
Kober Franz Josef, BSc

Using Git as distributed CAS Database
for Vehicle Component Certification

Master’s Thesis

to achieve the university degree of

Master of Science

Master’s degree programme: Software Engineering and Management

submitted to

Graz University of Technology

Supervisor

Ass.-Prof. Dipl-Ing. Dr.techn. Christian Steger

Co-Supervisor
Dipl-Ing. Dr.techn. Markus, Quaritsch

Institute of Technical Informatics
Head: Univ.-Prof. Dipl-Inform. Dr.sc.ETH. Kay Uwe Römer

St. Ruprecht an der Raab, September 2019

Affidavit

I declare that I have authored this thesis independently, that I have not
used other than the declared sources/resources, and that I have explicitly
indicated all material which has been quoted either literally or by content
from the sources used. The text document uploaded to tugrazonline is
identical to the present master‘s thesis.

Date Signature

ii

Abstract

Die Europäische Kommission hat ein standardisiertes Zertifizierungsverfah-
ren für schwere Nutzfahrzeuge und deren Fahrzeugkomponenten definiert
um mittels einer Simulationssoftware den Kraftstoffverbrauch von schweren
Nutzfahrzeugen festzustellen. Die Simulationssoftware VECTO (Vehicle
Energy Consumption Calculation Tool) nutzt die im Zertifizierungsver-
fahren gewonnenen Messdaten, um den Energie- und Kraftstoffverbrauch
sowie CO2 Emissionen von schweren Nutzfahrzeugen zu berechnen.

Diese Masterarbeit beschreibt die Entwicklung eines Prototypen, zur Ver-
waltung der Daten welche währen eines Zertifizierungsverfahren von Fahr-
zeugkomponenten entstehen. Zur Verwaltung der Daten wurde dabei nicht
auf ein bestehendes Datenbanksystem zurückgegriffen, sondern auf das
verteilte Versionsverwaltungssystem Git. Ausgehend von den gegebenen
Anforderungen und Daten wurde in der Entwurfsphase ein Datenstrukturie-
rungskonzept für Git entwickelt. Durch dieses Datenstrukturierungskonzept
und den Einsatz der Tag Funktion von Git wurden die Metainformationen
Herstellername, Modellname, Zertifizierungsnummer und Zertifizierungs-
datum hinzugefügt.
Durch diese Metainformationen werden wieder Informationen über den
Inhalt einer Datei zurückgewonnen, welche durch den Speicherprozess in
das Content-Addressable Storage System von Git verloren wurde. Weiters
ermöglicht die Datenstrukturierung ein einfacheres und effizientes Suchen
der Daten innerhalb des Git Systems.

iii

Abstract

The European Commission has defined a standardised certification pro-
cedure for heavy duty vehicles and their vehicle components in order to
determine the fuel consumption of heavy duty vehicles using a simulation
software. The simulation software VECTO (Vehicle Energy Consumption
Calculation Tool) uses the measurement data obtained in the certification
process to calculate the energy and fuel consumption as well as CO2 emis-
sions of heavy commercial vehicles.

This master thesis describes the development of a prototype to manage
the data generated during the certification process of vehicle components.
Instead of using an existing database management system to manage the
data, the distributed version control system Git was chosen. Based on
the given requirements and data a data structuring concept for Git was
developed in the design phase. Through this data structuring concept and
the use of the tag function of Git, the meta information manufacturer name,
model name, certification number and certification date were added.
This meta-informations recovers information about the content of a file that
has been lost by the storage process into the Content-Addressable Storage
of Git. Furthermore, the data structuring concept makes it easier and more
efficient to search for data within the Git system.

iv

Contents

Abstract iii

1 Introduction 1
1.1 Motivation . 3

1.2 Thesis Goals . 3

1.3 Thesis Organization . 3

2 Vehicle Energy Consumption Calculation Tool 4
2.1 Regulation of the European Commission 4

2.2 Possible options of HDV CO2 certification 5

2.3 What is VECTO . 6

2.4 Certification Process Overview with VECTO 6

2.4.1 Measurement of vehicle components 7

2.4.2 Evaluation Tools . 9

2.4.3 Data around VECTO . 9

2.4.4 VECTO Simulation Tool 10

3 Background 11
3.1 Database . 11

3.1.1 Relational Databases . 11

3.1.2 NoSQL/Non-Relational Databases 14

3.2 CAP Theorem . 16

3.2.1 ACID Consistency Model 18

3.2.2 BASE Consistency Model 19

3.3 Content-Addressed Storage . 20

4 Version Control System 21
4.1 What is a Version Control System? 21

v

Contents

4.2 Types of Version Control Systems 22

4.2.1 Local Version Control System 22

4.2.2 Centralized Version Control System 22

4.2.3 Distributed Version Control System 23

4.3 Git . 24

4.3.1 Git History . 24

4.3.2 Git Key Concepts . 25

5 Design 35
5.1 Use cases around VECTO . 35

5.2 Requirements for certification of component 36

5.3 Design and Data Partitioning 38

5.4 Search behaviour . 43

5.5 Transfer behaviour . 44

5.6 Structure of the certification number 45

5.7 Use cases . 46

5.7.1 Component data of a new certificated component
should be stored in the storage backend 46

5.7.2 Certificate of a component shall be stored in the stor-
age backend . 48

5.7.3 Measured data of a component shall be stored in the
storage backend . 50

5.7.4 User-defined data for a component shall be stored in
the storage backend . 53

5.7.5 Standard values for a component shall be stored in
the storage backend . 54

5.7.6 All component-related data (component data, stan-
dard values, certificate, measured data, user-defined
data) can be searched via the manufacturer name,
model name, and date 55

5.7.7 Component data, certificate, measured data can be
searched via the certification number and the Git iden-
tifier of the component data 56

5.8 GUI Design . 58

6 Implementation 60
6.1 Overview . 60

vi

Contents

6.2 Architecture . 61

6.2.1 Repository Management Implementation 63

6.2.2 GUI . 64

7 Conclusion 69

Bibliography 70

vii

List of Figures

1.1 VECTO Certification Process 2

2.1 Certification Process Overview of VECTO 7

3.1 Popularity division between Relation and Non-relation Databases 12

3.2 CAP Theorem . 16

4.1 Local version control system 22

4.2 Centralized version control system 23

4.3 Distributed version control system 24

4.4 Example of Delta Storage System 26

4.5 Example of Snapshot Storage System 27

4.6 Git repository folder structure 28

4.7 Git Object Model . 32

5.1 Organization and structuring of component data files in the
Git repository . 42

5.2 GUI Design Main View . 58

5.3 GUI Design Save Component Data View 58

5.4 GUI Design Search Component Data View 59

6.1 VECTO GIT prototype architecture 62

6.2 VECTO Git prototype save component data view 66

6.3 VECTO Git prototype search component view 66

6.4 VECTO Git prototype append component data view 67

6.5 VECTO Git prototype detail component data view 67

6.6 VECTO Git prototype export component data view 68

6.7 VECTO Git prototype import component data view 68

viii

1 Introduction

In the year 2007, the European Union (EU) committed itself to a 20% reduc-
tion in greenhouse gas emissions based on 1990 greenhouse gas emissions,
till the year 2020. In addition to its commitment to reduce greenhouse gas.
The EU has also committed itself to increasing the share of renewable energy
to up to 20% of total energy consumption, with a share of at least 10% in
the transport sector and additionally to decrease the total energy consump-
tion by 20% which should be achieved by the usage of energy-efficient
technologies.

In order to meet these commitments to reduce the greenhouse gas emission
by 20% until 2020, the EU created a two-fold legislative framework ”EU
2020 Climate and Energy Package”[1] in 2009. Which contains the three key
targets [1]

• ”20% cut in greenhouse gas emissions(from 1990)”
• ”20% of EU energy from renewable energy sources”
• ”20% improvement in energy efficiency efficiency”

There are also further EU commitments to set greenhouse gas emission
reduction goals after 2020, among others the long term goal to reduce trans-
port emissions around 60% based on the value of 1990.
In order to achieve this long-term goal in the transport sector, a standardised
measurement certification procedure for CO2 emissions of Heavy Duty Ve-
hicles (HDV) had to be defined. Due to the different applications of a heavy
duty vehicle, where almost no two vehicles are the same, a simulation-based
approach was chosen instead of the existing CO2 certification procedure for
passenger cars in order to keep effort and the certification costs within an
acceptable range.
The development of the simulation based Vehicle Energy Consumption
Calculation Tool (VECTO) began in 2009. The simulation model as well as

1

1 Introduction

Figure 1.1: VECTO Certification Process taken from [2]

the software architecture is built as a component based model. The benefit of
this architecture is to be as flexible as possible which enables to interchange
as well as omit components if needed. The components Engine, Transmis-
sion, Axle Gear, Aerodynamic drag and Tyre listed in Figure 1.1 represents
the vehicle parts which contributes to the vehicle’s fuel consumption. The
measurement data will be determined by standardised measurement meth-
ods. The measurement data which consists of several files represents the
input data for the related VECTO component evaluation tool which gener-
ates the input file for the VECTO simulation tool. The above measurement
data, component data and other VECTO simulation tool-related data such
as certificate data and user-defined data should be collected and managed
by a database that can be delivered together with the simulation tool.

2

1.1 Motivation

1.1 Motivation

The motivation of this thesis is to repurpose the distributed version control
system Git in way to use it as database tailored for component data as well
as measurement data which can be used for the CO2-emission certification
process of Heavy Duty Vehicles (HDV). This should enable to deliver a
database in combination with the simulation tool. The database and its data
should be easily accessible by the simulation software without any further
configurations. This should avoid the need to set up an additional database
management system to administrate the input data for the simulation.

1.2 Thesis Goals

The primary goal of this thesis is the development of a database prototype
using the content addressable storage system of the distributed version con-
trol system Git as basis for the management of data used in the certification
of heavy duty vehicles. The secondary goal is to use existing mechanisms
and commands of Git to enable searchability of data within the database.
And the third goal is the development of a transmission mechanism to
transfer data from one database to another.

1.3 Thesis Organization

This thesis is organised into the following chapters. Chapter 2 gives an
overview of the simulation tool VECTO and also an overview of the certi-
fication process of heavy duty vehicles and the resulting data. Chapter 3

provides background information about databases in general what types
exists and what requirements they can meet. Chapter 4 provides a brief
overview of the different types of version control systems and an insight
into the distributed version control system Git. Chapter 5 deals with the
design of the database prototype for storing the certification data. Chapter 6

captures the architecture and functionality of the implemented prototype.

3

2 Vehicle Energy Consumption
Calculation Tool

This chapter gives a short overview of the simulation tool VECTO and
describes which input data it requires and what it is used for. Also a short
outlook onto the possible alternatives to measure CO2-emission of a Heavy
Duty Vehicles (HDV) is given.

2.1 Regulation of the European Commission

In the year 2017, heavy duty vehicles, represented by trucks, buses and
coaches, accounted for around 25% of total CO2 emissions from road trans-
port. Furthermore, an increase in CO2 emissions in the coming years is
expected.
Regarding the grim future of CO2 emission increase the European Commis-
sion Regulation (EU) 2017/2400

1 concluded, which contains, among other
things, the set target to reduce road transport CO2 emissions by 60% until
the year 2050.

1Regulation (EU) 2017/2400 https://eur-lex.europa.eu/eli/reg/2017/2400/oj

4

https://eur-lex.europa.eu/eli/reg/2017/2400/oj

2.2 Possible options of HDV CO2 certification

2.2 Possible options of HDV CO2 certification

There are four possible concepts to determine the emission of a vehicle
[3]:

• Engine test
The engine test determines the CO2 emission by the measurement on a
test stand. Each engine will be operated on the basis of a standardised
test cycle. This has the advantage that already standardised cycles
such as the World Harmonized Transient Cycle (WHTC) can be used.
The disadvantage is the lack of inclusion of the other consumers of the
vehicle who also contribute indirectly to the increase in emissions.

• Road load test and chassis dynamometer test
This option enables the possibility to measure the CO2 emission of an
entire vehicle. With the disadvantage that each vehicle should be tested
separately for rolling resistance and air drag. In addition, this option
is very cost-intensive due to the variety of possible configurations of a
heavy duty vehicle.

• On-road test
The on-road test options enables also to measure the CO2 emission
of an entire vehicle. With the disadvantage that measurements are
difficult to compare because of the constantly changing traffic volume
during each on-road test. In addition, this option is even more cost-
intensive than the chassis dynamometer test option.

• Component test plus vehicle simulation
The usage of a simulation tool resolves most of the disadvantages
from the previously mentioned options. The tool enables to determine
the CO2 emission of an entire vehicle in any configuration and is
at the same time more cost effective. With the disadvantage that the
simulation tool has to be changed and updated regularly to cover all
relevant technologies.

In order to support certification of an entire heavy-duty vehicle, which can
consist of a large number of possible vehicle component combinations, and
to keep the certification costs within an acceptable range, the ”component
test plus vehicle simulation” approach was chosen.

5

2 Vehicle Energy Consumption Calculation Tool

2.3 What is VECTO

The Vehicle Energy Consumption Calculation TOol (VECTO) is a simulation
software tool which calculates the fuel consumption that directly correlates
to CO2 emission (depending on the fuel type) of an entire heavy duty
vehicle.
The development of VECTO started in course of the Regulation (EC) No
595/2009

2. VECTO represents the basis of the EU Regulation 2017/2400

and serves as a calculation tool for fuel consumption and CO2 emissions
for most heavy duty vehicles sold from 1.1.2019 onwards.

2.4 Certification Process Overview with VECTO

The certification process of VECTO shown in the overview Figure 2.1 con-
tains four essential parts that are necessary for the certification of a heavy
duty vehicle, these are [3]:

• The measurement procedure of the components.
• The evaluation of the measurement results.
• The simulation itself with the VECTO simulation tool.
• Reporting of declared CO2 figures to the European Environment

Agency (EEA) and local authorities.

The vehicle certification process as shown in Figure 2.1 passes through
various stages, which are described in detail below.

The certification process starts with the measurement process of the vehicle
component under the control of the technical service from the Type Ap-
proval Authority (TAA). Depending on the component type, the resulting
measurement data is used by the evaluation tool, the VECTO Engine Tool or
the VECTO Air Drag Tool to generate the component data. A certain time
after the component certification process, the TAA issues a certificate for the
component and hands it over to the component manufacturer.

2Regulation (EC) No 595/2009 http://data.europa.eu/eli/reg/2009/595/oj

6

http://data.europa.eu/eli/reg/2009/595/oj

2.4 Certification Process Overview with VECTO

Component Manufacturer / Original Equipment
Manufacturer(OEM)

Component
Measurement

Evalua�on
Tool

Measurement Data

Heavy Duty Vehicle Manufacturer

XML

VECTO
Simula�on Tool

Job Data(Vehicle)

Customer‘s
Record File

Manufacturer‘s
Record File

XML XML

Engine Data

Transmission Data

Axelgear Data

Retarder Data

Airdrag Data

Tyre Data
CSV

Job Data(Vehicle)

XML
Component Data

PDF

Cer�fica�on File

Figure 2.1: Certification Process Overview of VECTO

If a vehicle manufacturer buys a vehicle component, it receives the certificate
file and the component file in addition to the component itself.
In order to certify the entire vehicle, the vehicle manufacturer selects each
component data file of the components used in the vehicle and place them
in the job data file.

With the job data file as input, the fuel consumption of the entire vehicle will
be calculated with the VECTO simulation tool. After a successful simulation
two XML files will be created the customer record file and the manufacturer
record file. The customer record file is available to the buyer of the vehicle.
The manufacturer record file must be stored by the vehicle manufacturer
for at least 20 years and has to be available to the TAA and the European
Commission upon request.

2.4.1 Measurement of vehicle components

For the main vehicle components which have an influence on fuel consump-
tion a related measurement procedure was defined. These fuel consumption
relevant vehicle components are[4, 3]:

7

2 Vehicle Energy Consumption Calculation Tool

• Engine
This measurement procedure determines the maximum performance,
the necessary torque that is needed to drag the engine at a certain
rotation speed and the fuel consumption of the engine when running
at defined operation points. The engine measurement takes place on
the test stand.

• Transmission (plus torque converter in the case of an automatic
transmission)
The measurement procedure determines the torque loss for each gear
at the given transmission input speed and at the given input torque.

• Axles and other torque transferring components
The measurement procedure determines the loss of torque by the
given input-torque given to the axle. Measurements can be omitted
and standard values as defined in Regulation 2017/2400 are used
instead.

• Aerodynamic drag
This measurement procedure determines the air resistance which will
be applied to the front area of the vehicle. The procedure takes place
on a test track with a standard body and/or trailer. During the test
drive on track the torque of the wheels, the vehicle velocity, the actual
air flow velocity and the air flow direction are measured.

• Tires
The measurement procedure determine the losses caused by tires with
a drum test according to the Regulation (EC) No 1222/2009

3.

• Vehicle auxiliaries
The category auxiliaries includes engine cooling fan, steering pump,
electric system, pneumatic system, HVAC system, power take off
(PTO). The required power of the auxiliaries depends on the technol-
ogy used in the vehicle and the simulated driving cycle in VECTO.

The results of the component measurement will be stored in more than one
CSV file.

3Regulation (EC) No 1222/2009 http://data.europa.eu/eli/reg/2009/1222/oj

8

http://data.europa.eu/eli/reg/2009/1222/oj

2.4 Certification Process Overview with VECTO

2.4.2 Evaluation Tools

The evaluation tool checks whether the measurement data comply with the
specified regulations of the component and performs the evaluation steps as
outlined in Regulation EU 2017/2400 to generate the component data [4].

2.4.3 Data around VECTO

As shown in Figure 2.1 various files types occur during the certification
process of heavy duty vehicles.

1. Measurement Data
The measurement data represent the files that are created during the
measurement of a vehicle component.

2. Component Data
The component data file is the output file of the related evaluation
tool which takes the measurement data as input.

3. Certificate
The certificate is the proof that the component or group of similar
components has been successfully certified as part of the specified
regulations to the corresponding component type. The certificate will
be issued as hardcopy document or as PDF-file.

4. Job Data
The job data file contains the complete simulation configuration as
well as the component configuration of the vehicle to be certified.

5. Manufacturers Record File
The manufacturers record file is the output file of VECTO after the
simulation for the manufacturer. This file contains all the information
needed to validate that the correct component data for a given vehicle
was used for declaring the CO2 figures with the simulation tool. This
file must be kept by the manufacturer for at least 20 years.

6. Customers Record File
The customers record file is the output file of VECTO after the simu-
lation for the customer. It contains the CO2 emissions and fuel con-
sumption and the applicable mission profiles.

9

2 Vehicle Energy Consumption Calculation Tool

2.4.4 VECTO Simulation Tool

To simulate an entire vehicle with the VECTO simulation tool two different
simulation modes are available [3]:

• Engineering mode
The engineering mode allows it to set all simulation parameters freely
in order to test certain constellations of vehicle components and famil-
iarize users with the simulation tool itself.

• Declaration mode
The declaration mode allows only model parameters which are con-
form with the Commission Regulation (EU) 2017/2400, only certain
model parameters such as payload, gearshift parameters etc., can be
chosen generically.

Certification mode

The certification simulation mode will be used to certify a heavy duty vehicle.
This mode is the same as the declaration mode with the only difference that
the input for the simulation models will be done by the job data file. This
XML file contains the entire configuration (each certify component data file)
of the vehicle to be simulated [3].

10

3 Background

This chapter provides background information about databases in general,
what types exist and what requirements they can meet. Some of the back-
ground information can be used later in the design and development phase
of the Git database prototype.

3.1 Database

A database can in general be described as an organization system for a
collection of digital data. To provide accessibility to these data collection
usually a database management system (DBMS) will be used. The DBMS
enables it to retrieve, change, delete and update the containing data within
the database.
Today’s database management systems can be roughly divided into two
major groups, the traditionally relational database system and the Non-
relational database system. The relational databases systems are still the
most popular used database type, but the market share of Non-relational
database which emerged in the last decade is still growing as shown in
Figure 3.1.

3.1.1 Relational Databases

In the 70’s the term relational database was first introduced by Edgar Frank
Codd in his research paper ”A Relational Model of Data for Large Shared
Data Banks” [6], what could be considered as origin point of relational
databases. The first attempts of relational databases were developed in the
following years.

11

3 Background

Figure 3.1: Popularity division between Relation and Non-relation Databases taken from
source [5]

A relational database is characterized by its structured data scheme which
organise the data in form of tables. A table consists at least one field that
represents one column of the table, each of these columns being assigned
a fixed data type such as string, integer, and so on. Besides the structured
data scheme organised in table form, relational databases are further char-
acterized by the relation between them.

A relation between tables can be one of the following types:

• One-to-one relation
A row entry of one table can only be linked to one row entry of another
table.

• One-to-many relation
A row entry of one table can be linked to multiple row entries of
another table.

• Many-to-many relation
Multiple row entries of one table can be linked to multiple row entries
of another table.

12

3.1 Database

To reduce data redundancy and to increase the data integrity, the tables
and their dependencies are normalized. A normalization can be applied
through formal rules that must meet different criteria depending on the
type of normalization.
To enable read, create, update and delete functionality on tables a respec-
tive relation database management system provides the domain-specific
language Structured Query Language (SQL). Relational databases have the
following advantages and disadvantages [5]:

Advantages

• Based on the long time of usage, relational database management
systems are a mature technology that is well documented and tested.
• The domain specific language SQL has established itself as the stan-

dard for relational databases management systems.
• All relational database management systems are ACID conformal

and meet the requirements of Atomicity, Consistency, Isolation, and
Durability.

Disadvantages

• Relational database management systems cannot handle unstructured
or semi-structured data, because of the strict table schema and the
associated data type restrictions.
• Mapping between objects of an application and tables dose not always

work.
• Migration between different relational database management system

is difficult to perform, if the destination table differs from the source
table structure.
• Relational database management systems tend to degrade the perfor-

mance if data volume increase.

13

3 Background

3.1.2 NoSQL/Non-Relational Databases

Not only SQL (NoSQL) or non-relational databases are a collection of dif-
ferent database types which use a different data model compared to the
strict relational model. With the increasing complexity of web applications
over the last two decades, the demands on data management and storage
have changed. This results in the development of non-relational databases
to overcome two key problems of relational databases. First, the scalability
issue, which is reflected in rapid performance degradation as the data vol-
ume increases, and second, the inability to manage and store unstructured
and semi-structured data [7].
The NoSQL database types can be assigned to one of the following five
groups [7]:

1. Key-Value Store Databases
Key-value store databases are one of the simplistic database models.
A data entry within the key-value store is composed as a key-value
pair, whereby the key represented a string and value representing the
data the key refers to. Key-value stores databases can be used e.g. for
the management of user sessions.

2. Column-Oriented Databases
Column-oriented databases store the data tables column by column,
which is the opposite of the relational database that store the data
tables row by row. This meets the requirements of data mining and
analytical applications which have to perform calculations on an accu-
mulation of data such as aggregations.

3. Document Store Databases
Document store databases store their data in form of documents,
which are in the standard formats like XML, PDF, JSON, Word and
so on. Document stores share similarities with relational databases as
well as with key-value stores. The stored documents resemble a table
of a relational database and each stored document is addressed with a
unique key, which could be a string related to a URI or path, similar
to the key of a key-value store entry. Document store databases enable
the creation of complex data structures and the retrieval of documents
according to specific properties. In addition, it enables the creation

14

3.1 Database

of complex data structures because, unlike relational databases, no
mapping of structures to tables is required.

4. Graph Databases
Graph databases arrange the data in a graph structure, with the data
representing a node and the edges represents their relationship be-
tween the data. Furthermore, additional properties can be assigned
to each node. The execution of queries expressed as traverses is faster
than in relational databases. The application areas of graph databases
are social networking applications, recommendation software, security
and access control, content management, network and cloud manage-
ment and so on.

5. Object Databases
An object database stores the data in form of objects similar to an object
used in object-oriented programming. In addition to the management
of stored objects, object databases support all common features of
object-oriented programming such as data encapsulation, polymor-
phism and inheritance. Each stored object is assigned with an unique
identifier within the object database, which can be used to access every
single object. Due to the close integration between object databases
and object-oriented programming languages, the retrieval of objects is
faster than with relational databases, since an assignment of objects to
tables is no longer necessary.

NoSQL databases have the following advantages and disadvantages [5]:

Advantages

• NoSQL databases can handle large volumes of unstructured and semi-
structured data.
• The schema-free data models are easier to manage and more flexible

than the relational data model.
• NoSQL databases can be used for big data, because of the faster

transaction rates.
• NoSQL provide easier methods to scaling horizontal the database due

to the possibility of distribution.

15

3 Background

Figure 3.2: CAP Theorem taken from source [9]

Disadvantages

• NoSQL are less mature than relation database management systems.
• Most NoSQL databases are only BASE conformal and meet the re-

quirements of Basic Availability, Soft State, Eventual Consistency.
• Missing standardized query language, which can be used in the ma-

jority of NoSQL databases.
• Every NoSQL database type requires specific expertise.

All relational database management systems are ACID conformal and meet
the requirements of Atomicity, Consistency, Isolation, and Durability.

3.2 CAP Theorem

The CAP theorem [8] or also known as Brewer’s theorem named after Eric
Brewer was defined in the year 2000 and describes a special characteristic of
every distributed database system. The theorem stated out that only two of
the three attributes Consistency, Availability and Partition Tolerance can be
fulfilled simultaneously [9].

16

3.2 CAP Theorem

• Consistency
Consistency describes the overall consistency of the data in a dis-
tributed database environment. Consistency is given if it is ensured
that the manipulated data record and all it replicas are updated after
a transaction has been finished.

• Availability
Availability describes the response time after a request to a distributed
database environment. Availability is given if every request gets an
respond in an acceptable amount of time, but the respond does not
have to guarantee that it is the latest version of the requested data.

• Partition Tolerance
Partition Tolerance describes the failure tolerance of a distributed
database environment. Partition tolerance is given if the entire sys-
tem is still functioning, if some nodes of the distributed database
environment are down.

CAP Theorem Structure and Mode Of Operation

The CAP assumption by Eric Brewer could be proven by an axiomatic proof
by Seth Gilbert and Nancy Lynch[10] in the year 2002. As figure 3.2 shows,
the theorem can be represented as three circles, while the intersection of
two circles yields the possible combinations of two attributes [11].

• Availability and Partition Tolerance (AP)
The Domain Name System (DNS), which maps domain names to
numeric IP addresses, can be assigned to this category, it provides
high availability and the downtime of certain nodes does not affect
the distributed domain name system. The missing consistency of the
domain name system can lead to outdated responses.

• Consistency and Availability (CA)
Relational Database Management Systems (RDMS) can be assigned to
this category. The data of an RDMS must always be stored consistently
and a high availability must be guaranteed, depending on the area of
application of the database. The lack of partition tolerance means that
a RDMS cannot be used as a distributed database.

17

3 Background

• Consistency and Partition Tolerance (CP)
Applications in the financial sector can be assigned to this category.
High consistency must be ensured, especially when working with
money, and a high partition tolerance must also be ensured, failures
of some nodes should not affect the rest of the financial system. In
case of network failures, the service should not be available instead of
processing incorrect transactions, which is the reason for the lack of
availability in this operation mode.

3.2.1 ACID Consistency Model

ACID defines four characteristics of a database transaction which must be
fulfilled to guarantee its reliability. These four characteristics must also be
met when faults such as power failures, connection problems, etc. occur. All
relational database systems fulfil these four characteristics and are therefore
ACID conform. The four parts of the ACID model are described in more
detail in the following list [12]:

• Atomicity
A single transaction is fulfilled atomically if the transaction is either
completely successful or fails completely, e.g. if an error occurs during
the transaction.This ensures that the database remains unchanged in
the event of an error.

• Consistency
A single transaction is fulfilled consistently when a transaction is only
executed if the transaction does not violate any defined rules, such as
restrictions, cascades, and so on, that violate the data consistency of
the database. A valid transaction transfers the database from one valid
state to another.

• Isolation
A database system fulfills the isolation criteria when concurrently
executed transactions do not interfere with each other. Each of the con-
current transactions should be executed in isolation on the database,
and faulty transactions should not be detected by other concurrent
transactions.

18

3.2 CAP Theorem

• Durability
Durability in the context of transactions means, if a transaction has
been committed to the database it remains committed even in in
the event of system failures. To ensure transaction durability in the
event of system failures, the database system uses database backups
and transaction logs to enable the recovery of already committed
transaction.

3.2.2 BASE Consistency Model

The BASE consistency model is used in case the ACID consistency model is
not applicable, to provide a more scalable and affordable data architecture.
The BASE model is used by most NoSQL databases. The three parts of the
BASE model are described in more detail in the following list [12]:

• Basic Availability
Basic availability means to focus on availability over the correctness
of the data. High availability will be achieved by the usage of a dis-
tributed database approach, which tolerates replication and temporary
inconsistency of the data.

• Soft State
The soft state transfers the responsibility for data consistency from the
database system to the developer. Soft state represents the opposite of
the ACID model’s consistency property.

• Eventual Consistency
Eventual consistency defines that inconsistent data will be consistent
at a later point in time. However, there are no guarantees as to when
this conversion from inconsistent to consistent data will take place.

19

3 Background

3.3 Content-Addressed Storage

Content-Addressed Storage (CAS) is a type of a data management tech-
nology on hard disks, where the information gets stored and searched by
its content. This type of data management technology has been primarily
developed for data which rarely or never changes over time.
To store the data according to its content, CAS-systems use a cryptographic
hash function whose task it is to calculate an identifier from the content. A
cryptographic hash function takes an arbitrary length of data and generates
a fixed length hash value. Each change, even if it is only 1 bit in the input
data, leads to a generation of a different output by the cryptographic hash
function.
With this generated identifier, the CAS-system linked it to the storage loca-
tion of the data. If new data is added to store, first the identifier is generated
and compared with all existing identifiers. If it is a non-matching identifier
in the link list of the CAS-system, the file is stored, otherwise it is ignored
because the file is already stored. This also reveals the most obvious advan-
tage of a content-addressed storage, it prevents the storage of the same data
[13].

Advantage

• Content-addressed storage prevents the storage of duplicated data.
• The search by the given data content is very fast and provides the

certainty that the document found matches the specified data.

Disadvantage

• Content-addressed storage can only be used efficiently for data which
is rarely or never changed.
• Search and save behaviour is only as good as the underlying crypto-

graphic hash function.

20

4 Version Control System

4.1 What is a Version Control System?

A Version Control System (VCS) tracks and saves the changes which are
applied to a file over time in a way so that these file can be returned to the
status before the respective change happened.
The simplest approach of such a system is to create a separate copy each
time after a change happened to the file. This can be done with almost every
file type, however the big downside of this simple approach is the rapid rise
of administration and storage effort after a certain amount of changes and
by using this approach for more than one file. The main application area of
a version control system is tracking changes of text files, especially source
code files.
The first type of a version control systems were published in the year 1972

with the release of the Source Code Control System (SCCS). This version
control system was the first which enabled to track the history of changes on
individual files such as configuration files or documentation. In the 1980’s
another early days version of a version control system was released, called
Revision Control System (RCS), which simply stores the different versions
of a file similar to the previously mentioned simple approach [14].

21

4 Version Control System

Local Computer

Version Database

Version 3

Version 2

Version 1

Checkout

File

Figure 4.1: Local version control system (based on [15])

4.2 Types of Version Control Systems

4.2.1 Local Version Control System

The local Version Control System (VCS) solves the two problems of the
previously mentioned simple approach. The administration effort issue
will be remedied by the usage of a database and the data effort issue can
be reduced through saving file modifications only of files which one time
already fully saved within the VCS. The conceptional construction of a VCS
is shown in Figure 4.1. The best known example of a local VCS are the
Revision Control System (RCS) [15].

4.2.2 Centralized Version Control System

To enable project collaboration between users, Centralized Version Control
System (CVCS) was developed. With this system a central server holds one
or more repositories containing all the data in its various versions that have
been added to the system over the time. To pick up a file the client connects
to this central server and retrieves the file in the respective version. This type
of version control system has the advantage that the whole data and it’s
history is collected on a central location which minimizes the administration

22

4.2 Types of Version Control Systems

Computer A Central VCS Server

Computer B

Version Database

Version 3

Version 2

Version 1

File

File

Figure 4.2: Centralized version control system (based on [15])

effort. However, the advantage is also the biggest disadvantage: if the central
server is corrupted the whole data and it’s history can be lost. And every
downtime of the central server prevents collaboration between users, which
is the main intention of this type of version control system. The conceptional
construction of a centralized VCS is shown in Figure 4.2. The best known
examples of centralized VCS are the Concurrent Versions System (CVS) and
the Apache Subversion, both are open source [15].

4.2.3 Distributed Version Control System

The Distributed Version Control System (DVCS) is used to deviate from the
centralization of data on a single server. This decentralization distributes the
error concentration to several locations. The data as well as its corresponding
history will be mirrored over to the used repositories within the DVCS.
By mirroring of the data at every checkout, each repository represents
a potential backup if any of the data gets corrupted. The conceptional
construction of a distributed VCS is shown in Figure 4.3. The best known
example of distributed VCS are Git and Mercurial, both are open source
[15].

23

4 Version Control System

Server Computer

Version Database

Version 3

Version 2

Version 1

Computer B

Version Database

Version 3

Version 2

Version 1

File

Computer A

Version Database

Version 3

Version 2

Version 1

File

Figure 4.3: Distributed version control system (based on [15])

4.3 Git

Git represents the base of the development of the Content Addressable
Storage (CAS) database of this thesis. Therefore, this section takes a closer
look at Git and how it is built up and how it works.

4.3.1 Git History

Git is an open source Distributed Version Control System(DVCS) and was
initiated by Linus Torvalds. In April of the year 2005 Linus Torvald started
with the development of Git, which was later the replacement of the used
DVCS BitKeeper1. BitKeeper was free for open source projects and was used
between 2002 and 2005 as the source code version control system for the
Linux kernel project.

1BitKeeper https://www.bitkeeper.org/

24

https://www.bitkeeper.org/

4.3 Git

In the year 2005 the BitKeeper creator refuses the free of charge status for
the Linux Kernel project. The reason of the refusion was the violation of the
noncompete clause of BitKeeper’s license agreement by Andrew Tridgell.
In order to access a BitKeeper repository, a provided closed code client was
used. Andrew Tridgell wrote an open source tool that provided the same
functionality as the client, which lead to the violation of the competition
clause and finally to the rejection of free of charge status from the Linux
kernel project[16].

This rejection lead Linus Torvald to the decision to develop his own source
code management system system for the Linux kernel development.

With the lessons learned during the usage of BitKeeper and the given require-
ments of kernel development the new system should fulfil the following
points [15]:

• Speed
• Simple design
• Strong support for non-linear development (thousands of parallel

branches)
• Fully distributed
• Able to handle large projects like the Linux kernel efficiently (speed

and data size)

The development of Git started at the beginning of April 2005 and a first
version was released in July.

4.3.2 Git Key Concepts

Delta Storage

Delta storage is a file-by-file based storage model and is used by most
source management systems. This storage model observes the changes
made to a file regardless of the changes made to other files. Which means
every newly added file adds a newly created object to the repository of the
source management system. If an already added file gets modified only the
difference or also known as delta, between the original file and the modified

25

4 Version Control System

Figure 4.4: Example of Delta Storage System taken from [15]

file gets saved and linked as the file’s next revision.
To preserve the file content at a certain point in time within the tracking
history, all deltas that were created before that point will be added to the
original file [17]. A example of a delta storage system is shown in Figure
4.4 only a newly added file(Version 1) creates a object, each change to an
existing file will create a delta file at each check in.

Snapshot Storage

Unlike the delta storage model, Git takes a completely different approach
to track changes done to a file over time, known as snapshot storage. Git
does not monitor the changes that happen to each individual file in the
workspace. Instead it saves changes as separate snapshots across the entire
workspace. A snapshot gets generated by the usage of the Git command
commit.
The snapshot contains the content of all involved files and directories within
the workspace at that time. Every commit which represents the snapshot is
linked to the previous commit that was taken before the current commit,
unless it is the very first commit. The connection between commits allows
to switch between a snapshot taken at one time and a snapshot taken at
another time.
Every modified file between two snapshots generates a new object. This
object contains all data of the modified file, any other file that does not
change between two snapshots does not create an additional object in the

26

4.3 Git

Figure 4.5: Example of Snapshot Storage System taken from [15]

repository.
Saving each file and the modified file as a new object allows it to switch
very quickly from one snapshot to another. It also allows to switch very
quickly from one file status in a particular snapshot to a different file status
in another snapshot [17].
A example of a snapshot system is shown in Figure 4.5, each change on a
file will create a new object at each check in.

Git Repository

In order to version a project, the first step is to create the repository skeleton
int the project folder. The repository will be created by the usage of the
Git command git init.This creates a hidden subdirectory within the project
folder named .git. This repository folder contains the following files and
folder as shown in Figure 4.6.

The task of the folders and files listed in the figure 4.6 will be briefly
described in the following listing [15]:

• hooks
By default this directory contains some example scripts with shell-
code. The task of this folder is to provide a place where self-defined
programs can be executed at certain points during the Git execution
phase.

27

4 Version Control System

.git

info

info

refs

heads

descrip�on

HEAD

hooks

objects

pack

tags

config

Figure 4.6: Git repository folder structure

• info
The info directory contains the exclude file similar to the ”.gitignore
file” (specifies files which should be ignore by Git) with the only
difference that the exclude file will not be shared between repositories.

• objects
The objects directory contains all newly created objects. The objects are
organized in over 256 subdirectories, each subdirectory name consists
of the two initial letters of the SHA-1 identifier of the respective object.
These additional subdirectories facilitate the administration of the
objects.

– info
The info directory contains further information about the object
store.

– pack
The pack directory contains the pack files, which are single files
containing several similar objects that are delta compressed.

28

4.3 Git

• refs
The refs directory stores all references such as branches and tags.
If a remote repository exists, its references are also created in the
subdirectory.

– heads
The directory heads contains all local branch references.

– tags
The directory tags contains all local tag references.

• config
Is the repository specific configuration file.

• description
The description file can contain the description of the repository.

• HEAD
The HEAD file contains the reference(top commit SHA-1 hash) of the
active branch within the repository.

Git Objects

Git is a content addressable storage similar to the description in section 3.3.
Each version-controlled file is stored as an object within the Git repository.
Each created object will be identified by a 40 digit SAH-1 hash generated
from the content of the object.
Git uses four different object types to organize the content within the content
addressable storage, these are described in the following list [15]:

Blob Object
The blob (abbreviation of Binary Large Object) object contains the content
of a file that has been added for versioning. The content of the blob object
will be compressed using the gzip2 algorithm before the blob object will be
created. Each blob object can only contain the content of a single file.

Tree Object
The tree object will be used to group files together. A tree object can contain

2Gzip https://www.gzip.org/

29

https://www.gzip.org/

4 Version Control System

references to existing blobs as well as to other existing trees. One tree entry
consists of four entries the file permission code, the object type, the SHA-1
identifier and the file name of the associated file. A example of two tree
entries are shown in the following listing:

040000 t r e e 1 bd86bd18e2389f9edd2c10da4d4eaca527cdb76 F i l e s
100644 blob 5 dcd581 f2ef55612 fbb9e69b5821e0d0562b5 f57 main . cs

Commit Object
The commit object is responsible for storing metadata of a snapshot. The
metadata consists of the following parts: the tree reference, the parent
commit reference, the author signature, the committer signature and the
commit message. Each commit refers to one parent commit except the initial
commit which cannot refer to any commit. In case of a commit merge, a
commit can refer to multiple parents. An example of a commit is shown in
the following listing:

t r e e 5 d21358b192c1a699b0ae1e0bf4f6d65d8e9df15

parent 49 cf244225cd2406c1e58dcca6c76 f0d9b00286 f
author John Doe <john@doe . org> 1567950964 +0200

committer John Doe <john@doe . org> 1567950964 +0200

Second commit

Tag Object
The tag object is similar to a commit object. It also adds additional meta
information to the object it points at. The tag object consists of the following
parts:

• The reference of the tagged object.
• The object type of the tagged object.
• The name of the tag (the name must be unique within the repository).
• The creator signature of the tag (”tagger”).
• The tag message of the tag.

30

4.3 Git

An example of a tag is shown in the following listing:

o b j e c t 7 c74cdc71aa4c80 fb84820cbae30aef5b0d64c49

type commit
tag tag name V. 1

tagger John Doe <john@doe . org> 1567950964 +0200

Some tag message

A tag is able to point at any git object type, but commonly only commit
objects will be tagged.

Branch

Branches are the central data organization feature of Git. A branch is a
symbolic reference that has a unique name and points to single commit.
The default branch of a newly created Git repository is the ”master” branch.
A branch will be created in the ”heads/refs” folder of the repository and
is a simple file containing a commit SHA-1 hash and the branch name as
filename.
In comparison to a tag that also points to a commit, a branch is moveable.
A tag can only reference a commit for what it was created for. Whereas the
reference of branch, which is pointing to a commit, can be changed to any
other commit [17].

Git Object Model

Git organises the data in a simplified form of the UNIX file system. The
folder structure as well as the containing data will be mapped by the usage
of the three main Git objects types blob, tree and commit. An example
mapping of a directory structure is shown in the Figure 4.7.
Each folder will be represented by a tree, the very first tree represents the
root tree of the directory. Each file creates a new blob in the repository and
will be referenced by the tree above, which also stores the filename of the
related file. The commit points to the tree root of the mapped directory,

31

4 Version Control System

.git

GUI

. project

MainModel.cs

MainView.cs

MainViewModel.cs

App.xaml

ViewModel

View

Model

Blob : 82d032b

Blob : 047172b Blob : c773174 Blob : 03cb4a9

Tree : cce10fe

blob : 82d032b App.xaml
tree : c51997e Model
tree : f8b8cb8 View
tree : 076e77b ViewModel

Tree : c51997e

blob : 047172b MainModel.cs

Tree : f8b8cb8

blob : c773174 MainView.cs

Tree : f8b8cb8

blob : 03cb4a9 MainViewModel.cs

Commit : a17c6c3

tree : a3e3cdc

Tree : a3e3cdc

tree : cce10fe GUI

Figure 4.7: Git Object Model

which will later be used to track when it was committed and as selection
point to switch between commits.

Git Data Integrity

To ensure data integrity, Git calculates a checksum for each file before storing
it in the repository. In addition, this checksum will be used as filename
for the stored objects in the object database. This allows Git to recognize
immediately changes in any file content or directory.
The checksum will be calculated using the SHA-1 algorithm which belongs
to the group of cryptographic hash functions. This means that the algorithm
is suitable for cryptographic hash functions such as digital signatures,
Message Authentication Codes (MACs), etc.
A hash function, also called a one-way function, is characterized by the fact
that it always generates a message of fixed length, independently of the
length of the given input data. Additionally, each change of the input data
leads to a change of the calculate hash. A secure hash function has also to
fulfil the following conditions:

32

4.3 Git

• Preimage resistance
Preimage resistance property of a hash function means that from a
given output of a hash function it is very hard to calculate the input
message of the hash function.

• Second preimage resistance
Second preimage resistance property of a hash function means that it
is hard to find another message that leads to the same hash.

• Collision resistance
Collision resistance property of a hash function means that it is hard
to find any at least two messages that lead to the same hash.

In February 23 of the year 2017 Google official announced the first collision
of the SHA-1 hash function. Until then, there were only theoretical assump-
tion that a collision could be found. The computation of the collision took
approximately 6500 single CPU years and 100 single GPU years which is
still more than 100000 times faster than the brute force attempt [18].

Because of the wide use of Git and the several complex problems which will
be described in the next listing it was not yet possible to switch to another
hash algorithm.

There are several complex problems that need to be solved to allow a change
to another hash algorithm these are [19]:

1. Variable declarations
There are a lot of variable declaration within Git in the following
form unsigned char sha1[20] that need to be adjusted for the new hash
algorithm.

2. Existing repositories
The new hash algorithm must be introduced without breaking the
existing ones. To support existing repositories, a new repository type
could be introduced in Git that can manage two different blob types,
the existing blob type and a new blob type that uses the new-hash
type. As soon as only new hash object types are used within the new
repository, it is not allowed to add old object types. With the sole
exception that new-hash commits can refer to old commits to preserve
the repository history.

33

4 Version Control System

The disadvantage of this approach is that duplications can occur when
the content of a file is stored in both the new and old blob type.

Another approach to use existing repositories is the usage of some
kind of mapping where the old objects will mapped to the new-
hash object types. A disadvantage of this approach is the increasing
complexity and also the increase in storage space, especially for large-
scale projects.

34

5 Design

This chapter presents the design document that forms the basis for the later
developed prototype of a distributed CAS database for vehicle component
certification data using Git.

5.1 Use cases around VECTO

As shown in chapter 2 there are different types of data around VECTO. These
data can basically be assigned to one of the following groups. Furthermore,
each group represents an overall use case of VECTO, in which data arises
that should be stored in a structured and retrievable manner.

• Certification of component
Represents the use case of a single component certification process by
a component manufacturer together with an independent technical
service.

• Declaration of vehicle
Represents the use case of a vehicle certification process by an Original
Equipment Manufacturer (OEM).

• Vehicle Test Procedure(VTP)
Represents the use case when an independent laboratory selects an
already certified vehicle from the OEM to perform the CO2 emission
measurement under real conditions. Purpose is to make sure the de-
clared values match with the vehicle’s CO2 emissions.
This use case represents an archiving purpose, where the emerged

35

5 Design

measuring data recorded during the measurement under real condi-
tions, are to be stored in relation to the already existing measurement
data.

• COP Conformity of production
Represents the use case when a component is selected again for mea-
surement after a series (approximately 3000) produced components,
in order to check the wear out during production. Furthermore, to
control the variance between the received component data and the
emerged measurement component data of the selected component.
This use case represents an archiving purpose, where the measured
component data should be stored in relation to the already stored
component data.

In order to be able to manage and store the data in the above-mentioned
use cases, Git is selected as the storage backend. The following design
and requirement listings covers only the first use case ”Certification of
component” fully, this was necessary due to complexity of the prototype.
The remaining use cases will be considered during the development of the
design but are not included separately in the design.

5.2 Requirements for certification of component

During the certification process of components like Engine, Gearbox, etc.,
with an independent technical service the following data can occur:

• Measurement data
The measurement data emerges during measurement process of a
component on the test stand and will be used as input for the the
related VECTO component tool.

• Component data
The component data represents the output file of respective com-
ponent tool such as VectoAirdrag, VectoEngine etc., which uses the
measurement data files as input.

36

5.2 Requirements for certification of component

• Standard value
The standard value file is a replacement file for the component data file
that is created when no certification of the component was performed.
The standard value file has the same structure as the component data,
but contains only default values, that are generally worse than the
values of a certificated component and its respective component data
file.

• User defined data
The user defined data can be defined by the user to add additional
information to the associated component.

Each of the above mentioned data types must be stored into the Git
database.

In order to distinguish between the data types mentioned above an appro-
priate organization is required.

In addition to organizing the data, the prototype should be able to search
for data already stored in the Git database. Depending on the data type
different search criteria should be supported.

• Certification number
The certification number will be issued during the certification pro-
cess of a component. A certification number can be assigned to a
component or a group of similar components.

• Manufacturer
The manufacturer name under which the vehicle component was
manufactured.

• Model
The unique model name of the component.

• Date
The date when the certification of the vehicle component happened. In
case of the standard value file, the creation date of the file is specified
in the date field.

37

5 Design

• Git Id of the component data
The Git Id of the component data, represents the unique identifier(SHA-
1 hash) generated by Git. This unique identifier can be used later to
fetch related component data file.

All data types listed in this section should be searchable by the search
terms listed above except Standard values files and User-defined data files,
which should only be searchable using the terms Manufacturer, Model and
Data.

In addition to the search function, a export as well as an import function
should be available for previously selected component data files.

5.3 Design and Data Partitioning

In order to fulfil the given requirements in section 5.2, the following structure
which is illustrated in Figure 5.1 within a Git repository was designed. The
most important points and their conditions is described in more detail in
the following.

• To simplify the exchange process between Git repositories, the data
from the certification process of a component is split up into two
orphan branches. Orphan branches are a special kind of a branch,
which is independent from the log history of other existing branches
within the repository.

• The branches will be created with the following two naming conven-
tions:

– public/<Manufacturer>/COMPONENT/<Year>/<Model>/<Abbreviated XML Hash>

– private/<Manufacturer>/COMPONENT/<Year>/<Model>

Every standard value file as well as the component data file contains a
XML-hash, which will be further added (abbreviated form 12 charac-
ters long) as part of the public branch name, in order to make them
unique within the repository.

38

5.3 Design and Data Partitioning

• The public branch can contain only the following file data types:

– Standard values
– Component data
– Certificate

• The private branch can contain only the following file data types:

– Measurement data
– User-defined data

• The data within a public branch may be sent to some other party (e.g.
vehicle manufacturer), while the data contained in a private branch
should remain in-house.

• The public branch will be built up in the following two ways:

1. a) The first commit of the public branch contains a tree node
pointing to component data and the commit message contains
the certification date read from the component file.

b) The second commit of the public branch holds a tree node,
which points to the component data file and the certificate
data file.

In case of a re-certification of a vehicle component the public
branch will be built up in the following way:

2. a) The first commit of the public branch holds the tree node,
which points to standard values file and the commit message
contains the certification date read from the standard value
file.

b) The second commit holds a tree node, which points to the
standard value file and the component data file.

c) The third commit holds a tree node, which points to the
standard value file, the component data file and the certificate
file.
If no re-certification takes places, only the first mentioned
commit sequence will be executed.

39

5 Design

Additional commits can be added to the public branch with
additional data after one of the above defined sequences has been
performed.

• After the creation of the first commit on the public branch, the commit
will be tagged with two tags. The first tag with the certification number
as tag name and the second tag with the Git Id as tag name. The
certification number as well as the component data Git Id will be
split up in smaller pieces as described in section 5.6 and indicated
in the following listing. The certification number tag contains the
same abbreviated XML-hash of the branch name that was read in the
associated component data file.

– /CERT_NR/<section 1&2&3>/<section 4&5>/<Abbreviated XML Hash>

– /GIT/<First 2 GIT ID characters>/<remaining 38 GIT ID characters>

• When a certificate is added to an existing public branch by a new
commit, all public branches tagged with the same certificate number
are automatically extended by the certificate commit if the certificate
commit does not already exist.

• The private branch is divided into two directories (which are repre-
sented in Git as two tree nodes), one for measurement data files and
one for user-defined data files.

• User-defined data can only be stored to an already existing private
branch within the repository.

• The first commit of a private branch will contain the certification date
as commit message.

• Files stored within a private branch can keep the current file name. If
the file name is already used within the private branch and the new
file content differs from the stored one, the user should be able to
choose another one.

40

5.3 Design and Data Partitioning

• To identify the different data types within a public branch some
naming conventions are required. Every data file name within a tree
node will be replaced by one of the following terms:

– COMPONENT DATA
– CERTIFICATE DATA
– STANDARD VALUES

• All messages which will be added to tags or commits must be in the
following JSON-Form:
The message content of a certification tag and Git Id tag:
{

’BranchType’ : ’Private’,

’Manufacturer’: ’MAN’,

’Year’:’2017’,

’Model’:’T-13’,

’XmlHash’:’af2452tzrysf’

}

The message content for the first component data commit of a public
branch:
{

’CertificationDate’ : ’28.12.2017’

}

The message content for the first standard value file commit of a public
branch:
{

’CommitDate’ : ’28.12.2017’

}

• Before a new files are added to an existing branch, the Git Id of the
new file will be precalculated. The calculated Git Id will be used to
compare it with the existing stored files within the branch. Only if the
precalculated Git Id differs from all stored files within the branch a
new commit can be added.

41

5 Design

Commit 1
Message: { Cer�fica�onDate : <Cer�fica�on Date> }

Commit 2 Commit N

Tag
Name: CERT_NR/<Sec�on 1&2&3>/<Sec�on 4&5>/<Abbreviated Component Data XML Hash>
Message: <Branch Name Meta-informa�on>

Tag
Name: GIT/<First 2 GIT ID characters>/<Remaining 38 GIT ID characters
Message: <Branch Name Meta-informa�on>

Public Orpahn Branch

Tree

COMPONENT_DATA

CERTIFICATE_DATA

Tree

Branch Name: public/<Manufacturer>/component/<Year>/<Model>/<Abbreviated Component Data XML-Hash>

Commit X

Private Orpahn Branch

Tree

Tree
User_Data/<Folder Name>/<File Name>

User_Data/<File Name>

Branch Name: private/<Manufacturer>/component/<Year>/<Model>

Tree
Measurement_Data/<Folder Name>/<File Name>

Measurement_Data/<File Name>

Commit Y

Tree

Tree Tree

Tree
COMPONENT_DATA

Component Data
<xml>

Cer�ficate File
<pdf>

Figure 5.1: Organization and structuring of component data files in the Git repository

42

5.4 Search behaviour

Disallowed character Replacement character
\ (

/)

: ;

* #

? $

" ,

<]

> [

| +

""

. %

Table 5.1: Replacement characters for windows systems.

5.4 Search behaviour

As already mentioned in section 5.2 different searches must be supported
depending on the data type. Each given search term except the date, will be
verified if the given term contains any disallowed characters as mentioned
in table 5.1 and will be replaced before the search starts.
All search terms which are given by the user will be connected by the logical
AND operator, which means only components will be displayed where all
given search terms hold true.
The search starts with the public branch names if nothing could be found,
the search continues with the private branch names. In case of a given Date
as search term, the year will be used in the first place to narrow down the
branch name list. Afterwards every first commit of the public branches will
be investigated whether it contains the searched date or not.
The certification number and component Git Id will be searched under the
existing tags of the repository, each tag contains the public branch name in
JSON-format where it points at, as message, to easily find the related public
branch.

43

5 Design

5.5 Transfer behaviour

As already mentioned in section 5.2, a transfer functionality between repos-
itories must be supported for both private data(measurement data, user
defined data) and public data (standard values file, component data, certifi-
cate file).
To transfer from one repository to another a additional bare repository will
be used as transfer medium. The user should be able to pre-select both
private data and public data for transmission if the corresponding data is
present within the component. After the preselection, the user can create
the transfer package which contains the repository with the branches. If the
transfer package are selected for import, the following import behaviour
should be supported:

Import behaviour in the case of public data

• The source repository will be scanned to determine whether the public
branch of the transfer repository already exists in the source repository.
If not, the branch from the transfer repository and its associated data
are added to the source repository.

• If the public branch already exists in the source repository, the tree
entries of the two top commits of the corresponding branches are
compared. The files which are missing in the source branch compared
to the transfer branch will be added. As well as the tags that refer to
the component data commit, if they do not already exist.

Import behaviour in the case of private data

• The source repository will be scanned to determine whether the private
branch of the transfer repository already exists in the source repository.
If not, the branch from the transfer repository and its associated data
are added to the source repository.

• If the private branch already exists in the source repository, the tree
entries of the two top commits of the corresponding branches are
compared. If a file exists in the source tree with the same filename
but different content as in the transfer tree, the user must decide
whether the file from the transfer tree should be added with a different

44

5.6 Structure of the certification number

filename or if the file should be ignored. All other files from the
transfer tree with a different filename than the files in the source tree
are automatically added.

5.6 Structure of the certification number

A certification number has the following structure:

eX*YYY/YYYY*ZZZ/ZZZZ*X*0000*00

The certification number can be divide into five sections. The meaning of
every single section is described in the following listing:

eX Indication of which country issuing the certificate
YYY/YYYY CO2 certification act
ZZZ/ZZZZ Latest amending act
X Additional digit for section 3 to classify the component type

which can be:

T for transmission
O for other torque transferring components
K for angle drive
M for torque converter
E for engine
L for axle
P for air-drag
T for tyre

0000 Base certification number
00 Extension

For the tagging purpose the certification number which is used for the
naming will split up into the following two parts:

• eX*YYY/YYYY*ZZZ/ZZZZ*X

• 0000*00

45

5 Design

This split should prevent that all certificate tags will be saved within one
folder, which can lead to performance problems. This method is similar to
object management within Git.

5.7 Use cases

The following use cases are split up into two main sections, which are
the user and the VECTO-GIT perspective. The VECTO-GIT perspective
lists and describes the single steps, in particular the individual GIT com-
mands, which are needed to fulfil the respective user interaction. This exact
description should outline the later implementation of VECTO-GIT with
LibGit2Sharp1 and should also make it easier to prevent possible errors
during the implementation.

5.7.1 Component data of a new certificated component
should be stored in the storage backend

The component data is the result data of the respective component tool,
which uses the measurement data as input data.

User perspective

• The user selects ”Save Component Data” in ”VECTO-GIT-Main” view
Figure 5.2 and gets redirected to the ”Save Data” view Figure 5.3.

• The user chooses the component data file for upload.

• The chosen file will be checked per XSD for validity.

• If the XML file is invalid, the user will be informed of the reason for
the invalidity and the invalid file will be highlighted in red in the
selection list.

1LibGit2Sharp https://github.com/libgit2/libgit2sharp

46

https://github.com/libgit2/libgit2sharp

5.7 Use cases

• By pressing on the button ”Save” the listed data, will be stored into
the VECTO-GIT repository and the user will be informed whether the
save operation was successful or not.

VECTO-GIT perspective

• The file chosen for uploading will be examined by the use of the XSD
file to verify the validity.

• After a successful validity check the model name, certification number,
manufacturer name, XML-hash and the certification date will be read
from the specified component data file.

• The disallowed characters of the certificate number will be exchanged
by the alternative characters listed in the table 5.1.

• The repository will be scanned by the use of the certification number,
model name and manufacturer name, to ensure that the specified
component data is not already stored within the repository, otherwise
the user will be notified.

• A new public branch with the specified naming convention in the
section 5.3, will be created and the selected component data will be
committed with the certification date as commit message, as specified
in section5.3.

• A tag with the certification number and a tag with component data
Git Id will be created and linked to the first commit of the new branch,
with the related branch name as tag message in JSON-Format, as
specified in section 5.3.

To set up the branch the following Git commands are needed in the following
order:

1. git checkout --orphan <Branch Name>

Create a new orphan branch with the given name.
2. git hash-object -w <File Path>

Write the Git object in the repository from the given file.
3. git update-index --add --cacheinfo 100644 <Blob GIT ID> <File Name>

Adds the new Git object to the index.

47

5 Design

4. git write-tree

Create a new tree node from the current index.
5. git commit-tree <Tree GIT ID> -m <Message>

Create a new commit with the newly created tree node.
6. git update-ref refs/heads/<Branch Name> <Commit GIT ID>

Set the branch head to the newly created commit.

5.7.2 Certificate of a component shall be stored in the
storage backend

The issued certificate will be handed out some time later after the certifi-
cation proceed. This certificate must also be linked to the corresponding
component data within the public branch.

User perspective

• The user selects ”Append Component Data” from the ”VECTO-GIT-
Main” view Figure 5.2 and gets redirected to the ”Search Data” view
Figure 5.4.

• The user enters at least one search term and press the ”Search” button.

• If the right component was found, the user presses ”Add Data” button
in the result listing and will be redirected to the ”Save Data” view
Figure 5.3.

• The user chooses the certificate file for upload.

• The selected certificate file will be listed in the ”Selected Data” listing
and the user has to choose CERTIFICATE DATA as component data
type from the combobox.

• By pressing the ”Save” button the certificate file will be added to all
components (tagged with the same certificate number) for which the
certificate was issued.

• The user will be informed whether the append operation was success-
ful or not.

48

5.7 Use cases

• On success the user will be redirected to ”VECTO-GIT-Main” view
Figure 5.2.

• In the event of an error, the user remains on the ”Save Data” view
Figure 5.3 and will be informed of the cause of the error.

VECTO-GIT perspective

• After pressing ”Append” in the search result view Figure 5.4 the user
will be redirected to the ”Save Data” view Figure 5.3.

• After the redirection to the ”Save Data” view Figure 5.3, the certificate
can be added to the selected component.

• After the selection of the certificate file and the component data type
CERTIFICATE DATA the selected component and all components with
the same certificate number will be scanned, whether the certificate
file has already been added.

• If a certificate file has been already added to the component the user
gets informed and remains in thee ”Save Data” view Figure 5.3.

• If the user press save the certificate file will be assigned to the selected
component as well as to any component which is tagged with the
same certificate number.

To append the certificate file to the corresponding component data the
following git commands are necessary, in the following order:

1. git log -n 1 --pretty=format:"%T " <Branch Name>

Determine the tree node Git Id from top commit of the branch.
2. git read-tree <Tree Node GIT ID>

Read the tree node entries into the index.
3. git hash-object -w <File Path>

Write the Git object in the repository of the given file.
4. git update-index --add --cacheinfo 100644 <Blob GIT ID> <File Name>

Add the new Git object to the index.
5. git write-tree

Create a new tree node from the current index.

49

5 Design

6. git log -n 1 --pretty=format:"%H " <Branch Name>

Determine the top commit Git Id of the branch.
7. git commit-tree <Tree GIT ID> -p <Parent Commit GIT ID>

Create a new commit with the newly created tree node and the actual
top commit as parent.

8. git update-ref refs/heads/<Branch Name> <Commit GIT ID>

Set the branch head to the newly created commit.

5.7.3 Measured data of a component shall be stored in the
storage backend

The measurement data consists of more than one file, depending on the
certificated component. The measurement data files will be used for the
corresponding VECTO-Component-Tool as input to generate the component
file. These files should be saved only for archive purposes and are not
intended to transfer them to other parties.

User perspective

• In case of an already existing private branch the user perspective
course of events are as follows:

– The user selects ”Append Component Data” from the ”VECTO-
GIT-Main” view Figure 5.2 and gets redirected to the ”Search
Data” view Figure 5.4.

– The user enters at least one search term and press the ”Search”
button.

– If the right component was found, the user presses ”Add Data”
button in the result listing and will be redirected to the ”Save
Data” view Figure 5.3.

– The user chooses at least one measurement data file for upload.

– The selected files will be listed in the ”Selected Data” table and
the user has to choose MEASUREMENT DATA as component
data type from the combobox.

50

5.7 Use cases

– In case of an already used file name, the user will be informed
and has to choose another one.

– By pressing of the button ”Save” the listed data, will be stored
into the existing private branch, the user will be informed if the
save process was successful or not.

• In case of new private branch for measurement the user perspective
course of events are as follows:

– The user selects ”Save Component Data” in ”VECTO-GIT-Main”
view Figure 5.2 and gets redirected to the ”Save Data” view
Figure 5.3.

– The user chooses at least one measurement data file and the
associated component data file for upload.

– The selected files will be listed in the selected data table and the
user must select MEASUREMENT DATA and COMPONENT DATA
as component data type for the associated files from the com-
bobox.

– The selected component data file will be checked per XSD for
validity and the repository will be scanned to verify that the
manufacturer name and model name have not already been used
within a branch name.

– On invalidity (invalid XML-file or manufacturer name and model
name combination already used), the user will be informed for
the invalidity reason.

– By pressing the ”Save” button the listed data, will be stored into
the new private branch, the user will be informed if the save
process was successful or not.

VECTO-GIT perspective

• During the XSD validation process the model name and manufacturer
name will be extracted from the selected component data file.

• If the redirection to ”Save Data” view Figure 5.3 occurs by the ”Compo-
nent Data Search” view Figure 5.4 the following checks are necessary.

51

5 Design

– The file name as well as the content must differ from the already
saved files within the private branch.

• If the redirection to ”Save Data” view Figure 5.3 occurs by ”VECTO-
GIT-Main” view Figure 5.2 the following checks are necessary.

– The given component data file must be validated by the XSD file.
– The composition of the extracted model name and manufacturer

name should be used to determine if the same named private
branch already exists within the repository.

• In case of an already existing private branch the selected measurement
data will be added if the data differs from the data already stored
otherwise the user gets informed.

• Otherwise a new private branch will be created with the selected
measurement data.

To create a new private branch and add the selected measurement data files
the following Git commands are necessary, in the following order:

1. git checkout --orphan <Branch Name>

Create a new branch with the given branch name.
2. git hash-object -w <File Path>

Write the Git object in the repository of the given file.
3. git update-index --add --cacheinfo 100644 <Blob GIT ID>

MESUREMENT_DATA/<File Name>

Add the new Git object into the folder MESUREMENT DATA to the
index.

4. git write-tree

Create a new tree node from the current index.
5. git commit-tree <Tree GIT ID> -m ""

Create a new commit with the newly created tree node.
6. git update-ref refs/heads/<Branch Name> <Commit GIT ID>

Set the branch head to the newly created commit.

52

5.7 Use cases

5.7.4 User-defined data for a component shall be stored in
the storage backend

User-defined data is the opportunity for a user to define and add additional
information for a component. The given user-defined data can be files of
any kind, and will be saved in a separated folder within the private branch
of the selected component. User-defined data can only be stored if at least
the corresponding private branch already exists as defined in section 5.

User perspective

• The user selects ”Append Data To Component” in the ”VECTO-GIT-
Main” view Figure 5.2 and gets redirected to the ”Search Data” view
Figure 5.4.

• The user enters at least one search term and press the ”Search” button.

• If the right component was found, the user presses ”Add Data” button
in the result listing and will be redirected to the ”Save Data” view
Figure 5.3.

• In the view ”Save Data” the user opens a file dialog by clicking on
”Select File”, after the selection the file is displayed in the table of the
view ”Save Data” view Figure 5.3.

• The user have to select the component data type ”USER DEFINED”
from the combobox, in the corresponding table cell.

• After the mentioned steps above the user must press ”Save” button to
add the user defined data to the corresponding private branch.

VECTO-GIT perspective

• The user-defined files selected for upload must differ form the pre-
viously saved one in its content and file name of the respective data
type.

• If the same file name of the respective data type is already stored
and the content distinguish between the stored one, the user will be
informed and can choose another file name.

53

5 Design

• If the user clicks the save button, the user-defined data will be added to
the existing USER DATA folder if available, otherwise a new USER DATA
folder will be created within the private branch.

1. git hash-object -w <File Path>

Write the Git object in the repository from the given file.
2. git update-index --add --cacheinfo 100644 <Blob GIT ID>

USER_DATA/<File Name>

Add the new Git object into the folder USER DATA to the index.
3. git write-tree

Create a new tree node from the current index.
4. git commit-tree <Tree GIT ID> -m ""

Create a new commit with the newly created tree node.
5. git update-ref refs/heads/<Branch Name> <Commit GIT ID>

Set the branch head to the newly created commit.

5.7.5 Standard values for a component shall be stored in
the storage backend

The standard values file is equal to the component data file and contains
the calculated values of a non-certificated component and thus has no
certification number. This type of data will be also saved within a public
branch. In case of a re-certification the component data will be added to the
existing branch and the newly created commit with the component data
will be tagged with the tags specified in section 5.3.

User perspective

• The user selects ”Save Component Data” in ”VECTO-GIT-Main” view
Figure 5.2 and gets redirected to the ”Save Data” view Figure 5.3.

• In the view ”Save Data” the user opens a file dialog by clicking on
”Select File”, after the selection the file is displayed in the table of the
view ”Save Data” 5.3.

• The user has to select the component data type ”STANDARD DATA”
from the combobox, in the corresponding table cell.

54

5.7 Use cases

• The chosen file will be checked per XSD for validity.

• If the file is not valid, the user gets informed for the invalid reason
and the given file can not be saved.

• By pressing of the button ”Save” the listed data, will be saved into
VECTO-GIT repository and the user will be informed whether the
save operation was successful or not.

VECTO-GIT perspective

• During the XSD validation process the manufacturer name, the model
name and XML-hash will be extracted from the selected standard
values file.

• On invalidity(invalid XML-file or the Manufacturer name, the Model
name and abbreviated the XML-hash combination already used), the
user will be informed for the invalidity and the invalid file will be
highlighted in red in the selection list.

• The disallowed characters of the model name, the manufacturer name
and the XML-hash will be exchanged by an alternative character listed
in the table 5.1.

• A new public branch with the listed naming convention in section 5.3,
will be created with the selected standard value file as first commit
and the extracted date as commit message.

The setup of the public branch is similar to Git command listing 5.7.1 with
the only difference that no tags will be created.

5.7.6 All component-related data (component data,
standard values, certificate, measured data,
user-defined data) can be searched via the
manufacturer name, model name, and date

To improve the search possibility within the Git repository some key points
must be fulfilled during the storing step of the component data these are

55

5 Design

already explained in more detail within section 5. To sum it up the crucial
points are:

• Each component data type of the component can be assigned either
only the private branch or the public branch.

• The composition of the every branch name must be follow the specified
naming convention.

• The data commits within every branch(public and private) follows
also a specific order.

User perspective

• The user selects ”Search Component Data” in ”VECTO-GIT-Main”
view Figure 5.2 and gets redirected to the ”Component Data Search”
view Figure 5.4.

• The user enters atleast one search term in the present text fields.

• After clicking the search button, the search result will be displayed in
the same view in a separate table.

• By pressing on the details button of the founded components the user
gets redirected to the ”Detail Component Data” view which lists all
related files of a component. The detail view allows also to mark data
of the component for the transmission packet.

VECTO-GIT perspective
Before the search starts any given search term must be checked for disal-
lowed characters which are listed in the table 5.1 and must be replaced if
required. The given search terms will be performed over all branch names
as specified in section 5.4.

5.7.7 Component data, certificate, measured data can be
searched via the certification number and the Git
identifier of the component data

To make component data, certificate and measured data searchable via
certification number and the Git identifier of the the component data the

56

5.7 Use cases

following crucial points are necessary:

• The composition of the every branch name must be follow the specified
naming convention in section 5.3.

• Every commit which contains the component data file must be tagged
with two tags with the specified naming convention in section 5.3.

User perspective

• The user selects ”Search Component Data” in ”VECTO-GIT-Main”
view Figure 5.2 and gets redirected to the ”Component Data Search”
view Figure 5.4.

• The user enters the certification number and/or Git identifier of the
component data.

• After clicking the search button, the search result will be displayed in
the same view in a separate table.

• By pressing on the Details button of the founded components the user
gets redirected to the ”Detail Component Data” view which lists all
related files of a component. The detail view allows also to mark data
of the component for the transmission packet.

VECTO-GIT perspective
Depending on the given search term, the term will be search within the
certificate tag list or the Git identifier tag list.

57

5 Design

5.8 GUI Design

VECTO-GIT System Se�ngs

Search Component DataSave Component Data Export Component Data

Append Component Data Import Component Data

Figure 5.2: GUI Design Main View

Save Data

Remove All

Select File

Save

COMPONENT_DATA

MEASUREMENT_DATA

Remove

Remove

./comp.xml

./mdata.xml

File Component Data Type Ac�on

Figure 5.3: GUI Design Save Component Data View

58

5.8 GUI Design

Component Data Search

Scania

Scania

20t Truck Engine

30t Truck Engine

40t Truck Engine

Manufacturer Name:

Model Name:

Cer�fica�on Date:

Search

GIT Iden�fier:

Cer�fica�on Number:

Details

Details

DetailsScania

Append

Append

Append

Search Result

12.10.2006

05.05.2003

02.04.2002

Manufactuer Model Cer�fica�on Date Component Details Append Data

Figure 5.4: GUI Design Search Component Data View

59

6 Implementation

This chapter gives an overview of the actual implementation status of the
designed prototype for the management of the component certification
data.

6.1 Overview

For the development of the prototype the programming language C-Sharp
(C#) in the .NET Version 4.5.2 was used. The programming language was
chosen to facilitate the integration of the prototype into the VECTO simula-
tion tool if required.
In case of an integration, the prototype works like a portable database
which contains all relevant vehicle component files for a simulation. To fetch
data directly from the prototype database the interface which is currently
connected to the Graphical User Interface (GUI) can be adapted for this
case.
For the development of the GUI the Windows Presentation Foundation
(WPF) was used with Model View ViewModel (MVVM) design pattern.
To execute Git commands and to administrate the Git repository of the pro-
totype the .Net library LibGit2Sharp1 was used. The LibGit2Sharp library
is C# wrapper for the libgit22 library which is a pure C implementation of
the Git core methods. Both libgit2 and LibGit2Sharp are still under develop-
ment, which is the reason that not all Git commands are supported yet. The
architecture and functioning of the prototype is described in more detail in
the following sections.

1LibGit2Sharp https://github.com/libgit2/libgit2sharp
2libgit2 https://libgit2.org/

60

https://github.com/libgit2/libgit2sharp
https://libgit2.org/

6.2 Architecture

6.2 Architecture

The software architecture as shown in Figure 6.1 of the prototype VECTO
Git can essentially be split up into two main parts: the GUI part and
the repository management part. The ComponentDataManagement class
implements the interface IComponentDataManagement which is shown
in the listing 6.1 and represents the connection class between these main
parts. This interface defines the required functions which were defined in
the requirement list 5.2 of the design chapter.

1 ComponentDataCommit VerifySaveComponentData (
2 s t r i n g compDataFilePath , Branch stdValuesBranch ,
3 s t r i n g s tdValuesFi lePath , bool validateXml) ;
4

5 StandardDataCommit Veri fySaveStandardValueFi le (
6 s t r i n g f i l e P a t h , bool validateXml) ;
7

8 Certi f icateDataCommit Veri fySaveCert i f icateByComponentFi le (
9 s t r i n g c e r t F i l e P a t h , s t r i n g compFilePath ,

10 Branch publicBranch) ;
11

12 MeasurementDataCommit VerifySaveMeasurementData (
13 ComponentToSave componentToSave) ;
14

15 UserDataCommit VerifySaveUserData (
16 ComponentToSave componentToSave) ;
17

18 IEnumerable<VectoComponent> SearchVectoComponentsByTerms (
19 VectoSearchTerms searchTerms) ;
20

21 IEnumerable<VectoComponent> SearchAllVectoComponents () ;

Listing 6.1: IComponentDataManagement interface

61

6 Implementation

VECTO GIT

ComponentNaming

IComponentDataManagement

GUI

View Model ViewModel

Repository Management

Command

ComponentSearch ComponentCommit ComponentTransfer

Figure 6.1: VECTO GIT prototype architecture

62

6.2 Architecture

6.2.1 Repository Management Implementation

The repository management part of the prototype architecture as shown
in Figure 6.1 consists of four overall parts in which all classes with similar
tasks are grouped together. These four groups and their containing classes
and tasks are described in more detail in the following listing.

• Command
The command group contains all classes responsible for executing
Git commands via the LibGit2Sharp library, each class in these group
covers one git command. Furthermore, each class is derived from
the abstract Command class as shown in the listing 6.2. This base
class ensures that the respective command object has access to the
currently selected repository and that each command class implements
the respective Git command within the execution method.

• ComponentCommit
The component commit group uses the implemented command classes
to execute the commit of the respective component data type in its
structured form, as defined in the design and data partitioning section
5.3.

• ComponentTransfer
The component transfer group contains the TransferHandler class,
which are responsible for file handling to enable transport between
repositories.

• ComponentSearch
The component search group contains the search classes, which are
responsible for the search behaviour within the repository, as defined
in the search behaviour section 5.4.

63

6 Implementation

1 public a b s t r a c t c l a s s Command
2 {
3 protected Repository r e p o s i t o r y ;
4

5 protected Command(Repository r e p o s i t o r y)
6 {
7 t h i s . r e p o s i t o r y = r e p o s i t o r y . CheckValidRepository () ;
8 }
9 protected a b s t r a c t void Execute () ;

10 }

Listing 6.2: IComponentDataManagement interface

6.2.2 GUI

For the implementation of the Graphical User Interface (GUI) in WPF the
Model View ViewModel (MVVM) pattern was used. The MVVM consist of
the following three component types:

• Model
Represents the data access layer of the content that is displayed to the
user by the usage of the view model.
• View

Represents the view for the user where the data and all User Interface
(UI) elements will be shown. Events (click, select , etc.) of GUI ele-
ments as well as data changes of properties will be forwarded to the
ModelView by the use of the data binding mechanism of WPF.
• ViewModel

Represents the interaction class between model and view. The view
model provides data by public properties which will be bound by
data binding to the view. On change of the data, it will be forwarded
to the respective model. The view model also implements the ICom-
mand interface to enable an interaction with the UI elements (Button,
Checkbox, etc.) in the view.

64

6.2 Architecture

The implemented GUI of the VECTO Git prototype consists of six differ-
ent views which fulfil different purposes. The intended use of these are
explained in more detail in the following enumeration:

1. Save component data view
The save component data view shown in Figure 6.2 allows to save a
new component with the respective vehicle component file. To save the
vehicle component file the respective data type must be selected from the
combobox. The vehicle component file can be stored in combination with
other files like for example the related measurement files.

2. Search component view
The search component view shown in Figure 6.3 allows to search over
the existing components within the repository. The entered search terms
will be correlated by a logical AND. The available search terms are the
manufacturer name, the model name, the Git Id, the certification number
and the certification date.

3. Append component data view
The append component data view shown in Figure 6.4 allows to add new
files to an existing component. It also allows to view the existing files
within the component.

4. Detail component data view
The detail component data view shown in Figure 6.5 allows to view the
existing files within the component. It also allows to preselect existing
component files for transfer to other repositories.

5. Export component data view
The component data export view shown in Figure 6.6 contains the list of
preselected component files that can be exported to an archive file, which
will be used for the transfer to another repository.

6. Import component data view
The import component data view shown in Figure 6.7 enables to import
data into the repository from an archive file which was created by the
export function.

65

6 Implementation

Figure 6.2: VECTO Git prototype save component data view

Figure 6.3: VECTO Git prototype search component view

66

6.2 Architecture

Figure 6.4: VECTO Git prototype append component data view

Figure 6.5: VECTO Git prototype detail component data view

67

6 Implementation

Figure 6.6: VECTO Git prototype export component data view

Figure 6.7: VECTO Git prototype import component data view

68

7 Conclusion

This thesis introduced a way how the distributed version control system
Git can be adapted to use it as a database for vehicle certification data. The
key to this adaptation was to find a common structure which can be linked
with the data to be stored and can also be realized with the existing Git
functionalities.

The common structure adds additional meta information to the stored data
which gets lost due to the storage into the content addressed storage system
of Git. If a suitable structure can be found depends on the data and the
search requirements which should be supported. It has to be considered if
the additional meta information is not too much overhead and a database
would be the better solution.

69

Bibliography

[1] EU Comission. 2020 climate & energy package. url: https://ec.europa.
eu/clima/policies/strategies/2020_en (visited on 09/02/2019)
(cit. on p. 1).

[2] EU Comission. Vehicle Energy Consumption calculation TOol - VECTO.
url: https://ec.europa.eu/clima/policies/transport/vehicles/
vecto_en#tab-0-1 (visited on 09/02/2019) (cit. on p. 2).

[3] EU Comission. VECTO Workshop - Overview. url: https://ec.europa.
eu/clima/sites/clima/files/transport/vehicles/vecto/201811_

overview_en.pdf (visited on 09/02/2019) (cit. on pp. 5–7, 10).

[4] EU Comission. VECTO tool development: Completion of methodology
to simulate Heavy Duty Vehicles’ fuel consumption and CO2 emissions.
url: https://ec.europa.eu/clima/sites/clima/files/transport/
vehicles/docs/sr7_lot4_final_report_en.pdf (visited on 09/02/2019)
(cit. on pp. 7, 9).

[5] John Hammink. The Types of Modern Databases. Aug. 2019. url: https:
//www.alooma.com/blog/types-of-modern-databases (visited on
08/10/2019) (cit. on pp. 12, 13, 15).

[6] Edgar Frank Codd. “A relational model of data for large shared data
banks.” In: Communications of the ACM, Volume 13, Issue 10, pp. 377–
387. url: https://dl.acm.org/citation.cfm?id=362685 (cit. on
p. 11).

[7] Ameya Nayak, Anil Poriya, and Dikshay Poojary. “Article: Type of
NOSQL Databases and its Comparison with Relational Databases.” In:
International Journal of Applied Information Systems 5.4 (Mar. 2013). Pub-
lished by Foundation of Computer Science, New York, USA, pp. 16–19

(cit. on p. 14).

70

https://ec.europa.eu/clima/policies/strategies/2020_en
https://ec.europa.eu/clima/policies/strategies/2020_en
https://ec.europa.eu/clima/policies/transport/vehicles/vecto_en#tab-0-1
https://ec.europa.eu/clima/policies/transport/vehicles/vecto_en#tab-0-1
https://ec.europa.eu/clima/sites/clima/files/transport/vehicles/vecto/201811_overview_en.pdf
https://ec.europa.eu/clima/sites/clima/files/transport/vehicles/vecto/201811_overview_en.pdf
https://ec.europa.eu/clima/sites/clima/files/transport/vehicles/vecto/201811_overview_en.pdf
https://ec.europa.eu/clima/sites/clima/files/transport/vehicles/docs/sr7_lot4_final_report_en.pdf
https://ec.europa.eu/clima/sites/clima/files/transport/vehicles/docs/sr7_lot4_final_report_en.pdf
https://www.alooma.com/blog/types-of-modern-databases
https://www.alooma.com/blog/types-of-modern-databases
https://dl.acm.org/citation.cfm?id=362685

Bibliography

[8] Eric Brewer. “A Certain Freedom: Thoughts on the CAP Theorem.” In:
Proceedings of the 29th ACM SIGACT-SIGOPS Symposium on Principles
of Distributed Computing. PODC ’10. Zurich, Switzerland: ACM, 2010,
pp. 335–335. isbn: 978-1-60558-888-9. doi: 10.1145/1835698.1835701.
url: http://doi.acm.org/10.1145/1835698.1835701 (cit. on p. 16).

[9] Syed Sadat Nazrul. CAP Theorem and Distributed Database Management
Systems. 2019. url: https://towardsdatascience.com/cap-theorem-
and- distributed- database- management- systems- 5c2be977950e

(cit. on p. 16).

[10] Seth Gilbert and Nancy Lynch. “Brewer’s Conjecture and the Fea-
sibility of Consistent, Available, Partition-tolerant Web Services.”
In: SIGACT News 33.2 (June 2002), pp. 51–59. issn: 0163-5700. doi:
10.1145/564585.564601. url: http://doi.acm.org/10.1145/564585.
564601 (cit. on p. 17).

[11] CAP-Theorem. url: https://de.wikipedia.org/wiki/CAP-Theorem
(visited on 09/02/2019) (cit. on p. 17).

[12] Mike Chapple. Abandoning ACID in Favor of BASE in Database Engineer-
ing. url: https://www.lifewire.com/abandoning-acid-in-favor-
of-base-1019674 (visited on 09/02/2019) (cit. on pp. 18, 19).

[13] Content-addressable storage. url: https://en.wikipedia.org/wiki/
Content-addressable_storage (visited on 09/02/2019) (cit. on p. 20).

[14] Dipl Medieninformatiker BA Daniel Kuhn. Distributed Version Control
Systems. 2010 (cit. on p. 21).

[15] Ben Straub Scott Chacon. Pro Git. second edition. Apress, Berkeley,
CA, 1993 (cit. on pp. 22–27, 29).

[16] Neil McAllister. Linus Torvalds’ BitKeeper blunder. url: https://www.
infoworld.com/article/2670360/linus- torvalds-- bitkeeper-

blunder.html (visited on 09/02/2019) (cit. on p. 25).

[17] Brent Laster. Professional Git. John Wiley & Sons, Inc., 2017 (cit. on
pp. 26, 27, 31).

[18] Marc Stevens et al. “The first collision for full SHA-1.” In: Annual
International Cryptology Conference. Springer. 2017, pp. 570–596 (cit. on
p. 33).

71

https://doi.org/10.1145/1835698.1835701
http://doi.acm.org/10.1145/1835698.1835701
https://towardsdatascience.com/cap-theorem-and-distributed-database-management-systems-5c2be977950e
https://towardsdatascience.com/cap-theorem-and-distributed-database-management-systems-5c2be977950e
https://doi.org/10.1145/564585.564601
http://doi.acm.org/10.1145/564585.564601
http://doi.acm.org/10.1145/564585.564601
https://de.wikipedia.org/wiki/CAP-Theorem
https://www.lifewire.com/abandoning-acid-in-favor-of-base-1019674
https://www.lifewire.com/abandoning-acid-in-favor-of-base-1019674
https://en.wikipedia.org/wiki/Content-addressable_storage
https://en.wikipedia.org/wiki/Content-addressable_storage
https://www.infoworld.com/article/2670360/linus-torvalds--bitkeeper-blunder.html
https://www.infoworld.com/article/2670360/linus-torvalds--bitkeeper-blunder.html
https://www.infoworld.com/article/2670360/linus-torvalds--bitkeeper-blunder.html

Bibliography

[19] Jonathan Corbet. Moving Git past SHA-1. url: https://lwn.net/
Articles/715716/ (visited on 09/02/2019) (cit. on p. 33).

72

https://lwn.net/Articles/715716/
https://lwn.net/Articles/715716/

	Abstract
	Introduction
	Motivation
	Thesis Goals
	Thesis Organization

	Vehicle Energy Consumption Calculation Tool
	Regulation of the European Commission
	Possible options of HDV CO2 certification
	What is VECTO
	Certification Process Overview with VECTO
	Measurement of vehicle components
	Evaluation Tools
	Data around VECTO
	VECTO Simulation Tool

	Background
	Database
	Relational Databases
	NoSQL/Non-Relational Databases

	CAP Theorem
	ACID Consistency Model
	BASE Consistency Model

	Content-Addressed Storage

	Version Control System
	What is a Version Control System?
	Types of Version Control Systems
	Local Version Control System
	Centralized Version Control System
	Distributed Version Control System

	Git
	Git History
	Git Key Concepts

	Design
	Use cases around VECTO
	Requirements for certification of component
	Design and Data Partitioning
	Search behaviour
	Transfer behaviour
	Structure of the certification number
	Use cases
	Component data of a new certificated component should be stored in the storage backend
	Certificate of a component shall be stored in the storage backend
	Measured data of a component shall be stored in the storage backend
	User-defined data for a component shall be stored in the storage backend
	Standard values for a component shall be stored in the storage backend
	All component-related data (component data, standard values, certificate, measured data, user-defined data) can be searched via the manufacturer name, model name, and date
	Component data, certificate, measured data can be searched via the certification number and the Git identifier of the component data

	GUI Design

	Implementation
	Overview
	Architecture
	Repository Management Implementation
	GUI

	Conclusion
	Bibliography

