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Abstract

The number of robots used in industrial logistics is increasing every year.
Therefore, solving the assignment problem of different robots to given
transport orders and charging stations considering a variety of constraints
(for example higher or lower transport capacity) becomes more complex.
The companies BMW and incubed IT currently use imperative methods to
describe the related constraints and solve the assignment problem consid-
ering given optimality criteria. As the number of constraints is increasing,
the imperative solutions become more complex and harder to maintain.
Moreover, the solving of the assignment problem does not scale well due to
the rising number of considered robots.
In this thesis the assignment problem at BMW and incubed IT is modeled
and solved using the alternative declarative method Answer Set Program-
ming (ASP).
In a first step parts of the overall assignment problem where the ASP-based
solving could give a benefit were identified and the related assignment
strategies have been encoded in ASP. To improve the performance of the
initial ASP-based solving we need to adapt the problem encoding. It ap-
peared that encodings where the optimization strategy is represented using
constraints perform better than encodings with dedicated optimization cri-
teria. For a further performance improvement different heuristics for the
solving approach, provided by the ASP solver Clasp, were evaluated. In
order to handle the task assignment problems of both companies different
optimal solving approaches were obtained. While at BMW splitting-based
multithreading with a branch-and-bound-based optimization strategy was
the best performing approach, at incubed IT compete-based multithread-
ing with a Vsids-Heuristics for solving showed the best performance. The
runtime and quality of the results of the imperative and declarative im-
plementations for both settings were evaluated in extensive simulations. It
turned out that for task assignment problems with fewer constraints, like at
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BMW, imperative programs had a better runtime. However, the ASP-based
implementation at BMW gave a better quality of the results as a more com-
plex solving algorithm was encoded. For task assignment problems with
many constraints, like at incubed IT, the declarative implementation showed
a better performance. For very highly scaled problem instances the ASP
approach reached its performance limits finding the optimal assignment set.
But when using anytime algorithms in ASP a not optimal but still satisfying
assignment set was found within milliseconds.
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1. Introduction

These days global markets are broadly established and lead to increased
economic and more competitive markets. In order to stay competitive, pro-
duction plants have to be improved to fulfill the demands for more efficiency,
higher flexibility and an increased production throughput.
These improvements do not only affect the various production steps but
also the field of intralogistics.
Currently many logistics tasks are performed by man-driven tugger trains
and forklifts. Delivering tasks are predefined and handled in a fixed order.
Some logistics tasks are undertaken by automated intralogistics robots.
As in the last years technologies for laser scanning and powerful proces-
sors improved, and parts became more favorable, autonomous robots are
now more and more reliable. In the last few years a couple of different
autonomous logistic solutions came up to replace the existing logistics
systems. The centralized logistics management can be transformed in a par-
tially decentralized one. While the assignment of orders and management
of charging and parking strategies is managed centralized, the routing is
taken over decentralized by every robot itself.

1.1. Research Objective

Incubed IT develops software to operate autonomous, self-navigating and
co-operative mobile robots. The BMW Group increases the number of au-
tonomous robots in its plants with self-developed robots and software.
Both companies are working with a cloud-based Fleet Management System
(FMS). The robots navigate and drive decentralized to perform given trans-
port tasks. Orders that have to be delivered and assignments of robots are
managed centralized at the FMS. By that the complete in-house delivering

1



1. Introduction

process is taken over by the FMS and autonomous robots.
The intralogistics management at BMW Group and incubed IT is a very
high scaled problem with critical constraints that have to be maintained. For
example a requested good must be delivered to the production line at BMW
before a hard time limit is reached.
At the beginning of the development process both companies worked on
small-scaled scenarios. By scaling up the FMS with an increased number
of open orders and assignable robots the performance of the assignment
algorithm has to be considered more. Additionally, with an increased appli-
cation field for the autonomous robots the number of rules and constraints
for an assignment increase.
In recent research projects declarative programs were successfully used for
the solving of assignment problems. The result of these research projects
showed a promising approach for the management of the FMS at BMW and
incubed IT. In this thesis the declarative method Answer Set Programming
will be used in the existing FMS at BMW and incubed IT to model and
solve the task assignment problem. The resulting implementation will be
evaluated regarding the applicability in the FMS at incubed IT and BMW.

1.2. Contribution

The objective of this master thesis is to evaluate the benefit of using a
declarative modeling method and a high-performance solver for the multi-
robot assignment problem. Thus, the existing systems at incubed IT and
BMW are analyzed. Elements of the system in where declarative methods
could provide a benefit are identified. After evaluating the possibilities of
ASP to replace these parts of the system, declarative programs are set up
for BMW and incubed IT. The focus is laid on an easy to understand and
maintainable representation and the performance of the solving. Therefore
different solving approaches will be analyzed. The new program will than
be compared to the existing implementation in regards of the runtime and
the quality of the provided solutions. The result will be used to give an
outlook of the potential and limits of ASP as an modeling paradigm for
assignment problems.

2



1.3. Document Structure

1.3. Document Structure

The thesis focusses on the improvement of the current FMS of the au-
tonomous intralogistics transport robots at incubed IT and BMW Group.
One main challenge is thereby the replacement of the current task assign-
ment strategy.
In chapter 2 of this thesis different task assignment problems are introduced.
The general definitions are extended by problem definitions focusing on the
assignment of robots. Moreover, the imperative and declarative program-
ming paradigms are introduced and compared. In section 2.3 the declarative
method Answer Set Programming is presented together with information
about the solving approaches which can be used to solve the given problem.
In this thesis Potassco, an answer set solving collection is used. This collec-
tion is introduced as well as its input language is explained in detail.
In chapter 3 related research is discussed. Different strategies for an optimal
task assignment are shown and application areas of ASP, where declarative
methods provide a benefit are listed as well.
In chapter 4 the intralogistics strategies at BMW and incubed IT are pre-
sented.
Based on the provided related research and the introduction in the existing
intralogistics strategies at BMW and incubed IT a motivation why ASP
could provide a benefit in the current system is given in chapter 5.
In chapter 6 an ASP-based implementation of the task assignment for the
existing fleet management systems (FMS) is presented. ASP programs are
implemented in areas in the FMSs, where declarative programs can be a
benefit. Steps to increase the performance are explained and the integration
of the ASP encoding in the existing FMSs is highlighted.
In chapter 7 the results of the implemented solution using ASP for the
assignment problems are shown. The performance of the modeling and
the quality of the resulting assignments are compared with the existing
imperative implementations. The implementation effort of the new ASP
encoding is analysed as well as the effort of the integration in the overall
system.
In chapter 8 the results are discussed, and in chapter 9 an outlook is pro-
vided.
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2. Prerequisites

This chapter describes some prerequisites that are relevant for this thesis.
After a general description of the task assignment problem approaches for
solving one-dimensional and multi-dimensional task assignment problems
are introduced. Furthermore, an outlook will be given on solutions to robot-
specific task assignment problems.
In the second section languages used to describe task assignment problems
are stated and compared. In the third section one of these languages, namely
the declarative method Answer Set Programming, will be explained in
detail.

2.1. Task Assignment Problem

Based on a general description provided by [9, p. 1] the Task Assignment
Problem (TAP) can be described with the following example:
A set of n jobs (i = 1,. . . , n) and a set of n workers (j = 1,. . . , n) are given.
Every worker can do every job in a known duration. This time can be
defined individually for every job-worker combination. The task assignment
problem focuses on the optimal assignment of jobs to workers to fulfill an
optimization criterion, like the minimization of the production time.
More formally described is a set of pairs of persons and objects defined as
an assignment. Thereby every person i can be only assigned to one object j
and every object j can be assigned to only one person [7, p. 9].
To solve TAPs optimally a rating matrix R = (rij) , i, j P N0 is introduced.
In the matrix every job-worker pair (i,j) is graded with a rating element rij,
representing the assignment costs with positive integers [45]. Such a rating
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element can, for example, be the time a worker j needs to finish the job i,
like it is in the example above. Given the rating matrix

R =

 r1,1 ¨ ¨ ¨ rn,1
... . . . ...

r1,n ¨ ¨ ¨ rn,n

 (2.1)

The TAP is completely solved by choosing a set of n assignments. To solve it
optimally, the set has to be chosen in a way that the sum of rating elements
for all n assignments is optimized.
To solve the optimization problem, an objective function is introduced. This
function is, depending on the optimization goal, minimized or maximized
and given by the equation

n
ÿ

i=1

riφ(i) (2.2)

where φ(i) is a bijective mapping of the two sets jobs and workers with n
elements [9].
The complexity of the assignment problem depends on the number of
optimization criteria that affect the dimension of the rating matrix and by
that the dimension of corresponding objective function. The one-dimensional
assignment problem has been introduced with the example at the beginning
of this chapter: Given a set of n items and n other items, the optimal solution
can be found using a one-dimensional objective function (see equation 2.2).
Problems in this dimension can be solved by polynomial-time algorithms,
like the Hungarian Method (see section 2.1.1).
Problems with more than one optimization criterion are described by multi-
dimensional objective functions and called multi-dimensional assignments
problems. Example for such a multi-dimensional assignment problem, the
timetabling problem, is provided by [9, p. 8]: Given a set of n courses, n time
slots and n available rooms, a three-dimensional rating matrix is set up.

R = rijk , i, j, k, rijk P N0 (2.3)

Solving such multi-dimensional assignment problems is NP-hard.
In the next chapters approaches for solving the one-dimensional and multi-
dimensional assignment problem are presented. Another focus is also laid
on the specialised task assignment of industrial transport robots.
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2.1.1. One-Dimensional Task Assignment Problem

To find the optimal solution for one-dimensional task assignment problems
a various number of solution approaches is introduced in literature. Some
of the most popular once are introduced in this work.

Solving Approach: Integer Linear Programming

One approach is the Integer Linear Programming [49]. To solve the TAP,
the objective function of the task assignment problem (see equation 2.2) is
minimized, leading to the linear sum assignment problem [9, p.5]

minφPSn

n
ÿ

i=1

riφ(i) (2.4)

where Sn is the set of all permutations.
In order to solve this problem for the one-dimensional assignment problem,
two sets and the rating matrix R = rij with

(i, j = 1, 2, ..., n). (2.5)

are given and an additional binary matrix X is introduced [9]:

X = (xij) =

#

1 if j = φ(i),
0 otherwise,

(2.6)

Using this binary matrix, the TAP can be modelled as followed [49]:

min
n

ÿ

i=1

n
ÿ

j=1

xijrij (2.7)

s.t.
n

ÿ

i=1

= xij = 1, (2.8)

n
ÿ

j=1

= xij = 1. (2.9)

7
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For a better understanding a given TAP will be solved using this introduced
model. The problem consists of workers wi (i = 1, ..., n) and jobs tj (j =
1, ..., n). The rating matrix R represents the time a worker needs to finish a
job. The aim of the TAP is to reduce the total sum of working times required
by every worker to finish his job.
In equation 2.7 the sum of rating elements rij of all assigned sets (worker
- jobs) is taken and minimized. To ensure the use of only assigned rating
elements equation 2.6 sets xij to zero for all unassigned rows and columns.
Equation 2.8 and equation 2.9 are additional constraints. Equation 2.8 is
fulfilled if and only if every task j is be taken over by exactly one worker.
Equation 2.9 states if every worker is assigned to only one and not multiple
or no jobs.
This model is the first approach to solve the TAP but has high computation
costs. Numerous studies introduced solution approaches for the TAP with
decreased computational costs, for example the Hungarian Method [45] or
the Auction Algorithm [7].

Solving Approach: Hungarian Method

The Hungarian Method, first introduced by J. W. Kuhn [45], is a primal-dual
solution approach for the TAP. To solve the TAP with a given nxn rating
matrix R following steps, stated by M. Flood [24], have to be executed:

1. The smallest element of R is subtracted from all other elements in the
rating matrix. The resulting matrix R1 contains positive elements and
at least one null element.

2. A minimal number of lines is drawn through the rows and columns of
the matrix R1, covering all null elements. In case the number of lines
equals the size n of the rating matrix a solution is found: There are
no two null elements in the same line, and the positions of all null
elements in the rating matrix R1 constitutes the solution.

3. In case the number of lines is smaller than n, the optimal allocation is
not yet found. The smallest element s1 in the rating matrix that is not
covered by a line is taken and added to all elements covered by a line
and subtracted from all elements of R1. The addition is necessary to
avoid negative costs in the matrix.

8
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4. Step 2 and 3 of the algorithm are repeated until the number of lines of
step 2 equals the number of null elements.

A practical example of the Hungarian Method is given in figure 2.1. In
there a 3 x 3 rating matrix is given, and the optimal assignments of jobs j to
workers i have to be found.

rij job 1 job 2 job 3

worker 1 10 20 70

worker 2 35 25 35

worker 3 70 10 50

(a) Initial rating matrix, smallest elements are marked blue

rij job 1 job 2 job 3

worker 1 0 10 60

worker 2 25 15 25

worker 3 60 0 40

(b) Step 1: The smallest element (rij = 10) is sub-
tracted from all elements

rij job 1 job 2 job 3

worker 1 0 10 60

worker 2 25 15 25

worker 3 60 0 40

(c) Step 2/1: Lines are drawn through rows and
columns covering all null elements

rij job 1 job 2 job 3

worker 1 0 10 35

worker 2 25 15 0

worker 3 60 0 15

(d) Step 3/1: Smallest uncovered element of rating
matrix (rij = 25) is added to all line-covered
elements and subtracted from all elements

rij job 1 job 2 job 3

worker 1 0 10 35

worker 2 25 15 00

worker 3 60 0 15

(e) Step 2/2: Drawing lines through rows and
columns covering all null elements. Number
of lines equals matrix dimension n, solution is
found

Figure 2.1.: Exemplary solving approach for a TAP using the Hungarian Method

After applying the just introduced algorithm steps for the Hungarian
Method the optimal assignment is shown in table 2.1.
Using the Hungarian Method to solve the TAP instead to the computational

approach shown in equation 2.4 the runtime can be reduced to O(n4) using
Floods approach. The currently fastest algorithm for the Hungarian Method
has a runtime of O(n3) [9].
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Worker Assigned Job Costs
worker 1 job 1 10

worker 2 job 3 10

worker 3 job 2 35

Table 2.1.: Optimal assignment for the assignment problem in figure 2.1

Solving Approach: Auction Algorithm

A second approach for solving the TAP is the Auction Algorithm. This
method is first introduced by Bertsekas [7] in 1988 and an consists of two
phases for every iteration step. These phases are the following:

• Biding Phase: For every unassigned worker i a job j is found which
offers the maximum value aij ´ pj, where aij is the integer value of
worker assignment and pj is the price for the worker to be assigned to
the job.
A biding value γi is computed using the following formula:

γi = vi ´wi (2.10)

where vi is the best object value

vi = maxjvPA(i)(aijv ´ pjv) (2.11)

and wi is the second-best object value

wi = maxjwPA(i),jw‰jv(aijw ´ pjw) (2.12)

If there exists only one object in A(i) and wi can’t be defined using the
equation 2.12 wi is set to ´8.
• Assignment Phase: For all jobs j that are set to be the best object for a

worker the bidding values are compared. The highest bidder is chosen
and the corresponding job is assigned to the bidding worker.

The algorithm is continued until all workers are assigned.
The runtime of this algorithm highly depends on the input data. The worst
case runtime O(n3) is the same as for the Hungarian Method [9].
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2.1.2. Multi-Dimensional Assignment Problem

Multi-dimensional Assignment Problems are an extension of the generalized,
one-dimensional task assignment problem. Such problems are described
with more than one constraint.
Starting at a one-dimensional TAP and adding an additional optimisation
parameter, the TAP becomes a multi-dimensional Assignment Problem. 3-
dimensional Assignment Problems can be grouped in two models, the axial
and planar 3-index assignment problem [9]. The graphical presentation of
the constraints of both problems can be seen in figure 2.2. In both images
the three constraints ri, rj and rk (with i, j, k = 1, 2, ..., n) are represented by
the coordinate axes. Whereas in axial problems only two permutations are
given in planar systems n ą 2 permutations have to be considered.

(a) axial 3-index assignment problem (b) planar 3-index assignment problem

Figure 2.2.: Graphical representation of constraints for 3-index assignment problems [9,
p. 306]

The axial 3-index assignment problem has the following rating matrix [9]:

R3x3 = rijk, i, j, k, rijk P N (2.13)

The objective function with two permutations φ and ψ can be stated as

minφ,ψPSn

n
ÿ

i=1

riφ(i)ψ(i) (2.14)

where Sn is the set of all permutations [9].
The integer linear program of the axial 3-index assignment problem is
defined as [9]:

min
n

ÿ

i=1

n
ÿ

j=1

n
ÿ

k=1

rijkxijk (2.15)
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s.t.
n

ÿ

j=1

n
ÿ

k=1

= xijk = 1, (i = 1, 2, ..., n) (2.16)

n
ÿ

i=1

n
ÿ

k=1

= xijk = 1, (j = 1, 2, ..., n) (2.17)

n
ÿ

i=1

n
ÿ

j=1

= xijk = 1, (k = 1, 2, ..., n) (2.18)

The solving of this problem is NP-hard.

2.1.3. Multi-Robot Task Allocation

In this section an overview of multi-robot task allocation, a special form of
the multi-dimensional assignment problem, is provided.
Aim of the multi-robot task allocation (MRTA) is an optimal assignment
of a set of robots to a set of tasks under consideration of robot-specific
constraints. The complexity and appropriate solving approaches of the
task assignment problem depend on these constraints. The MRTA can be
visualized in 3 dimensions, representing the types in which the MRTA is
classified. Looking at figure 2.3 these types are the following [40]:

• Robot Type: Single-Task (ST) robots execute one task at a time, Multi-
Task (MT) robots handle multiple tasks simultaneously.
• Task Type: Single-Robot (SR) tasks require one robot to be finished,

Multi-Robot (MR) tasks need multiple robots to be performed.
• Allocation Type: If there is only instantaneous allocation of tasks to

robots possible for the given set of robots, tasks and environment, the
Allocation Type is called Instantaneous Assignment (IA). A Time-
extended Assignment (TA) is an allocation type where current and
future tasks are assigned to robots.

Depending on the combinations of types, the solving of MRTA problems
is more or less difficult. In the following different MRTA-dimensions with
suitable solution approaches are introduced.
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Figure 2.3.: Multi-robot task allocation dimensions [44]

ST-SR-IA This is a straightforward multi-task allocation and can be bro-
ken down to the 1-dimensional task assignment problem (see section 2.1.1).
Instead of workers to jobs robots are assigned to tasks. Multiple solving
approaches, for example the Hungarian Method or the Auction Algorithm,
exist for the 1-dimensional TAP and have been introduced prior. The prob-
lem can be solved using one of the two algorithms in O(n3) time [40].

ST-MR-IA In this scenario, a robot cannot finish a task alone but needs
one or more other robots to complete this task. It can be best solved using
heuristic approaches, as otherwise the calculation is NP-hard [40].

MT-SR-IA In this problem one robot executes multiple tasks simultane-
ously. From a mathematical point of view, the problem can be solved in the
same way as the ST-MR-IA problem: The multiple components element MR
of the ST-MR-IA problem is replaced by the multiple components element
MT of the MT-SR-IA problem [44].

MT-MR-IA To finish a task a set of robots has to work on it. Additionally,
every robot is capable of working on more than one task [44]. Solving this
problem is NP-hard. As the problem structure is equal to the set covering
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problem, it can be solved with the same algorithms, for example the Greedy
approximation algorithm [40].

ST-SR-TA This scenario describes the same problem as ST-SR-IA with
an additional planning component. To determine the schedule for every
robot is an NP-hard problem [44]. For a reduction of the computational
costs Gerkey [40] mentions another solution approach: First, every robot is
assigned to one task. After finishing the first task, every robot is assigned to
one of the remaining tasks until all tasks are finish. With that, the runtime
reduces to the ST-SR-IA runtime of O(n3).

ST-MR-TA This scenario combines the multi-robot task type with a
scheduling component. Solving this problem is NP-hard. To reduce the
computational costs the ST-MR-TA problem can be solved similarly to the
ST-MR-IA problem. After assigning all robots to a task, the remaining tasks
can be assigned in an online-fashion as soon as the robots finished the
previous task [40].

MT-SR-TA In this scenario a scheduling problem for multi-task robots
and single-robot tasks has to be solved. Reversing robots and tasks the
ST-MR-TA problem represents the problem. Due to that this problem can be
solved using the same approach [40].

MT-MR-TA This problem can be seen as an extension of the MT-MR-IA
problem: Every robot can execute multiple tasks in parallel, and a subset of
robots is needed to fulfill one task. A scheduled assignment has to be found
for this scenario. This problem is NP-hard and not even heuristic approaches
are capable of solving this problem. As already the MT-MR-IA problem
is NP-hard, not even the avoidance of planning by an online-fashioned
assignment can reduce the computational costs [40].

As seen, the multi-robot task assignment can be broken down into eight
scenarios. Less complex MRTA problems, like ST-SR-IA and ST-SR-TA, can
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be solved in polynomial time using approaches like the linear sum assign-
ment problem (see equation 2.4). The solving of more complex scenarios
is NP-hard. To reduce the average computation costs for these scenarios
heuristic approaches are considered. A further reduce can be achieved using
an online-fashioned assignment for problems in the allocation type dimen-
sion of time extended assignments (TA).

2.2. Programming Paradigms

To solve the just introduced TAP different programming languages can be
used. The programming languages are split into imperative and declarative
paradigms. The difference between the two programming paradigms is the
general handling of the problem. Using imperative methods in the code, it
is described how to solve the problem with search-based algorithms like the
Hungarian Method or the Auction Algorithm. Using declarative methods it
is described what the problem is, but the solving is taken over by underlying
heuristics and solving algorithms [5, 31].
The benefits and challenges of both paradigms are described further in the
next sections.

2.2.1. Imperative Methods

Imperative languages (lat. imperare = to command) are instruction-oriented
languages. The fundamental strategy is the assignment of values to vari-
ables. Problems are solved by a sequence of instructions. The order of the
execution of instructions is relevant for a successful problem resolution [23].
The following code example is written in the imperative programming
language C#. In there a list of integers is provided. All numbers that are
below the maximum value 5 are saved in a new list. The foreach-statement
is a sequence of instructions, in where every value of the list is compared to
the value 5 and if the value is smaller than 5 it is assigned to the variable
output.
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Listing 2.1: C# Algorithm for sublist assembling

1 Lis t<in t> input = new L is t<in t> { 2 , 4 , 6 , 8 , 1 0 } ;
2 Lis t<in t> output = new Lis t<in t> {} ;
3 foreach ( var val in input ) {
4 i f ( val < 5 )
5 output .Add( val ) ;
6 }

Imperative languages are split in two subsets: The object-oriented and
procedural languages. Popular procedural languages are for example C and
PASCAL. Object-oriented languages are next to other C# and Java [59].

2.2.2. Declarative Methods

Declarative languages (Latin declarare = to disclose) are languages oriented
on the describing of problems. In opposite to imperative languages they
contain no instructions but only mathematics functions [23]. Problems are
characterized by describing the environment and specific conditions of the
solution with expressions and rules. The solving process of the problem is
taken over by a specific solver that runs in the background [31].
A small code example, written in the Answer Set Programming (ASP) syntax,
is given below. As in the code example 2.1 a list of input values is given.
All values below the maximum number 5 are saved in a new list. In this
code no sequence of instructions is required to solve the problem. Only a
problem description is given in the second row of the code snippet. Internal
solvers overtake the problem-solving process.

Listing 2.2: ASP Algorithm for sublist assembling

1 input ( 2 ; 4 ; 6 ; 8 ; 1 0 ) .
2 output ( I ) :´ input ( I ) , I < 5 .

Popular declarative languages are ASP, PROLOG and CSP [59].
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2.2.3. Comparison of the Methods

Declarative programs describe what the problem is, whereas imperative
programs describe how to solve the problem. Therefore the coding structure
of declarative methods is usually shorter and more concise than the coding
structure of imperative methods. That leads to programs that can be set
up and extended faster than imperative programs. By that they are easier
to understand and errors in the code can be found faster, as not as much
code has to be reviewed. An exception are problems that are difficult to be
described by rules and expressions, as for these problems the complexity of
the declarative coding structure can become larger than the imperative one
for describing how the problem is solved.
Task assignment problems consist of only one rule, the assignment of every
worker to a job. Possible solutions are often restricted by some expressions,
like an optimization condition or the consideration of an environment
in where some workers can do only some jobs. These problems can be
described with a lean declarative program.
In the previous chapter different approaches for solving the task assignment
problem are introduced. Depending on the problem environment the solving
of the problem with imperative methods, using the introduced approaches,
can be NP-hard. Using declarative methods the solving process is taken over
by internal solvers. Declarative programs with powerful solvers running in
the background are a promising approach to solve task assignment problems
[3, 27, 59].

2.3. Introduction to Answer Set Programming

The difference between imperative and declarative programming languages
has just been introduced. A well-known declarative language is Answer Set
Programming (ASP), often also called AnsProlog or simply A-Prolog [5]. This
logic programming language is particularly suitable for solving

knowledge-intense combinatorial (optimization) problems [43,
p. 1].
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The language is based on answer set semantics, as the name Answer Set
Programming suggests. The solution of a given problem is provided as an
output of answer sets [8].

2.3.1. Motivation for ASP

The motivation for the use of ASP is the simple expression of search and
optimization problems with a collection of rules in logic format. Given an
input that describes the initial problem using constraints and rules, the
problem is solved in two steps [31]:

1. A grounder is applied to the initial program and turns it into a finite
propositional form.

2. A solver uses this propositional form to compute solutions for the
problem and gives back the solutions in form of answer sets.

The specific characteristic of declarative methods, to describe what the prob-
lem is, is valid for ASP as well. As usual for declarative languages, the user
describes the problem but does not solve it. Instead different solvers can be
applied to find the optimal answer set for the given problem.
A remark will be given on the general layout of ASP, the grounder and
solver respectively. It will be looked into the language syntax and remark
on integrated development environments and application programming
interfaces will be provided.

2.3.2. Differentiation to Other Declarative Languages

ASP is only one of many declarative methods. In this section the main
differences and application fields of ASP compared to the two other popular
constraint solvers Prolog and CSP are shown.
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ASP and Prolog

Prolog is one of the most common logic programming languages. The
syntax of Prolog and ASP are very similar, thereby ASP is often also called
AnsProlog or AProlog, short for Answer-Set-Prolog [5].
Comparing Prolog with ASP some major differences can be observed. In
ASP database techniques lead to a basic data structure of tuples and terms.
In Prolog nested terms and variables via unification are the basic data
structure. Comparing the solution encoding, Prolog computes solutions
using query answering, whereas in ASP the solution is encoded in answer
sets. In other words, Prolog does proof finding, ASP does model finding.
Another major difference between both logic programs is the matter of
ordering. In ASP the ordering of literals in the rule bodies does not matter.
In Prolog a modified order of literals cause different solving steps. This
leads to the ability of the user to control the program execution and can
define how a solution can be found. In ASP the programmer is not allowed
and able to control the solution search [8, 31].
Some other difference can be found observing the structure of rules. In ASP
disjunctions in the head of rules are allowed, in Prolog they are not. The
ordering of literals in the body of a rule does not influence the solving of
the ASP, but in Prolog the literals are processed from the left to the right
and by that the ordering takes influence in the solution finding process [5].
Summarising the above it can be said, that programming is easier with
ASP than Prolog, as the order of literals and constraints does not affect the
solving process. By that the programmer does not take influence on the
solving structure. A language that is used to solve assignment problems
must not only return the proof that an assignment is possible but also the
corresponding answer set. As Prolog is proof finding, the ASP as model
finding algorithm fits the needed requirements for assignment problems
better.

ASP and CSP

For Constraint Satisfaction Problems (CSP) the language syntax is the fol-
lowing: Given are a set of variables and a set of possible values for each
variable. The values are often called the domain of a variable. Two types of
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constraints are set up based on the variables and values. One constraint type
defines allowed combinations of variables and values. The other constraint
type defines the forbidden combinations of variables and values [5].
For a CSP answer sets are generated by assigning variables to finite domains
of values and solving the CSP over these finite value domains. In ASP a
grounder compiles the program in a propositional form. A solver is finding
a problem solution over binary domains, where all variables are represented
as propositional atoms. The solving over a binary domain in ASP in opposite
to the solving over the finite value domain in CSP leads to a more efficient
solving process in ASP.
This more efficient solving process is influenced additional on the language
syntax. The CSP supports a high-level language following mathematical
notations. These notations come with many different sets, functions, and
relation theorems. On the opposite ASP consist mainly of natural language
statements and definitions with some additional syntactic sugar, what makes
this syntax easier to understand and allows an easier modeling [8].
For problems that required mathematical notations the use of the CSP in-
stead of ASP could give an benefit, but these notations are rarely used for
multi-robot task allocation problems. The runtime and required computa-
tional costs for the solving of CSPs over finite value domains is expected
to be worse than the runtime and costs for the solving of ASP programs
over binary domains. To solve multi-robot task assignment problems ASP is
highly likely the more suitable declarative method than CSP.

2.3.3. Solving Architecture

In this chapter the solving architecture of Answer Set Programming is
introduced.
The basic solving process of ASP is shown in figure 2.4. A given problem is
first modelled in a logic program with stable model semantics (see section
2.3.5). For the solving process in a first step a grounder encodes the given
logic program in a propositional form. A solver uses this propositional
program to compute stable models. After the solving process is finished, the
stable models are used to decode the solution of the given problem [31].
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Problem

Logic
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Solution

Modeling
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Interpreting

Figure 2.4.: The solving process of ASP [31, p.3]

Grounder

The grounder translates a logic program into a variable-free Boolean pro-
gram. The requirement therefore is a logic program with stable model
semantics. The size of the given logic program is often expanded expo-
nentially to the size of the grounded program. As the grounded program
processes the problem sets to the solver the performance of the solving
process depends significantly on the grounder [36].
Mostly the grounders Lparse [56], DLV [46] and Gringo [28] are mentioned
and used in research projects, but recently another promising grounder,
named I-DLV [12], was released.

Lparse Lparse is a very early grounder and is based on the input of ω-
restricted programs [57].
The ω-restriction has impact on the supported language syntax. Every
variable that is used in a rule has to occur in a body literal [30]. This literal
has to be positive and the corresponding predicate must not be recursive
mutual and is not defined with choice rules [17, p. 88]. Lparse supports
priorities to weight constraints. This priority is set depending on the input
order of the constraints but cannot be chosen variably.
Lparse supports basic literals, the extended literals weight and constraint
rules and the additional conditional literal [56]. The output-language of
Lparse is Smodels, an intermediate format which can pass the program
from the grounder to the solver and is supported by many different solvers
[31]. Smodels has a Domain-restricted rule syntax:
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Every variable in a rule must occur in a positive Domain predicate,
which are predicates not defined via negative recursion or using
’choice rules’ [17, p. 88].

DLV DLV is the only grounder presented in this work running with only
one specific solver, namely the DLV solver. The use of the grounder DLV
with another solver is not possible [25]. The input program has to be a
logic program with stable model semantics but must not be ω-restricted as
required for the Lparse grounder [31].
The language syntax of DLV has in comparison to Lparse some improve-
ments: This grounder is the first introduced grounder supporting disjunctive
headers [42]. For all variables that are used in rules it is defined that they
have to occur in a body literal. In distinction from Lparse the literal does
not have to be positive. Furthermore, the predicate of the body has not to
be a built-in comparison predicate [17, p. 88].
Like Lparse the DLV grounder supports priorities. Therefore, weak con-
straints are used [25].

Gringo Gringo is a development based on the Lparse grounder. Both use
the same output language Smodels, but Gringo does not require restricted
input programs as Lparse does. Like for the DLV grounder, the program
has to be a logic program with stable model semantics to be solved [31].
As Gringo is based on Lparse the language semantics of this grounder is
based on the one of Lparse [31]. Both follow the ASP-Core-2 language (see
[11]), but with Gringo additional aggregates are implemented, for example
the aggregate functions #sum , #count and #avg.
As for the two previous introduced grounders priorities can be set in Gringo.
The different weighting of priorities does not depend on the input order
like in Lparse, but on weighting parameters that can be set individually for
every priority.

I-DLV The I-DLV is one of the newest developed grounders and is based
on DLV. The new grounder provides some improvements. First of all annota-
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tions, but also the availability of external computations and interoperability.
Furthermore, this grounder can be used with different solvers [12, 25].

Conclusion Comparing the just introduced grounders the following can
be observed: The grounder Gringo and Lparse use the output language
Smodels, the DLV grounder however uses a specific output language of
DLV. As a wide range of solver use the input language Smodels, Gringo
and Lparse can be combined with a wide variety of solvers. In the opposite,
the DLV grounder can only be used with the corresponding DLV-solver.
Using the grounder Gringo, a couple of aggregates can be applied that
are not supported by Lparse. As this leads to a simpler implementation of
problems Gringo is the currently most popular grounder [25, 42]. The newly
introduced I-DLV is not widely in use, but first research projects show that
this grounder is a promising approach.
Taking all arguments into account, the grounder Gringo is the best choice
of a state-of-the-art grounder. Not only the output-language but also the
numerous aggregate functions and priority implementations seem to give
promising implementation possibilities.

Solver

The finding of answer sets for a given problem is NP-complete [17]. Dif-
ferent solvers have been developed to reduce the computational costs for
the finding of answer sets. They use different algorithms and solving ap-
proaches. On the next pages the most-common solvers are introduced and
their difference are discussed.

Smodels The solver Smodels is one of the first developed solver for Answer
Set Problems [36].
The solving algorithm of Smodels is based on the Davis-Putnam-Logemann-
Loveland (DPLL) procedure. This backtracking-based search is extended by
interference rules to be suited for ASP. During the backtracking search the
Smodels solver checks for unfounded sets and builds a material implication
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graph. With that the solver monitors the number of unfounded sets [34,
35].

DLV The DLV solver is similar to Smodels an early developed solver for
ASP. The solver is, similar to Smodels, based on the DPLL algorithm and
extended by interference rules to be suited for ASP [25, 31]. The solver is, in
opposite to Smodels, extended with lock-back heuristics and back jumping
techniques [36].

WASP WASP is, in opposite to Smodels and DLV, based on the Conflict-
Driven Clause Learning (CDCL)-style approach. Characteristics of the CDCL
procedure are the backjumping-based search, the looping of no-goods and
a conflict analysis [31].
WASP is the first solver that introduced an anytime algorithm for cautious
reasoning and an stratification technique. In early versions WASP used a
modified DLV-grounder, but starting with WASP 2.1 the grounder Gringo is
used [2].

Clasp The Clasp solver combines multithread solving mechanisms of
CDCL with non-chronological backtracking [36] and cutting-edge tech-
niques, like heuristics, to solve Boolean constraints [34].
A significant number of variants of Clasp have been published in recent
years. One variant is the solver Claspar, in where Clasp is distributed on
large clusters, or Claspfolio which combines elements of the ASP solver Clasp
and the CSP solver Gecode [31, p. 150].
The solving process of Clasp can be modified by choosing specific heuristics
that are used in the solving process. This can lead to an improvement in
the computational costs for the solving process, as some heuristics fit some
problems better than others. The different heuristics that can be used in
Clasp are introduced below.

• Vsids: This look-back heuristic is derived from the CDCL-based Chaff-
like SAT solver [48]. Variables are chosen to be used during the
decision-making progress depending on the global activity of these
variables [33].
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• Berkmin: Like the Vsids heuristic Berkmin is a look-back heuristic de-
rived from the CDCL-based Chaff-like SAT solver. The used algorithm
is an improved version of the Vsids approach. The scope of variables
that are used for decision making depends not on the globally most
active and free variables, but on the age and activity. The variables
that are most recently used in unsatisfied conflicts, but not yet solved,
are selected. Thereby Berkmin reduces the impact of previous conflict
causes [33, 41].
• Vmtf: Another modification of the Vsids heuristic is Vmtf. This look-

back heuristic is not a Chaff- but a Siege-like decision heuristic. The
difference to Vsids and Berkmin is the selection of a scope that is
similar to an online sorting algorithm [33, 48].
• Unit: This heuristic is a Smodels-based heuristic [55].
• None: By selecting this solving approach an arbitrary static ordering

is applied [29].
• Domain: With this argument, user-domain specific heuristics can be

applied. Next to others a command line structure-oriented heuristic
can be set up, specifying the modifier and the atoms the modification
adjust. For instance by choosing the domain heuristic with the option
–dom-mod=5,8 a false statement is applied to all atoms that appear in
optimization statements [29].

Not only heuristics can be set to improve the solving process but also
different solving mechanisms are provided by Clasp. Some of them are
introduced below:

• Opt-strategy: This argument modifies the Smodels enumeration algo-
rithm. It can be chosen between a branch-and-bound-based and an
unsatisfiable-core-based optimization. The selection of optimization
can be fine-tuned by applying optional parameters. For instance with
the argument opt-strategy=bb,1 the solving algorithm is modified to be
a branch-and-bound-based hierarchical algorithm that is often used to
improve the solving of problems with multi-criteria optimization [29,
32].
• Opt-heuristic: In Clasp, a sign selection is applied based on the type

of the variables. Bodies are preferable set true, and atoms are set
false. Using the solving approach –opt-heuristic=1, the signs selection
is altered [29].

25



2. Prerequisites

• Parallel-mode: As an extension of the different solving processes
additionally multi-threading can be applied. It can be chosen between
the competition-based and the splitting-based search and the number
of used threads [29].

2.3.4. Potsdam Answer Set Solving Collection

The Potsdam Answer Set Solving Collection (Potassco), a software devel-
oped by multiple researchers from Germany and Austria, is a collection
of various ASP tools, like the grounder Gringo or the solver Clasp. The
functionalities of the ASP grounders and solvers are extended by different
functionalities, like the integration of python functions [29, 31].

Different Solving Collections

Potassco provides different solving systems in where grounders and solvers
are combined. In what follows the most popular combinations are intro-
duced.

Clingo In the monolytic system Clingo the grounder Gringo is used with
the solver Clasp. The benefit of the combination of both systems is that,
after passing the input data and problem description into the grounder, the
user must not consider the information passing trough system components
but gets back the optimal answer set solution in a human-readable format
[31].

Clingcon This system is developed for applications that can be modelled
easier by a combination of Boolean and linear integer constraints, like for
instance fine timing applications. The grounder Gringo is used with a
the ASP solver Clasp and the CSP solver Gecode and behaves similar to
State-of-the-Art CSP solver [4, 31, 43].
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IClingo For PSPACE-decision problems like automated planning applica-
tions the system IClingo is designed. Stable models are not solved repeatedly
to find the best solution but computed incrementally. Thereby redundancy
is avoided, as not the entire extended problem is solved repeatedly, but
the problem is step-wise solved and extended by adding more and more
extensions until the whole problem is solved [31].

OClingo The system OClingo is extending the functionalities of IClingo
by online functionalities and acts like a server waiting for client requests.
Whereas IClingo terminates after the generation of a stable model, OClingo
continues running and waits for new requests [31].

External Python Functions

One advantage of using POTASSCO is the availability to integrate external
python functions in ASP. By that functions that are hard to describe in ASP
can be implemented in Python and be executed from the ASP program
[29].

2.3.5. Potassco Input Language

All solving collections that are provided by Potassco are using the grounder
Gringo. The language syntax that is required by this grounder is the logic
programming syntax following the ASP-Core-2 input language format (see
[11]) and is adapted by some extensions [28].
An overview of the language that is used as input language for Gringo
version 4.3.0. is given in the following paragraphs.

Language Syntax

In ASP a problem is described by a finite set S of rules. This set of rules is
named logic program P and consists of a set A of atoms [17].
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Every rule follows the syntax

a0 Ð a1, . . . , ak,„ ak+1, . . . ,„ al (2.19)

Where 0 ď k ď l and every ai P A is an atom for i = 0 ď k ď l [39].

Notations The atom a0 on the left side of the condition character ‘Ð‘ is
the head(r) of the rule. The body(r) of the rule contains all atoms a1, ..., al.
The body is split in the positive part body(r)+ with atoms a1, ..., ak and the
negative part body(r)´ with atoms ak+1, ..., al. All positive atoms a1, ..., ak
and default negated atoms ak + 1, ..., al are called literals. The theory of
default negation is explained in detail later in this section. Every atom a
is expressed as p(t1, ..., tn) where p is a predicate and t1, ...tn are terms. A
term can be a variable or a constant. In case no variable occurs in a term
or atom they are named grounded terms or grounded atoms, respectively.
If body(r)´ = H the rule is named positive rule. If body(r) = H the rule is
named fact and for simplification the condition character ‘Ð‘ is left away. If
head(r) = H the rule is named constraint [31].

Terminology Functions, predicates and constants are described by lower-
case letters or strings with a small initial character. Variables are indicated
by upper-case letters and strings starting with a capital letter [5].

Notation Conventions In ASP the syntax of logic programming used.
Nevertheless, the notations of general logic programming and ASP are
slightly different and listed in table 2.2.

If And Or Default Negation Classical Negation
ASP Syntax :- , | not -
Logic Programming
Syntax Ð , ; „  

Table 2.2.: Notation conventions of ASP and logic programs [31, p. 11]
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Language Semantics

In ASP the semantics follow the stable model semantics of logic programs
[31]. The idea of this approach is to replace all variables in rules (see
equation 2.19) by constants so that only grounded atoms are given in a logic
program P. This task is overtaken by the ASP grounder. From a program
P the Herbrand model PS for a set S of atoms from P is obtained by [39,
p. 4]:

• deleting each rule with a negative atom „ a in its body and with a P S
• deleting all negative atoms „ a from the remaining rules

If the resulting minimal Herbrand model PS coincides with the set S of
atoms, then the set S is a stable model of P and returned by the ASP solver
as answer set [31, 39].

Language Extensions

Additional language extensions are provided to increase the capabilities for
describing complex problems with the ASP syntax. Several extensions are
introduced in the next paragraphs.

Negations In table 2.2 two negation notations are listed: Default and clas-
sical negation. The behaviour of these negations differs by the information
that is provided for an atom or not. In case of a default negation no infor-
mation is necessary to hold the statement (negation as failure), whereas in
classical negation a proof for negation is necessary [5].

Example 2.1: Negations

Considering a robot who needs to unload a container on a specific
place, but only if place is not occupied by of other goods or vehicles.
This problem can be described with the following rules:

1 unload ( P , S ) :´ place ( P ) , robot ( S ) , not place occupied ( P ) .
2 unload ( P , S ) :´ place ( P ) , robot ( S ) , ´ place occupied ( P ) .
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Assuming that no information of the third atom place occupied is
provided, it is not known if this atom holds true. The rule with a
default negation (line 1) holds true, but for the classical negation in
the second line of the code snippet it has to be proven that the station
is free before a robot would unload the good [17].

Integrity Constraints Integrity constraints are used to state which com-
binations of literals are not allowed. As defined previously in this section
constraints are rules without a body. If all literals of an integrity constraint
hold true this answer set is forbidden [5].
Related to the stable model semantics a given integrity constraint with a set
A of atoms ai

: ´a1, a2, ..., am. (2.20)

can be translated in a normal logic rule by adding an additional atom
x R A:

x : ´a1, a2, ..., am, not x. (2.21)

Applying the two steps introduced by Gelfond and Lifschitz [39] it can be
seen that integrity constraints do not add or alter answer sets but only can
eliminate them [31].

Example 2.2: Integrity Constraints

Given is following situation: Two containers have to be delivered at the
same time but not with the same robot. This problem can be described
as followed:

1 :´ same time ( box1 , box2 ) , t r a n s p o r t ( box1 , robot1 ) ,
t r a n s p o r t ( box2 , robot1 ) .

A constraint does not hold if literals in the body all hold. In this
example the constraint would hold if box1 and box2 are transported
at the same time and robot1 is set to transport box1 and box2.
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Conditional Literals Conditional literals in ASP are notated by the charac-
ter ’:’. They are of the form

a0 : a1, ..., an (2.22)

Every aj is a literal and all literals behind the mathematical set notation ’:’
are called condition [31].
Conditional literals can be used in the head as well as in the body of a
rule. As a0 and the conditions a1 to an act like the head and body of a rule,
conditional literals behave as nested implications [29].

Example 2.3: Conditional Literals

Given two robots and five stations. The robots have to deliver contain-
ers to the same place, but every robot can drive to only specific places.
ASP is used to find a place both robots can deliver the containers.

1 robot ( robot1 ) .
2 robot ( robot2 ) .
3 place ( place1 ; p lace2 ; p lace3 ) .
4 allowed ( robot1 ) :´ not on ( place1 ) .
5 allowed ( robot2 ) :´ not on ( place1 ; p lace3 ) .
6 unload :´ allowed (X) : robot (X) .
7 on (X) : place (X) :´ unload .

With the conditional literals in row 6 and 7 the following rules are
instantiated:

1 unload :´ allowed ( robot1 ) , allowed ( robot2 ) .
2 on ( place1 ) ; on ( place2 ) ; on ( place3 ) :´ unload .

The resulting answer set returns ’on(place2)’ to be the only possible
place where bot robot can deliver the containers.
Not only conditional literals are introduced in the example above, but
also a useful writing convention: Row 3 is simplified expression for:

3 place ( place1 ) .
4 place ( place2 ) .
5 place ( place3 ) .
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Intervals Intervals are used to generate multiple terms in a row [29].

Example 2.4: Intervals

For a problem multiple terms have to be set with values in an increas-
ing order. This can be done the following way:

1 s e t v a l ( 1 ) .
2 s e t v a l ( 2 ) .
3 s e t v a l ( 3 ) .
4 s e t v a l ( 4 ) .

Using intervals the just introduced code snippet can be simplified to

1 s e t v a l ( 1 . . 4 ) .

Boolean Constraints For problem instances where values are compared,
literals that are always true or false are required and provided as the Boolean
constraints #true and #false [29].

Example 2.5: Boolean Constraints

Following program is provided, where robots are sorted by decreasing
priorities.

1 robot ( robot1 , 3 ) .
2 robot ( robot4 , 4 ) .
3 robot ( robot2 , 5 ) .
4 robot ( robot3 , 1 ) .
5 n e x t t a s k ( R1 , R2 ) :´ robot ( R1 , P1 ) , robot ( R2 , P2 ) , P1 > P2 ,

# f a l s e : P1 > P3 , robot ( R3 , P3 ) , P3 > P2 .

The resulting answer set is:

n e x t t a s k ( robot2 , robot4 ) n e x t t a s k ( robot4 , robot1 )
n e x t t a s k ( robot1 , robot3 )
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In the first four rows facts are stated, allocating robots with correspond-
ing priorities to the atom robot. In the fifth row the provided priorities are
sorted in decreasing order and saved in the atom next task(R1,R2). Commas
separate not only literals in rule bodies, but also conditions. The rule in line
5 holds only for values P1 ą P2 and if the conditions after the colon returns
false. This occurs if there is no value P3 with P1 ă P3 ă P2 [29].

Choice Rules Choice rules are of the form

ta0; ...; amu : ´am+1, ..., an, not an+1, ..., not ap. (2.23)

where 0 ď m ď n ď p.
The main idea of choice rules is to provide a rule with a body and a set
of head literals. If the body holds true a subset of head literals is fullfilled
[31].

Example 2.6: Choice Rules

A robot stopped a delivering process. Based on some status informa-
tion a reason for this unexpected behaviour has to be selected.

1 { reason ( t r a f f i c I n t e r f e r e n c e ) ; reason ( wrongLaserData ) ;
reason ( pathBlocked ) } :´ s t a t u s ( o b s t a c l e d e t e c t e d ) .

The reason for the stopped delivery process is may or may not a traffic
interference, a detected obstacle that blocks the travelling path, or an
incorrect laser scan. The ASP solver returns all possible combinations
of the reasons as answer sets.

Cardinality Constraints Cardinality constraints are an extension of the
choice rule. Using cardinality constraints, subsets with a minimum (l1)
and maximum (l2) number of atoms in the answer set can be specified.
Cardinality constraints can be used at the head and body of a rule separately,
but also on both sides [31].
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The general syntax of cardinality constraints in the head is the following:

l1ta1; ...; amul2 : ´am+1, ..., an, notan+1, ..., notap. (2.24)

Example 2.7: Cardinality Constraints

After arriving at the warehouse of a logistic centre, a robot picks
containers, but not more than three due to a limited loading capacity.

1 1{pick ( box1 ) ; pick ( box2 ) ; pick ( box3 ) ; pick ( box4 ) }3 :´
a t ( warehouse ) .

The ASP solver returns 14 possible answer sets, where at least one,
but not more than three containers are assigned to be picked by the
robot.

Conditional Literals in Cardinality Constraints Conditional literals can be
combined with weight rules to reduce the number of instantiations in a rule
[31].

Example 2.8: Conditional Literals in Cardinality Constraints

Given 3 robots and a box that has to be picked up and delivered by
one of the robots. This problem can be described by the following
program:

1 robot ( id1 ) .
2 robot ( id2 ) .
3 robot ( id3 ) .
4 1{ ass ign (R , box1 ) : robot (R) }1 :´ pick ( box1 ) .

The conditional literal in line 4 expands to the cardinally constraint

1 1{ ass ign ( robot1 , box1 ) ; ass ign ( robot2 , box1 ) ;
ass ign ( robot3 , box1 ) }1 :´ pick ( box1 ) .

The ASP returns three possible solutions:
assign(robot1,box1), assign(robot2,box1) and assign(robot3,box1).
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Optimization Statements For problem instances that focus on optimiza-
tion problems, the input language provides optimization statements. Cost
functions can be minimized (#minimize) or maximized (#maximize), and the
different optimization statements can be prioritized.
The syntax of the minimization statement is the following [29]:

#minimizetw1@p1, t1 : L1, ..., wn@pn, tn : Lnu. (2.25)

Where w are the integer costs to be summed and optimized, p are priority
integers, and t and L are terms and literals. The priorities @p are optional
and sorted in an increasing order.

Example 2.9: Optimization Statements

A container has to be picked up and delivered by a robot. A list of
robots is provided with additional information about the battery level
of each robot and the distance to the container. The optimal robot to
pick up the container has to be found. Most important is to select a
robot with a high battery level, additionally the travelling distance to
the container should be minimized. The Gringo input looks like the
following:

1 robot ( robot1 , 70 , 120 ) .
2 robot ( robot2 , 30 , 70 ) .
3 robot ( robot3 , 70 , 300 ) .
4 1{ ass ign ( container1 , I , B , D) : robot ( I , B ,D) }1 :´

pick ( conta iner1 ) .
5 #maximize (B@2 , I , B : ass ign ( container1 , I , B , D) ) .
6 #minimize (D@1 , I , D : ass ign ( container1 , I , B , D) ) .

Applying only the maximization criterion for the battery level,two
optimal answer sets would be found:
assign(container1, robot1, 70,120) and assign(container1, robot3, 70,300).
With the second optimization criterion, the minimization of the trav-
elling distance, the two answer sets are reduced to only one optimal
solution: The assignment of robot1 to the container.
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Special Gringo Input Language Features

Next to the introduced language extensions Gringo provides special aggre-
gates and directives.

Aggregates Aggregates support the return of specific values from a set of
items, for instance the sum of all items (#sum), the maximum or minimum
value of the selected items (#max and #min), or the number of items (#count)
[29, 31].

Directives The directives that are provided by Gringo can be split in three
groups [29, 31]:

• Comments: Within the code comments can be set. A comment over
one line is marked with and percent sign %, comments over multiple
lines are started with %* and end with *%.
• Output: Parts of the program can be displayed in the terminal where

the program is called. The parts that should be displayed are marked
with the prefix #show.
• for some problem instances constants are required. The constants can

be defined in the program with the prefix #const.

2.3.6. Development Tools

In the following Integrated Development Environments (IDE) and some
Application Programming Interfaces (API) are introduced that support
ASP.

Integrated Development Environments for ASP

For the just introduced language that is used by the grounder Gringo differ-
ent rules, constraints and optimization criteria have been shown. Encoding
a new problem in ASP is, as in all imperative and declarative languages,
error-prone. In the following Integrated Development Environments (IDE)
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for ASP are introduced. With integrated syntax checking and debugging
options the required time to find errors can be reduced.

ASPIDE ASPIDE, the Integrated Development Environment for Answer
Set Programming, is supporting the whole development of ASP instances,
starting with the problem definition up to the deployment of the result to
applications. The IDE is an editing tool that provides additional graphical
tools for the programming composition, debugging, the configuration of
solver execution, output handling, and others. Supported by the ASPIDE
is the language syntax of ASP-Core-2 and the syntax of DLV. That leads
already to the limiting factors of this IDE. It supports only the DLV, but not
Gringo, and by that it can not be used with Potassco [22].

SeaLion SeaLion, the Support Environment for ASP, is a source code editor
that supports the two grounders Gringo and DLV. The solver DLV can be
used just as the solver of Potassco. The IDE is installed as a plug-in for
the Eclipse Platform or as a standalone package. Next to others SeaLion
supports syntax highlighting and checking, code completion and debugging
features. UML class diagrams can model data structures, and answer sets can
be visualized in instance diagrams. However, the IDE is no longer actively
developed and supports only Clingo V3 even though the state-of-the-art
version of Clingo is V5.3.0 [10].

Application Programming Interfaces for ASP

For many problem instances were ASP is used, it is required to integrate the
declarative code in an imperative environment. Different APIs that support
this integration are introduced in the following.

Potassco Python-API and C-API To integrate an ASP module in an exist-
ing system APIs are required. POTASSCO provides two APIs, one written
in Python [14], on in C [13]. With these APIs, the POTASSCO system Clingo
can be imported as a library in an existing system and be executed within
this system.
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Jasp In [21] a framework is introduced with which ASP encodings can
be integrated into a Java environment. The ASP code is embedded in the
Java Code and can access all variables of the environment. The resulting
answer sets of the ASP are stored in Java objects. This new language Jasp
is implemented in the JDLV framework. Currently, only the DLV grounder
and solver can be used with this plug-in. The numerous solver provided by
Potassco are not supported.

38



3. Related Research

In this chapter current research projects are introduced. The main focus is
thereby the task assignment for industrial transport robots and applications
of ASP, especially POTASSCO.

3.1. Task Assignment for Industrial Transport
Robots

Intralogistics robots transport goods within a fixed time window in a spe-
cific order. Starting at a warehouse, the robot picks up a good and delivers
it to another location. This specific assignment problem is often called multi-
robot task allocation with temporal and ordering constraints (MRTA/TOC)
and described by the ST-SR-TA-problem with additional constraints [51].
Different optimization objectives to find suitable assignment sets are pub-
lished in recent years. A small selection is presented here.
The goal for the optimization objective MiniSum is to minimize a total dis-
tance. This distance contains the sum of all distances of the traveling robots
[15].
Similar to the MiniSum-approach using the MiniMax objective the sum of
costs of all robots is taken. The difference is the optimization: In this ap-
proach not the total distance is optimized, but the makespan over all tasks
that are executed, leading to a solution in which the tasks are finished as
fast as possible [26].
At the optimization objective Lateness or Tardiness Minimization the tardiness
is minimized. Given a set of tasks and robots, the tardiness is the difference
between the earliest scheduled start time of a task and its earliest possible
start time using one of the robots. In case more than one assigned pair have
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the same tardiness, the best assignment of task and robot is the one with
the shortest travel time of the robot [60].

3.2. Use Cases of ASP

Declarative Programming and especially Answer Set Programming is a
promising technology for many research and industrial problems. Different
industrial fields are affected, from online platforms and shift design in dif-
ferent areas through to solving approaches for industrial robot challenges.

3.2.1. Optimal Shift Schedules

Answer Set Programming is a promising approach for search and approxi-
mation problems [8]. One of these problems is the shift problem that has
been solved by ASP already in different applications.

An early published application of ASP is the shift plan design or workforce
assignment problem. In [16] a shift plan is designed for nurses in an Italian
hospital using Answer Set Programming. This plan generation is affected
by some constraints like a couple of shift types with different times and
different workforce resources or by statutory holiday entitlement and rest
days. Using the system Clingo and the solver WASP with the grounder
Gringo to design the shift plan for 164 nurses, the calculation for a year of
planned shifts took around 50 minutes for Clingo, the solving process using
WASP was interrupted as the execution time was significantly higher. It is
shown that ASP system Clingo is a useful tool to support the shift planning
of the head nurse.

Not only in hospitals ASP is used for shift planning. In [52] the system DLV
is used to plan the shifts of seaport workers. Difference to the previously
introduced nurse scheduling is the focus on the allocation of different qual-
ified employees to shifts where different tasks are needed, depending on
the current boat traffic. Additional constraints are next to others an equal
workload, skills of workers, and a maximum of weekly working hours. With
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the DLV-grounder and DLV-solver the shifts for 130 workers were planned.
The computation for a month-long shift plan took 8 minutes. Having similar
constraints, number of workers and computer specifications the system
Clingo in [16] is faster than the solving process using the DLV.

Another shift approximation was introduced in [1]. Like at [52], employ-
ees with different qualifications have to be assigned to shifts that require
different skills. The difference between both approaches is the focus on
work balance optimization in [52] and shift alignment optimization in [1].
The ASP system Clingo is used in normal mode and with the integrated
heuristics. As the approach with default heuristics looks quite promising,
even better results are expected using user-specific heuristics.

3.2.2. Industrial Applications

Not only shift design problems can be solved with ASP, but also many other
hard computational problems. In [19] the application of ASP in E-Tourism
platforms is mentioned. Using the system DLV, knowing user specific wishes
(like beachside hotels) and a set of different travel offers, the best suiting
travel offer is recommended.

Next to that ASP can be used for routing and classification of customers in
call centres [47]. A customer calling the hotline is classified before he is for-
warded to a representative. Constraints are among others the age, residence,
type of insurance contract and the number of previous calls. Using the ASP
system DLV the customer is classified in a category and assigned directly
to the appropriate human operator, for example an insurance expert for
natural disasters.

3.2.3. Task Assignment Problems

Task assignment is another complex problem. In general, a set of tasks has to
be assigned optimally to a set of workers. One example of task assignment
for multiple robots is the planning of tasks for housekeeping robots [18]. A
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set of robots has to tidy up a house by filling the dishwasher, putting books
on the shelf and make the bed. Common-sense knowledge, like the fragility
of glasses and that books do not belong in the dishwasher is defined in
external functions. Using the ASP system IClingo it can be observed that
in comparison to the implementation with C+ the execution time stays the
same, but the computation memory is reduced.

Task Assignment and Routing

Some research projects use ASP to solve task assignment problems with
simultaneous consideration of routing strategies.
In [54] Answer Set Programming is used in an order-picking system. Cellu-
lar transport vehicles deliver goods stored in multi-level racks to picking
stations. Goods are part of order-lines, all goods of an order line are deliv-
ered to the same picking station, and only one order-line can be assigned
to a picking-station at a time. Two problems are solved using ASP. The
assignment of vehicles to delivering tasks and the assignment of picking
stations to order-lines.
The task assignment is managed decentralized. Changing the status to idle
the vehicle receives data from a server. The data consists of all unassigned
orders and the current order-to-picking station assignments. The goal of
the task assignment is to assign delivering tasks to vehicles. Thereby three
optimization criteria are considered:

• minimization of the distance between the vehicle and the storage of
goods
• having an equal workload on all picking stations
• delivering first all goods of an order-line that currently occupies a

picking station.

For the most important optimization criteria, the distance between vehicles
and storage of goods, an external Dijkstra-algorithm is used.
Comparing the results using the task assignment, picking station assign-
ment and the simple FIFO1-protocol the task assignment shows the best
performance, followed by the picking station assignment. An increase in

1First in, first out
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orders and vehicles and by that an increase in traffic volume reduces the
overall performance. Regarding the computational costs it is shown that the
most time consuming part is the path calculation.

Another task assignment and routing solving approach using ASP is in-
troduced in [38]. A set of vehicles is used in a car assembly, supplying the
assembly lines by executing tasks. Every task has a sequence of subtasks
whose elements are halt nodes and describe the intermediate goals of the
vehicle, like assembly lines or warehouses. In every task a full container is
delivered to an assembly line, there an empty container is replaced by the
full container and the empty container is transported to a recycling facility.
A hard constraint is to finish the delivering of a container to the assembly
line within a deadline. To solve the task assignment and routing problem
the ASP system Clingo is used. The result of ASP is compared to OpenTCS,
a default scheduler provided by Fraunhofer. The benefit of ASP is the ability
to handle multiple vehicles that have to visit the same station. OpenTCS
breaks while solving such a situation. However, during the run of different
simulations it is shown that the computation effort of ASP is significantly
higher than the one of OpenTCS. Like in [54] the reason for that is most
likely the path planning.

In [50] another approach for solving the task assignment and path planning
problem with ASP was introduced. An unequal number of tasks and robots
is allowed, tasks have deadlines and can be part of a task-group that has
to be executed in a fixed order, and the robot has to visit checkpoints on
the way. Two optimization goals are introduced, the minimization of the
make span and the total path costs. The difference between both is that for
the first optimization the total time is minimized whereas for the second
optimization the total distance is minimized. It is stated that ASP is more
scalable for task assignment and path planning algorithms than imperative
methods. Using the ASP system Clingo it is shown that for small problem
instances existing imperative solving methods are better, but for difficult
problems with many constraints ASP shows better results.

A further task assignment and path planning algorithm was presented
in [53]. Difference to the previous methods is the focus on robot teams
and a strictly decentralized approach. Given is a set of teams and robots of
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different types. Due to the decentralized approach robot teams do not talk
to each other but answer Boolean questions to a server. An additional con-
straint is the ability to exchange team members. Teams can borrow and lend
robots from other teams in case of a lack of resources, but the number of
borrow and lend executions is limited by time windows. The path planning
computation effort is reduced using lower and upper bounds, see [58]. It is
shown that due to the parallel computation of multiple teams of robots the
computational costs was reduced significantly compared to a scenario of
robots without teams.

Task Assignment, Routing and Intralogistics Domains

Until now many ASP applications in industrial areas have been introduced.
A difficulty, however, is the integration of the task assignment and routing
algorithm in an environment. In [37] the benchmark suite ASPRILO for
robotic intra-logistic domains is introduced. A problem domain is set up,
where a map with a grid of squares is defined. Every square is set to be a
highway, picking station or storage location. For a given set of orders robots
drive to storage locations, pick up a shelf and drive it to a picking station.
After the requested quantity of goods is picked from the shelve by a worker
the robot drives the shelf back to a free storage location. Every square can
be occupied by not more than one robot. The implementation of charging
stations is planned for a later version of ASPRILO.
The instance generator for the map requires the grid dimension, the number
of orders, robots, shelves and picking stations for a successful set up. The
generation of the map instance is built on a multishot ASP that is controlled
by the python API of Clingo.
After the instance generation a solution checker is executed in ASPRILO,
proving the success of delivering all provided orders. If the solution checker
returns success an ASP is started in where a multi-agent path finding algo-
rithm is implemented. In every time step the robot can move to an adjacent
square, pick up or pick down a shelf or can deliver a shelf to an adjacent
square. Additionally, a task assignment algorithm with several optimization
criteria is implemented in this ASP to find an economic assignment.
The runtime of the ASPRILO with Clingo and Clingcon encoding is anal-
ysed for different layout and problem instances. In general, Clingo shows
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to have a better runtime for higher scaled instances whereas Clingcon fits
better for small instances.
The differences of two calling methods are analyzed. The calling of the task
assignment and pathfinding at the same time and the calling of the pathfind-
ing algorithm after an optimal task assignment is found. The results show
a significant difference in the runtime of the program. First the ASPRILO
implementation with one ASP and the Clingo encoding was analysed. For
small layout instances with a map of 11x6 squares a timeout limit of 3

minutes solving time is reached only for problem instances with more than
8 robots. For a medium instance with a map of 19x9 squares this timeout is
reached already for problem instances with five robots.
Analysing the runtime of the ASPRILO implementation with two separate
ASP encodings for task assignment and multi-agent path finding with the
Clingo encoding a significant runtime improvement is shown. For small
problem instances with 11 robots a solution is found within 20 seconds
instead of reaching the 3 minutes timeout. For medium instances and five
robots a solution is found in 59 seconds, and even the instance with 19

robots can be solved within the time limit.
For large problem instances with a map of 46x15 grids no solution can be
found within the time limit, independent from the selected encoding and
the ASPRILO implementation.
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After analysing current research projects it can be seen that ASP is a promis-
ing solving approach for task assignment problems in logistic-related areas.
The BMW Group and incubed IT currently face the challenge of an increas-
ing runtime and complexity of their algorithm to solve task assignment
problems. By replacing imperative code components of the algorithm by an
ASP program it is hoped to receive better performance and comprehensibil-
ity of the code.
To implement a task assignment problem solution using Answer Set Pro-
gramming, in a first step the environment with the corresponding require-
ments and constraints of a problem must be analysed. Given this information
possible applications for ASP can be identified [20].
In the following sections an overview of the intralogistics management at
BMW and incubed IT is given.

4.1. Intralogistics Management at BMW

In this section a general overview of the logistics environment at BMW is
given and the fleet management system is introduced.

4.1.1. General Overview

The BMW Group one of the the world’s leading company manufacturing
premium automobiles. In 2018 more than 2.5 Million cars were produced
at 20 plants worldwide, where the plant at Regensburg produced nearly
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320.00 cars [6].
To ensure a smooth production process in the plants all car parts have to
be delivered just-in-time to the correct production sector. In the course of
digitalization of the industry the conventional forklifts shall be replaced by
robots. The BMW Group plant Regensburg is the leading plant for robots
delivering large load carriers automatically to desired locations.

Application of Industrial Transport Robots at BMW Group Plants

In the production process many different parts are needed to build a pre-
mium car. However, with the increase of parts the complexity of delivery
processes increases. The parts have different sizes, starting from small screws
up to trunk lids. Some parts like wipers are needed for every car, optional
ordered equipment is only built in some of the cars. This wide range of
product sizes and product quantities requires different intralogistics robots
for the delivering process and different refill times for parts at the produc-
tion lines.
Upon receiving a delivery from a supplier, the goods are prepared for the
production line. Therefore they are unpacked and reloaded in containers.
Depending on the refill times and weight and size of the container, the
goods are transported to the production line with tugger trains or forklifts.
On the production sequence the containers are unloaded and placed on the
line or sorted in flow racks.
In times of Industry 4.0 the operational procedures are digitalised and
automatized. Not only the production flow itself is considered therefore
but the delivering processes as well. At BMW delivering tasks are step by
step overtaken by autonomous logistic robots. Leading plants are defined in
where different robots are developed and tested. There are leading plants
for robots that replace tugger trains, put containers autonomous into dif-
ferent racks or unpack boxes received from suppliers. The BMW plant in
Regensburg is the leading plant for the replacement of forklifts.
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Application of Industrial Transport Robots at Plant Regensburg

As one of the leading plants of the BMW Group, the plant in Regensburg
develops and tests the Smart Transport Robot (STR). An STR can pick a
container at a specified location, like a supermarket1, and deliver it to a
goal station. Given only the coordinates of the different pick up and release
stations, the STR drives autonomous to the stations, detects the container to
pick and lifts and releases it autonomously.

Smart Transport Robot

The STR is an autonomous robot and used to carry containers. Developed in
cooperation with the Fraunhofer institute, the focus of the development was
next to the fulfilment of the logistics requirements easy maintenance and
affordable costs. To ensure the latter two criteria many vehicle components
are used to build up the robot. For example, the BMW PDC (park distance
control) sensor is used as well as batteries of recycled electric vehicles.
To provide autonomous driving, the STR is equipped with a 2D laser scanner
to detect the environment in driving direction. Obstacles in the back are
detected by the PDC sensor and a 3D camera is mounted to support the
process of lifting containers.

Map For the delivering process of goods a map of the plant must be
provided. This map is generated by scanning the whole plant with a 2D-
laser scanner. This is mostly done by driving an STR manually through the
area of interest and tracking and saving the laser scans meanwhile.
After the map is generated points of interest (POI) are placed on it. The
different POIs are:

• Waypoint: orientation point needed for the pick-up process
• Parking Place: station for parking the STR
• Charging Station: station for charging the STR
• Dolly Place: pick-up and delivery stations

1Supermarket: storage area of full containers
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Delivering Process The STR is developed to transport containers of differ-
ent sizes and weights. The main focus thereby lies on the large load carrier
that are typically used at the BMW production lines. In figure 4.1 an STR
is shown transporting a large load carrier. To lift a container the STR has

Figure 4.1.: Driving STR with a loaded container

two lift bars, one on either side of the robot. After driving underneath a
container he can be lifted by moving these two bars upwards.
The pick-up process has been constructed as followed. A map of the plant,
where different POIs are defined, is provided to every robot. Next to every
pick-up station a waypoint is set in a 3-meter range. After the STR received
a new delivering order it drives to the waypoint of the first task of this order
(see figure 4.2a). Arriving at this point the STR turns 90

˝ to have is front
side look directly to the pick-up station the container is placed (see figure
4.2b). By taking an image with the 3D camera and comparing this image
with the data of the laser scanner the exact position of the container can be
detected. Based on this calculated position the STR drives underneath the
container and lifts it (see figure 4.2c).
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(a) driving to waypoint (b) adjusting position (c) lifting container

Figure 4.2.: Pick-Up process of an STR

After picking up the container successfully the STR drives out of the station
forwards or backwards, depending on the given map and the current envi-
ronment. To release a container the STR drives to the container place that is
defined as delivery goal in the task and releases the container as soon as the
position of the robot is the same as the coordinates of this container place.
In the typical use case of the STR one robot drives to the assembly line, picks
up an empty container and drives this container to the empty’s storage.
The same or another STR drives then to the supermarket, picks up a full
container and drives to the assembly line sequence the empty box was
removed before. Having only one container with the corresponding parts at
the assembly line sequence would lead to an interrupt of production until
a new container with the required goods arrives. As this interrupt is an
unaccepted behaviour on production lines two containers with the same
parts are placed at the assembly line sequences. The assembly line worker
empties first one box before taking elements out of the second box. A fixed
time window is given in which the STR has to replace the empty container
by a new one.

4.1.2. Fleet Management System

At BMW the autonomous logistic process is managed partly centralized and
partly decentralized. The navigation is done decentralized by every robot
itself, but the goal a robot is assigned to is managed by a centralized Fleet
Management System.
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Fleet Management System - Tasks

The Fleet Management System is a system where robots are assigned op-
timally to orders, charging stations and parking places. Additionally, the
FMS proves all provided data for correctness and validity.
To provide all the information the robots and the Fleet Management Sys-
tem (FMS) need, an Azure Cloud is set up. From there the FMS is started,
allocation orders are communicated through WIFI to the robots, and robots
provide their current state to the Cloud as this information is needed for
the Fleet Management System.

Fleet Management System - Strategy

In the FMS the optimal assignment of robots to tasks, charging stations
and parking places is managed. The optimal assignment is under constant
development, and different strategies are analysed and evaluated. In the
next paragraphs the current implementation at BMW Group is introduced.
This system will be modified within the next few months to be capable
of managing some hundreds of robots with an improved strategy for task
allocation, charging and parking. Additionally components like a traffic
management system will be set up.
In the next sections the assignment strategies of robots to charging stations,
parking places and orders are introduced.

Parking and Charging Strategy

In general, the strategy for optimal parking and charging can be split into
two different scenarios. In one the robot is currently in a charging station,
in the second scenario it is not. In table 4.1 the current charging strategy of
BMW is shown. As soon as the battery level of a robot that is on the field is
below 25% the robot is send charging. In case a good is currently delivered
this process is finished before. After arriving at the charging station, the
robot charges up to 40%. If open tasks are available the robot leaves the
charging station after reaching this level to process the next task. If no open
tasks are available, the robot continues charging up to 60%. In case no other
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vehicle with a lower battery level requires the charging station, the robot
continuous charging up to 90%. Otherwise the robot leaves the charging
station and drives to an appropriate parking place.
The decision about whether the robot goes charging or parking depends
on the battery level. If there is another free robot with a lower battery level,
this second robot is sent to charging. In case there are no available charging
stations the robot drives to the closest parking place.

Battery Level Vehicle on the Field Vehicle in Charging Station
90% - 100%

Send to parking place
or charging position
if no mission is available

No charging, just parking
<90% Vehicle can be called for

mission or send to parking
place in case charging station
required

<60%

<40% Nothing but charging
<25% Send to charging station

<10%
Battery level dangerous,
alert for System
administrator

Battery level dangerous,
alert for System
administrator

Table 4.1.: BMW charging strategy

Job Broker

The Job Broker is a specific function in the Azure Cloud, focusing on the
allocation of tasks to robots in an optimal way. At BMW the Job Broker
obtains a list of assignable tasks and available robots as input information.
Based on this provided data an optimal assignment is searched.

Generation of Tasks In case a production line sector runs out of parts, a
new order is generated in PMS. Based on the type of order a process chain
is generated automatically in the Azure Cloud. This chain consists of all
tasks that are needed for the successful execution of the order. A task can,
for example, be the pick-up of a empties box at the production line and the
delivering of this box to the empty’s storage.
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Tasks are split into normal and event-triggered tasks. The FMS sends normal
tasks to the Job Broker right after the generation of the order. Event-triggered
tasks can not be executed immediately after the order generation but are
sent to the Job Broker as soon as the trigger is set. Example of an event-
triggered task is the delivering of a full box to a production line sector. The
box can be delivered successfully only in case the empties box is removed.
To ensure that the delivering task waits for another robot that picks up the
empties box and sets the trigger after leaving the station.

Current Task Assignment The BMW task assignment is currently based
on the FIFO-strategy. Tasks that are generated first have to be executed first.
Every task belongs to a fleet. Fleets can be for example different production
areas or floors. A task can only be assigned to robots that are in the same
fleet.
The optimisation objective of the BMW task assignment is to ensure the
fastest delivery for the orders with the earliest creation times. As a measure
for the time for delivering the Euclidean distance of the robot to the first goal
of the task is calculated. For an empties-container-task the distance from
the robot to the production sequence is calculated, for a full-container-task
the distance from the robot to the waypoint next to the full container in the
supermarket is taken.
Given a list of open tasks, the one with the earliest creation time is taken.
Comparing the Euclidean distance of all assignable robots to the first goal
of the task the robot with the shortest distance is chosen to be the opti-
mal assignment. In the next step, the second-oldest task is taken, and the
Euclidean distance of all remaining robots is calculated. This strategy is
continued until no more open tasks or assignable robots are in the lists.
Looking at chapter 2.1.3 this allocation can be classified as an ST-SR-TA.
Every robot can handle at most one task, and every task can be finished
by one robot. If more tasks than robots are available a scheduling of the
assignment (TA) is necessary. Within a high-scaled FMS multiple orders will
be generated in a small-time range, and by that the Job Broker will be called
every few seconds to assign the new generated tasks. Having such small
restarts of the task assignment algorithm the ST-SR-TA can be simplified
to an ST-SR-IA, as the scheduling is replaced by a repeatedly called task
assignment algorithm.
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4.2. Intralogistics Management at incubed IT

In the following section an overview of the application fields and the logistics
management of incubed IT is provided.

4.2.1. General Overview

Incubed IT is a robotics-software company, established in 2011 and located
in Hart near Graz, Austria. The company develops software for smart
transport robots, like the one shown in figure 4.3. The software provides

Figure 4.3.: Smart shuttle used with incubed IT software

applications for navigation and fleet management to allow autonomous
driving industrial transport robots.
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Application Fields of Industrial Transport Robots

Incubed IT focuses on the software development for smart robots. The aim is
to provide one solution for a wide variety of different transport robots. The
software is able to control autonomous robots that can be used in different
logistic fields, like in warehouses of online traders, at logistic centres of
supermarkets, and in car manufacturing plants. Different application fields
lead to different requirements that must be considered for every customer
individually.

4.2.2. Fleet Management System

At incubed IT industrial transport robots are, similar to BMW, managed by
a partly centralized, partly decentralized system.
The entire navigation, such as path planning, localization, routing and
docking at stations is performed decentralized by the robots individually.

Fleet Management System - Tasks

The Fleet Management System is responsible for all assignments of robots
to goals. In this system all orders are created and managed, orders are
assigned to robots, charging and parking strategies are pursued, and traffic
rules are communicated to the fleet in case of traffic interference. The
map the robots are using for navigation is stored in the FMS as well as
the parameter configuration used to activate and customize user-specific
services. Furthermore, the FMS provides a connection to all external systems,
such as WMS or PMS, and to the robots.

Parking and Charging Strategy

At incubed IT, three charging scenarios are considered:

• Threshold-based charging: a robot is commanded charging by the
FMS when the battery level falls below a state-depending threshold.
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• Fixed time slot charging: the FMS forces the robot to charge at speci-
fied time slots (for example at night or during shift changes).
• Transfer station charging: in case a delivery station is combined with

a charging station, robots charge during delivery.

The transfer station charging is the only charging scenario that is not man-
aged by the FMS but by the robot itself. As this thesis is focused on the FMS
rather than on the internal robot systems this charging type will not be ex-
plained further. Instead the first two charging types, namely threshold-based
and fixed time slot charging, will be discussed in detail.

Threshold-based Charging In this charging strategy the robot is charging
when the battery level falls below a threshold. This threshold depends on
the current state of the robot which can be busy, active or idle. The different
states are explained in table 4.2.

State Robot State Order State
Busy Automatic mode Order is executed by robot
Active Automatic mode Order available or assigned to robot
Idle Idle or automatic mode No order available

Table 4.2.: Robot states at incubed IT

Every state has its specific charging thresholds defining when the robot is
entering and leaving the charging station. The different state-dependent
thresholds are shown in figure 4.4.
Depending on the specific requirements for the system additional parame-
ters can be set, where some are now briefly introduced.
One parameter specifies if a robot with a battery level below the critical
charge limit is allowed to charge while carrying goods or if the robot has
first to unload these goods before charging. Another parameter sets the
ability to balance charging. Every charging of the robot is count. In case
this counter reaches the specific value the user set, the robot does not only
charge as specified in figure 4.4 up to the active charge limit but up to the
balance charge limit.
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Figure 4.4.: Graphical representation of the incubed IT charging strategy

Fixed Time Slot Charging At fixed time slot charging the robot is forced
to charge at a specific time. This time is defined by the user and can, for
example, be used to ensure that every robot is charging at night and is fully
charged the next morning.

Priority of Charging Stations and Parking Places Charging stations and
parking places have a priority attribute. By using this parameter it can be
controlled whether the robot should prefer some charging stations instead
of others. An application is for example a set of charging stations where
some are superchargers and some are normal charging stations. By setting
different priorities, it can be ensured that robots are preferable assigned to
superchargers.
The algorithm behind these priorities works as followed. In a first step a
list is generated containing all charging stations in a priority-decreasing
order. In the next step the Euclidean distance is calculated for all chargeable
robots to all charging stations. But only stations with the highest priority
are considered. If all highest-prioritized charging stations are assigned, the
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next smaller prioritized charging stations are analyzed. The same algorithm
is applied for the priority-based assignment of parking stations.

Task Assignment

The task assignment at incubed IT is significantly more complex than the one
at BMW. The main reason for that is the variety of different application fields
and the higher number of required constraints that have to be considered.

Types of Tasks There are three task types provided at incubed IT.
The first one is a normal task. As soon as this task is available a robot can
be assigned.
More complex than this are the so called Chained Orders. Such orders consist
of n tasks (n ą 1), where every task has a predecessor who has to be
finished before the same robot can execute the current task. The robot is not
delivering other orders until all tasks of the chained order are finished.
The third task type is named parallel order. Some intralogistics robots can
deliver more than one good at a time. At the current implementation at
incubed IT parallel orders can be defined that consists of a set of tasks. All
tasks have the same pickup and delivery station and are delivered by the
same robot simultaneously.

Priority of Tasks Every task has a priority-attribute which can be set at the
task generation. This priority indicates which task should be preferred and
executed first. To ensure that tasks with a very low priority are executed
ageing of orders can be activated. By that the FMS increases the priority of
a task each time the task is not assigned to a robot.

Status of Tasks One of the parameters of the tasks is its status that is
generated and modified by the FMS. The status indicates for example if a
task was just generated (status new), is assigned to a robot and drives to
the first station (status assigned) or is already finished (status finished).
For the task allocation mainly accepted orders are of interest. New tasks
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are first reviewed to ensure that all parameters are set correctly and none is
missing. If the task is completely defined the status is set to accepted by the
FMS and ready to be assigned to free robots.

Assignment Algorithm Two algorithms can be chosen for the task assign-
ment: FIFO and the global optimum. At FIFO the task that was generated
first has to be executed before a later generated one. The global optimum
algorithm chooses the best assignments based on the order priorities and the
robots traveling costs. The traveling costs consist of the Euclidean distance
between the robot and the first goal of the assigned task. The costs can be
further modified by adding user-defined costs for some specific assignment
scenarios.

Allocation of Delivering Robots Sometimes it can be useful to not assign
a task to a free robot but rather a robot that is currently delivering goods to
a station. That is the case for scenarios where it is faster to assign a robot
that finishes the delivering process of a good and drives to the first station
of the assignable task than choosing a robot far away from the first station
of this task. To ensure this beneficial behavior not only accepted orders are
observed at the task allocation but delivering orders as well. The traveling
costs used at the global optimum algorithm consist for the assignment of
delivering robots of the following components:

1. Euclidean distance from the current position of the delivering robot to
the delivering goal

2. Euclidean distance from the delivering goal to the first station of the
new task

3. user-defined additional costs for assigning a delivering robot

Allocation of Charging Robots In case a charging robots battery level
reaches the active charge limit, the robot can leave the station for a new
delivering process. To ensure that currently free robots are favored over
robots in charging stations, so-called charging costs are introduced. These
costs are set individually by the user and are used to modify the traveling
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costs at the global optimum algorithm.
By adding the charging cost cc to the normal traveling costs it is ensured that
a robot that is free and less than cc meters further away from the first goal
of the assignable task than the charging robot, the free robot is preferred.
Only if the free robot is more than cc meters further away from the first
goal than the charging robot leaves the charging station and taking over the
task.

Pools

Where at BMW Group fleets exist at incubed IT pools split robots, orders,
and stations in groups. At BMW Group every robot and every task is
assigned to exactly one fleet. At incubed IT a robot can be assigned to
multiple pools. By that the tasks and stations are split onto groups only
accessible to robots assigned to the same pool. Pools are for example used to
allow only assignments of robots to charging stations that have the correct
docking system for the robot type.
The allowed assignments of vehicles to orders and stations, depending on
their pools, are described by three examples shown in figure 4.5. If a robot
is in no pool he can only be assigned to orders and stations in no pool. If a
robot is in one or more pools, he can be assigned to orders and stations that
are in the same or no pools.
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robot in no pool

station/order
in pool A

ˆ
station/order

in pool B

ˆ
station/order

in no pool

(a) Robot assigned to no pool

robot in pool A

station/order
in pool A

station/order
in pool B

ˆ
station/order

in no pool

(b) Robot assigned to one pool

robot in pool A and pool B

station/order
in pool A

station/order
in pool B

station/order
in no pool

(c) Robot assigned to two pools

Figure 4.5.: Allowed assignments for different pool combinations at incubed IT
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5. Motivation for an ASP-based
Intralogistics Management

The BMW Group and incubed IT currently face both the same challenge in
the development of an assignment algorithm for autonomous robots and
their tasks: the need for increased complexity and scalability.
The development of autonomous robots started in small scenarios. With the
progress of development, the driving area is split into different sectors in
where only some of the robots are allowed to drive. The strategy of charging
the vehicles is adapted to ensure a battery-saving charging and a sufficient
high number of available vehicles for assignable orders. These and other
environmental conditions lead to a significant increase in the complexity of
the fleet management system that is used to manage all robots.
The second challenge both companies currently face is scalability. The in-
crease of robots managed simultaneously leads to an increased runtime
of the task assignment problem solving that has to be considered during
the development process. The runtime of an imperative program depends
directly on the implementation by the programmer. Experienced computer
scientists can find fast algorithms, but the development of these algorithms
takes a long time and leads to a significant increase in the development
cost. Using the declarative ASP system Clingo, a programmer describes the
task assignment problem but not the solving steps to find a solution. The
problem solving is overtaken by the internal solver Clasp. The runtime of the
program depends mostly on the selected solving algorithm and heuristics.
A solving approach with a good performance can be found faster by testing
different solving settings for Clasp than implementing different solving
algorithms in imperative programs.
The benefits of ASP have been shown in different research projects and
publications. In [50] Clingo shows better results for the solving of task
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assignment problems with many constraints than imperative methods. Fur-
thermore, the computational costs can be reduced using ASP [18]. With
the use of different solving approaches, like the heuristics in [1], a fast and
simple improvement of the results is expected.
In the next chapter we present components of the existing Fleet Management
Systems at BMW and incubed IT that were replaced by an ASP encoding
and solving. As the Potassco system Clingo showed promising results in
related research topics this solver suite will be used. The complexity of the
existing fleet management systems increased strongly by adding constraints
for the task assignment problems. It is expected that using Clingo instead
of an imperative method the code complexity decreases and the perfor-
mance increases as in [50]. A significant difference in declarative methods in
comparison to imperative methods is the description of the problem itself
rather than the description of the problem-solving process. Currently, a
huge effort is required to advance the runtime of the fleet management
system. With the use of different solving approaches of Clasp, the required
time for performance improvement is expected to be decreasing.
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The aim of this master thesis is to improve the Fleet Management Systems
at BMW and incubed IT. Existing imperative described task assignment
solving algorithms are replaced by an ASP-based program. Thereby the ASP
system Clingo is used.
In [20] development steps are introduced that allow to introduce an ASP-
based task assignment into an existing system. The steps are the following:

1. Identify the needs
2. Design a valid specification of the problem
3. Performance engineering
4. Integration into the existing environment

An ASP is implemented in both Fleet Management Systems of BMW and
incubed IT following these steps. As both systems describe different envi-
ronments with various constraint and distinctive optimization criteria, the
development steps are handled separately for both companies.

6.1. Identification of Needs

ASP is known to be a suitable solution for problems that are described by
rules and are facing mainly search and optimization challenges [8]. These
rules are on one hand constraints and on the other hand optimization
criteria.
Referring to [20] in a first step an existing system has to be analysed.
Problems that are not satisfactorily solved in the given systems have to be
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identified and the requirements needed to solve the problem need to be
defined.

6.1.1. The BMW Use Case

In order to find the currently not satisfactorily solved problems in the BMW
Fleet Management System the tasks of the system are identified and im-
provement possibilities are derived.
One task of the FMS is the validation and proof for correctness of the input
data. For example, if the parameters of a charging station indicate to be
booked by a vehicle for a long time, but no vehicle arrived, it can be assumed
that the input parameters for this charging station are incorrect. In such a
case the FMS unbooks the station so that the station is available for all other
vehicles again.
Another task of the FMS are database requests and modifications. The data
of all vehicles as well as all assignable tasks and stations are stored in the
database. Because the FMS maps the assignment process, it requests in a
first step all needed informations, such as available robots and unassigned
orders, from the database. After the assignment the FMS publishes the data
with modified parameters, like the booking status and availability, back in
the database.
The third task of the FMS solves an assignment problem that is a typical
search and optimization challenge. Given a set of vehicles, tasks, and sta-
tions, the goal is to assign the vehicles optimally under consideration of
different constraints.
Analyzing all tasks the FMS is dealing with, the following application fields
for the ASP can be found. The database requests, parameter checks, and the
update of the database and parameters is done very efficiently in the exist-
ing C# encoding. However, under consideration of increasing complexity, it
is expected that the task assignment problem of the FMS can be improved
using ASP instead of imperative methods. Given up-to-date data of the
vehicles, tasks, and stations this data can be adapted for the use within an
ASP-based task assignment. The adapted data is passed to the declarative
program, solved in there and as a last step passed back to the FMS. The
FMS then publishes the modified data to the database.
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As mentioned in [20] the application requirements have to be documented
properly. In this ASP program an optimal assignment of vehicles to tasks,
parking places, and charging stations has to be found. As the assignment to
tasks and the assignment to charging stations and parking places is dealt
separately in the FMS, it will be handled the same way using ASP by gener-
ating two programs. One ASP program is facing the optimal assignment of
tasks. Another program is assigning vehicles to charging stations and park-
ing places. Within the FMS first the task assignment program is executed.
In a second step the park and charge assignment program is executed. By
that it is made sure that available vehicles are more likely assigned to tasks
than to charging stations and parking places.

Task Assignment

Assuming that all available vehicles and unassigned tasks are given, the op-
timal task assignment can be described by following rules and optimization
criteria.

Rules for the Task Assignment At BMW the mission strategy FIFO is
applied, which means that earlier created tasks have to be executed first. By
that the criterium for the selection of tasks, formulated as a constraint, is
not to assign a task if there is another appropriate task with earlier creation
time assignable.
The rules for the selection of vehicles are the following. The task and the
vehicle that are assigned must be in the same fleet. Vehicles on the field
must have a battery level at a minimum of 25% and charging vehicles a
battery level of 40% to be assigned to tasks (see table 4.1).

Optimization Criteria for the Task Assignment The optimal assignment
of vehicles to tasks is based on the traveling costs that are set to be the
Euclidean distance between robots and the first goal of the assigned task.
The used optimization criterion ensures the lowest traveling cost for the
tasks with earliest time of creation.
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Park and Charge Assignment

In case that after the task assignment algorithm was executed unassigned
vehicles are remaining, because they are in a different fleet than all open
missions or less open tasks than free vehicles a given, the free vehicles are
assigned to charging stations and parking places. Like before, the appli-
cation requirements for the optimal assignments of the vehicles, now to
parking places and charge stations, can be defined by rules and optimization
criteria.

Rules for the Park and Charge Assignment The rules used for this assign-
ment problem are defined separately for vehicles on the field and vehicles
currently in charging stations (see also 4.1).
A charging vehicle can only be assigned to a charging station if the battery
level is below 90%. Vehicles on the field can be sent to charging stations
any time, regardless of the current battery level. Charging vehicles can go
to parking places only if the battery level is above or equal 90%, whereas
vehicles on the field can go to parking places independent from the battery
level.
The assignment of vehicles to charging stations and parking places depends
on one more constraint: only if both, the vehicle and station, are in the same
fleet, an assignment is possible.

Optimization Criteria for the Park and Charge Assignment Like for the
task assignment the distance between vehicles and POIs has to be minimized.
Vehicles with the lowest battery levels should always drive to the closest
charging station and parking place.
Vehicles should only charge if there is no other vehicle that could use the
charging station as well and has a lower battery level.
Third, there should be assigned as many vehicles as possible to charging
stations. If all charging stations are in use, as many vehicles as possible shall
be sent to parking.
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6.1.2. The incubed IT Use Case

Like for BMW in a first step the functions of the incubed IT FMS are ana-
lyzed and implementation possibilities are derived.
For a successful task allocation valid input orders are required. The FMS
validates all orders for correctness and completeness, as the orders are
user-generated and required parameters could be set incorrectly.
The FMS modifies the parameters and requirements of orders and vehicles
at specific time intervals. For example, the FMS is increasing the order
priority due to the ageing of orders and sets a boolean vehicle parameter to
enforce the assignment of vehicles to charging stations at a specified time
interval.
Another task of the FMS is the management of traffic interferences. If vehi-
cles detect a traffic interference this error is sent to the FMS and there solved
by different traffic rules. This management indicates another topic the FMS
is responsible for, namely the communication with external systems, like
warehouse management systems or conveyor systems, and the fleet itself.
The last task of the incubed IT FMS is a typical search and optimization
challenge with many constraints. This task is the optimal assignment of
vehicles to open orders, available charging stations and parking places.
Analysing the overall system it is seen that the FMS manages many topics
where the Java based imperative approach is perfectly suitable. For example
the modifications of orders and vehicles regarding the ageing of orders and
time-depended charging should not be replaced by an ASP-based approach.
These modifications depend strongly on the current system time that is
easier accessible in Java.
Where ASP could provide a significant benefit is the replacement of the cur-
rent assignment algorithm of vehicles to orders and stations. Due to many
different constraints that affect this assignment problem the ASP-based
encoding could give a benefit in the implementation of new constraints.
As the runtime of the existing implementation is expected to reaches its
limit for very high scaled application areas, it is hoped that ASP will bring
benefits in relation to this topic as well.
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Task Assignment

For an optimal task assignment all assignable vehicles, open orders, cur-
rently delivering orders and finished orders that are predecessors of open
orders have to be provided by the FMS.
The optimal assignment is defined by some rules and optimization criteria.
At incubed IT two different optimization algorithms are used: FIFO and
global optimum. While the orders are sorted by the time of creation in FIFO
they are sorted by a priority in the global optimum algorithm. By analysing
these two algorithms in detail the FIFO algorithm can be seen as a special
form of the global optimum algorithm. A priority can be set for every order
based on the creation time of the order, where for an earlier creation a
higher priority is selected. In the thesis we will use ASP to implement only
the global optimum algorithm.

Rules for the Task Assignment The most important rules that affect the
task assignment is to assign only one vehicle to every order and to assign
only one order to every vehicle.
Available vehicles can only be assigned to orders if the battery level is above
the busy charge limit (see figure 4.4).
If the vehicle is not assigned to a pool every order can be delivered by that
vehicle. If the vehicle is part of one or more pools, it can only be assigned to
orders that are in the same pool or in no pool.
In case an order with a predecessor is given this order can only be assigned
if the predecessor is part of the list of all finished orders. All tasks of a
parallel order have to be assigned to the same robot.
In the FMS not only available vehicles are considered for the assignment
but also currently delivering vehicles. In case the distance a robot trav-
els to finish the current mission and go to the origin of a new mission is
shorter than the distance for a free vehicle to the origin of this new mis-
sion, the delivering vehicle will execute this mission instead of a free vehicle.

Optimization Criteria for the Task Assignment For a fast and efficient
assignment as many orders as possible should be assigned to free and
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delivering vehicles. For an efficient delivering process the traveling costs
have to be minimized. These traveling costs of the assignment sets depend
not only on the Euclidean distance but also on two user-specified costs. In
case a delivering robot is assigned to an order, the traveling costs is the
sum of the Euclidean distance and a user-defined delivery-cost parameter
to model unpredictable delivery delays. The same applies for vehicles that
are currently charging but with the new assignment leaving the charging
stations. The traveling costs are the sum of the Euclidean distance and the
user-specific charging-cost parameter to model the impact of the break of a
charging process.

Park and Charge Assignment

The FMS provides one list with all robots assignable to charging stations
and parking places, one list with all free parking places, and one list with
all available charging stations.
Vehicles that are not assigned to orders, whether because of a low battery
level or because there are currently less appropriate open missions than free
vehicles on the field, can be assigned to parking and charging stations.

Rules for the Park and Charge Assignment The overall park and charge
assignment problem at incubed IT is broken down to 5 assignment sets:

1. Fixed time slot charging: robots are assigned to charging stations due
to a reached time slot.

2. Critical charging: robots are assigned to charging stations due to a
battery level below the critical charging limit.

3. Busy charging: robots are assigned to charging stations due to a
battery level below the busy charge limit.

4. Idle charging: robots are assigned to a charging station due to not
enough appropriate assignable tasks.

5. Idle parking: robots are assigned to parking places under two con-
ditions. First due to a very high battery level and no appropriate
assignable tasks. Second due to no available charging stations.
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Every charging station and every parking place has a priority. As stations
with higher priority have to be assigned first it is not allowed to assign
stations if there are appropriate unassigned stations with a higher priority.

Optimization Criteria for the Park and Charge Assignment For an opti-
mal park and charge assignment traveling costs have to be minimized. In
contrast to the task assignment this time the optimization is split. First the
overall traveling cost of all vehicles that are assigned to charging stations is
optimized, ignoring thereby the idle charging vehicles. The remaining charg-
ing stations and parking places are used to find the optimal assignment
of idle charging and idle parking vehicles. This split optimization ensures
the smallest possible assignment costs for all robots that have to go urgent
charging.

6.2. Design and Validation of Problem
Specifications

After the identification of needs and naming the application requirements,
the task assignment problem can be modeled using ASP.

6.2.1. Fundamental Design

The fundamental design of the ASP-based solving process is shown in figure
6.1. Firstly we define the following input data sets that are provided by the
FMS.

• R: set of j robots r1, . . . , rj P R
• T: set of k tasks t1, . . . , tk P T
• S: set of l stations s1, . . . , sl P S
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Figure 6.1.: Fundamental design of the ASP-based problem solving

The FMS provides the input data objects r P R, t P T and s P S to an
imperative program. The ASP-based problem solving design contains some
logic programs. One program is containing all input data as facts and
is provided by the imperative program. This program changes for every
execution of the ASP-based algorithm. The other programs are the same for
all executions and describe the assignment problem and optimization. All
logic programs are passed to the ASP system. After solving the assignment
problem in ASP the resulting answer sets are passed back to the imperative
program.

Imperative Program

In an imperative program the provided data objects r P R, t P T and s P S are
mapped into strings. The strings are properly set to be identified as facts
from the ASP grounder. A detailed description of the mapping and required
data adaptions for the identification as facts are given in chapter 6.4.
The format of the grounded facts that are provided to the ASP grounder
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is shown in listing 6.1. All robots r P R have the same preamble and the
identical number of terms. The terms are represented by different variables
for every robot and map robot-individual parameters that are required in
the task assignment problem description.

Listing 6.1: Input data as grounded facts

1 robot ( Parameter 1 , Parameter 2 , . . . , Parameter m ) .
2 task ( Parameter 1 , Parameter 2 , . . . , Parameter n ) .
3 s t a t i o n ( Parameter 1 , Parameter 2 , . . . , Parameter o ) .

The tasks t P T and stations s P S follow the same syntax.

Input Data Modification

This program is used for a pre-processing of input data. The goal is to reduce
the number of facts and atoms used in the encodings for the description of
the assignment problems and optimization goals. The atoms that are always
used together are joint to one atom. The terms of atoms required only in
some rules are removed from the original atom and stored in a new one.

Task Assignment

Assume a nonempty set of robots R and a nonempty set of tasks T provided
by the FMS. The aim of the task assignment problem solving is to generate a
collection A of assignments a1, . . . , ap. Therefore in a rule a task t is assigned
to a robot r and mapped as fact (see listing 6.2). In the rule all parameters
of the robots and tasks as well as the literals of the new fact assign(T,R) are
described by variables.

Listing 6.2: ASP encoding of the task assignment - assignment rule

1 0{ ass ign ( T , R) : robot (R , PR1 , PR2 , PR3 ) }1 :´ task ( T , PT1 , PT2 ) .
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Some assignments of the set A are eliminated by constraints that depend
on the implementation requirements of BMW and incubed IT. With the
constraints the assignment set A is reduced to the set B Ă A. In listing 6.3
an exemplary constraint is shown, restricting the answer sets to have only
task assigned to every robot.

Listing 6.3: ASP encoding of the task assignment - constraint

1 :´ ass ign ( T1 , R) , ass ign ( T2 , R) , T1 != T2 .

Park and Charge Assignment

Assume a non-empty set of robots R and a non-empty set of stations S
provided by the FMS. The aim of the park and charge assignment problem
solving is to generate a collection C of assignments c1, . . . , cq of robots to
stations. Therefore in a rule a robot r is assigned to a station s and mapped
as fact (see listing 6.4). In the rule all parameters of the robots and stations
as well as the literals of the new fact charge(S,R) are described by variables.

Listing 6.4: ASP encoding of the charge assignment - assignment rule

1 0{ charge ( S , R) : s t a t i o n ( S , PR1 , PR2 ) }1 :´ robot (R , PR1 , PR2 , PR3 ) .

With constraints some possible assignments c are eliminated and the assign-
ment set C reduces to the set D Ă C. In constraints where all parameters are
valid the terms of the input facts are defined by variables. For constraints
where only some parameters of the input facts are accepted these terms are
described by facts.
In listing 6.5 an exemplary constraint is shown allowing only robots in
automatic mode with a battery level below 30% to be assigned to a charging
station. With the constant term automatic mode only robots in this mode are
considered in the constraint. All terms of the atoms that are not required in
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the constraint are replaced by an underscore to provide a better readability
of the constraint.

Listing 6.5: ASP encoding of the charge assignment - constraint

1 :´ charge ( , R) , robot (R , automatic mode , , B a t t e r y l e v e l ) ,
B a t t e r y l e v e l >= 3 0 .

Optimization Strategy

To find the optimal assignment this program describes the optimization
strategy of the assignment problem. Given are facts F with new assignments.
These facts are provided by the ASP encodings of the task assignment and
the park and charge assignment. In different optimization statements of the
ASP language the facts F are used to describe the optimization strategy.

6.2.2. Design at BMW

In the original implementation the overall assignment is split in a task
assignment and a park and charge assignment. This structure is maintained
in the new implementation and thereby two ASP programs are set up. In
one ASP program robots are assigned to tasks, in the second program the
robots are assigned to charging stations and parking places.
The newly generated ASP programs require input data that is provided
by the FMS. The FMS requests this data of orders, robots, and POIs from
a database. Knowing the basic structure of the input data and the needed
parameters for the assignment problem solving the required input data for
the ASP programs can be defined. Although the exact implementation of
the parameter processing from the FMS to the ASP grounder is done in
chapter 6.4.2, the structure of the provided input data is defined in this
development step. The structure of the input data for the task assignment
is shown in listing 6.6, the structure for the park and charge assignment is
shown in listing 6.7.
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Listing 6.6: Input data for the BMW task assignment

1 mission ( missionID1 , f l e e t I D 1 ,20190727182952 , g e t s t a t i o n I D 1 ) .
2 g e t s t a t i o n ( ge ts ta t ionID1 , 1 6 9 , 2 3 2 ) .
3 robot ( robotID1 , f l e e t I D 1 , 8 6 , f a l s e , 7 3 7 , 3 7 9 ) .

Every mission contains the parameters mission-ID, ID of the assigned fleet,
time of creation and ID of the first station of the mission. Every get station
contains the ID of the station and the position of the station on the map.
The parameters that are stored for every robot are the ID of the robot, the
assigned fleet, the battery level, the information whether the robot is in a
charging station or not, and the current position of the robot in the map as
x- and y-coordinates.

Listing 6.7: Input data for the BMW park and charge assignment

1 p a r k i n g s t a t i o n ( i d l e s t a t i o n I D 1 , f l e e t I D 1 , 9 3 9 , 1 1 2 ) .
2 c h a r g i n g s t a t i o n ( dockstat ionID1 , f l e e t I D 1 , 1 7 2 , 9 6 0 ) .
3 robot ( robotID3 , f l e e t I D 1 , 6 9 , f a l s e , 1 3 0 , 3 2 ) .

The provided parameters for robots that are used in the park and charge
assignment are the same as for the mission assignment. The parking places
and charging stations contain information about the ID of the station, the
corresponding fleet and the position on the map.

Task Assignment Algorithm

The task assignment is split in three different ASP programs:

• program to modify the input data
• program to find possible answer sets under constraints
• program to select the optimal answer set of assignments

As all three programs are executed simultaneously, the grounder has access
to all facts of the different programs. The passing of the input parameters
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to the various functions, as is necessary for imperative programs, does not
have to be considered here.

Program for the Input Data Modification The structure of the input
data, like the one in listing 6.6, is very similar to the one of the FMS. To
reduce the number of predicates and terms in the task assignment programs
and provide by that a better readability and performance of the code, the
provided data is modified.
To reduce the number of atoms describing robots and their parameters,
only robots with an appropriate battery level for the task assignment are
stored as new atoms and are later on used in the task assignment program.
To reduce the number of atoms in the task assignment program further,
all assignable tasks are provided with the x- and y-coordinates of the get
station. By that the atoms of POIs are not required in the task assignment
program.
To reduce the number of terms in every atom the input data is further
modified. Some terms in the robot and task atoms, like the fleet-ID, are
required in only some rules. The input data modification program stores
the robots and tasks as new atoms without a term with the fleet-ID. Instead
all pairs of robots and tasks, that are in the same fleet and can be assigned,
are stored as new atoms containing only the ID of the robot and the task.
By that the number of terms per atom for robots and tasks is reduced, but
the information of atoms is still accessible by the new fact.

Program for the Task Assignment Algorithm The first rule implemented
in this program is the general assignment of a robot to a task. The answer
set is then restricted by allowing only assignments if the robot and task are
in the same fleet. A constraint prevents the assignment of one robot to more
than one task. To ensure the FIFO-assignment the constraint that is shown
in listing 6.8 is set up. The assignment of a robot S to a task T2 is allowed
only if there is no other appropriate unassigned task T1 with an earlier time
of creation P1. The unassigned task is appropriate if it is in the same fleet as
the robot.
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Listing 6.8: Constraint for the FIFO strategy

1 :´ t a s k f r e e ( T1 ) , ass ign miss ion ( T2 , R1 ) ,
2 a s s i g n a b l e t a s k ( T1 , P1 , , ) , a s s i g n a b l e t a s k ( T2 , P2 , , ) ,
3 f l o t t e i d e n t ( T1 , R1 ) , T1 != T2 , P1 > P2 .

Program for the Optimization In the task assignment two optimizations
are required: the Euclidean distance reduction and the increase of assigned
missions. Both criteria are implemented in the optimization program.
During the implementation a first restriction using declarative methods
occurred. In the current system the tasks are stepwise assigned to the robots.
The earliest created task is assigned to the closest robot, the second task is
assigned to the closest of the remaining robots, and so on. As in ASP the
assignment problem is solved simultaneously for all missions this stepwise
optimization can not be applied. Therefore, the Euclidean distance for all
assignments is calculated and summed up. The optimal assignment is found
to be the set of assignments with a minimized sum of all traveling costs. In
chapter 7.2.1 a detailed discussion about the quality of these two assignment
algorithm is provided. A second optimization criterion is set up that is
maximizing the number of new assignments.
Using both optimization criteria equally weighted would not lead to the
optimal solution. By use of the criterion to minimize the overall Euclidean
distance the best answer set is an empty set. To avoid this faulty behaviour
the optimization criteria are weighted. The most important criterion is the
increase of assigned missions. The resulting answer sets are then optimized
concerning the lower weighted distance minimization criterion.

Park and Charge Assignment

As for the task assignment, the overall system is split into three programs:
One for the input data modification, one for the general assignment problem
and one for the optimization.
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Program for the Input Data Modification To reduce the number of terms
in atoms that are required only in some rules, these terms are removed from
the original atom and stored as new one. Hence the information of the fleet
is stored in new facts containing pairs of robot-IDs and station-IDs that are
in the same fleet and can be assigned. The modified input data for all robots
and stations used in the assignment program are by that reduced by one
term in the atoms.
In the current state this program does not have much influence on the
overall system, but with an increasing complexity of the FMS in the future
this program will be required for some more modifications.

Program for the Park and Charge Assignment The rules that have been
defined in the previous chapter (see chapter 6.1.1) are implemented in this
program. First the assignment of robots to charging stations is defined. Two
different rules are required, as currently charging robots (indicated by the
Boolean true as third term of the literal robot chargeable) can only be assigned
to charging stations until a battery level of 90% is reached.
The assignment of robots to parking places looks similar. Again, two differ-
ent rules are necessary. The selection of charging and not charging robots
that are allowed to go to parking places is restricted by battery levels.
The number of possible assignment sets is reduced by adding the constraint
to only assign robots to stations in the same fleet.

Program for the Optimization To ensure to fulfill all optimization criteria
different rules are defined in the optimization program. In comparison to
the task assignment in this program more optimization criteria have to be
implemented.
Most significant is the increase of number of robots assigned to charging
stations. Second-most important is the assignment to parking places. As
robots shall be assigned only if there is no robot with lower battery level, a
third optimization criterion is the minimization of the sum over the battery
levels of all assigned robots. Last but not least the distance of the assigned
robots to POIs has to be minimized.
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6.2.3. Design at incubed IT

To solve the assignment problems the ASP grounder has to be provided
with input data. The FMS saves every order, robot and POI with many
parameters, from whom some are only needed for navigation or the loading
behavior, but not for the general assignment of robots to POIs.
The basic structure of the data in the FMS is known. For example there
exists a list with all delivering robots, a list with all assignable orders and a
list with all charging stations. The exact data transfer from the FMS to the
ASP grounder is described in chapter 6.4.3. However, input data is needed
for the implementation and testing of the ASP programs. Therefore the
input data format that is used in the ASP encoding is already defined in this
section. Based on the rules described in the previous chapter, the parameters
of the individual robots, orders and POIs required for the ASP problem
description can be derived. An example of provided input data in ASP is
given in listing 6.9.

Listing 6.9: Input data for the incubed IT assignment

1 opentask ( taskID1 , 4 , taskID5 , none , poolID1 , s t a t i o n I D 1 ) .
2 d e l i v e r i n g t a s k ( taskID10 , robotID1 , s t a t i o n I D 2 )
3 f i n i s h e d p r e d e c e s s o r ( taskID5 , robotID4 ) .
4

5 g e t s t a t i o n ( s ta t ionID1 , poolID1 , 10 , 12 ) .
6 p u t s t a t i o n ( s ta t ionID2 , poolID1 , 47 , 1 6 ) .
7 c h a r g i n g s t a t i o n ( s ta t ionID3 , 50 , none , 18 , 16 ) .
8 p a r k i n g s t a t i o n ( s ta t ionID4 , 10 , poolID1 , 55 , 23 ) .
9

10 r o b o t a s s i g n a b l e ( robotID4 , 76 , f a l s e , 86 , 2 , 35 ) .
11 robot chargeab le ( robotID2 , 48 , automatic mode , none ,
12 59 , 7 , 70 , 35 , 30 ) .
13 r o b o t d e l i v e r i n g ( robotID1 , 43 , 53 , 32 , 35 ) .
14

15 robot pool ( robotID2 , poolID1 ) .

Every open task contains the parameters ID of the task, priority of the task,
ID of the predecessor, ID of a parallel task of a chained order, ID of the
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pool and the ID of the get station of the task. Delivering tasks contain the
ID of the task, the ID of the robot who is delivering and the ID of the put
station. Finished predecessor are provided as a fact with information about
the ID of the finished predecessor and the ID of the delivering robot. In the
given example shown in listing 6.9 the assignable task with ID taskID1 has
a predecessor with the ID taskID5. This predecessor is finished, as a fact
named finished predecessor with the predecessor ID is provided.
All stations are represented by information about the ID of the station, the
pool and the x- and y-positions. For charging stations and parking places
an additional parameter that is placed right behind the station ID sets the
priority of the station.
For every robot specific battery levels can be defined. As these battery
levels are required for the correct assignment, they are passed to the ASP
program as parameters. The facts for assignable robots provide information
about the ID of the robot, the battery level, a Boolean value indicating the
currently charging robot, the x- and y-position and the battery level for the
busy charging limit. The chargeable robots contain information about the
ID, the current battery level, an information if the robot is in idle mode
or automatic mode, an information about specific charge decisions (none;
balance charging; fixed timeslot charging), the current x- and y-position,
and the active, busy and critical battery levels. Delivering robots provide the
same information as the assignable robots, only the Boolean information if
the robot is currently charging is not required.
For every pool a robot is assigned to, a fact is set up with information of
the robot ID and the ID of the pool.
To implement the incubed IT assignment strategy with all predefined rules
and optimization criteria four programs are set up. One for the modification
of the given input data, one for the task assignment algorithm, one program
for the assignment of robots to parking places and charging stations and
one program for the fulfilling of the optimization criteria.

Program for the Input Data Modification

The structure of the ASP input data, like the one in code snippet 6.9, is very
similar to the structure in the FMS. To reduce the number and size of atoms
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in every rule in the assignment programs the given input data is modified
and simplified.

Input Tasks The input data provides all assignable tasks with information
about the ID of the tasks, the priority, the ID of the predecessor and others.
To reduce the number of considered atoms in the assignment program, the
open tasks that can be assigned to a robot are set as new facts if they hold
following conditions:

1. if an input task has a predecessor ID, the task is only assignable if this
predecessor ID is finished.

2. for orders with a parallel-ID only one of the parallel executed tasks is
considered in the task assignment algorithm. If the task is assigned to
a robot, all other tasks of the chained order are assigned to this robot.

Applying the two conditions the terms that contain information of prede-
cessors and parallel IDs are no longer required.
To reduce the number of atoms used at the task assignment algorithm the
ID of the get station, that is saved as parameter of the task, is replaced by
the x- and y- coordinates of this station. By that only the atoms describing
tasks are used in the task assignment, but not the atoms for get stations, as
the only needed information, the position of the station, is now stored as
term of the tasks.
Next to the input data for open tasks the data for currently delivered tasks
are modified. The atoms for tasks in delivery are required for the assign-
ment of currently delivering robots to new tasks. The provided input data
parameters for tasks in delivery are the IDs of the task, the ID of the deliv-
ering robot and the ID of the put station. To reduce the number of atoms
in the ASP encoding of the assignment problem, the ID of the put station
is replaced by the x- and y-position of this station. With that the atoms of
stations are not required in the assignment program.

Input Robots The input data provides two different lists with robots. In
one list all assignable robots are stored. These robots are currently free or
charging and can be assigned to tasks. All robots which can be assigned
to charging stations and parking places are maintained in the list called
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chargeable robots. As some robots can deliver orders and go charging they
are found in both lists.
As assignable robots can only be assigned to a task if the battery level is
above the active charge limit (for charging robots) or above the busy charge
limit (for not charging robots), they are used in the assignment program
only if they have an adequate battery level.
Chargeable robots are split in the input data modification program into
three different facts:

1. Balance charging robot: a chargeable robot that has to go balance
charging

2. Forced charging robot: a robot that has to go timeout charging
3. Optional charging robot: all robots that are assignable to charging

stations but do not need to go forced charging

Pools One rule for the assignment of robots is the consideration of pools.
Robots that are in a pool can be assigned to tasks in the same or in no
pool. Robots with no pool can be assigned only to orders with no pool. The
input data provides information about robots and related pools. In listing
6.7 this information is provided by fact named robot pool(S,P). In case the
robot is in no pool, no fact is provided. To provide the required data to
the task assignment problem the given robot-pool relations are extended
to facts named pool ident. For every allowed assignment of robots to orders
regarding their pools such a fact is set up. To circumvent the not provided
information of robots that are in no pool, the constraints as shown in listing
6.10 are set up. In the first row all assignment sets, that have the same pool
P are registered in the fact pool ident. In the second rule all assignments are
accepted where the robot is in a pool and the task is in no pool. The last
rule accepts all assignments in where the task and the robot are in no pool.
Following the principle of default negation the rule holds if no information
of robot pool is given for the robot S.
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Listing 6.10: Rules for pool-restricted assignments

1 pool ident (R , T ) :´ robot pool (R , P ) ,
2 a s s i g n a b l e t a s k ( T , , , P , , ) .
3 pool ident (R , T ) :´ robot pool (R , PoolID ) ,
4 a s s i g n a b l e t a s k ( T , , , none , , ) .
5 pool ident (R , T ) :´ robot (R) ,
6 a s s i g n a b l e t a s k ( T , , , none , , ) ,
7 not robot pool (R , ) .

Program for the Task Assignment Algorithm

After having all required rules and optimization criteria documented in
section 6.1.2 the ASP-based task assignment can be set up. The required
open orders, the list of all finished predecessors and all assignable and
currently delivering robots are provided by the input data modification
program.
During the development first any desired robot is assigned to orders. Subse-
quently additional rules and constraints are added to the ASP encoding to
result in a program that returns only answer sets that are fulfilling the rules
of section 6.1.2.
In the first rule that is set up any desired robot is assigned to an assignable
task and saved as the literal assign(T,S), where the term T contains the ID of
the task and the term S the name of the robot. The resulting assignment sets
are reduced by the following constraints. Only assignment sets are accepted
where the pool rule is fulfilled. Every robot can be assigned to only one
order. In case a finished predecessor is given, the robot that delivered this
chained task has to deliver the next chained task without an interruption.
The implementation of this rule using two constraints is shown in listing
6.11. The first constraint prevents the assignment of a robot S, that was used
in a chained order to be assigned to the task T. This task is not part of a
chained order, as the parameter none is set in the field for the predecessor
ID. The second constraint in listing 6.11 prevents the assignment of a robot
S1 to a task T if this task has a predecessor TPD that was executed by the
robot S2 .
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Listing 6.11: Constraints for predecessors

1 :´ ass ign ( T , R) , a s s i g n a b l e t a s k ( T , , none , , , ) ,
f i n i s h e d p r e d e c e s s o r ( , R) .

2 :´ ass ign ( T , R1 ) , a s s i g n a b l e t a s k ( T , , TPD, , , ) ,
3 f i n i s h e d p r e d e c e s s o r (TPD, R2 ) , R1 != R2 .

To assign an order to a robot that is currently in delivery another rule is set
up. In the head of this rule, named assign to delivering, the ID of the new
order, the name of the delivering robot and the total traveling costs are saved
as literals. The number of found solutions is reduced by some constraints to
ensure that not more than one order is assigned to the delivering robot and
that only appropriate tasks are assigned. Furthermore, another constraint
allows the assignment to a delivering robot only if there is no other free or
currently charging robot with lower traveling costs.
In the rule for the assignment of open tasks to free robots only one task
of an parallel order is considered. To provide not only this assignment to
the FMS but the assignments of all parallel tasks an additional rule is set
up. If a task of a parallel order is assigned to a robot, all associated tasks,
indicated by the same parallel-order-ID term, are assigned to this robot as
well.
To avoid a scheduling of tasks, the tasks that are assigned to delivering
robots are not passed to the FMS. Instead these assignments are ignored for
the moment. The task assignment algorithm is executed very regulary. As
long as the robot is still in delivery, the new task will be assigned to this
delivering robot but the assignment is not passed to the FMS. When the
robot finished the delivery process the new task is assigned to the robot
again and this time passed as part of the answer set to the FMS.

Program for the Park and Charge Algorithm

In the section for rules for the incubed IT park and charge assignment
(see section 6.1.2) it is stated that for the park and charge assignment four
different assignment statements are used. One statement assigns robots that
have to go fixed timeslot charging, one statement assigns all robots with a
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battery level below the critical charge limit and a third rule assigns robots
to idle charging stations. The implementation of the fourth statement, the
assignment of busy charging robots, is shown in listing 6.12. The body of
the rule holds for robots that are in the automatic mode and not in the idle
mode. Furthermore, the battery level has to be between the critical and the
busy charge limit. In the head a condition literal is set up, assigning no
or one chargeable robot to a charging station and store the assignment in
the fact robot charge. The head and by that the assignment holds only if the
charging station and the task are in the same pool.

Listing 6.12: Assignment of busy charging robots

1 0{ charge ( S , R busy ) : c h a r g i n g s t a t i o n ( S , , , , ) ,
r o b o t s t a t i o n (R , S ) }1 :´

2 robot charge opt (R , BL , automatic mode , , , , BCL,CCL) ,
3 BL <= BCL, BL > CCL.

To assign only one robot to a station and only one station to every robot the
constraints in listing 6.13 are defined.

Listing 6.13: Avoidance of double allocations

1 :´ charge ( S , R1 , ) , charge ( S , R2 , ) , R1 != R2 .
2 :´ charge ( S1 , R , ) , charge ( S2 , R , ) , S1 != S2 .
3 :´ ass ign ( T , R1 ) , charge ( , R2 , ) , R1 = R2 .

The constraints only hold for answer sets in where no two robots are
assigned to the same station (first constraint), no two stations are assigned
to one robot (constraint 2) and a robot is not assigned to a charging station
and a task simultaneously (third constraint).
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Program for the Optimization

Until now the ASP solver published multiple possible answer sets as solu-
tions. These answer sets fulfill all given rules, but only one of the sets is
the optimal solution. To reduce the number of possible answer sets to one
optimal solution, the ASP optimization program is implemented.
Therefore, optimization criteria with different weights are defined. The most
important optimization criterion and by that the highest weighted criterion
is the maximization of the number of robots assigned to orders, charging
stations and parking places. The second most important is to increase the
sum of all priorities: The priority of orders as well as the priority of the
assigned charging stations and parking places. The last optimization criteria
are the minimization of traveling costs for urgent charging robots and robots
that are sent idle charging or to a parking place.

6.2.4. Validation of Problem Specifications

After modelling the task assignment problems using ASP the correctness of
the results has to be tested. Therefore multiple test scenarios are set up. The
test scenarios map different combinations of robots, tasks and stations in
different settings, like multiple fleets or various battery levels. All robots
and stations are placed on a 50 x 50 coordinate system where the robots are
freely movable. Test scenarios are for example the following:

• given are a set of available robots and a set of open tasks. All robots
are in one fleet (at BMW) or pool (at incubed IT), all tasks are in
another fleet or pool. This scenario is used to test the functionality of
the constraint for fleets and pools.
• given are a set of robots and a set of open orders. Due to the low

battery levels of the robots they can not be assigned to the open
orders. This scenario tests the consideration of battery levels in the
task assignment.
• given are more robots that have to go charging than available charging

stations. With this scenario it is tested whether robots with a lower
battery level are rather assigned to the charging stations than robots
with a higher battery level.
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The optimal solution for every test scenario was found by hand. To test the
correct functionality of the ASP implementations the answer sets returned
by the ASP solver are checked against the known optimal solution.

6.3. Performance Engineering

After implementing the ASP programs and testing the correct functionality
in different test scenarios it is mentioned in [20] to have a look at the runtime
of the programs. For the implementation of ASP-based solving approaches
at incubed IT and BMW it is not only important to have a readable code
that can be maintained and extended easily, but also to have a program with
a runtime comparable to the existing system. Therefore, the performance of
the newly implemented ASP systems is tested for different scenarios, anal-
ysed and improved. This process is very complex and time-consuming, as
all improvements have to be tested of a correct functionality. The impact of
the improvements has to be evaluated and further steps must be considered.
The ASP implementations of the task assignment problem of both companies
follow the same structure. For given orders, vehicles and POIs optimal as-
signment sets have to be found under consideration of different constraints.
The optimization goal is the same for both companies, namely to minimize
the traveling costs and maximize the number of assignments. Although the
constraints of both companies are slightly different, the programs follow
the same basic structure. Evaluating the performance improvements for
one system, these improvements can simply be applied to the other system.
Therefore, the code performance improvements are only evaluated for the
incubed IT system, as this one is slightly more complex and has more
optimization parameters. After that the founded improvements are applied
to the ASP programs of BMW.
Not only the code structure itself has an effect on the runtime of the pro-
gram, but also the selected ASP solver. For the improvements in encoding
the different number and complexity of rules and constraints at BMW
and incubed IT did not make a difference. For the selection of solving
approaches, however, the number and complexity of rules and constraints
influence the runtime of the solving algorithm, as some solving approaches
are suitable for many different constraints, some approaches are better for
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problems with fewer constraints. Therefore, solving approaches are analysed
separately for the system of BMW and incubed IT.

6.3.1. Testing Environment

The systems of BMW and incubed IT have been tested on devices with the
following specifications. At BMW an Intel(R) Core(TM) i5 with a 1.70GHz
processor and 8GB RAM is used. At incubed IT an Intel(R) Core(TM) i5-
7200U is used with a 2.50GHz processor and 8GB RAM. On both systems
Windows 10 is installed. Clingo is running in version 5.3.0 with Gringo
V5.3.0. and Clasp V3.3.4.

6.3.2. Encoding Improvements

For a successful improvement of the system, the limiting code elements
have to be found first.
While testing the correct functionality of the ASP encoding during the
development progress an observation was made which can now be useful
for the performance improvement. Following two scenarios have been given
to validate the correctness of the program:

1. Given are five vehicles, all with a high battery level at 85%, and two
open missions. All robots and tasks are in the same fleet.

2. Given are five vehicles, all with a high battery level at 85%, and two
open missions. All robots are in different fleets (robot 1 and robot 2 in
fleet A, robot 3 in fleet B, and robot 4 and 5 in fleet C), the tasks are in
fleet A (task 1) and fleet B (task 2).

These test scenarios were used to evaluate whether the constraint for fleets
works or does not. The optimal solution with lowest traveling costs for
the scenario with only one fleet is the assignment of robot 2 to task 2 and
robot 5 to task 1. In the second test scenario the output should not be this
assignment set, as task 1 can only be assigned to robot 1 and robot 2 (both
in fleet A) and task 2 can be assigned only to robot 3 (both in fleet B).
During the test scenario evaluation not only the code correctness has been
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proved, but runtime differences of the two scenarios have been recognized,
although the number of input parameters stayed the same. The runtime of
the second scenario was significantly faster. Due to the restriction of answer
sets by fleets only two possible answer sets had to be optimized, in contrast
to the first scenario where 20 possible answer sets had to be optimized. It
was shown that the runtime is influenced significantly by the number of
possible answer sets the optimization function has to analyze. This indicates,
that a system with mostly constraints can be solved faster by the solver
than a system with many optimization criteria. The same observation was
found in chapter 3.2.3 by [53], where with the use of teams of robots the
performance increased.
With this observation the main focus along the performance engineering will
be the replacement of optimization criteria by rules. To analyze and improve
the runtime first the task assignment and after that the park and charge
assignment will be improved. Different problem scenarios are observed to
evaluate the impact of the encoding improvements.
After every change in the ASP encoding it is tested if the correct solution
is found. Therefore all test scenarios with provided correct solutions, in-
troduced in paragraph 6.2.4, are solved by the new ASP encoding and the
obtained results are compared.

Task Assignment

To analyze the improvements of code modifications different test scenarios
are set up. The test scenarios represent differently scaled environments and
are shown in table 6.1. The number of assignable tasks ranges from 3 to 30

elements, the number of robots is set to two-third of the number of tasks.
All robots and open orders are in the same fleet and all robots have a battery
level of 90%. Every open task has its own get station. The robots and get
stations are randomly placed on a 400 x 400 coordinate system. The robots
can move freely in the environment. For the calculation of travelling costs
the Euclidean distance from the position of the robot to the get station of
the assigned task is considered. In these test scenarios no charging stations
and parking places are given.
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Test Scenario Robots Open Tasks
Scenario 1 2 3

Scenario 2 6 9

Scenario 3 10 15

Scenario 4 20 30

Table 6.1.: Test scenarios for the performance evaluation of the task assignment algorithm

When using Clingo to solve a problem in ASP a parameter can be set
(named –stats) to indicate that after the solving process detailed statistics
of the grounding and solving process are shown in the terminal window.
One of these statistic information is the number of constraints that have
been affecting the solving process, another parameter shows the number of
models found. With a higher number of constraints, the number of founded
models from where the optimal solution has to be found decreases. As
a lower number of models and higher number of constraints indicate an
improve of the runtime these two parameters will be, next to the runtime,
evaluated to find an optimal program.

Evaluation of the Original Encoding As a first step of the performance
improvement the original encoding of the assignment problem, that was
generated by following the generate-and-test methodology, has to be evalu-
ated. In table 6.2 the runtime, number of models and constraints is shown
for every test scenario introduced in table 6.1. As a solving process with a
long runtime is not acceptable for a real time implementation in the existing
system, the solving process is stopped after 30 seconds.
An exponential time increase for the solving process can be seen in the table.

Test Scenario Runtime [ms] Models Constraints
Scenario 1 31 5 18

Scenario 2 1019 39 414

Scenario 3 Timeout / /
Scenario 4 Timeout / /

Table 6.2.: Results for the task assignment test scenarios with the original encoding
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With 9 instead of 3 open tasks the runtime increases from 31 milliseconds to
more than 1 second. Instead of 5 answer sets at scenario 1, 39 answer sets
are analysed and optimized in the solving process of scenario 2. Finding
an optimal answer set for scenario 3 and 4 is not possible within the time
limit.

Code Improvement 1: Removing Optimization Criteria ’Number of Mis-
sions’ As a first performance improvement of the code the optimization
criterion to increase the number of assigned robots is replaced by constraints.
Instead of maximization statements, as seen in code snippet 6.14, the con-
straints in code snippet 6.15 are used to maximize the number of assigned
robots to tasks.

Listing 6.14: Optimization criterion for maximization of assignments

1 #maximize{I@8 , C, S , I : new assigned task ( T , S , C, I ) } .

All tasks that are not assigned to free or currently delivering robots are set
as the fact task free. All robots that are assignable, but not assigned and not
in a charging station or parking place, are set as the fact robot free. All free
robots and all unassigned orders that are in the same pool are counted. In
case the number of robots is higher than the number of assignable tasks, the
first constraint holds and is fulfilled if the number of open tasks is zero. In
case the number of robots is smaller than the number of open orders, the
second constraint must hold and does so only if the number of free robots
equals zero.

Listing 6.15: Constraint for maximization of assignments

1 :´N1 = # count{S1 : r o b o t f r e e ( S1 ) , r o b o t t a s k ( S1 ,TA) } ,
2 N2 = # count{TA: t a s k f r e e (TA) } , N1 >= N2 , N2 != 0 .
3

4 :´N1 = # count{S1 : r o b o t f r e e ( S1 ) , r o b o t t a s k ( S1 ,TA) } ,
5 N2 = # count{TA: t a s k f r e e (TA) } , N1 < N2 , N1 != 0 .
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A further improvement of the encoding, that does not only effect a better
readability but also a better performance, is the reduce of different literals
that are required in the different constraints and rules. This reduction is
achieved by the implementation of the program for input data modification.
The replacement of the optimization statement and the reduction of required
constraints leads to a better performance of the program. As it can be
seen in table 6.3 the runtime for scenario 1 increased, as for very small
problem scales the optimization is solved faster than the fulfilment of
additional constraints. The reason for that is the increased required time
for the grounding process of the program due to the higher number of
constraints in the code.
The runtime of all other scenarios decreased, especially for scenario 3 and
4. They can now be solved in less than 30 seconds. It can also be observed
that with an increasing number of models the solving process starts to
increase exponentially. The runtime per model in scenario 3 is 0.003 seconds,
whereas in scenario 4 this is 0.08 seconds. This exponential behaviour of
the runtime shows the importance to reduce the number of found models
to improve the performance. With a few more found models the runtime
increases significantly.

Test Scenario Runtime [ms] Models Constraints
Scenario 1 114 (+ 268%) 3 (- 40%) 85 (+ 372%)
Scenario 2 144 (- 86%) 25 (- 36%) 943 (+ 127%)
Scenario 3 267 78 2388

Scenario 4 18755 234 10901

Table 6.3.: Results for the task assignment scenarios with the first encoding improvements

Code Improvement 2: Distance Constraint To reduce the number of mod-
els even further, the impact of the second optimization criterion, the mini-
mization of the traveling costs, is reduced. The criterion can not be replaced
completely by a constraint, but the number of possible answer sets that have
to be optimized can be reduced. Two new constraints are introduced and
shown in code snippet 6.16.
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Listing 6.16: Traveling costs constraints

1 :´ ass ign ( T1 , S1 ) , t a s k f r e e ( T2 ) , r o b o t t a s k ( S1 , T2 ) ,
2 a s s i g n a b l e t a s k ( T1 , P1 , , , , ) , c o s t ( T1 , S1 , C1 ) ,
3 a s s i g n a b l e t a s k ( T2 , P2 , , , , ) , c o s t ( T2 , S1 , C2 ) ,
4 P1<=P2 , C1 > C2 .
5 :´ ass ign ( T1 , S1 ) , a s s i g n a b l e t a s k ( T1 , P1 , none , , , ) ,
6 r o b o t f r e e ( S2 ) , r o b o t t a s k ( S2 , T1 ) ,
7 c o s t ( T1 , S1 , C1 ) , c o s t ( T1 , S2 , C2 ) , C1 > C2 .

The first constraint forbids the assignment of tasks if there is an unassigned
appropriate task that can be assigned to the same robot but has lower
traveling costs. In the second constraint the assignment of a task to a robot is
prevented if there is another free and appropriate robot with lower traveling
costs. Additionally to the new traveling constraints the performance is
increased by removing all unused terms in atoms that have been added
during the development of the ASP encoding but are not required any more.
For example the priority of a task was given as term in the atom of a new
assignment, but was never used. Another performance improve showed up
to be the modification of rule for assigning delivering robots. The atoms
used for distance calculation are moved from the body to the head of the
rule.
The impact of the code modifications is shown in table 6.4. For scenarios
with a smaller number of robots and tasks the runtime increases slightly due
to the higher number of constraints and the by that longer grounding time.
The runtime for scenario 4 decreased significantly by a factor of 95%. The
number of models decreased for all 4 scenarios by a factor of 67% (scenario
1) up to 94% (scenario 4).

Test Scenario Runtime [ms] Models Constraints
Scenario 1 139 (+ 22%) 1 (- 67%) 94 (+ 11%)
Scenario 2 145 (+ 0.1%) 3 (- 88%) 1294 (+ 27%)
Scenario 3 387 (+ 45%) 11 (- 86%) 3423 (+ 43%)
Scenario 4 850 (- 95%) 14 (- 94%) 25300 (+ 132%)

Table 6.4.: Results for the task assignment scenarios with the second encoding improve-
ments
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Park and Charge Assignment

To evaluate the runtime differences, that occur during the improvements
for the park and charge assignment, 4 test scenarios are set up and shown
in table 6.5. The test scenarios differ in the number of charging stations
and parking places and the number of robots that have to go fixed timeslot
charging or threshold-based charging. All robots and stations of these test
scenarios are in the same pool. The position of robots and stations is set
randomly in a 100 x 100 coordinate system. The robots are freely movable
in this system.
As in no open tasks are provided in the scenarios, not only the robots with
a battery level below the busy charge limit and robots that have to fixed
timeslot charging are assigned to charging stations, but all remaining robots
are assigned to the charging stations and parking places as well.

Scenario 1 Scenario 2 Scenario 3 Scenario 4
Charging Stations 1 2 5 10

Parking Places 2 6 10 20

Robots Fixed Timeslot
Charging 0 1 2 4

BL1 <CCL2
0 1 3 5

BL ď BCL3
1 2 3 5

BL >BCL 1 2 2 6

Table 6.5.: Test scenarios for the performance evaluation of the park and charge assignment
algorithm

Evaluation of the Original Encoding To compare the encoding improve-
ments in a first step the performance of the original encoding is observed.
In table 6.6 the runtime, number of models and the number of constraints is
shown.

1Battery Level
2Critical Charge Limit
3Busy Charge Limit
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Test Scenario Runtime [ms] Models Constraints
Scenario 1 97 3 14

Scenario 2 162 18 302

Scenario 3 Timeout / /
Scenario 4 Timeout / /

Table 6.6.: Results for the park and charge assignment test scenarios with the original
encoding

Results for the first two scenarios are found within milliseconds, but it is
shown that for higher scaled problem instances like the one in scenario 3

and scenario 4 the optimal solution can not be found within the 30 seconds
time limit.

Encoding Improvements The replacement of optimization criteria for the
park and charge assignment turned out to be more complex than for the
task assignment. Due to the increased number of assignment sets for forced
charging, critical charging, busy charging and idle charging the replacement
of the optimization statements by rules turned out to be more difficult.
Instead of replacing each optimization criterion by one or two rules, this
time the overall system is observed and described by some known and new
rules as followed:

• a robot with a fleet needs to be assigned to a POI with the same fleet
(constraint already implemented)
• a robot with no fleet can be assigned to any POI (constraint already

implemented)
• there can be no robot not charging that needs to charge when there is

a robot with a higher battery level in an appropriate charging station,
except where forced and balance charging robots are in the appropriate
charging station.
• another robot can not be charged in a station if a robot requires forced

charging and could be charged in this station
• there can be no robot requiring forced charging and an appropriate

charging station is free
• there can be no robot charging in a station if a balance charging robot

is unassigned and could be assigned to this station
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• a charge station cannot be free if there is an appropriate robot with a
battery level below the idle charge limit and unassigned
• a parking place can not be free if there is an appropriate robot that is

not assigned to a task or a charging station
• charge station 1 cannot be assigned to robot B if the unassigned robot

A exists and robot B has another optional free charge station it can be
assigned to
• parking place 1 cannot be assigned to robot B if the unassigned robot

A exists and robot B has another optional free parking place it can be
assigned to
• vehicle A cannot go charge at parking place 2 if parking place 1 is free,

closer and appropriate for robot A

All listed rules are formulated in ASP as rules and constraints. The optimiza-
tion criterion to maximize the number of assigned robots is not required
any more. The two optimization criteria to minimize the traveling costs for
urgent charging assignments and the minimal costs for idle charging and
parking assignments are still required. The performance of the modified
ASP encoding is shown in table 6.7.

Test Scenario Runtime [ms] Models Constraints
Scenario 1 99 (+ 2%) 1 (- 67%) 29 (+ 107%)
Scenario 2 130 (- 20%) 29 (+ 61%) 446 (+ 48%)
Scenario 3 185 47 1799

Scenario 4 1171 416 9691

Table 6.7.: Results for the park and charge assignment test scenarios with the improved
code

The performance improvements are very significant for test scenario 3.
Whereas in the original ASP encoding the optimal solution was not found
within the time limit, in the new implementation the solution is found in
185 milliseconds. Test scenario 4 can now be solved within the time limit as
well. The performance improvements for the first and second test scenario
are not as significant. It can be seen that the number of found models for
scenario 2 even increased compared to the original implementation. The
reason for that could be the behavior of the default solver that runs in the
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background. The underlying algorithm is possibly more suitable for the
problem description in the original encoding.

Further Improvements To improve the performance of an ASP encoding
Gebser et al. [31, pp. 153–173] introduce advanced modeling approaches.
Based on a newly generated ASP code, the performance of this code is
evaluated with some provided statements. Better performance of the ASP
solving process can be achieved by revising the current encoding until all
9 statement in [31, p. 172] hold. The ASP implementation of incubed IT
and BMW Group holds most of the statements, but further improvements
could be desired. One improvement that could accelerate the encoding is
the improvements of optimization criteria that are dependent on each other
[31, p. 170]. The main idea of this improvement could be applied to the
minimization of the total traveling costs in a later ASP version.

6.3.3. Selection of Solving Approaches

Clasp, the answer set solver of Clingo, provides options to modify the
solving process. A selection of these options has already been introduced in
chapter 2.3.3.
In close cooperation with professor Martin Gebser, a co-developer of Potassco,
following solving approaches are examined that could improve the given
ASP solving processes:

1. Opt-heuristic to alter the sign selection (command - -opt-heuristic=1)
2. Berkmin heuristic (command - -heuristic=Berkmin)
3. Vmtf heuristic (command - -heuristic=Vmtf )
4. Vsids heuristic (command - -heuristic=Vsids)
5. Unit heuristic (command - -heuristic=Unit)
6. Arbitrary static ordering (command - -heuristic=None)
7. Domain heuristic with the domain heuristic to apply a false statement

to all atoms that appear in optimization statements (command - -
heuristic=Domain - -dom-mod=5,8)

8. Branch-and-bound-based hierarchical optimization (command - -opt-
strategy=bb,1)
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9. Competition-based multithreading with two threads (command - -
parallel-mode=2,compete)

10. Competition-based multithreading with four threads (command - -
parallel-mode=4,compete)

11. Splitting-based multithreading with two threads (command - -parallel-
mode=2,split)

12. Splitting-based multithreading with four threads (command - -parallel-
mode=4,split)

For the evaluation, the solving approaches 1 to 8 are analysed first. The
best-found solving approach is then tested with the four different parallel-
mode selections, as multi-threading can be used together with other solving
approaches.
Test scenarios are set up separately for both companies. The number of
assignable robots and tasks is chosen to be in a range where an optimal
solution can be found within seconds for the default solving approach.
To test the runtime of the different solving approaches, ten test runs with
different input data are set up for the test scenarios.
In the following the optimal solving approaches are evaluated for BMW
and incubed IT.

Selection of Solving Approaches at BMW

At BMW the task assignment and the park and charge assignment are
executed in two separate executions. That allows to select different solving
approaches for both assignments. Two evaluations are done to find the best
approach that is indicated by the fastest solving time.

Solving Approach for the Task Assignment The test scenario for the per-
formance improvement of the task assignment is the following. Given are
5 open tasks and 12 vehicles. All tasks and robots are in the same fleet
and placed randomly in a 1000m x 1000m field. The time of creation is set
randomly for every order, the battery level of the robots is set in a range of
25% to 100%. The input data with random variables is generated for ten test
runs. To evaluate the best solving approach the performance of the different
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solvers is observed for every of these 10 test runs.
The performance of the first 8 solving approaches, evaluated for the ten
different test runs, is shown in a boxplot in figure 6.2. The underlying data is
given in table A.2 in the appendix. For test runs where the solving processes
takes more than 60 seconds a timeout is reached and the solving process
is stopped. These test runs are not considered in the calculations for the
boxplot and the table in the appendix.
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Figure 6.2.: Boxplot of the performance results of the BMW task assignment for different
solving approaches

To evaluate the best-suited solving approach the runtimes for the different
methods are analyzed. The solving approaches with the smallest boxes
and the lowest upper whiskers in the boxplot in figure 6.2 are the default
configuration, the arbitrary static ordering and the branch-and-bound-based
hierarchical optimization. As the median in the boxplot as well as the mean
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and the standard deviation in the table show the best performance for the
branch-and-bound-based hierarchical optimization this strategy is chosen
to be the best suiting solving approach.
In the next step the branch-and-bound-based optimization strategy is used
together with different multithreading approaches to solve the 10 test runs
again. The results are shown in figure 6.3. The underlying data is given in
table A.1 in the appendix. The smallest box, median value and whisker in
the boxplot and by that the best performance for the test scenario is given
by the splitting-based approach with 4 threads. Additionally this approach
is the only one without outliers.
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Figure 6.3.: Boxplot of the performance results of the BMW task assignment for differ-
ent multi-threading approaches combined with the branch-and-bound-based
optimization strategy

The best solving approach for the BMW task assignment is the branch-
and-bound-based optimization strategy in combination with splitting-based
search multithreading and four threads.

Solving Approach for the Park and Charge Assignment As a first step a
test scenario is set up. This test scenario consists of 33 parking places, 17

charging stations, and 15 assignable vehicles. All stations and robots are in
the same fleet and randomly placed in a 1000m x 1000m field. If different
fleets would be used the number of found models from where the optimal
solution has to be found, would be smaller and by that the runtime of the
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solver would not only depend on the selected solving approach. The battery
level of the robots is set in the range of 25% to 100%. Ten random test runs
are generated and used to solve the park and charge assignment with the
different solving approaches.
The performance of the first 8 solving approaches for the given test runs
is shown in figure 6.4, the underlying data is provided in table A.4 in the
appendix. For test runs where the solving processes takes more than 60

seconds a timeout is reached and the solving process is stopped. These test
runs are not considered in the calculations for the box plot and the table in
the appendix.
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Figure 6.4.: Boxplot of the performance results of the BMW charge and park assignment
for different solving approaches

Looking over the required runtimes to solve the test runs the four ap-
proaches default configuration, Vsids heuristic, Domain heuristic and branch-
and-bound-based optimization strategy are the only approaches never reach-
ing the time limit. All other approaches reach the time limit at least once,
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with the Berkmin and Unit heuristic and with the approach of arbitrary
ordering no test run was solved within 60 seconds. Looking at the box
width and the median of the boxplot and analyzing the mean and stan-
dard deviation of the runtimes in table A.4 the branch-and-bound-based
optimization strategy shows the best performance. This strategy is the best
fitting approach for this assignment problem as well as already for the task
assignment problem.
Now the best parallel-mode is analysed. Therefore the branch-and-bound-
based strategy is used with the multithreading-based solving approaches.
The runtimes are shown in figure 6.5, the underlying data is given in table
A.3 in the appendix. The splitting-based multithreading with four threads
shows the lowest upper whisker, the lowest median and the smallest box
width. Based on these observations it can be stated that the park and charge
assignment at BMW is solved the fastest by using the branch-and-bound-
based optimization with splitting-based multithreading and four threads.

0 0.5 1 1.5 2
¨104

Compete-based, 2 Threads

Compete-based, 4 Threads

Splitting-based, 2 Threads

Splitting-based, 4 Threads

Runtime [ms]

Figure 6.5.: Boxplot of the performance results of the BMW charge and park assignment for
different multi-threading approaches combined with the branch-and-bound-
based optimization strategy

Selection of Solving Approaches at incubed IT

To find the optimal solving approach for the assignment problem at incubed
IT a test scenario is defined. In this scenario 15 robots with battery levels
between 40% and 99% are placed randomly in a 100m x 80m field. The
robots are optimally assigned to 20 tasks. Like for BMW, 10 test runs are
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set up for the given test scenario. For every test run the vehicles, stations,
and get stations are randomly placed on the map. By that it is ensured that
solving approaches are not selected that fit only one specific test run.
The runtimes for the solving approaches 1 to 8 are shown in figure 6.6.
The underlying data is shown in table A.6 in the appendix. If the optimal
solution is not found within the incubed IT-specific time limit of 30 seconds,
the solving process is aborted. These aborted test runs are not considered in
the calculations for the boxplot and the mean and standard deviation in the
appendix.

0 0.5 1 1.5 2 2.5 3 3.5 4
¨104

Default Configuration

Opt-Heuristic = 1

Berkmin Heuristic

Vmtf Heuristic

Vsids Heuristic

Unit Heuristic

Arbitrary Static Ordering

Domain Heuristic

Opt-Strategy = bb, 1

Runtime [ms]

Figure 6.6.: Boxplot of the performance results of the incubed IT assignment for different
solving approaches

It can be seen in table A.6 that with the default configuration, the Vsids
heuristic and the branch-and-bound-based strategy all test runs, out of test
run 4, are solved in time. All other solving approaches reach the time limit
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at least for two additional test runs. Analysing the performance of the three
solving approaches with only one timeout the optimal solving approach
is selected based on the runtime. The Vsids-heuristic shows the smallest
box width and lowest upper whisker in the boxplot in figure 6.6. It is the
solving approach with the best runtime to solve the test scenario and thereby
selected to be the optimal solving approach for the incubed IT assignment.
In the next step the best multithreading setting is evaluated. The 10 test
runs are solved with the Vsids-heuristic and the four previous introduced
multithreading settings. The required runtime for the different settings is
shown in figure 6.7, the data is provided in table A.5 in the appendix.
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Figure 6.7.: Boxplot of the performance results of the incubed IT assignment for different
multi-threading approaches combined with the Vsids heuristic

Again test run 4 is not solved within the time limit. The splitting-based mul-
tithreading can not find the optimal solution for test run 10 either (see table
A.5). Looking at the two remaining solving approaches the compete-based
multithreading with 4 threads shows the best performance, as in figure 6.7
this approach has a smaller box and by that closer distributed runtimes.
Further the upper whisker is lower than the one for the solving approach
with compete-based multithreading with 2 threads.
The optimal solving approach for the incubed IT assignment is the Vsids-
heuristic combined with compete-based multithreading with four threads.

During the evaluation it was seen that test run 4 can not be solved by
any of the solving approaches within the time limit. Analysing the position
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of the robots and the stations in the map it is seen that for test run 4, in
opposite to the other test runs, the robots are placed mostly on the left and
the stations on the right half of the map. Additionally some robots in the
left half of the map and some stations in the right half of the map are placed
very close to each other what makes it different to find an optimal solution,
as the travelling costs are very similar for many assignments. A solution is
found, but not after 30 seconds but more than 5 minutes of solving time for
the default configuration.

6.4. Integration in Existing Systems

Until now the assignment problem described in the ASP language was
solved calling Clingo with the different ASP programs and input data in
an anaconda prompt. For the use in the real environment of the companies,
the ASP programs have to be called from within the existing systems.

6.4.1. Decision for Python Modules

An problem described in ASP can not only be solved by calling it in an
anaconda prompt but also with some APIs, like the one introduced in
chapter 2.3.6. The two APIs supporting Potassco are the Python-API and
the C-API. The Python built-in-module is better documented and easier to
integrate than the built-in-module for C. As the Python script can be called
from the FMS of both companies with less effort than a code written in C,
especially at incubed IT, it is decided to use the Clingo built-in-module in
Python to integrate the ASP programs into the existing systems.

6.4.2. Integration at BMW

In the original implementation of the FMS two management services are
called. In the Job Manager the task assignment problem is solved and in the
Fleet Manager the park and charge assignment problem is solved. Therefore
in every management service a C# function is called. In the functions the
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required data is requested from the database and the algorithm to solve the
assignment problem is executed. The new assignments are published to the
database.
In figure 6.8 the new software architecture of the ASP-based problem solving
in the BMW FMS is shown. In C# the database handling and solving
algorithm is replaced by a call of a Microsoft Azure Web Application. In
this application a Python function is called. Within the Python function in
a first step a database request is executed to obtain the input data needed
to solve the assignment problem. The input data is modelled as a logic
program following the stable model semantics. With the Clingo built-in-
module for Python the task assignment problem and the park and charge
assignment problem encodings are loaded into Python and the ASP-based
solving is started, whereby the input data is provided as logic program. The
ASP system returns answer sets to the Python function in where the new
assignments are published to the database.

FMS

Job
Manager

C#
Function

Azure Web
Application

Python
Function

ASP
System

Azure
Database

Fleet
Manager

C#
Function

Azure Web
Application

Python
Function

ASP
System

Figure 6.8.: Software architecture of the ASP-based assignment at BMW

In the next sections a detailed description of the input data modifications
is given. The modifications are required to model the data in a lean logic
program. Further the tasks of the Python function are explained more
detailed.
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Input Data for the Task Assignment

To solve the task assignment problem available vehicles and assignable
missions have to be provided. After requesting the data from the database
in a first step the received input data is shorted by removing all unused
parameters. A parameter that is not needed for a successful task assignment
is, for example, the software version of the vehicle.
Required vehicle parameters are:

• vehicle-ID
• fleet-ID
• battery level
• in charging station (Boolean)
• x- and y-position of the robot

Necessary mission parameters are:

• mission-ID
• fleet-ID
• date and time of creation
• ID of first station of mission

Needed station parameters are:

• station-ID
• x- and y-position of the station

The ASP input languages can only handle strings without decimal numbers,
large initial characters, and punctuation marks. To fulfill these requirements
the input data is adapted before passing it as facts in a logic program to the
ASP grounder.

Input Data for the Park and Charge Assignment

To solve the park and charge assignment problem, all available vehicles and
all parking and charging stations have to be given as input data. Like before
in the task assignment only a few of the input data parameters are required
to solve the assignment problem. Necessary vehicle parameters:
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• vehicle-ID
• fleet-ID
• battery level
• in charging station (Boolean)
• x- and y-position of the robot

Necessary station parameters:

• station-ID
• fleet-ID
• x- and y-position of the station

Again, all decimal numbers have to be rounded and the hyphens of the IDs
are removed. Furthermore, the modified input data is stored as a string.

Solving Process in Python

After the modification of the input data the ASP system can be called.
Therefore, all ASP encodings are loaded into the Python file and the input
data is added to the ASP grounder as logic program that contains only
grounded facts. The Clingo solver returns the optimal answer set and
provides it as a string in Python. In Python the string is modelled as list
of assignments and these new assignment sets are published to the Azure
database.

6.4.3. Integration at incubed IT

The Fleet Management System at incubed IT is based on a Java application.
For the optimal assignment of vehicles to orders, charging stations and
parking places an assignment function is integrated within this application.
In the original imperative implementation the input data, stored in Java
classes, is passed from the FMS to the assignment function. In the function
the optimal assignment of robots to tasks, parking places and charging
station is calculated. The resulting assignment sets are passed to the FMS as
data stored in Java classes.
In figure 6.9 the new software architecture of the ASP system integrated in
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the incubed IT FMS is shown. The existing Java-based assignment function
is replaced by a new Java function. This Java function still receives the input
data, stored in Java classes, from the FMS. Within this new Java function in
a first step all orders, goals, and robots are saved in new classes that contain
only the information that is needed for the ASP programs. In a second step
a micro web framework, that provides all modified input data in a JSON
format to a local IP-address, is called. The flask-module of a Python function
is listening to this local IP-address. If new input data is provided by the web
framework, the Python function transform this data from the JSON format
to a logic program format following the stable model semantics. With the
Clingo built-in-module for Python the ASP-based task assignment problem
solving for the input data is started. The ASP system returns answer sets
as strings to the Python function. In Python the answer sets are modelled
in the JSON format and passed to the micro web framework. In Java the
answer sets, received from the web framework in JSON format, are stored
as new assignments in Java classes and passed to the FMS.

FMS Java
Function

Micro Web
Framework

Python
Function

ASP
System

Figure 6.9.: Software architecture of the ASP-based assignment at incubed IT

Required Input Data

The data that is provided by the Java application contains much information
that is required for the correct navigation and loading behaviour of the robot,
necessary for the execution of orders and the maintenance of the different
charging stations and parking places. However only a few of the provided
parameters are required for the optimal assignment of vehicles. Therefore,
in the newly generated Java function the input data is stored in new classes,
containing only the elements that are required for the assignment algorithm.
These parameters are listed below.
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Required robot parameters are:

• name of the robot
• current position of the robot (x- and y-coordinates)
• list of all pools of the robot
• battery level
• special charging decisions (none, fixed timeslot charging, balance

charging on next iteration)
• robot charge parameters

– fully charged limit
– idle charge limit
– active charge limit
– busy charge limit
– critical charge limit

• robot currently in charging station (Boolean)

The robot data is stored in different lists, depending on the current state of
the robot. These states are briefly introduced here:

• robots available for all assignments: robots in automatic mode which
can be assigned to orders
• robots available for charge assignments: robots in idle or automatic

mode which can be assigned to charging stations and parking places
• robots currently in delivery: all robots that currently deliver an order

from the station of origin to the station of destination

For a successful assignment the following task parameter are required:

• ID of order
• robot the order is assigned to (only for orders currently in delivery)
• priority of the order
• name of the station of order origin
• name of the station of order destination
• pool of the order
• ID of the predecessor order
• ID of the parallel order
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Like the robot data, the provided orders are stored in different lists, depend-
ing on their current state:

• assignable orders: orders that are accepted by the FMS and can be
assigned to a robot to be delivered
• orders in delivery: orders that are currently delivered by a robot.
• predecessors: list of all finished orders that are predecessors of orders

in the list of assignable orders

Required goal parameter:

• name of the station
• priority of the station
• pool of the station
• position of the station

All goals are stored in different lists for get stations (first station of a task),
put stations (delivery station of a task), charging stations and parking places.
During the process of saving all requested orders, robots and goals the input
parameters are adapted to fulfill the ASP input language requirements. As
the ASP grounder can only handle strings without decimal numbers, large
initial characters and punctuation marks, the battery levels of the robots as
well as the coordinates of the robots and goals are rounded. It is ensured
to have only robot names, goal names and pool names with small initial
characters so that the grounder identifies the input data as grounded facts.
All just introduced lists are saved in a newly generated class. This class
provides all data that is required for the task assignment and is used by the
Web API to model the data in the JSON format.

Solving Process in Python

The ASP solving process is started in a Python script using the built-in-
module for Clingo. A flask-module in Python access the input data that is
provided by the micro web framework. The data is transformed from the
JSON format into a string containing grounded facts for the ASP grounder.
Python passes this string next all other ASP programs to the Clingo module
and starts the grounding and solving process of ASP. After the Clingo
process is finished and an optimal solution is found, this resulting answer
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set is published to the Python script as a string. From there the results are
passed in the JSON format to the micro web framework to be accessible for
the Java function. In the Java function the new assignments are stored in
Java classes and passed to the FMS.
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In chapter 5 the motivation for the replacement of parts of the impera-
tive FMS at incubed IT and BMW by a declarative implementation was
stated. Due to the growing number of autonomous robots that are used in
intralogistics domains the relevance for an optimal assignment algorithm
with high performance and maintainability increases. Using ASP instead
of imperative methods benefits in the runtime of the solving process of the
assignment problem were expected.
In this chapter the newly generated ASP programs are evaluated. It is looked
over the overall implementation effort of replacing the current assignment
algorithm with the ASP encoding. The performance of the ASP implemen-
tation is compared to the one of the original system as well as the quality of
the obtained solutions.

7.1. Evaluation of the Integration Effort

When introducing a new programming approach not only the runtime and
correctness of results are of interest, but also the effort of generating and
integrating the new code in an existing system. This effort is in the following
analysed for both companies.

7.1.1. Integration Effort at BMW

In this section the overall implementation effort for the different implemen-
tation steps introduced in chapter 6 are analysed. A software developer
who is experienced in the BMW Group Fleet Management System and
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is familiar with ASP is considered to overtake the integration. The stated
implementation efforts in this chapter are based on his experience.

Effort to Identify the Needs

ASP is known to be a good modeling and solving approach for applica-
tions that mainly face optimization and search problems. With a profound
knowledge of the BMW Group FMS, problems with such optimization and
search problems can be found within 1 hour. The requirements of these
problems, namely the task assignment and the park and charge assignment,
have to be documented in a second step. This documentation, in where
all specifications are extracted from the code, can be finished in about one
working day.

Effort for Design and Validation

Generating a new ASP encoding is known to be error-prone. Due to missing
debugging-options the finding of mistakes and wrong implementations in
the code is very hard. To reduce the effort of finding an error different test
scenarios, introduced in paragraph 6.2.4, are solved after every change of
the encoding. As for every test scenario the optimal solution is known the
correctness of the ASP encoding can be validated.
While at the early stage of the ASP implementation with a few rules and
constraints the finding of the error cause is fast, later on with many rules
and constraints that depend on each other the complexity of finding the
error cause increases significantly.
Due to the well-documented application requirements it is possible to
generate a basic program for both assignment problems in about four
days.
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Effort of Performance Engineering

After the generation of the initial program the performance of the system
is improved. This performance enhancement turned out to be significantly
more complex than the development of the initial encoding.
The code improvements are analysed in the incubed IT problem descriptions.
The performance-improving code components are applied at the incubed IT
system as well as in the BMW system. The effort to find these improvements
is described later in section 7.1.2. The integration of the improvements at
BMW and the testing of correct functionality of the modified implementation
required two working days.
After applying the code improvements different solving approaches are
evaluated. With the ASP solver Clasp different approaches can be chosen
that are more or less suitable for a given problem environment. To find
the best approach for the BMW assignment problems different solving
algorithms and heuristics were tested. The best suitable approach was
found after one day of evaluation. In comparison to the required time for
the code improvements the finding of appropriate solving approaches took
only a fraction of the overall effort.

Effort of Integration in the Existing System

At BMW the original function call that starts the algorithm for the as-
signment problem solving is replaced by the call of a Microsoft Azure
Application.
Therefore in a first step this Microsoft Azure Application was implemented.
After that a Python script was written for this Azure Application. The in-
tegration of the Clingo API, the configuration of the solver settings and
the modifications of the provided input data in Python took about one day.
Another day was required to implement the Azure application call in C#
and to modify the provided input data to fit the ASP language requirements.
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7.1.2. Integration Effort at incubed IT

In the following the implementation effort at incubed IT is evaluated. A
software developer that is experienced in the existing FMS at incubed IT and
is familiar with the declarative language of ASP is considered to overtake
the integration and implementation of the ASP. The stated implementation
efforts in this chapter are based on his experience.

Effort to Identify the Needs

ASP is known to be a good alternative to imperative methods for incidences
that face mainly search and optimization problems and are described by
multiple rules [8]. The areas where ASP could bring a benefit in the existing
FMS can be found by the software developer within 1 hour.
In a next step, the requirements of the new ASP-based implementation are
documented carefully. As the software developer knows the FMS and has
access to the FMS source code and a detailed documentation of the overall
system the requirements, rules, and optimization goals can be defined in
less than a day.

Effort for Design and Validation

The ASP encoding is developed by first assigning every order to a vehicle
and then stepwise adding constraints. To validate the correctness of the
implementation different test scenarios, introduced in paragraph 6.2.4, are
set up where the optimal answer set is known.
For every newly implemented constraint and rule all test scenarios are
solved and the answer set is compared to the provided optimal solution.
As one additional constraint reduces the possible answer sets significantly,
unexpected correlations with other rules and constraints can occur that
result in a not optimal solution.
The overall task assignment problem encoding is set up and tested by the
experienced ASP user within 4 days. Thereby most of the time is spent with
the finding of errors and reasons why new constraints do not change the
resulting answer sets as expected.
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The implementation of the park and charge assignment encoding took less
time than the implementation of the task assignment encoding. Reasons for
that is the smaller number of required constraints and rules that decrease
the effort of setting up the system and testing the correct execution.

Effort of Performance Engineering

To improve the runtime of the ASP implementation the initially imple-
mented encoding is modified. Furthermore, different solving approaches
are evaluated to find the best one suited for the given environment.
The most working effort for integrating an ASP program in the existing FMS
turned out to be the improvement of the encoding to ensure a reduced run-
time. Not only the modification and simplification of rules and constraints
took some time, even more significant was the replacement of optimization
criteria by constraints and rules. The first removed optimization criterion
was the maximization of assigned orders. Different statements have been
considered, implemented and tested on all test scenarios that have been
shortly introduced in paragraph 6.2.4. The finding of the final implementa-
tion took about three days. The implementation of the additional traveling
distance constraint to reduce the number of possible answer sets (see sub-
section 6.3.2) required about four days. The criterion to minimize the overall
traveling distance was not possible to be removed in total, but in the end a
constraint was found that reduced the number of possible solutions.
Particularly time consuming was the replacement of the constraint to maxi-
mize the number of robots assigned to charging stations and parking places.
Using differently weighted optimization criteria, it was possible to ensure
that robots more likely go charging than parking. It showed up that a sim-
ilar implementation as the one for the task assignment was unrewarding.
Instead, the overall assignment of robots to charging stations and parking
places had to be reconsidered. With the help of two colleagues the over-
all problem was described only by rules and constraints. Starting from the
assignment of robots to charging stations and parking places the possible an-
swer sets have been stepwise reduced. A final resulting encoding was found
after five days of working alone and half a day of working in a team of three.

Compared to the code improvements the selection of an optimal solving
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approach is significantly faster. The performance of the solving approaches
is evaluated by solving different test scenarios. The best solving approach
for the incubed IT assignment problems is found within one day of working
time.

Effort of Integration in the Existing System

At incubed IT the assignment problem is solved within the FMS in one
specific function. To integrate the ASP program in the existing system the
provided input data is modified and a micro web framework is set up in Java.
A Python script with a flask application and the Clingo-API is provided.
The whole integration can be implemented in one working day. Even though
the ASP program requires more integration effort than a Java function this
effort of one day is acceptable. The integration is done only once and does
not effect the effort of modifying and adding new rules and constraints
during development.

7.2. Evaluation of Runtime and Quality of Results

There are high requirements on the runtime of systems that are used in a
real-time environment. An important argument for using ASP instead of
an imperative method for the solving of task assignment problems is the
possible reduction of the overall runtime. At the same time the quality of
the results has to be the same or better than the one of the existing FMS. In
the following test scenarios close to real use cases are defined for incubed IT
and BMW Group. The required time for the solving process and resulting
answer set are compared to the existing systems.

7.2.1. Evaluation at BMW

Previous to the evaluation of the runtime and quality of the new ASP im-
plementation test scenarios were defined. These scenarios represent realistic
environments of the BMW FMS. For the evaluation of the task assignment
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algorithm test scenarios with 5, 20 and 50 open orders are introduced. Each
number of orders is used in 3 test scenarios, where a different number of
available and currently not delivering robots are provided. All robots have
a battery level above 25%. The time of generation of the orders is set ran-
domly in a time range of one month. In every test scenario one map and one
fleet are used and the robots are freely movable in the whole environment.
The positions of the robots and get stations of the tasks are randomly set
on a 1000m x 1000m area. In table 7.1 all nine test scenarios used for the
task assignment are listed. For the park and charge assignment algorithm

Test
Scenario

Assignable
Orders

Assignable
Robots

1

5

2

2 3

3 4

4

20

6

5 12

6 18

7

50

15

8 30

9 45

Table 7.1.: Evaluation scenarios for the BMW task assignment

similar scaled test scenarios are defined. 5, 20 and 50 stations and different
numbers of robots are provided. All robots are available for the assignment
and currently not in delivery. Each of them has a battery level between
40% and 80% percent. By that every robot can be assigned to charging and
parking stations. The given stations are split into 1/3 charging stations and
2/3 parking places. In the scenarios only one fleet and one map are used.
The stations and robots are placed randomly on a 1000m x 1000m area,
and the robots are freely movable in the whole environment. The nine test
scenarios for the park and charge assignment with the according number of
stations and assignable robots are shown in table 7.2. To avoid misleading
measurement results due to random test assemblies that lead to a better or
worse runtime, every test scenario of the task assignment and the park and
charge assignment is executed 10 times, where every time different random
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data is used. If the assignment problem of a test run requires more than 60

seconds of solving time, the solving of this test run is interrupted1.

Test
Scenario

Assignable Assignable
RobotsCharging

Stations
Parking
Places

1

2 3

2

2 3

3 4

4

7 14

6

5 12

6 18

7

17 33

15

8 30

9 45

Table 7.2.: Evaluation scenarios for the BMW park and charge assignment

In chapter 6.3.3 the solving approach with the best performance, namely
the splitting-based multithreading with four threads in combination with
the branch-and-bound-based optimization strategy, was evaluated and is
used in the test scenarios for both the task assignment and park and charge
assignment.
At BMW the ASP grounder and solver are called in a built-in-module in
Python. This Python script is started from the C# implementation of the
FMS as a Microsoft Azure Application function. It showed up that the use
of Microsoft Azure functionalities for test scenarios are not allowed, as the
functionalities immediately affect the real intralogistics process at the BMW
plant Regensburg. For example it is not possible to generate random data
for the test scenarios and store it in the Azure database, as this test data
would be used in the real intralogistics process. Therefore, a temporal test
environment is set up. The input data is not provided by a database-request

1The time limit of 60 seconds was chosen in consultation with requirement engineers
at BMW
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but as a JSON file that is loaded into C#. In C# no Azure Application
function is called to execute the ASP program. Instead the Python function
with the build-in-module for Clingo is called as a process resource in C#.
To analyse the runtime effects of calling the ASP program as a standalone
application and within the Python process resource in C#, both runtimes are
tracked and compared to the performance of the original implementation.

Performance and Quality of the BMW Task Assignment Algorithm

In this section the runtime and the quality of the result of different scenarios
for the task assignment algorithm are compared. The test scenarios that
have been introduced at the beginning of this chapter and are shown in
table 7.1 are used for the evaluation.

Performance Evaluation To analyze the performance of the implementa-
tions of the BMW task assignment algorithm it is focused on two topics. First
the runtime for different implementations of the algorithm are evaluated.
Thereby test scenario 5 is considered, as this scenario is in between the low
scaled and high scaled scenarios. Second the performance for the different
scaled scenarios is compared.
In figure 7.1 the performance of the task assignment in different imple-
mentations for test scenario 5 is shown. The detailed measurements are
listed in table B.5 in the appendix. Next to the performance of the original
implementation and the implementation of ASP integrated into C# the
runtimes of ASP integrated in Python and the standalone ASP grounding
and solving are given. The runtime at test scenario 5 show a significant
better performance of the current implementation compared to the ASP-
based implementations. The box, representing the runtime distributions,
is significantly smaller than the boxes of the ASP implementations. While
the runtime of the C# implementation is mostly below 1 millisecond, the
same scenario requires by the combined FMS of imperative and declarative
methods up to 15 seconds (see table B.5), but for that another more complex
optimization strategy was used.
Comparing the required runtimes by starting the ASP program as stan-
dalone application, from within C# and from within Python it is seen that
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the execution in C# takes the longest. The upper whisker has the highest
value, and also the box in the plot shows the highest distribution of runtimes.
The fastest solution is found by calling the ASP from within Python. There
are two possible reasons why the ASP called from Python is faster than as
standalone application. In Python only the last, optimal solution is printed
out. Calling ASP as a standalone application in an anaconda prompt every
possible solution is printed on the terminal window. This behaviour leads
to a runtime increase. Furthermore, by calling Clingo from within Python it
is started in multi-shot mode what can lead to different solving times. The
higher runtime for the ASP implementation in C# than the implementation
in Python shows that the Python call from within C# is not solved optimally.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
¨104

C#

ASP within C#

ASP within Python

ASP

Runtime [ms]

Figure 7.1.: Runtime of the different BMW task assignment implementations at test scenario
5

In table 7.3 the mean value and the standard deviation of the runtimes for
all test scenarios is shown and the number of solved test runs is given. The
detailed results of all test runs for the different test scenarios are provided
in table B.1 to table B.9 in the appendix. If the optimal solution is not found
within the BMW-specific time limit of 60 seconds, the solving process is
aborted. These aborted test runs are not considered in the calculations for
the mean and standard deviation.
The mean performance of the imperative method is for every scenario

the best. The standard deviation shows the best results for the imperative
method, the worst are given for the ASP implementation in C#. Analysing
the number of solved test runs it can be seen that all implementations
solve every test run of scenario 1 to 5. For higher scaled problems the ASP
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implementations show its limits. While for test scenario 6 and 7 some test
runs can be solved, the test runs of scenario 8 and 9 can not be solved with
ASP but only with the imperative approach.

Quality Evaluation For the evaluation of the ASP implementation not only
the runtime, but also the quality of the provided solutions is of interest. The
ASP solver did not find an optimal solution for all test scenarios within the
time limit, but valid answer sets are provided for every test.
As already mentioned in chapter 6.2.2, the optimal assignment of robots to
open orders differ in the used algorithms in C# and ASP. In the original
implementation a list of all open task and a list of all assignable robots are
given. The task with the earliest time of creation is assigned to the robot
with the shortest Euclidean distance. The task with the second-earliest time
of creation selects then the closest of the remaining robots. This selection
algorithm is continued until the list of open tasks or the list of assignable
robots is empty. Summarizing this algorithm optimizes not the whole as-
signment but finds the optimal solution for the highest prioritised robots.
In the ASP implementation a different algorithm is used. Not the Euclidean
distance for single problems is optimised, but the traveling costs of the
whole fleet. The answer set for which the sum of the Euclidean distances of
all assignments is minimal, is found to be the optimal solution.

A graphical representation in figure 7.2 shows the difference between both
algorithm. 3 open tasks and 3 assignable robots are given, where every robot
can be assigned to every task. The task with the earliest creation time is T1,
T3 is the latest created task. The algorithm that is implemented in the cur-
rent imperative FMS would in a first step select task T1 and assign it to the
closest robot, namely R1. In the next step task T2 is selected and assigned to
the closest of the remaining robots, the robot R2. Task T3 is assigned to robot
R3. In the ASP encoding all possible answer sets are compared, and the one
with the lowest overall traveling costs is set to be the optimal solution. In the
provided example the optimal solution is found to be the set of assignments
of task T1 to robot R2, task T2 to robot R1 and task T3 to robot R3. When
comparing the sum of the Euclidean distances of both algorithms it can
be seen that the result reduces from 7.1 measurement units in the original
implementation to 4.9 measurement units in the implementation of ASP.
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The original implementation is suitable for situations, in where orders are
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(a) Assignment of imperative algorithm
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(b) Assignment of declarative algorithm

Figure 7.2.: Graphical representation of the optimal assignment

generated in a broad time range. However, in the application area of the
FMS new tasks are generated in ranges of seconds. Having time differences
of only a few seconds the orders have to be delivered nearly simultaneously.
Optimising the overall traveling distance ensures that all tasks are finished
in time, even tough the earliest created task is probably delivered not as fast
as by the use of the algorithm of the original implementation.

In test scenario 8 an optimal solution was not found for any of the ten test
runs within the 60 seconds time limit. However, the ASP solver returned
possible answer sets continuously during the solving process. In the follow-
ing the quality of the results is evaluated for test scenario 8. The best answer
set that is found by the ASP solver after 1 second, 5 seconds and 60 seconds
runtime is compared to the result of the imperative method.
The traveling costs for the found assignments are shown in figure 7.3. The

traveling costs of the ASP-based implementations are significantly lower
than the one of the C# implementation. For test run 6 the costs decreased by
66%. It can further be seen that the performance improvements of the ASP
solver for different time limits are barely identifiable. As the ASP solver
supports an anytime algorithm, the solver returns possible answer sets after
less than a second of solving time. The answer sets that are returned after
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Figure 7.3.: Traveling costs for the BMW task assignment at test scenario 8
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a few milliseconds are solutions with low travelling costs, but are not the
optimal assignment. However after 60 seconds of solving time the costs are
reduced only by a few centimetres. Using ASP with a solving time limit
of 1 second will provide very good answer sets in a short runtime for the
FMS.

Performance and Quality of the BMW Park and Charge Assignment
Algorithm

Like for the evaluation of the task assignment algorithm in the following
the runtime and the quality of the results for the new implementation of
the park and charge assignment algorithm are analysed. The test scenarios
that have been introduced at the beginning of this chapter and are shown in
table 7.2 are used for the evaluation.

Performance Evaluation In figure 7.4 exemplary the runtimes for the
fifth test scenario are shown to evaluate the performance of the different
implementations. The underlying data of the boxplot is given in table B.14

in the appendix.

0 200 400 600 800 1,0001,2001,4001,6001,800

C#

ASP within C#

ASP within Python

ASP

Runtime [ms]

Figure 7.4.: Runtime of the different BMW park and charge assignment implementations
at test scenario 5

The performance of the original implementation is better than the per-
formance of the ASP implementations. This can be seen on the smaller
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distribution of runtimes, indicated by the boxes, and the upper whisker
that is significantly lower for the C# implementation. While for the task
assignment the runtime of the ASP call in Python was the fastest of all ASP
implementations, in the park and charge assignment the fastest solutions
are found for the standalone ASP. The runtime of the ASP program in C#
shows as before in the task assignment the worst performance and indicates
an required improve of the ASP call in C#.

In table 7.4 the mean value and the standard deviation of the runtime
of every test scenario is shown. The results of the different test runs for
every scenario are provided in the tables B.10 to B.18 in the appendix. If the
solving of a test scenario reaches the BMW-specific time limit of 60 seconds
the solving process is interrupted. These test runs are not considered in the
calculation of the mean and standard deviation. The C# implementation
shows for all scenarios a better performance than the ASP implementations,
but for that in the ASP encoding the more complex optimization strategy
is used that is harder to be solved. The test scenarios 1 to 6 can be solved
by all implementations within the time limit. In test scenario 7 the original
implementation in C# can solve all problems in a mean runtime around a
quarter of a second, in the ASP implementations only 9 test runs can be
solved. For test scenario 8 and 9 it is seen that ASP reaches its performance
limits and no test run was solved optimally within the time limit of 60

seconds. Further can be observed that the ASP implementations show a
lower mean runtime for test scenario 7 than for test scenario 6. It indicates
that the encoding is better fitting problems in where more stations than
robots are given. For all test scenarios and implementations it can be seen
that the standard deviation increases with higher mean runtimes.

Quality Evaluation The algorithm that is used to assign the robots opti-
mally are different in C# and in the ASP encoding. In C# the robot with the
lowest battery level is assigned to the nearest charging station, the robot
with the second-lowest battery level is assigned to the closest of the remain-
ing charging stations. In the ASP encoding the overall traveling distance is
optimised, what is a more complex optimization strategy and is harder to
be solved.
The original algorithm is suitable for situations, in where one robot has a
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very low critical battery level and the other robots have an acceptable battery
level. As the critical robot has to go charging urgently it should be assigned
to the closest appropriate charging station. However, this implementation
shows its limits on circumstances where multiple robots have critical battery
levels that differ only in a very small amount. An assignment where the
overall traveling costs are reduced is more suitable, as all assigned robots
have an appropriate traveling distance and not only the one with the lowest
battery level.
It has been shown in table 7.4 that the optimal assignment sets were not
found for the test scenarios 8 and 9 within the time limit. In the task as-
signment algorithm the quality of the results for scenario 8 showed better
results for the ASP-based implementation even tough the optimal solution
was not found.
In figure 7.5 the overall traveling distances for the test runs of scenario 8 of
the park and charge assignment are displayed. The costs of the imperative
method are compared to the declarative solutions that are found within 1

second, 5 seconds and 60 seconds solving time. It can be seen that most
of the test runs, in contrast to the test runs of test scenario 8 of the task
assignment, find no possible answer set even after the time limit of 60

seconds is reached. Test runs 8 and 10 return solutions after 1 second, but
the traveling costs are worse than the one of the original implementation.
This observation leads to the assumption that the encoding of the park and
charge assignment problem in ASP is not optimal, as the performance of the
task assignment encoding for similarly scalled problem is significantly better.
As the ASP solver does not find at least one possible answer set for most of
the test runs of high-scaled test scenarios, the current implementation of the
declarative approach is not suitable for the solving of the park and charge
assignment problem at BMW.

7.2.2. Evaluation at incubed IT

To evaluate the performance and correctness of the new generated ASP, two
test setups with different scenarios are defined and solved. The results are
compared to the current Java implementation.
One test setup is used to test different problem scales, whereas the second
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Figure 7.5.: Traveling costs for the BMW park and charge assignment at test scenario 8
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setup evaluates the impact of an increasing number of constraints that have
to be considered for the assignment problems.
Both test setups are used on the currently most complex intralogistics en-
vironment where the incubed IT FMS is integrated. This environment has
a floor area of 100m x 86m where the robots are freely movable. On the
map 36 get stations, 109 put stations, 19 charging stations and 44 parking
places are located. Every hour up to 800 new tasks have to be delivered by
30 robots.
For both test setups the charging limits of the robots are set to the follow-
ing:

• fully charged limit: 90 %
• idle charge limit: 70 %
• active charge limit: 50 %
• busy charge limit: 35 %
• critical charge limit: 30 %

The performance of the assignment algorithm influences the whole intralo-
gistics environment. If the solving of a given problem requires more than 30

seconds the solving process will be stopped due to the reached time limit.
The time limit was set to 30 seconds in consultation with the requirement
engineers at incubed IT.

Evaluation of Test Setup 1

In the first test setup different problem scales are evaluated. At the FMS
start-up 30 robots have to be assigned to orders, charging stations and
parking places. After the start-up process most of the robots will be in a
delivering process. Only a small number of robots is expected to be available
for new assignments. Therefore not only test scenarios with 30 robots are
set up, but also scenarios with 10 and 5 robots.
In table 7.5 the different test scenarios are shown. For each of the problem
scales of 5, 10 and 30 assignable robots different test scenarios are set up.
To evaluate the performance of the charging and parking assignment, in
one scenario the number of open orders is half of the number of available
robots. By that all unassigned robots are assigned to charging stations and
parking places. In another scenario the number of robots equals the number
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of orders. Third, the impact of scenarios with twice as much open orders
than available robots is analysed.

Test
Scenario

Assignable
Robots

Assignable Assignable
OrdersCharging

Stations
Parking
Places

1

5 3 7

2

2 5

3 10

4

10 6 14

5

5 10

6 20

7

30 18 42

15

8 30

9 60

Table 7.5.: Test scenarios for the first test setup at incubed IT

All robots, stations and orders are in the same pool, and the battery level of
the robots is set randomly in a range of 40% to 99%. To evaluate the runtime
and quality of the new ASP implementation, every test scenario is tested
with 10 different test runs. The get stations, charging stations and parking
places used in a test run are selected randomly from the provided stations
on the original incubed IT map. The positions of robots are set randomly.

Performance Evaluation In table 7.6 the mean value and standard devia-
tion of the runtimes for the test scenarios solved with the original code and
with the in Java integrated ASP are shown. The results of the different test
runs for every scenario are provided in the tables C.1 to C.9 in the appendix.
To analyze the runtime influences that are affected by calling the ASP from
within Java and the use of a micro web framework and the built-in-module
Clingo for Python, the runtime for the standalone ASP solving is listed as
well. A timeout is reached when a test run requires more than 30 seconds
to find an optimal solution. Test runs that reached the timeout are not
considered in the calculation for the mean and the standard deviation. It
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7.2. Evaluation of Runtime and Quality of Results

can be seen that for smaller test instances the mean system performance
can be improved using declarative methods. Especially for scenarios where
more open orders than robots are provided the ASP shows its benefits. At
the test scenario 6 the required mean runtime is reduced by 63% using the
ASP implementation in Java. However, the table shows the limits of ASP
as well. While for the test scenarios 1 to 6 the ASP implementations can
solve all test runs within the time limit, for the test scenario 7 to 9 with 30

robots the optimal solution can not be found for every test run. In scenario
7 the ASP implementation in Java can solve 3 test runs, but for test scenario
8 and 9 no optimal solution was found within the time limit. Looking at
the standard deviation for scenario 1 to 6 the standalone ASP application
returns the smallest values. The Java implementation has a slightly higher
standard deviation than the ASP program implemented in Java. In general
it can observed that with a higher mean runtime the standard deviation
increases.
Comparing the mean runtime required by calling the ASP from within
Java and as a standalone application, it shows that the mean runtime of
the standalone application is smaller. The reason for the differences is the
additional time that is required to save the provided input data as new
classes in Java and the passing of the JSON data via the web framework to
the Python script.

Quality Evaluation Not only the runtime is a quality criterion for a new
system, but also the quality of the provided solutions.
Comparing the optimal answer set of the Java implementation and the ASP
implementation for testing setup 1 to 6 both return the same solution, as
they have the same underlying assignment strategy and the ASP solver
finds the optimal solution within the time limit. To analyze the quality of
the results for test scenarios where the ASP solver does not find an optimal
solution within the time limit the traveling costs of scenario 7 are compared
to the implementation in Java. The quality of the result is evaluated by
using the best-found answer set after 1, 5 and 15 seconds. The time range
is set to the maximum value of 15 seconds as this time value is similar to
the maximal mean runtime required by the Java implementation for test
scenario 9. In figure 7.6 a bar chart is shown with the traveling costs of test
scenario 7. The travelling costs are shown in two groups, as at incubed IT
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Figure 7.6.: Traveling costs for the incubed IT assignment at test scenario 7
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7.2. Evaluation of Runtime and Quality of Results

the optimization strategy consists of two differently weight criteria. Most
important is the reduction of travelling costs of robots that are assigned to
tasks or charging stations due to forced timeslot charging, critical charging
or busy charging. These traveling costs are represented as unicolored bar
charts. Less important and by that lower weighted are the traveling costs
of robots that are assigned to parking places and charging stations for idle
charging. The costs of this second optimization criterion are visualized in
figure 7.6 by the dashed bars.
For all test runs, except for test run 6, a first solution is returned by ASP
anytime algorithm within 1 second. By that possible assignment sets can be
provided to the FMS, although they are not the optimal one. It can be seen
that the overall traveling costs can increase over time, for example in test
run 5 and test run 7. At the beginning of these two test runs the ASP solver
finds possible solutions with low traveling costs, but the traveling costs
for the more important criterion are not optimal. Looking at the traveling
costs for the more important criterion it can be seen that the ASP-based
solving process finds better solutions over time for most of the test runs.
Exceptions are the test runs 2 and 5. When the solving process stopped after
15 seconds the costs for the more important criterion, represented by the
unicolored bars, are higher than after 5 seconds of solving time. The reason
why the ASP solver considers the solution after 15 seconds to be better than
the one after 5 seconds is probably based on the internal behaviour of the
multithreading solving approach and influences of the Vsids heuristic.
Looking at the overall results for test scenario 7 it can be seen that the
original implementation in Java provides a significantly faster and better
solution than the ASP implementations.

Evaluation of Test Setup 2

In the second test setup the impact of different constraints is analysed.
The test scenarios that are set up differ significantly from the one of the
first test setup. In here different pools are set, robots in delivery and in
charging stations are considered for the task assignment, and orders with
predecessors have to be assigned.
20 orders, 10 robots, 6 charging stations and 14 parking places are given. 3

robots and 6 orders are assigned to pool A, 3 robots and 6 orders to pool B
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7. Evaluation

and the remaining 4 robots and 8 orders are not assigned to a pool. The test
scenarios that are analyzed in this test setup are the following:

• 6 robots are currently in delivery.
• 2 robots are in delivery and 2 robots are currently charging with

battery levels above the active charge limit.
• 2 robots are in delivery and 2 robots are currently charging with

battery levels above the active charge limit. 2 orders have predecessors,
where none of the predecessors is currently finished.

.
Like in the first test setup 10 different test runs are set up for every test
scenario. In there the pickup stations, charging stations and parking places
are selected randomly from the provided stations on the original incubed
IT map. The priorities for orders, charging stations and parking places are
set randomly in a range of 1-99. The battery levels of the robots are set
randomly in a range of 40% to 99%. The robots are placed randomly in the
map and are freely movable in the whole area.

Performance Evaluation The mean and standard deviation of the runtime
for every test scenario is shown in table 7.7. Detailed results of the different
test runs for every scenario are provided in the tables C.10 to C.12 in the
appendix.

Test
Scenario

Java
Implementation

ASP within Java
Implementation

Standalone
ASP

µ [ms] σ [ms] µ [ms] σ [ms] µ [ms] σ [ms]
1 314.4 115.9 121.6 58.73 60.7 8.76

2 371 172.34 142.3 83.69 117.2 32.34

3 338.1 154.61 158.3 92.68 96.6 14.25

Table 7.7.: Runtime for the different incubed IT assignment implementations in test setup 2

Like for the run 6 in test setup 1, in where the same number of robots
and orders is given, the runtime for the solving with declarative methods
is faster than with imperative methods. Comparing the mean runtime of
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7.2. Evaluation of Runtime and Quality of Results

test scenario 6 in the first test setup (see table 7.6) with the results of test
scenario 1 in this second test setup following can be observed. In the sce-
nario in test setup 2 the number of pools increased from 1 (no pool) to 3

different pools (no pool, pool A, pool B). Furthermore, 6 out of the 10 robots
are currently in delivery. The mean runtime of the Java implementation
to solve the problem in test setup 2 decreased by 52% compared to the
runtime at test setup 1, the standard deviation decreased by 66% . Using the
ASP encoding integrated into Java, the required mean runtime decreased
by 50%, the standard deviation decreased by 65%. This observation gives
the assumption that these constraints affect the imperative and declarative
method the same way. No method shows a better or worse performance for
problems with more constraints.
Looking at the results for the second scenario an increased mean runtime
and standard deviation of the ASP program integrated into Java is observed.
The reason for that is the decreased number of delivering robots. With the
assignment of tasks to currently delivering robots the number of possible
answer sets in test scenario 1 is lower, as some combinations of tasks and
robots do not have to be considered.
In test scenario 3 the second setup is extended by two orders that have pre-
decessors that are not yet finished. It is expected that the runtime decreases,
as in the program for input data modifications all tasks with unfinished
predecessors are sorted out and not considered for the later assignment
algorithm. However, the mean runtime in table 7.7 for the ASP within Java
shows an increase of the runtime. The performance is still better than the
one of the original Java implementation.
Looking at the runtime of the ASP standalone application for test scenario 3

a runtime improvement can be observed. The time difference to test scenario
2 is only 7.5 milliseconds, but it still shows a small performance increase.
The cause for the increased runtime for the ASP within Java is thereby not
the ASP itself but is based on the data modifications in Java and Python.

Quality Evaluation To evaluate the code quality the optimal assignment
set of the Java implementation is compared to the one provided by the ASP
integrated into Java. As both systems have the same underlying assignment
strategy and the ASP-based implementation finds the optimal solution
within the time limit both systems return the same results.
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8. Conclusion

In this work the integration of the declarative language ASP into existing
fleet management systems to replace existing task assignment problem
solving methods is investigated.
After an overview of the task assignment problem with a focus on multi-
robot task allocation and a introduction to Answer Set Programming was
given, the language syntax of this declarative method has been stated. Re-
lated research is discussed where ASP is used to solve assignment problems.
Based on the implementation suggestions of [20] ASP-based systems are
implemented in the FMS of BMW and incubed IT. After the identification
of needs it was decided to replace the algorithms, that assign intralogistics
robots to orders, charging stations and parking places, by a declarative
method. After defining the requirements and constraints of the assignment
problems they are encoded in ASP. To reduce the runtime of the implemen-
tation, different performance improvements have been applied. The use of
different optimization criteria can improve and downgrade the performance
of the system significantly. As in this work the ASP system Clingo is used it
was possible to improve the performance further by the selection of different
solving approaches that are provided by the solver Clasp.
One main quality criterion of the FMS is the performance and the quality
of the results. To evaluate the criterion, test scenarios have been set up that
are based on typical use cases of the FMSs. The runtime and the quality of
the provided solutions for the test scenarios are compared. Therefore, the
imperative and the declarative assignment algorithms are used to solve the
problems.

At the BMW Group the evaluation of the performance and quality of
the provided solutions of the ASP-based and imperative implementation
gave following results. The runtime of the ASP-based solving is, other than
expected, worse than the runtime of the imperative method, but for that
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8. Conclusion

in ASP a optimization strategy was implemented that is a harder problem
to solve. For small problem instances the difference in the runtime is espe-
cially notable for the task assignment, but the park and charge assignment
algorithm shows decreased performance as well. Very critical is the fact that
for higher-scaled problems not even one possible solution for the park and
charge assignment within a time limit is found.
The quality of the result, however, showed up to be better with the ASP
implementation. Looking at the overall traveling costs of the answer sets
that are provided by the ASP solver and the imperative implementation an
improvement was possible. For problem instances where the ASP-based
implementation did not find the optimal task assignment in a specified time
limit some promising results showed up after a second of solving time. For
the current FMS implementation at BMW Group Answer Set Programming
can be a helpful tool for rapid prototyping and the testing of new assign-
ment strategies. The required time to set up a new implementation of the
assignment problem can be decreased significantly using the ASP. Under
consideration of high-performance requirements for the solution finding
the use of imperative methods is currently preferred.

Compared to BMW, the assignment strategy at incubed IT is more complex.
A higher number of constraints and rules have to be considered, for example
the assignment rules for chained orders and the different charging states.
Furthermore, the optimization criterion is more complex as the traveling
costs of the whole fleet is optimized. The increased complexity shows the
limits of the imperative system and benefits of the ASP-based implemen-
tation. The performance of the FMS for relatively small problem instances
up to 10 assignable vehicles and 20 open orders is better for the ASP-based
implementation.
On the other hand, at high scaled assignment problems, like one with 30

assignable vehicles and 60 open orders, the ASP system reaches its perfor-
mance limits. Whereas the imperative implementation can find an optimal
solution in less than 15 seconds, the ASP solver does not find one possible
answer set in twice the length of computational time. Such high-scaled
problem instances appear very infrequently at incubed IT. A situation where
high-scaled problem instances are considerable is the start-up of the intralo-
gistics area and the FMS. At the very beginning all vehicles are unassigned,
but a set of open orders is already provided.
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The significantly more common application field for the assignment algo-
rithm is a constantly running FMS. Every couple of seconds the assignment
solver is called. Therefore only small instances of assignable vehicles are
provided. For such small problem instances the ASP system showed up to
have a better performance than the current imperative program.
For problem instances where ASP finds the optimal solution within a spec-
ified time limit, the quality of results is the same for the imperative and
declarative implementation. However, for problem instances where ASP
does not find the optimal solution within a time limit the results of the
imperative method occurred to be better.
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9. Outlook

In resent years the declarative method Answer Set Programming became
popular as a promising method to solve assignment problems. Particularly
for problems related to the optimal assignment of robots in logistic domains
the potential of ASP has been shown in some research papers.
BMW and incubed IT currently face the same problems regarding their
intralogistics. Due an increasing number of autonomously robots the exist-
ing Fleet Management Systems show a decreasing performance and high
complexity for implementing new rules.
In this thesis ASP programs were used to replace existing imperatively
described assignment problems in the Fleet Management Systems at BMW
and incubed IT. The ASP system Clingo was used to model and solve these
problem instances. It became apparent that depending on the environment
the ASP shows better performance for systems with many rules and con-
straints but is not capable of solving high-scaled assignment problems with
a low number of limiting constraints and rules optimally. However due to
the ASP anytime algorithm possible solutions for the assignment problem
are provided after a few milliseconds.
High-scaled assignment problems occur very infrequently, like at the start-
up of an intralogistics area and the FMS. It could be considered for future
implementations to accept a start-up- and initialization process of the FMS
with assignment solutions that are not optimal. After the system start up
and the first non-optimal assignments it is expected to have always only
a few new assignable instances in the constantly running FMS. These in-
stances can be modelled and solved with less computational effort by the
ASP system than by an imperative method.
The fields of application for ASP are quite limited. There is no IDE under
active development. Whereas the language syntax of ASP is very clear and
lean, the finding of errors is hard and very time-consuming. A provided
IDE could make the implementation of new ASP programs easier. Another
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9. Outlook

improvement that would make the ASP programming more applicable is the
providing of some more APIs that can be used with multiple grounders and
solvers. By that a declarative program could be implemented directly in an
imperative system without the consideration of some additional languages,
like it was required at incubed IT to set up an additional Python function.
However, looking at resent research work an increased relevance for the
IDEs and APIs can be observed. In the next years new APIs and IDEs will
highly likely be developed and lead to an increased field of applications for
the declarative method ASP.
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Appendix A.

Evaluation of Solving Approaches
in Clasp

A.1. Solving Approaches for the BMW Task
Assignment

Test
Run

Compete-Based,
2 Threads [ms]

Compete-Based,
4 Threads [ms]

Splitting-Based,
2 Threads [ms]

Splitting-Based,
4 Threads [ms]

1 3142 3741 2034 1197

2 828 687 625 490

3 1344 2421 922 560

4 437 125 109 67

5 6867 5304 14793 2083

6 250 62 94 46

7 125 47 47 34

8 381 266 656 88

9 23313 21890 17908 13885

10 234 219 156 141

µ 3692.1 3476.2 3734.4 1859.1
σ 7204.7 6724.2 6715.88 4276.44

Table A.1.: Runtime for multi-threading approaches, combined with branch-and-bound-
based optimization, at the BMW task assignment
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A.2. Solving Approaches for the BMW Charge and Park Assignment

A.2. Solving Approaches for the BMW Charge
and Park Assignment

Test
Run

Compete-Based,
2 Threads [ms]

Compete-Based,
4 Threads [ms]

Splitting-Based,
2 Threads [ms]

Splitting-Based,
4 Threads [ms]

1 782 1125 1094 668

2 813 703 766 439

3 2057 1859 1860 920

4 1484 562 719 544

5 1266 969 1188 569

6 719 422 469 356

7 547 531 531 349

8 7267 1812 11032 5657

9 22491 7144 12182 9877

10 1148 632 742 491

µ 3857.4 1575.9 3058.3 1987

σ 6841.88 2022.52 4531.35 3208.84

Table A.3.: Runtime for multi-threading approaches, combined with branch-and-bound-
based optimization, at the BMW park and charge assignment
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A.3. Solving Approaches for the incubed IT Assignment

A.3. Solving Approaches for the incubed IT
Assignment

Test
Run

Compete-Based,
2 Threads [ms]

Compete-Based,
4 Threads [ms]

Splitting-Based,
2 Threads [ms]

Splitting-Based,
4 Threads [ms]

1 Timeout 18081 12080 12246

2 242 399 214 295

3 571 11111 654 413

4 Timeout Timeout Timeout Timeout
5 4274 4439 4604 5028

6 18525 10191 3932 5197

7 739 319 1791 3916

8 9366 3651 1335 7783

9 1071 907 847 3297

10 18887 4915 Timeout Timeout
µ 6709.38 6001.44 3182.13 4771.88

σ 7998.53 6003.67 3923.51 3912

Table A.5.: Runtime for multi-threading approaches, combined with Vsids heuristic, at the
incubed IT assignment

155



Appendix A. Evaluation of Solving Approaches in Clasp
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Appendix B.

Evaluation of Performance at
BMW

B.1. Evaluation Results for the BMW Task
Assignment

Test
Run

C#
Implementation [ms]

ASP within C#
Implementation [ms]

Standalone
ASP [ms]

1 0 423 16

2 0 504 0

3 0 404 0

4 0 389 19

5 0 403 0

6 0 438 16

7 0 479 30

8 0 451 12

9 0 396 0

10 0 385 16

µ 0 427.2 10.9
σ 0 40.3 10.46

Table B.1.: Runtime for the BMW task assignment implementations at test scenario 1
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Appendix B. Evaluation of Performance at BMW

Test
Run

C#
Implementation [ms]

ASP within C#
Implementation [ms]

Standalone
ASP [ms]

1 0 401 16

2 0 408 16

3 0 440 0

4 0 430 0

5 0 400 0

6 0 399 14

7 0 396 21

8 0 416 0

9 0 418 0

10 0 447 16

µ 0 415.5 8.3
σ 0 18.16 8.92

Table B.2.: Runtime for the BMW task assignment implementations at test scenario 2

Test
Run

C#
Implementation [ms]

ASP within C#
Implementation [ms]

Standalone
ASP [ms]

1 0 491 0

2 0 470 16

3 0 446 16

4 0 456 16

5 0 374 16

6 0 655 0

7 0 571 16

8 0 420 0

9 0 424 16

10 0 411 0

µ 0 471.8 9.6
σ 0 83.61 8.26

Table B.3.: Runtime for the BMW task assignment implementations at test scenario 3
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B.1. Evaluation Results for the BMW Task Assignment

Test
Run

C#
Implementation [ms]

ASP within C#
Implementation [ms]

Standalone
ASP [ms]

1 0 440 16

2 0 534 16

3 0 611 15

4 0 592 16

5 0 556 16

6 0 496 16

7 0 603 31

8 0 463 16

9 0 493 16

10 0 444 16

µ 0 523.2 17.4
σ 0 65.38 4.79

Table B.4.: Runtime for the BMW task assignment implementations at test scenario 4

Test
Run

C#
Implementation [ms]

ASP within C#
Implementation [ms]

ASP within Python
Implementation [ms]

Standalone
ASP [ms]

1 0 2559 1355 1406

2 0 1121 296 370

3 1 1641 421 448

4 0 925 123 156

5 0 3315 1335 2516

6 0 772 72 47

7 1 627 78 31

8 1 931 199 258

9 0 15209 6324 8892

10 0 922 74 165

µ 0.3 2802.2 1027.7 1428.9
σ 0.48 4445.21 1926.02 2746.91

Table B.5.: Runtime for the BMW task assignment implementations at test scenario 5
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Appendix B. Evaluation of Performance at BMW

Test
Run

C#
Implementation [ms]

ASP within C#
Implementation [ms]

Standalone
ASP [ms]

1 2 Timeout Timeout
2 2 22451 6377

3 1 17977 9714

4 1 Timeout Timeout
5 1 17561 3569

6 1 Timeout Timeout
7 1 56831 22561

8 1 Timeout Timeout
9 1 3367 1235

10 1 Timeout Timeout
µ 1.2 23637.4 8691.2
σ 0.42 18196.13 7222.24

Table B.6.: Runtime for the BMW task assignment implementations at test scenario 6

Test
Run

C#
Implementation [ms]

ASP within C#
Implementation [ms]

Standalone
ASP [ms]

1 2 3208 1618

2 1 Timeout Timeout
3 2 2041 234

4 2 Timeout Timeout
5 1 Timeout Timeout
6 1 1356 375

7 1 8581 3240

8 2 19060 16583

9 1 1216 656

10 0 1111 1404

µ 1.3 5224.71 3444.29

σ 0.67 5983 5083.52

Table B.7.: Runtime for the BMW task assignment implementations at test scenario 7
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B.1. Evaluation Results for the BMW Task Assignment

Test
Run

C#
Implementation [ms]

ASP within C#
Implementation [ms]

Standalone
ASP [ms]

1 0 Timeout Timeout
2 0 Timeout Timeout
3 0 Timeout Timeout
4 0 Timeout Timeout
5 0 Timeout Timeout
6 0 Timeout Timeout
7 0 Timeout Timeout
8 0 Timeout Timeout
9 0 Timeout Timeout
10 0 Timeout Timeout
µ 0 / /
σ 0 / /

Table B.8.: Runtime for the BMW task assignment implementations at test scenario 8

Test
Run

C#
Implementation [ms]

ASP within C#
Implementation [ms]

Standalone
ASP [ms]

1 0 Timeout Timeout
2 1 Timeout Timeout
3 0 Timeout Timeout
4 0 Timeout Timeout
5 0 Timeout Timeout
6 2 Timeout Timeout
7 0 Timeout Timeout
8 0 Timeout Timeout
9 1 Timeout Timeout
10 0 Timeout Timeout
µ 0.4 / /
σ 0.7 / /

Table B.9.: Runtime for the BMW task assignment implementations at test scenario 9
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Appendix B. Evaluation of Performance at BMW

B.2. Evaluation Results for the BMW Park and
Charge Assignment

Test
Run

C#
Implementation [ms]

ASP within C#
Implementation [ms]

Standalone
ASP [ms]

1 0 421 0

2 0 385 16

3 0 379 0

4 0 382 16

5 0 383 16

6 0 407 13

7 0 408 19

8 0 393 16

9 0 388 27

10 0 391 16

µ 0 393.7 13.9
σ 0 13.78 8.21

Table B.10.: Runtime for the BMW park and charge assignment implementations at test
scenario 1
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B.2. Evaluation Results for the BMW Park and Charge Assignment

Test
Run

C#
Implementation [ms]

ASP within C#
Implementation [ms]

Standalone
ASP [ms]

1 0 667 16

2 0 431 16

3 0 423 16

4 0 529 0

5 0 535 16

6 0 416 0

7 0 422 16

8 0 463 16

9 0 435 31

10 0 417 12

µ 0 473.8 13.9
σ 0 81.24 8.88

Table B.11.: Runtime for the BMW park and charge assignment implementations at test
scenario 2

Test
Run

C#
Implementation [ms]

ASP within C#
Implementation [ms]

Standalone
ASP [ms]

1 0 410 16

2 0 445 0

3 0 400 16

4 0 403 16

5 0 412 16

6 0 506 0

7 0 469 16

8 0 396 16

9 0 512 16

10 0 558 16

µ 0 451.1 12.8
σ 0 57.43 6.75

Table B.12.: Runtime for the BMW park and charge assignment implementations at test
scenario 3
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Appendix B. Evaluation of Performance at BMW

Test
Run

C#
Implementation [ms]

ASP within C#
Implementation [ms]

Standalone
ASP [ms]

1 1 484 31

2 1 599 31

3 3 521 51

4 5 884 35

5 1 504 31

6 1 569 31

7 2 845 31

8 1 481 31

9 1 433 31

10 1 463 31

µ 1.7 578.3 33.4
σ 1.34 158.7 6.31

Table B.13.: Runtime for the BMW park and charge assignment implementations at test
scenario 4

Test
Run

C#
Implementation [ms]

ASP within C#
Implementation [ms]

ASP within Python
Implementation [ms]

Standalone
ASP [ms]

1 20 629 195 170

2 10 778 375 284

3 14 825 421 125

4 12 496 127 101

5 14 535 294 248

6 25 615 535 125

7 20 1730 248 1459

8 16 830 331 281

9 11 762 250 419

10 20 681 201 205

µ 16.2 788.1 297.7 341.7
σ 4.87 350.75 121.29 404.17

Table B.14.: Runtime for the BMW park and charge assignment implementations at test
scenario 5
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B.2. Evaluation Results for the BMW Park and Charge Assignment

Test
Run

C#
Implementation [ms]

ASP within C#
Implementation [ms]

Standalone
ASP [ms]

1 74 18522 14408

2 54 42153 8872

3 63 20183 3267

4 58 1982 5846

5 63 14264 19006

6 62 50358 50961

7 63 27955 20214

8 69 34418 16408

9 58 3876 5548

10 64 5959 2078

µ 62.8 21967 14660.8
σ 5.67 16538.62 14348.6

Table B.15.: Runtime for the BMW park and charge assignment implementations at test
scenario 6

Test
Run

C#
Implementation [ms]

ASP within C#
Implementation [ms]

Standalone
ASP [ms]

1 292 2632 1281

2 264 3461 3805

3 254 5014 19804

4 242 10169 1437

5 232 4965 1140

6 279 2180 5342

7 256 4063 5515

8 213 Timeout Timeout
9 260 12082 6014

10 219 51527 22500

µ 251.1 10677 7426.44

σ 25.08 15169.36 7932.5

Table B.16.: Runtime for the BMW park and charge assignment implementations at test
scenario 7
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Appendix B. Evaluation of Performance at BMW

Test
Run

C#
Implementation [ms]

ASP within C#
Implementation [ms]

Standalone
ASP [ms]

1 1911 Timeout Timeout
2 1676 Timeout Timeout
3 1785 Timeout Timeout
4 1662 Timeout Timeout
5 1748 Timeout Timeout
6 1556 Timeout Timeout
7 1669 Timeout Timeout
8 1729 Timeout Timeout
9 1992 Timeout Timeout
10 1805 Timeout Timeout
µ 1753.3 / /
σ 127.58 / /

Table B.17.: Runtime for the BMW park and charge assignment implementations at test
scenario 8

Test
Run

C#
Implementation [ms]

ASP within C#
Implementation [ms]

Standalone
ASP [ms]

1 5722 Timeout Timeout
2 5766 Timeout Timeout
3 5874 Timeout Timeout
4 6242 Timeout Timeout
5 6172 Timeout Timeout
6 5154 Timeout Timeout
7 5125 Timeout Timeout
8 5155 Timeout Timeout
9 5171 Timeout Timeout
10 5277 Timeout Timeout
µ 5541.2 / /
σ 465.79 / /

Table B.18.: Runtime for the BMW park and charge assignment implementations at test
scenario 9
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Appendix C.

Evaluation of Performance at
incubed IT

C.1. Evaluation Results for the incubed IT
Assignment at Test Setup 1

Test
Run

Java
Implementation [ms]

ASP within Java
Implementation [ms]

Standalone
ASP [ms]

1 605 439 162

2 457 491 194

3 634 303 147

4 237 97 78

5 151 163 66

6 190 106 66

7 267 642 78

8 226 198 78

9 261 116 78

10 248 278 62

µ 327.6 283.3 100.9
σ 173.42 186.29 47.81

Table C.1.: Runtime for the incubed IT assignment implementations at test scenario 1
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Appendix C. Evaluation of Performance at incubed IT

Test
Run

Java
Implementation [ms]

ASP within Java
Implementation [ms]

Standalone
ASP [ms]

1 903 487 78

2 249 82 109

3 338 103 62

4 217 114 62

5 171 109 62

6 130 104 62

7 163 129 62

8 193 99 78

9 197 98 78

10 222 110 66

µ 278.3 143.5 71.9
σ 226.64 121.3 14.96

Table C.2.: Runtime for the incubed IT assignment implementations at test scenario 2

Test
Run

Java
Implementation [ms]

ASP within Java
Implementation [ms]

Standalone
ASP [ms]

1 538 336 66

2 426 100 78

3 293 132 78

4 300 99 62

5 194 93 81

6 231 172 62

7 188 130 78

8 208 89 69

9 237 87 62

10 141 91 78

µ 275.6 132.9 71.4
σ 121.5 76.3 7.93

Table C.3.: Runtime for the incubed IT assignment implementations at test scenario 3
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C.1. Evaluation Results for the incubed IT Assignment at Test Setup 1

Test
Run

Java
Implementation [ms]

ASP within Java
Implementation [ms]

Standalone
ASP [ms]

1 1374 845 374

2 313 94 78

3 301 251 94

4 194 95 94

5 228 83 84

6 262 185 78

7 302 241 94

8 219 266 104

9 184 203 94

10 254 283 94

µ 363.1 254.6 90.44

σ 358.06 220.59 8.65

Table C.4.: Runtime for the incubed IT assignment implementations at test scenario 4

Test
Run

Java
Implementation [ms]

ASP within Java
Implementation [ms]

Standalone
ASP [ms]

1 896 390 260

2 877 360 250

3 518 203 125

4 490 878 709

5 422 360 99

6 312 329 109

7 409 1199 623

8 411 780 359

9 329 281 109

10 249 170 125

µ 491.3 495 278.67

σ 223.23 339.16 236.67

Table C.5.: Runtime for the incubed IT assignment implementations at test scenario 5
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Appendix C. Evaluation of Performance at incubed IT

Test
Run

Java
Implementation [ms]

ASP within Java
Implementation [ms]

Standalone
ASP [ms]

1 1138 399 110

2 1216 174 90

3 486 160 91

4 568 195 121

5 873 667 109

6 422 111 109

7 834 228 211

8 354 175 94

9 257 175 125

10 413 158 141

µ 656.1 244.2 120.1
σ 337.56 167.39 35.76

Table C.6.: Runtime for the incubed IT assignment implementations at test scenario 6

Test
Run

Java
Implementation [ms]

ASP within Java
Implementation [ms]

Standalone
ASP [ms]

1 1079 5637 Timeout
2 913 Timeout Timeout
3 678 Timeout Timeout
4 934 Timeout Timeout
5 388 Timeout Timeout
6 926 14176 Timeout
7 411 19345 29995

8 309 Timeout Timeout
9 1053 Timeout Timeout
10 477 Timeout Timeout
µ 8411.3 13052.67 29995

σ 16712.51 7099.53 9485.25

Table C.7.: Runtime for the incubed IT assignment implementations at test scenario 7
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C.1. Evaluation Results for the incubed IT Assignment at Test Setup 1

Test
Run

Java
Implementation [ms]

ASP within Java
Implementation [ms]

Standalone
ASP [ms]

1 16475 Timeout Timeout
2 1116 Timeout Timeout
3 1250 Timeout Timeout
4 1065 Timeout Timeout
5 1139 Timeout Timeout
6 804 Timeout Timeout
7 1004 Timeout Timeout
8 1205 Timeout Timeout
9 1386 Timeout Timeout
10 284 Timeout Timeout
µ 2572.8 / /
σ 4894.22 / /

Table C.8.: Runtime for the incubed IT assignment implementations at test scenario 8

Test
Run

Java
Implementation [ms]

ASP within Java
Implementation [ms]

Standalone
ASP [ms]

1 2278 Timeout Timeout
2 2224 Timeout Timeout
3 2674 Timeout Timeout
4 2302 Timeout Timeout
5 1589 Timeout Timeout
6 1311 Timeout Timeout
7 899 Timeout Timeout
8 785 Timeout Timeout
9 398 Timeout Timeout
10 510 Timeout Timeout
µ 1497 / /
σ 834.1 / /

Table C.9.: Runtime for the incubed IT assignment implementations at test scenario 9
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Appendix C. Evaluation of Performance at incubed IT

C.2. Evaluation Results for the incubed IT
Assignment at Test Setup 2

Test
Run

Java
Implementation [ms]

ASP within Java
Implementation [ms]

Standalone
ASP [ms]

1 419 97 47

2 273 88 62

3 241 74 47

4 502 112 78

5 358 160 62

6 201 95 62

7 423 99 62

8 372 270 62

9 190 79 62

10 165 142 63

µ 314.4 121.6 60.7
σ 115.9 58.73 8.76

Table C.10.: Runtime for the incubed IT assignment implementations at test scenario 1
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C.2. Evaluation Results for the incubed IT Assignment at Test Setup 2

Test
Run

Java
Implementation [ms]

ASP within Java
Implementation [ms]

Standalone
ASP [ms]

1 665 101 109

2 566 84 109

3 281 105 94

4 319 100 94

5 214 345 172

6 243 91 172

7 231 232 125

8 560 137 94

9 437 88 78

10 194 140 125

µ 371 142.3 117.2
σ 172.34 83.69 32.34

Table C.11.: Runtime for the incubed IT assignment implementations at test scenario 2

Test
Run

Java
Implementation [ms]

ASP within Java
Implementation [ms]

Standalone
ASP [ms]

1 646 78 93

2 390 81 109

3 477 199 109

4 311 100 109

5 193 280 78

6 247 158 94

7 481 129 78

8 219 351 109

9 203 126 78

10 214 81 109

µ 338.1 158.3 96.6
σ 154.61 92.68 14.25

Table C.12.: Runtime for the incubed IT assignment implementations at test scenario 3
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