. How many songs of your personal recommendation did you already
know?

0%-35%
35%-55%
55%-75%
75%-90%

90%-100%

C12. Would you like to get more unknown songs in your personal
recommendation?

Yes
No

C13. How much do you like the playlist? From 1 (very much) to 5 (not at
all).

1
2
3
4
5

C14. How many songs of the playlist do you like?

0%-35%
35%-55%
55%-75%
75%-90%

90%-100%

C15. Do the songs of the playlist correlate to the time of the event? From 1
(perfect for this event) to 5 (don't fit).

1
2
3
4
5

C16. Do the songs of the playlist correlate to the reason of the event? From
1 (perfect for this event) to 5 (don't fit).

1
2
3
4
5

C17. How diverse is the playlist for you? From 1 (very different song styles)
to 5 (only one genre).

1
2
3
4
5

C18. Would you like to have more diversity in the playlist?

Yes
No

C19. How bad is the worst song in the playlist? From 1 (really bad) to 5
(quite good).

1
2
3
4
5

C20. Would you use this algorithm again?

Yes
No

Section D: MediumTerm50

D1. What is the name of the playlist to answer the questions for this type
of algorithm?

D2. How much do you like your personal recommendation? From 1 (very
much) to 5 (not at all).

1
2
3
4
5

D3. How many songs of your personal recommendation fit to your taste
for this event?

0%-35%
35%-55%
55%-75%
75%-90%

90%-100%

D4. Do the songs of your personal recommendation correlate to the time of
the event? From 1 (perfect for this event) to 5 (don't fit).

1
2
3
4
5

D5. Do the songs of your personal recommendation correlate to the reason
of the event? From 1 (perfect for this event) to 5 (don't fit).

1
2
3
4
5

D6. How diverse is your personal recommendation? From 1 (very different
song styles) to 5 (only one genre).

1
2
3
4
5

D7. Would you like to get more diversity in your personal
recommendation?

Yes
No

D8. How bad is the worst song in your personal recommendation? From 1
(really bad) to 5 (quite good).

1
2
3
4
5

D9. Did you get an unknown song from an unknown interpret which you
like in your personal recommendation?

Yes
No

D10. Did you get an unknown song which you really like in your personal
recommendation?

Yes
No

D11. How many songs of your personal recommendation did you already
know?

0%-35%
35%-55%
55%-75%
75%-90%

90%-100%

D12. Would you like to get more unknown songs in your personal
recommendation?

Yes
No

D13. How much do you like the playlist? From 1 (very much) to 5 (not at
all).

1
2
3
4
5

D14. How many songs of the playlist do you like?

0%-35%
35%-55%
55%-75%
75%-90%

90%-100%

D15. Do the songs of the playlist correlate to the time of the event? From 1
(perfect for this event) to 5 (don't fit).

1
2
3
4
5

D16. Do the songs of the playlist correlate to the reason of the event? From
1 (perfect for this event) to 5 (don't fit).

1
2
3
4
5

D17. How diverse is the playlist for you? From 1 (very different song styles)
to 5 (only one genre).

1
2
3
4
5

D18. Would you like to have more diversity in the playlist?

Yes
No

D19. How bad is the worst song in the playlist? From 1 (really bad) to 5
(quite good).

1
2
3
4
5

D20. Would you use this algorithm again?

Yes
No

Section E: MediumTerm80

E1. What is the name of the playlist to answer the questions for this type
of algorithm?

E2. How much do you like your personal recommendation? From 1 (very
much) to 5 (not at all).

1
2
3
4
5

E3. How many songs of your personal recommendation fit to your taste
for this event?

0%-35%
35%-55%
55%-75%
75%-90%

90%-100%

E4. Do the songs of your personal recommendation correlate to the time of
the event? From 1 (perfect for this event) to 5 (don't fit).

1
2
3
4
5

E5. Do the songs of your personal recommendation correlate to the reason
of the event? From 1 (perfect for this event) to 5 (don't fit).

1
2
3
4
5

E6. How diverse is your personal recommendation? From 1 (very different
song styles) to 5 (only one genre).

1
2
3
4
5

E7. Would you like to get more diversity in your personal
recommendation?

Yes
No

E8. How bad is the worst song in your personal recommendation? From 1
(really bad) to 5 (quite good).

1
2
3
4
5

E9. Did you get an unknown song from an unknown interpret which you
like in your personal recommendation?

Yes
No

E10. Did you get an unknown song which you really like in your personal
recommendation?

Yes
No

E11. How many songs of your personal recommendation did you already
know?

0%-35%
35%-55%
55%-75%
75%-90%

90%-100%

E12. Would you like to get more unknown songs in your personal
recommendation?

Yes
No

E13. How much do you like the playlist? From 1 (very much) to 5 (not at
all).

1
2
3
4
5

E14. How many songs of the playlist do you like?

0%-35%
35%-55%
55%-75%
75%-90%

90%-100%

E15. Do the songs of the playlist correlate to the time of the event? From 1
(perfect for this event) to 5 (don't fit).

1
2
3
4
5

E16. Do the songs of the playlist correlate to the reason of the event? From
1 (perfect for this event) to 5 (don't fit).

1
2
3
4
5

E17. How diverse is the playlist for you? From 1 (very different song styles)
to 5 (only one genre).

1
2
3
4
5

E18. Would you like to have more diversity in the playlist?

Yes
No

E19. How bad is the worst song in the playlist? From 1 (really bad) to 5
(quite good).

1
2
3
4
5

E20. Would you use this algorithm again?

Yes
No

E21. Is one of the playlists of this algorithm much worse than the others?

Yes
No

Section F: LongTerm

F1. What is the name of the playlist to answer the questions for this type
of algorithm?

F2. How much do you like your personal recommendation? From 1 (very
much) to 5 (not at all).

1
2
3
4
5

F3. How many songs of your personal recommendation fit to your taste
for this event?

0%-35%
35%-55%
55%-75%
75%-90%

90%-100%

F4. How diverse is your personal recommendation? From 1 (very different
song styles) to 5 (only one genre).

1
2
3
4
5

F5. Would you like to get more diversity in your personal
recommendation?

Yes
No

F6. How bad is the worst song in your personal recommendation? From 1
(really bad) to 5 (quite good).

1
2
3
4
5

F7. Did you get an unknown song from an unknown interpret which you
like in your personal recommendation?

Yes
No

F8. Did you get an unknown song which you really like in your personal
recommendation?

Yes
No

F9. How many songs of your personal recommendation did you already
know?

0%-35%
35%-55%
55%-75%
75%-90%

90%-100%

F10. Would you like to get more unknown songs in your personal
recommendation?

Yes
No

F11. How much do you like the playlist? From 1 (very much) to 5 (not at
all).

1
2
3
4
5

F12. How many songs of the playlist do you like?

0%-35%
35%-55%
55%-75%
75%-90%

90%-100%

F13. How diverse is the playlist for you? From 1 (very different song styles)
to 5 (only one genre).

1
2
3
4
5

F14. Would you like to have more diversity in the playlist?

Yes
No

F15. How bad is the worst song in the playlist? From 1 (really bad) to 5
(quite good).

1
2
3
4
5

F16. Would you use this algorithm again?

Yes
No

Section G: UserBasedAggregation

G1. What is the name of the playlist to answer the questions for this type
of algorithm?

G2. How much do you like your personal recommendation? From 1 (very
much) to 5 (not at all).

1
2
3
4
5

G3. How much do you like the playlist? From 1 (very much) to 5 (not at
all).

1
2
3
4
5

G4. How many songs of the playlist do you like?

0%-35%
35%-55%
55%-75%
75%-90%

90%-100%

G5. How diverse is the playlist for you? From 1 (very different song styles)
to 5 (only one genre).

1
2
3
4
5

G6. Would you like to have more diversity in the playlist?

Yes
No

G7. How bad is the worst song in the playlist? From 1 (really bad) to 5
(quite good).

1
2
3
4
5

G8. Would you use this algorithm again?

Yes
No

Section H: TimeIndependentRecommendation

H1. What is the name of the playlist to answer the questions for this type
of algorithm?

H2. How much do you like your personal recommendation? From 1 (very
much) to 5 (not at all).

1
2
3
4
5

H3. Do the songs of your personal recommendation correlate to the time of
the event? From 1 (perfect for this event) to 5 (don't fit).

1
2
3
4
5

H4. Do the songs of your personal recommendation correlate to the reason
of the event? From 1 (perfect for this event) to 5 (don't fit).

1
2
3
4
5

H5. How bad is the worst song in your personal recommendation? From 1
(really bad) to 5 (quite good).

1
2
3
4
5

H6. How much do you like the playlist? From 1 (very much) to 5 (not at
all).

1
2
3
4
5

H7. Do the songs of the playlist correlate to the time of the event? From 1
(perfect for this event) to 5 (don't fit).

1
2
3
4
5

H8. Do the songs of the playlist correlate to the reason of the event? From
1 (perfect for this event) to 5 (don't fit).

1
2
3
4
5

H9. How bad is the worst song in the playlist? From 1 (really bad) to 5
(quite good).

1
2
3
4
5

H10. Would you use this algorithm again?

Yes
No

Section I: Valence

I1. What is the name of the playlist to answer the questions for this type
of algorithm?

I2. How much do you like your personal recommendation? From 1 (very
much) to 5 (not at all).

1
2
3
4
5

I3. How many songs of your personal recommendation fit to your taste
for this event?

0%-35%
35%-55%
55%-75%
75%-90%

90%-100%

I4. How bad is the worst song in your personal recommendation? From 1
(really bad) to 5 (quite good).

1
2
3
4
5

I5. How much do you like the playlist? From 1 (very much) to 5 (not at
all).

1
2
3
4
5

I6. How many songs of the playlist do you like?

0%-35%
35%-55%
55%-75%
75%-90%

90%-100%

I7. How bad is the worst song in the playlist? From 1 (really bad) to 5
(quite good).

1
2
3
4
5

I8. Would you use this algorithm again?

Yes
No

Section J: Genre

J1. What is the name of the playlist to answer the questions for this type
of algorithm?

J2. How much do you like your personal recommendation? From 1 (very
much) to 5 (not at all).

1
2
3
4
5

J3. How many songs of your personal recommendation fit to your taste
for this event?

0%-35%
35%-55%
55%-75%
75%-90%

90%-100%

J4. How bad is the worst song in your personal recommendation? From 1
(really bad) to 5 (quite good).

1
2
3
4
5

J5. How much do you like the playlist? From 1 (very much) to 5 (not at
all).

1
2
3
4
5

J6. How many songs of the playlist do you like?

0%-35%
35%-55%
55%-75%
75%-90%

90%-100%

J7. How bad is the worst song in the playlist? From 1 (really bad) to 5
(quite good).

1
2
3
4
5

J8. Would you use this algorithm again?

Yes
No

Section K: RecommendArtist

K1. What is the name of the playlist to answer the questions for this type
of algorithm?

K2. How much do you like your personal recommendation? From 1 (very
much) to 5 (not at all).

1
2
3
4
5

K3. How many songs of your personal recommendation fit to your taste
for this event?

0%-35%
35%-55%
55%-75%
75%-90%

90%-100%

K4. How diverse is your personal recommendation? From 1 (very different
song styles) to 5 (only one genre).

1
2
3
4
5

K5. Would you like to get more diversity in your personal
recommendation?

Yes
No

K6. How bad is the worst song in your personal recommendation? From 1
(really bad) to 5 (quite good).

1
2
3
4
5

K7. Did you get an unknown song from an unknown interpret which you
like in your personal recommendation?

Yes
No

K8. Did you get an unknown song which you really like in your personal
recommendation?

Yes
No

K9. How many songs of your personal recommendation did you already
know?

0%-35%
35%-55%
55%-75%
75%-90%

90%-100%

K10. Would you like to get more unknown songs in your personal
recommendation?

Yes
No

K11. How much do you like the playlist? From 1 (very much) to 5 (not at
all).

1
2
3
4
5

K12. How many songs of the playlist do you like?

0%-35%
35%-55%
55%-75%
75%-90%

90%-100%

K13. How diverse is the playlist for you? From 1 (very different song styles)
to 5 (only one genre).

1
2
3
4
5

K14. Would you like to have more diversity in the playlist?

Yes
No

K15. How bad is the worst song in the playlist? From 1 (really bad) to 5
(quite good).

1
2
3
4
5

K16. Would you use this algorithm again?

Yes
No

Section L: RecommendGenre

L1. What is the name of the playlist to answer the questions for this type
of algorithm?

L2. How much do you like your personal recommendation? From 1 (very
much) to 5 (not at all).

1
2
3
4
5

L3. How many songs of your personal recommendation fit to your taste
for this event?

0%-35%
35%-55%
55%-75%
75%-90%

90%-100%

L4. How diverse is your personal recommendation? From 1 (very different
song styles) to 5 (only one genre).

1
2
3
4
5

L5. Would you like to get more diversity in your personal
recommendation?

Yes
No

L6. How bad is the worst song in your personal recommendation? From 1
(really bad) to 5 (quite good).

1
2
3
4
5

L7. Did you get an unknown song from an unknown interpret which you
like in your personal recommendation?

Yes
No

L8. Did you get an unknown song which you really like in your personal
recommendation?

Yes
No

L9. How many songs of your personal recommendation did you already
know?

0%-35%
35%-55%
55%-75%
75%-90%

90%-100%

L10. Would you like to get more unknown songs in your personal
recommendation?

Yes
No

L11. How much do you like the playlist? From 1 (very much) to 5 (not at
all).

1
2
3
4
5

L12. How many songs of the playlist do you like?

0%-35%
35%-55%
55%-75%
75%-90%

90%-100%

L13. How diverse is the playlist for you? From 1 (very different song styles)
to 5 (only one genre).

1
2
3
4
5

L14. Would you like to have more diversity in the playlist?

Yes
No

L15. How bad is the worst song in the playlist? From 1 (really bad) to 5
(quite good).

1
2
3
4
5

L16. Would you use this algorithm again?

Yes
No

Section M: Closing questions

M1. Are you used to listen to songs mostly in the order of the playlist, or in
shuffle mode?

playlist order
shuffle mode

M2. Please do have a look at the order of the songs in the calculated
playlists - Would you listen to these playlists in the recommended
order, or in shuffle mode?

recommended order
shuffle mode

Thank you for taking part in the survey. This helped us to improve our algorithm for
better user-experience.

Powered by TCPDF (www.tcpdf.org)

Bibliography

Adomavicius, G. and A. Tuzhilin (June 2005). “Toward the next generation
of recommender systems: a survey of the state-of-the-art and possible
extensions.” In: IEEE Transactions on Knowledge and Data Engineering 17.6,
pp. 734–749. issn: 1041-4347. doi: 10.1109/TKDE.2005.99 (cit. on p. 9).

Adomavicius, G. and A. Tuzhilin (2015). English. In: Ricci, Francesco, Lior
Rokach, and Bracha Shapira. Recommender systems handbook. Second edi-
tion. Boston, MA: Springer Verlag. Chap. Context-Aware Recommender
Systems, pp. 191–226. isbn: 9781489976369 (cit. on pp. 10, 12).

Adomavicius, Gediminas, Bamshad Mobasher, et al. (2011). “Context-aware
recommender systems.” English. In: AI Magazine 32.3, pp. 67–80 (cit. on
pp. 10, 11).

Adomavicius, Gediminas, Ramesh Sankaranarayanan, et al. (2005). “In-
corporating contextual information in recommender systems using a
multidimensional approach.” English. In: ACM Transactions on Informa-
tion Systems (TOIS) 23.1, pp. 103–145 (cit. on p. 5).

Amatriain, X. and J.M. Pujol (2015). English. In: Ricci, Francesco, Lior
Rokach, and Bracha Shapira. Recommender systems handbook. Second
edition. Boston, MA: Springer Verlag. Chap. Data Mining Methods for
Recommender Systems, pp. 227–262. isbn: 9781489976369 (cit. on pp. 12–
14, 18).

Ankolekar, Anupriya and Thomas Sandholm (2011). “Foxtrot: A Soundtrack
for Where You Are.” In: Proceedings of Interacting with Sound Workshop:
Exploring Context-Aware, Local and Social Audio Applications. IwS ’11.
Stockholm, Sweden: ACM, pp. 26–31. isbn: 978-1-4503-0883-0. doi: 10.
1145/2019335.2019341. url: http://doi.acm.org/10.1145/2019335.
2019341 (cit. on p. 23).

Baltrunas, Linas et al. (2011). “Incarmusic: Context-aware music recommen-
dations in a car.” In: International Conference on Electronic Commerce and
Web Technologies. Springer, pp. 89–100 (cit. on p. 22).

157

https://doi.org/10.1109/TKDE.2005.99
https://doi.org/10.1145/2019335.2019341
https://doi.org/10.1145/2019335.2019341
http://doi.acm.org/10.1145/2019335.2019341
http://doi.acm.org/10.1145/2019335.2019341

Bibliography

Billsus, Daniel and Michael Pazzani (1996). “Revising user profiles: The
search for interesting web sites.” In: Proceedings of the Third International
Workshop on Multistrategy Learning. AAAI, pp. 232–243 (cit. on p. 17).

Bogdanov, D., M. Haro, and F. Fuhrmann (June 2011). “A content-based
system for music recommendation and visualization of user preferences
working on semantic notions.” In: 2011 9th International Workshop on
Content-Based Multimedia Indexing (CBMI), pp. 249–252. doi: 10.1109/
CBMI.2011.5972554 (cit. on pp. 20, 21).

Bogdanov, Dmitry et al. (2013). “Semantic audio content-based music rec-
ommendation and visualization based on user preference examples.”
In: Information Processing & Management 49.1, pp. 13–33. issn: 0306-4573.
doi: https://doi.org/10.1016/j.ipm.2012.06.004. url: http:
//www.sciencedirect.com/science/article/pii/S0306457312000763

(cit. on p. 21).
Bonnin, Geoffray and Dietmar Jannach (2013). “Evaluating the quality of

playlists based on hand-crafted samples.” In: Proc. ISMIR, pp. 263–268

(cit. on p. 24).
Burke, Robin (2002). “Hybrid recommender systems: Survey and exper-

iments.” English. In: User Modelling and User-Adapted Interaction 12.4,
pp. 331–370 (cit. on p. 24).

Cai, Rui et al. (2007). “MusicSense: Contextual music recommendation
using emotional allocation modeling.” English. In: Proceedings of the
15th ACM international conference on Multimedia. ACM, pp. 553–556. isbn:
9781595937025 (cit. on p. 22).

Cai, Y. et al. (Mar. 2014). “Typicality-Based Collaborative Filtering Recom-
mendation.” In: IEEE Transactions on Knowledge and Data Engineering 26.3,
pp. 766–779. issn: 1041-4347. doi: 10.1109/TKDE.2013.7 (cit. on p. 6).

Chao, Dennis, Justin Balthrop, and Stephanie Forrest (2005). “Adaptive radio:
achieving consensus using negative preferences.” English. In: Proceedings
of the 2005 international ACM SIGGROUP conference on Supporting group
work. ACM, pp. 120–123. isbn: 1595932232 (cit. on p. 47).

Christensen, Ingrid A. and Silvia Schiaffino (2011). “Entertainment recom-
mender systems for group of users.” English. In: Expert Systems With
Applications 38.11, pp. 14127–14135 (cit. on p. 48).

Cover, T. and P. Hart (1967). “Nearest neighbor pattern classification.”
English. In: IEEE Transactions on Information Theory 13.1, pp. 21–27 (cit.
on p. 17).

158

https://doi.org/10.1109/CBMI.2011.5972554
https://doi.org/10.1109/CBMI.2011.5972554
https://doi.org/https://doi.org/10.1016/j.ipm.2012.06.004
http://www.sciencedirect.com/science/article/pii/S0306457312000763
http://www.sciencedirect.com/science/article/pii/S0306457312000763
https://doi.org/10.1109/TKDE.2013.7

Cristianini, Nello, John Shawe-Taylor, et al. (2000). An introduction to support
vector machines: and other kernel-based learning methods. English. Reprint.
(with corr.) Cambridge: Cambridge Univ. Pr. isbn: 0521780195 (cit. on
p. 18).

Crossen, Andrew, Jay Budzik, and Kristian Hammond (2002). “Flytrap:
intelligent group music recommendation.” English. In: Proceedings of the
7th international conference on Intelligent user interfaces. ACM, pp. 184–185.
isbn: 9781581134599 (cit. on p. 46).

Deshpande, Mukund and George Karypis (Jan. 2004). “Item-based top-N
Recommendation Algorithms.” In: ACM Trans. Inf. Syst. 22.1, pp. 143–
177. issn: 1046-8188. doi: 10.1145/963770.963776. url: http://doi.
acm.org/10.1145/963770.963776 (cit. on p. 8).

Felfernig, Alexander, Michael Jeran, et al. (2014). “Basic approaches in rec-
ommendation systems.” English. In: Recommendation Systems in Software
Engineering. Springer, pp. 15–37. isbn: 9783642451355 (cit. on pp. 6–8).

Felfernig, Alexander, Martin Stettinger, et al. (2018). Group recommender
systems: an Introduction. English. isbn: 3319750666 (cit. on pp. 1, 23, 32,
34–42).

Ge, Mouzhi, Carla Delgado-Battenfeld, and Dietmar Jannach (2010). “Be-
yond accuracy: evaluating recommender systems by coverage and serendip-
ity.” English. In: Proceedings of the fourth ACM conference on Recommender
systems. ACM, pp. 257–260. isbn: 1605589063 (cit. on p. 39).

Gedikli, Fatih, Dietmar Jannach, and Mouzhi Ge (2014). “How should I
explain? A comparison of different explanation types for recommender
systems.” English. In: International Journal of Human - Computer Studies
72.4, pp. 367–382 (cit. on p. 40).

Gemmis, Marco De et al. (2009). “Preference learning in recommender
systems.” In: In Preference Learning (PL-09) ECML/PKDD-09 Workshop
(cit. on pp. 12, 13, 16).

Goldberg, David et al. (1992). Using collaborative filtering to weave an informa-
tion tapestry. English (cit. on p. 5).

Gunawardana, Asela and Guy Shani (2015). English. In: Ricci, Francesco,
Lior Rokach, and Bracha Shapira. Recommender systems handbook. Second
edition. Boston, MA: Springer Verlag. Chap. Evaluating Recommender
Systems, pp. 265–308. isbn: 9781489976369 (cit. on pp. 25–32).

Han, Byeong-jun et al. (May 2010). “Music emotion classification and context-
based music recommendation.” In: Multimedia Tools and Applications 47.3,

159

https://doi.org/10.1145/963770.963776
http://doi.acm.org/10.1145/963770.963776
http://doi.acm.org/10.1145/963770.963776

Bibliography

pp. 433–460. issn: 1573-7721. doi: 10.1007/s11042-009-0332-6. url:
https://doi.org/10.1007/s11042-009-0332-6 (cit. on p. 22).

Herlocker, Jonathan et al. (2004). “Evaluating collaborative filtering recom-
mender systems.” English. In: ACM Transactions on Information Systems
(TOIS) 22.1, pp. 5–53 (cit. on pp. 18, 19).

Jameson, Anthony and Barry Smyth (2007). “Recommendation to groups.”
In: The adaptive web. Springer, pp. 596–627 (cit. on pp. 33–35).

Jannach, Dietmar (2011). Recommender systems: an introduction. English. 1.
publ. New York, NY [u.a.]: Cambridge Univ. Press. isbn: 0521493366

(cit. on pp. 1, 6–9, 17).
Kilmann, Ralph H. and Kenneth W. Thomas (1977). “Developing a forced-

choice measure of conflict-handling behavior: The “Mode” Instrument.”
English. In: Educational and Psychological Measurement 37.2, pp. 309–325

(cit. on p. 41).
Knees, Peter and Markus Schedl (2011). “Towards semantic music infor-

mation extraction from the Web using rule patterns and supervised
learning.” English. In: Workshop on Music Recommendation and Discovery.
Vol. 793, pp. 18–25. isbn: 1613-0073 (cit. on p. 20).

Koren, Y., R. Bell, and C. Volinsky (2009). “Matrix Factorization Techniques
for Recommender Systems.” English. In: Computer 42.8, pp. 30–37 (cit. on
pp. 14–16).

Koren, Yehuda (2008). “Factorization meets the neighborhood: a multi-
faceted collaborative filtering model.” English. In: Proceedings of the 14th
ACM SIGKDD international conference on Knowledge discovery and data
mining. ACM, pp. 426–434. isbn: 1605581933 (cit. on p. 14).

Kouki, Pigi et al. (2017). “User Preferences for Hybrid Explanations.” English.
In: Proceedings of the Eleventh ACM Conference on Recommender Systems.
ACM, pp. 84–88. isbn: 1450346529 (cit. on p. 41).

Kruskal, Joseph B. (1956). “On the shortest spanning subtree of a graph and
the traveling salesman problem.” English. In: Proceedings of the American
Mathematical Society 7.1, pp. 48–50 (cit. on p. 62).

Masthoff, Judith and Albert Gatt (2006). “In pursuit of satisfaction and the
prevention of embarrassment: Affective state in group recommender
systems.” English. In: User Modeling and User-Adapted Interaction 16.3-4,
pp. 281–319 (cit. on pp. 42, 43).

Maystre, Lucas (2012). Music Recommendation to Groups. Tech. rep. (cit. on
p. 48).

160

https://doi.org/10.1007/s11042-009-0332-6
https://doi.org/10.1007/s11042-009-0332-6

McCarthy, Joseph and Theodore Anagnost (1998). “MusicFX: an arbiter
of group preferences for computer supported collaborative workouts.”
English. In: AAAI Spring Symposium on Intelligent Environments. ACM,
pp. 363–372. isbn: 1581130090 (cit. on p. 46).

McFee, B., L. Barrington, and G. Lanckriet (Oct. 2012). “Learning Content
Similarity for Music Recommendation.” In: IEEE Transactions on Audio,
Speech, and Language Processing 20.8, pp. 2207–2218. issn: 1558-7916. doi:
10.1109/TASL.2012.2199109 (cit. on pp. 20, 22).

O’Hara, Kenton et al. (2004). “Jukola: democratic music choice in a public
space.” English. In: Proceedings of the 5th conference on Designing interactive
systems: processes, practices, methods, and techniques. ACM, pp. 145–154.
isbn: 1581137877 (cit. on p. 46).

O’connor, Mark et al. (2001). “PolyLens: a recommender system for groups
of users.” In: ECSCW 2001. Springer, pp. 199–218 (cit. on p. 39).

Ortega, Fernando et al. (2016). “Recommending items to group of users
using Matrix Factorization based Collaborative Filtering.” English. In:
Information Sciences 345, pp. 313–324 (cit. on p. 38).

Pazzani, Michael and Daniel Billsus (1997). “Learning and Revising User
Profiles: The Identification of Interesting Web Sites.” English. In: Machine
Learning 27.3, pp. 313–331 (cit. on p. 5).

Peppers, Jonathan, George Taskos, and Can Bilgin (2016). Xamarin: Cross-
Platform Mobile Application Development. English. 1st ed. Birmingham,
England: Packt Publishing. isbn: 9781787120129 (cit. on pp. 86, 87, 89).

Quinlan, J. R. (1986). “Induction of decision trees.” English. In: Machine
Learning 1.1, pp. 81–106 (cit. on p. 17).

Ricci, Francesco, Lior Rokach, and Bracha Shapira (2015). Recommender
systems handbook. English. Second edition. Boston, MA: Springer Verlag.
isbn: 9781489976369 (cit. on p. 1).

Schedl, A. et al. (2015). English. In: Ricci, Francesco, Lior Rokach, and
Bracha Shapira. Recommender systems handbook. Second edition. Boston,
MA: Springer Verlag. Chap. Music Recommender Systems, pp. 453–492.
isbn: 9781489976369 (cit. on pp. 19, 22, 23).

Schedl, Markus (2013). “Ameliorating Music Recommendation: Integrating
Music Content, Music Context, and User Context for Improved Music Re-
trieval and Recommendation.” In: Proceedings of International Conference
on Advances in Mobile Computing & Multimedia. MoMM ’13. Vienna,
Austria: ACM, 3:3–3:9. isbn: 978-1-4503-2106-8. doi: 10.1145/2536853.

161

https://doi.org/10.1109/TASL.2012.2199109
https://doi.org/10.1145/2536853.2536856
https://doi.org/10.1145/2536853.2536856
https://doi.org/10.1145/2536853.2536856

Bibliography

2536856. url: http://doi.acm.org/10.1145/2536853.2536856 (cit. on
p. 23).

Schedl, Markus, Arthur Flexer, and Julián Urbano (Dec. 2013). “The ne-
glected user in music information retrieval research.” In: Journal of
Intelligent Information Systems 41.3, pp. 523–539. issn: 1573-7675. doi:
10.1007/s10844-013-0247-6. url: https://doi.org/10.1007/s10844-
013-0247-6 (cit. on p. 24).

Soleymani, M. et al. (June 2015). “Content-based music recommendation
using underlying music preference structure.” In: 2015 IEEE International
Conference on Multimedia and Expo (ICME), pp. 1–6. doi: 10.1109/ICME.
2015.7177504 (cit. on p. 20).

Son, Jieun and Seoung Bum Kim (2017). “Content-based filtering for recom-
mendation systems using multiattribute networks.” In: Expert Systems
with Applications 89, pp. 404–412. issn: 0957-4174. doi: https://doi.
org/10.1016/j.eswa.2017.08.008. url: http://www.sciencedirect.
com/science/article/pii/S0957417417305468 (cit. on p. 9).

Sprague, David, Fuqu Wu, and Melanie Tory (2008). “Music selection us-
ing the PartyVote democratic jukebox.” English. In: Proceedings of the
working conference on Advanced visual interfaces. ACM, pp. 433–436. isbn:
9781605581415 (cit. on p. 47).

Thayer, Robert E (1990). The biopsychology of mood and arousal. Oxford Uni-
versity Press (cit. on p. 23).

Versluis, Gerald (2017). Xamarin Continuous Integration and Delivery : Team
Services, Test Cloud, and HockeyApp. English. 1st ed. Berkeley, CA: Apress
L. P. isbn: 9781484227152 (cit. on pp. 98, 101).

Xue, Gui-Rong et al. (2005). “Scalable collaborative filtering using cluster-
based smoothing.” English. In: Proceedings of the 28th annual international
ACM SIGIR conference on Research and development in information retrieval.
ACM, pp. 114–121. isbn: 9781595930347 (cit. on p. 18).

Yu, Zhiwen, Xingshe Zhou, and Daqing Zhang (2005). “An adaptive in-
vehicle multimedia recommender for group users.” English. In: 2005
IEEE 61st Vehicular technology conference. Vol. 61. IEEE. Chap. 5, pp. 2800–
2804. isbn: 1550-2252 (cit. on p. 47).

162

https://doi.org/10.1145/2536853.2536856
https://doi.org/10.1145/2536853.2536856
https://doi.org/10.1145/2536853.2536856
http://doi.acm.org/10.1145/2536853.2536856
https://doi.org/10.1007/s10844-013-0247-6
https://doi.org/10.1007/s10844-013-0247-6
https://doi.org/10.1007/s10844-013-0247-6
https://doi.org/10.1109/ICME.2015.7177504
https://doi.org/10.1109/ICME.2015.7177504
https://doi.org/https://doi.org/10.1016/j.eswa.2017.08.008
https://doi.org/https://doi.org/10.1016/j.eswa.2017.08.008
http://www.sciencedirect.com/science/article/pii/S0957417417305468
http://www.sciencedirect.com/science/article/pii/S0957417417305468

