
Christoph Stöckl, Bsc

Image Classification with Spiking
Convolutional Neural Networks

Master’s Thesis
to achieve the university degree of

Diplom-Ingenieur
Master’s degree programme: Computer Science

submitted to

Graz University of Technology

Supervisor
Univ.-Prof. Dipl.-Ing. Dr.rer.nat. Wolfgang Maass

Institute of Theoretical Computer Science
Head: Assoc. Prof. Dipl.-Ing. Dr. techn. Robert Legenstein

Graz, August 2019

Senat

Deutsche Fassung:
Beschluss der Curricula-Kommission für Bachelor-, Master- und Diplomstudien vom 10.11.2008
Genehmigung des Senates am 1.12.2008

EIDESSTATTLICHE ERKLÄRUNG

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als die
angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtlich und inhaltlich
entnommenen Stellen als solche kenntlich gemacht habe.

Graz, am …………………………… ………………………………………………..
 (Unterschrift)

Englische Fassung:

STATUTORY DECLARATION

I declare that I have authored this thesis independently, that I have not used other than the declared

sources / resources, and that I have explicitly marked all material which has been quoted either

literally or by content from the used sources.

…………………………… ………………………………………………..
 date (signature)

Abstract

The importance of artificial intelligence has significantly increased over the
last years. There has been a lot of success in many different areas of machine
learning, especially in computer vision, where AI has already surpassed
human performance in some fields. The significance of computer vision
can be seen clearly by its vast amount of applications, which include self-
driving cars, face recognition, gesture recognition, robotics, image search,
augmented reality and many more.
Nowadays most machine learning models used to solve these tasks run on
graphics processing units (GPUs). Unfortunately, however, GPUs require a
substantial amount of energy to operate, which can make them disadvanta-
geous in numerous scenarios. As a result, there are many battery-powered
devices, which are unable to make use of the benefits of AI as their energy
budget does not allow for this kind of hardware.
One promising solution to this problem could be using spiking neural
networks on neuromorphic hardware. Due to the event-driven nature of
spiking neural networks, they are very economical with regards to energy
consumption.
This master thesis will propose three spiking convolutional neural net-
works, which can be used for image classification and could also run on
neuromorphic hardware.

v

Acknowledgements

I would dedicate this page to the people who stood by my side during my
bachelor and my master study.
I am especially grateful for all the support I received from my parents, who
enabled me to put a strong focus on my studies. Without their help, it would
never have been possible for me to progress at this pace.

Of course, I also want to thank my brother, my friends and my girlfriend
for their aid, encouragement and for proofreading my work. Being able
to bounce ideas off them turned out to be very valuable for this master thesis.

Lastly, I also want to express my gratitude towards all the people working at
the institute of theoretical computer science at the TU Graz for their support.
I especially want to thank Prof. Wolfgang Maass, my professor and mentor,
for his dedicated support and for introducing me into this fascinating field
of research.

The LATEXtemplate, developed by Karl Voit is available at: https://github.com/novoid/LaTeX-
KOMA-template

Graz, September 2019

Christoph Stöckl

vii

Contents

Abstract iii

1 Introduction 1
1.1 Overview . 2

2 Computer Vision 3
2.1 Image classification . 3

2.1.1 Importance . 3

2.1.2 Why neural networks? 4

2.1.3 Data sets . 4

2.2 State of the Art . 8

2.2.1 Convolutional Neural Networks 8

3 Spiking Neural Networks 13
3.1 Why spiking? . 13

3.2 LIF Neurons . 13

3.3 Training . 14

3.4 Neuromorphic Hardware . 16

4 Related Work 19
4.1 State of the Art . 19

4.2 Spatio-Temporal Backpropagation for Training High-Performance
Spiking Neural Networks . 19

4.2.1 Training Algorithm . 19

4.2.2 Network . 20

4.2.3 Results . 21

4.3 Paper: Direct Training for Spiking Neural Networks: Faster,
Larger, Better . 21

4.3.1 Network . 21

4.3.2 Input and Output Convention 22

ix

Contents

4.3.3 Training . 22

4.3.4 Results . 23

4.3.5 Discussion . 23

4.4 Approaches using ANN to SNN conversion 23

4.5 Approaches using STDP . 24

5 Spiking Convolutional Neural Networks 25
5.1 Temporal SCNN . 26

5.1.1 Architecture . 26

5.1.2 Input convention . 28

5.1.3 Output convention . 28

5.1.4 Training . 29

5.1.5 Spike Plots . 30

5.1.6 Results . 33

5.2 Wide SCNN . 37

5.2.1 Architecture . 37

5.2.2 Input convention . 38

5.2.3 Output convention . 39

5.2.4 Training and Hyperparameters 39

5.2.5 Dropouts . 42

5.2.6 Image preprocessing . 42

5.2.7 Spike plots . 43

5.2.8 Results . 45

5.3 Residual SCNN . 52

5.3.1 Architecture . 52

5.3.2 Input and output convention 54

5.3.3 Training and Hyperparameters 54

5.3.4 Spike plots . 55

5.3.5 Results . 57

6 Summary 61
6.1 Discussion . 61

6.2 Conclusion . 62

7 Appendix 63
7.1 Parameter description . 63

7.2 Implementation details . 64

x

Contents

Bibliography 65

xi

List of Figures

2.1 Randomly selected sample images from CIFAR10 5

2.2 Randomly selected sample images from ImageNet16-10 . . . 7

2.3 Visual concept of convolutions 10

3.1 Artificial derivative of the spike function. 16

5.1 TSCNN network architecture 27

5.2 Spiking activity of the TSCNN model in the input layer . . . 31

5.3 Spiking activity of the TSCNN model in the first convolu-
tional layer . 32

5.4 Spiking activity of the TSCNN model in the third convolu-
tional layer . 33

5.5 Change of the output neuron’s membrane potential over time 35

5.6 Change of the output neuron’s membrane potential over time 36

5.7 WSCNN network architecture 38

5.8 Regularization loss of a single neuron. 41

5.9 Spikes in the first convolutional layer 43

5.10 Spikes in the fifth convolutional layer 44

5.11 Spikes in the first fully connected layer 45

5.12 Change of the output neuron’s membrane potential over time 46

5.13 Change of the output neuron’s membrane potential over time 47

5.14 Some samples of the trained filters from the first convolu-
tional layer. 48

5.15 Some samples of the trained filters from the second convolu-
tional layer. 49

5.16 Some samples of the trained filters from the third convolu-
tional layer. 50

5.17 Confusion matrix of the WSCNN model. 51

5.18 Architecture of the RSCNN . 53

5.19 Spikes in the eights convolutional layer 56

xiii

List of Figures

5.20 Spikes in the fully connected layer 57

5.21 Membrane potentials of the output neurons over time. 58

5.22 Membrane potentials of the output neurons over time. 59

5.23 Confusion matrix of the RSCNN model. 60

xiv

List of Tables

2.1 Size of the ImageNet16-10 data set. 6

4.1 State of the art performance on the CIFAR10 and MNIST data
sets . 19

4.2 Performance on MNIST and CIFAR10 21

4.3 Architecture of the largest proposed model 22

4.4 Performance on CIFAR10 . 23

5.1 Layers of the TSCNN model . 27

5.2 Number of neurons and weights in the TSCNN model 27

5.3 Hyperparameters used for the TSCNN model 30

5.4 Architecture of the WSCNN model 37

5.5 Number of neurons and weights in the WSCNN model 38

5.6 Hyperparameters used for the WSCNN model 40

5.7 Number of neurons and weights in the RSCNN model 54

5.8 Hyperparameters used for the RSCNN model 54

xv

1 Introduction

Computer vision is a far-reaching category in artificial intelligence research.
It is often the case that difficult tasks, such as autonomous driving or
robotics, contain vision-related subtasks.
The area of computer vision contains many different vision-related tasks like
image classification, image segmentation, object detection, image descrip-
tion and many more. Furthermore, computer vision is not only restricted to
dealing with static images but it can also process video data.

This master thesis will mainly focus on image classification.
The goal of image classification is to teach a computer to assign a category
to a digital image.
This is usually done by training a neural network in a supervised fashion.
First, the network is shown numerous labeled images. The neural network
tries to pick up on similarities, which images belonging to the same category
have. Later, the model gets evaluated by showing it new images, which it
has not seen before during the training phase. If the model managed to
generalize well, it will be also able to classify unfamiliar images.
In recent years, a lot of progress has been made in this field. On some
data sets, artificial neural networks have been reported to even surpass the
performance of humans (Ho-Phuoc, 2018).

The idea of drawing inspiration from the human brain has always been a
central concept of artificial intelligence research.
The human brain is a miraculous biological machine, which can solve very
complex tasks effortlessly. It especially excels at problems involving one-shot
learning or dealing with completely new tasks and situations.
Recent advances in hardware implementations of spiking neural networks,
like Loihi (Davies et al., 2018), further boost research in this direction.
Using special hardware, dedicated for spiking neural networks, has many
advantages, like speed and power efficiency.

1

1 Introduction

Being able to solve AI-related tasks, such as image classification, in low
power environments could be seen as a milestone in porting AI to most
devices running on batteries.

1.1 Overview

The first part of this master thesis will describe the state of the art of spike
based image classification. The chapter ’Computer Vision’ will give some
insight into the task of image classification.
It will define the underlying problem and emphasize its importance. Fur-
thermore, this chapter will introduce the two data sets used in this thesis
and describe convolutional neural networks, which mark the state of the art
for image classification tools.
The next chapter ’Spiking Neural Networks’ will introduce the main ideas
of spiking neural networks. It contains a brief overview of the motivations
behind spiking neural networks and introduce mathematical models to
simulate neurons.
In addition, there is also a section describing how spiking neural networks
can be trained and a section underlining the importance of spiking hard-
ware.
All chapters up to now focused on laying out necessary background infor-
mation. The following chapter ’Spiking Convolutional Neural Networks’
will be the main chapter of the thesis. Three different spiking convolutional
neural network models will be introduced and described in detail. Plots
depicting the spiking activity, as well as the performance of all models have
been added.
The final chapter of this master thesis will briefly summarize the most
important information. The final section contains an outlook into the future,
laying out possible research directions.

2

2 Computer Vision

The goal of computer vision is to make computers ’understand’ visual data.
This is not only limited to digital images but can also refer to video data.
There are numerous different tasks associated with computer vision. Some
of them are:

• Image classification: The computer gets a collection of images and it
has to assign a category to every image. There are usually somewhere
between 2 to 1000 different categories.

• Image segmentation: The computer gets an image and it should decide
which pixel belongs to which object. This is especially useful for self-
driving cars, as it is important to know which part of an input image
or video belongs to the road, traffic signs or obstacles.

• Object recognition: The computer gets an image containing potentially
multiple objects. The task is to find and classify all the objects in a
scene.

This master thesis will focus on the task of image classification.

2.1 Image classification

2.1.1 Importance

For some applications, image classification can represent the entire task.
Examples for this category would include face recognition tasks, self-
organizing galleries on smartphones or determining whether or not a patient
has a certain disease based on an x-ray scan.
There are also many tasks where image recognition represents a subtask,
like classifying road signs in self-driving cars.
Also in robotics image and video classification can be very important, for
example to find the right objects to pick up or to navigate around obstacles.

3

2 Computer Vision

Because of its importance, a lot of research has been directed towards image
classification in the last decade.

2.1.2 Why neural networks?

The main goal of image classification is to teach a computer to assign a
category to an image.
Although this task is trivial for humans, it is quite challenging for computers.
What makes this task hard is the huge variety of images. For example, a car
from the front looks very different compared to a car from the side or from
the inside.
It turns out that it is very difficult to formulate a set of predefined rules,
which can efficiently decide on the class of an image.
As classical programming can not solve this task, new ideas like neural
networks are needed to tackle this problem.
Neural networks are loosely inspired by the structure of the brain. Especially
the paradigm of many small computational units, which are connected in a
network has successfully been adopted. However, artificial neural networks
do not try to copy the behavior of the individual neurons.

2.1.3 Data sets

Data sets play an important role in machine learning. For image classifica-
tion, there exists a variety of different collections of hand-labeled images,
which can be used to train, evaluate and compare models. These data sets
differ in size and difficulty.
In order to reduce the computational complexity of the data sets, only
low-resolution images were used as input for the models. However, using
the models to classify larger images would certainly be possible.
Using low-resolution images is frequently done in image classification. Re-
search has shown that using low-resolution images can be a fast way of
finding the right hyperparameters, as training models can be done signif-
icantly faster. The hyperparameters obtained with low-resolution images
tend to also work well for larger sized images (Chrabaszcz, Loshchilov, and
Hutter, 2017).

4

2.1 Image classification

The data sets used in this master thesis are CIFAR10 and a subset of the
ImageNet data set.

CIFAR10

CIFAR10 is a data set consisting out of 60.000 low resolution, colored images
(Krizhevsky, 2012). Every image has a resolution of 32 by 32 pixels. These
images are split up into 50.000 training and 10.000 testing images.
The categories include animals (e.g. cat, dog, bird, frog, horse, deer) as well
as modes of transportation (airplane, automobile, truck, ship). For every
class, the data set contains 5000 training and 1000 test images.
Some sample images can be seen in figure 2.1.

(a) airplane (b) automobile (c) bird (d) frog

(e) deer (f) dog (g) frog (h) horse

(i) ship (j) truck (k) airplane (l) automobile

(m) bird (n) cat (o) deer (p) dog

Figure 2.1: Randomly selected sample images from CIFAR10

5

2 Computer Vision

CIFAR10 can certainly be considered as one of the most widely used data
sets for image classification.

ImageNet

ImageNet (Russakovsky et al., 2014) is one of the largest and most popular
data sets used for computer vision. The original data set contains several
million full resolution, colored and labeled images.
To reduce computational costs, it was essential to diminish the difficulty
and size of the data set. This was archived by lowering the number of total
classes to only 10 and reducing the image dimensions to 16 by 16 pixels.
The new classes were selected to be:

1. jaguar
2. ice bear
3. Indian elephant
4. tank
5. submarine
6. sports car
7. grand piano
8. beer glass
9. oscilloscope

10. basketball

These classes were chosen randomly.
The size of the data set is laid out in table 2.1.

Number of training images 13000
Number of test images 500

Table 2.1: Size of the ImageNet16-10 data set.

As the training and test images are distributed evenly across the categories,
every category has 1300 training and 50 test images.
Some sample images can be seen in figure 2.2.

6

2.1 Image classification

(a) jaguar (b) ice bear (c) ice bear (d) Indian elephant

(e) Indian elephant (f) tank (g) submarine (h) submarine

(i) sports car (j) sports car (k) grand piano (l) grand piano

(m) beer glass (n) oscilloscope (o) oscilloscope (p) basketball

Figure 2.2: Randomly selected sample images from ImageNet16-10

As this data set is a randomly chosen subset of the ImageNet data set, there
are no reported performances in the literature.
Therefore, on this data set human performance will be stated as a reference.

7

2 Computer Vision

2.2 State of the Art

2.2.1 Convolutional Neural Networks

The introduction of deep convolutional neural networks marked a milestone
in the area of image classification (LeCun et al., 1999). In the year 2012 it
was shown that using a deep convolutional neural network architecture
one could outperform all previous models (Krizhevsky, Sutskever, and
Geoffrey E Hinton, 2012).
Over the next years, the architectures of the models became more and more
refined and the state of the art was frequently redefined (Szegedy et al.,
2015; He et al., 2015).
Convolutional neural networks consist of three basic types of layer, which
will now be briefly described.

Convolutional Layers

Convolutions exploit a fundamental property of spatial information in
images. The core idea is that every pixel carries more joint information with
its neighboring pixels than with pixels that are spaced far apart. One reason
supporting this claim is that neighboring pixels can encode visual features,
like edges and corners.
Convolutional layers are designed in a way that they excel at detecting
those visual features. Every convolutional layer contains a collection of
feature maps (also called filters). Each feature map represents a special
visual property, like an edge oriented in a certain way or a bright region
surrounded by a dark region. These features are usually quite small, they
are in the region of 3 by 3 to 7 by 7 pixels. The model uses the convolution
operation to compare the visual feature map against numerous locations
in the image, to see how strongly the feature is present in this area of the
image.
This approach has many advantages compared to fully connected layers.
Most importantly, convolutional neural networks can make use of weight
sharing, enabling them to operate with a lower amount of trainable pa-
rameters. This is beneficial, as it allows the model to be larger in size. It is
important to keep in mind that the models need to be run on hardware with
limited resources, therefore using weight sharing can be very helpful. Fully

8

2.2 State of the Art

connected layers would not be a suitable solution for large scale images, as
the number of weights needed would explode.
Figure 2.3 depicts the core concept of the convolution operation. On the
bottom of the figure, there is a layer of neurons, on which the convolutional
operation is applied. The blue cubes represent the neurons in the layer and
the yellow cubes resemble neurons that are active.
The red and green rectangle represents the filter, which the convolution uses.
This filter tries to pick up on straight lines. It achieves this by calculating a
weighted sum over the neuron’s activations and the filter’s weights.
This means the output of the convolution using this filter will be the highest
when the layer beneath shows an activity pattern that looks close to the
green-colored part of the filter. A high output of the convolution results in a
high activation to the corresponding neuron in the next layer, which will
cause this neuron to also be highly activated.

9

2 Computer Vision

Figure 2.3: Visual concept of convolutions

Pooling Layers

As mentioned in the previous section, the filter sizes used in the convolution
operation are rather small. Therefore the convolution will only be able to
pick up on small visual features, as the features have the same size as the
filters used to detect them.
In order to pick up on larger sized features, it is necessary to introduce
a new layer type, which will compact the features found by a previous
convolutional layer. These layers are called pooling layers.
As pooling layers reduce the size of the input, they can be combined with

10

2.2 State of the Art

convolutional layers to construct a hierarchical visual feature detection
system.
The core idea of convolutional neural networks is that in the earlier layers
the network picks up upon small features and then starts combining them
into larger, more complex and more high-level features.
There exist multiple types of pooling:

• Max pooling: The highest activation present in a neuron in the pooling
region will be propagated to the next layer. As the highest activation
will be passed on, a minimum of information is lost in the pooling
process.

• Average pooling: Average pooling calculates the average over a pooling
region. The average value represents this region and it is passed on to
the next layer. An average pooling layer could also be implemented
using convolutions.

It should be mentioned, that CNNs can also work without pooling layers at
all. The job of reducing the size can also be done by adding larger strides
to the convolution. This means, that the convolutional filter is not applied
at every position in the image but it skips some positions, resulting in a
smaller size of the next layer.

Fully Connected Layers

In a fully connected layer, every neuron is connected to every other neuron
in the next layer.
In convolutional neural networks, the fully connected layers can be found
towards the end of the network. They receive a collection of high-level
features present in the image and they combine this knowledge to make the
final decision about the class of the image.

Output Layer

The last layer of a neural network is usually called the output layer. For
every category in the data set there is a corresponding neuron in the output
layer.

11

2 Computer Vision

The activation of these neurons represents how much the model thinks
that a given input image falls into the category represented by the output
neuron.
Ideally, the final result of the neural network should be a discrete probability
distribution, containing the probability of class affiliation for every category.
In order to convert the real-valued activations of the output neurons into a
probability distribution, the softmax function (equation 2.1) can be used.

σ(z)j =
ezj

∑K
k=1 ezk

(2.1)

12

3 Spiking Neural Networks

3.1 Why spiking?

Spiking neural networks draw their inspiration from biological neural net-
works. Among biological brains, the human brain is certainly among the
most interesting subjects to study. It is capable of solving a rich variety of
intelligence-related tasks, at which most machine learning approaches still
struggle.
Some examples are:

• dealing with imperfect information
• one shot learning
• effortless image, audio and video classification
• structuring information
• abstraction
• memory

Many of those tasks pose enormous challenges for artificial intelligence.
Therefor, many researchers hope that studying the brain might help unlock
ideas, which could be useful for understanding how the brain computes
and also for building better AI models.
One approaches to tap into the potential of biological networks is by de-
veloping mathematical models of these networks and simulating them on
computers. This way a lot of insight about the dynamics of biological neural
networks can be gained.

3.2 LIF Neurons

The fundamental building block of biological neural networks is the spiking
neuron. To simulate biological networks, it is important to find a suitable
mathematical model to describe the behavior of the spiking neurons.

13

3 Spiking Neural Networks

There exists a variety of different models. Unfortunately, there seems to be a
trade-off between the biological realism and the computational complexity
of the models.
The Hodgkin–Huxley model (Hodgkin and Huxley, 1952) for example is a
very biologically accurate model but it comes with the price of having to
solve four ordinary differential equations.
A very frequently used model, which seems to present a good compromise
between biological accuracy and computational complexity, seems to be the
leaky integrate-and-fire (LIF) neuron model.
This model assigns a so-called membrane potential u to every neuron. The
membrane potential can be increased if the neuron receives positive external
current inputs and it tends to decay back to a resting potential urest after
some time. It can be described with the differential equation:

τm
∂u
∂t

= −(u − urest) + Rm · I (3.1)

This differential equation holds until the membrane potential u surpasses a
certain threshold value. When this happens the neuron spikes, which means
that it emits a signal to all postsynaptic neurons, which are connected to it.
After a spike the membrane potential u is reset to urest.
In biological neurons, there is a period of time right after a spike occurred,
in which the neuron is unable to spike again. This period is called the
refractory period and it has to be taken into account when trying to develop
a precise model of a biological neuron.

3.3 Training

The most important part of working with neural networks of any kind
is optimizing the network to solve a specific task. This process is called
training.
There exists a variety of different training algorithms. Some of the algorithms
consider aspects like spike timings, others contain an error module scheme.
A large portion of learning algorithms is gradient-based. These algorithms
work by treating the network as a complicated mathematical function, which
should be optimized. The core idea is to calculate the gradient of a function,
which expresses the network’s performance, with respect to the weights in

14

3.3 Training

the model. This function is referred to as the loss function and it summarizes
how well the network performs on the task with a single scalar number.
Once this gradient has been obtained it is possible to change the weights
slightly into the opposite direction of the gradient, as this will cause the loss
function to decrease. This process can be repeated multiple times until the
performance of the network stops increasing.
Obtaining the gradient can be done with backpropagation, one of the most
widely used algorithms in machine learning (Rumelhart, Geoffrey E. Hinton,
and Williams, 1986).
Unfortunately, backpropagation requires the network to consist of contin-
uous computational elements, as it has to be possible to calculate the first
derivative for every element. This is problematic when applying backpropa-
gation to spiking neural networks, as the spike function is not continuous.
As a consequence, the derivative of the spike function is a delta Dirac im-
pulse, which unfortunately is not very useful as the only values returned by
this function are zero or infinity.

To solve this challenge, an artificial gradient of the spike function can be
introduced.
Figure 3.1 shows the function used to approximate the gradient of the spike
function (Courbariaux et al., 2016, Essera et al., 2016).
The figure 3.1 clearly shows that the value of the pseudo gradient will be
zero if the membrane potential moves too far away from the threshold. This
should to be avoided and kept in mind when training the networks.

15

3 Spiking Neural Networks

Figure 3.1: Artificial derivative of the spike function.

There are many proposals for different artificial gradient functions, such as
box functions or functions shaped like Gaussians. However, it was found
out that the shape of the artificial gradient does not seem to play a major
role (Wu et al., 2018b).

3.4 Neuromorphic Hardware

In recent years there have been numerous approaches to implementing
spiking neural networks in hardware.
One example would be IBM’s TrueNorth (Cassidy et al., 2016), which has
been reported to perform well on tasks such as object detection, classification
and localization.
One of the most recent and notable approaches is Loihi, which is being
developed by Intel.

16

3.4 Neuromorphic Hardware

A single Loihi chip contains a manycore mesh comprising 128 neuromorphic
cores, which can manage up to 1024 neurons each. This way a single Loihi
chip can handle roughly 130.000 neurons. It is also possible to increase the
number of neurons in a neuromorphic system by combining multiple Loihi
chips.
In one of the first papers introducing Loihi (Davies et al., 2018), Intel’s neuro-
morphic research team shows, that Loihi is already capable of solving least
absolute shrinkage and selection operator (LASSO) optimization problems
with over three orders of magnitude improved energy-delay product.
These results show that spike-based networks on neuromorphic hardware
can outperform all other state of the art solutions.
A very important feature, which a neuromorphic platform has to support
in order to be able to run convolutional networks is weight sharing. Fortu-
nately, Loihi also supports weight sharing, making it an attractive platform
to run spiking convolutional neural networks on.

17

4 Related Work

This chapter is intended as an overview of the field of image classification
with spiking convolutional neural networks.

4.1 State of the Art

The current state of the art test accuracies for both MNIST and CIFAR10 can
be found in table 4.1

Data set ANN SNN
MNIST 99.79% 99.12%
CIFAR10 99% (Huang et al., 2018) 92.37%

Table 4.1: State of the art performance on the CIFAR10 and MNIST data sets

4.2 Spatio-Temporal Backpropagation for
Training High-Performance Spiking Neural
Networks

4.2.1 Training Algorithm

This paper (Wu et al., 2018b) introduces a training algorithm to train spiking
neural networks in both the spatial domain as well as in the time domain.
They argue, that in order to tap into the full potential of spiking neural
networks one has to exploit the rich temporal features which SNNs provide.
The neuron model used in this paper is the leaky integrate-and-fire (LIF)
model, which is described in equation 4.1.

τ
∂u(t)

∂t
= −u(t) + I(t) (4.1)

19

4 Related Work

They solved the differential equation to receive the following update rule:

u(ti) = u(ti−1)e
ti−1−ti

τ + Î(t1) (4.2)

Using the update rule defined in equation 4.2, it is easy to see that the
membrane potential u(t) only depends on the membrane potential at the
previous timestep ti−1 and the pre-synaptic input current Î(ti).
They continue to derive the loss function with respect to the membrane
potential for any given neuron.
This can be later used to obtain the loss with respect to the weights and the
bias.
As the membrane potential depends on the previous membrane potential, it
has to be taken into account when calculating the derivative of the loss with
respect to the membrane potential. This is what they mean by propagating
the error backward in the time domain.
As the membrane potential also depends on the pre-synaptic input currents
it will also be part of the derivative. Considering the pre-synaptic input
currents is what they mean by backpropagation through the spacial domain.
They introduce four types of approximated derivatives for the spike function
and use backpropagation to calculate an error signal.
The approximated derivatives include a rectangle function, a triangle func-
tion and two differently shaped functions that are close to Gaussians. How-
ever, they report that the choice of the approximated derivative does not
have a big impact on the resulting test accuracy.

4.2.2 Network

The Network used for the MNIST data set is a three layer fully connected
network with layer sizes of 784, 400, 10. No convolutional layers are used in
this model.
They also tested the CIFAR10 data set, but this time they used a different
model with two convolutional and two fully connected layers.
The input convention used works on a probabilistic basis. Depending on
the normalizes pixel value (values between 0 and 1) the pixel value is the
probability that there will be a spike in the input layer at every time step.
In other words, a pixel value of 0.8 will result in an 80% chance of a spike
being triggered in the corresponding input neuron.

20

4.3 Paper: Direct Training for Spiking Neural Networks: Faster, Larger, Better

4.2.3 Results

The results can be found in Table 4.2. The paper mainly focuses on the
results on the MNIST data set and only mentions the CIFAR10 results in
the discussion section. They also do not report any training techniques or
data argument methods.

Data set SNN
MNIST 98.89%
CIFAR10 50.7%

Table 4.2: Performance on MNIST and CIFAR10

4.3 Paper: Direct Training for Spiking Neural
Networks: Faster, Larger, Better

Continuing their work from the paper Spatio-Temporal Backpropagation
the same research team published a follow-up paper (Wu et al., 2018a).
They focused on scaling up their training algorithm to larger networks and
achieving a better test accuracy on the CIFAR10 data set.
They also introduce a neuron normalization method which they call Ne-
uNorm. The reason for this normalization is that they claim that too many
spikes can harm the effective information representation.
However, their results show that using NeuNorm does not have a drastic
impact on the performance (less than one percent).

4.3.1 Network

The network layout of the network used on the CIFAR10 data set can be
found in table 4.3.
Usually with SCNNs of this size, the limited amount of memory on the
GPU will become a big issue.
The reason why they can afford a network of this size is that they reduced
simulation time to only 4 to 8 time steps. To cut down on the simulation
time, they use a spike transmission without delay and they adapted the
input and output convention.

21

4 Related Work

Layer Number Layer
1 Input
2 3x3 conv, 128 dropout
3 3x3 conv, 256, AP2, dropout
4 3x3 conv, 512, AP2, dropout
5 3x3 conv 1024, dropout
6 3x3 conv 512, dropout
7 1024 Fully connected
8 512 Fully connected
9 Voting layer
10 Output

Table 4.3: Architecture of the largest proposed model

4.3.2 Input and Output Convention

In a time window of size T a neuron can spike up to T times. As it is
also possible for a neuron to not spike at all there are T + 1 different spike
trains with distinct lengths. These spike trains can be used to encode T + 1
different input values. As it has to be possible for a neuron to spike in two
consecutive time steps, the refractory period of the neuron is set to 0.
Using this input convention, an analog pixel value can be transformed into
a spike train.
The output convention uses a voting strategy.
The last layer contains several neuron populations and each class is repre-
sented by one population. In this way, the burden of representation precision
of each neuron in the temporal domain is transferred to the spatial domain.
They claim, that this also reduces the simulation time.

4.3.3 Training

The loss function used is a least-squares error function. As the default
loss function for classification tasks is usually cross-entropy, this is a usual
choice.
The network was trained using Spacio-Temporal Backpropagation. Ne-
uNorm was also used but it did not yield a significant performance im-
provement.

22

4.4 Approaches using ANN to SNN conversion

4.3.4 Results

The results can be found in table 4.4

Data set SNN
CIFAR10 90.53%

Table 4.4: Performance on CIFAR10

The test accuracy reported on CIFAR10 is the state of the art for a directly
trained spiking neural network on this data set.

4.3.5 Discussion

An impressive part of the paper is that they managed to train a very large
SCNN of roughly 330000 neurons. The key to doing this was to reduce
the number of required time steps to a very low number of around 4 to 8.
Trying to train a network of this size with 50 to 100 timesteps will result in
a memory consumption surpassing 100 GB.

4.4 Approaches using ANN to SNN conversion

Another paradigm for creating spiking neural networks is converting a
trained ANN to an SNN. The main idea is to first train an ANN and then
try to approximate this ANN with an SNN.
In the papers (Hu et al., 2018; Sengupta et al., 2018) this is done by approxi-
mating the ReLU activation function used in the ANN with a spike rate in
the SNN. They report very little accuracy loss caused by the conversion. In
order for this conversion to be accurate enough very long simulation times
are required, which is computationally expensive. In the paper (Sengupta
et al., 2018) up to 2500 time steps have been used.
The main reason why these approaches are popular is the fact that good
performance can be achieved. The paper (Hu et al., 2018) reports a test
accuracy of 92.37% on CIFAR10, which is the state of the art for spiking
convolutional neural networks.

23

4 Related Work

4.5 Approaches using STDP

There is a number of spiking CNNs trained by Spike-timing-dependent
plasticity that currently exist. (Masquelier and Thorpe, 2005; Wysoski, Be-
nuskova, and Kasabov, 2008; Beyeler, Dutt, and Krichmar, 2013; Kherad-
pisheh, Ganjtabesh, and Masquelier, 2016). However, these networks usually
only consist of one trainable convolutional layer and are small in size.
Usually these papers use MNIST only as a data set. In one example (Tavanaei
and Maida, 2017) of such a model, a test accuracy of 97.5% was reported.
Other STDP based SCNNs were able to achieve a test accuracy of 98.4%.

24

5 Spiking Convolutional Neural
Networks

The main goal of this master thesis was the development of three spiking
convolutional neural networks, which were trained on a subset of ImageNet
and CIFAR10.
All three networks explore different approaches and techniques, which can
be used to implement spiking convolutional neural networks (SCNN).
The three models presented in this thesis are:

1. Temporal spiking convolutional neural network (TSCNN): The main em-
phasis of this model is to make use of the time dimension of the
spiking convolutional neural network. The input convention utilizes
the time domain and the convolutional filters have been enabled to use
the time dimension for computations. To make this possible, the model
uses 3D convolutions to be able to capture features within the time
dimension. Using 3D convolutions introduces the concept of spike
delays in the network. This empowers the network to take spikes into
account, which appeared several time steps ago. This network has
been trained on a subset of the ImageNet database. Its input images
are scaled down to a resolution of just 16 by 16 pixels. It is a rather
lightweight SCNN.

2. Wide spiking convolutional neural network (WSCNN): The central charac-
teristic of the WSCNN is that the convolutional layers contain a large
number of filters, which results in a large network consisting of an ex-
tensive amount of neurons and synapses. The core motivation behind
this model is performance. Therefore it is considerably larger in size
than the TSCNN. The WSCNN has been trained on the CIFAR10 data
set.

3. Residual spiking convolutional neural network (RSCNN): The recent years
have shown a trend in CNN models to consist of more and more layers.

25

5 Spiking Convolutional Neural Networks

One innovative idea which made this possible was the introduction
of residual connections (He et al., 2015). These connections skip some
layers completely, which makes it possible to train deeper networks.

Furthermore, the timescale used in the TSCNN is different from the timescale
used in the WSCNN and the RSCNN.
In the TSCNN, one time step refers to a 1 ms time interval. It is important
to keep in mind that biological neurons can not spike arbitrarily fast. Right
after a spike, they need a short period of time to recover. During this period
it is impossible for the neuron to spike again. In order to keep biological
realism, it is important to introduce a refractory period for each neuron,
during which it can not spike again.
Both WSCNN and RSCNN use a different timescale for one time step. Here
one time step refers to a period of roughly 10 ms. This means that there is
no need for a refractory period, as neurons can spike in two consecutive
time steps without violating biological limitations.
The following sections will describe each model in more detail.

5.1 Temporal SCNN

5.1.1 Architecture

A detailed description of the model’s architecture can be found in the table
5.1 and figure 5.1. All neurons in this network are leaky integrate-and-fire
neurons, except for the ten neurons in the output layer. These neurons do
not spike and they are also not leaky.
The model utilizes 3D convolutions, as the time dimension has been added
to the filters. This means that the convolutional layers try to extract spatio-
temporal features.

26

5.1 Temporal SCNN

num. type filter size num. of filters or neurons
1 input layer - -
2 convolutional 4x4x4 10
3 max pool 2x2 -
4 convolutional 4x4x4 15
5 max pool 2x2 -
6 convolutional 4x4x4 20
7 max pool 2x2 -
8 fully connected - 100
9 fully connected - 10

Table 5.1: Layers of the TSCNN model

Figure 5.1: TSCNN network architecture

Additional information regarding the size of the model can be found in
table 5.2

Number of neurons 1838
Number of weights 39720

Table 5.2: Number of neurons and weights in the TSCNN model

27

5 Spiking Convolutional Neural Networks

5.1.2 Input convention

For every pixel in the input image, there are three input neurons - one
corresponding to every color of the pixel. The main idea of the input
convention is to trigger a single spike after a delay which is proportional to
the pixel value.
This way neurons with a low corresponding pixel value will spike later and
pixels with higher values will cause their neurons to spike earlier.
It can be said that this input convention uses the temporal domain to encode
the input image. For this reason, the convolutional filters have been extended
to also include the time dimension.

5.1.3 Output convention

As the network is trained to solve an image classification task, the output of
the network has to be a category.
There are ten different categories in the data set and each class is represented
by one neuron in the output layer.
Initially, the number of spikes in the output neurons were used to determine
the model’s class choice. The neuron with most spikes would determine the
prediction of the model.
However, it turned out that a small improvement in test accuracy can be
obtained by changing the output convention from using spikes to using
each output neuron’s membrane potential directly.
With this insight, the output convention was changed so that the output
neuron with the highest membrane potential at the last time step would
decide on the model’s prediction.

Lastly, a softmax function (2.1) has been applied to the membrane potentials
of the output neurons. An advantage of this function is that it maps every
component of an input vector into the interval from (0, 1). As the output of
the softmax function also adds up to 1 it can also be interpreted as a vector
of class affiliation probabilities.
In figure 5.5 and 5.6 the change of the membrane potential of the output
neurons over time can be seen.

28

5.1 Temporal SCNN

5.1.4 Training

There are 1300 train images and 50 test images for every class. This makes a
total of 13000 training and 500 test images in the data set.
The network is trained using an Adam optimizer (Kingma and Ba, 2014),
which uses backpropagation through time for SNNs (Bellec et al., 2018) to
obtain the gradients.
Cross-entropy was chosen as the loss function, which was minimized by
the Adam optimizer. The membrane potentials of the output neurons were
used as the logits, which were passed into a softmax function and then into
a cross-entropy loss function.
Additionally, a regularization scheme was used, which will be described in
detail in the following sections.
The weight initializations were sampled from a Gaussian probability distri-
bution with a mean of 0.0 and a standard deviation of 0.001.

Parameters

The parameters used to obtain the reported results can be found in table 5.3.
An extensive amount of hyperparameter tuning was used to obtain this set
of parameters.

29

5 Spiking Convolutional Neural Networks

Parameter Value
generations 50000
batch size 128
learning rate 0.00001
num refractory 5
num time steps 40
thr 0.01
membrane potential decay 0.8
thr coeff 5
initialization stddev 0.001
initialization mean 0.0
strech 1.1
input period 25
time conv depth 4
reg coeff 5

Table 5.3: Hyperparameters used for the TSCNN model

A detailed description of the parameters can be found in the appendix.

5.1.5 Spike Plots

Figure 5.2, 5.3 and 5.4 show the spiking activity throughout the network.
As the model contains too many neurons it is not feasible to plot the whole
spiking activity of the network. Therefore the spiking activity of only 50
randomly chosen neurons was illustrated in the following figures.

30

5.1 Temporal SCNN

Figure 5.2: Spiking activity of the TSCNN model in the input layer

Figure 5.2 shows part of the spiking activity in the input layer. It can be
observed that every neuron spikes once and only once due to the input
convention used.

31

5 Spiking Convolutional Neural Networks

Figure 5.3: Spiking activity of the TSCNN model in the first convolutional layer

The spike plot in figure 5.3 depicts the spiking activity in the first convolu-
tional layer. Here it is possible that neurons spike multiple times or not at
all.

32

5.1 Temporal SCNN

Figure 5.4: Spiking activity of the TSCNN model in the third convolutional layer

Figure 5.4 illustrates the activity of 50 randomly chosen neurons in the third
convolutional layer.

5.1.6 Results

The classical version of the network, which uses artificial neurons instead
of spiking neurons, is slightly better than the spiking version and it is very
close to human performance. The TSCNN model was able to achieve a test
accuracy of 57.59% on the ImageNet subset.
The value for the human performance has been obtained by having a single
human label 200 different images. It should be added, that the human
did not receive online feedback. Only after labeling all 200 images the
total accuracy was revealed. At first glance, the human performance looks
surprisingly low. It is important to keep in mind that the resolution of the

33

5 Spiking Convolutional Neural Networks

images is just 16 by 16 pixels, so even for a human, it can be tricky to decide
which category an image belongs to.
The results also show that a decent test accuracy can be achieved with a
very lightweight and computationally cheap model.

TSCNN ANN Human
0

20

40

60

80

57.59%
63.67% 65.5%

Figure 5.1.6: Performance comparison between different models

Te
st

A
cc

ur
at

y
in

%

Figure 5.1.6 shows a comparison of the test accuracies of the TSCNN model,
an ANN and a human. The spiking convolutional neural network manages
to achieve 90.45% of the performance of the ANN and 87.92% of the human
performance.
The performance of the artificial neural network (ANN) in figure 5.1.6 refers
to a model which has the same architecture as the TSCNN, but consists of
artificial neurons.
Figures 5.5 and 5.6 show the change of the membrane potentials of the ten
output neurons over the simulation time. The model has been simulated over
50 time steps. In figure 5.5 it is clearly visible that the neuron representing
class 6 ends up with the highest membrane potential, therefore the model
would choose this category for this specific input image. This is the correct
choice, as the right label is indeed 6.

34

5.1 Temporal SCNN

Figure 5.5: Change of the output neuron’s membrane potential over time

The evolution of the membrane potential of the output neurons in figure
5.5 can be observed to be very volatile. The output neuron representing the
class 6 has the highest membrane potential from the 15th time step onwards.
After this point in time, the model becomes more and more certain in its
decision.

35

5 Spiking Convolutional Neural Networks

Figure 5.6: Change of the output neuron’s membrane potential over time

It can be detected that in figure 5.6 the output neuron of the correct class
only starts to stand out towards the end of the simulation. During the first
half of the simulation time, the models’ prediction would have changed
quite frequently.

36

5.2 Wide SCNN

5.2 Wide SCNN

The main differences compared to TSCNN are the model’s size, the data set
used and a change in simulation timescales.
In contrast to the TSCNN model, more frequently utilized 2D convolutions
have been used.
One time step accounts for 10 ms, which means that it is possible for a
neuron to spike in two consecutive time steps.

5.2.1 Architecture

The model’s architecture can be seen in table 5.4. The fourth column lists the
number of filters used in the convolutional layers or the number of neurons
used in the fully connected layers.
Figure 5.7 depicts the architecture of the network graphically.

num. type filter size num. of filters or neurons
1 input layer -
2 convolutional 3x3 64 filters
3 pooling 2x2
4 convolutional 3x3 128 filters
5 pooling 2x2
6 convolutional 3x3 256 filters
7 convolutional 3x3 512 filters
8 convolutional 3x3 256 filters
9 fully connected - 1024 neurons
10 fully connected - 512 neurons
11 fully connected - 10 neurons

Table 5.4: Architecture of the WSCNN model

37

5 Spiking Convolutional Neural Networks

Figure 5.7: WSCNN network architecture

Compared to the TSCNN, this network is considerably larger, regarding
both neurons and weights. It has roughly 87 times more neurons and 504
times more weights. The differences in size can be explained by both the
larger architecture but also by the higher resolution of the input images.
The exact size can be found in table 5.5.
The large size poses additional challenges regarding the computational
complexity and the training of the spiking convolutional neural network.

Number of neurons 168.458
Number of weights 20.036.288

Table 5.5: Number of neurons and weights in the WSCNN model

5.2.2 Input convention

The WSCNN model was evaluated with two different input conventions.
The first input convention uses probabilities to encode the input image.
Every pixel is represented by three input neurons, where each neuron
represents one of the pixel’s primary colors.
First, the pixel values are normalized to have values between 0 and 1.
Then, the pixel values can be interpreted as the probability that a given
input neuron will spike on the current time step. High pixel values will,
therefore, cause neurons to spike more often and low pixel values will tend
to cause fewer spikes in the input neurons.
This input convention works well if there are enough time steps, as the
average number of spikes will tend to converge to the pixel value as a
consequence of the law of large numbers. However, when the simulation

38

5.2 Wide SCNN

only lasts a few time steps, it is good to adapt this input convention in a
way that the probability gets replaced by some deterministic scheme.
The second input convention does this by turning the pixel value into a
number of spikes. Every input neuron will spike every time step until the
amount is reached. This will cause neurons representing high pixel values
to spike more often, as well as longer and neurons with low pixel values to
spike less often and stop sooner.
Using the second input convention leads to a 2% test accuracy improvement,
so the rest of this thesis will be referring to this input convention.
This input convention is, therefore, both time and spiking frequency-based.
Stronger pixel values will lead to later spikes in the corresponding neurons
in the input layer. It will also lead to more spikes in a fixed time period,
which increases the spiking frequency.

5.2.3 Output convention

All neurons in the network are LIF neurons - except the ten neurons in the
output layer. They are special in the sense that they are not leaky and they
also do not spike. The output neurons will only integrate over all incoming
currents.
The membrane potentials at the last time step are interpreted as the output
logits of the model. Therefore, the output neuron with the highest membrane
potential will define the model’s prediction.
As the last step, the membrane potentials of the output neurons are passed
into a softmax function to obtain a class affiliation probability distribution.

5.2.4 Training and Hyperparameters

The model was trained using backpropagation through time in an end to
end fashion.
Cross entropy was chosen to be the loss function and an Adam optimizer
(Kingma and Ba, 2014) was used to perform the weight updates.
The learning rate used started at a value of 2e-5 and decayed linearly to 2e-7
during the whole training period.
The hyperparameters used to obtain the best results have been listed in
table 5.6. An extensive amount of hyperparameter tuning was necessary to

39

5 Spiking Convolutional Neural Networks

obtain these values.
A detailed description of the parameters is provided in the appendix.

batch size 128
learning rate 2e-5 till 2e-7
Num. time steps 15
threshold 0.01
decay 0.45
dropout probability 25%
input noise stddev 0.01
initialization stddev 0.001
initialization mean 0.0
output decay 1
reg coeff 10
reg tolerance 0.012
stretch 1.05

Table 5.6: Hyperparameters used for the WSCNN model

Regularization

An important insight into training large spiking neural networks is, that it
can be very beneficial to use a membrane potential regularization scheme.
One of the problems that can occur when training spiking neural networks is
that the membrane potentials tend to become more extreme during training.
This has the consequence that the artificial derivative of the spike func-
tion will return zero for membrane potentials which are far away from the
threshold. When trying to obtain the gradient of the weights with respect to
the loss using backpropagation, this is problematic as receiving zero from
the spike function’s derivative will effectively stop the gradient at this point.
This means that it is important to keep the membrane potential in a certain
regime close to the threshold.
Regularization can achieve this by making this goal part of the objective
during training. In other words, the loss function gets extended by a regu-
larization term.
This term looks like a squared loss function, as can be seen in figure 5.8
(The shape of this regularization term was invented by Arjun Rao).

40

5.2 Wide SCNN

It can be seen that a membrane potential outside of the tolerance zone will
result in a loss, so the optimizer will try to keep the membrane potential
within the interval where the additional regularization loss is zero.
This way the membrane potentials are very likely to stay inside a regime
where the value of the gradient of the spike function is non-zero.

Figure 5.8: Regularization loss of a single neuron.

The extra regularization term is large when many neurons have a membrane
potential which is far away from the neurons internal threshold value and it
is small when the membrane potential is close to the threshold.
This way the network will try to decrease the classification loss, while also
making sure that the membrane potential of an individual neuron does
not become too extreme. Therefore gradients will be able to be propagated
through the network even after many training iterations.
Without regularization, the gradients of the loss with respect to the spikes in
one batch tend to have only 35% non-zero values after a couple of training
iterations.
However, if regularization is being used this number stays roughly around
80% even after the training is finished.

41

5 Spiking Convolutional Neural Networks

5.2.5 Dropouts

During the training phase, the network becomes better and better at clas-
sifying the training images correctly. However, the main objective is not
to have a good accuracy on the training data set, but the goal is that the
network manages to generalize well and therefore is also able to show a
high performance on images that it has never seen before. After numerous
training iterations, it can often be observed that only the training accuracy
increases but the test accuracy does not improve anymore. Sometimes the
test accuracy can even decrease again. This undesirable phenomenon is
called overfitting.
Using dropouts is a commonly used technique to reduce overfitting (Srivas-
tava et al., 2014).
The core idea of using dropouts is to randomly remove some neurons during
training by making them inactive. As a result, it is harder for the model to
fit to the training data. This will make the model more robust, which has a
positive impact on the test accuracy.
As spiking neural networks are simulated over a period of time, it is impor-
tant to keep the same neurons dropped out at every time step (Lee, Sarwar,
and Roy, 2019). Using different dropout masks for every time step will cause
the dropout effect to average out over time, making it less effective. Com-
monly used dropout rates are often in the range from 20% − 30%. However,
also some more extreme dropouts up to 50% have been reported to work
well (Wu et al., 2018a).

5.2.6 Image preprocessing

Two further techniques have been used to battle overfitting.
One of the most effective ways to combat the negative effects of overfitting
is to increase the size of the data set. Unfortunately, this is usually not
feasible. However, on image data sets, it is always possible to increase the
size artificially by reflecting images over the vertical axis with a probability
of 50%. Applying this operation will always result in a different valid image.
The second preprocessing step is adding a small amount of Gaussian noise
to the image to ensure that the network will never receive the same input
image multiple times. This usually also leads to a better generalization and
therefore to an increase in the test performance.

42

5.2 Wide SCNN

5.2.7 Spike plots

Due to the size of the model, it is impractical to plot the spikes over all the
neurons of the network.
To still get a feeling for how the spiking activity inside the trained model
looks like 50 neurons have been picked randomly and plotted.

Figure 5.9: Spikes in the first convolutional layer

In the first convolutional layer, the spiking activity is very sparse. Some
neurons have learned to spike with a regular period. This indicates that
these neurons learned to operate with a rate-based information scheme. The
spiking activity seems to decay towards the last time steps.

43

5 Spiking Convolutional Neural Networks

Figure 5.10: Spikes in the fifth convolutional layer

The fifth convolutional layer displays even less spiking activity than the
first layer. A sparse spiking activity is especially desirable when running
the model on neuromorphic hardware, as this will result in a lower energy
consumption.

44

5.2 Wide SCNN

Figure 5.11: Spikes in the first fully connected layer

The spiking activity is very sparse in the convolutional layers but the neu-
rons in the fully connected layers tend to spike more often.

However, since most neurons are part of the convolutional layers (more than
99%) the spiking activity of the whole model can be declared as very sparse.

5.2.8 Results

The test accuracy of the model is 85.19%.
In figure 5.12 and in figure 5.13 the membrane potential of the output
neurons of two correctly classified examples can be seen. Note how the
network becomes more and more certain with every consecutive time step.

45

5 Spiking Convolutional Neural Networks

It should be mentioned that these are two randomly selected samples which
have not been cherry-picked.

Figure 5.12: Change of the output neuron’s membrane potential over time

Comparing the plots in figure 5.12 and figure 5.13 against the evaluation
of the membrane potential of the output neurons in the TSCNN model, it
can be observed that the decision process of the WSCNN model looks less
noisy.

46

5.2 Wide SCNN

Figure 5.13: Change of the output neuron’s membrane potential over time

The difference in the membrane potentials of the output neurons also shows
the confidence with which the model made the classification decision. If
the membrane potential of one class is clearly far above the membrane
potentials of all other neurons, the model was very confident in choosing
this class. On the other hand, if the highest membrane potential was not far
away from the highest membrane potential of the model’s second choice
the model is less confident in its decision.
In both figure 5.12 and 5.13, the WSCNN network was very confident in its
decision.

47

5 Spiking Convolutional Neural Networks

Filters

Some of the filters obtained by training the WSCNN can be seen in figure
5.14, 5.15, 5.16. It is important to keep in mind that the depicted filters only
represent a small portion of all the filters that are present in the model.

Figure 5.14: Some samples of the trained filters from the first convolutional layer.

The second and the fifth filter in figure 5.14 are fine examples of feature
maps, which can pick up on vertical and horizontal lines of input images.
As these filters belong to the first convolutional layer they try to find very
low-level features in the image.
The filters plotted were randomly selected and not chosen by hand.

48

5.2 Wide SCNN

Figure 5.15: Some samples of the trained filters from the second convolutional layer.

The second convolutional layer tries to combine features that have been
extracted by the first convolutional layer into new features. The pooling layer
additionally shrinks the size of the output of the first convolutional layer,
the filters in the second layer try to pick up on more high-level features.

49

5 Spiking Convolutional Neural Networks

Figure 5.16: Some samples of the trained filters from the third convolutional layer.

Figure 5.16 depicts 10 randomly selected filters used by the third convolu-
tional layer of the WSCNN model.

Confusion matrix

It is also interesting to analyze how the network performs on the individual
classes. For example, it is compelling to find out which classes the network
confuses most often.
Constructing a confusion matrix is an excellent way of visualizing these
relationships. The columns of a confusion matrix correspond to the actual
classes and the rows represent the classes that were predicted by the model.

50

5.2 Wide SCNN

Figure 5.17 shows the confusion matrix of the WSCNN model on the test set.
The diagonal of the matrix displays how many samples of this class have
been correctly classified. The confusion matrix indicates, that the WSCNN
is more likely to mix up different animals than it is to confuse an animal for
a mode of transportation. The two classes which seem to be most difficult
to distinguish for the model are cats and dogs.

Figure 5.17: Confusion matrix of the WSCNN model.

51

5 Spiking Convolutional Neural Networks

5.3 Residual SCNN

There is a tendency for CNNs that an increased number of layers has
a positive impact on the performance of the network. There are reports
(He et al., 2015) that propose architectures which contain more than 100
convolutional layers.
Although depth seems to be a key feature for increasing the performance of
CNNs consisting of artificial neurons, most spiking convolutional neural
networks reported so far are comparably shallow. For SCNNs the number
of layers is usually a single digit.

5.3.1 Architecture

Inspired by the CNN architecture for the CIFAR10 data set from the paper
introducing residual connections, (He et al., 2015) RSCNN has been designed
to be a considerably deeper spiking convolutional neural network. This
SCNN is to the best of my knowledge the deepest SCNN ever reported.

52

5.3 Residual SCNN

Figure 5.18: Architecture of the RSCNN

Figure 5.18 shows the architecture
of the RSCNN model. It consists
of 27 layers in total. The convolu-
tional layers, which make up most
of the model, have been colored
in orange. All filters used in the
convolutions have a size of three
by three pixel. Towards the end
of the network, a fully connected
layer (FC) consisting of 256 neu-
rons can be found.
A key feature of this architecture
is the usage of residual connec-
tions, which are represented by
the arrows which skip some lay-
ers.
It should be noted, that this net-
work does not include any pool-
ing layers. Instead, there are two
convolutional layers utilizing a
stride of two.
Although the proposed model
seems rather large at first glance,
it has considerably fewer parame-
ters than the WSCNN. Informa-
tion regarding the size of this
model can be found in table 5.7.

53

5 Spiking Convolutional Neural Networks

Number of neurons 462.090

Number of weights 3.648.864

Table 5.7: Number of neurons and weights in the RSCNN model

5.3.2 Input and output convention

The input and output conventions used are identical to the conventions
described for the WSCNN model.

5.3.3 Training and Hyperparameters

An extensive hyperparameter search has been carried out to find a set of
hyperparameters, which maximizes the test accuracy of the model.
Finding the best set of hyperparameters for a given model is a non-trivial
task. Searching for hyperparameters comes which considerable computa-
tional costs, as the model has to be trained from scratch for every new
hyperparameter configuration.
The values of the hyperparameters listed in table 5.8 were obtained by
assuming that the individual hyperparameters can be optimized indepen-
dently from one another.

batch size 64
learning rate 0.00001
learning rate decay 0.99
learning rate decay exp 0.5
num time steps 10
thr 0.01
decay 0.45
stddev 0.001
mean 0
reg coeff 10
reg tol 0.01
reg shift −0.008
stretch 1.05

Table 5.8: Hyperparameters used for the RSCNN model

54

5.3 Residual SCNN

A detailed description of the individual hyperparameters can be found in
the appendix.

The regularization scheme used for the WSCNN has also been used for
training this model. However, it was slightly adapted to allow for neurons to
become more hyperpolarized. This grants neurons to have a more negative
membrane potential, strongly inhibiting any spiking activity.

Also, the image preprocessing schemes used for the WSCNN model have
been used for training the RSCNN.

5.3.4 Spike plots

In order to gain an insight into the internal spiking activity of the RSCNN
model the spikes of 50 randomly selected neurons have been plotted in
figure 5.19 and figure 5.20.
As it is infeasible to plot sample neurons from all layers in the RSCNN, only
a few layers have been selected. It should be noted, that the spiking activity
looks very similar across all convolutional layers in this model.

55

5 Spiking Convolutional Neural Networks

Figure 5.19: Spikes in the eights convolutional layer

In general, the model shows a very sparse spiking activity throughout
the convolutional layers. It can be observed that the neurons in the fully
connected layer tend to spike more often, as can be discovered by comparing
figure 5.19 and figure 5.20.
The majority of the neurons (99.9%) are part of the convolutional layers,
therefore it can be concluded that the overall spiking activity is very sparse.

56

5.3 Residual SCNN

Figure 5.20: Spikes in the fully connected layer

5.3.5 Results

The model manages to achieve a test accuracy of 81.14%.
Figure 5.21 and 5.22 show the evolution of the membrane potentials of the
output neurons over time. Both input images have been classified correctly.

57

5 Spiking Convolutional Neural Networks

Figure 5.21: Membrane potentials of the output neurons over time.

58

5.3 Residual SCNN

Figure 5.22: Membrane potentials of the output neurons over time.

The change in the output neuron’s membrane potential in the WSCNN and
in the RSCNN looks comparable. It can be described as less noisy compared
to the TSCNN model. Figures 5.21 and 5.22 also suggest that the model
mainly increases its confidence in the classification decision over the last
time steps.

Confusion matrix

Figure 5.23 shows the confusion matrix of the RSCNN model on the test
set. When comparing it to the confusion matrix obtained from the WSCNN
model (figure 5.17) it becomes apparent that both networks seem to struggle
more with differentiating between images that look more alike. For example,

59

5 Spiking Convolutional Neural Networks

both networks are more likely to wrongly classify an animal for a different
animal. The two classes which were mixed up most frequently are cats and
dogs for both the RSCNN and the WSCNN.

Figure 5.23: Confusion matrix of the RSCNN model.

60

6 Summary

6.1 Discussion

The TSCNN model demonstrates, that by using the temporal domain it is
possible to achieve 89% of the human performance. The proposed input
convention, which uses spike timings to encode pixel values, has so far not
received a lot of attention in the research community. The more common way
of encoding input images is by using a firing rate based scheme. However,
these findings indicate that the temporal domain can also be considered as
an alternative.
It is also noteworthy that this performance is achieved by a very lightweight
neural network consisting of less than 2000 neurons.
The WSCNN model is very different compared to the TSCNN in many
aspects. It was designed to be considerably larger, motivated by the goal
of increasing performance. With a test accuracy of 85.19%, it is comparable
with similarly sized state of the art spiking convolutional neural networks.
Furthermore, the WSCNN confirms that large spiking neural networks
can be successfully trained using backpropagation through time. Using
additional tricks like a good regularization scheme and correctly applied
dropouts can increase performance even more.
As there is a strong tendency of CNNs to use an increasing amount of layers
it is interesting to investigate how spiking CNNs behave if their depth is
increased. The RSCNN is to the best of my knowledge the deepest reported
spiking convolutional neural network with a total of 27 layers. The number
of weights used in the RSCNN is smaller than the number of weights in the
WSCNN model, which might be a reason why the WSCNN has a slightly
higher performance.
In addition to being very deep, the RSCNN also has the advantage of
not containing any pooling layers. Pooling layers are questionable, as they
perform a biologically implausible operation. They also pose a challenge for

61

6 Summary

possible hardware realizations of the network.
Despite the fact that the RSCNN did not achieve the best performance, deep
spiking convolutional neural networks promise to be an interesting research
direction. Due to the nature of the convolution, it is easier to scale up CNNs
by adding more layers rather than by adding more filters.
As CNNs using artificial neurons have been using more than 100 (He et al.,
2015) layers with outstanding results, it makes sense to assume that spiking
CNNs could also profit from having more layers.
There are numerous methods that can help to improve the performance of
the model. Using a regularization scheme is very important, as it enables
the network to receive rich weight updates even after many training itera-
tions. To reduce overfitting it can be beneficial to use dropouts. The image
preprocessing schemes described in this master thesis can help to boost
the test performance even further. Using a decaying learning rate has also
proven to be valuable.

6.2 Conclusion

The Achilles heel of spiking neural networks is still performance, but it
seems like the gap between spiking neural networks and artificial networks
is growing smaller.
The main goal of this technology is not to beat artificial neural networks,
but to approach their performance close enough that the energy efficiency
benefits become more and more attractive. This would make spiking neural
networks a very appealing solution to a vast number of AI-related problems.
Looking into the future, it will certainly be of interest to extend SCNNs in a
way to make them compatible with video data.
This would effectively mean adding an additional dimension (time) to the
input data. Fortunately, time is something that spiking neural networks
should be able to deal with very naturally.
Porting the models to Loihi would also be an interesting goal, as this would
show that highly energy-efficient image classification is possible. Offline
image classification tasks on battery-powered devices could be solved this
way.

62

7 Appendix

7.1 Parameter description

This list describes the meaning of the various parameters used in table 5.3.

1. generations: the number of generations the model is trained for.
2. reg coeff: A coefficient which can be used to tune the importance of

the regularization term in the loss function.
3. reg tol: The tolerance of the regularization term. This refers to half of

the distance of the flat part of the regularization function.
4. reg shift: It is not always ideal to use the threshold as the target value

of the regularization function. It can be beneficial to shift the target
membrane potential below the threshold as this will allow for more
hyperpolarized neurons, which can be beneficial for the computations.

5. batch size: The number of images used in one training step
6. learning rate: The learning rate used by the optimizer.
7. n refractory: The minimum amount of time steps that have to pass

until a neuron can fire again.
8. num time steps: The amount of time steps the model is evaluated for.
9. thr: The value of the threshold of the spiking neurons. Once the

threshold is surpassed, the neuron will fire.
10. mean: The weights of the model are initialized using a truncated

normal distribution. This parameter can be used to set the distributions
mean.

11. stddev: The standard deviation of the truncated normal distribution
used for initializing the weights.

12. decay: The amount of membrane potential which will be kept from
the previous time step.

13. dropout probability: the probability with which a single weight is zero
for a given training iteration. Using dropouts is a common technique
to avoid overfitting.

63

7 Appendix

14. input noise stddev: Another approach of dealing with overfitting is
to add random noise to the training data. This way the network will
never see exactly the same image twice and it is forced into a better
regime of generalization.

15. stretch: How much the triangle-shaped artificial gradient of the loss
function is being stretched on the x-axis. A value above 1 will lead to
more non-negative gradients, but also represent a less precise approxi-
mation of the actual gradient of the spike function.

7.2 Implementation details

All three models have been implemented and trained using Google’s ma-
chine learning library TensorFlow (Abadi et al., 2016). This library enables
the user to create complex computational graphs which can be run on CPUs,
GPUs and also on specialized tensor processing units (TPU). One of the
biggest advantages of using TensorFlow is that the framework takes care of
the gradient computations.
TensorFlow can be used in C++ and also in python, however the implemen-
tation code for this master thesis was just written in python.

64

Bibliography

Abadi, Martin et al. (2016). “TensorFlow: A system for large-scale machine
learning.” In: 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16), pp. 265–283. url: https://www.usenix.org/
system/files/conference/osdi16/osdi16-abadi.pdf (cit. on p. 64).

Bellec, Guillaume et al. (2018). “Long short-term memory and learning-to-
learn in networks of spiking neurons.” In: Advances in Neural Information
Processing Systems, pp. 787–797 (cit. on p. 29).

Beyeler, Michael, Nikil D Dutt, and Jeffrey L Krichmar (2013). “Categoriza-
tion and decision-making in a neurobiologically plausible spiking net-
work using a STDP-like learning rule.” In: Neural Networks 48, pp. 109–
124 (cit. on p. 24).

Cassidy, Andrew S. et al. (2016). “TrueNorth: A High-Performance, Low-
Power Neurosynaptic Processor for Multi-Sensory Perception, Action,
and Cognition.” In: (cit. on p. 16).

Chrabaszcz, Patryk, Ilya Loshchilov, and Frank Hutter (2017). “A Down-
sampled Variant of ImageNet as an Alternative to the CIFAR datasets.”
In: CoRR abs/1707.08819. arXiv: 1707.08819. url: http://arxiv.org/
abs/1707.08819 (cit. on p. 4).

Courbariaux, Matthieu et al. (2016). “Binarized neural networks: Training
deep neural networks with weights and activations constrained to+ 1

or-1.” In: arXiv preprint arXiv:1602.02830 (cit. on p. 15).
Davies, M. et al. (2018). “Loihi: A Neuromorphic Manycore Processor with

On-Chip Learning.” In: IEEE Micro 38.1, pp. 82–99. issn: 0272-1732. doi:
10.1109/MM.2018.112130359 (cit. on pp. 1, 17).

Essera, Steven K et al. (2016). “Convolutional networks for fast energy-
efficient neuromorphic computing.” In: Proc. Nat. Acad. Sci. USA 113.41,
pp. 11441–11446 (cit. on p. 15).

He, Kaiming et al. (2015). “Deep Residual Learning for Image Recognition.”
In: CoRR abs/1512.03385. arXiv: 1512.03385. url: http://arxiv.org/
abs/1512.03385 (cit. on pp. 8, 26, 52, 62).

65

https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
http://arxiv.org/abs/1707.08819
http://arxiv.org/abs/1707.08819
http://arxiv.org/abs/1707.08819
http://dx.doi.org/10.1109/MM.2018.112130359
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385

Bibliography

Hodgkin, Alan L and Andrew F Huxley (1952). “A quantitative description
of membrane current and its application to conduction and excitation in
nerve.” In: The Journal of physiology 117.4, pp. 500–544 (cit. on p. 14).

Ho-Phuoc, Tien (2018). “CIFAR10 to Compare Visual Recognition Per-
formance between Deep Neural Networks and Humans.” In: CoRR
abs/1811.07270. arXiv: 1811.07270. url: http://arxiv.org/abs/1811.
07270 (cit. on p. 1).

Hu, Yangfan et al. (2018). “Spiking Deep Residual Network.” In: CoRR
abs/1805.01352. arXiv: 1805.01352. url: http://arxiv.org/abs/1805.
01352 (cit. on p. 23).

Huang, Yanping et al. (2018). “GPipe: Efficient Training of Giant Neural
Networks using Pipeline Parallelism.” In: CoRR abs/1811.06965. arXiv:
1811.06965. url: http://arxiv.org/abs/1811.06965 (cit. on p. 19).

Kheradpisheh, Saeed Reza, Mohammad Ganjtabesh, and Timothee Masque-
lier (2016). “Bio-inspired unsupervised learning of visual features leads
to robust invariant object recognition.” In: Neurocomputing 205, pp. 382–
392 (cit. on p. 24).

Kingma, Diederik P and Jimmy Ba (2014). “Adam: A method for stochastic
optimization.” In: arXiv preprint arXiv:1412.6980 (cit. on pp. 29, 39).

Krizhevsky, Alex (2012). “Learning Multiple Layers of Features from Tiny
Images.” In: University of Toronto (cit. on p. 5).

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E Hinton (2012). “ImageNet
Classification with Deep Convolutional Neural Networks.” In: Advances
in Neural Information Processing Systems 25. Ed. by F. Pereira et al. Curran
Associates, Inc., pp. 1097–1105. url: http://papers.nips.cc/paper/
4824-imagenet-classification-with-deep-convolutional-neural-

networks.pdf (cit. on p. 8).
LeCun, Yann et al. (1999). “Object recognition with gradient-based learning.”

In: Shape, contour and grouping in computer vision. Springer, pp. 319–345

(cit. on p. 8).
Lee, Chankyu, Syed Shakib Sarwar, and Kaushik Roy (2019). “Enabling

Spike-based Backpropagation in State-of-the-art Deep Neural Network
Architectures.” In: arXiv preprint arXiv:1903.06379 (cit. on p. 42).

Masquelier, Timothee and Simon J. Thorpe (2005). “Unsupervised Learning
of Visual Features through Spike Timing Dependent Plasticity.” In: PLoS
Computational Biology 3, pp. 1762–1776 (cit. on p. 24).

66

http://arxiv.org/abs/1811.07270
http://arxiv.org/abs/1811.07270
http://arxiv.org/abs/1811.07270
http://arxiv.org/abs/1805.01352
http://arxiv.org/abs/1805.01352
http://arxiv.org/abs/1805.01352
http://arxiv.org/abs/1811.06965
http://arxiv.org/abs/1811.06965
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

Bibliography

Rumelhart, David E., Geoffrey E. Hinton, and Ronald J. Williams (1986).
“Learning Representations by Back-propagating Errors.” In: Nature
323.6088, pp. 533–536. doi: 10.1038/323533a0. url: http://www.nature.
com/articles/323533a0 (cit. on p. 15).

Russakovsky, Olga et al. (2014). “ImageNet Large Scale Visual Recognition
Challenge.” In: CoRR abs/1409.0575. arXiv: 1409.0575. url: http://
arxiv.org/abs/1409.0575 (cit. on p. 6).

Sengupta, Abhronil et al. (2018). “Going Deeper in Spiking Neural Networks:
VGG and Residual Architectures.” In: CoRR abs/1802.02627. arXiv:
1802.02627. url: http://arxiv.org/abs/1802.02627 (cit. on p. 23).

Srivastava, Nitish et al. (2014). “Dropout: a simple way to prevent neural
networks from overfitting.” In: The journal of machine learning research
15.1, pp. 1929–1958 (cit. on p. 42).

Szegedy, Christian et al. (2015). “Rethinking the Inception Architecture for
Computer Vision.” In: CoRR abs/1512.00567. arXiv: 1512.00567. url:
http://arxiv.org/abs/1512.00567 (cit. on p. 8).

Tavanaei, Amirhossein and Anthony S Maida (2017). “Multi-layer unsu-
pervised learning in a spiking convolutional neural network.” In: 2017
International Joint Conference on Neural Networks (IJCNN). IEEE, pp. 2023–
2030 (cit. on p. 24).

Wu, Yujie et al. (2018a). “Direct Training for Spiking Neural Networks:
Faster, Larger, Better.” In: CoRR abs/1809.05793. arXiv: 1809.05793. url:
http://arxiv.org/abs/1809.05793 (cit. on pp. 21, 42).

Wu, Yujie et al. (2018b). “Spatio-Temporal Backpropagation for Training
High-Performance Spiking Neural Networks.” In: Frontiers in Neuro-
science 12, p. 331. issn: 1662-453X. doi: 10.3389/fnins.2018.00331. url:
https://www.frontiersin.org/article/10.3389/fnins.2018.00331

(cit. on pp. 16, 19).
Wysoski, Simei Gomes, Lubica Benuskova, and Nikola Kasabov (2008). “Fast

and adaptive network of spiking neurons for multi-view visual pattern
recognition.” In: Neurocomputing 71.13-15, pp. 2563–2575 (cit. on p. 24).

67

http://dx.doi.org/10.1038/323533a0
http://www.nature.com/articles/323533a0
http://www.nature.com/articles/323533a0
http://arxiv.org/abs/1409.0575
http://arxiv.org/abs/1409.0575
http://arxiv.org/abs/1409.0575
http://arxiv.org/abs/1802.02627
http://arxiv.org/abs/1802.02627
http://arxiv.org/abs/1512.00567
http://arxiv.org/abs/1512.00567
http://arxiv.org/abs/1809.05793
http://arxiv.org/abs/1809.05793
http://dx.doi.org/10.3389/fnins.2018.00331
https://www.frontiersin.org/article/10.3389/fnins.2018.00331

	Abstract
	Introduction
	Overview

	Computer Vision
	Image classification
	Importance
	Why neural networks?
	Data sets

	State of the Art
	Convolutional Neural Networks

	Spiking Neural Networks
	Why spiking?
	LIF Neurons
	Training
	Neuromorphic Hardware

	Related Work
	State of the Art
	Spatio-Temporal Backpropagation for Training High-Performance Spiking Neural Networks
	Training Algorithm
	Network
	Results

	Paper: Direct Training for Spiking Neural Networks: Faster, Larger, Better
	Network
	Input and Output Convention
	Training
	Results
	Discussion

	Approaches using ANN to SNN conversion
	Approaches using STDP

	Spiking Convolutional Neural Networks
	Temporal SCNN
	Architecture
	Input convention
	Output convention
	Training
	Spike Plots
	Results

	Wide SCNN
	Architecture
	Input convention
	Output convention
	Training and Hyperparameters
	Dropouts
	Image preprocessing
	Spike plots
	Results

	Residual SCNN
	Architecture
	Input and output convention
	Training and Hyperparameters
	Spike plots
	Results

	Summary
	Discussion
	Conclusion

	Appendix
	Parameter description
	Implementation details

	Bibliography

