
Christian Fruhwirth-Reisinger

Multiple Object Tracking in the context
of Autonomous Driving

MASTER’S THESIS

to achieve the university degree of

Diplom-Ingenieur

Master’s degree programme

Information and Computer Engineering

submitted to

Graz University of Technology

Supervisor

Univ.-Prof. Dipl.-Ing.Dr.techn. Horst Bischof

Institute of Computer Graphics and Vision

Advisor

Dipl.-Ing. Georg Krispel

Institute of Computer Graphics and Vision

Graz, Austria, Oct. 2019

Abstract

Autonomous driving has gained a lot attention over the last years. A huge contribution

to that has been provided by recent progress in the fields of computer vision and machine

learning. Nowadays, self-driving vehicles find their way on public roads which raises the

needs for reliable visual perception systems. The main tasks of such systems are the

detection and tracking of objects from uncertain measurements.

In this thesis we present an online modular Multiple Object Tracking (MOT) frame-

work which makes use of spatial information, gathered from a 3D laser scanner and cam-

eras. Within this framework we implemented multiple variants of Bayesian filters. We

investigate the influence of various motion models and different association strategies which

are responsible for the assignment of detections to tracked targets.

Furthermore, we exchange the motion model of these trackers with an implemented

and trained data-driven Recurrent Neural Network (RNN). Additionally, we replace the

used data association algorithm with an encoder-decoder structured neural network which

is able to deal with a variable number of tracked targets and detections.

In our extensive evaluation on a publicly available autonomous driving dataset, we

reach state-of-the-art performance with the best performing model. In addition, we study

the influence of different object detectors, as well as the behavior of all implemented

trackers when we drop detections of subsequent time steps, i.e. simulating a significantly

unreliable object detector. While the exchange of equally performing object detectors do

not have a huge impact on the overall performance, the subsequently dropped detections

are compensated best by trackers with data-driven model components.

iii

Kurzfassung

Autonomes Fahren hat in den letzten Jahren viel Aufmerksamkeit auf sich gezogen.

Einen enormen Beitrag dazu leistet der Fortschritt in den Bereichen Maschinelles Se-

hens und Maschinelles Lernen. Aktuell gibt es einige Testversuche, diese selbstfahrenden

Fahrzeuge in den öffentlichen Verkehr zu integrieren, was zu einer erhöhten Notwendigkeit

an verlässlichen Systemen zur visuellen Wahrnehmung führt. Die Hauptaufgaben solcher

Systeme sind die Detektion und das Tracken bzw. Verfolgen von Objekten mit Hilfe von

ungenauen Messwerten.

In dieser Arbeit präsentieren wir ein modulares online Multiple Object Tracking

(MOT) System, das räumliche Information von 3D Laser Sensoren und Kameras nutzt

und unterschiedliche Bayessche Filter implementiert. Dabei untersuchen wir den Einfluss

von Bewegungsmodellen und Assoziationsstrategien, die eine Zuordnung von Detektionen

zu verfolgten Objekten sicherstellt.

Zusätzlich ersetzen wir eben diese Bewegungsmodelle mit eignes entwickelten und gel-

ernten Neuronalen Netzwerken. In weiterer Folge ersetzen wir bisher verwendete Assozi-

ationsalgorithmen durch ein Neuronales Netzwerk mit Encoder-Decoder Struktur. Dieses

ist in der Lage mit einer variierenden Anzahl an Detektionen und verfolgten Objekten

umzugehen.

In unserer ausführlichen Evaluierung auf einem öffentlich verfügbaren Datensatz für

autonomes Fahren, erreichen wir mit dem besten Modell Ergebnisse, die am aktuellen

Stand der Technik sind. Zusätzlich untersuchen wir den Einfluss von verschiedenen De-

tektoren und das Verhalten unserer Modelle beim Verlust mehrerer aufeinanderfolgender

Detektionen. Dies simuliert zum Beispiel einen sehr unzuverlässigen Detektor oder andere,

in der Praxis zu erwartende Detektionsfehler. Während das Austauschen von ungefähr gle-

ich gut funktionierenden Detektoren kaum Einfluss auf das Gesamtresultat hat, kann der

Ausfall von Detektionen am besten von Modellen kompensiert werden, bei denen einzelne

Komponenten von einem Neuronalen Netz ersetzt wurden.

v

Affidavit

I declare that I have authored this thesis independently, that I have not used other than

the declared sources/resources, and that I have explicitly indicated all material which has

been quoted either literally or by content from the sources used.

The text document uploaded to TUGRAZonline is identical to the present master’s

thesis.

Date Signature

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als

die angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtlich

und inhaltlich entnommene Stellen als solche kenntlich gemacht habe.

Das in TUGRAZonline hochgeladene Textdokument ist mit der vorliegenden Master-

arbeit identisch.

Ort Datum Unterschrift

Acknowledgments

First and foremost, I would like to thank my supervisor, Prof. Horst Bischof, for his

guidance and encouragement, as well as for providing me the facilities to work at the

Institute for Computer Graphics and Vision. Additionally, I am grateful to my advisor

Georg Krispel, for his technical support and guidance. His door was always open for me.

Furthermore, I would like to express my gratitude to Horst Possegger, for proofreading

my thesis and giving me a lot of helpful comments and hints.

At this point, I also want tho thank my parents, Annemarie and Christian, for their

love, for supporting me my whole life and for giving me the opportunity to follow my own

path. Furthermore, I am deeply grateful to my wife’s parents, Veronika and Alfred, for

their love and their support over the last years.

Last but not least, I would like to express my deepest gratitude to my beloved wife

Veronika, for supporting me all the time and for putting some pressure on me at the right

moments. You make my life complete.

This work was partially supported by the Austrian Research Promotion Agency (FFG)

under the project DGT - Dynamic Ground Truth (860820).

ix

Contents

1 Introduction 1

1.1 Multi-Object Tracking Challenges . 2

1.2 Contribution and Outline . 3

2 Multiple Object Tracking 5

2.1 Problem Formulation . 5

2.2 Tracking-by-Detection . 7

2.3 Categorization of Tracking-by-Detection Approaches 7

2.3.1 Online vs. Offline . 7

2.3.2 Deterministic vs. Probabilistic . 8

2.4 Related Work . 8

2.4.1 Bayesian Filtering . 8

2.4.2 Deep Learning . 11

2.5 Evaluation Measures . 12

2.5.1 CLEAR MOT Measures . 12

2.5.2 Quality Measures . 14

2.6 Datasets . 14

2.6.1 MOT16 Dataset . 15

2.6.2 KITTI Dataset . 15

3 Multi-object Tracking with Bayesian Filters 19

3.1 Recursive Bayesian Filter for Object Tracking 19

3.1.1 Optimal Filter Derivation . 20

3.1.2 Stochastic State Space Representation 22

3.2 Filter Solutions for the Recursive Problem 24

3.2.1 Kalman Filter . 24

xi

xii

3.2.2 Unscented Kalman Filter . 26

3.2.3 Interacting Multiple Model (IMM) 30

3.3 Data Association . 34

3.3.1 Gating . 35

3.3.2 Probabilistic Data Association Filter 36

3.3.3 Joint Probabilistic Data Association Filter 38

4 Multi-object Tracking with Recurrent Neural Networks 45

4.1 Feedforward Neural Networks . 45

4.1.1 Forward Pass . 48

4.1.2 Backward Pass . 52

4.2 Recurrent Neural Networks . 53

4.2.1 Unfolding . 54

4.2.2 Forward Pass . 54

4.2.3 Backward Pass . 56

4.2.4 Bidirectional Structure . 57

4.2.5 Long-Short Term Memory . 58

4.3 Network Training . 60

4.3.1 Gradient Descent . 60

4.3.2 Regularization . 61

4.4 Multi-object Tracking Architectures . 62

4.4.1 End-to-End Model . 62

4.4.2 Variable Data Association Model . 64

5 Modular Multi-object Tracking 69

5.1 Implementation Details . 69

5.1.1 Sensor Model . 70

5.1.2 State and Measurement Representation 71

5.1.3 Framework Architecture . 72

5.1.4 Object Detection . 74

5.1.5 Adaptation of SORT . 75

5.2 Combined Bayesian Filter Approach . 76

5.2.1 Multiple Dynamic Models . 76

5.2.2 Interacting Multiple Model Unscented Kalman Filter 79

5.2.3 Data Association . 81

5.3 Multi-Object Tracking Networks . 83

5.3.1 State Prediction Network . 83

5.3.2 Variable Data Association Network 85

5.3.3 End-to-End MOT Network . 88

xiii

6 Evaluation 95

6.1 Evaluation on the KITTI Dataset . 96

6.2 Comparison of Presented Models . 97

6.2.1 Validation on KITTI Raw Data . 98

6.2.2 Validation on KITTI Tracking Data 102

6.3 Comparison to the State-of-the-Art . 104

6.4 Detailed Tracker Analysis . 104

6.4.1 KITTI Raw Sequences . 105

6.4.2 KITTI Tracking Sequences . 107

7 Conclusion and Future Work 111

7.1 Conclusion . 111

7.2 Future Work . 113

Bibliography 115

List of Figures

2.1 MOT16 sample image . 16

2.2 Vehicle used by the KITTI team . 16

2.3 KITTI dataset example . 17

3.1 Comparison of Extended Kalman Filter and Unscented Kalman Filter . . . 27

3.2 Tracking architecture . 34

3.3 Validation matrix example . 40

3.4 Hypothesis graph example . 41

4.1 Perceptron . 46

4.2 Feedforward Neural Network . 47

4.3 Common activation functions . 49

4.4 Basic Recurrent Neural Network . 53

4.5 Unfolded Recurrent Neural Network . 54

4.6 Recurrent Neural Network structures . 55

4.7 Unfolded Bidirectional Recurrent Neural Network 57

4.8 Long Short-Term Memory architecture . 58

4.9 Recurrent Neural Network tracking architecture. 63

4.10 Encoder-decoder network scheme for data association 66

5.1 KITTI dataset sensor configuration . 70

5.2 Tracking framework overview . 73

5.3 IMM-UKF overview . 77

6.1 KITTI raw dataset sequence 0005 visualization 107

6.2 KITTI raw dataset sequence 0014 visualization 108

6.3 KITTI tracking dataset sequence 0014 visualization 110

xv

List of Tables

4.1 Encoder network architecture . 65

4.2 Decoder network architecture . 66

5.1 Track management parameters . 73

5.2 Prediction network architecture . 84

5.3 Implemented encoder network architecture 85

5.4 Implemented decoder network architecture 86

5.5 Data association network training track examples 87

5.6 Encoder structure of our end-to-end network 89

5.7 Prediction structure of our end-to-end network 89

5.8 Update structure of our end-to-end network 90

5.9 Track existence structure of our end-to-end network 91

6.1 KITTI raw to tracking sequence mapping 96

6.2 Evaluation sequences from KITTI raw data 97

6.3 Track management threshold parameters . 97

6.4 Overall evaluation results (raw dataset) . 98

6.5 Evaluation results with skipped detections (1) 100

6.6 Evaluation results with skipped detections (2) 100

6.7 Evaluation results considering only main object classes (raw dataset) 101

6.8 Overall evaluation results (tracking dataset) 102

6.9 Evaluation results considering only main object classes (tracking dataset) . 103

6.10 Evaluation results PointRCNN detector (tracking dataset) 103

6.11 Detailed evaluation results KITTI raw data 106

6.12 Detailed evaluation results KITTI tracking data 109

xvii

1
Introduction

Contents

1.1 Multi-Object Tracking Challenges 2

1.2 Contribution and Outline . 3

In recent years, the interest in autonomous driving and especially in key technologies

to enable self-driving vehicles has grown rapidly. The reasons for that are manifold. First

of all, there are still approximately 1.35 million people dying each year as a result of traffic

accidents, as published in the latest WHO status report on road safety in 2018 [111]. Most

of them are induced by human errors or inattention. Furthermore, it enables mobility to

disabled persons which are, for example, blind, have low vision or are otherwise incapable

of steering a car. Apart from that, with an average driving time of 307.8 hours per year1

and person, it wastes a lot of resources which could be better used otherwise. Hence,

significant research has been done in the field of autonomous driving.

According to Janai et al. [67], the exploration of Intelligent Transportation Systems

(ITS) started in 1986 in Europe with the EUREKA PROMETHEUS project2 which

was headed by car manufacturers and composed of several research units from govern-

ments and universities. Within this project the first autonomous long-distance drive from

Munich (Germany) to Odense (Denmark) was performed with about 95% autonomy in

1995 [33, 34, 45]. A similar venture started in the United States with the Navlab [135]

project by the Carnegie Mellon University in 1988. Later, the first real-time vision sys-

tem [44] for autonomous driving in complex urban traffic situations was inspired by the

successful PROMETHEUS project. Furthermore, many other projects in public envi-

ronments like PROUD [20] with the adapted BRAiVE [57] prototype and challenges in

controlled environments like the Defense Advanced Research Projects Agency (DARPA)

Grand Challenge in 2004 occurred.

1https://aaafoundation.org/wp-content/uploads/2018/02/18-0019 AAAFTS-ADS-Research-

Brief.pdf (accessed October 8, 2019)
2http://www.eurekanetwork.org/project/id/45 (accessed November 30, 2018)

1

https://aaafoundation.org/wp-content/uploads/2018/02/18-0019_AAAFTS-ADS-Research-Brief.pdf
https://aaafoundation.org/wp-content/uploads/2018/02/18-0019_AAAFTS-ADS-Research-Brief.pdf
http://www.eurekanetwork.org/project/id/45

2 Chapter 1. Introduction

The first DARPA competition with an offered prize money of $1 million had no finishing

team on a 140 miles long course through the desert. Another Grand Challenge was held

one year later with five teams finishing the 132 miles long twisting and unpaved course [21].

The Stanford Racing Team won the competition with their robot car Stanley [137] and two

cars from Carnegie Mellon University [140] finished in second and third place. The most

recent event was the DARPA Urban Challenge [22] with the winning car Boss [139] and

the runner-up Junior [104]. That competition consisted of a 60 miles long urban course

including other traffic participants and real traffic regulations, which came closer to real

driving conditions than previous challenges.

Nowadays, many commercial autonomous driving projects are known. Google started

their self-driving car project in 2009 and founded an independent company called Waymo

in 2016. Until October 2018, their cars covered more than 10 million miles3 autonomously.

Tesla has an advanced driver assistance system called autopilot4 since 2015 and Uber

currently tests their self-driving taxis in Pittsburgh (Pennsylvania)5.

Within all these projects and prototypes, robust and reliable visual perception includ-

ing object detection and tracking is a key issue. It allows reactive navigation, motion

planning and is therefore crucial to avoid crashes and dangerous situations. Hence, signifi-

cant research has been done in the field of Multiple Object Tracking (MOT) from 2D video

sequences or 3D data recorded for example by Light Detection and Ranging (LIDAR) sen-

sors. The latter is heavily used in the autonomous driving domain because it delivers

spatial information which is essential for environmental perception. Today, requirements

for autonomous vehicles – also called self-driving vehicles or driverless vehicles – are very

strict because they find their way on public roads and therefore, a reliable perception

system is crucial.

1.1 Multi-Object Tracking Challenges

The purpose of multi-object tracking algorithms is to jointly estimate the number of ob-

jects and their current states (i.e. position, velocity, orientation) from sensor data. MOT

has been used in areas, like sports analysis (e.g. [15, 92, 110, 156]), biology (e.g. ants [76],

bats [13], birds [93], cells [86, 101], fish [40, 131, 132]), robot navigation (e.g. [36, 37]) and

autonomous driving (e.g. [42, 95, 109, 114, 117, 118, 126, 154]).

The main challenges in MOT are the assignment of detections to tracks and the de-

termination whether a track exists or not. The former strongly depends on the detection

quality. Many false or missed detections require additional knowledge of the tracked tar-

gets, e.g. their motion behavior, to produce a reasonable trajectory. The question whether

a track exists or not, on the other hand, is much harder to answer. For example, tracks

which are occluded by surrounding objects or other tracked targets could be wrongly clas-

3https://www.waymo.com/ontheroad/ (accessed November 30, 2018)
4https://www.tesla.com/autopilot (accessed November 30, 2018)
5https://www.uber.com/cities/pittsburgh/self-driving-ubers/ (accessed November 30, 2018)

https://www.waymo.com/ontheroad/
https://www.tesla.com/autopilot
https://www.uber.com/cities/pittsburgh/self-driving-ubers/

1.2. Contribution and Outline 3

sified as out of sight, while false detections may initiate a nonexistent track. However, the

basis for a solid tracker are reliable detections.

Nowadays, object recognition in monocular images or 3D point clouds is dominated

by deep neural networks, e.g. [52, 91, 129]. These models can be trained easily end-to-

end to recognize objects such as cars, bicycles, pedestrians, traffic signs and many more.

In contrast to object recognition, however, MOT is much more difficult to solve in an

end-to-end fashion. The reasons for this are manifold. First, to train the huge amount

of parameters within a deep model, we need large datasets of annotated training data

which is not publicly available yet for MOT . Second, the input and output space can be

different in every time step just like the sequence length for every training run or the

number of detections and tracked targets. Moreover, continuous and discrete variables

are used within the tracking process. While estimated internal states, like the position,

are continuous, the termination or initialization of tracks must be discrete. This poses an

additional challenge for potential end-to-end trained models.

1.2 Contribution and Outline

The aim of this thesis is to implement a modular MOT framework which contains various

online models following the tracking-by-detection paradigm. These models are based on

a combination of Bayesian filters. The modularity of our framework allows to easily

exchange single components by data-driven Recurrent Neural Networks (RNNs), which

we also implemented.

The input is restricted to geometrical and positional properties. Therefore, we do

not use appearance features for the assignment of detections and tracks, because the

computation of such features is mostly expensive regarding processing power and time.

The reason for this limitation is twofold. First, we aim to achieve real-time behavior

within our framework. Second, we want to make use of different object detectors and

therefore require that they can be exchanged easily. Within our detailed evaluation, we also

analyze the effect of exchanging single parts with RNNs to observe potential advantages

and disadvantages. Finally, we investigate the robustness of all implemented trackers by

dropping detections of certain frames.

The remainder of this thesis is structured as follows: First, in Chapter 2, we formulate

the MOT problem and review related work along with some exemplary applications. In

addition, we discuss datasets and explain common measures. Second, we derive Single

Object Tracking (SOT) with Bayesian filters and summarize data association concepts for

MOT in Chapter 3. Afterwards, we discuss preliminaries of RNNs and their usage for

tracking in Chapter 4. In Chapter 5, we present the implemented modular tracking frame-

work in detail – containing a specific composition of the introduced concepts – followed by

the evaluation results in Chapter 6. Finally, we conclude this thesis and give an outlook

on future work in Chapter 7.

2
Multiple Object Tracking

Contents

2.1 Problem Formulation . 5

2.2 Tracking-by-Detection . 7

2.3 Categorization of Tracking-by-Detection Approaches 7

2.4 Related Work . 8

2.5 Evaluation Measures . 12

2.6 Datasets . 14

We now take a close look at Multiple Object Tracking (MOT). In particular, we give

a formal representation of the problem and explain the tracking-by-detection paradigm

and its categories. Furthermore, we discuss seminal work related to autonomous driving.

Finally, this chapter ends with the description of typically used evaluation measures and

common datasets.

2.1 Problem Formulation

Multiple Object Tracking (MOT) is the process of jointly estimating the number of targets

and their states from noisy measurements of different sensor types, e.g. Radio Detection

and Ranging (RADAR), Sound Navigation and Ranging (SONAR), camera (monocular,

stereo) or Light Detection and Ranging (LIDAR). Thus, it can be seen as an estimation

problem of multiple variables, where a track is defined as a state trajectory estimated

from a set of measurements, associated with the same target [8]. The states are mostly

position, orientation, velocity and acceleration of the tracked targets (e.g. [10, 78, 117])

but could also include the bounding box dimensions (e.g. [112, 114, 149]) or object class

as it is useful for autonomous driving applications.

Because of its simplicity and universal form, we use an adapted version of the MOT

formulation inspired by Luo et al. [94]. Formally, given a sequence of measurements Z, the

5

6 Chapter 2. Multiple Object Tracking

state of the ith object at measurement time t is denoted xit. Then, Xt = {x1
t ,x

2
t , . . . ,x

Mt
t }

defines the states of all Mt active objects at time t. Furthermore, we use xits:te ={
xits , . . . ,x

i
te

}
to denote sequences of states regarding the ith object, existing from time ts

to te. X0:t = {X0,X1, . . . ,Xt} represents then all the state sequences of all objects from

the beginning until time t.

Following this formulation, we assume the dynamic system to be a Markov process,

where we are not able to observe the true object states X0:t directly. Instead, we observe

noisy measurements from the dynamic system, modeled as random variables, to infer the

true state. Such observations made from the measurement sequence at time t are denoted

zit for the ith object. Similar to the definition of states, all Mt observations at time t

can be written as Zt = {z1t , z2t , . . . , zMt
t }. Hence, all collected observation sequences made

from the beginning until time t are defined as Z1:t = {Z1,Z2, . . . ,Zt}. Note, we assume

measurements are taken after state initialization, which follows the common literature,

e.g. [136]. Thus, we denote the first state of a sequence with index zero, whereas the first

measurement of a sequence is denoted with index one.

The problem of finding the optimal state sequence X̂0:t for all objects can be modeled

as the Maximum a Posteriori (MAP) problem

X̂0:t = arg max
X0:t

P (X0:t|Z1:t), (2.1)

where P (X0:t|Z1:t) denotes the posterior distribution which describes the probability of the

state sequence X0:t given all observations Z1:t. Within this thesis we focus on statistical

and probabilistic methods, respectively. These algorithms operate in two steps containing

prediction and update which are formulated in a recursive form:

Prediction: P (Xt|Z1:t−1) =

∫
P (Xt|Xt−1) P (Xt−1|Z1:t−1)dXt−1 (2.2a)

Update: P (Xt|Z1:t) ∝ P (Zt|Xt) P (Xt|Z1:t−1). (2.2b)

This representation describes the general form of the majority of Bayesian filters [26].

The prediction step is the so called Chapman-Kolmogorov equation and represents a prior

state Probability Density Function (PDF) at time step t. Here, P (Xt|Xt−1) represents the

dynamic model. Furthermore, the update step uses the measurement likelihood function

to correct the prior state and contains the observation model P (Zt|Xt). Note that the

expression in Equation (2.2b) follows the most widely used notation, which omits the

constant normalization factor. For each iteration, before the update can be done, it is

necessary to solve the Data Association (DA) problem between measurements and objects

of active tracks.

2.2. Tracking-by-Detection 7

2.2 Tracking-by-Detection

The MOT formulation in Section 2.1 leads us to the frequently used tracking-by-

detection paradigm which requires detected objects in each time step. These detections

are the mentioned observations. As a consequence, only relevant objects are used

for tracking which saves a lot of processing power and time. This property enables

real-time behavior. Additionally, tracking-by-detection approaches are able to handle a

variable number of targets over time. Both properties are crucial for online tracking

in autonomous driving applications. Drawbacks, however, arise from detection errors,

which are for example missing objects or False Negatives (FNs) and false detections or

False Positives (FPs), because of clutter. This in turn means, that the performance of

tracking-by-detection applications significantly depends on the detection quality.

Typically, tracking-by-detection consists of four main steps. First, the object detector

tries to identify all targets at the current time step. Second, based on the previous states,

the model predicts a new state for each object. Afterwards, all predicted states get asso-

ciated to available measurements. Finally, the model corrects each target state with its

assigned detection.

However, not every implementation follows this scheme. There are for example differ-

ences w.r.t. track handling. Some implementations need an explicit track management to

take care of new tracks or tracks which should be terminated [81]. Monitoring of some

physical constraints (e.g. overlapping trajectories) is an additional issue.

Another possibility is to follow a detection-free paradigm which does not rely on object

detection. This kind of algorithms require manual initialization at the beginning and are

not able to handle a variable number of objects over time. Because of these limitations,

detection-free tracking algorithms are not part of this thesis.

2.3 Categorization of Tracking-by-Detection Approaches

In general, MOT implementations can be classified in different ways. In the following,

we summarize two major categorization schemes, online or offline and deterministic or

probabilistic.

2.3.1 Online vs. Offline

Online or causal tracking uses past information only and does not depend on future mea-

surements. It processes data step-by-step. Hence, this type of algorithms is used for

real-time applications. In contrast, offline approaches use batches of measurements to

process estimates. One batch can contain all available data or specific time periods. Oc-

casionally, if only soft real-time systems are needed, the model is allowed to look a few

time steps into the future. In reality, the algorithm makes use of future measurements by

running a predefined number of time steps behind.

8 Chapter 2. Multiple Object Tracking

2.3.2 Deterministic vs. Probabilistic

This distinction is based on the behavior regarding the system’s output. On the one hand,

if the model is deterministic, the output stays the same for every run, if the input data

does not change. On the other hand, probabilistic models generate different output every

time because of additive noise within the filtering process. Deterministic approaches are

usually optimization methods which try to minimize some energy function and can be

solved step-by-step or offline.

2.4 Related Work

Because of the large diversity of tracking methodologies, we focus mainly on online

filtering-based (Section 2.4.1) and Deep Learning (DL) (Section 2.4.2) approaches which

have been applied to traffic scenes. For more information, Yilmaz et al. [159] presented a

detailed overview of fundamental work in tracking, which covers object detection and

representation along with feature selection. More recently, Vo et al. [143] reviewed Joint

Probabilistic Data Association (JPDA) filters, Multiple Hypothesis Tracking (MHT)

filters and Random Finite Set (RFS) methods. Within their surveys, Cannons [24], Yang

et al. [158] and Fan et al. [38] focused especially on visual object tracking, whereas Li

et al. [87] reviewed and compared state-of-the-art methods based on DL. Krebs et al. [81]

provided another detailed summary of traditional tracking methods and also examined

tracking with DL. Sivaraman and Trivedi [130], Zhu et al. [164] and Janai et al. [67]

summed up relevant work regarding autonomous driving.

Within this thesis we consider the tracking process itself and do not take object de-

tection or appearance models into account. Thus, we assume preprocessed detections,

e.g. points with bounding boxes in 2D (e.g. [65]) or 3D (e.g. [116, 129, 157]). An excep-

tion are DL models which usually incorporate some kind of object detector, but do not

necessarily yield a bounding box. Instead they produce some high dimensional feature

vector containing, for example, appearance features or motion features (e.g. [39, 148]).

For detailed informations regarding 2D object detection we refer the interested reader

to [65, 162].

2.4.1 Bayesian Filtering

Most MOT algorithms which follow the tracking-by-detection paradigm are modeled as

parallel Single Object Tracking (SOT) approaches joined by some Data Association (DA)

procedure. However, according to Vo et al. [143], even for the simple case of a single

target, well-known filtering approaches, e.g. Kalman Filter (KF) [72], Extended Kalman

Filter (EKF) [73] or Unscented Kalman Filter (UKF) [70, 147], can not be applied directly.

The reason for this are measurement origin uncertainties, False Negatives (FNs) and False

Positives (FPs).

2.4. Related Work 9

A simple solution to this problem is the Nearest Neighbour (NN) filter [8, 26]. Thereby,

the closest measurement in terms of spatial distance to each predicted measurement gets

used for the target state update. Asvadi et al. [6] proposed a method for detection and

tracking of moving objects based on NN data assignment and a linear KF for state es-

timation. Such a setup is prone to lose tracks because of wrong measurement-to-track

associations due to clutter.

An improved version is the Probabilistic Data Association (PDA) filter [7, 9]. It uses

association probabilities of certain measurements at each time step and applies the state

estimation filter including the weighted measurements to all targets individually [8, 143].

Schreier [126] used PDA in a combined filter approach for vehicle tracking in a cluttered

environment. However, both solutions, the NN filter and the PDA filter are usually

designed for SOT and are not the best choice for MOT problems.

In contrast to local data assignment, there exist global strategies which take care of

all measurements and tracked objects in every time step. Beginning with the simplest

one, Global Nearest Neighbour (GNN) approaches try to solve the global DA problem by

minimizing/maximizing some total cost/value w.r.t. distance or likelihood. For tracking

multiple detected objects in autonomous vehicles out of 3D LIDAR scans, Choi et al. [30]

combined GNN association with a linear KF . Their association criterion is based on a

weighted sum of distance and hypothesis size. A more sophisticated approach which does

sensor fusion and provides a 360◦ observation around the vehicle has been proposed by

Rangesh and Trivedi [118]. Within their work they used the popular Hungarian algo-

rithm [106] which yields the optimal target-to-measurement assignment if every target

produces exactly one measurement. The same DA method has been used by Sharma

et al. [128], but with different cues for the similarity scores. Here, object similarities are

modeled by costs derived from 3D cues, which are directly learned from monocular images.

Two of the most popular algorithms for MOT are Joint Probabilistic Data Association

(JPDA) [7, 43] and Multiple Hypothesis Tracking (MHT) [17, 120]. Furthermore, the

JPDA filter is an extension to the PDA filter for a fixed and known number of targets

which requires track existence. It performs a weighted update including all measurements

within a certain gating region simultaneously regarding to all tracks. Rachman [117] used

JPDA within a combination of Bayesian filters – designed for position tracking of vehicles

and pedestrians – including an UKF for non-linear state estimation. Additionally, after

object detection from a 3D LIDAR point cloud, a separate logic-based mechanism takes

care of the bounding box size and heading. Another framework relying on JPDA was used

by Ćesić et al. [25]. It performs object detection and tracking from LIDAR data, recorded

with a sensor mounted on a mobile platform.

Contrary to JPDA filters, MHT provides an optimal solution to the assignment prob-

lem in cluttered environments. Moreover, a varying number of targets over time is handled

implicitly. In general, MHT builds hypotheses for all possible target-to-measurement as-

signments. Hypothetical new tracks get considered, as well as the termination of current

ones. The main drawback is the exponentially growing complexity with every time step

10 Chapter 2. Multiple Object Tracking

and new target or measurement, respectively. This leads to some implementation strate-

gies which try to reduce the complexity e.g. hypothesis pruning which has been proposed

by Ess et al. [37]. Within this process the unlikely hypotheses are pruned and only the

most promising remain.

Nevertheless, since MHT is very expensive and the JPDA filter is not able to deal

with a varying number of targets over time, the Joint Integrated Probabilistic Data As-

sociation (JIPDA) [107, 108] filter can be seen as a promising alternative. It addition-

ally obtains track existence probabilities for an individual and limited number of tracks.

Otto et al. [113] used a JIPDA filter for pedestrian tracking with monocular cameras and

RADAR sensors in the frontal field of view and the vehicle’s blind spot. For a more de-

tailed overview, we refer to Cox [32] who explains several statistical DA techniques for

motion correspondences.

Another family of MOT algorithms are Random Finite Set (RFS) methods which make

use of Finite Set Statistics (FISST), where both, the cardinality of the set as well as its

members, are random variables. Therein, the Probability Hypothesis Density (PHD) [97,

144] filter and the Cardinalized Probability Hypothesis Density (CPHD) [98] filter are

two popular approaches which perform state and target existence estimation implicitly

without the need of an additional DA procedure.

Nevertheless, these methods do not provide target identification mechanisms. There-

fore, some track management is needed to extract target tracks with assigned IDs. Ap-

proaches without such an additional extraction process are the Generalized Labeled Multi-

Bernoulli (GLMB) [121, 145] filter and the Poisson Multi-Bernoulli Mixture (PMBM) [47,

153] filter. For all the RFS -based algorithms there exists no closed-form solution and

therefore Particle Filter (PF) [2, 5, 59] implementations are usually applied, e.g. [124].

Scheidegger et al. [125] proposed a method to estimate the position of other vehicles on

the road in world coordinates form monocular images only. Within their work, a PMBM

filter is used for MOT . Instead of using a PF for motion estimation, they leverage a

Gaussian assumption for their measurement and motion model to apply an UKF .

Sequential Monte Carlo (SMC) methods like the PF , also known as bootstrap filter-

ing [54] or the condensation algorithm [96], can also be directly used for state estimation

in tracking-by-detection approaches followed by DA. It performs better in non-linear/non-

Gaussian environments because it approximates the posterior PDF by a finite set of par-

ticles. PF -based approaches for autonomous driving applications have been proposed,

e.g., by Fortin et al. [41, 42], Morales et al. [105] and Niknejad et al. [109]. Additionally,

tracking targets with PF can be performed by extending the state space of the filter to

contain multiple targets (e.g. [66, 75, 96]). This leads to a fixed number of tracks and can

be inefficient by calculating the posterior PDF for such high-dimensional spaces. Another

drawback is the difficult DA within the state space which leads to many ID switches.

To cope with these issues, Markov Chain Monte Carlo (MCMC) sampling has been

applied to MOT problems which reduces complexity and solves the association problem.

Reversible Jump MCMC (RJMCMC) additionally handles varying numbers of objects,

2.4. Related Work 11

(e.g. [31, 76, 85]). Moreover, Doucet et al. [35] have shown that in some cases, parts of the

model could be solved analytically, e.g. by KF . Hence, not all state variables have to be

sampled by the PF which results in better performance regarding time and accuracy. The

method is called Rao-Blackwellized Particle Filter (RBPF) and has been used for MOT ,

e.g. by Petrovskaya and Thrun [114], Vatavu et al. [142] and Wojke and Häselich [154].

All these algorithms need an appropriate model of the object dynamics, i.e. motion

model. Typically, for maneuvering targets such as vehicles, Constant Velocity (CV), Con-

stant Turn-Rate Velocity (CTRV) or Constant Acceleration (CA) are used frequently.

For the interested reader, Li and Jilkov [88] give a good overview of dynamic models for

maneuvering and non-maneuvering targets. Because the behavior of vehicles, especially

in urban environments, can not be modeled by a single motion pattern, multiple model

approaches are common solutions to this issue. Thus, Weiss et al. [149] used an approach

to switch between different models based on statistical tests of the fused data of their

sensors.

This simple approach could rise problems regarding delayed or oscillating model

switches. Hence, a more stable and more precise solution is the Interacting Multiple

Model (IMM) [18] filter. It uses a weighted sum of the individual filter estimates. They

result from various dynamic models which can additionally have different filter types.

Within their work, Barth and Franke [10], Kaempchen and Dietmayer [71], Kim and

Hong [79], Rachman [117] and Schreier [126] used such an IMM filter for smooth model

switching.

2.4.2 Deep Learning

A more recent research direction is to leverage Deep Neural Networks (DNNs) for MOT ,

which are architectures with many hidden layers between the input and output neurons.

They have gained a lot of attention within the last years because of their impressive

performance in object detection and classification (e.g. [83]) tasks as well as other com-

puter vision challenges such as semantic (instance) segmentation (e.g. [27, 28, 60, 90]) or

motion (e.g. [134]) and pose estimation (e.g. [155]).

Because tracking-by-detection approaches crucially depend on good detections, such

networks are commonly used to find good appearance features (e.g. [58]) or detect ob-

jects directly (e.g. [14, 85]). The best public available solution on the KITTI Vision

Benchmark [49] leaderboard for tracking1 uses a DNN and has been proposed by Sharma

et al. [128]. Their pipeline finds appearance features in the form of 2D and 3D cues out

of monocular images. Afterwards, they solved the Data Association (DA) with different

cost functions depending on these cues.

Another interesting application which uses detected features is the work form Kim

et al. [77]. They used a Convolutional Neural Network (CNN) to find features for a MHT

filter. Scheidegger et al. [125] used monocular images as an input for a deep neural network

1http://www.cvlibs.net/datasets/kitti/eval tracking.php (accessed January 22, 2019)

http://www.cvlibs.net/datasets/kitti/eval_tracking.php

12 Chapter 2. Multiple Object Tracking

to estimate the position of multiple objects in 3D world coordinates relative to the ego

perspective of the car. Afterwards, they performed tracking with a PMBM filter within

this coordinate system. The available 3D information from the point cloud was used only

for training the network, but not for inference.

However, a lot of research deals with end-to-end training of deep neural networks which

are able to learn MOT from raw input. Thus, monocular images, depth maps or point

clouds are used separately or in combination as an input to detect objects and track them

over the whole sequence. A Recurrent Neural Network (RNN) approach with simple point

detections as an input was proposed by Milan et al. [103] . The network represents equal

structures like well-known Bayesian filters. It performs a prediction step followed by an

update step which uses the associated measurement values determined by a Long Short-

Term Memory (LSTM) network. Implicitly, they handle the initialization and termination

of tracks by some estimated probability for both cases. Except for the object detection,

their work can be seen as an end-to-end approach.

Another solution to that problem has been proposed by Frossard and Urtasun [46].

Within their work, 3D LIDAR data and monocular images were used as an input to train

an object detector followed by a Siamese network to exploit matching costs of objects.

Inference has been done by feed forward passes followed by solving a linear program.

Their model can be trained end-to-end and has been applied on tracking vehicles, cyclists

and pedestrians. Luo et al. [95] proposed another network structure which detects and

tracks objects from 3D LIDAR data only, represented in a bird’s eye view. Moreover,

they used motion forecasting as an additional contribution against loosing tracks during

occlusions. For evaluation, an own not yet published large scale dataset was recorded to

train and test the network which complicates reproducibility.

2.5 Evaluation Measures

Within this section we discuss standardized methods for evaluating Multiple Object Track-

ing (MOT) approaches. A comparable performance measure for such algorithms is given

by the Classification of Events, Activities and Relationships (CLEAR) [12] measures,

which are also used by both benchmarks we train and test our models on. In addition to

the CLEAR measures, the MOT16 Benchmark [102], as well as the KITTI Vision Bench-

mark Suite [49] are using quality measures regarding to trajectory coverage, as proposed

by Li et al. [89].

2.5.1 CLEAR MOT Measures

Bernardin and Stiefelhagen [12] defined two independent and intuitive measures which

are called Multiple Object Tracking Precision (MOTP) and Multiple Object Tracking

Accurency (MOTA). They are designed to reflect the tracker’s precision in terms of exact

object locations and to represent the overall tracking ability, which can be described

2.5. Evaluation Measures 13

as the consistent labeling of objects over time. The reliability of correct DA between

existing tracks and detected objects is expressed by FP and FN assignments per frame.

Another figure of merit is the number of ID switches (IDS), which describes the mismatch

of tracks. It is influenced by switching identities between different trajectories and the

fragmentation of tracks. The latter occurs, when a trajectory is interrupted (e.g. due to

missing observations during occlusions) and a new ID is assigned after it resumes.

The overall tracking performance score MOTA combines the three explained error

parameters FP , FN and IDS

MOTA = 1−
∑

t (FPt + FNt + IDSWt)∑
tGTt

, (2.3)

with the sum over time steps t, containing all incorrect events within a sequence, in the

numerator and the total number of Ground Truth (GT) objects in the denominator. This

equation leads to a maximum value of 1, describing 100% accuracy and on the other hand

to a negative value if there are more false events than ground truth objects. According

to Bernardin and Stiefelhagen [12], MOTA can be seen as a derivation of three individual

error ratios, which are all averaged by the total number of present GT objects. The three

error measures are given as the ratio of missed object associations (FN) over time

FN =

∑
t FNt∑
tGTt

, (2.4)

the FP ratio

FP =

∑
t FPt∑
tGTt

, (2.5)

and the ratio of IDS

IDSW =

∑
t IDSWt∑
tGTt

. (2.6)

Combining these error scores as Etot = FN + FP + IDSW, we obtain the MOTA score as

in Equation (2.3) by 1− Etot, which provides a very intuitive performance measure.

Besides the overall tracking performance, MOTP represents the precision of a tracker.

It evaluates the average deviation between True Positive (TP) and GT tracks w.r.t. some

similarity measurement as

MOTP =

∑
i,t d

i
t∑

t ct
, (2.7)

where dit and ct denote the distance error of the ith match and the number of matches

at time t, respectively. Mostly the Euclidean distance is used to get an average deviation

in meters or pixels. For bounding boxes in 2D and 3D space, as used in both related

benchmarks MOT16 and KITTI, the overlap or Intersection over Union (IoU) is used

instead of the Euclidean distance. This yields an average overlap percentage of bounding

14 Chapter 2. Multiple Object Tracking

boxes. For distance measurements, lower values indicate better results, whereas for IoU ,

a score of 1 is desirable, which denotes 100% precision.

While state variables like speed or turn rate are not considered, the orientation implic-

itly influences the evaluation by using the IoU criterion. Furthermore, for autonomous

driving applications in the real-world coordinate system, the overlap calculation can be

reduced to the ground plane of objects, because the height of vehicles or pedestrians does

not change. In addition, there is almost no vertical movement.

2.5.2 Quality Measures

The CLEAR measures are helpful to compare precision and accuracy, but they are not

informative regarding the coverage of individual tracks. Therefore, we discuss some quality

measures [89] to classify trajectories into Mostly Tracked (MT), Partly Tracked (PT) and

Mostly Lost (ML). These classes describe the coverage of single tracks and do not take ID

switches into account. Objects which are tracked for at least 80% of the time – compared

to the ground truth – are considered as MT . On the other hand, targets with a coverage of

less than 20% are classified as ML. Everything in between is said to be PT = 1−MT−ML.

Thus, these values can be written as absolute numbers or as a ratio to the total number

of ground truth trajectories.

Another helpful metric is the number of track Fragmentations (FM) which describes

how often a track gets interrupted. An interruption happens if the track gets lost and

resumes later on. This should not be confused with the similar concept of IDS . If we

think of two tracks changing its ID, the track does not necessarily get interrupted. The

value is important for tasks where we are interested in long persistent tracks without

interruptions.

2.6 Datasets

To compare state-of-the-art approaches, two of the most common datasets for MOT are

used in this thesis. The MOT16 Dataset [102], which also provides an online benchmark

and a corresponding leaderboard2, is an established standard for this sort of algorithms.

It consists of monocular image sequences containing persons and vehicles from both, static

and moving cameras. Another publicly available dataset is the KITTI Dataset [48] pro-

vided by the Karlsruhe Institute of Technology and the Toyota Technological Institute of

Chicago. Contrary to MOT16, the KITTI Dataset includes not only monocular images

but stereo images, high-precision GPS measurements, IMU accelerations and LIDAR point

clouds, which enables tracking in real-world coordinates. It has also an online benchmark

completed by a leaderboard for MOT . The application area is limited to autonomous

driving and therefore, the sensor setup stays the same for all recordings.

2https://motchallenge.net/results/MOT16/ (accessed January 25, 2019)

https://motchallenge.net/results/MOT16/

2.6. Datasets 15

2.6.1 MOT16 Dataset

With the aim of a new standardized benchmark for MOT methods, Leal-Taixé et al. [84]

proposed the first version of the MOT Challenge. It contains a collection of various

publicly available datasets, a centralized evaluation method and an infrastructure for other

researchers in this field to share data, new evaluation methods and annotations. This

resulted in the MOT15 Dataset and Benchmark with corresponding online leaderboard3.

Because of some shortcomings, a new version of the MOT Challenge has been re-

leased by Milan et al. [102] with the MOT16 Benchmark. This benchmark contains 14

sequences of different crowded scenarios including various viewpoints, camera motions and

weather conditions. The sequences are equally divided into a training set, which contains

also ground truth annotations, and a test set used for verification. Another important

improvement was a standardized ground truth labeling process.

The main focus of this dataset and benchmark lies on video surveillance tasks contain-

ing crowded scenes with people. Therefore, annotations are split into three main classes.

The first one contains moving or standing pedestrians and people on bikes or skateboards.

The second class includes artificial persons, e.g. reflections, people behind glass or man-

nequins, and static pedestrians in a not upright position. Tracking of detections within this

class gets neither rewarded nor penalized while testing. The last group gets not considered

within the benchmark test. It contains vehicles and objects which occlude pedestrians.

Recorded sequences have different image resolutions and vary in length and frame rate

(Frames Per Second (FPS)). The dataset contains 11286 frames in total including 1342

trajectories. Figure 2.1 shows an example frame from the MOT16 dataset. We refer the

interested reader to the work of Milan et al. [102] for further details.

This dataset is not the perfect choice for testing algorithms which are designed for

solving the MOT problem within an autonomous driving scenario. Such trackers are built

to work in a real-world coordinate system and not on the image plane. Because the motion

behavior in real-world coordinates relative to the ego-vehicle differs in contrast to move-

ments on the 2D image plane, also trackers have different requirements. Notwithstanding,

we use the dataset to test the basic functionality of our models.

2.6.2 KITTI Dataset

The most important benchmark w.r.t. autonomous driving is the KITTI Vision Bench-

mark Suite [49] and the corresponding KITTI Dataset [48], because of its opportunity to

test algorithms on real-world situations. It contains sequences of different traffic scenes

recorded in Karlsruhe (Germany) with a modified VW Passat shown in Figure 2.2. The six

hour long recordings capture freeways, rural areas and urban environments, whereby, only

25% of them are publicly available. They consist of high resolution color and grayscale

stereo images synchronized with 3D LIDAR scans, taken by a Velodyne HDL-64E sensor.

3https://motchallenge.net/results/2D MOT 2015/ (accessed January 25, 2019)

https://motchallenge.net/results/2D_MOT_2015/

16 Chapter 2. Multiple Object Tracking

Figure 2.1: MOT16 [102] sample image including provided detections and tracks. The image
originates from the sequence TUD-Campus [4] and shows frame number 51. Ground
truth detections are marked with red dotted boxes and tracks are solid boxes.

Figure 2.2: VW Passat equipped with video cameras and 3D LIDAR scanner used by the KITTI
team. Image taken from [48]

2.6. Datasets 17

Furthermore, the dataset includes hand-labeled 3D tracklets of static and dynamic objects

representing the ground truth. All raw recordings are classified into: Residential, City,

Road, Campus and Person. A labeled 3D point cloud example and the corresponding

image frame can be seen in Figure 2.3.

Figure 2.3: KITTI dataset example with annotated point cloud and corresponding image frame.
It originates from sequence 2011 09 26 drive 0005 and shows frame number 151.
Within the point cloud snapshot, an axis defines the ego-car position, where arrows
in red, green and blue point along the x, y and z axes, respectively. Note that the
view point in both images is not exactly the same.

The focus of our work is on tracking multiple objects in real-world coordinates and

therefore, detections in 3D space are needed, where detectors are allowed to make use of

all available data. The KITTI Vision Benchmark Suite evaluates tracking algorithms –

more or less the same as the MOT16 benchmark – on the 2D image plane. Therefore,

targets are only labeled if they are in the cameras’ fields-of-view. Hence, the evaluation of

tracks in real-world coordinates is only possible offline with sequences where ground truth

is provided. Detailed information concerning evaluation with the KITTI Dataset can be

found in Chapter 6.

3
Multi-object Tracking with Bayesian Filters

Contents

3.1 Recursive Bayesian Filter for Object Tracking 19

3.2 Filter Solutions for the Recursive Problem 24

3.3 Data Association . 34

The main focus of this chapter is on the fundamental theory of Bayesian filters for

tracking multiple targets. After a short introduction to the optimal Bayesian filter and

its derivation, we discuss different solutions for state estimation and model switching,

primarily following the literature [8, 26, 82, 126, 136]. Finally, we explain probabilistic

Data Association (DA) concepts in form of the Probabilistic Data Association (PDA)

filter and the Joint Probabilistic Data Association (JPDA) filter, both designed to enable

tracking in clutter for Bayes filters.

3.1 Recursive Bayesian Filter for Object Tracking

Online multi-object tracking can be seen as a dynamic state estimation problem under un-

certainty with changing states over time, driven by sequential noisy measurements. When

new observations are available, the next state or belief of all active objects gets predicted

for each time step based on a dynamic model. Afterwards, assigned measurements are

used to update the belief with a corresponding measurement model. For such problems

with noisy measurements, all quantities are modeled as random variables. Because of

that and the sequential structure, a recursive method for reasoning under uncertainty

is needed. A well-developed framework which fulfills this requirements and allows some

computationally traceable solutions is the Bayesian filter. It represents the state of an

object as a posterior Probability Density Function (PDF) over all parameters based on

the previous state, observations and control actions.

19

20 Chapter 3. Multi-object Tracking with Bayesian Filters

3.1.1 Optimal Filter Derivation

We use and extend the definition in Section 2.1 for the optimal Bayesian filter derivation,

but reduce the problem to a single object to avoid cluttering the notation. Thus, hidden

target states at time t are denoted xt and a sequence of all states, starting with the initial

state x0 up to the current time t, as x0:t = {x0, . . . ,xt−1,xt} accordingly. Similarly,

the observed measurement sequence up to time t is z1:t = {z1, . . . , zt−1, zt}. Since both,

the states as well as the measurements, are affected by uncertainties, they are modeled

as random variables. For the filter derivation we assume to know the measurement-to-

target correspondences. Additionally, for each time-step there is exactly one measurement

available.

The posterior PDF or belief p(x0:t|z1:t), representing the complete probabilistic knowl-

edge of the state, can be calculated with the measurement sequence z1:t and a prior dis-

tribution p(x0:t) applying Bayes’ rule:

p(x0:t|z1:t) =

Likelihood︷ ︸︸ ︷
p(z1:t|x0:t)

Prior︷ ︸︸ ︷
p(x0:t)

p(z1:t)︸ ︷︷ ︸
Normalization

. (3.1)

The conditional probability distribution p(x0:t|z1:t) denotes the posterior PDF of the ob-

ject state sequence. The numerator contains a multiplication of the state’s prior with

the likelihood. The latter provides a probability, that given the hidden state sequence

is x0:t, the observed measurement sequence is z1:t. The normalization factor within the

denominator ensures that the posterior PDF integrates to one and thus, is valid. It can

be calculated by marginalizing out the numerator:

p(z1:t) =

∫

xt

. . .

∫

x0

p(z1:t|x0:t) p(x0:t) d xt . . . d x0. (3.2)

Here,
∫
xt

denotes integration over the whole range of xt. It represents all operations of

summation and integration, e.g. states containing a mixture of continuous and discrete

values.

To obtain recursive behavior where the time dependent measurement sequence can be

processed step-by-step over time, the terms in Equation (3.1) can be factorized into

p(z1:t|x0:t) = p(zt|z1:t−1,x0:t) p(z1:t−1|x0:t), (3.3a)

p(x0:t) = p(xt|x0:t−1) p(x0:t−1) and (3.3b)

p(z1:t) = p(zt|z1:t−1) p(z1:t−1). (3.3c)

The factorized likelihood in Equation (3.3a) can further be simplified by taking the causal-

ity principle into account [26]. This means that measurements do not depend on future

3.1. Recursive Bayesian Filter for Object Tracking 21

states:

p(z1:t|x0:t) = p(zt|z1:t−1,x0:t) p(z1:t−1|x0:t−1). (3.4)

From the substitution of Equation (3.1) with the factorized elements in Equation (3.3b),

(3.3c) and (3.4) along with reordering of the terms follows:

p(x0:t|z1:t) =
p(zt|z1:t−1,x0:t) p(xt|x0:t−1)

p(zt|z1:t−1)

(
p(z1:t−1|x0:t−1) p(x0:t−1)

p(z1:t−1)

)
. (3.5)

The second term, can then be rewritten as the prior joint PDF

p(x0:t−1|z1:t−1) =
p(z1:t−1|x0:t−1) p(x0:t−1)

p(z1:t−1)
, (3.6)

which leads to the recursive form of the Bayesian solution:

p(x0:t|z1:t) =
p(zt|z1:t−1,x0:t) p(xt|x0:t−1)

p(zt|z1:t−1)
p(x0:t−1|z1:t−1). (3.7)

Furthermore, in real-world applications two simplifying assumptions are made. First, mea-

surements are generated from states at the current time only and thus, are conditionally

independent from previous measurements. Hence, the expression p(zt|z1:t−1,x0:t) leads to

the simpler form p(zt|xt) which points out, that the state xt is sufficient to predict the

measurement zt [136]. Therefore, the state has to be considered as complete. Second, the

object state has to meet the Markov assumption. This requires conditional independence

between the current state xt given the previous state xt−1 and the older state sequence

x0:t−2. Formally, from p(xt|x0:t−1) follows p(xt|xt−1). According to Thrun et al. [136],

these conditional independence assumptions for states and measurements are the primary

reason why most of the algorithms derived from this formulation are computationally

traceable.

Applying both assumptions to the original formulation in Equation (3.7), we get an-

other simplified representation:

p(x0:t|z1:t) =
p(zt|xt)

p(zt|z1:t−1)
p(xt|xt−1) p(x0:t−1|z1:t−1). (3.8)

Attentive readers may have noticed, that the result of Equation (3.8) still represents the

full joint posterior density p(x0:t|z1:t) after receiving the last measurement. However, for

object tracking we are interested in the sequence of objects and their states at time t

which is given by the marginal posterior state density p(xt|z1:t). This can be achieved by

integrating over all previous states

p(xt|z1:t) =

∫

xt−1

. . .

∫

x0

p(x0:t|z1:t) d x0 . . . d xt−1, (3.9)

22 Chapter 3. Multi-object Tracking with Bayesian Filters

leading to the final recursive Bayesian filtering solution

p(xt|z1:t) =
p(zt|xt)

p(zt|z1:t−1)

∫

xt−1

p(xt|xt−1) p(xt−1|z1:t−1) d xt−1
︸ ︷︷ ︸

Chapman-Kolmogorov

. (3.10)

The detailed integration steps can be looked up in related literature, e.g., [26]. This final

formula provides the fundamental framework of Bayesian filtering containing a prediction

step, represented by the Chapman-Kolmogorov equation, and an update step consisting

of a measurement likelihood and a normalization factor.

Within the prediction step, the product between posterior state PDF p(xt−1|z1:t−1)
of time t − 1 and transition density p(xt|xt−1) gets integrated over all states xt−1 of the

previous stage. This results in a predicted prior state PDF p(xt|z1:t−1) including the

current knowledge of xt and all previous measurements up to time t − 1. The remaining

part of the formula describes the update or correction step. Here, the measurement zt at

time t is used within the measurement likelihood function p(zt|xt) to correct the prior.

Normalization with p(zt|z1:t−1) then yields the posterior state PDF p(xt|z1:t). Finally,

the mean values and their corresponding covariance matrices – describing the estimation

accuracy – are computed from these densities.

3.1.2 Stochastic State Space Representation

Before the theory can be applied to object tracking, it is necessary to model the system

dynamics. This includes a specification for the transition density p(xt|xt−1), the mea-

surement likelihood p(zt|xt) and the initial prior state p(x0). An elegant way to do so

is the definition of a discrete-time stochastic state space model with an additive noise

assumption represented by the dynamic equation

xt = f(xt−1,ut−1) + wt, (3.11)

and the measurement equation

zt = h(xt) + vt, (3.12)

with system function f(·) and measurement function h(·). Both functions are in general

non-linear. Furthermore, the input vector, measurement vector and state vector are de-

noted ut ∈ Rp, zt ∈ Rq and xt ∈ Rn, respectively. Noise sequences are represented by

the process noise vector wt ∈ Rn with its corresponding covariance matrix Qt ∈ Rn×n

and the measurement noise vector vt ∈ Rq with its covariance matrix Rt ∈ Rq×q. They

are considered as identically independently distributed (i.i.d.), zero-mean, white Gaussian

noise sequences.

3.1. Recursive Bayesian Filter for Object Tracking 23

Under the additive noise assumption, the system dynamics equation (3.11) yields the

transition density function by transforming random variables [26]

p(xt|xt−1) = pwt(xt − f(xt−1,ut−1)), (3.13)

where pwt(·) is the PDF of the process noise. Similarly, the measurement Equation (3.12)

leads to the likelihood function

p(zt|xt) = pvt(zt − h(xt)), (3.14)

with pvt(·) denoting the PDF of the measurement noise.

The discrete-time stochastic state space model in Equations (3.11) and (3.12) can be

expressed in a linear time-invariant form

xt = Axt−1 + But−1 + wt, (3.15a)

zt = Hxt + vt, (3.15b)

where A ∈ Rn×n denotes the system matrix, B ∈ Rn×p denotes the input matrix and the

measurement matrix is given by H ∈ Rq×n. With the already mentioned Gaussian noise

assumption and the system dynamics equation (3.15a), the transition density is expressed

by
p(xt|xt−1) = p(wt)

= p(xt − (Axt−1 + But−1))

= N (xt − (Axt−1 + But−1); 0,Qt)

= N (xt; Axt−1 + But−1,Qt),

(3.16)

while the measurement Equation (3.15b) is used to represent the measurement likelihood

p(zt|xt) = p(vt)

= p(zt −Hxt)

= N (zt −Hxt; 0,Rt)

= N (zt; Hxt,Rt),

(3.17)

where Gaussian densities are expressed in the short notation

N (z; µ,Σ) =
1√

det(2πΣ)
exp

(
−1

2
(z− µ)TΣ−1(z− µ)

)
, (3.18)

parametrized with mean vector µ and covariance matrix Σ.

24 Chapter 3. Multi-object Tracking with Bayesian Filters

3.2 Filter Solutions for the Recursive Problem

Within this thesis we make use of two different implementations which provide a recursive

solution to Bayesian filtering (recall Equation (3.10)), the Kalman Filter (KF) [72] and the

Unscented Kalman Filter (UKF) [69]. While the former is designed to solve linear Gaussian

problems exact in a closed form, the latter tries to approximate non-linear behavior.

An extension to the optimal Bayesian filter is given by the Interacting Multiple Model

(IMM) [18] filter, which approximates the posterior distribution by a Gaussian mixture

and therefore, allows to use different motion models. The next sections explain the main

idea behind these filters and present the final filter equations.

3.2.1 Kalman Filter

The Kalman Filter (KF) [72] solves the recursive filtering problem in Equation (3.10)

exactly for linear Gaussian systems. In such systems, the object dynamics and measure-

ment equations have to be linear. Furthermore, white, uncorrelated Gaussian process and

measurement noise with zero mean is required. Finally, the object state posterior density

for the last time step t − 1 has to be Gaussian. If these assumptions are fulfilled, all

resulting state densities are also Gaussian and can therefore be described by their mean

and covariance.

Because most tracking systems do not have knowledge about control inputs for tracked

objects, we can simplify Equation (3.15) by setting the control parameter ut−1 to zero.

Additionally, we rename the system matrix according to common literature in control

theory and tracking as
xt = Fxt−1 + wt,

zt = Hxt + vt,
(3.19)

with the system matrix F ∈ Rn×n, the measurement matrix H ∈ Rq×n, the state vec-

tor xt ∈ Rn, the measurement vector zt ∈ Rq, the process noise vector wt ∈ Rn with

corresponding covariance matrix Qt ∈ Rn×n and measurement noise vector vt ∈ Rq with

corresponding covariance matrix Rt ∈ Rq×q.

According to Challa et al. [26], we write the Kalman filter equations using the linear

system in Equation (3.19) beginning with the prediction step

x̂t|t−1 = Fx̂t−1|t−1,

Pt|t−1 = FPt−1|t−1F
T + Qt,

(3.20)

where the predicted mean x̂t|t−1 and covariance matrix Pt|t−1 are computed using the

posterior state estimate x̂t−1|t−1 and covariance matrix Pt−1|t−1 of the last time-step.

3.2. Filter Solutions for the Recursive Problem 25

Afterwards the first part of the update step (measurement prediction)

ẑt|t−1 = Hxt|t−1,

St = HPt|t−1H
T + Rt,

Kt = Pt|t−1H
TS−1t ,

(3.21)

calculates the predicted measurement ẑt|t−1, innovation covariance matrix St ∈ Rq×q and

the Kalman gain Kt ∈ Rn×q. Finally, these values are used to evaluate the posterior mean

x̂t|t and the corresponding covariance matrix Pt|t with

x̂t|t = x̂t|t−1 + Kt(zt − ẑt|t−1),

Pt|t = Pt|t−1 −KtHtPt|t−1,

= Pt|t−1 −KtStK
T
t .

(3.22)

Basically, Equation (3.22) shows the main behavior of the KF . Predictions and mea-

surements are balanced by the Kalman gain. If the prediction is good compared to the

measurement uncertainty, the Kalman gain is small and thus, takes the prediction more

into account and vice versa. The uncertainties of both, predictions and measurements,

are influenced by noise, i.e. the measurement noise covariance matrix Rt or process noise

covariance matrix Qt.

We explain the KF equations by already derived formulas and assumptions made

at the beginning of this section. Equation (3.20) exactly solves the prediction part of the

final Bayesian filtering solution in Equation (3.10), representing the Chapman-Kolmogorov

equation. The predicted prior state PDF p(xt|z1:t−1) is given by

p(xt|z1:t−1) =

∫

xt−1

p(xt|xt−1) p(xt−1|z1:t−1) d xt−1, (3.23)

with transition density p(xt|xt−1) as in Equation (3.16), but without control input

p(xt|xt−1) = N (xt; Fxt−1|t−1,Qt), (3.24)

and posterior state PDF p(xt−1|z1:t−1) of the previous time step

p(xt−1|z1:t−1) = N (xt−1; x̂t−1|t−1,Pt−1|t−1), (3.25)

resulting in

p(xt|z1:t−1) = N (xt; x̂t|t−1,Pt|t−1). (3.26)

The theorem used to get Equation (3.26) can be looked up in [26] and was proven first by

Ho and Lee [61]. As required for linear systems, the predicted density is Gaussian, as well

as the posterior density of the previous state.

26 Chapter 3. Multi-object Tracking with Bayesian Filters

The measurement prediction step, solved by Equation (3.21), uses the same theorem

for the normalization factor p(zt|z1:t−1) in Equation (3.10) written as

p(zt|z1:t−1) =

∫

xt

p(zt|xt) p(xt|z1:t−1) d xt, (3.27)

with the likelihood p(zt|xt) formulated as Gaussian density

p(zt|xt) = N (zt; Hxt,Rt), (3.28)

and the predicted state density in Equation (3.26), resulting in

p(zt|z1:t−1) = N (zt; ẑt|t−1,St), (3.29)

which represents the predicted measurement density.

Finally, we are able to substitute all the densities into Equation (3.10) and get the

final update equation

p(xt|z1:t) =
N (zt; Hxt,Rt) N (xt; x̂t|t−1,Pt|t−1)

N (zt; Hx̂t|t−1,St)
, (3.30)

yielding the posterior state PDF

p(xt|z1:t) = N (xt; x̂t|t,Pt|t), (3.31)

by using the same theorem as in both steps before.

3.2.2 Unscented Kalman Filter

A recursive filtering solution for systems with non-linear dynamics, as it is crucial for most

tracking applications, is the Unscented Kalman Filter (UKF) [69]. It was designed to over-

come some problems of the widely used and well-known Extended Kalman Filter (EKF),

which linearizes all non-linear models with a first-order Taylor expansion and applies the

standard KF afterwards. According to Julier and Uhlmann [69], linearizion can produce

highly unstable filters under special conditions. Furthermore, linearizion often introduces

large errors in the posterior mean and covariance of the transfered state density [141, 147].

Another issue is the derivation of Jacobian matrices for complex systems, which is mostly

nontrivial and thus, results in implementation difficulties. Because we do not cover the

EKF within this thesis, we refer the interested reader to [26, 136] for further details.

The main idea of the UKF is to propagate a fixed number of appropriately chosen

weighted sample points – also called sigma points – through a non-linear function by using

the Unscented Transformation (UT). This process does not need an analytical derivation

of dynamic and measurement equations. Except these functions, the filter does not need

to know anything about the non-liner model, which therefore can be treated as a ”black

3.2. Filter Solutions for the Recursive Problem 27

box”. After passing the transformation, the sample points include the posterior mean and

covariance exactly to the third-order Taylor series expansion for any nonlinearity within

the same order of computational complexity as the EKF [147]. An accuracy comparison

between UKF and EKF is shown in Figure 3.1, where the drawbacks of linearizion are

clearly visible in terms of a huge bias. If some weights inside the UT are smaller than zero,

which can happen in special cases, the covariance matrix after transformation is possibly

negative semidefinite. This leads to problems, e.g. while calculating sigma points. To

ensure a positive semidefinite covariance matrix, the scaled UT [68] is commonly used.

Figure 3.1: Visualization of mean and covariance for linearized function (EKF) and scaled UT
(UKF) compared to the true representation. A cloud of 5000 samples drawn from a
Gaussian distribution gets propagated through an arbitrary nonlinear function. Left,
the true value calculated by a Monte Carlo approach is shown. The middle path
shows the same non-linear function approximated by an EKF with first-order Taylor
expansion. The sigma point propagation through the scaled UT is shown on the
right. Image adapted from [147].

For convenience and simpler representation of the filter equations, we make the additive

noise assumption at this point. However, in general it is not necessary for the UKF . For the

scaled UT , we first need to determine 2n+1 sigma points Xi,t−1 ∈ Rn with i ∈ {0, . . . , 2n}
for n state variables, weights w(m) ∈ Rn for mean x̂t−1|t−1, and weights w(c) ∈ Rn for

covariance matrix P̂t−1|t−1. The weights for mean w(m) and covariance matrix w(c) of the

28 Chapter 3. Multi-object Tracking with Bayesian Filters

last time step are calculated as

λ = α2(n+ κ)− n, (3.32a)

w
(m)
0 =

λ

n+ λ
, (3.32b)

w
(c)
0 =

λ

n+ λ
+ (1− α2 + β), (3.32c)

w
(m)
i = w

(c)
i =

1

2(n+ λ)
, ∀i ∈ {1, . . . , 2n}, (3.32d)

where n denotes the state space dimension and λ is a scaling parameter. Here, α de-

termines the spread of the sigma points around the mean, κ is a secondary scaling pa-

rameter and β contains prior knowledge of the state distribution. To avoid sampling

non-local effects under strong nonlinearities, the parameter α should be a small number

in 0 ≤ α ≤ 1. Furthermore, positive semi-definiteness can be guaranteed by choosing

the parameter κ ≥ 0. A good choice for state estimation problems is κ = 0. Finally,

for Gaussian distributions β = 2 is optimal, otherwise it should be non-negative. Follow-

ing Julier [68], scaling parameters are used to sample sigma points

X0,t−1 = x̂t−1|t−1, (3.33a)

Xi,t−1 = x̂t−1|t−1 +
(√

(n+ λ)Pt−1|t−1
)
i
, ∀i ∈ {1, . . . , n}, (3.33b)

Xi,t−1 = x̂t−1|t−1 −
(√

(n+ λ)Pt−1|t−1
)
i−n

, ∀i ∈ {n+ 1, . . . , 2n}, (3.33c)

with
(√

. . .
)
i

denoting the ith column of the matrix square root of (n+ λ)Pt−1|t−1, from

the previous belief containing mean x̂t−1|t−1 and covariance Pt−1|t−1.

The prediction step is then performed by propagating the sampled sigma points Xi,t−1
calculated in Equation (3.33) through the non-linear function f(·) of the dynamic model

Xi,t|t−1 = f(Xi,t−1) ∀i ∈ {0, . . . , 2n}, (3.34)

followed by using these transformed sigma points Xi,t|t−1 to calculate the predicted mean

x̂t|t−1 and corresponding covariance Pt|t−1 as

x̂t|t−1 =
2n∑

i=0

w
(m)
i Xi,t|t−1, (3.35a)

Pt|t−1 =
2n∑

i=0

w
(c)
i

(
Xi,t|t−1 − x̂t|t−1

) (
Xi,t|t−1 − x̂t|t−1

)T
+ Qt, (3.35b)

with process noise covariance matrix Qt ∈ Rn×n and weights for mean and covariance

denoted w
(m)
i and w

(c)
i , respectively.

3.2. Filter Solutions for the Recursive Problem 29

The update step requires a new set of 2n+1 sigma points Xi,t ∈ Rn with i ∈ {0, . . . , 2n}
for n state variables and weights as in Equation (3.32) for predicted mean x̂t|t−1 and

covariance matrix P̂t|t−1. Again following Julier [68], scaling parameters are used to

sample sigma points

X0,t = x̂t|t−1, (3.36a)

Xi,t = x̂t|t−1 +
(√

(n+ λ)Pt|t−1
)
i
, ∀i ∈ {1, . . . , n}, (3.36b)

Xi,t = x̂t|t−1 −
(√

(n+ λ)Pt|t−1
)
i−n

, ∀i ∈ {n+ 1, . . . , 2n}, (3.36c)

with
(√

. . .
)
i

denoting the ith column of the matrix square root of (n + λ)Pt|t−1, from

the predicted mean x̂t|t−1 and covariance matrix Pt|t−1.

The measurement prediction step is then performed by propagating the sampled sigma

points Xi,t calculated in Equation (3.36) through the probably non-linear function h(·) of

the measurement model

Zi,t|t−1 = h(Xi,t) ∀i ∈ {0, . . . , 2n}, (3.37)

followed by using these sigma points Zi,t|t−1 to calculate the predicted a priori measure-

ment ẑt|t−1 with corresponding innovation covariance matrix St and cross covariance Ct

as

ẑt|t−1 =
2n∑

i=0

w
(m)
i Zi,t|t−1, (3.38a)

St =

2n∑

i=0

w
(c)
i

(
Zi,t|t−1 − ẑt|t−1

) (
Zi,t|t−1 − ẑt|t−1

)T
+ Rt, (3.38b)

Ct =

2n∑

i=0

w
(c)
i

(
Xi,t|t−1 − x̂t|t−1

) (
Zi,t|t−1 − ẑt|t−1

)T
, (3.38c)

with measurement noise covariance matrix Rt ∈ Rq×q and weights for predicted measure-

ments and innovation covariance matrix denoted w
(m)
i and w

(c)
i , respectively.

Finally, we compute the posterior mean x̂t|t and covariance matrix Pt|t as

x̂t|t = x̂t|t−1 + CtS
−1
t (zt − ẑt|t−1), (3.39a)

Pt|t = Pt|t−1 −CtS
−1
t CT

t , (3.39b)

given the current measurement zt. The correction step is equal to that of the linear KF

in Equation (3.22) by formulating the Kalman gain Kt as

Kt = CtS
−1
t . (3.40)

30 Chapter 3. Multi-object Tracking with Bayesian Filters

Note that for linear Gaussian systems the UKF delivers the same result as the standard

KF . For further details, e.g. the filter derivation, we refer the interested reader to [26, 69,

141].

3.2.3 Interacting Multiple Model (IMM)

Tracking multiple maneuvering targets in clutter is a challenging task for various reasons.

Especially, when the objects of interest do not follow the same motion pattern over the

whole time, as it is mostly the case, e.g. for cars, cyclists or pedestrians. Traffic participants

on a road crossing are a good example. They are able to move straight or perform a

coordinated turn, independent from their previous behavior. State estimation filters like

the KF or UKF use a linear/non-linear system function, also called motion model in

terms of object tracking. Such motion models, e.g. Constant Velocity (CV), Constant

Acceleration (CA) or Constant Turn-Rate Velocity (CTRV), aim to predict future states

which are used in a following correction step inside the filter. However, predictions are

wrong if the motion model does not fit the real behavior of the targets. Thus, also

measurement-to-target association might fail, if False Positive (FP) detections caused by

clutter are present or trajectories are crossing.

The Interacting Multiple Model (IMM) [18] filter provides a solution to these issues. It

is a traceable approximation to the intractable multiple model optimal Bayes filter [126],

which is modeled as jump Markov non-linear system. Besides the states of a system, such

a filter estimates mode probabilities, which defines how likely a motion model matches the

system’s behavior. Furthermore, the IMM filter is an excellent compromise in regards to

computational complexity and performance [99].

The multiple model optimal Bayes filter and its approximation assumes a fixed set of

r models M = {Mj}rj=1. Similar to single model filters as in Equation (3.11) and (3.12),

a non-linear stochastic state space model, again without control input, represents each

model of the set

xt = fj(xt−1) + wj,t, (3.41a)

zt = hj(xt) + vj,t, (3.41b)

where f(·)j denotes the non-linear system function and h(·)j denotes the probably non-

linear measurement function. Furthermore, the measurement vector and state vector are

denoted zt ∈ Rq and xt ∈ Rn, respectively. Noise sequences are represented by the process

noise vector wj,t ∈ Rn with its corresponding covariance matrix Qj,t ∈ Rn×n and the

measurement noise vector vj,t ∈ Rq with its covariance matrix Rj,t ∈ Rq×q. They are

considered as i.i.d., zero-mean, white Gaussian noise sequences.

3.2. Filter Solutions for the Recursive Problem 31

Model state transitions within these filters are modeled by a first-order Markov chain

represented by a state transition probability matrix

Π =



p1,1 · · · pr,1

...
. . .

...

p1,r · · · pr,r


 ∈ Rr×r, (3.42)

where pi,j denotes the probability of a state transition from model i to model j. Hence,

the main diagonal pi,i contains the probabilities to stay in the same state.

In comparison with the recursive formulation of the optimal Bayesian filter in

Equation (3.10), the posterior state PDF for multiple models needs an additional

estimate for the motion mode. Therefore we infer the joint PDF as

p(xt,Mt|z1:t), (3.43)

where all measurements z1:t up to time t are given and the target state xt holds continuous

random variables in contrast to the motion mode Mt, which holds discrete values. Hence,

a factorization of Equation (3.43) results in

p(xt,Mt|z1:t) = p(xt|Mt, z1:t) p(Mt|z1:t), (3.44)

with state inference step p(xt|Mt, z1:t) and mode inference step p(Mt|z1:t). We marginalize

out Mt in Equation (3.44) to get

p(xt|z1:t) =

r∑

j=1

p(xt,Mj,t|z1:t)

=

r∑

j=1

p(xt|Mj,t, z1:t) p(Mj,t|z1:t)︸ ︷︷ ︸
µj,t

,

(3.45)

where p(xt|z1:t) denotes the conditional state density, Mj,t denotes the motion mode with

p(Mj,t) = p(Mt = j) and µj,t is the posterior mode probability.

Similar to the single model Equation (3.10), the recursive solution for the multiple

model optimal Bayes filter can be obtained by applying Bayes’ rule to get

p(xt|z1:t) =
r∑

j=1

µj,t
p(zt|xt,Mj,t)

p(zt|Mj,t, z1:t−1)

∫

xt−1

p(xt|xt−1,Mj,t) p(xt−1|Mj,t, z1:t−1) d xt−1
︸ ︷︷ ︸

Chapman-Kolmogorov

,

(3.46)

with mode probability µj,t for the model j, the measurement likelihood p(zt|xt,Mj,t), the

normalization p(zt|Mj,t, z1:t−1) and the prediction defined by the Chapman-Kolmogorov

equation, which can be written as prior state PDF p(xt|Mj,t, z1:t−1).

32 Chapter 3. Multi-object Tracking with Bayesian Filters

Basically, a full cycle of the recursive IMM filter contains four steps: interaction,

prediction, update and combination. In the following we explain the four steps along with

theoretical details, but without full derivations. For a detailed derivation of the optimal

multiple model Bayesian filter and missing steps leading to the IMM approximation, we

refer the interested reader to [26, 126].

Interaction

The second term inside the integral of Equation (3.46), multiplied by the state transition

density, can be factorized as

p(xt−1|Mj,t, z1:t−1) =
r∑

i=1

µi|j,t−1 p(xt−1|Mi,t−1, z1:t−1), (3.47)

where both sides are approximated by a Gaussian PDF

p(xt−1|Mj,t, z1:t−1) ≈ N (xt−1; x̂?j,t−1|t−1,P
?
j,t−1|t−1), (3.48a)

p(xt−1|Mi,t−1, z1:t−1) ≈ N (xt−1; x̂i,t−1|t−1,Pi,t−1|t−1), (3.48b)

where x̂i,t−1|t−1 denotes the posterior state estimate and Pi,t−1|t−1 denotes the covariance

estimate of the previous stage for each filter i. The interaction step performs a probabilistic

mixing with these filter states, namely

x̂?j,t−1|t−1 =

r∑

i=1

µi|j,t−1 x̂i,t−1|t−1, (3.49a)

P?
j,t−1|t−1 =

r∑

i=1

µi|j,t−1
(
Pi,t−1|t−1 + (x̂i,t−1|t−1 − x̂?j,t−1|t−1)(x̂i,t−1|t−1 − x̂?j,t−1|t−1)

T
)
,

(3.49b)

resulting in a single initial state x̂?j,t−1|t−1 and covariance P?
j,t−1|t−1 for each filter j [26,

126]. The mixing probabilities are denoted µi|j,t−1 and calculated as

µi|j,t−1 =
pij µi,t−1
µ−j,t

, (3.50)

where pij is the transition probability taken from Equation (3.42) at row i and column j

denoting the probability for a model switch from i to j. Furthermore, µ−j,t is the predicted

mode probability for filter j at the current time step

µ−j,t =

r∑

i=1

pijµi,t−1, (3.51)

3.2. Filter Solutions for the Recursive Problem 33

with pij from Equation (3.42) and the mode probability µi,t−1 of the last time step. In

summary, the previous filters with their mode probability and the transition probability

directly influence the initial state of each filter.

Prediction and Update

Both, the state transition p(xt|xt−1,Mj,t) and the measurement likelihood p(zt|xt,Mj,t)

in Equation (3.46), can be represented by the jth stochastic state space model in

Equation (3.41), similarly to that of a single model, e.g. for the KF in Equation (3.24)

and (3.28). Therefore, we use the initial states x̂?j,t−1|t−1 and covariances P?
j,t−1|t−1 to

perform the prediction step for each individual filter j with the KF in Section 3.2.1 or

the UKF in Section 3.2.2. Hence, we obtain predicted states x̂j,t|t−1 and corresponding

covariance matrices Pj,t|t−1. Additionally, this step yields predicted measurements

ẑj,t|t−1 and corresponding innovation covariance matrices Sj,t. Finally, the filter-specific

update performs a correction with the current measurement zt and yields the posterior

state x̂j,t|t and the covariance Pj,t|t.

Another update is needed for the mode probabilities. Thus, we use the model likelihood

Lj,t similar to Equation (3.29), representing how well the measurements zt fits the model

Lj,t = N (zt; ẑj,t|t−1,Sj,t)

=
1√

det(2π Sj,t)
exp

(
−1

2
(zt − ẑj,t|t−1)

TS−1j,t (zt − ẑj,t|t−1)
)
,

(3.52)

to update the mode probabilities

µj,t =
Lj,t µ−j,t∑r
i=1 Li,t µ−i,t

, (3.53)

where the likelihood of a model fitting the measurement influences the mode probability

µj,t of the current time-step.

Combination

Finally, we obtain the posterior state x̂t|t and its covariance Pt|t by combining the output

of each filter, weighted by the mode probability

x̂t =
r∑

j=1

µj,t x̂j,t|t, (3.54a)

Pt =
r∑

j=1

µj,t|t
(
Pj,t|t + (x̂j,t|t − x̂t|t)(x̂j,t|t − x̂t|t)

T
)
, (3.54b)

which represents the final result, but is not part of the filter recursion itself.

34 Chapter 3. Multi-object Tracking with Bayesian Filters

3.3 Data Association

The KF in Section 3.2.1 for linear and the UKF in Section 3.2.2 for non-linear systems,

are designed to estimate the object states based on noisy observations. However, they

assume single tracks and one measurement at a time. In addition to measurement uncer-

tainties caused by inaccurate sensors, Multiple Object Tracking (MOT) has to deal with

measurement origin uncertainties due to False Positives (FPs) and multiple simultaneous

tracks. Therefore, it is not clear from which track a measurement emerges.

Hence, the aim of Data Association (DA) is to correctly assign noisy measurements to

active tracks in the presence of clutter, which is the most important and difficult problem

to solve in MOT [161]. Figure 3.2 shows a basic recursive tracking structure combining

state estimation and DA within one cycle. The system’s motion model is responsible for

the state prediction, whereas its measurement model yields predicted measurements for

this predicted state. This makes both, observed and predicted measurements, comparable

for the used DA method. Afterwards, assigned measurements are used for the state update.

Besides state estimation and DA, the tracking filter needs a track management component

to deal with measurements which are not assigned to existing trajectories and thus, can

be used to start new tracks. Furthermore, it terminates old tracks without assigned

observations over a certain time period.

DA

Tracking filter

Measurement
Prediction

State
Update

State
Prediction

Track
Management

x̂t|t−1ẑt|t−1

Updated

Tracks

Motion ModelMeasurement Model

Noisy
Measurements

(Detections)

Target
Tracks

Measurements without assignment

Figure 3.2: Tracking architecture. Image adapted from [126].

DA algorithms can be separated into probabilistic and deterministic methods. On the

one hand, probabilistic DA approaches perform so-called soft assignments, where weighted

measurements are used to update the predicted state. This leads to robust behavior, but

the update is never completely correct. On the other hand, deterministic approaches are

following a hard assignment strategy. In contrast to probabilistic methods, they assign

3.3. Data Association 35

only a single measurement to each track. Thus, false assignments result in completely

wrong updates.

Usually, a tracking algorithm is named after the DA method used in combination with

the state estimation filter. An example for Single Object Tracking (SOT) is the Nearest

Neighbour (NN) filter, e.g., [6]. It assigns measurements and targets with the smallest

Mahalanobis distance and uses a Bayesian filter for state estimation. The counterpart for

MOT is the Global Nearest Neighbour (GNN) filter, using for example the standard KF

in combination with the Hungarian method [106], e.g., [30]. Taking all measurements and

targets into account, it globally solves a linear assignment problem. Both, the NN filter

and the GNN filter, are deterministic methods which work well in environments with

nearly no clutter and require an accurate system model. Additionally, NN filters used

within a MOT scenario require well-separated tracks. Nevertheless, most hard assignment

methods are easy to implement and work reasonably well in many applications.

An appropriate choice to cope with heavily cluttered environments are probabilistic

DA methods. The commonly used Probabilistic Data Association (PDA) filter [7, 9]

performs a weighted update using all measurements in a certain region (validation gate)

independently for all tracks. It can be seen as a soft assignment version of the NN filter.

The Joint Probabilistic Data Association (JPDA) filter [7, 43] extends the PDA filter to

deal with multiple objects. Hence, it performs a weighted update using all measurements

in a certain region, taking all targets into account. Summarizing, it provides a global soft

assignment between multiple targets and measurements.

Because of their robust behavior in cluttered environments, which is beneficial for

tracking in autonomous driving scenarios, we further discuss filters using PDA and JPDA.

Though PDA is normally used for SOT , we explain it first, because the implemented

JPDA filter – designed for multiple interacting targets – differs only in the calculation of

data association probabilities. However, we begin with the important concept of gating,

which is necessary for both filters.

3.3.1 Gating

Gating is the process of determining which measurements are possible candidates for

the state update of a target track. Therefore, a so called validation gate is defined,

which contains these measurements. The reason for that is to avoid searching the whole

measurement space. According to Bar-Shalom and Li [8], such validation gates mostly

have an elliptical shape and are validated by some threshold

Vt (γ) = {zt :
(
zt − ẑt|t−1

)T
S−1t

(
zt − ẑt|t−1

)
≤ γ}, (3.55)

with the current measurement zt, the predicted measurement ẑt|t−1, innovation covariance

matrix St and the gate threshold γ. All measurements inside the validation region Vt, with

a normalized distance smaller than or equal the gating threshold, are later used for data

association and subsequently for updating the state.

36 Chapter 3. Multi-object Tracking with Bayesian Filters

The gating threshold γ is calculated by using the inverse-χ2 distribution Inv-X 2(PG, q)

with gating probability PG and the measurement dimension q = dim(zt) [8]. Hence, PG
denotes the probability that a true measurement lies within the gate, if detected. The

volume of the validation region in Equation (3.55) can be expressed by

Vt = V (q) |γSt|
1
2 , (3.56)

where

V (q) =
π

1
2
q

Γ
(
1
2q + 1

) , (3.57)

V (q) denotes a hypersphere with dimension q and gamma function Γ(·). The resulting

gated measurement set

Zv,t = {zm,t}Nv
m=1, (3.58)

contains all Nv valid measurements. All measurements which are not part of the gating

region can be used to initiate potential new tracks.

3.3.2 Probabilistic Data Association Filter

The Probabilistic Data Association (PDA) filter [7, 9] performs a weighted update using

association probabilities originated from assigning all measurements inside the validation

gate to the tracked target. Hence, it works well in cluttered environments with single

independent tracks only. To obtain a simple state-estimation scheme like in the KF ,

according to Bar-Shalom and Li [8], the following assumptions are made:

• There is only one target of interest present inside the validation gate, which is

modeled by the dynamic Equation (3.11) and measurement Equation (3.12).

• The track is already initialized.

• The past information about the target is summarized approximately by a sufficient

statistic in the form of the Gaussian prior

p(xt|z1:t−1) = N (xt; x̂t|t−1,Pt|t−1). (3.59)

• For each time step a validation region as in Section 3.3.1 is set up around the

predicted measurement.

• Target detections occur independently over time with known probability PD.

• At most one of the valid measurements originates from the target of interest, provided

that the true target was detected and is valid. Measurements not originating from

the target are assumed to be FP detections. They are modeled as i.i.d. variables

with uniform spatial distribution in measurement space.

3.3. Data Association 37

With these assumptions, the PDA filter can be described with four steps. First, we

perform the prediction step like in the original KF (recall Section 3.2.1) or the UKF (recall

Section 3.2.2). Second, the measurement validation is done with the gating procedure

(as in Section 3.3.1). Third, we assume a diffuse clutter model which is suitable for

heterogeneous clutter environments and results in the non-parametric PDA algorithm [7,

9, 26]. It is used to calculate the association probabilities. Finally, we use these association

probabilities within the update step of the underlying filter.

In the following, we describe the last two steps in detail. According to [8], the associ-

ation probabilities βm,t for the non-parametric PDF filter can be calculated by

βm,t =





b

b+
Nv∑
i=1

ei

, m = 0

em

b+
Nv∑
i=1

ei

, m ∈ {1, . . . , Nv},
(3.60)

with the non-normalized likelihood em of measurement zm,t fitting the current predicted

measurement

em = exp

(
−1

2

(
zm,t − ẑt|t−1

)T
S−1t

(
zm,t − ẑt|t−1

))

= exp

(
−1

2
vTm,t S−1t vm,t

)
,

(3.61)

where vm,t denotes the innovation of measurement m at time t. The constant parameter

b is calculated with the gating parameters from Section 3.3.1 as

b =

(
2π

γ

) q
2 Nv(1− PDPG)

V (q)PD
. (3.62)

With the obtained association probabilities βm,t, we are able to perform the weighted

state update of the PDA filter as

x̂t|t = x̂t|t−1 + Ktvt = x̂t|t−1 + Kt

Nv∑

m=1

βm,t
(
zm,t − ẑt|t−1

)

︸ ︷︷ ︸
vt

, (3.63)

where vt denotes the combined innovation. The corresponding covariance update results

in

Pt = β0,tPt|t−1 + (1− β0,t) Pc
t|t +

∼
Pt, (3.64)

where β0,t denotes the case that no update happens at all because none of the measure-

ments belong to the target. The correct measurement update within the covariance matrix

38 Chapter 3. Multi-object Tracking with Bayesian Filters

happens with probability (1− β0,t) and is defined by

Pc
t|t =

(
Pt|t−1 −KtStK

T
t

)
. (3.65)

The spread of innovations term [8]

∼
Pt = Kt

(
Nv∑

m=1

βm,tvm,tv
T
m,t − vtvTt

)
KT
t , (3.66)

increases the innovation covariance of the update state, because it is not known which

measurement is correct. P̃ is a positive semidefinite matrix.

3.3.3 Joint Probabilistic Data Association Filter

In contrast to the PDA filter, the Joint Probabilistic Data Association (JPDA) filter [7, 43]

for MOT problems considers all targets simultaneously within one time step. Thus, it

provides a better solution to multiple interacting targets in a cluttered environment, as

it is common in the domain of autonomous driving. According to Bar-Shalom and Li [8],

the JPDA algorithm assumes that:

• The number of targets is known and they are already established.

• Measurements from one target are allowed to fall into another target’s validation

region.

• The past of each target is summarized by an approximate sufficient statistic in

the form of state estimates. They are given by approximate conditional mean and

corresponding covariance, which are assumed to be Gaussian distributed.

• Each target has a possibly different dynamical system, modeled by its system dy-

namics equation (3.11) and measurement equation (3.12).

If validation regions of simultaneous tracks do not intersect, the DA problem can

be simplified and solved by the PDA filter. However, overlapping gating regions are

common in cluttered environments with several maneuvering objects. Hence, considering

the JPDA assumptions above, shared measurements between target gates are allowed.

Such overlapping regions of multiple targets are called cluster, though also a single target

can be seen as a cluster. Compared to the PDA filter discussed in Section 3.3.2, the JPDA

filter differs only by calculating the association probabilities. For this, we have to evaluate

the conditional probabilities of the joint events [43]

θi =

Nv⋂

j=1

θij,tj , (3.67)

3.3. Data Association 39

where θij,tj denotes the event that measurement j originated from target tj . Furthermore,

tj is the target’s index to which measurement j is associated. Joint events where each

measurement belongs to a different target are called feasible events. For the sake of

readability, we drop the time index for the joint event and assume the event to take place

at the current time step.

Following You et al. [161] and Fortmann et al. [43], we explain the modified probability

calculation starting with the definition of a validation matrix. Such a matrix contains all

possible associations of valid measurements to targets with overlapping gating regions or

FP detections and is defined as

Ω = [ωj,t] =




ω1,0 · · · ω1,Nt

...
. . .

...

ωNv ,0 · · · ωNv ,Nt


 , (3.68)

where ωj,t is a binary variable denoting the target-to-measurement relationship. All mea-

surements j ∈ {1, . . . , Nv} within the validation gate of target t ∈ {0, . . . , Nt} are defined

by ωj,t = 1. Otherwise, if measurement j is not in the validation gate of target t, ωj,t = 0.

The first column of Ω represents a dummy target. It models the possibility that measure-

ments originate from FP detections and thus, all elements of the first column ωj,0 are set

to 1.

The next step contains the derivation of association hypotheses by splitting up the

validation matrix following two assumptions:

• Each measurement must have originated from a target or from FP detections. Hence,

only one source per measurement is allowed.

• Only a single measurement can originate from each target.

Each hypothesis is represented by an association matrix Ω̂

Ω̂(θi) = [ω̂ij,t(θ
i)] =




ω̂i1,0 · · · ω̂i1,Nt

...
. . .

...

ω̂iNv ,0
· · · ω̂iNv ,Nt


 , (3.69)

with ω̂ij,t(θ
i) indicating whether measurement j originates from target t in the ith feasible

joint event θi. Thus, the binary indicator

ω̂ij,t
(
θi
)

=

{
1 if θij,tj ⊂ θi

0 otherwise,
(3.70)

is 1, if the measurement j belongs to target t and 0 if not. Finally, the previously made

40 Chapter 3. Multi-object Tracking with Bayesian Filters

assumptions require the association matrix to satisfy

Nt∑

t=0

ω̂ij,t(θ
i) = 1, j ∈ {1, . . . Nv} and

Nv∑

j=0

ω̂ij,t(θ
i) ≤ 1, t ∈ {1, . . . Nt}.

(3.71)

Following this procedure, we obtain i feasible events with the corresponding association

matrices Ω̂i. Figure 3.3 shows an example configuration of two clusters with predicted

y

x

Cluster 1

Cluster 2

ẑ1 ẑ2

ẑ3z1

z2

z3
z5

z6z4

Figure 3.3: Example targets with corresponding gating regions for validation matrix generation.
Cluster 1 consists of two targets (t1 and t2) with intersecting validation gates, whereas
cluster 2 includes only target t3 and thus, can be handled separately. Image adapted
from [161].

measurements ẑ1,t|t−1, ẑ2,t|t−1 and ẑ3,t|t−1 of active targets and their overlapping validation

gates including valid measurements. Note, also the non-overlapping gating region of target

t3 is considered to be a cluster. Additionally, there is one measurement – inside the dashed

circle – which lies outside the validation gates of all currently known targets. Thus, it

originates from clutter or is a new track which needs to be initialized within the next time

step. Considering the first cluster, the resulting validation matrix

Ω = [ωj,t] =




t0 t1 t2

z1 1 1 0

z2 1 1 1

z3 1 0 1


, (3.72)

shows all possible target-to-measurement associations containing the validation gates of

targets t1 and t2. Applying the splitting assumptions, we obtain the joint events and

3.3. Data Association 41

corresponding association matrices:

Ω̂ [θ1] = Ω̂1 =




1 0 0

1 0 0

1 0 0


 , θ1 = θ11,0 ∩ θ12,0 ∩ θ13,0, (3.73)

Ω̂ [θ4] = Ω̂4 =




0 1 0

1 0 0

0 0 1


 , θ4 = θ41,1 ∩ θ42,0 ∩ θ43,2. (3.74)

In summary, we get eight hypotheses for the first cluster shown in the example configura-

tion of Figure 3.3. The association matrices in Equations (3.73) and (3.74) are only two

representative examples, starting with the joint event where all measurements originate

from clutter. Association matrix Ω̂4 represents the case where both targets, t1 and t2 have

associated measurements and only z2 results from clutter i.e. Ω̂1.

Another way to obtain all possible combinations of measurements and targets is to

visualize the hypotheses graph shown in Figure 3.4. We start a new tree for all possible

100

100

100

Ω̂1

001

010

100 001

001

100

010

100

100 001

Ω̂4

001

100Measurement z3

Measurement z2

Measurement z1

Figure 3.4: Hypothesis graph of cluster 1 depicted in Figure 3.3. Hypotheses represented by
the association matrices Ω̂1 and Ω̂4 as noted in Equations (3.73) and (3.74) are
marked in red and blue, respectively. The red hypothesis assumes for example that
measurement z1 is assigned to target t0 ([100]) which means clutter, whereas the
blue hypothesis assigns the same measurement to target t1 ([010]). Image adapted
from [161].

association permutations of measurement z1, which in our case either originates from

clutter or from target t1. The second row or level two of our trees now contains all allowed

allocations for measurement z2 following the splitting assumptions. Note that for the

second tree, starting with the root node [010], there is no further association to target

t1 allowed, because it is already linked to measurement z1. Double assignments are only

allowed between measurements and the dummy target t0. Finally, the last row delivers all

possible hypotheses for the observed cluster. Following the tree from the bottom to the

top, we can stack together the complete association matrix for each hypothesis.

42 Chapter 3. Multi-object Tracking with Bayesian Filters

With this knowledge we are able to calculate the joint association probabilities. There-

fore, two indicators in the form of binary variables are defined as

τj
(
θi
)

=

Nt∑

t=1

ω̂ij,t
(
θi
)

=

{
1

0,
(3.75)

where τj is the measurement association indicator and describes whether measurement j

is associated with an active target and

δt
(
θi
)

=

Nv∑

j=1

ω̂ij,t
(
θi
)

=

{
1

0,
(3.76)

where δt is the target detection indicator and describes whether a target t has been detected

or not. Hence, the number of false measurements φ(θi), for the joint event θi results from

Equation (3.75) as

φ(θi) =

Nv∑

j=1

(
1− τj(θi)

)
. (3.77)

Following the derivation in [161], we assume a diffuse prior for the number of false mea-

surements and get the feasible association probabilities for the non-parametric JPDA [7]

as

p(θi|Z) =
1

c

φ(θi)!

V φ(θi)

∏

j

(Aj,tj)
τj(θ

i)
∏

t

(PD)δt(θ
i) (1− PD)1−δt(θ

i) , (3.78)

with the number of false measurements denoted φ(θi), the volume of the validation region

as in Equation (3.56) denoted V φ(θi), the detection probability PD, the normalization

constant c and both indicators for measurement association and target detection denoted

τj(θi) as in Equation (3.75) and δt(θi) as in Equation (3.76), respectively. Association

probabilities Aj,tj of the joint events θi are given by Gaussian likelihoods

Aj,tj = N (zj ; ẑtj ,t|t−1,Stj ,t)

=
1√

2π det(Stj ,j)
exp

(
−1

2
(zj − ẑtj ,t|t−1) S−1tj ,j (zj − ẑtj ,t|t−1)

)
, (3.79)

where measurement j is associated to target tj and the subscript t denotes the time.

Considering the feasible joint event θ4 with the association matrix of our example in

Equation (3.74), the resulting association probability is calculated as

p(θ4|Zt) =
1

V
P 2
DA1,1A3,2 , (3.80)

where δ1(θ4) = δ2(θ4) = 1 and τ1(θ4) = τ3(θ4) = 1, whereas τ2(θ4) = 0.

3.3. Data Association 43

The state update is then performed in the same way as for the PDA filter in

Equations (3.63) and (3.64), but with the JPDA probabilities. Assuming the target

states are mutually independent regarding their past, we get the JPDA probabilities by

marginalizing out all probabilities of feasible joint events as

βj,t =
∑

θ:θj,t∈θ
p(θ|Z). (3.81)

4
Multi-object Tracking with Recurrent Neural Networks

Contents

4.1 Feedforward Neural Networks . 45

4.2 Recurrent Neural Networks . 53

4.3 Network Training . 60

4.4 Multi-object Tracking Architectures 62

The aim of this chapter is to provide an introduction to Artificial Neural Networks

(ANNs) and how they are used for target tracking. We start with an explanation of

Feedforward Neural Networks (FNNs), including some principle concepts and the meaning

of supervised learning. Afterwards, we discuss Recurrent Neural Networks (RNNs) which

are an extension to the FNN for sequential input data. Furthermore, we describe a special

type of RNN cell which is called Long Short-Term Memory (LSTM) and takes long-time

dependencies into account, which can be useful in tracking applications. Another section

of this chapter deals with the training of such networks. Finally, we explain how these

concepts can be used for Multiple Object Tracking (MOT).

4.1 Feedforward Neural Networks

Artificial Neural Networks (ANNs) are engineered systems inspired by the biological learn-

ing processes in the brain [53]. While such networks were originally developed to model

the behavior of biological brains, nowadays they are designed to master specific machine

learning tasks. The basic concept behind ANNs is to solve complex problems with a col-

lection of small and simple, connected processing units. These units, also called artificial

neurons or nodes, were first proposed by McCulloch and Pitts [100] and later extended

by Rosenblatt [122] which resulted in the Perceptron. Both models calculate a weighted

sum of inputs followed by a threshold function. While the former has binary inputs and

outputs with manually selected parameters, the latter uses floating point numbers and

45

46 Chapter 4. Multi-object Tracking with Recurrent Neural Networks

is able to learn the parameters with an iterative learning algorithm. These models are

the basis of recent ANNs. Figure 4.1 shows such a Perceptron with one neuron receiving

vector x = (x0, x1, . . . , xn) as an input and trainable weights w = (w0, w1, . . . , wn) influ-

encing the connection strength. Each neuron usually has an additional bias input with a

connection weight which is always set to one. This can be simplified by adding an extra

input and setting x0 to one, which then acts like a bias unit. The activation or trans-

fer function, denoted g(·), takes the weighted input sum z, written by the dot product

z = wTx = w0x0 + w1x1 + . . .+ wnxn, as an argument and produces the output value y.

x0

x1

x2

...

xn

Activation
function

g
(
wTx

)

In
p
u
ts

w0

w1

w2

wn

y
Output

Figure 4.1: A Perceptron example with input values x0, x1, . . . , xn, learnable connection weights
w0, w1, . . . wn and the activation or transfer function g(·), originally modeled by the
Heaviside step function.

Early models of artificial neurons, e.g. ADALINE proposed by Widrow and Hoff [152],

used linear activation functions, i.e. the identity function (f(x)=x) and thus, were limited

to linear problems. Stacking these linear units to a multilayer system, again results in a

linear model which can always be replaced by a single linear layer. The power of recent

neural networks therefore comes from non-linear activation functions, discussed later in

this chapter.

The goal of a Perceptron and ANNs in general is to approximate some function f∗,
which typically solves a classification or regression task y = f∗(x) by mapping an in-

put value x to a given target value or label y∗. FNNs, for example, define a mapping

y = f(x,θ) where θ contains the learnable parameters [53]. Such machine learning

problems where pairs of input x and corresponding output label y are given for training,

are called supervised learning tasks [55]. All problems occurring in this thesis are falling

within this class of tasks. In contrast, unsupervised learning deals with unlabeled data and

is for example used to explore structures in data or to build clusters of similar examples.

Reinforcement learning is another category and describes tasks where, instead of ground

truth labels y, only scalar reward values are available at the end of a task. Thus, the aim

of such tasks it the reward maximization.

4.1. Feedforward Neural Networks 47

In order to solve more complex problems, we discuss the Feedforward Neural Network

(FNN) or Multilayer Perceptron (MLP), which is used in a lot of Deep Learning (DL)

models [16, 53] and is built by stacking layers of neurons on top of each other. An example

of a feed forward network is illustrated in Figure 4.2. It has three input units expecting

x0

x1

x2

In
p
u
ts y

Output

Hidden
layer 1

Hidden
layer 2

Input
layer

Output
layer

Figure 4.2: Example for a Feedforward Neural Network (FNN) with an input layer, two hidden
layers and an output layer. All nodes are fully connected and build an acyclic graph.

the same number of input values. These units are fully connected with the first of two

hidden layers. This means that each unit of one layer is connected with every unit of

another layer. The same structure can be found between both hidden layers or the hidden

layer and the following output layer, respectively. Connections between neurons within the

same layer or to itself are not allowed. Hence, the network can be seen as a directed acyclic

graph with nodes and weighted edges. The FNN propagates input values in one direction

through the network starting at the input nodes. After passing the hidden layers, the

propagated values end in the output layer. Such a process of propagating values through

the network is known as the forward pass [55].

Models with more than one or a high number of hidden layers are usually called

Deep Neural Networks (DNNs). FNNs with a deep structure are able to approximate

nearly every arbitrary non-linear function and can therefore be seen as non-linear function

approximators [53]. The learning process of such networks consists of adapting the network

weights to optimize the matching of output values and assigned labels by minimizing some

error function. Therefore, we feed the network with different input-output pairs and adjust

the weights depending on the error every node produces. This error can be figured out

by applying gradient descent (see Section 4.3) to the error function w.r.t. each of the

network’s weights. An efficient calculation of these gradients can be achieved by applying

the well-known back-propagation algorithm [123]. The process of calculating gradients

and applying them to the network weights is also known as backward pass.

48 Chapter 4. Multi-object Tracking with Recurrent Neural Networks

4.1.1 Forward Pass

The forward pass of a FNN can be processed in a very efficient way by using matrix

multiplications. To this end, we make use of the fully connected structure between L

layers by writing the weights between two layers l and l + 1 in a matrix W(l) ∈ RM×N ,

where N denotes the number of units for the previous layer l and M denotes the number

of units for the next layer l + 1. If we do not integrate the bias into the input vector, we

have to define it as b ∈ RM . Hence, we obtain the output of the next layer h(l+1) ∈ RM

by applying the activation function g(·) element-wise to the weighted sums of the previous

layer z(l+1) = W(l)h(l) + b(l), where h(l) ∈ RN defines the output vector of the previous

layer. The forward pass of one layer is then given as:

h(l+1) = g
(
W(l)h(l) + b(l)

)
= g

(
z(l+1)

)
. (4.1)

Considering the network illustrated in Figure 4.2, we define h(0) = x, x ∈ RN which

results in the following calculation chain:

h(1) = g
(
W(0)x + b(0)

)
,

h(2) = g
(
W(1)h(1) + b(1)

)
,

h(3) = y = g
(
W(2)h(2) + b(2)

)
.

(4.2)

The final output y for this example network is then a scalar because of the single output

node. However, if we want to pass a whole batch of inputs through the network at once,

we have to model the input vector x as a matrix X ∈ RN×D, where D denotes the batch

size, which results in an output vector y ∈ RD containing all output values.

The single output node in our example is usually used for regression tasks activated by

the identity function or for binary classification in combination with a sigmoid activation

function. The output layer design, regarding number of nodes and activation function,

depends on the task we want to solve. Within the next paragraphs we discuss popular

activation functions and how they are related to the number of output units and the chosen

loss function used for network training.

Activation Functions

One reason for the success of DNNs is the usage of non-linear activation functions within

the hidden layers. They allow the network to model nearly any arbitrary target function

and can for example find non-linear classification boundaries [55]. To overcome the limita-

tions of early ANNs, which used only linear activation functions, i.e. the identity function,

the sigmoid function

g(z) = σ(z) =
1

1 + exp(−z) , (4.3)

4.1. Feedforward Neural Networks 49

as illustrated in Figure 4.3a, was used. Because it yields values between 0 and 1, it is a

good choice as an activation for the output layer to model probabilities. As we will see

later, in such a case it is important to use an appropriate cost function which eliminates

the saturation effect while training. However, used within hidden layers, the function

saturates in both directions very quickly and therefore suffers from the vanishing gradient

problem. This means, that during back-prop the gradients get very small for a big range

of the function, which stops the network from learning.

−6 −4 −2 0 2 4 6

0.5

1

z

g(z)

1
1+exp(−z)

(a) Sigmoid

−6 −4 −2 2 4 6

−1

1

z

g(z)

tanh(z)

(b) Hyperbolic tangent

−6 −4 −2 0 2 4 6

1

2

3

4

z

g(z)

max(0, z)

(c) Rectified Linear Unit (ReLU)

−6 −4 −2 2 4 6

1

2

3

4

z

g(z)

max(0, z)
+αmin(0, z)

(d) Leaky Rectified Linear Unit (leaky ReLU)

Figure 4.3: Popular activation functions used in recent DNNs. The sigmoid function (a) produces
output values between 0 and 1. The same characteristic s-shape can be observed
for the hyperbolic tangent (b), yielding values between -1 and 1. The Rectified
Linear Unit (ReLU) function (c) and the Leaky Rectified Linear Unit (leaky ReLU)
function (d) are both equal to the identity function within the positive domain. The
leaky ReLU function additionally ensures a gradient not equal to zero for negative
activations.

50 Chapter 4. Multi-object Tracking with Recurrent Neural Networks

Another activation function heavily used is the hyperbolic tangent given by

g(z) = tanh(z) =
exp(2z)− 1

exp(2z) + 1
. (4.4)

It is a zero centered version of the sigmoid function which outputs values between −1 and

1 as shown in Figure 4.3b. They are closely related by the linear transformation

tanh(z) = 2σ(2z)− 1, (4.5)

which means, that every network with sigmoid activation functions in the hidden layers

can be replaced by another network with hyperbolic tangent activation functions [55].

Nowadays, Rectified Linear Units (ReLUs) defined as

g(z) = max(0, z), (4.6)

are commonly used activation functions in hidden layers of DNNs because they act like

the identity function in the positive domain and therefore, they are easy to optimize [53].

The plot in Figure 4.3c shows the identity function for positive values and zero for neg-

ative ones. This leads to large gradients in the positive domain, when the unit is active.

However, a problem occurs when there exist examples which cause zero activations while

training, because gradient-based learning algorithms are not able to learn from such ex-

amples. Hence, there exist some ReLU generalizations like the leaky ReLU illustrated in

Figure 4.3d and defined as

g(z) = max(0, z) + αmin(0, z), (4.7)

ensuring gradients also for the negative domain. The parameter α is normally fixed to a

small value.

Loss Functions

The back-propagation algorithm needs a loss or error function to evaluate the difference

between predicted output y and target value t while training. In order to obtain useful

results, the output layer design, as well as an appropriate choice of the loss function is

important. Regression tasks, for example, require the identity function in the output layer

to get floating point numbers as a result. The appropriate loss function for such a task is

the Mean Squared Error (MSE) function

E(y, t) =
1

2
(y − t)2, (4.8)

4.1. Feedforward Neural Networks 51

with network output y and assigned target t. If we consider a batch of D input values, we

get

E(y, t) =
1

2D

D∑

i=1

(yi − ti)2, (4.9)

which is simply an averaged version as the name suggests.

Another type of task is the classification of inputs, which has other requirements. The

number of different classes in the training set defines the output layer dimension. Starting

with a binary classification task which has two different classes C1 and C2, a single neuron

with a sigmoid activation function is needed. It can infer the probability of belonging to

a defined class C1 or not:
p(C1|x) = y = σ(wTx + b),

p(C2|x) = 1− y.
(4.10)

Following the loss function derivation using maximum likelihood, explained in [53, 55], we

get the cross-entropy error function

E(y, t) = (t− 1) ln(1− y)− t ln(y), (4.11)

where t is the binary target label (e.g. t = 1 if C1, else t = 0) and y is the output

probability. Note that the logarithm within the error function equalizes the exponential

of the sigmoid function, which prevents the back-propagation algorithm from saturation.

For classifiers with more than two classes, the number of output units has to match the

number of classes appearing in the data. These units have the same activation function

which is known as softmax and yields a probability for each class. It is defined as

g(zj) =
exp(zj)∑C
i=1 exp(zi)

, (4.12)

where j denotes different output nodes. Because the softmax function responds to the

differences between its inputs, it is invariant of adding a scalar value to all inputs [53].

Therefore, we can derive a more stable variant:

softmax(z) = softmax(z −max
i

(zi)). (4.13)

The corresponding loss function for multiple classes

E(y, t) = −
C∑

i=1

ti ln(yi), (4.14)

is the multi-class cross-entropy error function and contains, equal to the case C=2, the

logarithm which is undoing the exponential of the loss function and therefore ensures

better learning.

52 Chapter 4. Multi-object Tracking with Recurrent Neural Networks

4.1.2 Backward Pass

The backward pass of a network in general contains the calculation of gradients from

the loss function w.r.t. the network weights. These gradients are later used to minimize

the loss while training by applying gradient descent (see Section 4.3). An efficient way

to calculate gradients of a FNN is the back-propagation algorithm [123], short backprop,

which applies the chain rule of calculus in a repetitive manner.

We start with the last layer of the network and derive the loss function w.r.t. to the

weights
∂E(y, t)

∂W(L−1) =
∂E(y, t)

∂h(L)
· ∂h(L)

∂z(L)︸ ︷︷ ︸
δ(L)

· ∂z(L)

∂W(L−1) , (4.15)

with h(L) = y denoting the last layer’s output and W(L−1) is the corresponding weight

matrix. Note, we assume here a scalar target value t and a scalar predicted output y

representing a network with a single output neuron. Considering the FNN in Figure 4.2,

the weight calculation between hidden layer 2 and the output layer follows

∂E(y, t)

∂W(2)
=
∂E(y, t)

∂h(3)
· ∂h(3)

∂z(3)︸ ︷︷ ︸
δ(3)

· ∂z(3)

∂W(2)
, (4.16)

where δ(3) can also be used to calculate the bias

∂E(y, t)

∂b(2)
= δ(3) · ∂z(3)

∂b(2)
, (4.17)

if explicitly denoted. Hence, we can write down the calculation in a general form for the

remaining weights of our network:

∂E(y, t)

∂W(L)
=

δ(L−1)

︷ ︸︸ ︷
∂E(y, t)

∂h(L)
· ∂h(L)

∂z(L)︸ ︷︷ ︸
δ(L)

· ∂z(L)

∂h(L−1) ·
∂h(L−1)

∂z(L−1)
· . . . · ∂z(1)

∂W(0)
. (4.18)

We can derive a universal formulation for the weight and bias calculation by examining

the examples in Equations (4.16), (4.17) and the general expression in Equation (4.18).

We observe that the calculation of the last term for the weights can be simplified to

∂z(3)

∂W(2)
=

∂

∂W(2)
W(2)h(2) + b(2) =

(
h(2)

)T
, (4.19)

which results in the universal form for network weight of layer l

∂E(y, t)

∂W(l)
= δ(l+1) ·

(
h(l)
)T

. (4.20)

4.2. Recurrent Neural Networks 53

Similar to the weights, we can observe for the bias

∂z(3)

∂b(2)
=

∂

∂b(2)
W(2)h(2) + b(2) = 1, (4.21)

which results in the universal form for the network bias of layer l

∂E(y, t)

∂b(l)
= δ(l+1). (4.22)

4.2 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) can be seen as an extension to FNNs and are able

to process sequential input data x1, . . . ,xT . In addition to the input and output, the

used artificial neurons have a feedback connection which provides the current state of the

neuron as an input for the next time step. This means that the current state within a

neuron affects the future state like in a dynamic system [53], modeled as

ht = f(ht−1,xt;θ), (4.23)

where ht denotes the systems state and xt is the input vector at time t. However, t has

not necessarily to be a time index. It could also be some spatial information like the index

of a pixel. Only the sequence order is important to apply RNNs.

Considering a RNN , Equation (4.23) defines the hidden layer of a network. It acts like

a memory containing a lossy summary about the past, remembering only relevant aspects

of past sequences. This recursive structure allows the network to deal with sequences

of different length. Figure 4.4 shows the basic structure of a RNN with a hidden layer

containing a single recurrent neuron. Another core concept of RNNs is parameter sharing

h

o

x

wh

wo

wx

Figure 4.4: Illustration of a basic Recurrent Neural Network (RNN) with a hidden layer con-
taining one unit. The recurrent connection provides the future state with a weighted
version of the current state.

across different parts of the network [53]. Hence, it enables the model to generalize across

54 Chapter 4. Multi-object Tracking with Recurrent Neural Networks

sequences of different length, even when sequences of a certain length are not part of the

training set. Furthermore, it shares statistical knowledge of inputs with different positions

inside the input sequence.

4.2.1 Unfolding

For a better understanding of the network illustrated in Figure 4.4, we can unfold the

recursive structure in time. What we get is a computational graph with repetitive struc-

tures and shared weights. Important is the fact, that such a representation does not have

. . . h

o

x

h

o

x

h

o

x

h

o

x

h

o

x

. . .

t− 2 t− 1 t t+ 1 t+ 2

wo

wx

wo

wx

wo

wx

wo

wx

wo

wx

wh wh wh wh

Figure 4.5: Unfolded Recurrent Neural Network (RNN) in time with shared weights. Inputs,
states and outputs use the same weights for each time instance.

recurrent connections anymore which allows a well defined forward and backward pass.

This unfolded representation helps to understand the calculation of both directions.

Because of the flexible structure, RNNs are usable for different types of applications.

Figure 4.6 shows possible configurations depending on the number of input and output

neurons. Popular configurations [74] are: One-to-many, with one input initiating a sequen-

tial output, many-to-one which uses sequential input data to produce one output, read out

at the last time step and many-to-many where input sequences lead to output sequences.

All three models can result in different architectures for a variety of applications.

In order to achieve state predictions based on previous states, we use the many-to-

many structure for tracking applications. Every time step we predict the next state based

on the current knowledge which is represented by the internal state of the network. The

same can be done for state updates as we will discuss in Section 4.4.

4.2.2 Forward Pass

RNNs have a similar forward pass as FNNs with one hidden layer. The main difference

is the recurrent connection, which leads to an additional input to the activation of the

4.2. Recurrent Neural Networks 55

h

o

h

o

h

o

x

t− 1 t t + 1

(a) one-to-many

h

x

h

x

h

x

o

t− 1 t t + 1

(b) many-to-one

h

o

x

h

o

x

h

o

x

t− 1 t t + 1

(c) many-to-many

Figure 4.6: Illustration of different RNN structures, where weights are omitted because of read-
ability. One-to-many networks (a) take a single input vector while they produce
a sequence output. An exemplary task is image captioning, where the input is an
image and the output is a description of the image. Networks with a sequence as
an input and a single output (b) are used e.g. for sentiment analysis or fraud detec-
tion. (c) shows a many-to-many architecture for applications which need a predic-
tion/classification for every time instance, e.g. image classification in video sequences
or state prediction in target tracking. Image adapted from [74].

hidden layer. This loop connection enables the network to keep an internal state of the

past, containing relevant information of past inputs.

Considering a RNN with multiple units inside the hidden layer and a sequence-to-

sequence structure, we can again write the forward pass in matrix notation. To this end,

we define three weight matrices Wx ∈ RM×N , Wh ∈ RM×H and Wo ∈ RO×M denoting

the input weights, the transition weights of the network states and the output weights,

respectively. Additionally, we need the bias vectors bin ∈ RM and bout ∈ RO. With the

current input vector x(t) ∈ RN and the state vector h(t−1) ∈ RH of the last time step, we

are able to do a time update as:

z(t) = Whh
(t−1) + Wxx

(t) + bin, (4.24a)

h(t) = tanh
(
z(t)
)

and (4.24b)

o(t) = Woh
(t) + bout. (4.24c)

This time update has to be done for each element in the sequence by recursively calling

the same procedure and incrementing the time index. Depending on the application, one

has to apply an activation function, discussed in Section 4.1.1, to the output layer. As an

example, a network for multi-class classification would need a softmax activation

y(t) = softmax(o(t)), (4.25)

56 Chapter 4. Multi-object Tracking with Recurrent Neural Networks

applied to every output in o(t). The required error function is then the cross-entropy loss

E(t)(y∗(t),y(t)) = −y∗(t) log
(
y(t)
)
, (4.26)

with true value or label y∗(t) at time t, summed over the whole sequence

E(y∗,y) =
∑

t

−y∗(t) log
(
y(t)
)
. (4.27)

4.2.3 Backward Pass

The backward pass for RNNs also contains the calculation of gradients regarding some

loss function w.r.t. the network weights like in FNNs. The main difference is the time

dependent recurrence within the hidden layer which we have to take care of while applying

the chain rule of calculus. Hence, an efficient way to calculate the gradients provides the

Backpropagation Through Time (BPTT) [151].

The BPTT algorithm uses the same technique to obtain gradients as for calculating

the error. It sums up all gradients over the whole time sequence

∂E(y∗,y)

∂W
=
∑

t

∂E(t)(y∗(t),y(t))

∂W
, (4.28)

which results from the fact that we use shared weights W. For further equations, we omit

the parameters of E(t) to retain readability and assume target and prediction vectors t

and y, respectively. Thus, we can easily calculate the partial derivative of the loss function

w.r.t. Wo as

∂E(t)

∂Wo
=
∂E(t)

∂y(t)

∂y(t)

∂o(t)

∂o(t)

∂Wo
and (4.29a)

∂E

∂Wo
=
∑

t

∂E(t)

∂y(t)

∂y(t)

∂o(t)

∂o(t)

∂Wo
, (4.29b)

starting at the last time step propagating back through time and summing up the results

to get the total gradient.

In order to obtain the gradients for Wx and Wh we have to deal with some additional

difficulties. In general, we define the gradient calculation as

∂E(t)

∂W
=
∂E(t)

∂y(t)

∂y(t)

∂o(t)

∂o(t)

∂h(t)

∂h(t)

∂z(t)
∂z(t)

∂W
, (4.30)

where W denotes Wx and Wh, because they can be calculated in the same way. Hence,

the term h(t) = tanh
(
Whh

(t−1) + Wxx
(t) + bin

)
depends on h(t−1) and, therefore, we

can not treat h(t−1) as a constant. Thus, we need to apply the chain rule again for the

4.2. Recurrent Neural Networks 57

recursive structure [19]

∂E(t)

∂W
=

t∑

k=0

∂E(t)

∂y(t)

∂y(t)

∂o(t)

∂o(t)

∂h(t)




t∏

j=k+1

∂h(j)

∂z(j)
∂z(j)

∂h(j−1)


 ∂h(k)

∂z(k)
∂z(k)

∂W
. (4.31)

Finally, to obtain the total gradient, we have to sum again all gradients of each time step

similar to Equation (4.29b). An example derivation for a specific configuration can be

found in [53].

4.2.4 Bidirectional Structure

A network designed to make use of future information is the Bidirectional Recurrent

Neural Network (BRNN) [127]. An additional layer, as illustrated in Figure 4.7, receives

the reversed input sequence. Both layers, forward and backward, are connected to the

. . .

h

g

o

x

h

g

o

x

h

g

o

x

h

g

o

x

h

g

o

x

. . .

t− 2 t− 1 t t+ 1 t+ 2

Figure 4.7: Unfolded Bidirectional Recurrent Neural Network (BRNN) in time. In addition to
basic RNNs, the bidirectional version has an extra backward direction, represented
by the layer g, directly connected with inputs and outputs from the standard layer
h. For readability reasons we dropped the connection weights. Logically, the new
connections require further weights. Image adapted from [55].

input and output units, respectively. This enables the network to observe and process the

input in both directions. Hence, the BRNN is able to compute a representation depending

on the future and on the past, most sensible around the current input time t [53].

Such a network structure is often used in applications, where the output depends

strongly on the whole input sequence, e.g. speech recognition or handwriting recognition.

It is also applicable for spatial data where the sequence has no time-dependence, but relies

58 Chapter 4. Multi-object Tracking with Recurrent Neural Networks

on the input order. MOT is in general a causal task and thus, is not able to benefit from

this kind of network. However, Data Association (DA) within a tracking procedure can

be modeled such that a BRNN improves the performance [160].

4.2.5 Long-Short Term Memory

The main drawback of RNNs with simple recurrent connections is the vanishing gradient

problem [11, 62]. Because of the recurrent connection in the hidden unit, the gradients get

propagated through the network all the time. Thus, small gradients tend to vanish and

large gradients may ”explode” over time.

There exist a lot of different approaches addressing this problem. Within this thesis

we focus on the widely used Long Short-Term Memory (LSTM) [63] unit including some

extensions, e.g. Gers et al. [50, 51]. The LSTM architecture is similar to that used in

basic RNNs. However, instead of a single recurrent connection, the LSTM contains a

set of recurrently connected subnets known as memory cells [55]. Figure 4.8 illustrates

σ σ tanh tanh

×

+×

×σ

c(t−1)

h(t−1)

c(t)

h(t)

x(t) y(t)

f (t) g(t)

o(t)

i(t)

Figure 4.8: Long Short-Term Memory (LSTM) architecture. The standard path g(t) is equal to
a basic RNN unit which takes x(t) and the last state h(t−1) as an input activated
by the hyperbolic tangent. An additional forget gate f (t) decides which information
gets removed from the long-term memory c(t−1), whereas an input gate i(t) learns
which information from the past and new input gets stored. Finally, an output gate
o(t) decides what information gets read out from the long-term memory to obtain a
new short-term state h(t) and output y(t). Notice, y(t) denotes the output equal to
o in the basic RNN unit. Image adapted from [53].

the architecture of a single LSTM . Compared to the basic RNN unit, the LSTM has an

additional state vector c(t), called cell. It can be seen as the long-term memory, whereas

h(t) represents the short-term state. Hence, the basic idea of such an architecture is to

train so-called gates to learn which information should be kept, removed and read out

from the memory cell.

4.2. Recurrent Neural Networks 59

We begin with the previous long-term memory cell c(t−1) which gets manipulated

by the forget gate. The sigmoid activation, requiring the input vector and the previous

short-term state, decides whether certain regions inside the memory get erased or not.

Thus, the sigmoid activation yields values between zero and one for each entry, where

zero means nothing is kept in the memory and one that everything is kept inside. The

result gets multiplied element-wise with the current long-term state. The forget gate can

be formulated as

f (t) = σ
(
Wf [h(t−1),x(t)] + bf

)
, (4.32)

where Wf denotes the weight matrix for the previous short-term state h(t−1) and the

input vector x(t) and bf denotes the bias. Note that we use a single weight matrix for

h(t−1) and x(t) and thus, concatenate both inputs expressed by [·, ·].

In the central path, the weighted input x(t) and previous short-time state h(t−1) get

activated by the hyperbolic tangent function which outputs the short-term behavior. This

calculation is equal to a basic RNN unit, but the result does not get used as an output

directly. Instead, the input gate decides how much of this knowledge should be stored

within the long-term memory. Similar to the forget gate, we can formulate the input gate

as

i(t) = σ
(
Wi[h

(t−1),x(t)] + bi

)
, (4.33)

with weight matrix Wi and bias bi. The short-term path is defined as in Equation (4.24)

for the basic RNN cell

g(t) = tanh
(
Wg[h

(t−1),x(t)] + bg

)
, (4.34)

with weight matrix Wg and bias bg.

The element-wise multiplication of g(t) and i(t) is added to the long-term memory c

which represents the store procedure. In order to obtain the new cell state c(t), we have

to apply both, the forget and input gate as

c(t) = f (t) · c(t−1) + i(t) · g(t), (4.35)

where the dot represents element-wise multiplication.

Finally, the output gate decides what information is read out and passed to the output

as

o(t) = tanh
(
Wo[h

(t−1),x(t)] + bo

)
, (4.36)

with weight matrix Wo and bias bo. The output gate result is element-wise multiplied

with the activated long-term memory state to produce the current short-term state h(t)

as

h(t) = o(t) · tanh
(
c(t)
)
, (4.37)

60 Chapter 4. Multi-object Tracking with Recurrent Neural Networks

which we use as an output by multiplying it with another weight matrix Wy to get the

required output dimension w.r.t. the task we want to solve.

The backward pass of the network works similar to that of standard RNNs, but is out

of this thesis’ scope. We refer the interested reader to [53, 55, 56]. Furthermore, there

exist also other types of gated neurons similar to the LSTM architecture. One prominent

example with a simpler structure is the Gated Recurrent Unit (GRU) proposed by Cho

et al. [29] which is a popular choice for language processing tasks. The idea is to combine

the input and forget gate into a single update gate. Finally, all mentioned architectures

can additionally be used in a bidirectional way as discussed for simple RNNs.

4.3 Network Training

So far we explained FNNs and RNNs in detail, including the forward and backward pass

of different network structures. Now we discuss how these concepts contribute to the

learning process of such models using gradient descent.

4.3.1 Gradient Descent

We start with the forward pass, where the entire training set is propagated through the

network. Afterwards, we calculate the loss caused by the processed training samples.

Hence, the goal is now to minimize the loss, which can be achieved by updating the

weights repeatedly with a small step into the negative direction of the gradient:

Wt+1 = Wt − α∇WE(Wt). (4.38)

While ∇WE(Wt) denotes the gradients of the error function w.r.t. parameter Wt, α ∈ [0, 1]

is the step size or learning rate. Network training with weight updates after passing the

whole dataset through the network is known as batch learning. This causes small weight

updates and is very inefficient in deep networks, especially for huge datasets.

To overcome this problem, a commonly used method where only small batches of train-

ing examples are used to calculate the gradients, is stochastic gradient descent. We refer

to the number of training examples used as batch size. An extreme form is online learning,

where the gradient update is performed with a batch size of one. The main advantage

of this method is the reduced computational cost for weight updates. Furthermore, it is

common to use randomly selected input batches from the entire dataset in combination

with stochastic gradient descent.

Another problem which occurs is that gradient descent easily gets stuck in local min-

ima, caused by the usually non-convex shape of the loss function. Plaut et al. [115]

proposed to use a momentum term, which helps to escape from local minima and speed

4.3. Network Training 61

up convergence, as
∆Wt+1 = µ∆Wt − α∇WE(Wt) and

Wt+1 = Wt + ∆Wt+1,
(4.39)

where µ ∈ [0, 1] denotes the momentum parameter. Moreover, the learning rate signifi-

cantly influences the success of learning. The consequences of an inappropriate learning

rate are slow convergence for too small gradients on the one hand, which increases the risk

of getting stuck in a local minimum, and divergent behavior or fluctuations around the

optimum for too large gradients on the other hand. In the literature there exist a lot of

different approaches trying to mitigate these problems. Within this thesis we make use of

different optimizers based on gradient descent. We use for example RMSProp [138] which

adapts the learning rate based on the moving average of squared gradients. Furthermore,

we use the Adam [80] optimizer, which is an extension to RMSProp which also takes the

average moments into account.

4.3.2 Regularization

Another challenge in Deep Learning (DL) and machine learning in general is generalization.

This means that we want a trained network to perform well on previously unseen test data.

However, the performance depends strongly on the network complexity and the amount

and distribution of data available for training. If we have to deal with a limited number

of training samples, the network tends to learn and remember the data which leads to

overfitting. This can be observed when the gap between training and test or validation

loss gets bigger and bigger.

One way to deal with this issue is to gather more training data which is difficult in

most cases. Another possibility is dataset augmentation, where we aim to generate new

realistic training examples from existing ones. If we imagine an image classification task,

we can, for example, generate new training samples by shifting and/or rotating the image.

Furthermore, we can use regularization techniques, which prevents the network from

overfitting. The simplest form of regularization is early stopping. To this end, we split

the training set into two subsets, one used for training and the other one for validation.

While training, the network gets tested against the validation set instead of the test set.

Finally, if the stopping criteria is reached or the network stops improving on the validation

set, we use the best model to measure the error on the test set. This avoids the indirect

training on the test set. However, one drawback of this method is that we have less data

for training.

Another regularization method is called weight decay. Here, we add a regularization

term to our loss function which depends on the `1 or `2 norm of our network weights

E`2 = E + λ · ||W ||2, (4.40)

where λ defines the strength of the regularization.

62 Chapter 4. Multi-object Tracking with Recurrent Neural Networks

Srivastava et al. [133] proposed dropout, one of the most popular regularization meth-

ods used in DL. The algorithm drops units of all layers except the output layer with

probability p. This means that the network is not able to use these units within one

training epoch. This leads to less sensitive units regarding the input because they can not

rely on neighboring units and thus, have to learn a more general representation. Dropout

is performed for training only and does not affect inference directly.

4.4 Multi-object Tracking Architectures

In general, a tracking architecture consists of four steps: State prediction, data association,

state update and track management. Milan et al. [103] proposed a simple end-to-end model

which fulfills these steps with the help of RNNs. Their network is on the one hand very

simple, but on the other hand restricted to a fixed number of measurements per frame

and hence does not fit for most MOT tasks. To solve this issue at least for assigning a

variable number of measurements to tracks, Yoon et al. [160] proposed an encoder-decoder

structured model applied to tracking tasks. Within the next two sections we take a closer

look at both models.

4.4.1 End-to-End Model

When we talk about end-to-end models, we mean neural networks which take some inputs

and produce the expected output within one forward path. There are no hand-crafted

intermediate heuristics or calculations necessary.

The end-to-end model proposed by Milan et al. [103] performs at first a prediction

step using a simple RNN layer as illustrated in Figure 4.9 (blue box). The following

update step (green box) requires some modifications of the basic RNN cell. Its internal

cell state h(t) is initialized with the new internal state h(t+1) of the prediction cell, instead

of calculating a new one based on the own internal state of the previous time step. Finally,

the end-to-end model is completed by the track management component (purple box). It

ensures the initiation and termination of tracks. Data association is done by a simple

LSTM layer (see Section 4.2.5). Note that for tracking with RNNs the term ”state” has

several different meanings. The internal state of an RNN is denoted h(t), whereas the

tracking state is x(t).

The network input at time t is the tracking state x(t) combined with the previous

network state h(t) of the prediction step. Additionally, the association matrix A(t+1) con-

taining probabilities for each measurement-track pair, the measurements z(t+1) of the next

time step as well as the track existence probability ε(t) is needed. In this representation we

use a concatenated input vector [x(t); h(t)] and a combined weight matrix Wxh. This does

not influence the result, but requires only a single matrix multiplication in the forward

pass and, thus, can be computed more efficiently in practice.

4.4. Multi-object Tracking Architectures 63

Wxh

Whx tanh

concat

×Wx̂+

tanh

Wox Wtm σ
− abs

x̂(t+1) h(t+1) x(t+1) ε(t+1) ε̂(t+1)

[
x(t);h(t)

]
z(t+1) A(t+1) ε(t)

P
re

d
ic
ti
o
n

T
ra

ck
M

a
n
a
g
e
m
e
n
t

Update

Figure 4.9: Recurrent Neural Network (RNN) tracking architecture. The prediction part is a
basic RNN unit explained in Section 4.2.2 taking the previous state h(t) and a vector
x(t) as an input. The track update depends on the association matrix A(t+1) and
the measurements z(t+1) of the next time step, as well as on the track existence
probability ε(t). For calculation paths containing a weight matrix W , we assume the

dot product. This is also true for the operator. All other operations are functions
or element-wise operators. Image adapted from [103].

The whole process is straightforward. After tracking-state prediction, the internal

state h(t) of the simple RNN is added to the output of a fully-connected layer Wx̂ with

linear activation. This operation, extended by the following tanh activation, represents

another simple RNN cell, which shares the internal state with the prediction cell instead

of calculating a new one.

The input of the fully-connected layer Wx̂ composes of the prediction output mixed

with measurements observed at time t + 1, association probabilities and track existence

probabilities. Within this mixing process, measurements are concatenated to the predicted

tracking-state and weighted by the association matrix, containing the information of which

measurement belongs to which track. Additionally, the track management path multiplies

the result with the current track probabilities.

Finally, we obtain the new tracking state x(t+1) and track existence probabilities ε(t)

for the next time step, as well as a smoothness prior ε̂(t+1) for the existence probability.

Both outputs, x(t+1) and ε(t), are calculated by fully-connected layers Wox and Wtm,

respectively. While the activation for the tracking state is linear, the track existence

probabilities are obtained by a sigmoid activation.

64 Chapter 4. Multi-object Tracking with Recurrent Neural Networks

In order to train the entire network end-to-end, we need an appropriate loss function.

Milan et al. [103] proposed the loss

E(x, x̂, ε,x∗, ε∗) =

prediction︷ ︸︸ ︷
1

2 N D

∑
||x∗ − x̂||2 +

update︷ ︸︸ ︷
1

2 N D

∑
||x∗ − x||2 +Eε + ε̂, (4.41a)

Eε = ε∗ log(ε) + (1− ε∗) log(1− ε), (4.41b)

with x∗ and ε∗ denoting the true values. While the first two terms (prediction and update)

use a sum of MSE functions, the third term Eε is a binary cross entropy loss plus a

regularization term ε̂ which should avoid hard decisions when there are no measurements

available.

The missing data association part is done with a LSTM network as discussed in Sec-

tion 4.2.5. It takes the difference between the predicted state of a track and all the

measurements as an input and outputs association probabilities in the form of a column

vector A
(t+1)
i , which is part of the entire association matrix A(t+1). Therefore, we apply

a softmax activation at the networks output. Note that because there is no dependency

regarding time, we can also use the bidirectional LSTM version for this task. The data

association path has a separate error function which is the cross entropy loss calculated by

the negative log-likelihood. In fact, it is processed like the multi-class classification loss.

However, with such an architecture we are limited to a fixed number of measurements

because the input vector has to have a predefined size. Another issue is the independent

association of measurements to tracks. This means that the network does not take care

of the fact that a measurement should belong to only one or no track. However, multiple

associations to no track or the dummy track for clutter is allowed. Thus, one solution to

this problem is the Hungarian algorithm which can be applied to the negative association

matrix, the dummy track column excluded, to satisfy the one-to-one constraint.

4.4.2 Variable Data Association Model

Because most MOT tasks have no fixed number of measurements in each time step, it is

necessary to build a network which is able to deal with this issue. For that reason we discuss

the approach of Yoon et al. [160]. Their network consists of two parts, namely encoder and

decoder. While the first part of the network - it contains only fully-connected layers - tries

to encode the input into an internal representation, the second one was designed to learn

the assignment for these encoded vectors. The decoder is a Bidirectional Long Short-Term

Memory (BLSTM) network with fully-connected projection layers on top, transforming

the high dimensional output to the requested size. The reshaped output results again in

a score matrix between tracks and measurements which is later used in combination with

the Hungarian algorithm.

The advantage of dealing with a variable number of measurements does not necessarily

4.4. Multi-object Tracking Architectures 65

come from the chosen network structure alone. Another important factor is the way

how the input is preprocessed. Thus, the network takes the last T states of N tracks,

concatenated with each detection. In this case, the states are only a history of previous

detections. Additionally, they use a dummy track containing zeros for all T time steps to

represent clutter. This is necessary to deal with measurements which do not emerge from

a real track. Hence, we get (N + 1) ·M inputs for M measurements, which represents all

permutations of tracks and measurements.

Each detection d and state x then contains the Cartesian coordinates for the upper

left (l, u) and bottom right (r, b) corner of the two dimensional bounding box, the di-

mensions width w and height h, as well as the detection confidence c. This results in

a vector d(t,m) =
[
l(t,m), u(t,m), r(t,m), b(t,m), w(t,m), h(t,m), c(t,m)

]
for detection dm and a

vector x(t,n) =
[
l(t,n), u(t,n), r(t,n), b(t,n), w(t,n), h(t,n), c(t,n)

]
for track xn, both at time t.

Finally, the input is an array of track-measurement pairs which are concatenations of

the last T time-steps of all tracks with each measurement

Xt =




x(−4,0) x(−3,0) x(−2,0) x(−1,0) x(0,0) d(0,0)
...

x(−4,n) x(−3,n) x(−2,n) x(−1,n) x(0,n) d(0,m)

0 0 0 0 0 d(0,m)



, (4.42)

with T = 5, 0 denoting a zero vector representing the clutter track and Xt denoting the

whole input batch at time t. All the permutations are fed into the network as a batch and

can therefore be processed very fast.

The network structure is illustrated in Figure 4.10 and represents the encoder which

is fed with the input data and the decoder receiving encoded vectors denoted e. Each

decoder-block produces a value between −1 and +1, which represents a score of how good

the track-measurement pair can be assigned. Hence, +1 implies that the pair fits very

good and −1 vice versa. Finally, the output is reshaped to match the score matrix size

with M rows and N + 1 columns.

A detailed layer description of the encoder can be found in Table 4.1. As mentioned

before, the encoder contains only fully-connected layers and therefore, requires a predefined

input size. This is ensured by the concatenation scheme of track history and detection.

The input size is then calculated by the length of a detection vector |dm| multiplied by the

number of time-steps T plus one for the detection itself. As a result, the encoder processes

Layer Type Input Output Activation

1 fully-connected |dm| · (T + 1) 128 ReLU
2 fully-connected 128 128 ReLU
3 fully-connected 128 64 tanh

Table 4.1: Encoder network architecture. Table taken from [160].

66 Chapter 4. Multi-object Tracking with Recurrent Neural Networks

[0,d0] [x0,d0] [x1,d0] [xn,dm]

encoder encoder encoder · · · encoder

decoder decoder decoder · · · decoder

reshape

loss

h0, c0

h0, c0

e0 e1 e2 eM ·(N+1)

Figure 4.10: Data association model for a variable number of tracks and measurements. All
the track-measurement permutations get encoded to a fixed size vector e and the
decoder produces a score for each of these encoded combinations. The output is
reshaped to a valid score matrix. For training, a loss function is applied to the score
matrix. The initial internal state and the cell state of the bidirectional LSTM are
denoted h0 and c0, respectively. Image adapted from [160].

an encoded vector of size 64 which should represent all the information needed to produce

an assignment score for each vector.

Table 4.2 shows the detailed layer architecture of the decoder. Because we allow a

variable number of measurements and tracks, the first layer of the decoder has to be

recurrent. Yoon et al. [160] have chosen a LSTM cell in a bidirectional layer. This means

that we additionally feed the recurrent layer with a reversed sequence. This allows the

network to inspect the data in both directions and, thus, it may be easier to correctly

assign detections to tracks.

Layer Type Input Output Activation

4,5 BLSTM 64 128 -
6 fully-connected 128 64 ReLU
7 fully-connected 64 1 tanh

Table 4.2: Decoder network architecture. Table taken from [160].

The bidirectional structure yields two output states. One for the forward direction

and the other for the backward direction. Both output states are concatenated without

an activation, followed by two projection layers on top, reducing it to a single value.

Afterwards, the reshape function is applied. If we want to train the network, we use the

resulting matrix as an input for the loss function. Otherwise, in the case of inference, we

remove the loss function and apply the Hungarian algorithm on the inverse of this score

matrix (cost matrix).

4.4. Multi-object Tracking Architectures 67

In order to obtain an appropriate loss, the encoder-decoder network uses a weighted

MSE function. The weighting is necessary because of the score range between −1 and

1. Another concept applied by Yoon et al. [160] is the learning of initial weights inside a

recurrent cell. The internal state h and the internal cell state c of a LSTM cell are learned

based on the mean value of the encoded vectors. For more details, we refer the interested

reader to [160].

5
Modular Multi-object Tracking

Contents

5.1 Implementation Details . 69

5.2 Combined Bayesian Filter Approach 76

5.3 Multi-Object Tracking Networks 83

In this chapter we present our modular tracking framework, which combines several

of the previously presented approaches. We provide information about the sensor model,

the architecture and design decisions we made to combine all used trackers and datasets

within one framework. Furthermore, we shortly present two used object detectors and a

publicly available 2D target tracker, adapted to fit into our 3D object tracking framework.

The first implemented approach we explain is the combination of Bayes filters com-

pleted by a heuristic track management. Afterwards, we discuss various neural network

structures modeled for different purposes within the tracking framework. Moreover, we

discuss an end-to-end trained neural network, designed to solve all Multiple Object Track-

ing (MOT) subtasks within one single forward path. Finally, we close this chapter with

details about the training of mentioned networks.

5.1 Implementation Details

For the implementation we use Python 3 because it is an easy-to-use, platform independent

programming language. In addition to that, it covers all required functions and there exist

a lot of helpful packages we can rely on, e.g. NumPy1, scikit-learn2 or SciPy3. Another

useful package is TensorFlow [1], a graph based calculation framework, which we use to

1https://numpy.org/ (accessed August 5, 2019)
2https://scikit-learn.org/stable/ (accessed August 8, 2019)
3https://www.scipy.org/ (accessed August 5, 2019)

69

https://numpy.org/
https://scikit-learn.org/stable/
https://www.scipy.org/

70 Chapter 5. Modular Multi-object Tracking

create neural network models. It provides a fast and easy calculation of forward paths and

gradients. Furthermore, it offers the possibility to do calculations either on CPU or GPU.

A main goal is the modeling of a tracking framework which is able to use various object

detectors, delivering a bounding box for each detected target. This means that the tracker

is completely independent from the object detection mechanism. As a consequence, we

designed the state and measurement vector based on the KITTI dataset [48] sensor model,

to meet our requirements.

5.1.1 Sensor Model

The KITTI Dataset has been recorded with high resolution stereo cameras, yielding gray

scale and color images and a Velodyne HDL-64E rotating 3D laser scanner producing a

point cloud. In addition a combined module, containing an Inertial Measurement Unit

(IMU) and a Global Positioning System (GPS), are responsible for acceleration, velocity

and absolute position, respectively. All sensors are mounted on the ego-vehicle and are

synchronized. This can more or less be considered as a standard setup for an autonomous

vehicle.

Figure 5.1: KITTI dataset sensor configuration. The ego-vehicle in black defines the coordinate
system’s origin. The x-axis points towards driving direction and shows a steering
angle of 0 degrees. The green car represents a target vehicle with a red bounding
box defined by width and length. Image adapted from [48].

The coordinate systems origin is defined by the axes x, y, and z, lying in the center of

the ego-vehicle, whereas the coordinate system of each target is represented by x′, y′ and

z′ as illustrated in Figure 5.1. Hence, target bounding boxes in the raw KITTI dataset are

5.1. Implementation Details 71

provided by relative center coordinates x′, y′ and z′ w.r.t. the ego-vehicle. Additionally,

we get the width, length and height of each target, as well as the relative yaw angle ϕ.

The roll and pitch angles are close to zero and, therefore, ignored.

We use the same representation within our tracking framework and thus, require the

object detector to provide 3D bounding boxes following this definition. Considering the

KITTI dataset representation, we define the state and measurement vector. Because we

additionally did some tests on the 2D image based MOT16 dataset [102], we convert 2D

detections, to meet our definitions. Therefore, we extend the 2D bounding box by a z-

dimension with zero height and move its origin into the origin of the image coordinate

system. For such detections, the yaw angle is always zero. Notice that we used the MOT16

dataset only for proof-of-concept tests in the initial project phase. Thus, these qualitative

results are not part of the evaluation section.

5.1.2 State and Measurement Representation

The internal representation of an object tracking framework depends mostly on the used

tracker. Because we want to make use of different approaches, we need more than one

representation for the current state. Bayesian filters can be described by a stochastic state

space model (recall Section 3.1.2). One property of such models is the complete state

assumption, which assumes that the current state includes the whole information.

In comparison, Recurrent Neural Networks (RNNs) may or may not use information

of the past to reach good results. Depending on the whole network architecture, it is

possible to feed RNNs with the current state while the internal state of the recurrent cells

represent the complete state. Another architecture may need the whole history or at least

a short period of the states as an input.

Therefore, our tracking framework has two representations. On the one hand, the

state vector xt contains the track state of time step t. On the other hand, a state sequence

Xseq,t contains reduced track states Xseq,t = (x′t−T+1, . . . , x′t) of the last T time steps.

This is the same as a short history of previous states, containing only parameters needed

for inference and training.

Within our framework we want to keep track of the vehicle positions as well as the

bounding box dimensions and headings. Hence, we define the state vector xt as

xt =
[
xt yt zt ωt vt ω̇t wt lt ht ϕt

]T
, (5.1)

with center position coordinates xt, yt, zt, steering angle ωt, linear velocity vt, angular

velocity ω̇t, bounding box dimensions wt, lt, ht and bounding box heading ϕt. Notice,

because of the relative motion, the steering angle and the bounding box heading does

not need to have the same direction. Therefore, we handle both parameters separately.

However, both angles are in the range of [−π, π) and get normalized to this range after

each step which manipulates them.

72 Chapter 5. Modular Multi-object Tracking

We neither calculate the steering angle, linear and angular velocity nor make use of

these parameters within the RNN models. However, we keep them in the state vector and

set them to zero because of compatibility reasons.

The measurement vector zt contains observable parameters which can be obtained

from the sensor model. We decided to track not only the center position of each target,

but also the bounding box. Therefore, we define the measurement vector zt as

zt =
[
xt yt zt wt lt ht ϕt

]T
, (5.2)

with center position coordinates xt, yt, zt, bounding box dimensions wt, lt, ht and bounding

box heading ϕt.

Although there should not be vertical motion or a change of the targets height, the

vertical position zt and bounding box height ht are both part of the state and measurement

vector. The reason why we included both parameters is that we do not have an additional

bounding box tracker as, for example, in [117]. As mentioned earlier, for the MOT dataset,

the height and z-position as well as the yaw angle are set to zero. This does not influence

the evaluation which is done on the ground area of each object.

5.1.3 Framework Architecture

In order to obtain an online MOT framework which is able to use different object detectors,

trackers and data association mechanisms, we propose a modular architecture consisting

of independent blocks. The connection between these blocks are well defined interfaces to

ensure flexibility.

Figure 5.2 illustrates the architecture overview. As an entry point, it contains a detec-

tion module, which could be any object detector delivering a 3D bounding box. Because

the detection of targets is not part of this thesis, we make use of publicly available state-

of-the-art detectors. However, it should be mentioned because it is a necessary part of

the framework. Hence, Section 5.1.4 gives a brief summary of both detectors used for

evaluation.

The central point of our design is the track management module. It takes care of

incoming detections, tracks and holds the current frame number and the history of closed

tracks. With the first received list of detections at time t = 0, the management module

gets initialized and adds new track instances. Notice, these instances are not initialized

yet. Afterwards, each new list of detections causes another tracking cycle.

Before we loop through one complete state prediction and update cycle, we take a

look at the tracker. This module is responsible for holding the whole information of a

track/trajectory and for doing the prediction and update step. While the track informa-

tion, listed in Table 5.1, is equal for all trackers, the underlying prediction and update

procedure depend on the method under consideration. The management state of a track

is initialized with zero and gets increased by one, if the hit-streak counter reaches a certain

5.1. Implementation Details 73

Object Detection

• Frustum PointNets [116]

• PointRCNN [129]

• ...

Track Management

• Track Initialization

• Track Termination

• Track Manipulation

• Closed Track History

Tracker

• IMM-UKF

• IMM-UKF-RNN

• SORT [14]

• END-TO-END

Data Association

• JPDA

• LSTM (encoder/decoder)

• HungarianVisualization

• 3D Point Cloud (VTK)

• RGB Image

List of 3D Bounding Boxes
Zt = [[xt, yt, zt, wt, lt, ht, ϕt], . . .]

predict and
update

detections,
tracks

state histories
error histories

loose detections,
loose tracks,

matches

Figure 5.2: Tracking framework overview. See text for details.

Parameter Description

state history holds all preceding state vectors of the track

error history holds all preceding covariance matrices of the track, if available

track state current track state vector

management state current management state (active or not)

hit-streak counts the consecutive assignments of detections

time-since-update counts the time-steps without assigned detections

predicted track state state vector containing the last prediction

suspend counter used to count the number of temporal terminations

Table 5.1: Track management parameters with description.

threshold. Then, the track is active and both history lists, track and error, are updated

with the current state and the covariance matrix (only available in Bayesian filter meth-

ods), respectively. Otherwise, we add empty entries to the histories. Notice, because

we are interested in online MOT , we take only active tracks into account and do not

manipulate them after termination.

Starting a new cycle, we perform a prediction step for each track instance. In addition

to that, the time-since-update parameter gets increased by one. Afterwards, we check if

there is a collision between predictions of non-initialized and already active tracks and

74 Chapter 5. Modular Multi-object Tracking

remove the non-initialized ones, if this is the case. Therefore, we check the Intersection

over Union (IoU) between them. This prevents us from initializing new tracks, emerging

from clutter detections. Within each track instance we additionally store the predicted

state in a separate history. This helps us to visualize the interaction of prediction and

update steps.

Based on precise predictions we are able to perform the association of current detec-

tions with existing tracks. Within our framework we provide three different approaches:

Joint Probabilistic Data Association (JPDA), Long Short-Term Memory (LSTM) (en-

coder/decoder network) and the Hungarian algorithm4. All three implementations require

detections and tracks as an input and return the matched pairs, unmatched tracks and

unmatched detections. The JPDA result has a slightly different representation. It re-

turns association probabilities which could also be split up into the three mentioned lists.

However, the update cycle of an JPDA filter makes direct use of these probability values.

While the track manager uses unassigned detections to add new track instances, un-

matched tracks are simply ignored in the update step. Matched track and measurement

pairs are used to update the current state. Again, the track instances are responsible for

this procedure. They receive the assigned measurement and perform a correction step,

save the new state and update their internal parameters, i.e. hit-streak plus one, time-

since-update set to zero. Hence, track instances missing the correction step have now a

time-since-update value which is not zero anymore.

Finally, the track manager updates the track management state and the track history

of each track instance. Depending on the hit-streak counter, a track is set active or stays

in the uninitialized (zero) state. Because we claim online behavior from our framework,

only active tracks get a non-empty history entry. The termination of a track is triggered,

if the time-since-update value exceeds a predefined threshold.

To overcome the problem of temporary occlusions, we added another parameter which

is called suspend counter. With this variable we are able to control how often a track is

allowed to change back in an uninitialized state before it gets finally terminated. This

means, that an already active track with an expired time-since-update value is allowed

to further exist, but has to change back its management state to zero. Thus, it exists in

the background for a fixed number of attempts where it tries to get initialized again. The

reason to use such a heuristic is that temporarily occluded objects may get reinitialized

with the same track and therefore we do not have a switching track identifier. Another

advantage is that wrong track initializations can be reduced.

5.1.4 Object Detection

Following the tracking-by-detection paradigm, a reliable and precise object detector is

required. By taking a look at the KITTI leader board for 3D object detection, we found two

state-of-the-art approaches with publicly available code and satisfying results. Because we

4Implementation from the scikit-learn package.

5.1. Implementation Details 75

do not restrict the detection algorithms to specific input data, both methods are relevant

for us. While Frustum PointNets [116] make use of RGB images and 3D point clouds,

PointRCNN [129] uses 3D point clouds only.

In order to reduce the search space of 3D point clouds, the Frustum PointNets use

matured 2D object detectors, e.g. [52, 119] on RGB images. The aim is to find objects

in these images and extrude 2D bounding boxes to a 3D viewing frustum. Afterwards, all

3D points outside the found frustums are thrown away. Finally, two variants of PointNets

perform 3D object instance segmentation and amodal 3D bounding box regression. The

final result is an oriented 3D bounding box for each object of the classes Car, Pedestrian

and Cyclist. Performing well on all three classes, Frustum PointNets outperform most

approaches in detecting Pedestrians.

PointRCNN follows a different strategy. It does not make use of 2D RGB images,

but directly uses the 3D point cloud in a two stage network. The first stage generates

3D proposals in a bottom-up manner by segmenting the point cloud into foreground and

background. The second stage refines the generated proposals in canonical coordinates.

The result is an oriented 3D bounding box similar to the Frustum PointNets. This is the

best publicly available approach for the classes Car and Cyclist. For further details we

refer the interested reader to [129].

5.1.5 Adaptation of SORT

An easy point to start implementing a filter-based tracking framework in Python is the

SORT [14] algorithm, which is publicly available5 and combines a linear Kalman Filter

(KF) with the Hungarian algorithm. By default, the tracker is used on the MOT16 dataset

and therefore, parametrized for tracking in 2D image coordinates. We extended the state

vector xt with the coordinate zt, the height ht and the bounding box orientation ϕt to

xt =
[
xt yt zt ϕt st rt ht vx vy vs

]
, (5.3)

with center coordinates xt, yt and zt of the bounding box ground area, orientation ϕt,

aspect ratio rt and scale st of the bounding box ground area with related scaling velocity

vs, bounding box height ht and the velocities vx and vy for changes of the bounding box

ground area size. A velocity and scaling for zt is not necessary because we assume no

change of the targets height.

Furthermore, we added rows in the system matrix F and the measurement matrix

H for these values. Additionally, we had to replace all 2D bounding boxes with its 3D

counterparts. Because the state vector does not fit our defined representation, the tracker

module has to take care of an appropriate external representation. The measurement

vector has to be the same as for all trackers.

The described approach is not necessarily designed for our special needs represented by

5https://github.com/abewley/sort (accessed August 19, 2019)

https://github.com/abewley/sort

76 Chapter 5. Modular Multi-object Tracking

maneuvering targets in a cluttered environment. Notwithstanding, it is easy to implement,

has a very short runtime, comes up with a short number of adjustable parameters and

performs pretty good as we will see later in our evaluations. Thus, this implementation is

our first algorithm embedded in the tracker module.

5.2 Combined Bayesian Filter Approach

The previously presented architecture is valid for all in this thesis implemented approaches.

One of them is the combination of Bayesian filters, derived and explained in Chapter 3.

Within this section we combine the elucidated filters into one MOT pipeline as illustrated

in Figure 5.3 and describe the implementation details. Because we make use of an IMM

filter for handling various motion models, combined with an UKF for non-linear filter-

ing and a clutter aware JPDA, the final pipeline is named Interacting Multiple Model

Unscented Kalman Filter with Joint Probabilistic Data Association (IMM-UKF-JPDA).

We adapted this approach from [117, 126] to get a well performing baseline – together

with the adapted 3D implementation of Bewley et al. [14] – on maneuvering targets in

cluttered environments. Additionally, it builds the basis of our investigations on neural

networks in combination with Bayes filters. However, we additionally implemented a less

complex version by replacing the JPDA with a Global Nearest Neighbour (GNN) approach.

It reduces not only the complexity, but also the tracker’s runtime and offers the possibility

for another association scheme based on LSTMs.

Moreover, we make use of the ego-vehicle velocity obtained from the IMU data of the

KITTI dataset. In contrast to the filter explanations in Section 3.2.1 and Section 3.2.2,

where we dropped the control input, we now use the parameter ut of each time step to

add the ego-motion as an artificial input to each tracker. All these variants, including

IMU data or not and JPDA or GNN association, as well as the related filter parameters,

are controllable by an external configuration file. We do not list all the filter parame-

ters used for the different models, because there are many of them. Instead, we refer

to Schreier [126], which is a good guideline of how to choose them properly.

5.2.1 Multiple Dynamic Models

The Interacting Multiple Model (IMM) (see Section 3.2.3) makes use of multiple dy-

namic models which should cover the motion behavior of all traffic participants. They

are used to perform predictions for each individual filter. We decided to use a set of

M = {Mj}rj=1 models with r = 3, including Constant Velocity (CV), Constant Turn-Rate

Velocity (CTRV) and Random Motion, as proposed in [117, 126]. While most motions

are constant in speed and direction, the CTRV model is, for example, responsible for

movements around road crossings. All kinds of motions which are not represented by

both mentioned models, are processed by the random model, i.e. static targets and most

5.2. Combined Bayesian Filter Approach 77

x̂1,t−1|t−1 P1,t−1|t−1 x̂2,t−1|t−1 P2,t−1|t−1 . . . x̂r,t−1|t−1 Pr,t−1|t−1 µt−1

Interaction and Mode Probability Prediction

UKF
Prediction

UKF
Prediction

UKF
Prediction

Zt

Measurement
Validation

Data
Association

. . .

JPDA/UKF
Update

JPDA/UKF
Update

JPDA/UKF
Update

Filter 1 Filter 2 Filter r

Combination

x̂t,Pt µt

Mode
probability

update

x̂1,t|t−1,
P1,t|t−1

ẑ1,t|t−1,
S1,t

x̂2,t|t−1,
P2,t|t−1

ẑ2,t|t−1,
S2,t

x̂r,t|t−1,
Pr,t|t−1

ẑr,t|t−1,
Sr,t

x̂?1,t−1|t−1 P?
1,t−1|t−1 x̂?2,t−1|t−1 P?

2,t−1|t−1 x̂?r,t−1|t−1 P?
r,t−1|t−1

µ−t

x̂1,t|t
P̂1,t|t

x̂2,t|t
P̂2,t|t

x̂r,t|t
P̂r,t|t

µt

Zv,t

zv,t; βt zv,t; βt zv,t; βt

L1,t L2,t Lr,t

Figure 5.3: Overview of IMM-UKF approach with JPDA, Hungarian or LSTM update. All indi-
vidual filter parts are derived in Chapter 3. The solid black part can be interpreted
as the Interacting Multiple Model (IMM) filter, whereas the dashed orange blocks be-
tween represent the Unscented Kalman Filter (UKF) combined with either a JPDA
or standard UKF update. The measurement validation and data association is a
separate block (dashed green). Notice that we have omitted all fixed parameters.
Adapted from [126].

pedestrians. A detailed explanation and derivations of used motion models can be found

in [88].

Constant Velocity

One of the most common motion models is the Constant Velocity (CV) model. It repre-

sents all movements with a nearly constant velocity and heading direction. This means

that the angular velocity is zero. We can write the motion model as a function of the state

78 Chapter 5. Modular Multi-object Tracking

vector as

fCV,t(xt) =




xt + vt ∆t cos(ωt)

yt + vt ∆t sin(ωt)

zt
ωt
vt
0

Dbb,t




, (5.4)

where xt, yt and zt denote the position coordinates, ∆t denotes the time difference and

Dbb,t represents the bounding box dimensions wt, lt, ht and its yaw angle ϕt. Within this

model, all values are constant except the movement in x and y direction, influenced by

the velocity vt and the steering angle ωt. Notice, we assume no vertical motion or change

in the bounding box size.

Constant Turn-Rate Velocity

Traffic participants performing a left or right turn, i.e. at a crossway, mostly expected in

an urban environment, are represented best by the Constant Turn-Rate Velocity (CTRV)

model. Characterized by a constant velocity and turning rate, we write it again as a

function of the state vector

fCTRV,t(xt) =




xt + vt
ω̇t

(− sin(ωt) + sin(∆t ω̇t + ωt))

yt + vt
ω̇t

(+ cos(ωt)− cos(∆t ω̇t + ωt))

zt
ωt + ∆t ω̇t

vt
ω̇t
Dbb,t




, (5.5)

where xt, yt and zt denote the position coordinates, ∆t denotes the time difference and

Dbb,t represents the bounding box dimensions wt, lt, ht and its yaw angle ϕt. The x and y

coordinates now depend on the velocity vt, the angular velocity ω̇t and the steering angle

ωt. Furthermore, the steering angle ωt gets updated as well taking the current angular

velocity ω̇t into account.

Random Motion

Static objects, i.e. targets without motion, are modeled by the Random Motion model.

This could be a parking car, a resting pedestrian or a traffic participant which waits at

a crossway. The static behavior is meant in relation to the real world coordinate system

and not to the ego-vehicle movement. To model such a behavior, the function is simply

5.2. Combined Bayesian Filter Approach 79

the state vector

fRAND,t(xt) =
[
xt yt zt ωt vt ω̇t wt lt ht ϕt

]T
, (5.6)

which is normally used in combination with higher process noise Qt. The model may

also get active, if the observed targets - mostly pedestrians - move slowly or in frequently

changing directions.

Artificial Input (Ego-Motion)

Because we model the tracked targets w.r.t. to the ego-vehicle, the resulting trajectories do

not represent the true motion behavior of each target w.r.t. the world or global coordinate

system. Instead, all paths are influenced by movements of the ego-vehicle. In general, this

is no problem for the implemented filters. However, if the ego-vehicle suddenly changes

its velocity or performs a turn, the filters are at risk of drifting away. Thus, we make use

of the IMU data included in the KITTI dataset to overcome this issue. Therefore we use

the artificial input

ut =



− vt
ω̇t

(− sin(ω) + sin(ω̇ ∆t+ ω))

− vt
ω̇t

(+ cos(ω)− cos(ω̇ ∆t+ ω))

0


 , (5.7)

inside the individual filters, influenced by the ego-vehicle’s velocity vt, turn rate ω̇t and

steering angle ωt. The zero vector 0 represents all other values of the state which do not

change by the ego-motion.

5.2.2 Interacting Multiple Model Unscented Kalman Filter

With the predefined motion models and the theory elucidated in Chapter 3, we have

all tools needed to walk through one cycle of recursively estimating states and mode

probabilities of a tracked target. Because of the modular design we decouple the data

association from the closely related filter-update, which happens inside the tracker module,

ensuring compatibility to all implemented assignment algorithms.

We extended the FilterPy implementations of IMM and UKF for our purposes which

we explain in the following processing steps: Interaction and Mode Probability Prediction,

Non-linear State Estimation, Data Association and Filter Update. The detailed steps are

illustrated in Figure 5.3.

Interaction and Mode Probability Prediction

The IMM is implemented with r = 3 UKF filters, each containing a different mo-

tion model: CV , CTRV and Random Motion. It performs an interaction step (recall

Equation (3.49)) where all individual state x̂i,t−1|t−1 and covariance Pi,t−1|t−1 estimates

of the i = 1, . . . , r filters of the previous time step are mixed into an initial state x̂?j,t−1|t−1

80 Chapter 5. Modular Multi-object Tracking

and covariance P?
j,t−1|t−1 for each filter j = 1, . . . , r of the current time step t. Therefore,

we have to calculate mixing probabilities µi|j,t−1 (recall Equation (3.50)) using predicted

mode probabilities µ−j,t (recall Equation (3.51)).

Non-linear State Estimation

Afterwards, each filter j = 1, . . . , r performs a prediction step based on its motion model

producing the predicted state x̂j,t|t−1 and corresponding covariance matrix Pj,t|t−1. More-

over, we obtain the predicted measurement ẑt|t−1 and corresponding innovation covariance

matrix St. The exact filter formulas of the UKF used for state and measurement prediction

can be looked up in Section 3.2.2.

The following update procedure depends on the association algorithm, selected in the

configuration file. We provide two different methodologies. On the one hand, we have

the exclusive assignment strategy, where each target gets associated exactly to one or

no measurement. On the other hand, we support a joint probabilistic approach combin-

ing all measurements within a certain area. While the former is implemented using the

Hungarian algorithm and yields association pairs of tracks and measurements, the lat-

ter is realized via JPDA in combination with Gating (recall Section 3.3.1) and delivers

association probabilities for each filter and track-measurement combination.

Filter and Mode Probability Update with Exclusive Assignment

In order to obtain the posterior mean x̂t|t and covariance matrix Pt|t, each tracker performs

a simple update step of the UKF as in Section 3.2.2, given by Equation (3.39). This action

is only performed if an associated measurement is available. Otherwise, it will be skipped

which leads to higher uncertainty expressed by the covariance matrix.

In addition to the state and covariance of each filter, we update the mode probabilities

inside the IMM block (recall Equation (3.53)). Therefore, we use the filter likelihoods

(recall Equation (3.52)) which represent how well the assigned measurement zt fits each

filter or motion model, respectively.

Filter and Mode Probability Update with Joint Probabilities

For measurements associated by JPDA, the update for each individual filter differs in

contrast to exclusive methods. The tracker receives association probabilities, describing

the influence of each measurement on the update. These association probabilities are

separately available for each filter.

In order to obtain the posterior mean x̂t|t and covariance matrix Pt|t, each tracker

performs an update step following Equations (3.63) and (3.64) defined for the Probabilistic

Data Association (PDA) filter.

At this point, incorrect bounding box orientation estimates, caused by the object

detectors as well as clutter measurements with mostly different orientations lead to an

5.2. Combined Bayesian Filter Approach 81

unpredictable behavior. As a consequence, we check, if the innovation value within the

JPDA update implementation of the UKF is larger than 90 degrees. This mostly happens

when an object detector predicts the bounding box orientation in the opposite direction

(180 degree twisted). If this is the case, we allow a maximum innovation of 30 degrees.

The reason for that is twofold. On the one hand, we are interested in small changes if

there happens a wrong orientation estimate. On the other hand, if the initial guess was

wrong, we want to change the orientation to the right direction as fast as possible.

The mode probability update follows the same equation as the exclusive assignment

method. However, because the JPDA takes multiple measurements into account, we build

the Gaussian mixture likelihood Lj,t for each individual UKF model j as

Lj,t =
1− (PDPG)

V Nv
t

+
PDV

(1−Nv)
t

Nv

√
det(2π Sj,t)

Nv∑

m=1

exp

(
−1

2
(zt − ẑj,t|t−1)

TS−1j,t (zt − ẑj,t|t−1)
)
,

(5.8)

with detection and gating probability PD and PG, respectively, the validation region vol-

ume Vt defined in Equation (3.56), the number of valid measurements Nv and the summed

model likelihood for each valid measurement.

Combination

The last step within one prediction and update cycle of the IMM -UKF is combination.

Here, we merge the posterior mean and covariance of each filter to a single state x̂t and

covariance Pt following Equation (3.54). These values represent the final result of one

cycle and thus, are inserted into the state history by the track manager.

5.2.3 Data Association

Hungarian Algorithm

For data association, Global Nearest Neighbour (GNN) approaches are heavily used in

tracking implementations. One representative solution is the Hungarian algorithm, which

performs global optimization on a cost matrix. While low scores imply that a pair would

make a good match, high scores represent independence. However, in the case of data

association, we have similarity scores or probabilities between measurements and tracks

instead of costs. In order to obtain costs, required by the algorithm, we multiply the

similarity scores with −1.

Hence, the values of our cost matrix are the negative IoUs between tracks and mea-

surements. Negative, because the IoU lies in the range [0, 1]. By negating the IoU , 0

is the maximum cost, describing a completely disjoint pair, and −1 is the lower bound

which stands for a total overlap. For such algorithms, it is common to introduce an overlap

threshold which ensures that only bounding boxes with a minimum overlap are considered.

82 Chapter 5. Modular Multi-object Tracking

This avoids the association of detections emerging from clutter. Typical threshold values

are in the range [0.1, 0.5].

The association function returns three lists. The matching pairs containing linked

tracks and measurements, the unmatched tracks and the unmatched detections. Impor-

tant for the update step are only the matches. Unmatched detections are used by the

track management module to initiate new tracks, while unmatched tracks are eventually

terminated.

Joint Probabilistic Data Association

A more sophisticated methodology is the Joint Probabilistic Data Association

(JPDA). It requires some preliminary measurement validation called Gating (recall

Section 3.3.1). In practice we use an elliptical validation gate defined by Equation (3.55).

Following Schreier [126], we use the innovation covariance matrix St with the largest

determinant for validation, assuming that its region covers most of the relevant

measurements. Further, we exclude the Random Model innovation covariance from

the validation process because of its high uncertainty. The validation region is then

calculated by

Vt = V (q) |γSjr,t|
1
2 , (5.9)

with

jr = arg max
j∈M

|Sj,t|, (5.10)

where jr denotes the model with the largest innovation covariance matrix determinant

and γ denotes the gating threshold. V (q) is the q-dimensional unit hypersphere, recall

Equation (3.57). The remaining Nv measurements Zv,t = {zm,t}Nv

m=1 passing the validation

gate are part of the following calculation of association probabilities.

Therefore, we set up a validation matrix containing all measurements as rows and all

tracks as columns. If a measurement passes the validation gate of a certain track, the row

value of this track is set to 1, otherwise it is 0. With this validation matrix, the algorithm

builds clusters of measurements with probably overlapping regions (recall Figure 3.3 for

an example). Each cluster is then separately processed by each filter j = 1, . . . r. Notice,

all filters use the same validation gate. This is necessary because the likelihoods have to

be conditioned on the same set of measurements [8].

Based on each cluster, we generate hypothesis trees which represent all possible permu-

tations of associations. Afterwards, we use these hypotheses to calculate joint association

probabilities. Then, we receive a mapping from clusters to a list of involved tracks and

the corresponding association probabilities. Furthermore, we get all measurements whose

row in the validation matrix contains zeros only. These measurements are used to start

new tracks. A detailed JPDA explanation can be found in Section 3.3.3.

5.3. Multi-Object Tracking Networks 83

5.3 Multi-Object Tracking Networks

Inspired by the work of Milan et al. [103], we implemented and trained RNNs to improve

or replace parts of the combined filter approach. The reasons for that are manifold. One

disadvantage of Bayes filters is that we need to design fixed motion models which we have

to combine with the IMM or use in a stand alone manner with an UKF or linear KF ,

respectively. Thus, wrong assumptions or models which do not cover the motion behavior

of the tracked targets lead to poor predictions and, consequently, to tracking failures.

Additionally, the parametrization of such filters is complex and depends on the envi-

ronment. For example, filter parameters which work well in an urban environment - with

lots of parked cars, pedestrians and many road crossings - may not be the perfect choice

for motorways. The traffic participants and their motion behavior, e.g. velocity or steering

angle, differ significantly between these two settings.

Another issue is the data association performance regarding time and precision. Hand-

crafted similarity scores, e.g. IoU or shortest distance, are not always a good decision.

While the exclusive association strategy with hand-crafted similarity scores does not work

for filters with inaccurate precisions, e.g. due to the lack of detections, joint association

approaches are very slow because of the exponential runtime with growing number of

targets and measurements. In addition, they do not work well for estimating the bounding

box orientation.

Because of these issues, we trained three different networks. The first two, on the

one hand, perform state prediction and data association for a variable number of tracks

and measurements. The third one, on the other hand, was designed to solve the whole

MOT procedure, including both previous networks, extended with state update and track

management. We describe each network in three steps. First, we introduce the network

structure. Second, we elucidate data preprocessing and training parameters. Finally, we

explain where and how we used the trained network in our tracking framework.

5.3.1 State Prediction Network

For state prediction we created and trained a simple LSTM model. The aim of this

network is to learn motion patterns from the training data and predict the next state

from a given state sequence. Afterwards, the network serves as a single motion model

inside an UKF .

Architecture

The network consists of four input neurons, two hidden layers - containing 256 LSTM cells

each - and two output neurons, yielding the center coordinates x and y of the bounding box

ground area. The architecture is listed in Table 5.2. As input the network receives center

coordinate x and y of the bounding box ground area as well as ∆x and ∆y, representing

84 Chapter 5. Modular Multi-object Tracking

Layer Type Input Output Activation

1 LSTM 4 256 -
2 LSTM 256 256 -
3 fully-connected 256 2 identity

Table 5.2: Prediction network architecture. Because LSTM cells have more than one activation
function, we list only activations of non-temporal elements.

the ego vehicle movement of one time step. For the reduction of our LSTM output we

applied a projection layer after each time step activated by the identity function.

Training

Because we predict coordinate values, which is a regression problem, we applied the linear

output activation to the last layer. While training, we need an additional loss layer which

calculates the difference of prediction and ground truth values. For this kind of problems,

the Mean Squared Error (MSE)

E(y, t) =
1

2D

D∑

i=1

(yi − ti)2, (5.11)

with network outputs yi and ground truth or target value ti respectively, is a common

choice.

We decided to implement a many-to-many network, where each time step of the LSTM

produces a prediction. Another option is the many-to-one structure, where the network

produces one single output after processing the whole input sequence. The idea behind

this decision is, that the network should learn to produce meaningful or ”careful” outputs

when only little information is available.

For the prediction model we decided to separate all available track trajectories of the

training set. This means that we do not make use of dependencies between different traffic

participants, e.g. when one car follows another they are not allowed to occupy the same

space without violating geometric constraints. Therefore, we extracted all available tracks

and saved them in a list.

Each training iteration yields sequences Si ∈ RB×T×D with batch size B and sequence

length T containing tracking states of dimensionality D = 4, randomly chosen out of all

available tracks starting at a random position. To ensure equal chances for each subse-

quence, the picking is weighted by the total length of each track. In order to achieve better

generalization while training, we perform dataset augmentation. With a probability of 0.5

we apply a random shift in x-direction, a random shift in y-direction, or a mirroring at

the x-axis. Additionally, we add random noise to the tracks. These augmentations are

only applied if the manipulated track is still in the minimum and maximum range of all

5.3. Multi-Object Tracking Networks 85

tracks. Finally, the input data gets normalized to lie within the range [−1, 1] which should

prevent the network from running into saturation.

Network optimization is done with the Adam [80] optimizer with a learning rate of

0.003 and a decay of 0.95 after every 20k iterations. We train the network with an early

stopping criterion which is fulfilled when the mean absolute error on the validation set

does not decrease for a certain number of training iterations.

Inference

For inference, we embedded the network within an UKF tracker combined with Hungar-

ian data association. Because of its ability to handle nonlinear dynamic functions without

knowing its derivative, we can simply replace the filter’s motion model with the trained

network. Therefore, we have to adapt the internal representation of the filter. An addi-

tional list containing the last N sigma points is necessary to serve the network in each

time step with correct input data. With this change, the network is able to do a state

estimate based on the prediction network. Thus, all sigma points can be calculated in

one step, by stacking up an appropriate batch. Because we are only interested in the last

state, the network is used in a many-to-one manner for inference.

5.3.2 Variable Data Association Network

In contrast to the prediction network, the variable data association model works in a frame-

based mode. This means that while training, the whole frame information, containing all

active tracks and detections, is available to the network. As the name points out, this

approach learns to associate a variable number of tracks and measurements. In particular,

we adapted the work of Yoon et al. [160] and trained it on the KITTI dataset.

Architecture

The architecture is similar to the one explained in Section 4.4.2 and contains two parts.

First, an encoder is responsible for encoding the input sequence into an encoded vector of

size 64. However, we added an RNN layer in front of the dense layers and in turn removed

one fully-connected layer. We think that the ability of RNNs to understand temporal

Layer Type Input Output Activation

1 RNN (T + 1)×D 128 -
2 fully-connected 128 128 ReLU
3 fully-connected 128 64 tanh

Table 5.3: Implemented encoder network architecture. The RNN layer receives a batch of se-
quences containing the last T states and detections with D features each.

dependencies of the state sequence can improve the encoding procedure. Table 5.3 shows

the used encoder layer structure. The network input is a batch - with variable size - of

86 Chapter 5. Modular Multi-object Tracking

measurement-to-track permutations. Each permutation contains the last T states and

one detection. Both entries, states and detection, contain the same D features: Center

coordinates x, y of the bounding box ground area and its bounding box dimensions,

i.e. width w and length l. We do not make use of the detection confidence as proposed in

the original model.

Second, this internal representation is used in the decoder to calculate a score for

each pair of detections and tracks. Its architecture is shown in Table 5.4. The encoder

output is fed into a Bidirectional Long Short-Term Memory (BLSTM) layer. It consists of

Layer Type Input Output Activation

4,5 BLSTM 64 128 -
6 fully-connected 128 64 ReLU
7 fully-connected 64 1 softmax

Table 5.4: Implemented decoder network architecture.

two connected LSTM layers fed with the input in forward and backward direction (recall

Section 4.2.4). As an output, the BLSTM layer produces a concatenation of both layers.

Hence, the BLSTM output is twice the size of its used hidden cells.

In contrast to the original implementation of Yoon et al. [160], we formulate the prob-

lem not as a regression task. Instead, we define the assignment of measurements to tracks

as a multi-class classification task, requiring a softmax activation in the last dense layer.

This leads to a more intuitive representation and returns probabilities for measurement-

to-track assignments. Additionally, we applied a dropout wrapper to the BLSTM layer

parametrized with a keep probability of 0.8 to achieve better generalization.

Training

For network training, we need an additional loss layer. Since the model solves a classi-

fication task, we apply the cross-entropy loss as explained in Equation (4.14). However,

based on the classification formulation, the softmax function produces only probabilities of

which measurement depends on which task. Hence, each row of the score matrix produces

exactly a sum of one.

This violates the assumption that only one measurement per track is allowed,

verified by a column sum smaller or equal to one (similar to the JPDA conditions in

Equation (3.71)). Because of that, we multiply the loss with an additional penalty

term depending on the column sums of the obtained score matrix. Each column with a

sum bigger than one, except the first, contributes to the penalty multiplier. Thus, it is

defined by the number of columns larger than one, times a predefined penalty factor. We

exclude the first column, because it represents the dummy or clutter track, which allows

associations to multiple measurements.

Because we use the training sequences as they are - frame by frame - we train the

network in epochs, each using the whole training set once. Therefore, we randomly loop

5.3. Multi-Object Tracking Networks 87

through all training sequences, and therein, pick each start position once, in an unordered

manner. This means, that each training sample is randomly chosen and contains the

information of T consecutive frames. Hence, T denotes the sequence length while training.

In contrast to the prediction model, we do not train our network on noisy ground truth

data only. Instead, we replace all ground truth bounding boxes with the corresponding

detections from our object detector, if available. These correspondences are found by

the Hungarian algorithm using a cost matrix derived from the IoU of detections and

ground truth objects. Additionally, we applied noise to the ground truth boxes without

association. This imitates the real state estimates of the tracker.

One subsequence of T frames contains all tracks active within this timeslot, also tracks

started or stopped within this subsequence. Hence, tracks which start within the subse-

quence are padded before with a default value and stopping tracks are constantly padded

afterwards. This also includes false positive detections, generating a track with only one

valid entry, the rest is filled with default values. These false positive tracks are handled

as if they were regular ones. This means that the track position stays the same, except

there is a stopping track beforehand which does not exist any more. In addition to that,

we normalize the input to lie in the interval [−1, 1]. Thus, the chosen default value we

xt−4
xt−3
xt−2
xt−1
xt|t−1




[2, 2, 2, 2]

[2, 2, 2, 2]

[2, 2, 2, 2]

[2, 2, 2, 2]

[2, 2, 2, 2]







[2, 2, 2, 2]

[2, 2, 2, 2]

[2, 2, 2, 2]

[2, 2, 2, 2]

[x, y, w, l]







[x, y, w, l]

[2, 2, 2, 2]

[2, 2, 2, 2]

[2, 2, 2, 2]

[2, 2, 2, 2]







[x, y, w, l]

[x, y, w, l]

[x, y, w, l]

[x, y, w, l]

[x, y, w, l]







[2, 2, 2, 2]

[2, 2, 2, 2]

[x, y, w, l]

[2, 2, 2, 2]

[2, 2, 2, 2]




a) b) c) d) e)

Table 5.5: Data association track examples with T = 5 and default value 2. a) Clutter track which
should be assigned to all false positive detections or new track detections. b) New
initialized track. c) Track which gets terminated. d) Regular active track. e) False
positive track existing already for three time steps.

use for the inputs is 2, which lies outside the input range and therefore, should be easier

to recognize for the network. Table 5.5 shows possible track examples at a certain time

index.

In order to obtain one input batch for the network, we build all the existing tracks, each

containing its subsequence of T states. This includes also the clutter track representing

all false positives. It is the first target in each batch and contains only default values.

Afterwards, we generate permutations of these tracks with all existing detections for the

chosen time frame and stack them together. Hence, this results in (N+1)×M permutations

of N active tracks, including one clutter track, and M measurements. The encoder is able

to process the whole batch in one step and the resulting encoded vectors are fed into the

BLSTM as one batch with (N + 1) ·M time steps, i.e. 64 features each.

88 Chapter 5. Modular Multi-object Tracking

As proposed by Yoon et al. [160], we further trained the network to learn the initial

cell state C0 and hidden state h0 of both LSTM layers inside the bidirectional structure.

Hence, the initial cell and hidden state are initialized by

h0 = tanh(Wh · ē + bh),

C0 = tanh(Wc · ē + bc),
(5.12)

where

ē =
1

(N + 1) M

(N+1) M∑

i=1

ei, (5.13)

denotes the mean of all encoded vectors. The weight matrix W and the bias term b

represent one dense network layer with input ē for the initial hidden and cell state.

Network optimization is again done with the Adam [80] optimizer with a learning rate

of 0.0001. We train the network with an early stopping criterion which is fulfilled when

the validation accuracy does not increase for a certain number of training epochs.

Inference

For inference, we embed the trained model into our data association module. In addition

to the current state, each tracker keeps a list of T previous states, initialized with default

values and the current predicted state xt|t−1 at the last sequence position t. Active tracks,

including the dummy track, combined with all available detections, build the network

input for the next data association step.

Because the resulting score matrix does not take care of one-to-one assignments, we

apply the Hungarian algorithm on it, excluding the first column which is reserved for the

clutter or dummy track, respectively. Another post-processing step removes associations

with a score lower than 0.5. All measurements which are assigned to clutter with a

probability higher than 0.5 are also removed. The remaining matches are considered

correct. Unmatched tracks and measurements are handled by the track management.

5.3.3 End-to-End MOT Network

The missing parts to train and perform MOT in an end-to-end manner are state update

and track management. Hence, we propose a network which combines the explained state

prediction and data association models, extended by an update network.

The following approach is an adaption of [103], handling a variable number of mea-

surements and tracks. In addition, we do not treat each track separately, but combine

them in an BLSTM layer, inspired by Alahi et al. [3], but with a simpler model (BLSTM

instead of ”social pooling”).

Unfortunately, the proposed model is not competitive to the previous models regarding

its tracking performance. The reasons for this are manifold. One issue is definitely the

update step. While training, we figured out that the prediction step can be learned very

5.3. Multi-Object Tracking Networks 89

well. However, performing the update with received detections does not noticeably improve

the state estimate. Sources of error are the data association which does not fulfill the one-

to-one constraint and the handling of detections in general. We make use of one detection

per time step and do not explicitly calculate an encoding - similarly to the tracking state

- which contains additional information, e.g. how good previous detections improved the

final state in the past.

Another source of error is the general model design. We take track sequences of length

T as an input and assume they reflect the true or desired behavior of our model. Based

on that information, we train the network to produce results for the next time step. In

contrast to that, a sequence generating network receives one state value per RNN iteration

only. It performs a prediction, followed by data association and updates the states with the

provided detections. Afterwards, it delivers the new states, which are in turn the input

for the next RNN time step. Such a network could implicitly learn relations between

predictions and updates. However, it is much harder to implement and would need much

more data to train.

Architecture

In order to perform prediction, data association and update within one network, we need

not only the state sequences as an input, but also detections of the current time step.

Therefore, we have six input neurons connected with an RNN encoder, similar to that

in the data association model. However, these neurons receive only the state sequence

without measurements, as shown in Table 5.6, where D = 6 denotes the feature size and

T is the sequence length. Each state of size D contains center coordinates of the bounding

box ground area x, y and its bounding box dimensions with w and length l, completed by

the ego-vehicle movements ∆x and ∆y.

Layer Type Input Output Activation

1 RNN T ×D 128 -
2 fully-connected 128 128 ReLU
3 fully-connected 128 64 tanh

Table 5.6: Encoder structure of our end-to-end network.

Afterwards, the encoded vector is used for state prediction within a BLSTM layer

followed by two fully-connected projection layers, shown in Table 5.7. The last projection

Layer Type Input Output Activation

4,5 BLSTM 64 128 -
6 fully-connected 128 128 ReLU
7 fully-connected 128 4 identity

Table 5.7: Prediction structure of our end-to-end network.

90 Chapter 5. Modular Multi-object Tracking

layer, consisting of four units, gets activated by the identity function. As a consequence, we

receive state predictions as intended. This prediction layers are not absolutely necessary,

because one could also infer a prediction by adding an output layer on top of the encoder.

Notwithstanding, we think that the bidirectional structure can improve performance for

interacting targets, e.g. parking cars (same motion), cars driving next to each other and

so on. In order to avoid overfitting and reach better generalization, we apply a dropout

wrapper to the BLSTM layer, again with a keep probability of 0.8. In addition, we learn

the internal state for this layer as explained in Equations (5.12) and (5.13).

At this point, the network holds encoded state vectors for each track only. Therefore,

we add another four input nodes, receiving the detections and build a Cartesian product -

each encoded vector of a track track gets concatenated with each measurement - resulting

in N ×M permutations. These permutations are the input forwarded to the data associ-

ation network. As explained in the previous section, it contains a BLSTM layer (now 8

and 9) with two following dense layers (now 10 and 11) as listed in Table 5.4. The result is

again a score matrix. By applying the softmax function, we get association probabilities,

describing the probability of how good a detection can be assigned to each track. Again,

we apply a dropout wrapper keeping 80 percent of the nodes and learn the internal states,

this time with the measurement-track permutation mean.

Finally, the network receives another input, representing the track existence probabil-

ity of the last time step for each track. In order to perform an update step, we generate

track-measurement permutation pairs, this time using track predictions, where each mea-

surement is multiplied with its corresponding association probability. Afterwards, we

reorder the permutation list of dimension (N + 1) M × 2D, to get a batch of sequences,

each containing all permutations for one track with dimension N ×M × 2D. Multiplied

with the track-existence probability of the last time step, each sequence is the input of

another BLSTM layer as shown in Table 5.8. Again with two following fully-connected

Layer Type Input Output Activation

12,13 BLSTM 2 D 128 -
14a fully-connected 128 128 ReLU
15a fully-connected 128 4 identity

Table 5.8: Update structure of our end-to-end network.

projection layers with linear activation in the last layer. Dropout with a keep probability

of 0.8 is also applied to this BLSTM layer, initialized with learned states depending on

the predicted track states.

Two separate projection layers, receiving the concatenated output of the BLSTM layer

(12, 13) predict the track existence probability for the current tracks. Because this is a

single value for each track, the last output layer contains only one node with sigmoid

activation, as listed in Table 5.9, to produce probabilities which are in the range [0, 1].

Together with both state outputs, containing predictions and updates of the bounding

5.3. Multi-Object Tracking Networks 91

Layer Type Input Output Activation

14b fully-connected 128 128 ReLU
15b fully-connected 128 1 sigmoid

Table 5.9: Track existence structure of our end-to-end network.

box ground plane center coordinates x, y and its dimensions w and l, the track existence

probability builds the entire network output and thus, closes one MOT cycle.

Training

For the end-to-end architecture we need different loss layers for each problem. Beginning

with the state prediction and update part, the MSE loss is an appropriate choice for

both. Whereas, for data association, we apply the cross-entropy loss for multiple classes

as usual. In addition, the data association loss is again penalized for ignoring the one-

by-one assignment constraint (see Section 5.3.2). The track existence probability decides

between two classes, active or not. As a consequence, the binary cross-entropy loss is used.

Furthermore, we use the same regularization term for the track existence probability as

proposed by Milan et al. [103], forcing the model to produce smooth probability switches.

Hence, to obtain the total loss, we sum up all calculated losses, including prediction,

update, data association and existence probability loss as

E(. . .) =

prediction︷ ︸︸ ︷
1

2N

∑
||x∗ − x̂||2 +

update︷ ︸︸ ︷
1

2N

∑
||x∗ − x||2 +Eε + ε̂+ EDA ΨPEN , (5.14a)

Eε = ε∗ log(ε) + (1− ε∗) log(1− ε), (5.14b)

EDA = −
N∑

n

a∗0,n log(a0,n), (5.14c)

where the prediction and update term is straight forward, the existence probability loss

Eε is smoothed with the regularization term ε̂ and the data association loss EDA is a

multi-class cross-entropy error function, multiplied with the previously mentioned penalty

term ΨPEN .

The training and validation data is processed and used similar to that of the data

association network. We train in epochs, where each epoch contains all training sequences

and for each iteration, we pick a random sample regarding sequence and start position.

Again, we provide a batch of variable length to the network, depending on active tracks

within the selected sample, containing the last T states for each track. Included are also

false positive tracks. Both, real and false positive tracks, consist of noisy ground truth

values with entries replaced by detections if they are assignable with the Hungarian algo-

92 Chapter 5. Modular Multi-object Tracking

rithm. In contrast to the data association network, we separately provide the detections

in addition to track existence probabilities.

Each single network can be trained step-by-step without influencing the previous one.

This means, that we are able to train the state prediction network first. Second, we fix the

weights and train the data association part. Finally, the model is trained for updating the

states with fixed weights for both previous models. Therefore, all individual loss functions

are used and evaluated on the ground truth sequences. Afterwards, we are able to load

all network weights and fine-tune the model, by training the whole network without fixing

weights.

The network can also be trained in an end-to-end manner without training each part

of the network first. However, this could lead to suboptimal solutions, because of the

complex loss function and the small amount of data available in the used dataset. One

way to improve the learning could be a weighting of each loss term. Notwithstanding, we

performed a separate training of each network part followed by an end-to-end fine-tuning

within this thesis.

Network optimization is again done with the Adam [80] optimizer with a learning rate

of 0.0001. We train the network with an early stopping criterion which is fulfilled when

the combined validation accuracy of all loss terms does not increase for a certain number

of training epochs.

Inference

One of the biggest advantages of end-to-end models is that they are mostly easy to use. We

just have to prepare the input data, containing state sequences of active tracks, detections

and track existence probabilities, all of time t−1. Then, the model yields a state prediction

for each track, a score matrix containing assignments of all detections to active tracks,

updated states for each track and existence probabilities, each for the current time step t.

First, we evaluate the data association scores by performing the Hungarian algorithm

to get one-to-one assignments. Furthermore, we again remove pairs with association prob-

abilities smaller than 0.5 and measurements assigned to clutter with a probability larger

than 0.5. Now, we can perform the track state updates in two different ways:

1. Update all tracks with the received update value.

2. Update all assigned tracks with received update values and all others with the re-

ceived prediction values.

While we assume for the first approach that the updater learns to act correctly even

with uncertain associations, the second one is more restrictive as we do not trust the

updater in case of uncertain assignment situations. Because we first trained each network

part separately and the data association model does not implicitly solve the one-to-one

assignment problem, we decided to use processed prediction values for unassigned tracks.

5.3. Multi-Object Tracking Networks 93

Finally, track management deals with unmatched tracks and detections. Instead of

counting consecutive updates, we use the track existence probabilities. Each unmatched

detection gets a new potential track and is part of the next time step, starting with an

existence probability of 0.5. Afterwards, all tracks with an existence probability larger

than 0.7 switch into the active state and those with an existence probability smaller than

0.4 are terminated and thus, removed from the list of all tracks.

6
Evaluation

Contents

6.1 Evaluation on the KITTI Dataset 96

6.2 Comparison of Presented Models 97

6.3 Comparison to the State-of-the-Art 104

6.4 Detailed Tracker Analysis . 104

In this chapter, we present a detailed performance evaluation of our Multiple Object

Tracking (MOT) framework. Therefore, we apply the implemented models on the publicly

available KITTI dataset [48, 49]. First of all, we briefly describe the provided raw data

and tracking data, their differences, as well as the selected sequences.

For the first experiments, we make use of the KITTI raw dataset, containing different

scenes, i.e. Road, City and Residential, and various object classes, i.e. Car, Van, Truck,

Pedestrian, Sitting Person, Cyclist, Tram and Misc. Because we want to simulate real

traffic scenarios, we do not focus on a specific scene and do not filter out targets which

are occluded or outside the laser scanner’s range. Instead, we tried to find a balanced set

of sequences, containing different environments, traffic participants and situations, where

we make use of all available detections.

To compare the implemented models, we start with the overall tracking performance.

Furthermore, we focus on the behavior of each tracker when we skip time steps, which is

normally used to increase speed. This means, that we use only a subset of the available

detections, e.g. detections of each second or third time step. Another evaluation reflects

the tracking performance on the three main classes: Car, Pedestrian and Cyclist.

Afterwards, we evaluate our models on the KITTI tracking dataset which is partly

included in the KITTI raw dataset and is commonly used in literature for evaluation.

Because the tracking test set used for the online leader board does not provide ground

truth labels, we evaluate on a commonly used validation split of the training data. We

again start with an overall tracking performance comparison between all models where we

95

96 Chapter 6. Evaluation

take all object classes into account. In addition to that, we investigate the performance of

our models by using two different object detectors: Frustum PointNets [116] and PointR-

CNN [129]. Moreover, we discuss state-of-the-art approaches and how we can interpret

our results w.r.t. the online KITTI leaderboard1. Finally, we discuss individual sequences

in detail, where we describe properties of the different approaches.

For all the practical experiments we use the Classification of Events, Activities and

Relationships (CLEAR) MOT2 measures [12] and additional quality measures [89], recall

Section 2.5. Additionally, we provide the average runtime, given as Frames Per Second

(FPS). We run all experiments on a PC with an Intel R© Core
TM

i7 - 8700K processor at 3.7

GHz, equipped with 32 GB RAM and a Nvidia R© GeForce GTX 1080 graphics card with

8 GB video memory, running a 64 bit Ubuntu 16.04 LTS operating system.

6.1 Evaluation on the KITTI Dataset

The Karlsruhe Institute of Technology and the Toyota Technological Institute of Chicago

provide the publicly available KITTI Dataset (recall Section 2.6) containing, on the one

hand, a raw dataset, sorted by category, i.e. Road, City and Residential. The tracking

dataset, on the other hand, consists of 21 training sequences and 29 test sequences which

partly overlap with the raw dataset, as listed in Table 6.1. Because there is no ground

Training (our) Validation

Tracking Raw Tracking Raw

0001 0009 0000 0005
0002 0011 0003 0013
0005 0015 0004 0014
0007 0022 0006 0018
0008 0032 0010 0056
0009 0036 0012 0060
0011 0059 0013 0091
0017 - 0014 -
0018 - 0015 -
0019 - 0016 -

0020 -

Table 6.1: The table shows a mapping between tracking training data sequences and raw data
sequences, as well as the training/test split proposed in [112]. We can see that 14 out
of the 21 sequences of the public KITTI training dataset are also contained within the
raw dataset.

truth available for the test sequences, we make use of training sequences only. Hence, we

split the 21 training sequences following Osep et al. [112].

1http://www.cvlibs.net/datasets/kitti/eval tracking.php (accessed September 24, 2019)
2https://github.com/cheind/py-motmetrics (accessed September 24, 2019)

http://www.cvlibs.net/datasets/kitti/eval_tracking.php
https://github.com/cheind/py-motmetrics

6.2. Comparison of Presented Models 97

For the evaluation on the raw dataset we have chosen the sequences listed in Table 6.2.

At first sight, it might look unbalanced. However, we have to take care of different cir-

City Residential Road

0001 0020 0070
0005 0039
0014 0064
0018
0060
0084

Table 6.2: Validation sequences listed by category.

cumstances. First, the recorded sequences are unbalanced w.r.t. the categories (18 City,

13 Residential, 7 Road). Second, for training our models we need enough data of each

category and object class. And third, we do not want to evaluate on sequences contained

in the training set.

6.2 Comparison of Presented Models

To ensure a fair comparison between all models in different scenarios, we do not change

the model parametrization. This means, that we tuned each model to perform well in

the overall performance evaluation w.r.t. Multiple Object Tracking Accurency (MOTA)

and keep the parameters fixed afterwards. Track management threshold parameters can

be found in Table 6.3. Furthermore, we use Frustum PointNets [157] as our standard 3D

IMM-UKF RNN-UKF

SORT GNN JPDA ENC-DEC GNN ENC-DEC

time-since-update 3 2 3 2 2 2
hit-streak 2 1 1 1 1 1
suspend counter - 2 2 2 2 2

Table 6.3: Track management threshold parameters for all trackers. While the hit-streak thresh-
old is responsible for the initialization of tracks, the threshold for time-since-update
and suspend counter influence the termination of tracks. Each model except SORT is
based on an IMM-UKF or RNN-UKF and named after its data association procedure.
Each value defines the threshold for the listed parameter.

object detector. As a baseline we use the SORT [14] tracker which we modified to work

in a 3D environment. In all following tables, the best score of each column is written in

green and the second best score is written in blue. We do not highlight Partly Tracked

(PT) targets, because Mostly Tracked (MT) and Mostly Lost (ML) targets w.r.t. the

number of ground truth tracks are the important measures.

98 Chapter 6. Evaluation

The basis of all models, except SORT, is the IMM-UKF (recall Section 5.2) with differ-

ent association strategies. While ENC-DEC denotes the encoder-decoder network, Global

Nearest Neighbour (GNN) represents a global data association strategy implemented by

the Hungarian algorithm. The special form RNN-UKF represents an IMM-UKF with

only one learned motion model based on Recurrent Neural Networks (RNNs). It implic-

itly contains various motion patterns and thus, does not need the Interacting Multiple

Model (IMM) filter.

6.2.1 Validation on KITTI Raw Data

In order to obtain the overall performance of our models, we applied them to the selected

set of sequences from the KITTI raw dataset. Because we are interested in real-world sce-

narios, we test the performance including all available object classes. Afterwards, we test

the ability of tracking by repeatedly ignoring detections. Finally, we check the influence

of objects apart from cars, pedestrians and cyclists.

All Object Classes

The best performing models considering MOTA are RNN-UKF-GNN and SORT, listed in

Table 6.4. While SORT benefits from the lowest False Positive (FP) score and the second

MT PT ML IDS FP FN MOTP MOTA FPS

SORT 161 78 16 53 548 2105 75.5% 76.5% 412
IMM-UKF-GNN 169 72 14 85 753 1930 74.6% 75.9% 74
IMM-UKF-JPDA 161 77 17 99 950 2164 73.4% 72.1% 50
IMM-UKF-ENC-DEC 173 71 11 48 824 1867 74.3% 76.2% 33
IMM-UKF-ENC-DEC∗ 139 95 21 65 940 2617 72.0% 68.5% 34
RNN-UKF-GNN 174 68 13 68 695 1860 71.5% 77.2% 40
RNN-UKF-ENC-DEC 172 73 10 78 849 1874 71.5% 75.6% 35
RNN-UKF-ENC-DEC∗ 139 93 23 143 1032 2666 68.1% 66.6% 37

Table 6.4: Evaluation results of all trackers on KITTI raw dataset and detections from the Frus-
tum PointNets detector. Models containing ENC-DEC∗ do not use the Hungarian
algorithm after encoder-decoder data association. The number of total ground truth
tracks is 255.

best result regarding ID switches (IDS), the RNN-UKF-GNN tracker produces the best

result concerning False Negatives (FNs), combined with a good FP value. Additionally,

the latter one has the highest number of MT targets as well as a moderate number of

IDS . The Multiple Object Tracking Precision (MOTP) for all trackers lies between 75.5%

and 71.5% which is a solid result.

Because of the learned association strategy independent from the Intersection over

Union (IoU) of tracked targets and detections, both encoder-decoder association based

trackers, IMM-UKF-ENC-DEC and RNN-UKF-ENC-DEC, reach a very high number of

MT targets and consequently also a very low number of ML targets. In particular, the

6.2. Comparison of Presented Models 99

RNN-UKF-ENC-DEC tracker performs on par with both leading models. It has the second

best ML and MT score. Moreover, it reaches the best result w.r.t. IDS , which indicates

that the encoder-decoder data association works out very well.

Considering the averaged FPS , SORT is the fastest tracker. However, all listed models

operate on average more than 3 times faster than the data recording rate of KITTI and

thus, easily achieve real-time performance. Note, however, that we do not take the object

detection time into account. Furthermore, an average value does not necessarily promise

a constant processing speed. For example, the execution time of the IMM-UKF-JPDA

filter increases exponentially w.r.t. the number of tracks and detections within one cluster.

Hence, it can happen that the tracker needs more than 1 second per frame for a short

subsequence and for the rest it operates 100 times faster. Summed up, this leads to an

acceptable averaged value, but does not reflect real-time behavior.

In addition to our implemented trackers, Table 6.4 lists two approaches marked with

an asterisk. They illustrate the tracking results without using the Hungarian algorithm

on the encoder-decoder network output. Thus, the data association procedure does not

necessarily fulfill the one-by-one assignment constraint. The significant drop in the respec-

tive tracking performance demonstrates that this constraint is crucial for Multiple Object

Tracking (MOT).

All Object Classes and Skipped Detections

Within this section, we ignore detections of specific time steps to investigate the state

prediction quality of our trackers. This is a more challenging task which requires the

tracker to make good predictions and subsequently associate detections to them.

This experiment is the only exception regarding parameter tuning. We have to change

the hit-streak threshold to 1, because the missing detections make consecutive updates

impossible. This means, that each track is initialized immediately. Another problem is

the time-since-update counter. Because of the removed detections, we need to adapt the

threshold for this parameter as well. Thus, we increase the time-since-update threshold

by 1 for each time step without detection. For example, if the default threshold is 2 and

we skip the detections of each second time step, the new threshold is 3. If we drop the

detections of two subsequent frames, the threshold is 4, and so on.

Table 6.5 shows the results of all trackers by skipping the detections of each second

time step where we use only detections filtered as:

filter(dt) =

{
dt, if mod(t, 2) = 0,

{}, otherwise.
(6.1)

Note, however, that we still calculate state estimates for all time steps. The first obser-

vation is an increase of the processing speed. Each tracker works faster by skipping the

state update step for 50% of all frames.

100 Chapter 6. Evaluation

MT PT ML IDs FP FN MOTP MOTA FPS

SORT 81 103 71 159 723 5001 70.9% 48.8% 657
IMM-UKF-GNN 133 98 24 46 619 2599 73.2% 71.6% 98
IMM-UKF-JPDA 88 124 43 63 684 3853 67.8% 60.0% 77
IMM-UKF-ENC-DEC 146 93 16 43 799 2366 71.2% 72.1% 54
RNN-UKF-GNN 137 95 23 65 654 2497 66.8% 72.0% 52
RNN-UKF-ENC-DEC 130 108 17 72 673 2510 65.9% 71.7% 48

Table 6.5: Evaluation of all trackers on KITTI raw dataset omitting detections of each second
time step, detected by the Frustum PointNets detector. The number of total ground
truth tracks is 255.

More interesting is the MOTA result in comparison to the overall performance. All

trackers suffer from the information loss what was to be expected. Notwithstanding,

both models with encoder-decoder data association, RNN-UKF-ENC-DEC and IMM-

UKF-ENC-DEC, still work very well and lose approximately only 4%. The reason for

that is obvious. Since the learned data association model does not depend on the IoU ,

state predictions do not have to be as accurate as for the other models. This is also

the reason why the performance of SORT drops significantly. The linear motion model

which is responsible for state prediction fails for most of the tracks. In contrast, the other

trackers deliver an acceptable result which is owed to the IMM , containing various motion

models. An interesting observation is the still good performance of our RNN-UKF-GNN

model which proves that the RNN state prediction works properly. In general, we can

observe an increase of FNs and Partly Tracked (PT) targets, which is clearly expected.

When we go even further and drop detections of two subsequent time steps, considering

detections filtered as

filter(dt) =

{
dt, if mod(t, 3) = 0,

{}, otherwise,
(6.2)

the results confirm our hypotheses. Table 6.6 shows the comparison of all trackers. First of

MT PT ML IDs FP FN MOTP MOTA FPS

SORT 14 68 173 352 1096 9074 55.5% 8.5% 826
IMM-UKF-GNN 102 92 61 28 518 3714 71.5% 63.0% 112
IMM-UKF-JPDA 49 142 64 54 726 5158 61.7% 48.4% 107
IMM-UKF-ENC-DEC 105 124 26 44 573 3159 68.9% 67.2% 73
RNN-UKF-GNN 107 98 50 48 569 3540 61.1% 63.8% 60
RNN-UKF-ENC-DEC 105 123 27 53 575 3133 58.7% 67.3% 56

Table 6.6: Evaluation of all trackers on KITTI raw dataset omitting detections of two subsequent
time steps, detected by the Frustum PointNets detector. The number of total ground
truth tracks is 255.

all, we can see another decrease of MOTA and a higher frame rate for all models. In detail,

SORT is unusable in this setting, while all other trackers are at least around a MOTA of

6.2. Comparison of Presented Models 101

50%. The best performing approaches are again both models based on Encoder-Decoder

data association. In comparison to the overall evaluation results, we observe a decrease of

only 9% for the best tracker by using approximately a third of the detections. However,

the MOTP of RNN-UKF-ENC-DEC is very low, because we do not predict the bounding

box orientation and thus, rely only on the detections.

Concluding we can say that the data association performance of a model has the most

influence on the final results. Another observation is that models with a precise state

prediction in combination with hand-crafted association metrics, e.g. IoU , are still able

to track most targets. Not surprisingly, dropping detections leads to a slight decrease of

FPs.

Main Object Classes

In order to obtain results which ensure better comparability to state-of-the-art approaches,

we additionally evaluated our trackers just on the three main object classes, i.e. Car,

Pedestrian and Cyclist. Therefore, we filtered out objects of the remaining classes from

our detections and the ground truth data. Compliant to common practice, we treat objects

of the class Van as a car and thus, it is also part of this evaluation. The results for this

experiment are listed in Table 6.7. Because the sequences under consideration contain only

MT PT ML IDs FP FN MOTP MOTA FPS

SORT 156 73 15 43 530 1987 77.0% 76.7% 462
IMM-UKF-GNN 164 66 14 78 745 1817 76.1% 75.9% 58
IMM-UKF-JPDA 158 69 17 91 919 2017 74.9% 72.4% 51
IMM-UKF-ENC-DEC 167 66 11 50 827 1768 75.8% 75.9% 35
RNN-UKF-GNN 169 62 13 70 692 1765 72.9% 77.0% 41
RNN-UKF-ENC-DEC 168 66 10 76 843 1772 72.7% 75.5% 36

Table 6.7: Evaluation results of all trackers on KITTI raw dataset, considering only objects from
the main classes Car/Van, Pedestrian and Cyclist, detected by the Frustum PointNets
detector. The number of total ground truth tracks is 244.

11 target tracks which are not included in the main classes, there is not a big difference

to the overall evaluation in Table 6.4.

However, we can see a slight performance improvement w.r.t. MOTA for trackers de-

pending on a data association performed by the Hungarian algorithm with a score matrix

based on the IoU of detections and tracks. We think that, on the one hand, in the case of

all object classes, these trackers are confused by targets with huge bounding box ground

areas, i.e. Tram, Truck or small targets, i.e. Sitting Person. On the other hand, the

trained association network benefits from distinguishable targets of different size.

The precision of each tracker regarding MOTP is higher for the main classes, because

they are represented better in the dataset. Thus, detecting these object classes can be

learned more precise by data driven object detectors. Furthermore, targets which are very

102 Chapter 6. Evaluation

small, i.e. Person Sitting or very large, i.e. Truck, Tram are hard to match or detect as a

whole, respectively.

6.2.2 Validation on KITTI Tracking Data

Another commonly used method to evaluate on the KITTI dataset is to test on the publicly

available training data. Thus, following Osep et al. [112], we split the training sequences

into two chunks, training and validation (see Table 6.1). The latter one is used within this

section to evaluate again the overall performance of our implementations. Afterwards, we

investigate the influence of using a different object detector.

All Object Classes

In order to obtain an overall performance measure on the KITTI tracking dataset we first

evaluate our trackers considering all object classes. The results are listed in Table 6.8

and show a worse performance quality compared to the evaluation on the raw dataset in

Table 6.4. The reasons for this are twofold. First, although using only one sequence more

MT PT ML IDs FP FN MOTP MOTA FPS

SORT 163 168 40 173 1250 4688 70.0% 66.6% 340
IMM-UKF-GNN 205 140 26 202 1576 3968 69.4% 68.6% 50
IMM-UKF-JPDA 115 178 78 107 1050 6646 70.5% 57.4% 34
IMM-UKF-ENC-DEC 192 142 37 194 1708 4597 68.6% 64.5% 27
RNN-UKF-GNN 205 137 29 240 1530 3996 65.5% 68.5% 30
RNN-UKF-ENC-DEC 192 150 29 259 1802 4556 64.5% 63.8% 27

Table 6.8: Evaluation results of all trackers on KITTI tracking dataset and detections from the
Frustum PointNets detector. The number of total ground truth tracks is 371.

for evaluation, the tracking data sequences contain 50% more tracks in comparison to the

selected raw data sequences. This implies that several scenes are heavily crowded. Second,

the number of pedestrians and cyclists is considerably larger. However, we do not change

the parameters of our models, initially found for the selected sequences of the raw data.

This ensures fair comparability and we are able to see the robustness of each tracker.

The top-performing trackers are IMM-UKF-GNN, followed by RNN-UKF-GNN and

SORT. This leads us to the conclusion that our trained encoder-decoder association model

has problems with heavily crowded scenes. Notwithstanding, the RNN-UKF-ENC-DEC

tracker performs on par with the best models regarding MT and ML tracks. It shows

that the tracker is able to deal with different situations and scenes. The big disadvantages

are the high number of FPs which are caused by the simple input we use for training the

encoder-decoder network and the high number of ID switches.

6.2. Comparison of Presented Models 103

Main Object Classes

One of the main advantages of our tracking framework is the ability of using different

object detectors. Because of that,we compare the performance of our models by processing

detections of two different publicly available object detectors. Therefore, we apply the

trackers on the KITTI tracking dataset and investigate the results by considering only the

main object classes, i.e. Car/Van, Pedestrian and Cyclist.

Frustum PointNets: Table 6.9 shows the results for the Frustum PointNets [157] de-

tector, which we also used for all previously discussed evaluations. We observe, similar to

MT PT ML IDs FP FN MOTP MOTA FPS

SORT 161 150 37 160 1193 4319 71.6% 67.2% 358
IMM-UKF-GNN 198 126 24 191 1520 3662 71.0% 68.9% 55
IMM-UKF-JPDA 116 162 70 103 1023 6170 72.2% 57.8% 39
IMM-UKF-ENC-DEC 188 124 36 185 1674 4273 70.3% 64.5% 28
RNN-UKF-GNN 198 124 26 229 1489 3695 67.0% 68.7% 32
RNN-UKF-ENC-DEC 184 136 28 240 1764 4214 66.1% 64.0% 28

Table 6.9: Evaluation results of all trackers on KITTI tracking dataset, considering only objects
from the main classes Car/Van, Pedestrian and Cyclist, detected by the Frustum
PointNets detector. The number of total ground truth tracks is 348.

the KITTI raw dataset evaluation, a slight performance increase for trackers based on a

GNN data association strategy in comparison to the results in Table 6.8. IMM-UKF-GNN

and RNN-UKF-GNN are still the leading trackers in this scenario.

PointRCNN: The second evaluated 3D object detector is PointRCNN [129]. The re-

sults in Table 6.10 give us new insights on the robustness of our trackers, but also on

the detection quality of both detectors. Compared to Table 6.9 we have similar results

MT PT ML IDs FP FN MOTP MOTA FPS

SORT 161 137 50 64 1312 4438 80.9% 66.4% 400
IMM-UKF-GNN 191 113 44 67 1567 3816 81.2% 68.5% 62
IMM-UKF-JPDA 129 146 73 48 1264 6503 81.4% 54.8% 45
IMM-UKF-ENC-DEC 175 118 55 77 1653 5154 81.4% 60.2% 31
RNN-UKF-GNN 190 118 40 91 1550 3854 76.7% 68.2% 36
RNN-UKF-ENC-DEC 180 118 50 128 1660 4701 76.3% 62.5% 32

Table 6.10: Evaluation results of all trackers on KITTI tracking dataset, considering only objects
from the main classes Car/Van, Pedestrian and Cyclist, detected by the PointRCNN
object detector. The number of total ground truth tracks is 348.

regarding MOTA for the best performing trackers IMM-UKF-GNN and RNN-UKF-GNN.

In contrast, both trackers with learned data association model, IMM-UKF-ENC-DEC and

RNN-UKF-ENC-DEC, lose 4.3% and 1.5% accuracy, respectively. We attribute this to

104 Chapter 6. Evaluation

the trained encoder-decoder association model which learns from detections found by the

Frustum PointNets detector.

The most obvious observation is the noticeable increase regarding MOTP . Each tracker

reaches much better results compared to previous evaluations. This can be attributed to

the more accurate bounding box detection provided by the PointRCNN detector. This

result shows the importance of object detection in a tracking framework following an

tracking-by-detection paradigm.

6.3 Comparison to the State-of-the-Art

Within this section we compare our evaluation results to state-of-the-art trackers which

leads us to a number of problems. First and foremost, the KITTI tracking test data is

not publicly available and trackers listed on the KITTI leaderboard3 are evaluated on the

2D image plane, separated by object class. Second, there are only 4 out of 20 among the

leading approaches on the score board using 3D information from the point cloud. Third,

the inspiring approach proposed by Rachman [117] is evaluated only on carefully selected

City sequences including restrictions w.r.t. occlusion and laser scanner range.

Because our 3D SORT implementation is similar to that of Weng and Kitani [150],

we can compare and interpret our results w.r.t. their evaluation. They are on the 14th

place of the KITTI leaderboard for object class Car and on the 20th place for object class

Pedestrian by tracking in 3D space and projecting the 3D bounding boxes back into the

2D image plane. These projected bounding boxes are then used for evaluation. They reach

83.84% MOTA for cars which is approximately 1% less than the best approach using point

cloud data. The accuracy for pedestrians lacks with 36.36% far behind the best approach

which reaches 60.67%. The precision for cars given as MOTP is with 85.24% just 0.5%

worse than the leading approach and for pedestrians with 64.86% approximately 10%

worse, which is still acceptable.

Consequently, we can argue that the IMM-UKF based models work on par with the 3D

implementation of SORT and thus, performs well compared to state-of-the-art approaches.

Furthermore, they are more robust because of the precise state prediction mechanism due

to multiple and non-linear motion models. Moreover, nearly all implemented models are

able to deal with skipped time steps where we drop up to two thirds of the detections.

6.4 Detailed Tracker Analysis

For a better comparison between the best performing trackers on both selected datasets,

KITTI raw data and KITTI tracking test data, we analyze the results of each sequence

in detail. Therefore, we investigate the results of SORT and RNN-UKF-GNN for all

3http://www.cvlibs.net/datasets/kitti/eval tracking.php (accessed October 1, 2019)

http://www.cvlibs.net/datasets/kitti/eval_tracking.php

6.4. Detailed Tracker Analysis 105

sequences of the raw dataset and IMM-UKF-GNN and RNN-UKF-GNN for all sequences

of the tracking test dataset.

Sequence by sequence, we provide the results and an additional row, containing the

improvements or degradations of the second tracker regarding the first one. Values denot-

ing a performance increase are written in green, whereas values denoting a performance

decrease are written in red. Again, we do not highlight Partly Tracked (PT) targets,

because MT and ML targets w.r.t. the number of ground truth tracks are the important

measures.

6.4.1 KITTI Raw Sequences

To gain more insights into the different behaviors of our trackers, we compare the two

top-performing implementations SORT and RNN-UKF-GNN. By looking at the detailed

evaluation in Table 6.11, we first observe the worse MOTP values of the RNN-UKF-GNN

tracker. This result is not really surprising by looking at the RNN prediction model

implementation. We neither use the bounding box orientation as an input, nor as a model

output. Thus, we do not predict the orientation with our motion model and the Unscented

Kalman Filter (UKF) has to rely on the detected bounding box only. Hence, the tracking

precision depends strongly on the object detector.

Apart from that, the overall MOTA value is nearly the same and differs only by 0.7%.

It is interesting to take a closer look at three sequences showing the biggest deviation

regarding tracking accuracy: 0005, 0014 and 0020. Sequence 0005 is a city scenario with

12 cars, 2 pedestrians and 1 cyclist. The ego vehicle performs an s-shaped turn following

another car. The object detector produces a lot of FP detections mostly caused by parking

bicycles and mopeds. We have listed the most significant frames of sequence 0005 in

Figure 6.1 where the results of both trackers are shown. While the track management of

SORT is parametrized with a hit-streak threshold of 2 to perform best on all sequences, the

RNN-UKF-GNN tracker starts tracks immediately indicated by a hit-streak threshold of

1. This prevents SORT from wrongly initializing tracks with the FP detections. However,

a drawback of this parametrization is the lower number of MT targets.

On the contrary, sequence 0014 can be tracked better by the RNN-UKF-GNN model.

It contains another city scenario with 30 cars, 5 pedestrians, 4 cyclists, 1 truck and 1 tram.

In this case, the ego vehicle performs a relatively fast turn in the beginning and follows a

straight road afterwards. We have listed the most significant frames of sequence 0014 in

Figure 6.2 where the results of both trackers are shown. The difficulty is, on the one hand,

the fast turn of the ego vehicle and, on the other hand, the different velocities of the traffic

participants, i.e. static and oncoming objects, as well as various object classes (vehicles,

pedestrians, cyclists). The simple linear Kalman Filter (KF) of the SORT tracker is not

able to follow these fast changes within the first two frames and thus, misses a lot of

targets. In contrast, the RNN-UKF-GNN tracker is able to yield precise predictions in

such situations. Hence, it misses significantly less tracks which reflects the lower FN value.

106 Chapter 6. Evaluation

Seq. Tracker MT PT ML IDs FP FN MOTP MOTA FPS

0001
(1) 10 5 0 5 26 97 63.3% 77.6% 275
(2) 11 4 0 8 40 80 55.5% 77.6% 25

1 -1 0 3 26 -17 -7.8% 0%

0005
(1) 9 6 0 4 110 89 69.8% 71.7% 240
(2) 11 4 0 4 172 90 70.2% 62.9% 23

2 -2 0 0 62 1 0.4% -8.8%

0014
(1) 17 17 7 7 82 273 70.4% 68.3% 386
(2) 26 13 2 8 70 168 63.2% 78.5% 35

9 -4 -5 1 -12 -105 -7.2% 10.2%

0018
(1) 11 4 0 3 55 118 77.1% 77.1% 465
(2) 12 3 0 3 52 102 73.7% 79.6% 46

1 -1 0 0 -3 -16 -3.4% 2.5%

0020
(1) 4 4 0 6 20 76 78.4% 78.8% 251
(2) 5 3 0 5 1 61 75.1% 86.1% 24

1 -1 0 -1 -19 -15 -3.3% 7.3%

0039
(1) 34 8 2 2 52 258 78.5% 83.4% 301
(2) 33 8 3 2 68 258 75.8% 82.6% 29

-1 0 1 0 16 0 -2.7% -0.8%

0060
(1) 4 0 0 2 68 24 73.5% 62.2% 321
(2) 4 0 0 2 73 20 68.0% 61.8% 26

0 0 0 0 5 -4 -5.5% -0.4%

0064
(1) 31 16 2 9 55 430 76.2% 79.1% 356
(2) 33 14 2 8 93 409 72.8% 78.4% 34

2 -2 0 -1 38 -21 -3.4% -0.7%

0070
(1) 3 3 2 1 11 111 68.7% 66.9% 1323
(2) 5 1 2 4 28 81 60.8% 69.6% 138

2 -2 0 3 17 -30 -7.9% 2.7%

0084
(1) 38 15 3 14 69 629 78.8% 75.8% 198
(2) 34 18 4 24 98 591 75.0% 75.8% 21

-4 3 1 10 29 -38 -3.8% 0%

OVERALL
(1) 161 78 16 53 548 2105 75.5% 76.5% 444
(2) 174 68 13 68 695 1860 71.5% 77.2% 41

13 -10 -3 15 147 -245 -4.0% 0.7%

Table 6.11: Detailed comparison of SORT (1) and RNN-UKF-GNN (2) on KITTI raw data.
Improvements of RNN-UKF-GNN in comparison to SORT are written in green,
degradations are written in red. Partly Tracked (PT) targets are considered neither
good nor bad.

The last sequence with a high deviation between both models regarding MOTA is 0020.

However, we have to take this sequence’s result with a grain of salt. Because there are

only 5 tracks, a single missing or incorrectly initialized track influences the result already

by 20%. This is exactly the case in this evaluation. SORT initializes one track two times,

because of some unlucky circumstances within the track management heuristics. This

6.4. Detailed Tracker Analysis 107

SORT RNN-UKF-GNN

25

45

84

122

142

Figure 6.1: List of most significant frames of KITTI raw dataset sequence 0005, for both trackers,
SORT on the left-hand side and RNN-UKF-GNN on the right-hand side. White
bounding boxes describe ground truth objects and colored bounding boxes describe
active tracks. While SORT has only 1 FP track in frame 25 and 84, RNN-UKF-GNN
shows in sum 6 FP tracks for the first three listed frames. Notice that both trackers
achieve a qualitatively robust performance across all frames.

means one FP track containing wrong instances over multiple time steps. However, this

one sequence does not influence the overall result that much.

6.4.2 KITTI Tracking Sequences

The two top-performing implementations on the KITTI tracking dataset are IMM-UKF-

GNN and RNN-UKF-GNN which are explicitly evaluated in Table 6.12. We can again

observe the worse performance of the RNN-UKF-GNN tracker w.r.t. MOTP , due to miss-

ing orientation estimation as explained in the last section.

108 Chapter 6. Evaluation

SORT RNN-UKF-GNN

38

106

121

235

Figure 6.2: List of most significant frames of KITTI raw dataset sequence 0014, for both trackers,
SORT on the left-hand side and RNN-UKF-GNN on the right-hand side. White
bounding boxes describe ground truth objects and colored bounding boxes describe
active tracks. The first frame shows that SORT has problems with the sharp turn in
the beginning of the sequence. SORT reveals also problems on fast cars driving in the
opposing direction of the ego-vehicle, i.e. frame 121 and 235. The RNN-UKF-GNN
tracker does not lose a single track within these frames. However, its weaknesses
regarding bounding box orientation can be observed as well.

The overall performance of the investigated trackers is nearly the same. However,

there are differences in how each tracker reaches this value. We take a closer look at

two sequences showing the biggest deviation regarding tracking accuracy: 0012 and 0014.

Sequence 0012 contains only 4 ground truth instances containing 2 cars, 1 pedestrian and

1 cyclist. The RNN-UKF-GNN tracker with learned motion model is not able to follow

the slowly walking pedestrian properly which leads to the higher number of FN targets.

Additionally, the MOTA difference of 12.4% is owed to the small number of ground truth

tracks, where one missing track has a huge impact of 25% on the total result.

Another interesting sequence is 0014, where the ego vehicle performs a relatively fast

turn in the beginning, as shown in Figure 6.3. Because of the predefined motion models

with fixed parameters, the IMM-UKF-GNN tracker is not able to follow the fast turn and

6.4. Detailed Tracker Analysis 109

Seq. Tracker MT PT ML IDs FP FN MOTP MOTA FPS

0000
(1) 12 3 0 5 175 83 69.7% 63.0% 23
(2) 10 5 0 3 156 84 72.2% 65.8% 36

-2 2 0 -2 -19 1 2.5% 2.8%

0003
(1) 6 3 0 2 18 61 73.6% 79.1% 46
(2) 6 2 1 1 17 73 75.5% 76.5% 86

0 -1 1 -1 -1 12 1.9% -2.6%

0004
(1) 26 13 2 11 68 154 65.0% 79.1% 33
(2) 26 13 2 18 85 190 67.6% 73.7% 60

0 0 0 7 17 36 2.6% -5.4%

0006
(1) 12 3 0 3 53 96 72.8% 80.1% 44
(2) 12 3 0 7 59 106 76.3% 77.4% 78

0 0 0 4 6 10 3.5% -2.7%

0010
(1) 12 12 4 10 52 166 65.3% 75.4% 39
(2) 14 12 2 13 74 140 70.5% 75.5% 69

2 0 -2 3 22 -26 5.2% 0.1%

0012
(1) 3 1 0 5 88 34 68.5% 49.0% 26
(2) 4 0 0 1 80 15 74.2% 61.4% 48

1 -1 0 -4 -8 -19 5.7% 12.4%

0013
(1) 25 22 7 18 256 282 57.4% 57.5% 30
(2) 26 22 6 16 256 268 63.7% 58.7% 49

1 0 -1 -2 0 -14 6.3% 1.2%

0014
(1) 8 8 1 7 14 173 64.5% 70.1% 24
(2) 5 12 0 18 34 201 68.0% 61.0% 40

-3 4 -1 11 20 28 3.5% -9.1%

0015
(1) 11 13 2 47 78 826 53.6% 57.0% 31
(2) 14 9 3 26 75 801 59.0% 59.2% 50

3 -4 1 -21 -3 -25 5.4% 2.2%

0016
(1) 11 16 1 86 226 950 59.2% 59.7% 14
(2) 11 16 1 61 256 925 63.8% 60.4% 15

0 0 0 -25 30 -25 4.6% 0.7%

0020
(1) 79 43 12 46 502 1171 70.6% 74.9% 20
(2) 77 46 11 38 484 1165 73.7% 75.4% 26

-2 3 -1 -8 -18 -6 3.1% 0.5%

OVERALL
(1) 205 137 29 240 1530 3996 65.5% 68.5% 30
(2) 205 140 26 202 1576 3968 69.4% 68.6% 51

0 3 -3 -38 46 -28 3.9% 0.1%

Table 6.12: Detailed comparison of RNN-UKF-GNN (1) and IMM-UKF-GNN (2) on KITTI
tracking data. Improvements of IMM-UKF-GNN in comparison to RNN-UKF-GNN
are written in green, degradations are written in red. Partly Tracked (PT) targets
are considered neither good nor bad.

thus, looses a lot of tracks. Especially a pair of pedestrians occluding each other produce

a lot of detection errors, i.e. FNs as well as FPs. IDS are also a consequence of these

circumstances. The RNN-UKF-GNN tracker uses its learned motion model to overcome

110 Chapter 6. Evaluation

RNN-UKF-GNN IMM-UKF-GNN

45

48

50

67

69

Figure 6.3: List of most significant frames of KITTI tracking dataset sequence 0014, for both
trackers, RNN-UKF-GNN on the left-hand side and IMM-UKF-GNN on the right-
hand side. White bounding boxes describe ground truth objects and colored bounding
boxes describe active tracks. The tracking problems of the IMM-UKF-GNN approach
are clearly visible by first looking at the pedestrians in the center. In the last two
frames, the same problems can be observed by looking at the parking cars.

these problems, except the self-occlusion of pedestrians which leads also to a high number

of FNs.

7
Conclusion and Future Work

Contents

7.1 Conclusion . 111

7.2 Future Work . 113

7.1 Conclusion

In this thesis, we presented a modular Multiple Object Tracking (MOT) framework de-

signed to track traffic participants in an autonomous driving scenario. To this end, we

implemented several online approaches based on probabilistic filtering, as well as data-

driven tracking models.

In particular, as a baseline we adapted SORT [14] to work in a 3D environment. Fur-

thermore, to take non-linear motion behavior into account, we replaced the linear Kalman

Filter (KF) by an Unscented Kalman Filter (UKF) and added the Interacting Multiple

Model (IMM) to combine multiple motion models in a single tracker. The resulting filter

is the IMM-UKF with exclusive global data association named IMM-UKF-GNN. In or-

der to deal with cluttered detections, we implemented the IMM-UKF-JPDA filter, where

we exchanged the exclusive data association with Joint Probabilistic Data Association

(JPDA). Additionally, we trained a neural network for state prediction within the filter,

as well as for data association. Hence, we defined an UKF with data-driven prediction

model as RNN-UKF and a learned data association model as ENC-DEC, which leverages

an encoder-decoder network architecture. Moreover, we presented an end-to-end trained

network performing MOT which is not based on filtering and thus, does not require hand-

crafted parametrization anymore.

For all approaches, the input is restricted to 3D bounding boxes which allows the

framework to deal with different object detectors and datasets. Thus, we evaluated the

trackers on a publicly available autonomous driving dataset (i.e. KITTI [49]) and investi-

111

112 Chapter 7. Conclusion and Future Work

gated the performance by using two different object detectors (i.e. [129, 157]) and dropping

detections in certain time steps. We have shown that our 3D adaption of SORT [14], con-

taining a linear KF and a global exclusive data association, works well in comparison to

state-of-the-art approaches. However, because the linear filter is not appropriate for the

motion behavior of all traffic participants and strongly depends on reliable detections, it

fails to track non-linear motions and suffer significantly from missing detections. Thus,

we presented an adaption of the IMM-UKF-JPDA filter inspired by Rachman [117]. It is

designed to work well for state estimation in cluttered environments and takes multiple de-

tections into account. Because of compatibility reasons between all trackers implemented

in our modular framework, we included the bounding box information to the state vector

instead of using an external bounding box tracker. This extended state representation

makes it hard to parametrize this tracker properly and additionally degrades it’s perfor-

mance. Furthermore, because of the exponentially increasing runtime w.r.t. the number

of simultaneous tracks and detections, it is not the best choice for online tracking.

To overcome these issues, we presented an IMM-UKF approach combined with a global

exclusive data association strategy. This implementation works on par with SORT and

offers – because of the IMM – a more precise state prediction. When we drop detections

of subsequent time steps, it is in contrast to SORT still able to follow most of the tracks.

Another improvement to that is the RNN-UKF tracker with global exclusive data asso-

ciation. We demonstrated that the neural network trained for state prediction is able to

produce even better results with less detections, as we have shown by dropping frames.

This is especially the case in sequences where the ego-vehicle performs a sharp turn.

Since all approaches based on a global exclusive data association strategy with hand-

crafted similarity scores, i.e. Intersection over Union (IoU), rely on precise state estimation,

they suffer from dropped detections as shown in our evaluation. In contrast, our imple-

mented tracking approaches with an encoder-decoder association network are still able to

perform on a reasonable level with as little as one third of the detections. Additionally,

they work on par with the best implemented trackers using all available detections.

With our end-to-end model we presented a network which is designed to perform

the whole MOT process without probabilistic filtering. It uses 3D bounding boxes as

input and performs state prediction, data association, state update and track management

for a variable number of tracks and measurements. Due to the limited availability of

proper training data, however, this end-to-end model achieved significantly lower tracking

performance and, thus, is not listed in our evaluations.

Concluding we can say that the implemented framework provides various object track-

ers which are able to robustly track multiple targets online in real traffic scenes. Addi-

tionally, all presented methods work on average approximately 4 times faster than the

capturing rate of the sensor. The two main reasons which heavily influence the overall

tracking performance are, on the one hand, unreliable detections caused by noisy sensor

measurements, e.g. due to occlusions. On the other hand, environment changes cause

large differences in the motion behavior of traffic participants or the ego-vehicle, e.g. cars

7.2. Future Work 113

driving in the opposing direction, fast turns of the ego-vehicle or crowded scenes. These

problems can be solved or mitigated in different ways which encourages further research.

7.2 Future Work

Although our evaluation shows promising results on the KITTI dataset, the complex task

of MOT has ample room for improvement. We demonstrated that simple Recurrent Neural

Networks (RNNs) are able to improve the robustness and the overall performance of filter-

based trackers. However, recent research trends show that vision-based end-to-end trained

networks which, for example, concurrently detect and track objects (i.e. [64, 95]) or use

learned features from different sensors (i.e. [163]) also achieve promising results. These

networks, however, need much more data which may be served by the recently released

and publicly available nuScenes [23] dataset.

Another interesting research direction is MOT in combination with semantic segmen-

tation, e.g. [146]. The big advantage of segmented objects in contrast to traditional

bounding boxes is the smaller overlap of objects which are close to each other. This could

lead to improved similarity scores and, subsequently, to less association errors between de-

tections and tracks. Moreover, the segmentation of objects may implicitly help end-to-end

networks to learn the tracking of multiple objects.

BIBLIOGRAPHY 115

Bibliography

[1] Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat,

S., Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S., Murray,

D. G., Steiner, B., Tucker, P., Vasudevan, V., Warden, P., Wicke, M., Yu, Y., and Zheng,

X. (2016). TensorFlow: A System for Large-scale Machine Learning. In Proceedings of

the USENIX Conference on Operating Systems Design and Implementation. (page 69)

[2] Akashi, H. and Kumamoto, H. (1977). Random sampling approach to state estimation

in switching environments. Automatica, 13(4):429–434. (page 10)

[3] Alahi, A., Goel, K., Ramanathan, V., Robicquet, A., Fei-Fei, L., and Savarese, S.

(2016). Social LSTM: Human Trajectory Prediction in Crowded Spaces. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition. (page 88)

[4] Andriluka, M., Roth, S., and Schiele, B. (2008). People-tracking-by-detection and

people-detection-by-tracking. In Proceedings of the IEEE Conference on Computer Vi-

sion and Pattern Recognition. (page 16)

[5] Arulampalam, M., Maskell, S., Gordon, N., and Clapp, T. (2002). A tutorial on

particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Transactions

on Signal Processing, 50(2):174–188. (page 10)

[6] Asvadi, A., Peixoto, P., and Nunes, U. (2015). Detection and Tracking of Moving

Objects Using 2.5D Motion Grids. Proceedings of the IEEE International Conference

on Intelligent Transportation Systems. (page 9, 35)

[7] Bar-Shalom, Y., Daum, F., and Huang, J. (2009). The Probabilistic Data Association

Filter: Estimation in the presence of measurement origin uncertainty. IEEE Control

Systems, 29(6):82–100. (page 9, 35, 36, 37, 38, 42)

[8] Bar-Shalom, Y. and Li, X.-R. (1995). Multitarget-Multisensor Tracking: Principles

and Techniques. YBS Publishing, first edition. (page 5, 9, 19, 35, 36, 37, 38, 82)

[9] Bar-Shalom, Y. and Tse, E. (1975). Tracking in a cluttered environment with proba-

bilistic data association. Automatica, 11(5):451–460. (page 9, 35, 36, 37)

[10] Barth, A. and Franke, U. (2010). Tracking oncoming and turning vehicles at intersec-

tions. In Proceedings of the IEEE International Conference on Intelligent Transportation

Systems. (page 5, 11)

[11] Bengio, Y., Simard, P., and Frasconi, P. (1994). Learning long-term dependencies

with gradient descent is difficult. IEEE Transactions on Neural Networks, 5(2):157–

166. (page 58)

116

[12] Bernardin, K. and Stiefelhagen, R. (2008). Evaluating multiple object tracking perfor-

mance: The CLEAR MOT metrics. Journal on Image and Video Processing, 2008(1):1–

10. (page 12, 13, 96)

[13] Betke, M., Hirsh, D. E., Bagchi, A., Hristov, N. I., Makris, N. C., and Kunz, T. H.

(2007). Tracking large variable numbers of objects in clutter. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition. (page 2)

[14] Bewley, A., Ge, Z., Ott, L., Ramos, F., and Upcroft, B. (2016). Simple online

and realtime tracking. In Proceedings of the IEEE International Conference on Image

Processing. (page 11, 73, 75, 76, 97, 111, 112)

[15] Bialkowski, A., Lucey, P., Carr, P., Yue, Y., Sridharan, S., and Matthews, I. (2015).

Large-Scale Analysis of Soccer Matches Using Spatiotemporal Tracking Data. In Pro-

ceedings of the IEEE International Conference on Data Mining. (page 2)

[16] Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer, first

edition. (page 47)

[17] Blackman, S. S. (2004). Multiple hypothesis tracking for multiple target tracking.

IEEE Aerospace and Electronic Systems Magazine, 19(1 II):5–18. (page 9)

[18] Blom, H. and Bar-Shalom, Y. (1988). The interacting multiple model algorithm

for systems with Markovian switching coefficients. IEEE Transactions on Automatic

Control, 33(8):780–783. (page 11, 24, 30)

[19] Britz, D. (2015). Recurrent Neural Networks Tutorial, Part3 - Backpropaga-

tion Through Time and Vanishing Gradients. http://www.wildml.com/2015/10/

recurrent-neural-networks-tutorial-part-3-backpropagation-through-time-

and-vanishing-gradients/. Online; accessed March 11, 2019. (page 57)

[20] Broggi, A., Cerri, P., Debattisti, S., Laghi, M. C., Medici, P., Molinari, D., Panciroli,

M., and Prioletti, A. (2015). PROUD-Public Road Urban Driverless-Car Test. IEEE

Transactions on Intelligent Transportation Systems, 16(6):3508–3519. (page 1)

[21] Buehler, M., Iagnemma, K., and Singh, S. (2007). The 2005 DARPA Grand Chal-

lenge: The Great Robot Race. Springer, first edition. (page 2)

[22] Buehler, M., Iagnemma, K., and Singh, S. (2009). The DARPA Urban Challenge:

Autonomous Vehicles in City Traffic. Springer, first edition. (page 2)

[23] Caesar, H., Bankiti, V., Lang, A. H., Vora, S., Liong, V. E., Xu, Q., Krishnan, A.,

Pan, Y., Baldan, G., and Beijbom, O. (2019). nuscenes: A multimodal dataset for

autonomous driving. arXiv CoRR, abs/1903.11027. (page 113)

http://www.wildml.com/2015/10/recurrent-neural-networks-tutorial-part-3-backpropagation-through-time-and-vanishing-gradients/
http://www.wildml.com/2015/10/recurrent-neural-networks-tutorial-part-3-backpropagation-through-time-and-vanishing-gradients/
http://www.wildml.com/2015/10/recurrent-neural-networks-tutorial-part-3-backpropagation-through-time-and-vanishing-gradients/

BIBLIOGRAPHY 117

[24] Cannons, K. (2008). A review of visual tracking. Technical Report CSE-2008-07,

York University. (page 8)

[25] Ćesić, J., Marković, I., Jurić-Kavelj, S., and Petrović, I. (2014). Detection and track-

ing of dynamic objects using 3D laser range sensor on a mobile platform. In Proceedings

of the International Conference on Informatics in Control, Automation and Robotics.

(page 9)

[26] Challa, S., Morelande, M. R., Musicki, D., and Evans, R. J. (2011). Fundamentals of

Object Tracking. Cambridge University Press, first edition. (page 6, 9, 19, 20, 22, 23,

24, 25, 26, 30, 32, 37)

[27] Chen, L.-C., Collins, M. D., Zhu, Y., Papandreou, G., Zoph, B., Schroff, F., Adam,

H., and Shlens, J. (2018a). Searching for Efficient Multi-Scale Architectures for Dense

Image Prediction. In Proceedings of the Conference on Neural Information Processing

Systems. (page 11)

[28] Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., and Adam, H. (2018b). Encoder-

Decoder with Atrous Separable Convolution for Semantic Image Segmentation. In Pro-

ceedings of the European Conference on Computer Vision. (page 11)

[29] Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk,

H., and Bengio, Y. (2014). Learning Phrase Representations using RNN Encoder-

Decoder for Statistical Machine Translation. In Proceedings of the Conference on Em-

pirical Methods in Natural Language Processing. (page 60)

[30] Choi, J., Ulbrich, S., Lichte, B., and Maurer, M. (2013a). Multi-Target Tracking

using a 3D-Lidar sensor for autonomous vehicles. Proceedings of the IEEE Conference

on Intelligent Transportation Systems. (page 9, 35)

[31] Choi, W., Pantofaru, C., and Savarese, S. (2013b). A general framework for tracking

multiple people from a moving camera. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 35(7):1577–1591. (page 11)

[32] Cox, I. J. (1993). A review of statistical data association techniques for motion

correspondence. International Journal of Computer Vision, 10(1):53–66. (page 10)

[33] Dickmanns, E., Behringer, R., Dickmanns, D., Hildebrandt, T., Maurer, M.,

Thomanek, F., and Schiehlen, J. (1994). The seeing passenger car ’VaMoRs-P’. In

Proceedings of the IEEE Intelligent Vehicles Symposium. (page 1)

[34] Dickmanns, E., Mysliwetz, B., and Christians, T. (1990). An integrated spatio-

temporal approach to automatic visual guidance of autonomous vehicles. IEEE Trans-

actions on Systems, Man, and Cybernetics, 20(6):1273–1284. (page 1)

118

[35] Doucet, A., de Freitas, N., Murphy, K., and Russell, S. (2000). Rao-blackwellised

Particle Filtering for Dynamic Bayesian Networks. In Proceedings of the Conference on

Uncertainty in Artificial Intelligence. (page 11)

[36] Elfes, A. (1989). Using Occupancy Grids for Mobile Robot Perception and Navigation.

Computer, 22(6):46–57. (page 2)

[37] Ess, A., Leibe, B., Schindler, K., and Van Gool, L. (2008). A mobile vision system

for robust multi-person tracking. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition. (page 2, 10)

[38] Fan, L., Wang, Z., Cai, B., Tao, C., Zhang, Z., Wang, Y., Li, S., Huang, F., Fu, S.,

and Zhang, F. (2017). A survey on multiple object tracking algorithm. In Proceedings

of the IEEE International Conference on Information and Automation. (page 8)

[39] Fang, K., Xiang, Y., Li, X., and Savarese, S. (2018). Recurrent Autoregressive Net-

works for Online Multi-object Tracking. In Proceedings of the IEEE Winter Conference

on Applications of Computer Vision. (page 8)

[40] Fontaine, E., Barr, A. H., and Burdick, J. W. (2007). Model-based tracking of multiple

worms and fish. In Proceedings of the IEEE International Conference on Computer

Vision Workshop. (page 2)

[41] Fortin, B., Lherbier, R., and Noyer, J.-C. (2015). A Model-Based Joint Detection and

Tracking Approach for Multi-Vehicle Tracking With Lidar Sensor. IEEE Transactions

on Intelligent Transportation Systems, 16(4):1883–1895. (page 10)

[42] Fortin, B., Noyer, J. C., and Lherbier, R. (2012). A particle filtering approach for joint

vehicular detection and tracking in lidar data. In Proceedings of the IEEE International

Instrumentation and Measurement Technology Conference. (page 2, 10)

[43] Fortmann, T., Bar-Shalom, Y., and Scheffe, M. (1983). Sonar tracking of multiple

targets using joint probabilistic data association. IEEE Journal of Oceanic Engineering,

8(3):173–184. (page 9, 35, 38, 39)

[44] Franke, U., Gavrila, D., Görzig, S., Lindner, F., Paetzold, F., and Wöhler, C. (1998).

Autonomous driving goes downtown. IEEE Intelligent Systems and Their Applications,

13(6):40–48. (page 1)

[45] Franke, U., Mehring, S., Suissa, A., and Hahn, S. (1994). The Daimler-Benz steering

assistant: a spin-off from autonomous driving. In Proceedings of the Intelligent Vehicles

Symposium. (page 1)

[46] Frossard, D. and Urtasun, R. (2018). End-to-end Learning of Multi-sensor 3D Track-

ing by Detection. In Proceedings of the IEEE International Conference on Robotics and

Automation. (page 12)

BIBLIOGRAPHY 119

[47] Garcia-Fernandez, A. F., Williams, J. L., Granstrom, K., and Svensson, L. (2018).

Poisson Multi-Bernoulli Mixture Filter: Direct Derivation and Implementation. IEEE

Transactions on Aerospace and Electronic Systems, 54(4):1883–1901. (page 10)

[48] Geiger, A., Lenz, P., Stiller, C., and Urtasun, R. (2013). Vision meets robotics: The

KITTI dataset. International Journal of Robotics Research, 32(11):1231–1237. (page 14,

15, 16, 70, 95)

[49] Geiger, A., Lenz, P., and Urtasun, R. (2012). Are we ready for autonomous driving?

The KITTI vision benchmark suite. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition. (page 11, 12, 15, 95, 111)

[50] Gers, F. A., Schmidhuber, J., and Cummins, F. (2000). Learning to Forget: Continual

Prediction with LSTM. Neural Computation, 12(10):2451–2471. (page 58)

[51] Gers, F. A., Schraudolph, N. N., and Schmidhuber, J. (2002). Learning precise timing

with LSTM recurrent networks. Journal of Machine Learning Research, 3(1):115–143.

(page 58)

[52] Girshick, R. (2015). Fast R-CNN. In Proceedings of the IEEE International Confer-

ence on Computer Vision. (page 3, 75)

[53] Goodfellow, I., Bengio, Y., and Courville, A. (2017). The Deep Learning Book. MIT

Press, first edition. (page 45, 46, 47, 50, 51, 53, 57, 58, 60)

[54] Gordon, N., Salmond, D., and Smith, A. (1993). Novel approach to nonlinear/non-

Gaussian Bayesian state estimation. IEE Proceedings F Radar and Signal Processing,

140(2):107. (page 10)

[55] Graves, A. (2012). Supervised Sequence Labelling with Recurrent Neural Networks.

Springer, first edition. (page 46, 47, 48, 50, 51, 57, 58, 60)

[56] Greff, K., Srivastava, R. K., Koutnik, J., Steunebrink, B. R., and Schmidhuber, J.

(2017). LSTM: A Search Space Odyssey. IEEE Transactions on Neural Networks and

Learning Systems, 28(10):2222–2232. (page 60)

[57] Grisleri, P. and Fedriga, I. (2010). The BRAiVE autonomous ground vehicle platform.

IFAC Proceedings Volumes, 43(16):497–502. (page 1)

[58] Gündüz, G. and Acarman, T. (2018). A Lightweight Online Multiple Object Vehicle

Tracking Method. In Proceedings of the IEEE Intelligent Vehicles Symposium. (page 11)

[59] Handschin, J. E. and Mayne, D. Q. (1969). Monte Carlo techniques to estimate

the conditional expectation in multi-stage non-linear filtering. International Journal of

Control, 9(5):547–559. (page 10)

120

[60] He, K., Gkioxari, G., Dollar, P., and Girshick, R. (2017). Mask R-CNN. In Proceedings

of the IEEE International Conference on Computer Vision. (page 11)

[61] Ho, Y. and Lee, R. (1964). A Bayesian approach to problems in stochastic estimation

and control. IEEE Transactions on Automatic Control, 9(4):333–339. (page 25)

[62] Hochreiter, J. (1991). Untersuchungen zu dynamischen neuronalen Netzen. Master’s

thesis, Technische Universität München, Institut für Informatik. (page 58)

[63] Hochreiter, S. and Schmidhuber, J. (1997). Long Short-Term Memory. Neural Com-

putation, 9(8):1735–1780. (page 58)

[64] Hu, H.-N., Cai, Q.-Z., Wang, D., Lin, J., Sun, M., Krähenbühl, P., Darrell, T., and

Yu, F. (2018). Joint monocular 3d vehicle detection and tracking. In Proceedings of the

IEEE International Conference on Computer Vision. (page 113)

[65] Huang, J., Rathod, V., Sun, C., Zhu, M., Korattikara, A., Fathi, A., Fischer, I.,

Wojna, Z., Song, Y., Guadarrama, S., and Murphy, K. (2017). Speed/Accuracy Trade-

Offs for Modern Convolutional Object Detectors. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition. (page 8)

[66] Isard, M. and MacCormick, J. (2001). BraMBLe: a Bayesian multiple-blob tracker.

In Proceedings of the IEEE International Conference on Computer Vision. (page 10)

[67] Janai, J., Güney, F., Behl, A., and Geiger, A. (2017). Computer Vision for

Autonomous Vehicles: Problems, Datasets and State-of-the-Art. arXiv CoRR,

abs/1704.05519. (page 1, 8)

[68] Julier, S. J. (2002). The scaled unscented transformation. In Proceedings of the IEEE

American Control Conference. (page 27, 28, 29)

[69] Julier, S. J. and Uhlmann, J. K. (1997). A New Extension of the Kalman Filter to

Nonlinear Systems. In Proceedings of SPIE 3068, Signal Processing, Sensor Fusion, and

Target Recognition VI. (page 24, 26, 30)

[70] Julier, S. J. and Uhlmann, J. K. (2004). Unscented filtering and nonlinear estimation.

Proceedings of the IEEE, 92(3):401–422. (page 8)

[71] Kaempchen, N. and Dietmayer, K. (2004). IMM Vehicle Tracking for Traffic Jam

Situations on Highways. In Proceedings of the International Conference on Multisensor

Information Fusion. (page 11)

[72] Kalman, R. E. (1960). A New Approach to Linear Filtering and Prediction Problems.

Journal of Basic Engineering, 82(1):35. (page 8, 24)

[73] Kalman, R. E. and Bucy, R. S. (1961). New Results in Linear Filtering and Prediction

Theory. Journal of Basic Engineering, 83(1):95. (page 8)

BIBLIOGRAPHY 121

[74] Karpathy, A. (2015). The Unreasonable Effectiveness of Recurrent Neural Net-

works. http://karpathy.github.io/2015/05/21/rnn-effectiveness/. Online; ac-

cessed March 11, 2019. (page 54, 55)

[75] Khan, Z., Balch, T., and Dellaert, F. (2003). Efficient particle filter-based tracking

of multiple interacting targets using an mrf-based motion model. In Proceedings of the

IEEE International Conference on Intelligent Robots and Systems. (page 10)

[76] Khan, Z., Balch, T., and Dellaert, F. (2005). MCMC-based particle filtering for track-

ing a variable number of interacting targets. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 27(11):1805–1819. (page 2, 11)

[77] Kim, C., Li, F., Ciptadi, A., and Rehg, J. M. (2015). Multiple Hypothesis Tracking

Revisited. In Proceedings of the IEEE International Conference on Computer Vision.

(page 11)

[78] Kim, D., Jo, K., Lee, M., and Sunwoo, M. (2018). L-Shape Model Switching-Based

Precise Motion Tracking of Moving Vehicles Using Laser Scanners. IEEE Transactions

on Intelligent Transportation Systems, 19(2):598–612. (page 5)

[79] Kim, Y.-s. and Hong, K.-S. (2004). An IMM Algorithm for tracking Maneuvering

Vehicle in an Adaptive Cruise Control Environment. International Journal of Control

Automation and Systems, 2(3):310–318. (page 11)

[80] Kingma, D. P. and Ba, J. (2015). Adam: A Method for Stochastic Optimization. In

Proceedings of the International Conference on Learning Representations. (page 61, 85,

88, 92)

[81] Krebs, S., Duraisamy, B., and Flohr, F. (2017). A survey on leveraging deep neural

networks for object tracking. In Proceedings of the IEEE International Conference on

Intelligent Transportation Systems. (page 7, 8)

[82] Kristan, M. (2008). Tracking people in video data using probabilistic models. PhD

thesis, University of Ljubljana. (page 19)

[83] Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). ImageNet classification

with deep convolutional neural networks. In Proceedings of the Conference on Neural

Information Processing Systems. (page 11)

[84] Leal-Taixé, L., Milan, A., Reid, I., Roth, S., and Schindler, K. (2015). MOTChallenge

2015: Towards a Benchmark for Multi-Target Tracking. arXiv CoRR, abs/1504.01942.

(page 15)

[85] Lee, B., Erdenee, E., Jin, S., Nam, M. Y., Jung, Y. G., and Rhee, P. K. (2016).

Multi-class Multi-object Tracking Using Changing Point Detection. In Proceedings of

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

122

the European Conference on Computer Vision Workshop on Benchmarking Multi-target

Tracking: MOTChallenge. (page 11)

[86] Li, K., Miller, E. D., Chen, M., Kanade, T., Weiss, L. E., and Campbell, P. G. (2008).

Cell population tracking and lineage construction with spatiotemporal context. Medical

Image Analysis, 12(5):546–566. (page 2)

[87] Li, P., Wang, D., Wang, L., and Lu, H. (2018). Deep visual tracking: Review and

experimental comparison. Pattern Recognition, 76:323–338. (page 8)

[88] Li, X. R. and Jilkov, V. P. (2003). Survey of maneuvering targettracking. Part I:

Dynamic models. IEEE Transactions on Aerospace and Electronic Systems, 39(4):1333–

1364. (page 11, 77)

[89] Li, Y., Huang, C., and Nevatia, R. (2009). Learning to associate: HybridBoosted

multi-target tracker for crowded scene. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition. (page 12, 14, 96)

[90] Liu, S., Qi, L., Qin, H., Shi, J., and Jia, J. (2018). Path Aggregation Network for

Instance Segmentation. In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition. (page 11)

[91] Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., and Berg, A. C.

(2016). SSD: Single shot multibox detector. In Proceedings of the European Conference

on Computer Vision. (page 3)

[92] Lu, C.-W., Lin, C.-Y., Hsu, C.-Y., Weng, M.-F., Kang, L.-W., and Liao, H.-Y. M.

(2013). Identification and tracking of players in sport videos. In Proceedings of the

International Conference on Internet Multimedia Computing and Service. (page 2)

[93] Luo, W., Kim, T. K., Stenger, B., Zhao, X., and Cipolla, R. (2014a). Bi-label

propagation for generic multiple object tracking. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition. (page 2)

[94] Luo, W., Xing, J., Milan, A., Zhang, X., Liu, W., Zhao, X., and Kim, T.-K. (2014b).

Multiple Object Tracking: A Literature Review. arXiv CoRR, abs/1409.7618. (page 5)

[95] Luo, W., Yang, B., and Urtasun, R. (2018). Fast and Furious: Real Time End-to-

End 3D Detection, Tracking and Motion Forecasting with a Single Convolutional Net.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.

(page 2, 12, 113)

[96] MacCormick, J. and Blake, A. (1999). A probabilistic exclusion principle for tracking

multiple objects. In Proceedings of the IEEE International Conference on Computer

Vision. (page 10)

BIBLIOGRAPHY 123

[97] Mahler, R. (2003). Multitarget bayes filtering via first-order multitarget moments.

IEEE Transactions on Aerospace and Electronic Systems, 39(4):1152–1178. (page 10)

[98] Mahler, R. (2007). PHD filters of higher order in target number. IEEE Transactions

on Aerospace and Electronic Systems, 43(4):1523–1543. (page 10)

[99] Mazor, E., Averbuch, A., Bar-Shalom, Y., and Dayan, J. (1998). Interacting multiple

model methods in target tracking: a survey. IEEE Transactions on Aerospace and

Electronic Systems, 34(1):103–123. (page 30)

[100] McCulloch, W. S. and Pitts, W. (1943). A logical calculus of the ideas immanent in

nervous activity. The Bulletin of Mathematical Biophysics, 5(4):115–133. (page 45)

[101] Meijering, E., Dzyubachyk, O., Smal, I., and van Cappellen, W. A. (2009). Track-

ing in cell and developmental biology. Seminars in Cell and Developmental Biology,

20(8):894–902. (page 2)

[102] Milan, A., Leal-Taixe, L., Reid, I., Roth, S., and Schindler, K. (2016). MOT16: A

Benchmark for Multi-Object Tracking. arXiv CoRR, abs/1603.00831. (page 12, 14, 15,

16, 71)

[103] Milan, A., Rezatofighi, S. H., Dick, A., Reid, I., and Schindler, K. (2017). Online

Multi-Target Tracking Using Recurrent Neural Networks. In Proceedings of the AAAI

Conference on Artificial Intelligence. (page 12, 62, 63, 64, 83, 88, 91)

[104] Montemerlo, M., Becker, J., Bhat, S., Dahlkamp, H., Dolgov, D., Ettinger, S.,

Haehnel, D., Hilden, T., Hoffmann, G., Huhnke, B., Johnston, D., Klumpp, S., Langer,

D., Levandowski, A., Levinson, J., Marcil, J., Orenstein, D., Paefgen, J., Penny, I.,

Petrovskaya, A., Pflueger, M., Stanek, G., Stavens, D., Vogt, A., and Thrun, S.

(2009). Junior: The stanford entry in the urban challenge. Springer Tracts in Ad-

vanced Robotics, 56(9):91–123. (page 2)

[105] Morales, N., Toledo, J., Acosta, L., and Sanchez-Medina, J. (2017). A Combined

Voxel and Particle Filter-Based Approach for Fast Obstacle Detection and Tracking in

Automotive Applications. IEEE Transactions on Intelligent Transportation Systems,

18(7):1824–1834. (page 10)

[106] Munkres, J. (1957). Algorithms for the Assignment and Transportation Problems.

Journal of the Society for Industrial and Applied Mathematics, 5(1):32–38. (page 9, 35)

[107] Mušicki, D. and Evans, R. (2002). Joint Integrated Probabilistic Data Association -

JIPDA. In Proceedings of the International Conference on Information Fusion. (page 10)

[108] Musicki, D. and La Scala, B. (2008). Multi-target tracking in clutter without

measurement assignment. IEEE Transactions on Aerospace and Electronic Systems,

44(3):877–896. (page 10)

124

[109] Niknejad, H., Takeuchi, A., Mita, S., and McAllester, D. (2012). On-Road Multivehi-

cle Tracking Using Deformable Object Model and Particle Filter With Improved Likeli-

hood Estimation. IEEE Transactions on Intelligent Transportation Systems, 13(2):748–

758. (page 2, 10)

[110] Nillius, P., Sullivan, J., and Carlsson, S. (2006). Multi-target tracking - Linking

identities using Bayesian network inference. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition. (page 2)

[111] Organization, W. H. (2018). Global Status Report on Road Safety 2018. https://

www.who.int/violence injury prevention/road safety status/2018/en/. Online;

accessed October 8, 2019. (page 1)

[112] Osep, A., Mehner, W., Mathias, M., and Leibe, B. (2017). Combined image- and

world-space tracking in traffic scenes. In Proceedings of the IEEE International Con-

ference on Robotics and Automation. (page 5, 96, 102)

[113] Otto, C., Gerber, W., Leon, F. P., and Wirnitzer, J. (2012). A Joint Integrated

Probabilistic Data Association Filter for pedestrian tracking across blind regions using

monocular camera and radar. In Proceedings of the IEEE Intelligent Vehicles Sympo-

sium. (page 10)

[114] Petrovskaya, A. and Thrun, S. (2009). Model based vehicle detection and tracking

for autonomous urban driving. Autonomous Robots, 26(2-3):123–139. (page 2, 5, 11)

[115] Plaut, D. C., Nowlan, S. J., and Hinton, G. E. (1986). Experiments on Learning

by Back Propagation. Technical Report CMU-CS-86-126, Carnegie-Mellon University.

(page 60)

[116] Qi, C. R., Liu, W., Wu, C., Su, H., and Guibas, L. J. (2018). Frustum PointNets for

3D Object Detection from RGB-D Data. In Proceedings of the Conference on Computer

Vision and Pattern Recognition. (page 8, 73, 75, 96)

[117] Rachman, A. S. A. (2017). 3D-LIDAR Multi Object Tracking for Autonomous Driv-

ing. Master’s thesis, Delft University of Technology, Center for Systems and Control.

(page 2, 5, 9, 11, 72, 76, 104, 112)

[118] Rangesh, A. and Trivedi, M. M. (2018). No Blind Spots: Full-Surround Multi-

Object Tracking for Autonomous Vehicles using Cameras & LiDARs. arXiv CoRR,

abs/1802.08755. (page 2, 9)

[119] Redmon, J., Divvala, S., Girshick, R., and Farhadi, A. (2016). You Only Look

Once: Unified, Real-Time Object Detection. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition. (page 75)

https://www.who.int/violence_injury_prevention/road_safety_status/2018/en/
https://www.who.int/violence_injury_prevention/road_safety_status/2018/en/

BIBLIOGRAPHY 125

[120] Reid, D. (1979). An algorithm for tracking multiple targets. IEEE Transactions on

Automatic Control, 24(6):843–854. (page 9)

[121] Reuter, S., Vo, B. T., Vo, B. N., and Dietmayer, K. (2014). The Labeled Multi-

Bernoulli Filter. IEEE Transactions on Signal Processing, 62(12):3246–3260. (page 10)

[122] Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage

and organization in the brain. Psychological Review, 65(6):386–408. (page 45)

[123] Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning representa-

tions by back-propagating errors. Nature, 323(6088):533–536. (page 47, 52)

[124] Sanchez-Matilla, R., Poiesi, F., and Cavallaro, A. (2016). Online Multi-target Track-

ing with Strong and Weak Detections. In Proceedings of the European Conference on

Computer Vision Workshop on Benchmarking Multi-target Tracking: MOTChallenge.

(page 10)

[125] Scheidegger, S., Benjaminsson, J., Rosenberg, E., Krishnan, A., and Granstrom, K.

(2018). Mono-Camera 3D Multi-Object Tracking Using Deep Learning Detections and

PMBM Filtering. In Proceedings of the IEEE Intelligent Vehicles Symposium. (page 10,

11)

[126] Schreier, M. (2017). Bayesian environment representation, prediction, and critical-

ity assessment for driver assistance systems. PhD thesis, Technische Universität Darm-

stadt, Department of Electrical Engineering and Information Technology. (page 2, 9,

11, 19, 30, 32, 34, 76, 77, 82)

[127] Schuster, M. and Paliwal, K. (1997). Bidirectional recurrent neural networks. IEEE

Transactions on Signal Processing, 45(11):2673–2681. (page 57)

[128] Sharma, S., Ansari, J. A., Murthy, J. K., and Krishna, K. M. (2018). Beyond Pixels:

Leveraging Geometry and Shape Cues for Online Multi-Object Tracking. In Proceedings

of the IEEE International Conference on Robotics and Automation. (page 9, 11)

[129] Shi, S., Wang, X., and Li, H. (2019). PointRCNN: 3D Object Proposal Generation

and Detection from Point Cloud. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition. (page 3, 8, 73, 75, 96, 103, 112)

[130] Sivaraman, S. and Trivedi, M. M. (2013). Looking at Vehicles on the Road: A Survey

of Vision-Based Vehicle Detection, Tracking, and Behavior Analysis. IEEE Transactions

on Intelligent Transportation Systems, 14(4):1773–1795. (page 8)

[131] Spampinato, C., Chen-Burger, Y.-H., Nadarajan, G., and Fisher, R. (2008). Detect-

ing, Tracking and Counting Fish in Low Quality Unconstrained Underwater Videos. In

Proceedings of the International Conference on Computer Vision Theory and Applica-

tions. (page 2)

126

[132] Spampinato, C., Palazzo, S., Giordano, D., Kavasidis, I., Lin, F.-P., and Lin, Y. T.

(2012). Covariance Based Fish Tracking in Real-Life Underwater Environment. Pro-

ceedings of the International Conference on Computer Vision Theory and Applications.

(page 2)

[133] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R.

(2014). Dropout : A Simple Way to Prevent Neural Networks from Overfitting. Journal

of Machine Learning Research, 15(Jun):1929–1958. (page 62)

[134] Sun, D., Yang, X., Liu, M.-Y., and Kautz, J. (2018). PWC-Net: CNNs for Op-

tical Flow Using Pyramid, Warping, and Cost Volume. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition. (page 11)

[135] Thorpe, C., Hebert, M. H., Kanade, T., and Shafer, S. A. (1988). Vision and

Navigation for the Carnegie-Mellon Navlab. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 10(3):362–373. (page 1)

[136] Thrun, S., Burgard, W., and Fox, D. (2005). Probabilistic Robotics. MIT Press, first

edition. (page 6, 19, 21, 26)

[137] Thrun, S., Montemerlo, M., Dahlkamp, H., Stavens, D., Aron, A., Diebel, J., Fong,

P., Gale, J., Halpenny, M., Hoffmann, G., Lau, K., Oakley, C., Palatucci, M., Pratt,

V., Stang, P., Strohband, S., Dupont, C., Jendrossek, L.-E., Koelen, C., Markey, C.,

Rummel, C., van Niekerk, J., Jensen, E., Alessandrini, P., Bradski, G., Davies, B.,

Ettinger, S., Kaehler, A., Nefian, A., and Mahoney, P. (2006). Stanley: The robot that

won the DARPA Grand Challenge. Journal of Field Robotics, 23(9):661–692. (page 2)

[138] Tieleman, T. and Hinton, G. (2012). rmsprop: Divide the gradient by a running av-

erage of its recent magnitude. http://www.cs.toronto.edu/~tijmen/csc321/slides/

lecture slides lec6.pdf. Online; accessed Oktober 5, 2019. (page 61)

[139] Urmson, C., Anhalt, J., Bagnell, D., Baker, C., Bittner, R., Clark, M. N., Dolan, J.,

Duggins, D., Galatali, T., Geyer, C., Gittleman, M., Harbaugh, S., Hebert, M., Howard,

T. M., Kolski, S., Kelly, A., Likhachev, M., McNaughton, M., Miller, N., Peterson, K.,

Pilnick, B., Rajkumar, R., Rybski, P., Salesky, B., Seo, Y. W., Singh, S., Snider, J.,

Stentz, A., Whittaker, W., Wolkowicki, Z., Ziglar, J., Bae, H., Brown, T., Demitrish,

D., Litkouhi, B., Nickolaou, J., Sadekar, V., Zhang, W., Struble, J., Taylor, M., Darms,

M., and Ferguson, D. (2008). Autonomous driving in Urban environments: Boss and the

Urban Challenge. Journal of Field Robotics Special Issue on the 2007 DARPA Urban

Challenge, Part I, 25(8):425–466. (page 2)

[140] Urmson, C., Ragusa, C., Ray, D., Anhalt, J., Bartz, D., Galatali, T., Gutierrez, A.,

Johnston, J., Harbaugh, S., Yu Kato, H., Messner, W., Miller, N., Peterson, K., Smith,

B., Snider, J., Spiker, S., Ziglar, J., Red Whittaker, W., Clark, M., Koon, P., Mosher,

http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

BIBLIOGRAPHY 127

A., and Struble, J. (2006). A robust approach to high-speed navigation for unrehearsed

desert terrain. Journal of Field Robotics, 23(8):467–508. (page 2)

[141] Van Der Merwe, R. (2004). Sigma-Point Kalman Filters for Probabilistic Inference

in Dynamic State-Space Models. PhD thesis, Oregon Health & Science University, OGI

School of Science & Engineering. (page 26, 30)

[142] Vatavu, A., Danescu, R., and Nedevschi, S. (2015). Stereovision-Based Multiple

Object Tracking in Traffic Scenarios Using Free-Form Obstacle Delimiters and Parti-

cle Filters. IEEE Transactions on Intelligent Transportation Systems, 16(1):498–511.

(page 11)

[143] Vo, B.-n., Mallick, M., Bar-shalom, Y., Coraluppi, S., Osborne, R., Mahler, R.,

and Vo, B.-T. (2015). Multitarget Tracking. In Wiley Encyclopedia of Electrical and

Electronics Engineering, pages 1–15. John Wiley & Sons, Inc., first edition. (page 8, 9)

[144] Vo, B.-N., Singh, S., and Doucet, A. (2005). Sequential Monte Carlo methods for

multitarget filtering with random finite sets. IEEE Transactions on Aerospace and

Electronic Systems, 41(4):1224–1245. (page 10)

[145] Vo, B.-T. and Vo, B.-N. (2013). Labeled Random Finite Sets and Multi-Object

Conjugate Priors. IEEE Transactions on Signal Processing, 61(13):3460–3475. (page 10)

[146] Voigtlaender, P., Krause, M., Osep, A., Luiten, J., Sekar, B. B. G., Geiger, A., and

Leibe, B. (2019). MOTS: multi-object tracking and segmentation. In IEEE Conference

on Computer Vision and Pattern Recognition. (page 113)

[147] Wan, E. A. and Van Der Merwe, R. (2000). The unscented Kalman filter for non-

linear estimation. In Proceedings of the IEEE Adaptive Systems for Signal Processing,

Communications, and Control Symposium. (page 8, 26, 27)

[148] Wan, X., Wang, J., and Zhou, S. (2018). An Online and Flexible Multi-object

Tracking Framework Using Long Short-Term Memory. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition Workshops. (page 8)

[149] Weiss, K., Stueker, D., and Kirchner, A. (2010). Target modeling and dynamic

classification for adaptive sensor data fusion. In Proceedings of the Intelligent Vehicles

Symposium. (page 5, 11)

[150] Weng, X. and Kitani, K. (2019). A Baseline for 3D Multi-Object Tracking. arXiv

CoRR, abs/1907.03961. (page 104)

[151] Werbos, P. J. (1990). Backpropagation through time: what it does and how to do

it. Proceedings of the IEEE, 78(10):1550–1560. (page 56)

128

[152] Widrow, B. and Hoff, M. E. (1960). Adaptive Switching Circuits. In 1960 IRE

WESCON Convention Record, pages 96–104. IRE, first edition. (page 46)

[153] Williams, J. L. (2015). Marginal multi-bernoulli filters: RFS derivation of MHT,

JIPDA, and association-based member. IEEE Transactions on Aerospace and Electronic

Systems, 51(3):1664–1687. (page 10)

[154] Wojke, N. and Häselich, M. (2012). Moving vehicle detection and tracking in un-

structured environments. Proceedings of the IEEE International Conference on Robotics

and Automation. (page 2, 11)

[155] Xiao, B., Wu, H., and Wei, Y. (2018). Simple Baselines for Human Pose Estimation

and Tracking. In Proceedings of the European Conference on Computer Vision. (page 11)

[156] Xing, J., Ai, H., Liu, L., and Lao, S. (2011). Multiple player tracking in sports

video: A dual-mode two-way Bayesian inference approach with progressive observation

modeling. IEEE Transactions on Image Processing, 20(6):1652–1667. (page 2)

[157] Yang, B., Luo, W., and Urtasun, R. (2018). PIXOR: Real-time 3D Object Detection

from Point Clouds. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition. (page 8, 97, 103, 112)

[158] Yang, H., Shao, L., Zheng, F., Wang, L., and Song, Z. (2011). Recent advances and

trends in visual tracking: A review. Neurocomputing, 74(18):3823–3831. (page 8)

[159] Yilmaz, A., Javed, O., and Shah, M. (2006). Object tracking. ACM Computing

Surveys, 38(4):13. (page 8)

[160] Yoon, K., Kim, D. Y., Yoon, Y. C., and Jeon, M. (2019). Data association for

multi-object tracking via deep neural networks. Sensors, 19(3):1–15. (page 58, 62, 64,

65, 66, 67, 85, 86, 88)

[161] You, H., Jianjuan, X., and Xin, G. (2016). Radar Data Processing With Applications.

Publishing House of Electronics Industry, first edition. (page 34, 39, 40, 41, 42)

[162] Zhang, S., Benenson, R., Omran, M., Hosang, J., and Schiele, B. (2016). How Far

are We from Solving Pedestrian Detection? In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition. (page 8)

[163] Zhang, W., Zhou, H., Sun, S., Wang, Z., Shi, J., and Loy, C. C. (2019). Robust multi-

modality multi-object tracking. In Proceedings of the IEEE International Conference

on Computer Vision. (page 113)

[164] Zhu, H., Yuen, K. V., Mihaylova, L., and Leung, H. (2017). Overview of Environment

Perception for Intelligent Vehicles. IEEE Transactions on Intelligent Transportation

Systems, 18(10):2584–2601. (page 8)

	Introduction
	Multi-Object Tracking Challenges
	Contribution and Outline

	Multiple Object Tracking
	Problem Formulation
	Tracking-by-Detection
	Categorization of Tracking-by-Detection Approaches
	Online vs. Offline
	Deterministic vs. Probabilistic

	Related Work
	Bayesian Filtering
	Deep Learning

	Evaluation Measures
	CLEAR MOT Measures
	Quality Measures

	Datasets
	MOT16 Dataset
	KITTI Dataset

	Multi-object Tracking with Bayesian Filters
	Recursive Bayesian Filter for Object Tracking
	Optimal Filter Derivation
	Stochastic State Space Representation

	Filter Solutions for the Recursive Problem
	Kalman Filter
	Unscented Kalman Filter
	Interacting Multiple Model (IMM)

	Data Association
	Gating
	Probabilistic Data Association Filter
	Joint Probabilistic Data Association Filter

	Multi-object Tracking with Recurrent Neural Networks
	Feedforward Neural Networks
	Forward Pass
	Backward Pass

	Recurrent Neural Networks
	Unfolding
	Forward Pass
	Backward Pass
	Bidirectional Structure
	Long-Short Term Memory

	Network Training
	Gradient Descent
	Regularization

	Multi-object Tracking Architectures
	End-to-End Model
	Variable Data Association Model

	Modular Multi-object Tracking
	Implementation Details
	Sensor Model
	State and Measurement Representation
	Framework Architecture
	Object Detection
	Adaptation of SORT

	Combined Bayesian Filter Approach
	Multiple Dynamic Models
	Interacting Multiple Model Unscented Kalman Filter
	Data Association

	Multi-Object Tracking Networks
	State Prediction Network
	Variable Data Association Network
	End-to-End MOT Network

	Evaluation
	Evaluation on the KITTI Dataset
	Comparison of Presented Models
	Validation on KITTI Raw Data
	Validation on KITTI Tracking Data

	Comparison to the State-of-the-Art
	Detailed Tracker Analysis
	KITTI Raw Sequences
	KITTI Tracking Sequences

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography

