
Beate Herbst BSc

Allocation and integration of automotive control functions in a

multi-core environment

to achieve the university degree of

MASTER'S THESIS

 Master's degree programme: Telematics

submitted to

Graz University of Technology

Univ.-Doz., Dipl.-Ing., Dr.techn. Daniel Watzenig

Institut für Meßtechnik und Meßsignalverarbeitung

 Diplom-Ingenieurin

Supervisor

Graz, May 2015

AFFIDAVIT

I declare that I have authored this thesis independently, that I have not used other

than the declared sources/resources, and that I have explicitly indicated all ma-

terial which has been quoted either literally or by content from the sources used.

The text document uploaded to TUGRAZonline is identical to the present master‘s

thesis dissertation.

Date Signature

Kurzfassung

In den letzten Jahren haben sich die verwendeten Strategien in der Automobilindustrie
erheblich verändert. Die Anzahl der verwendeten Software-Funktionen ist bedeutend an-
gestiegen und aufgrund der Tatsache, das pro Steuergerät genau eine Software-Funktion
integriert wurde, nahm auch die Anzahl der Steuergeräte enorm zu. Aus diesem Grund
sind Themen wie Software-Verteilung und Multi-Core Anwendung im automobilen Bereich
zu immer wichtigeren Forschungsthemen herangewachsen. In der Automobilindustrie sind
unterschiedliche Bereiche in einen Entwicklungsprozess involviert. Um eine Vorstellung
davon zu bekommen, wie man Software-Funktionen sinnvoll verteilen kann, ist das Wissen
unterschiedlichster Bereich (z.B. Modell-Entwicklung, Software-Entwicklung,...) notwen-
dig.
In dieser Masterarbeit wurde eine Toolkette entwickelt, die es einem einzelnen Inge-
nieur mit möglichst geringem Aufwand ermöglicht, eine Hardware-Integration von diversen
Regler-Modellen, verteilt oder nicht verteilt, durchzuführen. Des Weiteren soll das resul-
tierende Verhalten der integrierten Funktionen durch sogenannte ’Hardware in the Loop’
(HiL) Tests beurteilt werden können. Um dies umzusetzen, musste im ersten Schritt ein
Szenario erstellt werden, um herauszufinden welche Informationen für eine Integration von
Regelfunktionen auf einer speziellen Plattform notwendig sind. Die resultierende Metho-
dik enthält eine Schnittstelle, in Form einer XML-basierten Spezifikation, die einen ein-
fachen Datenaustausch zwischen unterschiedlichen Entwicklungsbereichen ermöglicht. Im
nächsten Schritt wurde die entwickelte Toolkette durch die Integration mehrerer, sowohl
verteilter (Multi-Core), als auch nicht verteilter (Single-Core) Regelfunktionen auf ver-
schiedenen Plattformen getestet. Dafür wurden die Regelfunktionen eines Dual Mode Ener-
gy Storage (DMES) Systems eines Lotus Evora 414E Plug-In Hybrid, sowie die Funktionen
einer allgemeinen Hybridfahrzeug-Simulation verwendet. Eine Evaluierung des erziehlten
Verhaltens der jeweiligen Regelfunktionen, sowie ein Vergleich der Single- und Multi-Core
Ergebnisse wurden danach durch eine HiL-Simulation mit Hilfe eines Co-Simulationstools
durchgeführt. Diese Ergebnisse dienen als Basis für zukünftige Verteilungs-Szenarios.

3

Abstract

In the last years the strategies in the automotive industry significantly changed. The
number of used software functions grew and due to the fact that one software function is
integrated on one electrical control unit (ECU), even the number of control units tremen-
dously increased. Thus, software distribution and multi-core usage became an active
research field. In the automotive industry, different domains are included in development
processes. To get an idea of how software functions can be distributed, the knowledge
of different domains (e.g. model development, software development,...) is necessary to
achieve suitable results.
Within this Master’s thesis a toolchain was developed, to enable one single engineer to
integrate different modelled control functions, distributed as well as not distributed and
furthermore, evaluate the resulting performance of this integration by performing so called
Hardware in the Loop (HiL) tests with little effort. To define such a methodology, a sce-
nario to get an overview of what information is necessary to integrate different control
functions on a hardware device has been defined in the first part of this work. The re-
sulting toolchain contains an interface, in form of an XML-based specification, to easily
enable the data exchange between different development domains. In the second part,
the resulting toolchain is verified by performing single- as well as multi-core integrations
of various control functions on different hardware devices. Therefore, the control func-
tions of a Dual Mode Energy Storage (DMES) system, integrated in a Lotus Evora 414E
plug-in hybrid, are used as well as control functions of an energy management system of
a further hybrid vehicle simulation. After this integration, the behavior of the single- and
the multi-core approaches were evaluated and compared by performing Hardware in the
Loop (HiL) simulations using a co-simulation platform. Finally, the achieve results were
evaluated and serve as a first basis for future distribution scenarios.

4

Danksagung

Diese Masterarbeit wurde im Jahr 2015 am Institut für Elektrische Meßtechnik und
Meßsignalverarbeitung an der Technischen Universität Graz durchgeführt.

An dieser Stelle möchte ich all jenen danken, die durch ihre fachliche und persönliche
Unterstützung zum Gelingen dieser Masterarbeit beigetragen haben.

Mein besonderer Dank gilt Univ.-Doz. Dipl.-Ing. Dr.techn. Daniel Watzenig, der die
Durchführung dieser Masterarbeit am Institut für Elektrische Meßtechnik und Meßsig-
nalverarbeitung an der Technischen Universität Graz in Zusammenarbeit mit dem Virtual
Vehicle Research Center ermöglicht hat. Großer Dank gilt auch Dipl.-Ing. Stephanie
Messner, für das Bereitstellen dieses interessanten Themas und die gute Betreuung und
Unterstützung während der gesamten Zeit der Masterarbeit. Weiters möchte ich mich
bei allen Mitarbeitern des Virtual Vehicle Research Center bedanken, im Besonderen bei
Dipl.-Ing. Dr.techn. Bakk.techn. Martin Benedikt und Dipl.-Ing. Dr.techn. Allan Tengg,
ohne deren Hilfe und Bemühungen diese Arbeit nicht zustande gekommen wäre.

Mein besonderer Dank gilt weiters meiner Familie, insbesondere meinen Eltern, die mir
mein Studium ermöglicht und mich in all meinen Entscheidungen unterstützt haben. Her-
zlich bedanken möchte ich mich auch bei all meinen Freunden, die stets an mich geglaubt
und meine gesamte Studienzeit zu etwas ganz Besonderem gemacht haben.

In diesem Sinne: Let a new journey begin.

Graz, im April 2015 Beate Herbst

5

Contents

1 Introduction 12
1.1 Motivation . 12
1.2 Aim of Work . 14
1.3 State-of-the-art . 18

1.3.1 System architecture . 18
1.3.2 Multi-core control systems . 19
1.3.3 Mixed criticality . 19
1.3.4 State-of-the-art conclusion . 20

1.4 Outline . 20

2 Technical Background 21
2.1 Hardware . 21

2.1.1 Existing Hardware Solutions . 21
2.1.2 VIF CAN Board V1.0 . 22
2.1.3 Infineon TriBoard 1797 . 24

2.2 Software . 26
2.2.1 MATLAB . 26
2.2.2 Integrated Development Environment (IDE) 26
2.2.3 CAN tools . 27
2.2.4 Co-Simulation . 27

2.3 Communication Methods . 29
2.3.1 Controller Area Network (CAN) . 29
2.3.2 UDP (User Datagram Protocol) based on Ethernet 31
2.3.3 Comparison and Decision . 32

3 Design 33
3.1 Hardware integration scenario . 33
3.2 Developed XSD schema . 35

3.2.1 State-of-the-art description formats 36
3.2.2 Data exchange file format . 36

3.3 Hardware integration toolchain . 39
3.3.1 From model to code . 39
3.3.2 Code extension . 39
3.3.3 Hardware-in-the-Loop testing . 41

6

4 Proof of Concept 42
4.1 Test setup . 42
4.2 Dual Mode Energy System (DMES) . 43

4.2.1 Single-core integration of DMESC 48
4.2.2 Multi-core integration of DMESC . 55
4.2.3 Influence of used solver-type and step-size on HiL results 61

4.3 Hybrid Energy Management System model 64
4.3.1 Single-core results . 70
4.3.2 Multi-core results . 72

5 Conclusion and Outlook 78
5.1 Conclusion . 78
5.2 Outlook . 79

A List of abbreviations 80

B Code samples 83
B.1 CAN data conversion DMESC single-core solution 83
B.2 ICOS RealTime Wrapper .ini-file - DMESC single-core solution 85

C XSD-Schema 86

D xml-specification samples 88
D.1 xml-file for DMESC single-core integration 88

D.1.1 DMESC single-core integration. 88
D.1.2 DMESC multi-core integration. 89

Bibliography 91

7

List of Figures

1.1 Evolution of complexity [3]. 12
1.2 Examples of a single- and a multi-core architecture [6]. 13
1.3 Vision of multi-core systems in the Automotive Domain [8]. 15
1.4 Rough overview of the hardware integration part of this Master’s thesis. . . 16
1.5 Overview of the controllers influence factors. 17
1.6 Integrated control software is compatible with a multi-core automotive ECU. 18

2.1 VIF CAN Board V1.0. 22
2.2 AT90CAN128 block diagram. 23
2.3 Infineon TriBoard 1797. 24
2.4 TC1797 block diagram. 25
2.5 Coupling of different simulation tools via ICOS. 28
2.6 Data exchange with ICOS. 28
2.7 Different possibilities of coupling mechanisms. 29
2.8 OSI model for the CAN standard [27]. 30
2.9 Structure of the CAN message frame format. 31
2.10 Structure of a UDP packet. 32

3.1 First approach of a scenario definition. 33
3.2 Second scenario definition. 34
3.3 Defined xsd-schema represented as a graph. 38
3.4 Co-Simulation realized in this work. 41

4.1 Overview of the experimental setup. 42
4.2 Lotus Evora 414E. 43
4.3 Distance profile of the Hethel track. 44
4.4 Height profile of the Hethel track. 44
4.5 Ragone Chart [38]. 45
4.6 Comparison of the battery currents with and without DMES. 46
4.7 Schematic layout of the DMES System [39]. 47
4.8 Overview of the DMES model. 47
4.9 Structure of the DMESC. 48
4.10 Overview of CAN messages packing for the DMESC input values. 50
4.11 Overview of the created ICOS model. 51
4.12 Overview of the Simulink model used for the co-simulation. 51
4.13 Comparison of DMESC simulation and single-core HiL results integrated

on two different boards. 52

8

4.14 Comparison of the DMESC output signal. 53
4.15 A record of the CAN traffic when performing the HiL testruns. 54
4.16 Modified DMESC block. 55
4.17 Implementation of the first PI controller block. 56
4.18 Implementation of the second PI controller block. 56
4.19 Overview of the ICOS coupling. 57
4.20 Modified DMESC block. 58
4.21 Comparison of DMESC simulation and multi-core HiL result. 59
4.22 Overview of multi-core results. 60
4.23 Record of the CAN bus traffic of the DMESC multi-core approach. 60
4.24 Solver comparison. 62
4.25 Resulting error of i cap soll when using different solver types. 63
4.26 Scheme of a series hybrid electrical vehicle [40]. 64
4.27 Velocity profile of the NEDC [41]. 64
4.28 Subsystems of the whole hybrid vehicle simulation. 65
4.29 Overview of the used management system model. 66
4.30 Simulink model of the battery. 67
4.31 Simulink model of the super capacitor. 67
4.32 Modified Simulink model used for the co-simulation. 68
4.33 Overview ICOS model. 69
4.34 Management system single-core result. 70
4.35 Comparison of the resulting MiL and HiL SoCs. 71
4.36 Torque of the multi-core integration. 72
4.37 SoC of the first multi-core integration. 73
4.38 Overview of the Simulink model used for the management system distribution. 74
4.39 Torque of the whole management system multi-core integration. 75
4.40 SoC of the whole management system multi-core integration. 76

9

List of Tables

4.1 Details regarding the used in- and output signals. 49
4.2 Overview of the in- and output signals of the first PI controller. 56
4.3 Overview of the in- and output signals of the second PI controller. 57
4.4 Relative percentage deviation of the different solvers from the result using

ODE3 and a step-size of 0.01s. 62
4.5 Relative percentage deviation of the SoCs from the Simulink simulation

result in the single-core and multi-core case. 73
4.6 Relative percentage deviation of the SoCs in the single-core and multi-core

case. 76

10

Chapter 1

Introduction

1.1 Motivation

In the last years the strategies in the automotive industry significantly changed. According
to lecture notes of Stanford University [1], the number of Electric Control Units (ECUs) in
a vehicle steadily increased since 2002 and is still expected to grow. Today’s vehicle archi-
tectures integrate up to 70 ECUs [2], so a trend towards vehicles controlled electronically
rather than purely mechanically is clearly shown. Figure 1.1 cited from [3] highlights this
assumption. It shows that the number of functions have increased along with the num-
ber of ECUs within a vehicle. Thus, future vehicle architectures actually become much
more complex and also the number of functions obviously increase more than it would be
necessary for the achieved gain in functionality.

Figure 1.1: Evolution of complexity [3].

The solid part of the black line represents the approximate necessary complexity of vehicles
until the year 2010, its dashed part illustrates the prediction over the next 20 years. The
solid part of the blue line represents the actual complexity of vehicle’s functions, the
dashed part again illustrates its outlook for the next 20 years.

11

CHAPTER 1. INTRODUCTION 12

ECUs, consisting of a microcontroller and a set of sensors and actuators, are needed to
control one or more electrical systems or subsystems within a vehicle, whereby their field
of application varies from highly safety-critical operations to non-critical comfort or info-
tainment. A logical consequence of the highly increasing number of ECUs is the increase
of costs for electronics and software in a vehicle. Due to the fact that 90% of innovations
are electronic (80% in the area of software), as mentioned in [4], solutions are required
to reduce the number of ECUs and as a result decrease the costs. A paper from 2005
[5] reports that today each new developed functionality is implemented on a stand-alone
single-core ECU. However, the inefficiency of this approach becomes more and more clear
now. Thus, distribution of functions over multiple ECUs and reuse of already existing
software components becomes more and more important. Moreover, the usage of multi-
core systems in the automotive domain has also gained importance over the last few years.
Regarding [6], an automotive multi-core processor consists of at least two Central Pro-
cessing Units (CPUs) which are connected to the same bus. This means that a multi-core
system looks very like a number of single-core systems. A comparison of a single- and
a multi-core architecture approach is illustrated in figure 1.2. With this approach, more
centralized architecture designs can be adopted, consisting of a few powerful multi-core
ECUs, each of them integrating functionalities of several single-core ECUs.

Figure 1.2: Examples of a single- and a multi-core architecture [6].

CHAPTER 1. INTRODUCTION 13

1.2 Aim of Work

This work aims for enabling development frontloading by establishing a seamless method-
ology for efficient hardware integration. Automotive software functions are often imple-
mented using a model-based development approach. In most cases it is necessary to
generate an executable code out of the model, which will afterwards run on an ECU. To
test the correctness of the integrated software functions HiL tests are performed. There-
fore, a connection between the hardware and a data source, which provides stimuli from
the environment, is required to perform calculations on the ECU. Within this work most
often generic stimuli are generated, representing various automotive parameters like the
current vehicle velocity, its rotational speed or power as well as signals regarding a spe-
cific test track. These signals for instance can be provided by so called co-simulation. A
co-simulation tool enables the coupling of different models created in different modelling
and simulation tools as well as the coupling with hardware devices. The behavior of each
model is not influenced by this coupling. To enable such a co-simulation including hard-
ware devices, an appropriate communication interface is needed.
In such a process many different engineering domains are involved. An application engineer
develops models. For further processing of the models a software engineer is responsible.
To integrate the models on hardware in the end, an engineer for hardware integration
(integrator) is needed. Hence, within this work a solution is discovered to ease the inter-
action of all these different engineering domains. In the end, it is possible that a hardware
integration and HiL simulation can be completely performed by one person, if a simulation
model is given.

The developed approaches will be tested by integrating already existing simulation models
on different hardware devices. Further, within this proof-of-concept different given soft-
ware distributions are tested. The achieved results are analysed to evaluate the emerged
behavior and to reveal possible sources of error in terms of distribution.
This thesis is conducted at the VIRTUAL VEHICLE Research Center1 in the context of
the Artemis EU project Embedded Multi-Core Systems for Mixed Criticality Applications
in dynamic and changeable Real-time Environments (EMC2)2. Within the scope of this
project a significant reduction of the number of control units in vehicles should be accom-
plished. Figure 1.3 shows an automotive system with many single-core ECUs, each of these
units is specialized for an individual criticality level. Such criticality levels are specified by
the functional safety standard ISO 26262 (Road vehicles - Functional safety) [7] and are
defined as Automotive Safety Integrity Levels (ASILs). According to this safety standard,
ASILs are established by performing a risk analysis of a potential hazard by considering
three factors of a vehicle operation: severity, exposure and controllability. Thereby four
safety levels can arise from ASIL A, representing the lowest one, to ASIL D dictating the
highest integrity requirements.

1www.v2c2.at
2http://www.artemis-emc2.eu/

CHAPTER 1. INTRODUCTION 14

The vision of EMC2 is the implementation of multi-core systems for mixed criticality
systems. Functions with different criticality levels will be able to run on the same ECU.
As a result, the number of ECUs will decrease.

Figure 1.3: Vision of multi-core systems in the Automotive Domain [8].

Due to the fact that the EMC2 project is in its initial phase, the results of this work will
serve as a basis for a first demonstrated prototype. In figure 1.4 a rough overview of a first
implementation of the prototype is shown. It represents a scenario of how to come from a
Model in the Loop (MiL) to a HiL test. In more detail the figure illustrates a co-simulation
model which represents the hardware integration of a model. The co-simulation tool cou-
ples a model, providing environmental data like vehicle or track data with a corresponding
controller model. This model will then be converted into C-code, which needs to be ex-
tended to enable data exchange and afterwards can be integrated on an ECU. To check
the correctness of the behavior of the hardware integration a different co-simulation model
is needed. Instead of coupling the environmental data with a controller model running
in a simulation tool (MiL), it will directly be coupled with the hardware (HiL). For the
necessary data exchange between the co-simulation tool and the hardware, an appropriate
communication interface needs to be defined.

CHAPTER 1. INTRODUCTION 15

Figure 1.4: Rough overview of the hardware integration part of this Master’s thesis.

This described scenario is feasible for single-core as well as multi-core applications. Within
this thesis both possibilities will be implemented to be able to compare the achieved results
in the end. The multi-core approach will be realized in form of a connection of multiple
single-core devices.

CHAPTER 1. INTRODUCTION 16

A further project of the VIRTUAL VEHICLE Research Center which benefits of this
Master’s thesis is the Integrated Control of Multiple-Motor and Multiple-Storage Fully
Electric Vehicles (iCOMPOSE)3 project. Moreover, the first application example used
within this thesis is provided by this project. Challenges of this project are:

• Improvement of Electric Vehicle (EV) technology to achieve

– Adequate driving range

– Better driveability

– Better handling performance

• Increasing driving range

– Increasing amount of available energy

– Reduction of energy usage

• Vehicle components and controllers developed seperatly

– Integration and interaction of optimising energy efficiency

– Growing number of Information and Communication Technologies (ICT)-functions
must not lead to more complexity

One goal of this project is the development of a supervisory controller which uses the infor-
mations from satellite navigation systems, the internet, and vehicle sensors, to optimally
and adaptively coordinate the energy flow in an EV. A rough overview of this controller
and its information cloud can be seen in Figure 1.5.

Figure 1.5: Overview of the controllers influence factors.

3www.i-compose.eu

CHAPTER 1. INTRODUCTION 17

One of the main objectives is the design of a Model Predictive Controller, to achieve an
optimal vehicle operation. Due to the fact that this controller will finally be merged with
other control algorithms, a very complex controller arises. As a result, it will be nec-
essary to distribute the control function within a vehicle’s ECU network to improve its
performance. Figure 1.6 shows the compatibility of the integrated control software and
a powerful multi-core automotive control unit. Therefore, the revealed results regard-
ing the behavior of straightforward distributed controller functions are significant for the
iCOMPOSE project and will serve as basis for an ongoing PhD thesis.

Figure 1.6: Integrated control software is compatible with a multi-core automotive ECU.

1.3 State-of-the-art

1.3.1 System architecture

System architecture and software design still are relevant topics in the automotive indus-
try. For instance the growing number of EVs, including more and more control systems,
pose new challenges to the design of in-vehicle system architectures.

In addition, M. Lukasiewycz et al. [9] present in their paper, that EVs consist of several
components which bring along new implementation, integration and control challenges.
Furthermore, they depict that current high-class vehicles consist of up to 100 ECUs, in-
terconnected with several heterogeneous buses. This is a result of an incremental design
over the last decades where new functionalities are mostly introduced by adding separate
ECUs. According to the authors, this approach is reaching its limits with the growing
complexity of in-vehicle networks, and thus in the future the major trend goes towards a
consolidation of ECUs involving an unification of the in-vehicle networks. A further paper
written by Peti et al. [10] also describes this ’one function per ECU’ -approach. They
describe the complexity and the amount of electronics in today’s luxury cars by means of
the electronic infrastructure of a Fiat. Further they discuss a possible mapping of the Fiat

CHAPTER 1. INTRODUCTION 18

architecture to an integrated solution based on a specific architecture. This architecture
is based on a time-triggered core architecture and a set of high-level services. In contrast
to M. Lukasiewycz et al. [9] the presented approach also provides a foundation for mixed-
criticality integration, including safety-critical as well as non safety-critical subsystems.
Another different approach published by Continental4 in 2009 [11], presents a so called
Vehicle Control Unit (VCU), to reduce the complexity and costs of the vehicle management
system. The described idea is the division of in-vehicle controllers into specific domains
each of them including one head unit. Within this paper the powertrain is defined as
such a domain whereby its integrated VCU is especially powerful and is responsible for
the entire domain. Thus, it coordinates the control tasks of each individual powertrain
control unit. To reduce the number of partner control units on the powertrain, the VCU
unifies control and management functions for several powertrain parts. Further state-of-
the-art investigations showed that even projects at the Virtual Vehicle Research Center
deal with the system architecture subject. According to the iCOMPOSE project [12],
today’s in-vehicle control system architectures are described as follows: The automotive
industry uses separate controllers to integrate different functions like energy management,
vehicle dynamics, drive-ability and HVAC. Thus, consistent with the approaches discussed
before, a step towards a novel integrated control structure, in this case using multi-core
hardware platforms is required in the future.

1.3.2 Multi-core control systems

As described in a paper published by D. Zhu et al. [13], the use of multi-core processors for
future automotive control systems will present new challenges for the automotive industry.
According to this paper, multi-core processors have emerged to be the main computing
engine for high-end servers, but also for embedded control systems. In this approach a few
powerful multi-core ECUs integrate the functionalities of several single-core ECUs from
the same or similar domains. Thus, in contrast to the ’one function per ECU’ -approach,
a multi-core domain control unit is presented, reducing the number of ECUs to 10 or 20.
The main integration challenge depicted in this paper concerns the scheduling of these
multi-core domain control unit. The presented state-of-the-art solutions greatly limit the
flexibility and system utilization efficiency. Thus, within this paper, new approaches to
solve scheduling issues are introduced.

1.3.3 Mixed criticality

In the automotive domain it is common to evaluate the criticality level of different em-
bedded components. Thereby, criticality is defined as the level of assurance against failure
[14]. As already described before in section 1.2, such criticality levels are for instance
determined as Automotive Safety and Integrity Levels (ASILs) by the ISO 26262. These
levels reach from ASIL A, representing the lowest criticality level, up to ASIL D, repre-
senting the highest one. According toK. Schmidt et al. [15] at the moment each ECU is
associated with exactly one distinct criticality level. The term ’mixed criticality’ describes
the new approach of integrating functions with different criticality levels on one platform.
According to a review published by A. Burns and R. Davis [14] in 2015, nowadays there is

4www.conti-online.com

CHAPTER 1. INTRODUCTION 19

an increasing trend towards integrating such mixed-criticality components onto one ECU.
Furthermore, the used platforms also mitigate from single- to multi- or even many-core
architectures. According to the authors, the fundamental issue with mixed criticality
systems is how to reconcile the differing needs of separation and sharing resources, to
guarantee safety and to enable efficient resource usage. Along the same line, an overview
of different already existing approaches to solve this issue is provided by the authors. A
recurring topic in this state-of-the-art investigation is the used scheduling strategy for
mixed criticality systems. In a further paper, Ficek et al. [16] for instance describe an
approach how to use AUTomotive Open System ARchitecture (AUTOSAR) to build safe
and efficient ISO 26262 mixed criticality systems. Therefore, they first evaluate three
different priority-assignment strategies and afterwards show how the advantages of these
three approaches can be combined to achieve safe and efficient schedules using AUTOSAR
Timing Protection. Further, they present a method to determine good configurations for
this AUTOSAR mechanism. Another approach regarding scheduling is described in a pa-
per published by S. Baruah et al. [17]. In this paper the authors present a formal model
for representing mixed criticality workloads. Further on, they demonstrate the severity of
determining whether such a specified model can be scheduled to meet all its certification
requirements or not.

1.3.4 State-of-the-art conclusion

These investigations showed, that in the literature different approaches, regarding ECU
reduction as well as new development issues when integrating automotive functions on
multi-core platforms are demonstrated. The big variety of publications regarding this
topic shows the actuality and importance of this topic. Nevertheless, all these publications
are rather theoretically oriented. Thus, in this Master’s thesis a more practical approach
shows how modelled controller solutions can be integrated and distributed on real hardware
devices with little effort. A further result of this thesis is the definition of an interface,
including all necessary information to realize such a distribution. In addition, this thesis
examines the behavior of these integrated models and depicts possible error-sources which
need to be minded.

1.4 Outline

The contents of this Master’s thesis are structured as follows: chapter 2 covers a compar-
ison of possible hardware solutions as well as a detailed description of the actually used
hardware devices and software tools. Furthermore, different communication methods,
which are relevant for this thesis, are presented. Chapter 3 describes different scenarios
which represent the initial point of this thesis. This chapter describes the structure of the
developed schema-file as well as a consistent toolchain to easily realize hardware-in-the-
loop simulations. A proof-of-concept of the developed toolchain is presented in chapter 4.
The conclusion and an outlook of how these results will be used in the future is presented
in chapter 5.

Chapter 2

Technical Background

2.1 Hardware

For the realization of this work it is necessary to simulate an ECU network. Each ECU
will at first execute a specific controller and afterwards a specific part of a distributed
software. Hence, the first task is a hardware comparison to find a suitable solution.

2.1.1 Existing Hardware Solutions

The major goal of this work is figuring out how to easily integrate existing software on a
given hardware. Further, the behavior of these integrated software parts (either distributed
and not distributed) will be analyzed. The following investigations showed that there exist
two conceivable hardware-solutions for this scope:

1. Setting up a network consisting of micro controllers. Depending on the controllers,
it might be necessary to equip them with specific shields, for instance CAN- or
Ethernet-Shields, to be able to communicate with each other. An example of such a
hardware solution is the Arduino UNO1. However, there also exist micro controllers
with already integrated communication mechanisms. An example of such a micro
controller for instance is the TriBoard designed by Infineon2.

2. Use a multi-core processor instead of creating a real ECU-network. Each core of the
processor could act as a ’standalone ECU’.

Due to new projects like EMC2 or iCOMPOSE, the deployment of multi-core ECUs is an
active research field. Anyway, in this thesis different single-core boards will be used to
analyze the behavior of distributed as well as not distributed simulation models running
on hardware. This analysis will give an overview of potential error sources, which should
later on be taken into account when integrating controllers on multi-core ECUs. As
first approach a simple micro controller will be used to find a convenient procedure for
the required toolchain. Afterwards, another more powerful micro controller will be used
to proof this toolchain. The following sections will give an overview of the single-core

1http://arduino.cc/en/main/arduinoBoardUno
2http://www.infineon.com/cms/de/product/microcontroller/channel.html?channel=ff80808112ab681d0112ab6b64b50805

20

CHAPTER 2. TECHNICAL BACKGROUND 21

hardware components used within this Master’s thesis. All these devices are state-of-the-
art and are already available at the VIRTUAL VEHICLE Research Center.

2.1.2 VIF CAN Board V1.0

The VIF CAN Board V1.0 is a simple board designed at the VIRTUAL VEHICLE Re-
search Center and is shown in Figure 2.1. Overall it contains an ATMEL processor and
a NXP3 Controller Area Network (CAN) transceiver. The processor is described in more
detail in the following section.

Figure 2.1: VIF CAN Board V1.0.

Atmel AT90CAN128

The AT90CAN128, described in [18], is a 8-bit micro controller based on the enhanced
Reduced Instruction Set Computer (RISC) architecture. The block diagram of the AT90CAN128
is depicted in figure 2.2. The board provides the following, for this thesis relevant, features:

• 128 KB in-system programmable flash

• 4 KB EEPROM

• 4 KB SRAM

• 53 general purpose Input/Output (I/O) lines

• 32 general purpose working registers

• CAN controller

3www.nxp.com/

CHAPTER 2. TECHNICAL BACKGROUND 22

• real-time counter

Figure 2.2: AT90CAN128 block diagram.

CHAPTER 2. TECHNICAL BACKGROUND 23

2.1.3 Infineon TriBoard 1797

The TriBoard 1797, described in [19], is a board designed by Infineon4 and is illustrated
in figure 2.3. This board consists of a TC1797 controller also designed by Infineon, de-
tails regarding this controller follow in the next section. Further features of this board
for instance are 2 FlexRay transceivers, 2 High Speed CAN transceivers, a Universal Se-
rial Bus (USB) to Universal Asynchronous Receiver Transmitter (UART) bridge, a Serial
Peripheral Interface (SPI), and an Electrically Erasable Programmable Read-Only Mem-
ory (EEPROM).

Figure 2.3: Infineon TriBoard 1797.

TC1797

According to [20], the TriCore 1797, short TC1797, is a high-performance 32-bit micro
controller, based on the Infineon TriCore architecture, which mainly combines three tech-
nologies to achieve good speed, power, and economy for embedded applications. The RISC
processor architecture, to provide high computational bandwidth with low system costs.
Digital Signal Processor (DSP) operations and addressing modes to provide the compu-
tational power to be able to analyze complex real-world signals. And finally on chip
memories and peripherals, to support even the most demanding high-bandwidth real-time
embedded application tasks.

Figure 2.4 shows the block diagram of the TC1797. In general it includes a 32-bit TriCore
CPU as well as a 32-bit Peripheral Control Processor (PCP) optimized for interrupt han-
dling to unload the CPU. The following itemizations shows the main features provided
by these two processors.

4www.infineon.com

CHAPTER 2. TECHNICAL BACKGROUND 24

Figure 2.4: TC1797 block diagram.

TriCore CPU:

• 16/32-bit instructions for reduced code size

• Floating point unit

• Data types include: Boolean, array of bits, character, signed/unsigned integer,
double-word integers, and IEEE-754 single-precision floating point

• Data formats include: Bit, 8-bit byte, 16-bit half-word, 32-bit word, and 64-bit
double-word data formats

• 4 MB embedded program flash memory

• 156 KB on-chip Static Random-Access Memory (SRAM)

• 16 KB EEPROM

CHAPTER 2. TECHNICAL BACKGROUND 25

Peripheral Control Processor

• Read/move data and accumulate it to previously read data

• Read two data values, perform arithmetic/logical operations, store result

• Bit-handling capabilities (testing, setting, clearing)

• Dedicated interrupt system

• 32 KB code memory

• 16 KB parameter memory

2.2 Software

For the realization of this thesis various software is necessary, which will be presented in
the following sections.

2.2.1 MATLAB

All used models and the tool used for code generation within this Master’s thesis are based
on the MathWorks tool MATLAB R©. MATLAB is a numerical computing environment,
which offers many different toolboxes to extend the tools functionality. The two used
toolboxes for this thesis are described in the following sections.

Simulink

All used models within this thesis are modelled in a MATLAB toolbox called Simulink R©.
This toolbox serves for modelling, simulating and analysing multi-domain dynamic sys-
tems. A Simulink model consists of different graphical blocks which have specific prop-
erties. A detailed understanding of all these blocks is not necessary for the performed
integrations in this thesis.

Embedded Coder

With Embedded Coder R© C and C++ code optimized for embedded systems can automat-
ically be generated out of Simulink models as well as MATLAB functions. In this thesis
it is used, to generate C-code out of specific model parts. This code needs to be extended
by a communication mechanism in the next step. Therefore another tool is necessary.

2.2.2 Integrated Development Environment (IDE)

For further steps, a suitable Integrated Development Environment (IDE) for the used
hardware is necessary. With this IDE the generated C-code can be extended by a com-
munication mechanism and afterwards be easily flashed on the given hardware.

CHAPTER 2. TECHNICAL BACKGROUND 26

AVR Studio 5.1

This IDE is used for the first experiences with the AT90CAN128 micro controllers. AVR
Studio5 is a tool created by Atmel which serves to develop and debug embedded 8- and
32-bit Atmel AVR R© applications. Supported languages are C, C++ and Assembler. A
big advantage of this IDE is the integrated C Compiler, thus installing a separate compiler
or toolchain is not necessary.

HighTec TriCore Toolchain

To develop and compile code for TriCore processors the Hightec TriCore toolchain pro-
vided by Infineon6 is used. The Hightec TriCore toolchain consists of an Eclipse based
IDE including a C/C++ cross compiler and an USB-debugger.

2.2.3 CAN tools

To comprehend in more details how the implemented CAN interface is working, the com-
pany PEAK Systems7 provides different useful tools for instance to monitor the CAN
traffic. Furthermore, this company provides the used PCAN-USB adapter, which enables
simple connection to CAN networks via USB.

CAN monitor

To be able to represent the CAN data traffic, PCAN-View R© is used. This software en-
ables the user to send specific CAN messages over the channel, to test the implemented
CAN interface, as well as record the transmitted data packages.

2.2.4 Co-Simulation

For data-exchange between a hardware device, executing different controller tasks, and its
environment (input and output data) a co-simulation tool is needed. These kind of testing
is called HiL. Such a co-simulation tool enables the user to couple different models which
are generated and simulated in different simulation tools. A big advantage of co-simulation
is that this coupling does not influence the used algorithm or the step size of the included
models.

5www.atmel.com/microsite/avr studio 5/
6www.infineon.com/cms/en/product/channel.html?channel=db3a304344134c7a014420d628fa76ec
7www.peak-system.com

CHAPTER 2. TECHNICAL BACKGROUND 27

ICOS

In this Master’s thesis a tool developed at the VIRTUAL VEHICLE Research Center
called Independent Co-Simulation (ICOS)8 is used. ICOS allows the coupling of a variety
of engineering tools like MATLAB/Simulink, MSC Adams, Excel or CarMaker, thus the
platform allows a simulation of an entire vehicle if needed [21]. Figure 2.5 presents the
coupling of different simulation tools with the co-simulation platform.

Figure 2.5: Coupling of different simulation tools via ICOS.

Coupling Methods

As described in [22] coupling of different models corresponds to a synchronisation of the
models. Each model is simulated for a specific time interval whereas a data exchange takes
place at certain points in time. This time interval is called macro step size ∆T . Within
this interval each model is solved independently by its individually determined solution
algorithm and its fixed or variable step size. The step size used by the solution method is
called micro step size δT and is defined by the developer of the individual model and the
used solver (variable step-size solver)[23]. Figure 2.6 shows a graphical representation of
these different step sizes. A simulation which includes different models solved by different
micro step-sizes is called a multi-rate simulation, in general.

Figure 2.6: Data exchange with ICOS.

8www.v2c2.at/en/products/icos/

CHAPTER 2. TECHNICAL BACKGROUND 28

Furthermore, ICOS provides two different coupling mechanisms: sequential and parallel
coupling. Examples of these two possibilities are depicted in figure 2.7. In case of a
sequential execution order, illustrated on the left side of figure 2.7, each subsystem is solved
after the other, thus only the input signals of the first subsystem has to be extrapolated.
In contrast to that, for a parallel execution of a simulation, shown on the right side of
figure 2.7, an extrapolation of the coupling data has to be done by every subsystem.

Figure 2.7: Different possibilities of coupling mechanisms.

2.3 Communication Methods

In the automotive domain, different standards exist to exchange data. Within this Master’s
thesis a communication method is needed to enable communication between ICOS and
the used hardware. Due to the fact that ICOS only supports the transmission of User
Datagram Protocol (UDP) packages and CAN messages a decision between these two
technologies needs to be made. The following sections give a short introductions to the
main concepts of these technologies. Based on this comparison a decision is made in the
end.

2.3.1 Controller Area Network (CAN)

The Controller Area Network is a standard defined by the International Standardization
Organization (ISO)9. It describes a serial communication bus developed for the automo-
tive industry and at the moment is the most widely used in-vehicle network standard. In
contrast to other communication networks like Ethernet or USB, CAN does not send data
point-to-point from one node to another under the supervision of a central bus master, but
rather broadcasts short messages to the entire network. Hence, CAN is a multi-master,
message broadcast system, which covers small networks including buses with a length up
to 40m. Moreover, the CAN standard includes Carrier Sense Multiple Access/Collision

9www.iso.org

CHAPTER 2. TECHNICAL BACKGROUND 29

Reduction (CSMA/CR) as transmission mechanism to ensure reliable message delivery.
Carrier Sense Multiple Access (CSMA) means, that each node needs to wait a specific
time interval before attempting to send a message to avoid collisions. Nevertheless, if
two nodes want to send simultaneously bit-wise arbitration is used, whereas each message
keeps a preprogrammed priority in his identifier field. As a result, it is guaranteed that
the message with the higher priority is allowed to send. [24]

As described in [25] and depicted in figure 2.8, the CAN architecture defines the two
lowest layers regarding the Open Systems Interconnection (OSI) model [26] which consists
of seven layers: the physical and the data-link layer.

Figure 2.8: OSI model for the CAN standard [27].

These two layers are defined by ISO 11898-1:2003. The most common physical layer
standards are ISO 11898-2:2003 also known as high-speed CAN and ISO 11898-3:2006
also known as low-speed and fault-tolerant CAN. The high-speed standard covers CAN
requirements for data rates up to 1 Mbit/s and is the most used physical layer standard
for CAN networks. The low-speed and fault tolerant standard covers requirements for
rates up to 125 kbit/s and is mainly used for body electronics in the automotive industry.
[27]

Message frame formats

The CAN standard specifies two different types of message frame formats. The only es-
sential difference between these two formats is the identifier length. A standard CAN
identifier consists of 11-bits and provides signal rates from 125 kbit/s up to 1 Mbit/s. For
in-vehicle communication only this identifier is used. After the amendment of this stan-
dard identifier an extended one was created, consisting of 29-bits. This 29-bit identifier is
made up of the 11-bit base frame identifier and an 18-bit identifier extension. A standard
identifier offers 211 or 2048 different message different identifiers whereas the extended
one offers 229 or 537 millions. Due to the fact that both formats have to co-exist on one
bus, the CAN standard defines that a 11-bit message always has priority over a extended
message. CAN controllers supporting extended frame format messages are also able to
send and receive standard frame format messages, however a controller which only covers

CHAPTER 2. TECHNICAL BACKGROUND 30

base frame format messages is not able to interpret extended ones. The general structure
of the CAN message frame format is illustrated in figure 2.9. Beside the identifier field
there are several other fields set within a CAN message. Another meaningful field is the
data field which includes the actual transmitted message. This data field can handle a
payload of up to 8 byte. [28]

Figure 2.9: Structure of the CAN message frame format.

2.3.2 UDP (User Datagram Protocol) based on Ethernet

UDP belongs to the internet protocol suite and is defined within the Request For Com-
ments (RFC) 768 document [29]. The main idea is the connectionless transmission (multi-
cast and broadcast) of messages within a network with a minimum of protocol mechanism.
UDP is a transaction-oriented protocol which does not guarantee any reliability and cor-
rect message delivery. In contrast to CAN, this protocol is design to enable data exchange
within huge world-wide networks. Moreover, unlike the CAN standard, UDP messages are
sent point-to-point from a source to a destination by using Ethernet standards whereas
the Internet Protocol (IP) address of the destination needs to be known. [29]

As described in [30] for sending UDP packages four layers regarding the OSI model needs
to be defined: the physical, the data-link, the internet and the transport layer.
Hence, beside defining low-level protocols and mechanisms it is also necessary to implement
Ethernet and the associated address and transport mechanisms to enable data exchange
with UDP.

Package structure

A UDP package is always part of an Ethernet frame. The structure of such a packet
is depicted in figure 2.10. The UDP header consists of four 16-bit fields to define the
source and destination port as well as the length of the data package and a checksum for
error-checking. The data field of the packet can include up to 65507 byte of information.
To transmit such a packet beside the UDP header two further headers for the internet
protocol and Ethernet are needed. These headers include information like the acIP and
Media Access Control (MAC) address of the source and destination application. [30]

CHAPTER 2. TECHNICAL BACKGROUND 31

Figure 2.10: Structure of a UDP packet.

2.3.3 Comparison and Decision

A comparison of the above mentioned properties of the two message formats shows that
the implementation of a CAN interface is much easier to realize than using UDP packages
based on Ethernet. An argument for the usage of the CAN protocol is the fact, that this
protocol enables the prediction of the resulting delay times caused by the communication
mechanism. In contrast, the resulting delay times when using Ethernet with UDP messages
are unpredictable. Furthermore, the CAN standard is well-established in the automotive
domain and is a reliable protocol whereas UDP is unreliable and therefore is more suitable
for the exchange of uncritical data between applications throughout the whole world. Due
to these facts and because all used hardware devices within this Master’s thesis supports
CAN communication, this communication standard will be used for all implementations
in this work.

Chapter 3

Design

The following sections describe the developed toolchain and the resulting interface to
distribute hardware.

3.1 Hardware integration scenario

As a first approach to define a suitable toolchain for hardware integration of simulation
models, a rough scenario has been defined. Figure 3.1 illustrates the first approach of this
scenario.

Figure 3.1: First approach of a scenario definition.

32

CHAPTER 3. DESIGN 33

The three main steps, necessary to integrate a given model on an ECU are:

• model development

• code generation and distribution

• hardware integration

The depicted actors are the application engineer, the software engineer and the hardware
engineer. An application engineer develops simulation models using a simulation tool. To
generate code out of these models a software engineer is needed. Finally, the hardware
integration is performed by an integrator.

This first approach of an integration scenario does not fulfil the requests for a proper
cooperation of all appearing engineers, thus a second scenario has been defined which is
shown in figure 3.2.

Figure 3.2: Second scenario definition.

CHAPTER 3. DESIGN 34

This second approach describes the following scenario:

1. Simulation models are defined by an application engineer.

2. Application engineer adds basic information regarding the desired hardware inte-
gration to a configuration Extensible Markup Language (XML) file (e.g. desired
distribution, hardware devices,...).

3. If necessary, a software engineer adds more precise information regarding the software
components to the xml-file.

4. A different engineer called integrator reads the XML-file and gets all necessary in-
formation about the desired distribution and hardware components.

5. Executable code will be generated out of the controller functions/simulation model
due to the desired distribution.

6. Software functions will be integrated on ECUs.

7. Communication between ECUs/co-simulation tool will be set up.

8. It is either possible to connect ECUs among themselves or with a co-simulation tool.

The main idea of this scenario is the insertion of a new phase between the model devel-
opment phase and the code generation and the distribution phase. By inserting this new
phase, the hardware integrator will be able to perform the whole hardware integration
scenario on his own. The therefore required information is provided by an application en-
gineer and a software engineer who add the required information regarding the requested
hardware integration to an especially developed XML-file defined as XML Schema Def-
inition (XSD). This file serves as basis for the hardware integrator. Thus, by reading
this file, the hardware integrator retrieves all necessary information to be able to generate
the required code parts for the following hardware integration. Furthermore, he can find
out which hardware devices should be used and how these devices will communicate. A
detailed description of the newly created XSD schema can be found in the following section.

3.2 Developed XSD schema

To enable a single person to perform the whole hardware integration on his own, specific
input from different development fields is necessary. A state-of-the-art analysis revealed
that there already exist different approaches of description formats to define and represent
properties of software components. The following section gives an overview of already
existing approaches.

CHAPTER 3. DESIGN 35

3.2.1 State-of-the-art description formats

One approach, described in [31], is the Field Bus Exchange Format (FIBEX), which is
maintained at the Association for Standardisation of Automation- and Measuring Sys-
tems (ASAM)1. This XML-based file format is a freely available standard used to de-
scribe complex, message-oriented communication systems, e.g. in-vehicle networks. The
specified exchange format covers the functional network, the system topology and the com-
munication level. Furthermore, this standard enables the description of gateway configu-
rations. Thereby FIBEX tries to be widely independent from all communication controller
implementations and protocols. Supported communication networks are CAN, Local In-
terconnect Network (LIN), Media Oriented Systems Transport (MOST), and FlexRay.

A further approach is defined in AUTOSAR2. In AUTOSAR, applications consist of dif-
ferent software components. A detailed description of these software components is given
in [32]. In general, according to [33], a series of steps to create executable ECU compo-
nents are defined in AUTOSAR, whereas XML is the used interchange format. These
XML-files are based on a schema file, which roughly consists of four parts. With respect
to this Master’s thesis, the most interesting part of this schema is the system template.
A detailed description of this part can be found in [34]. Within this template the overall
system is defined by storing information about the bus systems, the signals, the mapping
and the topology.

Further research revealed, that there also exists a well established defacto standard called
Data Base CAN (DBC), which is presented in [35]. This DBC file format is used for the
description of the communication of CAN networks. Hence, it serves as basis for the de-
velopment of communication software for an ECU which shall be part of a CAN network,
whereas the functional behavior of the ECU is not defined within the file.

This research showed that there already exist several approaches of description formats
which could be used to provide the necessary information regarding hardware integration
within this thesis. The implementation of one of these approaches is not in scope of
this Master’s thesis, but might be considered in future projects. For the proof-of-concept
implementation in this thesis, a new XML-based file format has been defined in form of
an XSD-schema to enable the desired data exchange.

3.2.2 Data exchange file format

As already mentioned before, a new XML-based file format to exchange all necessary infor-
mation between several engineering domains has been defined within this Master’s thesis.
The determined specification includes all necessary information regarding the required
distribution of the different model functions, the therefore used hardware type and the
used communication interface. The following listing gives an overview of the determined
XML-elements specified in an XSD-schema and its meaning:

1www.asam.net
2www.autosar.org/

CHAPTER 3. DESIGN 36

• distribution
The root node of the XML-schema. This node includes all necessary information for
a specific function distribution.

• modelPath
States where the required model is stored.

• modelName
Name of the model.

• modelASIL
Safety level of the model given as ASIL value. This attribute is defined as optional.

• modelSolver
The used solver type of the simulation model. This attribute is defined as optional.

• modelStepSize
The used step-size of the simulation model. This attribute is defined as optional.

• distributionFunction
Specifies which specific functions of the model will be integrated on hardware. This
attribute can occur multiple times in an xml-file depending on the number of func-
tions to distribute.

• partName
States how the function block is called in the model.

• functionASIL
Safety level of a specific function of the model given as ASIL value. This attribute
is defined as optional.

• inputSignals
An overview of all input signals of a specific function block. This attribute can occur
exactly once for each distribution function and consists of multiple signal definitions.

• outputSignals
An overview of all output signals of a specific function block. This attribute can
occur exactly once for each distribution function and consists of multiple signal
definitions.

• signal
A description of a specific input or output signal. This attribute can occur multiple
times in the inputSignals and outputSignals attribute.

• signalName
Name of a specific input or output signal.

• signalRange
Range of a specific input or output signal.

CHAPTER 3. DESIGN 37

• signalPrecision
Required precision of a specific input or output signal. The precision is indicated
as a power of ten, whereas the exponent indicates the number of necessary decimal
digits.

• hardwareDevice
Includes information regarding the required hardware device. This attribute occurs
exactly once for each distribution function.

• HWtype
Type of the desired hardware.

• communicationInterface
Type of the desired communication interface.

Figure 3.3 shows an overview of the determined XSD-schema. This schema is defined
within an XSD-file and serves as basic underlying schema for each generated XML-file.
The content of this XSD-file can be found in Appendix C.

Figure 3.3: Defined xsd-schema represented as graph. Dashed-lined blocks represent an
optional element, solid-lined blocks represent a required element.

CHAPTER 3. DESIGN 38

This predefined XML-file will be filled in by various engineers belonging to different do-
mains throughout a development process. In the end the file includes all information
regarding a specific model and its desired distribution. At this stage of the development,
this defined file format will be evaluated and therefore all necessary information is added
to the file by hand. As a next step, a xml-editor could be implemented, to automatically
generate XML-files out of the users input data and furthermore generate clue-code for the
CAN conversion of the entered in- and output signals. However, this could be part of
future work and therefore is not part of this thesis.

3.3 Hardware integration toolchain

The following sections describe which general steps are necessary to run a simulation model
as single- or multi-core implementation.

3.3.1 From model to code

As a first step, the model functions, which need to be integrated as single- or multi-core
solution, have to be determined. This information can be taken from the modelPart section
of the specific XML-file. Depending on the used modelling and simulation tool, code can
then be generated for each necessary model block by using an appropriate tool. Within
this Master’s thesis only simulation models generated in MATLAB Simulink are used,
whereas Embedded Coder is used to automatically generate C-code out of each function
block.

3.3.2 Code extension

In the next step, the generated C-code needs to be extended by an appropriate commu-
nication interface. Information about the desired communication interface can be taken
from the hardwareDevice section of the XML-file. Within this Master’s thesis CAN com-
munication is used for all implementations.

To extend the previously generated code by a CAN communication interface, information
regarding all in- and output signals of each function block is needed. This information can
also be extracted from the XML-file. It provides information about the signal range and
its desired precision. These values are used to calculate the parameters offset and gain.
The formulas to calculate these values are illustrated in equation 3.1.

Range = [min,max]

∆ = max−min

gain =
∆

2number of bits

gain ≤ precision
offset = 0 +min (3.1)

CHAPTER 3. DESIGN 39

The parameters offset and gain are needed to convert input and output values to a for-
mat which can be represented in a CAN message. Thus, it is possible to transmit and
receive positive as well as negative decimal values. The used formulas for this conversion
at receiver- and transmitter-side are taken from the ICOS Real Time Wrapper implemen-
tation and are shown in equations 3.2 and 3.3.

CAN Transmit:

x =
value− offset

gain
(3.2)

CAN Receive:

y = value · gain+ offset (3.3)

x... converted value to transmit
y... converted received value
value... original value
offset... offset needed for the zero shift
gain... a scaling factor for the achieved precision

The number of necessary bits to represent each input and output signal is determined
through the given precision. Thus, after the determination of an appropriate scaling fac-
tor and an offset for each signal the number of necessary CAN messages can be defined.
As already described in section 2.3 a CAN message consists of 8 byte which comply with
64 bit. Within this Master’s thesis, for reasons of simplicity it was decided that signals
can only be represented by a number of bits that is divisible by 8, thus a maximum of 8
signals can be packed in a CAN message.

The previously generated C-code needs to be extended by a mechanism to pack and unpack
CAN messages. Therefore, the afore mentioned equations 3.2 and 3.3 for the conversion
of received and transmitted data are implemented for each signal by using the calculated
parameters for offset and gain. Afterwards the adapted code is ready to run and can be
flashed on an ECU.

CHAPTER 3. DESIGN 40

3.3.3 Hardware-in-the-Loop testing

At last, to test the correctness and behavior of the hardware integration, a co-simulation
model needs to be set up. It would also be possible to test the hardware integration by
connection several ECUs or sensors and actuators, however within this thesis HiL testing
is used solely. As already mentioned before, the used co-simulation tool is ICOS.

Figure 3.4: Co-Simulation realized in this work.

Figure 3.4 illustrates how ICOS is used to perform HiL testing. The first block used
in the co-simulation is a controller environment, this environment provides information
regarding the vehicle, the used track or the plant model coming from tools such as AVL
Cruise or MATLAB/Simulink. This data is sent to a communication block, which can also
be seen in figure 3.4. This block enables the creation of UDP packages or CAN messages to
exchange data between ICOS and a hardware device. In this case, only the CAN features
of the co-simulation tool are used. To generate such a communication block in ICOS a
Real Time Wrapper model needs to be created.

Chapter 4

Proof of Concept

To get an idea of how the claimed toolchain for hardware integration could look like, two
different automotive Simulink models are integrated on different single-core devices within
this prove of concept. The achieved investigation results will further give information if the
defined XML-properties are sufficient. All used models are provided by the Virtual Vehicle
Research Center. To get an overview of the implemented functionalities and the main
ideas behind these models, each model will shortly be introduced in the particular section.
However, a detailed knowledge of the functionalities of these models is not necessary for
the performed integrations.

4.1 Test setup

Figure 4.1 shows the test setup used for this proof-of-concept. It illustrates the setup,
when using two TriBoards for the integration of software functions, however exactly the
same setup is used when working with the VIF CAN Boards. For all following single-core
integrations, only one micro controller integrates software functions, in the multi-core case
both controllers integrate specific software parts and they communicate via a CAN bus.

Figure 4.1: Overview of the experimental setup.

41

CHAPTER 4. PROOF OF CONCEPT 42

This setup includes a laptop, needed to execute the necessary co-simulation software
(ICOS), which performs HiL simulations and thus provides input data for the controllers.
Within ICOS the Real Time Wrapper is used to periodically transmit input values, coming
from other coupled models (e.g. Simulink, AVL Cruise,...), to the hardware. Therefore,
the laptop is connected to a CAN interface via USB. The controllers are coupled to this
USB CAN interface by a CAN bus.

4.2 Dual Mode Energy System (DMES)

The first model, used to integrate on hardware, belongs to the iCOMPOSE project and
simulates specific features of a Lotus Evora 414E. The driving-cycle used for all these
simulations is based on the Lotus test track located in Hethel/UK.

The Lotus Evora 414E, depicted in figure 4.2, is described in [36] as a plug-in Hybrid
Electrical Vehicle (HEV) including a range extender and a rear wheel drive. With this
drive-train concept and an unique implementation of control systems, an eco-friendly ve-
hicle with performance-oriented driving can be achieved. Within the iCOMPOSE project
this vehicle is re-designed to a fully electric vehicle, which serves to evaluate the com-
prehensive energy management including the Dual Mode Energy Storage (DMES) system
and semi-autonomous driving. For this Master’s thesis the behavior of a specific control
function of the Lotus Evora 414E running on hardware will be investigated.

Figure 4.2: Lotus Evora 414E.

CHAPTER 4. PROOF OF CONCEPT 43

Figures 4.3 and 4.4 illustrate the distance and the height profile of the Hethel track. The
distance profile shows the vehicle velocity as a function of the time. The height profile the
height as a function of the driving distance.

Figure 4.3: Distance profile of the Hethel track.

Figure 4.4: Height profile of the Hethel track.

CHAPTER 4. PROOF OF CONCEPT 44

For this first hardware integration the above mentioned DMES model, implemented in
Simulink is used. This model contains a specific controller called Dual Mode Energy
Storage Controller (DMESC) and was designed by Fraunhofer-Institut für Verkehrs- und
Infrastruktursysteme (IVI)1 located in Dresden. The main task of this controller is the
selection of the optimal distribution of energy between battery and super capacitor, taking
into account reliability of the power supply, energy efficiency and battery lifetime.

To get an idea of why this DMES system includes a battery and a super capacitor, a
comparison of different energy storage technologies is shown in form of a Ragone chart in
figure 4.5. According to [37], an energy storage device is characterized by its energy and
power being available for a load. The Ragone chart depicts the performance of different
energy-storing devices by valuing the energy density, in Wh/kg, versus the power density,
in W/kg. In terms of an electrical vehicle the energy density presents the possible driving
range, whereas the power density shows how quickly that energy can be delivered or stored.
It is shown, that lithium-ion batteries have a high energy density but only a low power
density. In contrast to that, super capacitors have a rather high power density, but a low
energy density. Considering that, a combination of these two technologies, as it is done
in the DMES system, leads to a solution with a rather good power density as well as a
rather good energy density.

Figure 4.5: Ragone Chart [38].

1www.ivi.fraunhofer.de/

CHAPTER 4. PROOF OF CONCEPT 45

A comparison of the achieved battery currents with and without using the DMES system
in the simulation of the Lotus Evora 414E are presented in figure 4.6. The upper sub-plot
depicts the vehicle velocity as a function of time, the lower one the associated battery
currents. It is shown, that the current reaches higher peaks without the DMES system
(red signal) than when performing power distribution between the integrated battery and
the super capacitor through the DMES system (blue signal).

Figure 4.6: Comparison of the battery currents with and without DMES.

CHAPTER 4. PROOF OF CONCEPT 46

Figure 4.7 shows the main components of a DMES:

• A battery, as energy storage device

• A super capacitor, for quick charging/discharging (no storage)

• A Direct Current Direct Current (DCDC) converter, to convert from one voltage
level to another

• An electric motor controller

Figure 4.7: Schematic layout of the DMES System [39].

Figure 4.8 depicts the implementation of these components in MATLAB Simulink. Input
signals for this model are the velocity of a given vehicle on a specific track and the power
load, both values are represented over time.

Figure 4.8: Overview of the DMES model.

The interesting part of this model regarding hardware integration and distribution is the
DMESC system, which is shown in figure 4.9. This system block is responsible for the
power distribution between the integrated battery and the super capacitor, to avoid voltage
peaks which reduce the battery lifetime tremendously. It consists of two PI controllers, the
first one, depicted as red path, to maintain a certain super capacitor State of Charge (SoC),

CHAPTER 4. PROOF OF CONCEPT 47

depending on the current vehicle velocity. The second one, depicted as green path, to take
any high frequency components from the battery current.
More precisely the specified power used in this model derives from the vehicle velocity
and the given vehicle model. This obtained power splits up between battery and super
capacitor. As shown in figure 4.9 the high frequency components of the battery current
are filtered out by a high-pass filter. By using the vehicle velocity and a lookup table the
energy for the SoC calculation is determined. The resulting behavior of this controller
model leads to the fact that the battery will not be used as much as the super capacitor,
who is responsible for the buffering of current peaks to extent the lifetime of the battery
and is able to charge and discharge very fast.

Figure 4.9: Structure of the DMESC.

For the following hardware integrations the controller part of the DMES model is used.
This part, as already mentioned before, includes two simple PI controllers - see DMESC
block in figure 4.9. This simulation model uses a Ordinary Differential Equations (ODE)3
(Bogacki-Shampine) solver with a step size of 0.01s.

4.2.1 Single-core integration of DMESC

The first hardware integration is performed on a VIF CAN board as well as a TriBoard
1797, both described in section 2.1. On these two micro controllers the whole DMES
controller logic implemented in the DMESC Simulink block will be integrated. Afterwards
the achieved results of both boards will be compared and discussed. All necessary steps
to realize this hardware integration have already been presented in section 3.3 and will
be explained for this particular example in more details in the following sections. The
belonging XML-file can be found in Appendix D.

CHAPTER 4. PROOF OF CONCEPT 48

From model to C-code

The first step towards integrating the DMESC on an ECU is code generation. Therefore,
information regarding the required distribution are taken from the XML-file. This file
specifies which model functions will afterwards run on hardware and which will not. For
the first attempt C-code will be generated out of the whole DMESC block, including both
PI controllers. To accomplish this, no changes in the model are required.
For the C-code generation MATLAB Embedded Coder, described in 2.2.1, is used. With
this toolbox it is possible to choose a specific Simulink block and automatically generate
a C-project out of it. The following section shows which extensions needs to be added to
this generated code to enable CAN communication.

CAN communication

To enable communication via a CAN bus at first the required in- and output signals need
to be determined. These signal information can again be taken from the XML-file in Ap-
pendix D. By means of the given range and precision appropriate values for the parameters
gain and offset can be defined. The therefore used equation 3.1 can be found in chapter 3.
Equation 4.1 depicts an example calculation of these two parameters for the signal i load.

Parameter calculation for signal i load :

Range = [−1000, 200]

∆ = max−min = 200− (−1000) = 1200

requiredprecision = 10−4

gain1 =
∆

2number of bits
=

1200

216
= 0, 0183

gain2 =
∆

2number of bits
=

1200

224
= 0, 000072

offset = −1000 (4.1)

Table 4.1 shows the input and output signals of the DMES Controller and the therefore
calculated parameters offset and gain, with respect to the desired range and precision, to
create a correct value representation in a CAN message.

Signal Range Precision Gain Offset Number of bits

in: E cap [0, 1100000] 10−1 0.0656 0 24

in: v [0, 60] 10−3 0.000916 0 16

in: i load [−1000, 200] 10−4 0.000072 −1000 24

in: u cap [0, 300] 10−2 0.0046 0 16

in: u bat [0, 400] 10−2 0.0061 0 16

out: i cap soll [−2000, 2500] 10−3 0.000268 −2000 24

Table 4.1: Details regarding the used in- and output signals.

CHAPTER 4. PROOF OF CONCEPT 49

All illustrated signal ranges are taken from the results of the model simulated in Simulink
and are adjusted, to avoid possible overflow errors and added to the XML-file. The re-
quired precision for each signal needs to be achieved, by determining the number of used
bits to represent a value. An example of such a calculation for the signal i load which
should cover a range of [−1000, 200] is shown in equation 4.1. The precision should be
minimal four digits after the decimal point. The achieved precision is determined by the
used scaling factor (gain). Equation 4.1 shows, that a representation with 16 bits (gain1)
would lead to a precision of only one digit after the decimal point, whereas by using 24 bits
(gain2) four digits precision can be achieved. The parameter offset defines the required
value which is needed for the zero shift for the given range.

To send all required input and output signals of the DMESC through a CAN bus, 3 mes-
sages will be used in this case. Two messages including the five input signals, the third
one including the output signal of the DMESC running on the hardware. The packing of
the different input signals of the controller is represented in figure 4.10. A C-code snipped
of this data conversion can be found in Appendix B.1.

Figure 4.10: Overview of CAN messages packing for the DMESC input values.

In the end the previously generated code needs to be extended by a CAN communication
interface which is able to pack and unpack messages by using the afore mentioned equations
3.2 and 3.3 and the appropriate parameters from table 4.1. The synchronization between
the micro controller and the board is implemented as a if-statement in the code. The micro
controller is only allowed to calculate and transmit an output value if all current input
values are received. Thus, the controller needs to be able to calculate the new output value
within the specified co-simulation step-size of the CAN module, otherwise some output
value calculations will be missed. This code at the moment needs to be extended by hand
and can afterwards be flashed to each board by using an appropriate compiler. For the
VIF CAN Board AVR Studio and for the TriBoard the HighTec Toolchain is used.

Co-Simulation with ICOS

After the definition of the CAN interface and the therefore needed code adaptation an
appropriate co-simulation model needs to be set up in ICOS to perform a HiL test. By
performing such a test, the correctness and performance of the integrated DMES controller

CHAPTER 4. PROOF OF CONCEPT 50

function can be evaluated.

Figure 4.11 shows how this ICOS model looks like for the DMESC single-core integra-
tion. The DMES Environment block includes the modified Simulink model with ex-
tracted DMESC block. Instead of this block, special ICOS input and output blocks have
been added to the Simulink model. The modified model is shown in figure 4.12. The
DMES Environment provides the five input signals which need to be send over the CAN
bus to the DMESC and further on receives the calculated output signal from the controller.
These signals include data regarding battery and capacitor voltage, the capacitor energy,
the loading current and the vehicles velocity as well as the desired capacitor current. These
signals are coupled with the CAN Wrapper block, which can also be seen in figure 4.11.
This block is necessary for the CAN communication over the CAN bus between ICOS and
the extracted DMESC running on the ECU. To generate such a communication block in
ICOS a Real Time Wrapper is used. Within this wrapper the whole CAN communication
needs to be defined within a specific .ini-file. This file includes information regarding the
used CAN channel, the input and output signals together with their appropriate parame-
ters, message identifiers and extrapolation mode and additionally, the desired baud rate.
An example of such an .ini-file can be found in Appendix B.2.

Figure 4.11: Overview of the created ICOS model.

Figure 4.12: Overview of the Simulink model used for the co-simulation.

CHAPTER 4. PROOF OF CONCEPT 51

The physical simulation duration of this co-simulation model is set to 130s, the coupling
mechanism is sequential and the macro step size ∆T of both used model blocks is set to
0.01s. This means that within the simulation duration every 0.01s new data values are
exchanged between the DMES Environment and the CAN Wrapper.

Single-core results

To evaluate the HiL performance of the single-core integration of the DMESC, the achieved
results are compared with the Simulink simulation results. Therefore an appropriate plot
is generated, illustrating the behavior of the controller in both cases. The generated plot,
depicted in figure 4.13, shows the amount of time in percent when specific battery cur-
rents occur, whereat high battery currents should occur as little as possible. In this plot,
the bold grey line represents the achieved behavior without using the DMES-System, the
black line shows the behavior if the DMES-System is used within a simulation model, the
red line depicts the behavior of the HiL integration on a ViF CAN board, and the blue
line shows the achieved results of the TriBoard 1797.

Figure 4.13: Comparison of DMESC simulation and single-core HiL results.

CHAPTER 4. PROOF OF CONCEPT 52

In this plot it can be seen that the behavior of all simulations including the DMESC is
very similar but not identical. Furthermore, the plot illustrates that the AT90CAN128
controller, depicted in red, and the TC1797 controller, depicted in blue, do not achieve
equal calculation results. This diverse behavior of the controllers can also be seen in figure
4.14. It represents a comparison of the DMESC output signal (i cap soll) plotted over the
simulation time as well as the velocity profile of the chosen test track.

Figure 4.14: Comparison of the DMESC output signal.

This plot depicts that all three output signals are very similar throughout the whole simu-
lation time, up to minimal deviations due to rounding and precision errors. A calculation
of the percentage relative errors of the boards in comparison to the simulation results
(equation 4.2) shows that the VIF CAN Board has a relative deviation of 1.8064%, the
relative deviation of the TriBoard is a little bit lower with 1.0591%.

CHAPTER 4. PROOF OF CONCEPT 53

errorabs =

#timesteps∑
t=0

|MiL(i cap soll(t))− 0|

#timesteps
=̂ 100%

errorrel =

#timesteps∑
t=0

|MiL(i cap soll(t))−HiL(i cap soll(t))|

#timesteps
=̂ (

errorabs
100

· errorrel)%

(4.2)

errorAT90CAN128rel[%] = 1.8064%

errorTC1797rel[%] = 1.0591%

These different relative errors occur, because the two controllers have different restraints
for doing arithmetic and logical operations. The AT90CAN128 is designed as a 8-bit micro
controller without floating point unit. In contrast to that, the TC1797 is a 32-bit controller
including a floating point unit. These properties affect the speed and sophistication of the
controller instructions. Furthermore, these deviations are caused by the conversion of the
transmitted output values into the CAN representation, thereby the achieved precision of
the values deviates from the simulated one.

Another meaningful way, to evaluate the achieved quality of the hardware integration is
the observation of the record of the CAN traffic. Therefore the PCANView tool is used.
The record of the CAN traffic between the TriBoard and ICOS is shown in figure 4.15.

Figure 4.15: A record of the CAN traffic when performing the HiL testruns.

The CAN messages with the identifiers 0x001 and 0x002 are received by the micro con-
troller, message 0x004 is the controllers transmitted output value for each time-step. It can
be seen, that 13021 input values are sent to the micro controller and 13021 are sent back.
The chosen simulation time in this example is 130s, thus with a time-step of 0.01s, 1300
messages are exchanged through the co-simulation. The additional messages are dummy-
messages sent by ICOS to establish and close the connection. This dummy-message trans-
mission could in some cases influence the initial behavior of a control function, because it
could lead to wrong initial values. All in all this CAN traffic record shows, that the used
synchronization method works and no messages are lost due to timing restrictions.

CHAPTER 4. PROOF OF CONCEPT 54

After these observations it is obvious that the DMESC integration on both boards lead to
a correct HiL result. The minimal differences that can be seen in both plots are reducible
to the chosen precision which effects the scaling factors used for the CAN transmission
and receiving. A fundamental finding of this first single-core proof of concept is, that the
occurring time delays due to the used CAN communication do not have an influence on
the achieved HiL results in this example, since the used DMESC does not include high
dynamic parts. Nevertheless, the achieved results depend on hardware properties like the
implemented register size.

4.2.2 Multi-core integration of DMESC

The second hardware integration is performed on two TriBoards, which are coupled via
a CAN bus and therefore represents a multi-core integration. On these micro controllers,
the a distributed form of the logic implemented in the DMESC Simulink block will be
integrated. On each board one of the two PI controllers will be flashed. The general steps
to realize this hardware integration have already been described in the previous sections.
Hence, only a short description of the necessary steps for this hardware integration are
given in the following sections. All necessary information regarding the desired distribution
are again taken from a XML-file belonging to this hardware integration. This XML-file
can be found in Appendix D.

From model to C-code

For this approach some little modifications need to be done in the existing Simulink model.
The two PI controllers in the DMESC block need to be split up into two independent
blocks, to easily generate the necessary code for each hardware devices. Thus, the blocks
PI Controller1 and PI Controller2 are created and the particular controller logic is added.
For the C-code generation MATLAB Embedded Coder is used again. This time, two C-
projects are generated which need to be modified subsequently. Figures 4.16, 4.17 and
4.18 show, how the Simulink model looks after the modification.

Figure 4.16: Modified DMESC block.

CHAPTER 4. PROOF OF CONCEPT 55

Figure 4.17: Implementation of the first PI controller block.

Figure 4.18: Implementation of the second PI controller block.

CAN communication

Due to the fact, that the original DMES controller block needs to be modified, the in-
and output signals for both micro controllers changed as well. Tables 4.2 and 4.3 give an
overview of the necessary in- and output signals for each micro controller. Further, the
determined offset and scaling factors as well as the necessary signal range and number of
used bits are listed.

Signal Range Factor Offset Number of bits

in: E cap [0, 1100000] 0.0656 0 24

in: v [0, 60] 0.000916 0 16

out: i cap soll soc [−1000, 1000] 0.0001192 −1000 24

Table 4.2: Overview of the in- and output signals of the first PI controller.

CHAPTER 4. PROOF OF CONCEPT 56

Signal Range Factor Offset Number of bits

in: i load [−1000, 200] 0.000072 −1000 24

in: u cap [0, 300] 0.0046 0 16

in: u bat [0, 400] 0.0061 0 16

out: i cap soll [−5000, 5000] 0.000596 −5000 24

Table 4.3: Overview of the in- and output signals of the second PI controller.

On the basis of these defined signal representation properties, the two C-projects need
to be extended by an appropriate CAN interface as well as a synchronization method.
For the synchronization again an if-Statement is used, to ensure that the controllers only
calculate output values when new input values are received. For the first PI controller one
CAN message needs to be received and unpacked, including the values of the two input
signals E cap and v. Further, this controller needs to transmit the calculated value of
signal i cap soll soc. The second PI controller also needs to be able to receive and unpack
one CAN message including the input values for the signals i load, u cap and u bat. More-
over, the transmission of the calculated value of the signal i cap soll needs to be added to
the code by using one further CAN message. After this code modifications the controller
functions can be flashed on the VIF CAN boards with AVR Studio.

Co-Simulation with ICOS

Although this multi-core approach includes two micro controller boards the ICOS co-
simulation model almost looks like the one for the single-core approach. The only differ-
ence is the number of output signals of the Real Time Wrapper and the deployment of
the input signals which is defined in the .ini-file. The CAN block input signals E cap and
v are send to the VIF CAN board that runs the C-code of PI Controller1, i load, u cap
and u bat are sent to the one that runs the C-code of PI Controller2. An overview of the
coupling is shown in figure 4.19.

Figure 4.19: Overview of the ICOS coupling.

CHAPTER 4. PROOF OF CONCEPT 57

To enable the coupling with the DMES Simulink model again some modifications of the
model are necessary. The before created new blocks PI Controller1 and PI Controller2
are replaced by two ICOS input blocks, the remaining DMES model looks the same as in
the single-core approach. The modified DMESC block is shown in figure 4.20.

Figure 4.20: Modified DMESC block.

The physical simulation duration of this co-simulation model is set to 130s, the coupling
mechanism is sequential and the macro step size ∆T of both used model blocks is set to
0.01s. This means that within the simulation duration every 0.01s new data values are
exchanged between the DMES Environment and the CAN Wrapper.

Multi-core results

To evaluate the HiL performance of the distributed DMESC, the achieved results are
again compared with the Simulink simulation results. Therefore, the same plots as in the
single-core approach are generated.

Figure 4.21 illustrates the different percentage amounts of time, specific battery currents
occur with and without the DMES system, when distributing the DMES controller over
two TriBoards and simulating it in Simulink. In this plot, the bold grey line again rep-
resents the achieved behavior without using the DMES-System, the blue line shows the
behavior if the DMES-System is used within a simulation model and the red line depicts
the behavior of the HiL distributed over two TriBoards. Even in this multi-core scenario
the achieved behavior complies to the simulated one. Figure 4.22 depicts a comparison
of the output signals of both controllers and the calculated output signals of the DMESC
block simulated in Simulink as well as the belonging vehicle velocity profile.

CHAPTER 4. PROOF OF CONCEPT 58

Figure 4.21: Comparison of DMESC simulation and multi-core HiL result.

In this case, the resulting percentage relative error of the output signal i cap soll com-
puted by the simulation and the multi-core integration, calculated according to equation
4.2, lies at 1.0604%. Thus, the multi-core integration almost achieves the same result as
the single-core integration, which achieved a relative percentage error of 1.0591%. The
minimal deviation of this relative errors is caused by the used scaling factors for the CAN
representation of the values. Another reason for these deviations is the increasing commu-
nication effort when performing a multi-core integration. Nevertheless, this result shows
that the timing delay caused by this CAN communication has only a small effect on the
HiL result, because the distributed model parts do not include high dynamic elements. In
case of too high delay times in this scenario, the resulting DMESC output signal would
show much higher deviations from the Simulink simulation, because it can not be guaran-
teed that the adder, included in the DMESC block, adds up values belonging to the same
time-steps.

CHAPTER 4. PROOF OF CONCEPT 59

Figure 4.22: Illustration of the different output signals of both micro controllers and the
output signal of the DMES system.

A further comparison of the different output signals, presented in figure 4.22 shows that
the HiL simulation achieves very similar results as the simulation in Simulink. The com-
parison of the output signals of the micro controller, including the lookup table, depicted
in the second sub-plot, shows a large deviation in its initial phase. This behavior can also
be seen in the other two sub-plots when zooming on the y-axis. It looks as if the micro
controllers need about 20 seconds until they reach a steady-state, from that moment both
depicted signals overlap.

Figure 4.23 shows the record of the CAN communication. As in the single-core example, it
can be seen that no messages are lost throughout the communication. Thus, all occurring
deviations after the controllers reach a steady-state can be traced back to inaccuracies
caused by the conversion of the values to the CAN representation.

Figure 4.23: Record of the CAN bus traffic of the DMESC multi-core approach.

CHAPTER 4. PROOF OF CONCEPT 60

4.2.3 Influence of used solver-type and step-size on HiL results

To get an impression of how the selected fixed-step solver and step-size used in a control
model influences the behavior of embedded functions, further simulations using the Tri-
Board1797 are performed. Therefore, a short introduction to the used fixed-step solver,
taken from the MathWorks documentation2, is given:

• ODE1 - Euler’s Method
This solver uses the Euler method for its approximations. It is the least complex
fixed-step solver used by MATLAB and achieves first order of accuracy.

• ODE2 - Heun’s Method
This solver uses the Heun method for its approximations. In contrast to ODE1 this
solver achieves second order of accuracy.

• ODE3 - Bogacki-Shampine Formula
This solver uses the Bogacki-Shampine formula for its approximations and achieves
third order of accuracy.

All these solvers use different orders for there calculations and therefore achieve differ-
ent approximation results. Moreover, non of the described fixed-step solvers has an error
control mechanism and therefore, the accuracy and the duration of a simulation directly
depends on the selected step-size, pre-defined by the user. Mathworks provides fixed-step
solver up to 8th order of accuracy, nevertheless the three presented solvers are sufficient
for the aims of this comparison within this Master’s thesis.

Solver comparison results

Figure 4.24 depicts the achieved behavior of the DMES system when using a step-size of
0.1s and the above described solvers. As reference signals in this case, the result of the
single-core integration on the TriBoard using ODE3 and a step-size of 0.01s, represented
as black-dashed line, as well as the result of the simulation represented as black line are
used.

2www.mathworks.com/help/simulink/ug/choosing-a-solver.html

CHAPTER 4. PROOF OF CONCEPT 61

Figure 4.24: Comparison of different solver types using a step-size of 0.1s and the result
of ODE3 with a step-size of 0.01s, represented as dashed-line, as well as the MiL result
represented in black.

To perform a meaningful comparison between the different solver types, the DMESC
output signal i cap soll, computed by the different solvers, are plotted in the second sub-
plot in figure 4.25. Furthermore, the resulting error compared to the HiL simulation using
ODE3 and a step-size of 0.01s, depicted in black, is plotted in the third sub-plot in figure
4.25. An overview of the relative errors in percent, calculated according to equation 4.2,
when comparing the reference signal and the signal computed with different solver types,
is shown in table 4.4.

Solver Type Relative i cap soll Error [%]

ODE1 86.6279%

ODE2 84.0781%

ODE3 83.4410%

Table 4.4: Relative percentage deviation of the different solvers from the result using
ODE3 and a step-size of 0.01s.

CHAPTER 4. PROOF OF CONCEPT 62

Figure 4.25: Resulting error of i cap soll when using different solver types.

The comparison of the different resulting super capacitor currents and the calculated
relative errors shows that all computed signal overshoot very much and therefore have
much higher relative errors than the integration using ODE3 with an appropriate step-
size of 0.01s. Moreover, it can be concluded that the most complex solver (ODE3) achieves
the smallest, but even a too high error. Thus, this solver, using the Bogacki-Shampine
formula, is able to compensate the chosen step-size better than the two less complex solvers.
Nevertheless, even this result is not acceptable for a real application. It further can be
seen, that the second complex solver (ODE2) achieve similar relative errors as ODE3 and
the least complex solver (ODE1) achieves by far the worst result. All these simulations
show that the used solver type as well as the related step-size has a big influence on the
performance of embedded controllers and therefore needs to be considered when designing
a model.

CHAPTER 4. PROOF OF CONCEPT 63

4.3 Hybrid Energy Management System model

To proof the developed toolchain a second time, another model integrating a energy man-
agement system of a hybrid vehicle is used. This model was originally designed by Chris-
tian Paar as part of his Bachelor thesis with the title ’Energy Management in Hybrid
Electric Vehicles using Co-Simulation’ [40]. Since this Bachelor thesis has been conducted
in 2009, the version used within this Master’s thesis has already been modified by the
Virtual Vehicle Research Center.

This model simulates a mild hybrid Sport Utility Vehicle (SUV) with an engine power
of 150kW . Furthermore, the vehicle is designed as series hybrid, the scheme of such a
hybrid is depicted in figure 4.26. Loosely speaking, a series hybrid vehicle consists of an
Internal Combustion Engine (ICE) which is connected to an electrical generator. This
generator produces electric energy for the recharging of the energy storage. The Electrical
Machine (EM) is powered by this energy storage and propels the drive train.

Figure 4.26: Scheme of a series hybrid electrical vehicle [40].

The used driving cycle for this simulation is the New European Driving Cycle (NEDC),
illustrated in figure 4.27. This cycle is composed of two parts, an urban driving cycle
which is repeated 4 times and an extra-urban driving cycle which is used once. Within
the simulation the first 190s of this cycle are used.

Figure 4.27: Velocity profile of the NEDC [41].

CHAPTER 4. PROOF OF CONCEPT 64

The complete vehicle simulation model is shown in figure 4.28 and consisting of three
subsystems: a vehicle model designed in AVL Cruise3, a cockpit modelled in Simulink,
and a management system modelled in Simulink as well. Thus the management system
model depicted in figure 4.29 is only one part of this simulation.

Figure 4.28: Subsystems of the whole hybrid vehicle simulation.

The management system model, illustrated in figure 4.29, includes the energy management
of a hybrid vehicle. Herein especially the energy exchange between the super capacitor, the
electric motor and the lithium-ion battery is represented. This system consists of a hybrid
module including the parallel hybrid structure of the vehicle. Thus, the recuperation of
brake energy and the partition of the desired driving torque to the combustion and electric
engine are the main tasks of this module. Further, the management system consists of
a lithium-ion battery and a super capacitor block, which both model the behavior of
this specific component. Another module of the management system is the energy buffer
which handles the used currents for the super capacitor and the battery system. All this
information is taken from a paper published by Stettinger et al. [42] in 2013.
Characteristics of the lithium-ion battery and the super capacitor used for this simulation
are taken from the Simulink model and look as follows:

Lithium-Ion Battery

• Number of cells: 15

• Initial SoC: 80%

• Initial temperature: 20◦C

• Energy capacity per cell: 16Ah

Super capacitor

• Number of parallel capacitors: 1

• Initial SoC: 80%

• Capacity: 200F

• Max. Voltage: 81V

3www.avl.com/web/ast/cruise

CHAPTER 4. PROOF OF CONCEPT 65

Figure 4.29: Overview of the used management system model.

As a further proof-of-concept of the developed toolchain, the whole management system
model, red framed in figure 4.29, is integrated on the Infineon TriBoard1797. Afterwards,
the battery as well as the super capacitor block are integrated on two TriBoards. The
used blocks for this approach are framed in blue in figure 4.29. Therefore, the same steps
as described in section 4.2.1 and 4.2.2 are done.

First, code is generated out of the necessary model block(s). For the single-core approach
the whole management system block, including all subsystems illustrated in figure 4.29,
is used. For the multi-core approach separate code is generated out of the battery and
the super capacitor block. These subsystems implement different controlling strategies to
simulate the behavior of these components. Figures 4.30 and 4.31 show the simulation
model of the particular component, including several dynamic parts like transfer functions
and integrators.

CHAPTER 4. PROOF OF CONCEPT 66

Figure 4.30: Simulink model of the battery.

Figure 4.31: Simulink model of the super capacitor.

As a next step, the generated code is extended by a CAN interface using appropriate
scaling factors and offsets. Afterwards the extended code is flashed on the hardware. As
a last step, an appropriate co-simulation model needs to be created. In both case, the
single-core and the multi-core one, this co-simulation model includes more parts than in
the DMES examples. Figure 4.32 depicts the adapted Simulink model of the management
system in the single-core case.

CHAPTER 4. PROOF OF CONCEPT 67

Figure 4.32: Modified Simulink model used for the co-simulation of the single-core ap-
proach.

In this case, the input signals are generated in the vehicle and the cockpit model which
are connected to the management system via ICOS input blocks. These input blocks are
directly connected to the Real-Time Wrapper, responsible for the CAN communication,
via ICOS output blocks.
Figure 4.33 shows all needed co-simulation subsystems for the single- as well as the multi-
core approach. The only difference between these two approaches is the number of input
values of the CAN block.

CHAPTER 4. PROOF OF CONCEPT 68

Figure 4.33: Overview of the model used for the data exchange between two TriBoards
and ICOS.

CHAPTER 4. PROOF OF CONCEPT 69

4.3.1 Single-core results

To evaluate the performance of the single-core HiL simulation performed on the Tri-
Board1797, the resulting torque signal of the Simulink simulation is compared with the
one computed by the TC1797 controller. Further on, the achieved battery and super ca-
pacitor SoCs are compared to better evaluate the performance of the dynamic parts of
this model. In all these cases a step-size of 0.01s is used, the selected solver is ODE3
(Bogacki-Shampine). The comparison of the achieved torque results and the belonging
vehicle profile are shown in figure 4.34.

Figure 4.34: Comparison of the torque signal computed via Simulink and the Tri-
Board1797.

This comparison shows that the TriBoard receives a wrong initial value and therefore
needs about 10s to compensate this error. Afterwards, the computed values match with
the simulated ones. As already mentioned before, this wrong initial value is caused by the
transmitted dummy messages from ICOS. This comparison further shows that the used
accuracy for the transformation of controller in- and output values to a CAN representa-
tion does not lead to deviations in this example.

CHAPTER 4. PROOF OF CONCEPT 70

Figure 4.35 depicts the resulting SoC of the battery and the super capacitor in comparison
to the MiL results as well as the velocity profile of the chosen test track. It is shown, that
the HiL solution has as similar behavior as the MiL solution. A comparison of the achieved
average SoC errors of the single-core and the multi-core integration follows in section 4.3.2.

Figure 4.35: Comparison of the resulting MiL and HiL SoCs.

CHAPTER 4. PROOF OF CONCEPT 71

4.3.2 Multi-core results

To evaluate the result of the multi-core integration, first the achieved torque signals,
illustrated in figure 4.36, are compared. It is shown that this time the two signals are
identical throughout the whole simulation. This result shows that the distributed parts of
the model do not affect the remaining Simulink simulation in any way.

Figure 4.36: Comparison of the torque signal computed with Simulink and two Tri-
Board1797.

To compare the resulting average errors of the SoC achieved by the single- and multi-core
integration, computed according to equation 4.2, the reference SoC simulated in Simulink,
as well as the ones computed by the two TriBoards are compared. These results and the
belonging velocity profile are depicted in figure 4.37. The reason why the two SoC signals
are used for this comparison is that the battery and super capacitor blocks of the model
include dynamic parts. Therefore, these parts are more error-prone as the block, which
computes the torque. It is shown that, in comparison to the single-core result depicted
in figure 4.35, the multi-core integration achieves a worse result. Table 4.5 presents the
achieved relative errors of the battery and super capacitor SoCs for the single- and the
multi-core approach in comparison to the Simulink simulation result.

CHAPTER 4. PROOF OF CONCEPT 72

SoC Relative Error

single-core super capacitor 0.4902%

single-core battery 0.4500%

multi-core super capacitor 6.6627%

multi-core battery 1.8693%

Table 4.5: Relative percentage deviation of the SoCs from the Simulink simulation result
in the single-core and multi-core case.

It can be seen that in both approaches the battery SoC has lower deviations than the
super capacitor SoC. The reason for this is, that these two parts include different control
logics and therefore different dynamics influence the behavior of the controllers. Further,
it is clearly shown that the distribution of the two control functions achieve a average
error of far more than one percent. This worse behavior of the distributed solution occurs
because the battery and the super capacitor blocks, illustrated in figure 4.29 are part of a
feedback loop. Due to the fact that the input values of these two blocks are calculated by
the energy buffer in Simulink, the transmission of these values leads to delay times which
have a big influence on the behavior of the integrated controller dynamics. Moreover, this
behavior is caused by the used extrapolation (zero-order-hold) of the input values, which
is done by co-simulation tool.

Figure 4.37: Comparison of the SoC of the battery and the super capacitor when simulated
with Simulink and as multi-core integration.

CHAPTER 4. PROOF OF CONCEPT 73

Finally, the whole management system is integrated as multi-core approach on two Tri-
Boards1797 and coupled to the cockpit and vehicle models via ICOS. Figure 4.38 shows
how the simulation model is distributed in this case. The four subsystems of the manage-
ment system are split up into two parts which are integrated on the micro controllers.

Figure 4.38: Overview of the Simulink model used for the management system distribution.

The control logic for the first TriBoard, marked in red, includes the whole hybrid module.
The second TriBoard implements the logic of the battery, the super capacitor and the en-
ergy buffer, marked in blue. All these model parts are depicted in figure 4.29. Due to the
fact, that the before chosen distribution did not lead to a reasonable controller behavior,
in this scenario the whole feedback loop is integrated on one TriBoard. Moreover, by using
this way of distribution minimal communication effort is necessary. In this scenario the
power signal is the only connection between the two used boards. This signal is com-
puted by the hybrid module and sent to the energy buffer on the second hardware through
the CAN bus. The boards are able to compute and transmit the belonging output val-
ues before a new input value is sent by ICOS and thus the synchronization works properly.

CHAPTER 4. PROOF OF CONCEPT 74

The results of this distribution are represented in figures 4.39, 4.40 and table 4.6. Figure
4.39 depicts a comparison of the computed HiL and MiL torques. It is shown that even in
this case the control functions on the TriBoards need some time to reach a steady-state.
Afterwards, the signals are equal, thus the integrated hybrid module works properly on the
TriBoard1797. Thus, for future HiL implementation it might be a good idea, to somehow
distinguish between dummy-data sent by ICOS and real simulation data, to avoid such an
initial behavior.

Figure 4.39: Comparison of the torque signal computed with Simulink and two Tri-
Board1797.

Figure 4.40 illustrates the comparison of the resulting SoCs. It can be seen that this multi-
core solution leads to a much better result than the approach before. This results confirm
the assumption that the bad result of the example before was caused by the distribution of
the feedback loop. A comparison of the achieved average errors of the SoCs of the single-
and multi-core integration are represented in table 4.6. In this case, the relative errors of
the multi-core integration and the single-core integration are very similar. The reason why
the distributed approach achieves a worse result is, that a multi-core integration requires
a higher communication effort.

CHAPTER 4. PROOF OF CONCEPT 75

Figure 4.40: Comparison of the SoC of the battery and the super capacitor when simulated
with Simulink and as multi-core integration of the whole system.

SoC Relative Error

single-core super capacitor 0.4902%

single-core battery 0.4500%

multi-core super capacitor 0.6958%

multi-core battery 0.4750%

Table 4.6: Relative percentage deviation of the SoCs in the single-core and multi-core
case.

CHAPTER 4. PROOF OF CONCEPT 76

All these integration examples showed that it is possible to distribute control functions
over several devices, as long as appropriate parts of the model are determined to be split
up. Furthermore, these HiL integrations showed, that an optimal distribution does not
achieve as good results as a single-core integration, but the deviations were acceptable in
these examples. The resulting deviations in all multi-core approaches are caused by the
rising communication effort, which leads to timing delays, which are additional dead times
within a control loop. Such dead times have a huge influence on the stability of control
functions. All in all, this thesis demonstrated that it is reasonable to chose a distribution
with short timing delays, to minimize dead times and therefore decrease the stability of
control functions as little as possible.

Chapter 5

Conclusion and Outlook

5.1 Conclusion

In this Master’s thesis a seamless methodology for efficient hardware integration and HiL
simulation of modelled control functions has been developed. It has been shown that in
general a process, coming from a MiL to a HiL solution consists of three main steps: the
model development, the code generation and distribution and the hardware integration.
Additionally, in this thesis a control function for a DMES for a Lotus Evora 414E plug-in
hybrid vehicle with range extender has been developed. However, the main focus of this
work has been the definition of an appropriate toolchain, enabling one engineer to imple-
ment a hardware integration as well as a HiL simulation, using an already existing model
in an intuitive way. Therefore, an approach to ease the interaction of different engineering
domains has been developed in form of a new XML-specification. The resulting XML-file
format has been defined in a XSD-schema and serves as connection point between different
engineering domains included in this development process. This file enables an engineer
to realize a hardware integration with minimum effort, by providing all necessary infor-
mation regarding a simulation model, its desired distribution and the suitable hardware.
In the future all this information will be added to the XML-file by different engineers
involved in a development process. Thus, each engineer shares his knowledge necessary
for further integration steps with the hardware integrator in a predefined manner. This
defined XSD-schema is a fundamental part of the represented toolchain developed in this
thesis.
Based on the defined XML-file, the presented toolchain consists of three general steps
which need to be performed to integrate a control model on a micro controller and simu-
late HiL tests. The first step is the code generation of the the model parts, determined in
the XML-file. Afterwards, the generated code needs to be extended by a communication
interface (CAN) to enable data exchange with the controller environment. Afterwards, the
code can be flashed on an appropriate platform. To analyze the behavior of the integrated
control functions a co-simulation model needs to be set up.
As proof-of-concept of this defined toolchain, two different simulation models have been
integrated on different types of micro controllers, as single-core as well as multi-core solu-
tions. These hardware integrations are verifying the correctness of the defined toolchain.
Furthermore, these integrations have been used to get more information about the influ-

77

CHAPTER 5. CONCLUSION AND OUTLOOK 78

ence of specific model configurations on the behavior of embedded control functions. It has
been shown that the used solver type as well as the determined step-size of a model have a
huge influence on the stability of an embedded control function. Furthermore, it has been
demonstrated that also the decision of how a simulation model is distributed, influences
the achieved controller behavior. For instance it has been indicated that the distribution
of a feedback loop should be avoided if possible. Moreover, the communication between
different model parts should be reduced to a minimum by choosing a wise distribution.

5.2 Outlook

The toolchain developed in this Master’s thesis serves as a first demonstrator for the EMC2

project. It is a base for further investigations of mixed-critical systems. The focus of this
work has been the development of a seamless toolchain, which has been tested through
the development and integration of control functions e.g. for the DMES. An optimal al-
location is beyond the scope of this thesis. Thus, an optimization in terms of timing and
safety, as well as control stability (and a combination of those) could be part of future
work. Furthermore, distribution needs to be considered during the modelling process, for
instance in terms of possible parallelization methods.
As a next step, the generated code examples can be integrated on a real multi-core plat-
form, therefore a real-time operating systems needs to be set-up. Furthermore, the syn-
chronization, which now is implemented as part of the integrated code, needs to be done
by this real-time operating system using a suitable scheduling mechanism. Additionally,
an investigation and evaluation of different operating systems regarding different criteria
(e.g. AUTOSAR, ISO26262 compliance,...) should also be considered as future work.
Finally, to improve the defined toolchain, an editor for the developed XML file format can
be implemented, to ease the input of distribution information for the involved engineers.
Further, a method to automatically generate clue-code for the CAN interface can be added
to this editor to minimize the necessary manual work for the hardware integrator.

Appendix A

List of abbreviations

AMP Arbitration on Message Priority

ASAM Association for Standardisation of Automation- and Measuring Systems

ASIL Automotive Safety Integrity Level

AUTOSAR AUTomotive Open System ARchitecture

CAN Controller Area Network

DBC Data Base CAN

CPU Central Processing Unit

CSMA Carrier Sense Multiple Access

CSMA/CD Carrier Sense Multiple Access/Collision Detection

CSMA/CR Carrier Sense Multiple Access/Collision Reduction

DCDC Direct Current Direct Current

DAS Distributed Application Subsystem

DMES Dual Mode Energy Storage

DMESC Dual Mode Energy Storage Controller

DSP Digital Signal Processor

ECU Electric Control Unit

EEPROM Electrically Erasable Programmable Read-Only Memory

EM Electrical Machine

EMC2 Embedded Multi-Core Systems for Mixed Criticality Applications in dynamic
and changeable Real-time Environments

EV Electric Vehicle

79

APPENDIX A. LIST OF ABBREVIATIONS 80

FIBEX Field Bus Exchange Format

HiL Hardware in the Loop

HEV Hybrid Electrical Vehicle

ICE Internal Combustion Engine

iCOMPOSE Integrated Control of Multiple-Motor and Multiple-Storage Fully Electric
Vehicles

ICOS Independent Co-Simulation

ICT Information and Communication Technologies

IDE Integrated Development Environment

IP Internet Protocol

ISO International Organization for Standardization

NEDC New European Driving Cycle

ODE Ordinary Differential Equations

OSI Open Systems Interconnection

I/O Input/Output

LIN Local Interconnect Network

MAC Media Access Control

MiL Model in the Loop

MOST Media Oriented Systems Transport

PCP Peripheral Control Processor

RFC Request For Comments

RISC Reduced Instruction Set Computer

SPI Serial Peripheral Interface

SRAM Static Random-Access Memory

SoC State of Charge

SUV Sport Utility Vehicle

TC TriCore

UDP User Datagram Protocol

UML Unified Modelling Language

APPENDIX A. LIST OF ABBREVIATIONS 81

UART Universal Asynchronous Receiver Transmitter

USB Universal Serial Bus

VCU Vehicle Control Unit

XML Extensible Markup Language

XSD XML Schema Definition

Appendix B

Code samples

B.1 CAN data conversion DMESC single-core solution

#define FACTOR_ECAP 0.0656

#define OFFSET_ECAP 0

#define FACTOR_V 0.000916

#define OFFSET_V 0

#define FACTOR_I_LOAD 0.000072

#define OFFSET_I_LOAD -1000

#define FACTOR_U_CAP 0.0046

#define OFFSET_U_CAP 0

#define FACTOR_U_BAT 0.0061

#define OFFSET_U_BAT 0

#define FACTOR_I_CAP_SOLL 0.000268

#define OFFSET_I_CAP_SOLL -2000

static int32_T E_cap_rx;

static int32_T v_rx;

static int32_T i_load_rx;

static int32_T u_cap_rx;

static int32_T u_bat_rx;

static int32_T i_cap_soll;

static int32_T E_cap_converted;

static int32_T v_converted;

static int32_T i_load_converted;

static int32_T u_cap_converted;

static int32_T u_bat_converted;

static char rxmsg1[8];

static char rxmsg2[8];

static char txmsg[8] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};

static char rx1, rx2, tx1;

82

APPENDIX B. CODE SAMPLES 83

int handleCANmsg(void)

{

// receive ids 1 and 2

rx1 = AddCANMessageRX(1, 8, 0x001, 0, 0x3ff);

rx2 = AddCANMessageRX(1, 8, 0x002, 0, 0x3ff);

// CAN RX

GetCANMessage(rx1,(unsigned*)rxmsg1);

GetCANMessage(rx2,(unsigned*)rxmsg2);

convertRxMsg();

//.. do something

// transmit id 3

tx1 = AddCANMessageTX(1, 8, 0x003, 0);

convertTxMsg();

UpdateCANMessage(tx1,(unsigned*) txmsg);

return 0;

}

void convertRxMsg()

{

E_cap_rx = rxmsg1[0] | (rxmsg1[1]<<8) | (rxmsg1[2]<<16);

v_rx = rxmsg1[3] | (rxmsg1[4]<<8);

i_load_rx = rxmsg2[0] | (rxmsg2[1]<<8) | (rxmsg2[2]<<16);

u_cap_rx = rxmsg2[3] | (rxmsg2[4]<<8);

u_bat_rx = rxmsg2[5] | (rxmsg2[6]<<8);

E_cap_converted = E_cap_rx * FACTOR_ECAP + OFFSET_ECAP;

v_converted = v_rx * FACTOR_V + OFFSET_V;

i_load_converted = i_load_rx * FACTOR_I_LOAD + OFFSET_I_LOAD;

u_cap_converted = u_cap_rx * FACTOR_U_CAP + OFFSET_U_CAP;

u_bat_converted = u_bat_rx * FACTOR_U_BAT + OFFSET_U_BAT;

}

void convertTxMessage()

{

int32_T i_cap_soll_tx = (i_cap_soll - OFFSET_I_CAP_SOLL) / FACTOR_I_CAP_SOLL;

txmsg[0] = i_cap_soll_tx & 0xff;

txmsg[1] = (i_cap_soll_tx>>8) & 0xff;

txmsg[2] = (i_cap_soll_tx>>16) & 0xff;

}

APPENDIX B. CODE SAMPLES 84

B.2 ICOS RealTime Wrapper .ini-file - DMESC single-core
solution

[INPUT]

E_cap 0

v 0

i_load 0

u_cap 0

u_bat 0

[OUTPUT]

i_cap_soll 0

[CAN-Settings]

CAN-Channel = 81

CAN-Baud-Rate = 20 # 1 MBit/s

#name CAN-ID start-bit end-bit(incl.) factor offset

CAN-In-Parameter = E_cap 1 0 23 0.0656 0

CAN-In-Parameter = v 1 24 39 0.000916 0

CAN-In-Parameter = i_load 2 0 23 0.000072 -1000

CAN-In-Parameter = u_cap 2 24 39 0.0046 0

CAN-In-Parameter = u_bat 2 40 55 0.0061 0

CAN-Out-Parameter = i_cap_soll 4 0 23 0.000477 -4000

Appendix C

XSD-Schema

<?xml v e r s i o n =”1.0” encoding=”utf−8”?>
<xs : schema xmlns : xs=”http ://www. w3 . org /2001/XMLSchema” elementFormDefault=” q u a l i f i e d ”
attr ibuteFormDefau l t=”u n q u a l i f i e d”>
<xs : element name=”d i s t r i b u t i o n ”>
<xs : complexType>
<xs : sequence>
<xs : element name=”path” type=”xs : s t r i n g ” minOccurs=”1” maxOccurs=”1”/>
<xs : element name=”ModelName” type=”xs : s t r i n g ” minOccurs=”1” maxOccurs=”1”/>
<xs : element name=”modelASIL” type=”xs : s t r i n g ” minOccurs=”0”/>
<xs : element name=”d i s t r i b u t i o n F u n c t i o n ” maxOccurs=”unbounded”>
<xs : complexType>
<xs : sequence>
<xs : element name=”PartName” type=”xs : s t r i n g ” minOccurs=”1” maxOccurs=”1”/>
<xs : element name=”functionASIL ” type=”xs : s t r i n g ” minOccurs=”0” maxOccurs=”1”/>
<xs : element name=”in p u t S i gn a l s ” maxOccurs=”1”>
<xs : complexType>
<xs : sequence>
<xs : element name=”s i g n a l ” maxOccurs=”unbounded”>
<xs : complexType>
<xs : a t t r i b u t e name=”signalName” type=”xs : s t r i n g ” use=”requ i r ed ”/>
<xs : a t t r i b u t e name=”signalRange ” type=”xs : i n t e g e r ” use=”requ i r ed ”/>
<xs : a t t r i b u t e name=”s i g n a l P r e c i s i o n ” type=”xs : double ” use=”requ i r ed ”/>
</xs : complexType>
</xs : element>
</xs : sequence>
</xs : complexType>
</xs : element>
<xs : element name=”outputS igna l s ” maxOccurs=”1”>
<xs : complexType>
<xs : sequence>
<xs : element name=”s i g n a l ” maxOccurs=”unbounded”>
<xs : complexType>
<xs : a t t r i b u t e name=”signalName” type=”xs : s t r i n g ” use=”requ i r ed ”/>
<xs : a t t r i b u t e name=”signalRange ” type=”xs : i n t e g e r ” use=”requ i r ed ”/>
<xs : a t t r i b u t e name=”s i g n a l P r e c i s i o n ” type=”xs : double ” use=”requ i r ed”/>
</xs : complexType>
</xs : element>

85

APPENDIX C. XSD-SCHEMA 86

</xs : sequence>
</xs : complexType>
</xs : element>
<xs : element name=”hardwareDevice ” minOccurs=”1” maxOccurs=”1”>
<xs : complexType>
<xs : sequence>
<xs : element name=”hardwareType” type=”xs : s t r i n g ” minOccurs=”1” maxOccurs=”1”/>
<xs : element name=”communicat ionInter face ” type=”xs : s t r i n g ”
minOccurs=”1” maxOccurs=”1”/>
</xs : sequence>
</xs : complexType>
</xs : element>
</xs : sequence>
</xs : complexType>
</xs : element>
</xs : sequence>
</xs : complexType>
</xs : element>
</xs : schema>

Appendix D

xml-specification samples

D.1 xml-file for DMESC single-core integration

D.1.1 DMESC single-core integration.

<?xml version=” 1 .0 ” encoding=”UTF−8” standalone=” yes ”?>
<d i s t r i b u t i o n>

<modelName> DMES </modelName>
<modelPath> . . . \DMES. mdl </modelPath>
<modelSolver> ODE3 </ modelSolver>
<modelStepSize> 0 .01 </ modelStepSize>

<d i s t r i b u t i o n F u n c t i o n>
<partName> DMESC </partName>
<i n p u t S i g n a l s>

<s i g n a l>
<sigName> E cap </sigName>
<sigRange> [0 , 1100000] </ sigRange>
<s i g P r e c i s i o n> 10ˆ−1 </ s i g P r e c i s i o n>

</ s i g n a l>
<s i g n a l>

<sigName> v </sigName>
<sigRange> [0 , 60] </ sigRange>
<s i g P r e c i s i o n> 10ˆ−3 </ s i g P r e c i s i o n>

</ s i g n a l>
<s i g n a l>

<sigName> i l o a d </sigName>
<sigRange> [−1000 , 200] </ sigRange>
<s i g P r e c i s i o n> 10ˆ−4 </ s i g P r e c i s i o n>

</ s i g n a l>
<s i g n a l>

<sigName> u cap </sigName>
<sigRange> [0 , 300] </ sigRange>
<s i g P r e c i s i o n> 10ˆ−2 </ s i g P r e c i s i o n>

</ s i g n a l>
<s i g n a l>

<sigName> u bat </sigName>
<sigRange> [0 , 400] </ sigRange>
<s i g P r e c i s i o n> 10ˆ−2 </ s i g P r e c i s i o n>

87

APPENDIX D. XML-SPECIFICATION SAMPLES 88

</ s i g n a l>
</ i n p ut S i g n a l s>
<outputS igna l s>

<s i g n a l>
<sigName> i c a p s o l l </sigName>
<sigRange> [−2000 , 2500] </ sigRange>
<s i g P r e c i s i o n> 10ˆ−3 </ s i g P r e c i s i o n>

</ s i g n a l>
</ outputS igna l s>
<hardwareDevice>

<HWname> VIF CAN Board V1. 0 </HWname>
<commInterface> CAN </ commInterface>

</ hardwareDevice>
</ d i s t r i b u t i o n F u n c t i o n>

</ d i s t r i b u t i o n>

.

D.1.2 DMESC multi-core integration.

<?xml version=” 1 .0 ” encoding=”UTF−8” standalone=” yes ”?>
<d i s t r i b u t i o n>

<modelPath> . . . \DMES. mdl </modelPath>
<modelName> Cont ro l l e r 1 </name>
<modelSolver> ODE3 </ modelSolver>
<modelStepSize> 0 .01 </ modelStepSize>
<d i s t r i b u t i o n F u n c t i o n>

<partName> DMESC </partName>
< i n p u t s S i g n a l s>

<s i g n a l>
<signalName> E cap </sigName>
<s ignalRange> [0 , 1100000] </ sigRange>
<s i g P r e c i s i o n> 10ˆ−1 </ s i g P r e c i s i o n>

</ s i g n a l>
<s i g n a l>

<sigName> v </sigName>
<sigRange> [0 , 60] </ sigRange>
<s i g P r e c i s i o n> 10ˆ−3 </ s i g P r e c i s i o n>

</ s i g n a l>
</ i n p ut S i g n a l s>
<output sS i gna l s>

<s i g n a l>
<sigName> i c s o l l s o c </sigName>
<sigRange> [−1000 , 1000] </ sigRange>
<s i g P r e c i s i o n> 10ˆ−3 </ s i g P r e c i s i o n>

</ s i g n a l>
</ outputS igna l s>
<hardwareDevice>

<HWname> VIF CAN Board V1. 0 </HWname>
<commInterface> CAN </ commInterface>

</ hardwareDevice>

APPENDIX D. XML-SPECIFICATION SAMPLES 89

</ d i s t r i b u t i o n F u n c t i o n>
<d i s t r i b u t i o n F u n c t i o n>

<partName> Cont ro l l e r 2 </partName>
< i n p u t s S i g n a l s>

<s i g n a l>
<sigName> i l o a d </sigName>
<sigRange> [−1000 , 200] </ sigRange>
<s i g P r e c i s i o n> 10ˆ−4 </ s i g P r e c i s i o n>

</ s i g n a l>
<s i g n a l>

<sigName> u cap </sigName>
<sigRange> [0 , 300] </ sigRange>
<s i g P r e c i s i o n> 10ˆ−2 </ s i g P r e c i s i o n>

</ s i g n a l>
<s i g n a l>

<sigName> u bat </sigName>
<sigRange> [0 , 400] </ sigRange>
<s i g P r e c i s i o n> 10ˆ−2 </ s i g P r e c i s i o n>

</ s i g n a l>
</ i n p ut S i g n a l s>
<output sS i gna l s>

<s i g n a l>
<sigName> i c a p s o l l </sigName>
<sigRange> [−5000 , 5000] </ sigRange>
<s i g P r e c i s i o n> 10ˆ−3 </ s i g P r e c i s i o n>

</ s i g n a l>
</ outputS igna l s>
<hardwareDevice>

<HWname> VIF CAN Board V1. 0 </HWname>
<commInterface> CAN </ commInterface>

</ hardwareDevice>
</ d i s t r i b u t i o n F u n c t i o n>

</ d i s t r i b u t i o n>

Bibliography

[1] L. Delgrossi, “The Future of the Automobile.” Lecture notes, 2013.

[2] A.Albert, “Comparison of event-triggered and time-triggered concepts with regards
to distributed control systems,” Embedded World Conf. 2004, pp. 235–252, February
2004.

[3] M.Bernhard Ch.Buckl V.Döricht M.Fehling L.Fiege H.von Grolman N.Ivandic
Ch.Janelle C.Klein K.-J.Kuhn Ch.Patzlaff B.Riedl B.Schätz Ch.Stanek, The Soft-
ware Car: Information and Communication Technology (ICT) as an Engine for the
Electromobility of the Future. ForTISS GmbH, March 2011.

[4] B. Hardung, T. Kölzow, and A. Krüger, “Reuse of Software in Distributed Embedded
Automotive Systems,” in Proceedings of the 4th ACM International Conference on
Embedded Software, EMSOFT ’04, (New York, NY, USA), pp. 203–210, ACM, 2004.

[5] N. Navet, Y. Song, F. Simonot-Lion, and C. Wilwert, “Trends in Automotive Com-
munication Systems,” Proceedings of the IEEE, vol. 93, pp. 1204–1223, June 2005.

[6] G. Morgan and A. Borg, “Multi-core Automotive ECUs: Software and Hardware
Implications.” 2009.

[7] “ISO 26262-1:2011 Road vehicles - Functional safety,” 2011.

[8] W. Weber, “Introduction to the EMC2 project,” date of access: 02.12.2014.

[9] M. Lukasiewycz, S. Steinhorst, S. Andalam, F. Sagstetter, P. Waszecki, W. Chang,
M. Kauer, P. Mundhenk, S. Shanker, S. Fahmy, and S. Chakraborty, “System archi-
tecture and software design for Electric Vehicles,” in Design Automation Conference
(DAC), 2013 50th ACM / EDAC / IEEE, pp. 1–6, May 2013.

[10] P. Peti, R. Obermaisser, F. Tagliabo, A. Marino, and S. Cerchio, “An integrated
architecture for future car generations,” in Object-Oriented Real-Time Distributed
Computing, 2005. ISORC 2005. Eighth IEEE International Symposium on, pp. 2–13,
May 2005.

[11] Continental, “Electronic Vehicle Management - New options for commercial vehicle
controllers,” tech. rep., Continental, 2009.

[12] iCompose Consortium, “iCompose - Progress beyond SOA.” http://www.i-
compose.eu/iCompose/index.php/project/progress. date of access: 16.01.2015.

90

BIBLIOGRAPHY 91

[13] D. Zhu and C. Qian, “Challenges in Future Automobile Control Systems with Mul-
ticore Processors.” 2011.

[14] A. Burns and R. Davis, “Mixed Criticality Systems - A Review.” Fifth edition, 2015.

[15] K. Schmidt, M. Buhlmann, C. Ficek, and K. Richter, “Design Patterns for Highly
Integrated ECUS with Various ASIL Levels,” ATZelektronik worldwide, vol. 7, no. 1,
pp. 22–27, 2012.

[16] C. Ficek, N. Feiertag, and K. Richter, “Applying the AUTOSAR timing protection
to build safe and efficient ISO 26262 mixed-criticality systems.” 2013.

[17] S. Baruah, V. Bonifaci, G. D’Angelo, H. Li, H. Marchetti-Spaccamela, N. Megow,
and L. Stougie, “Scheduling real-time mixed-criticality jobs,” IEEE Transactions on
Computers, vol. 61, no. 8, pp. 1140–1152, 2012.

[18] ATMEL, 8-bit AVR Microcontroller with 128K Bytes of ISP Flash and CAN Con-
troller - AT90CAN128, 2006.

[19] Infineon Technologies AG, TriBoard TC179X - User’s Manual, 2010.

[20] TC1797 32-Bit Single-Chip Microcontroller - User’s Manual V1.1, 2009.

[21] M.Benedikt J.Zehetner D.Watzenig J.Bernasch, “Moderne Kopplungsmethoden - Ist
Co Simulation beherrschbar?,” NAFEMS Online-Magazin, Zeitschrift für numerische
Simulationsmethoden und angrenzende Gebiete, 7 2012.

[22] S. Messner, “Einfluss von nicht-iterativer Co-Simulation auf die numerische Lösung
von Systemgleichungen,” Master’s thesis, Technische Universität Graz, 2014.

[23] M. Benedikt, Eine Koppelungsmethode für die nicht-iterative Co-Simulation. PhD
thesis, Kompetenzzentrum - Das Virtuelle Fahrzeug mbh Graz, 2012.

[24] S. Corrigan, “Indroduction to the Controller Area Network (CAN),” tech. rep.,
TEXAS INSTRUMENTS, 2008.

[25] Texas Instruments, “The ISO 11898 CAN Standard,” date of access: 19.03.2015.

[26] H. Zimmermann, “OSI Reference Model–The ISO Model of Architecture for Open
Systems Interconnection,” Communications, IEEE Transactions on, vol. 28, pp. 425–
432, Apr 1980.

[27] CAN in Automation (CiA), “CAN physical layer,” date of access: 19.03.2015.

[28] CAN in Automation (CiA), “CAN protocol,” date of access: 19.03.2015.

[29] J. Postel, “User Datagram Protocol (RFC 768).” IETF Request For Comments, Aug.
1980. Introduction to UDP.

[30] “User Datagram Protocol.” http://en.wikipedia.org/wiki/User Datagram Protocol.
date of access: 20.03.2015.

BIBLIOGRAPHY 92

[31] T. Lorenz, J. Taube, M. Ihle, O. Manck, and H. Beikirch, “Fibex gateway configura-
tion tool chain,” iCC 2006, pp. 13–19, 2006.

[32] AUTOSAR Release 4.2.1, Software Component Template.

[33] T. Bachmann, “FIBEX XML format and AUTOSAR development,” EE Times -
Connecting the Global Electronics Community, July 2009.

[34] AUTOSAR Release 4.2.1, System Template.

[35] Vector, “DCB File Format Documentation,” 2007. date of access: 19.03.2015.

[36] S. Doyle, “EVORA 414E HYBRID,” 2011.

[37] T. Christen, M. Carlen, “Theory of Ragone plots,” Journal of Power Sources, vol. 91,
no. 2, pp. 210 – 216, 2000.

[38] Y. Bin Tan and J.-M. Lee, “Graphene for supercapacitor applications,” vol. Royal
Society of Chemistry, 2013.

[39] A. Mulay, Y. Vardhan pant, and R. Mangharam, “Protodrive - Rapid prototyping
platform for Electric Vehicle powertrain.” http://mlab.seas.upenn.edu/protodrive/.
date of access: 11.02.2015.

[40] C. Paar, “Energy Management in Hybrid Electric Vehicles using Co-Simulation,”
Master’s thesis, FH Wiener Neustadt, 2009.

[41] “NEDC.”

[42] G. Stettinger, M. Benedikt, N. Thek, and J. Zehetner, “On the Difficulties of Real-
Time Co-Simulation,” vol. International Conference on Computational Methods for
Coupled Problems in Science and Engineering, 2013.

	Introduction
	Motivation
	Aim of Work
	State-of-the-art
	System architecture
	Multi-core control systems
	Mixed criticality
	State-of-the-art conclusion

	Outline

	Technical Background
	Hardware
	Existing Hardware Solutions
	VIF CAN Board V1.0
	Infineon TriBoard 1797

	Software
	MATLAB
	Integrated Development Environment (IDE)
	CAN tools
	Co-Simulation

	Communication Methods
	Controller Area Network (CAN)
	UDP (User Datagram Protocol) based on Ethernet
	Comparison and Decision

	Design
	Hardware integration scenario
	Developed XSD schema
	State-of-the-art description formats
	Data exchange file format

	Hardware integration toolchain
	From model to code
	Code extension
	Hardware-in-the-Loop testing

	Proof of Concept
	Test setup
	Dual Mode Energy System (DMES)
	Single-core integration of DMESC
	Multi-core integration of DMESC
	Influence of used solver-type and step-size on HiL results

	Hybrid Energy Management System model
	Single-core results
	Multi-core results

	Conclusion and Outlook
	Conclusion
	Outlook

	List of abbreviations
	Code samples
	CAN data conversion DMESC single-core solution
	ICOS RealTime Wrapper .ini-file - DMESC single-core solution

	XSD-Schema
	xml-specification samples
	xml-file for DMESC single-core integration
	DMESC single-core integration.
	DMESC multi-core integration.

	Bibliography

