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Abstract

The objective assessment of the overall speech quality of a given speech enhancement system
is a multi-disciplinary optimization problem where different characteristics as perceived sound
quality and speech intelligibility are involved. Although previous studies reported instrumental
measures with reasonable correlation to subjective listening tests, the studied distortion mea-
sures rely on a computation based on the spectral amplitude only. Based on recent findings
on improvement of perceived quality and speech intelligibility by also incorporating spectral
phase enhancement in the modification stage of a single-channel speech enhancement algorithm,
listening tests were conducted to study the performance of well-known instrumental measures
in terms of predicting the subjective scores in a phase-aware framework. Furthermore, new
phase-aware measures were proposed to assess the perceived speech quality and intelligibility in
order to quantify how well the estimated speech phase spectrum resembles the phase spectrum of
the reference signal. By performing a correlation analysis between the objective and subjective
scores the phase-aware measures showed the capability to outperform the existing conventional
measures in the field of perceived speech quality estimation and revealed a reasonable high
correlation related to speech intelligibility prediction.
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Kurzfassung

Die objektive Beurteilung der Qualität eines bestimmten Sprachverbesserungssystems ist ein
multidisziplinäres Optimierungsproblem in dem verschiedene Eigenschaften, wie wahrgenommene
Sprachqualität und Sprachverständlichkeit, beteiligt sind. Obwohl frühere Studien gezeigt haben,
dass es objektive Bewertungskriterien gibt, die gut mit den Ergebnissen aus subjektiven Hörtests
übereinstimmen, ist zu beachten, dass diese Bewertungskriterien nur einen Vergleich zwischen
den spektralen Amplituden der sprachverbesserten Signale mit den Referenzsignalen durchführen.
Basierend auf neusten Erkenntnissen zur Verbesserung der Sprachqualität und Sprachverständ-
lichkeit durch zusätzliche Modifikation der spektralen Phase, wurden Hörtests durchgeführt, um
die Leistungsfähigkeit von etablierten Bewertungskriterien innerhalb eines phasen-basierenden
Testframework in Bezug auf die Vorhersage der subjektiven Ergebnisse zu ermitteln. Außer-
dem wurden neue Methoden vorgestellt, die ein objektives Bewertungsmaß auf Grundlage der
Unterschiede im Phasenspektrum zwischen den sprachverbesserten Signalen und den Referenz-
signalen berechnen. Anhand der Durchführung einer Korrelationsanalyse zwischen den objek-
tiven und subjektiven Ergebnissen konnte gezeigt werden, dass die neuen phasen-basierenden
Bewertungsmethoden die subjektiven Einschätzungen in Bezug auf die Sprachqualität besser
prädizieren als die bestehenden herkömmlichen. Obwohl die neuen Methoden auch eine angemes-
sen hohe Korrelation in Bezug auf die Sprachverständlichkeit aufweisen, konnte eine Verbesserung
im Vergleich zu den bestehenden Bewertungskriterien nicht evaluiert werden.
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1
Introduction

Desired speech signals are often corrupted with some background noise where the recording takes
place. This emerges the requirement of a single-channel speech enhancement pre-processor for
different speech applications, to name a few: robust automatic speech recognition and speech
transmission. The problem has extensively been addressed during the last two decades with
some satisfactory performance where the focus in signal modification has been on the enhance-
ment of the noisy spectral amplitude. The main reason for the focus on spectral amplitude
modification rather than phase is due to the belief that amplitude enhancement contributes
more to the improvement of the perceptual quality of speech in noise. While many proposals
are dedicated to find an accurate spectral amplitude estimator, the potential of phase spectrum
estimation has often been neglected. For example, early studies reported on unimportance of
the speech phase spectrum [1]. More recent studies, on the other hand, support the fact that
incorporating phase information leads to improved signal quality in speech enhancement [2–6],
source separation [7–10], automatic speech recognition [11–13], speech synthesis, [14] and speech
intelligibility [15,16].

The issue of quality estimation of the output of a speech enhancement algorithm is highly
important and many previous studies have been dedicated to find a reliable estimator of quality
or intelligibility. In particular, reliable estimators are necessary in order to avoid the need of
performing the time consuming listening experiments. State-of-the-art single-channel speech en-
hancement algorithms employ an amplitude estimator (filter) working in the magnitude domain
followed by a signal reconstruction stage where the noisy phase is often directly exploited. For
magnitude-only techniques, the commonly used metrics are l2-norm measures including signal-
to-noise ratio (SNR)-based measures [17] and perceptual motivated measures, e.g., perceptual
evaluation of speech quality (PESQ) [18] where the human perception is taken into account.
PESQ was shown to be a reliable estimator for perceived quality for a wide range of different
distortions while the short time objective speech intelligibility (STOI) [19] was reported to cor-
relate well with speech intelligibility. On the other hand, if we replace the noisy phase with
the clean phase (ideal scenario), the current metrics would not well represent the amount of
improvement as they only reflect the similarity in the magnitude spectrum domain, not the
complex domain. Therefore, the possible improvement obtained via enhancement of the noisy
phase spectrum will not be reflected by the current existing metrics like SNR-based measures.

While some early studies emphasized on the non-usefulness of the phase information in speech
enhancement [1], more recent studies reveal that incorporating the phase information in ampli-
tude estimation and signal reconstruction potentially leads to considerable improvement in the
enhanced output signal. For example, in [20, 21] it was shown that by replacing the mixture
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1 Introduction

phase with an estimated phase, it is possible to achieve considerable improvement in the per-
ceived signal quality.

This thesis presents a detailed analysis on the performance evaluation using different conven-
tional instrumental measures for perceived quality and speech intelligibility by comparing them
with the subjective listening results in a phase-aware single-channel speech enhancement frame-
work. Furthermore, new phase-aware instrumental measures are introduced and evaluated by
their ability to predict the perceived quality and speech intelligibility of phase-enhanced speech
signals.

1.1 Phase-Aware Speech Enhancement

A single-channel speech enhancement system usually follows a three step computation known as
analysis-modification-synthesis shown in Figure 1.1. In the analysis step a noisy speech signal
is transformed to a representation that is favourable to be modified. A common operator is the
Short Time Fourier Transform (STFT) that converts a time-domain signal into a time-frequency
representation. The modification step then tries to find and eliminate the noise components. In
the last step the modified signal is synthesized back to its time domain representation to obtain
the enhanced (noise suppressed) speech signal.

Figure 1.1: Block diagram of a typical speech enhancement system following the analysis-modification-
synthesis procedure.

Considering recent advances in speech enhancement, the above presented analysis-modification-
synthesis procedure is split into three different approaches in matters of how the phase infor-
mation is employed during the modification and synthesis stage. Typical single-channel speech
enhancement systems (in the following termed as conventional) apply a frequency-dependent
gain function on the noisy STFT representation and employ the noisy phase at signal recon-
struction stage, illustrated on the top of Figure 1.2. The gain function is computed based on
the information given by a noise estimator, i.e., [22] followed by a decision-directed a priori SNR
estimator. Two popular examples are the short-time spectral amplitude (STSA) [23] and the
log-spectral amplitude (LSA) [24] estimator proposed by Ephraim and Malah. The noisy phase
was derived as the MMSE-optimal clean phase, assuming that the DFT bins are uniformly dis-
tributed and independent of the amplitude spectrum. However, this assumption is not correct.
As reported in [25] the group delay deviation spectrum, which is computationally based on the
phase spectrum, follows the spectral amplitude behaviour, hence there has to be some correla-
tion between the amplitude and phase spectra.

This observation gives rise to use an enhanced phase in single-channel speech enhancement.
The block diagram is shown in the middle of Figure 1.2. A phase estimation is done on top
of the conventional amplitude estimation. The enhanced phase is then employed at the signal
reconstruction stage. This setup was already used in [21] to enhance perceived speech quality
and in [20] to enhance both, perceived speech quality and speech intelligibility in comparison to
conventional methods. In the following this is referred as the phase-enhanced setup.

The block diagram at the bottom of Figure 1.2 suggests to use the enhanced phase information
not only at signal reconstruction, but also as an input to compute a more reliable spectral am-
plitude estimate. This leads to even better speech quality results reported in [2]. Furthermore
the setup can also be used in an iterative way such that the enhanced amplitude is again used
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1 Introduction

to obtain a better phase estimate and vice versa until a certain convergence criterion is reached
[3], termed as the iterative phase-aware approach in the rest of the thesis.

Figure 1.2: Different speech enhancement strategies: Conventional speech enhancement using the noisy phase
at signal reconstruction (top); phase-aware enhancement using an estimated phase at signal re-
construction (middle); phase-aware enhancement using an estimated phase for amplitude modi-
fication and signal reconstruction (bottom).

An instrumental measure has to work well for all the above mentioned types of single-channel
speech enhancement incorporating different phase spectra at the modification and reconstruc-
tion stages (completeness of the instrumental measure, mentioned in Chapter 2). That applies
to perceived quality measures as well as to intelligibility measures. In the last decades several
measures where suggested to have a reliable prediction for either perceived quality or intelli-
gibility when only the spectral amplitude is modified while the noisy phase is directly copied.
However, it is unclear if those measures also reasonably perform in a phase-aware framework
since this research field is quite new and proper evaluations have not been carried out yet. This
work is focused on this issue by taking into account different phase-enhancement methods in
different noise scenarios.

1.2 Notations

Let y(n) = x(n)+ v(n) be the noisy/degraded signal with x(n) and v(n) denoting the clean and
noise signals, respectively. The noisy signal is processed by a speech enhancement algorithm
producing the enhanced speech signal x̂(n). Let Y c(k, l), Xc(k, l), X̂c(k, l) and V c(k, l) be
the STFT transforms for noisy, clean, enhanced speech and noise signals, respectively, with k
and l as the frequency and time indices. The complex spectrum Xc(k, l) consists of spectral
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1 Introduction

amplitude and spectral phase Xc(k, l) = X(k, l)ejφx(k,l) with X(k, l) as the amplitude and
φx(k, l) = ∠Xc(k, l) as the spectral phase.

Figure 1.3 shows the difference between the conventional performance evaluation relying on
the spectral amplitude difference (X(k, l) versus X̂(k, l)) and the proposed metrics relying on
the spectral phase values, i.e., φx(k, l) and φ̂x(k, l). Additionally, the proposed measures can
also be extended by the use of the spectral amplitudes X(k, l) and X̂(k, l). The motivation
behind the use of the spectral phase information for performance evaluation is discussed in the
next section.

Figure 1.3: Conventional (dashed box) versus the proposed performance evaluation.

1.3 Fundamental Questions

Alsteris and Paliwal in [26] conducted experiments to determine if the spectral amplitude or the
spectral phase is more important for speech intelligibility. They used an analysis-modification-
synthesis-procedure to produce amplitude-only and phase-only stimuli from a clean speech signal
by applying a STFT with a window length of Tw = 32 ms and an overlap of Tw/8. The clean
speech signal STFT is given by

X(k, l) = |X(k, l)|ejφx(k,l), (1.1)

where |X(k, l)| denotes the short-time amplitude spectrum and φx(k, l) = ∠X(k, l) denotes
the short-time phase spectrum. The phase-preserved stimuli where generated by setting the
amplitude spectrum to unity and the modified STFT is given by

X̂(k, l) = ejφx(k,l). (1.2)

The amplitude-preserved stimuli were obtained by randomizing the phase spectrum with a uni-
form distribution between 0 and 2π. By performing listening tests on consonant identification,
the results suggested that the phase spectrum is as important for the speech intelligibility as
the amplitude spectrum [26]. However, it is unclear if the amplitude and phase spectra both
contribute to speech intelligibility in an independent fashion.

Furthermore, in 1981 Oppenheim in [27] explored the importance of phase in signals. Among
other things he conducted two experiments that emphasized on the impact of phase information
to intelligibility, which are reproduced in the following. The first experiment shown in Figure 1.4
illustrates on top an image of two Hollywood actors with the corresponding amplitude and phase
spectra in the middle and at the bottom. The first image on the left is the original one followed
by the amplitude-only reconstructed (here the phase was set to zero prior reconstruction) and
the phase-only reconstructed (with unity magnitude) versions. The last image on the left shows
the outcome when the amplitude and phase spectra of the two images of the actors are swapped.
It clearly can be seen that the phase contributes more information than the amplitude. In par-
ticular the shapes of the images are well preserved that can be interpreted as the ”intelligibility
of an image”. Apparently also the overall image quality is better in the case where the phase is
preserved.
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Figure 1.4: An image showing two actors from left to right: Original image; image reconstructed from
amplitude spectrum only; image reconstructed from phase spectrum only; image reconstructed
from the swapped amplitude and phase spectra.

In the second experiment, the magnitude and phase spectra of a female and male utterance taken
from the GRID corpus [28] were swapped. Figure 1.5 shows the spectrograms of the original
and reconstructed magnitude-swapped utterances. By comparing the harmonic structures of
the original and modified speech samples, it appears that most of the information is carried
by its phase. Informal listening tests confirm that the spectral phase information support the
intelligibility of the sentence and the gender type while the swapped spectral magnitude is
perceived as additive noise.
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Figure 1.5: Exchanging the Fourier phase and magnitude in voice. (Top left) Female voice spectrogram; (top
right) male voice spectrogram; (bottom left) spectrogram of female voice phase and male voice
magnitude; (bottom right) spectrogram of male voice phase and female voice magnitude. Both
reconstructions are primarily dominated by the Fourier phase, and not the magnitude.

In history the design of a new speech coder or a new single-channel speech enhancement al-
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gorithm was always closely related to an evaluation measure. This is not a surprise since an
evaluation measure could reveal information about some optimization criterion that leads to
new insights for improving the performance of a coder or algorithm, i.e., the start of linear
predictive coding (LPC) can be attributed to Itakura and Saito in 1966 [29] leading to the first
maximum likelihood approach for automatic phoneme discrimination [30]. In 1970 the same
authors introduced the Itakura-Saito distance (ISa) [31] based on the LPC coefficients, which is
partially used nowadays to predict speech quality. Yet the types of distortions quantified by this
metric are different than those introduced by a speech enhancement method, e.g., quantization
errors rather than musical noise.

To this end Figure 1.6 illustrates that existing performance measures can be misleading when
used in a phase-aware framework, where on top from left to right the spectrograms of a clean,
noisy and three enhanced utterances are shown. The enhancement methods are minimum-
mean-square error log-spectral amplitude estimator (MMSE-LSA) [24], STFT phase improve-
ment (STFTPI) [21], and clean phase used at signal reconstruction stage. STFTPI relies on
phase reconstruction at harmonics given a fundamental frequency estimate. Strict harmonicity
is forced while noise components between two harmonics are entirely removed. The obtained im-
provement in contrast to the noisy and MMSE-LSA enhanced utterances in PESQ and fwSNR,
presented in the title of the figures, does not reflect the introduced distortions perceived and
termed as buzzyness by listeners, also reported in [32,33]. The buzzyness in Figure 1.6 is noticed
by comparing the harmonic structure of the original clean signal with the STFTPI enhanced
speech. A similar tendency is true for the group delay and phase variance plots in the middle and
bottom line. In this example, PESQ and fwSNR also suggest that the clean phase information
does not provide more towards speech quality in comparison to STFTPI which can be rejected
by listening tests. On the contrary, the clean phase information leads to better perceived qual-
ity and speech intelligibility following the values of PESQ, fwSNR and STOI. This confirms the
earlier results reported by Paliwal in [34].
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Figure 1.6: Counter example: (Top) spectrogram, (middle) group delay, (bottom) phase variance plots shown
for (from left to right) clean signal, noisy unprocessed signal, phase enhanced signal using
STFTPI, and phase enhanced using clean phase corrupted with white noise at 0 dB SNR.
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1 Introduction

As a last point to emphasize on the power of phase it has to be quoted that ”from a particular
magnitude spectrogram, it is possible to reconstruct virtually any time-domain signal with a
carefully crafted phase. For instance, one can derive a magnitude spectrogram from that of a
speech signal such that it yields either a speech signal similar to the original or a piece of rock
music, depending on the choice of the phase” [35].

Considering all aspects mentioned in this section, in this work, the following three research
questions will be addressed:

1. how much the existing conventional instrumental measures correlate with subjective results
for phase-aware speech enhancement,

2. whether some new phase-aware measures could outperform the existing ones in terms of
predicting the subjective listening results,

3. if there exits a measure that reliably predicts both perceived quality and speech intelligi-
bility.

The third point tackles the idea that a measure which predicts perceived quality as well as speech
intelligibility could specify a direction for further research on single-channel speech enhancement
methods that improve the overall quality (including perceived quality and speech intelligibility).

1.4 Contributions of this Work

Chapter 2 presents the conventional instrumental quality measures. Due to a big variety of
the existing speech quality measures a selection of the most important ones had to be made.
The decision was based on the intention to reflect the progress of single-channel speech enhance-
ment and the corresponding evaluation over the last decades incorporating signal-to-noise ratio
(SNR)-based [17], linear prediction (LP)-based [17] and perceptually-motivated (e.g. percep-
tual evaluation of speech quality (PESQ) [36]) measures. Furthermore, some new phase-aware
metrics are introduced that calculate a distortion metric based on the spectral phase only.

Chapter 3 presents commonly used instrumental intelligibility measures and the proposed
phase-aware candidates. The selection out of a big variety of intelligibility measures follows the
idea of Chapter 2. In principal those measures can be split into four groups:

• based on the articulation index (AI) [37]

• based on the speech transmission index (STI) [38]

• based on a perceptual model (e.g. DAU [39])

• based on mutual information (MI) [40]

Chapter 4 introduces the speech material, noise scenarios and the phase-aware single-channel
enhancement algorithms used in the objective and subjective evaluations. Listening tests were
conducted separately for perceived quality and speech intelligibility to assess the human listening
results. The subjective listening results are presented and discussed.

Chapter 5 deals with the detailed performance analysis of the conventional and proposed
instrumental scores by comparing them with the scores obtained by the subjective listening
tests in Chapter 4. The evaluation procedure is done with standardized techniques commonly
used in the speech enhancement community.

Chapter 6 concludes on the work and gives an outlook on future work.
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PAPE - Phase-Aware Performance Evaluation

2
Quality Measures

Subjective listening tests provide the most reliable method for assessment of speech quality, but
as mentioned in Chapter 1 they are time consuming and expensive. Instrumental measures have
to be found that correlate well with the perception of human listeners. According to [41] a good
instrumental measure is characterized by the following six criteria adapted from [42]:

Completeness All of the speech processing systems already in-use throughout

the world fall within the scope of the model. This criterion shows
that the development of speech quality models has been intimately

related to the historical evolution of the speech processing systems.

Accuracy The most widely used criterion. The estimated scores are correlated

with human perception.
Credibility The estimation is easily interpretable.

Extensibility The scope of the model can increase.

Manipulability The model is easily employed. The model must be totally self-sufficient:

there is no need for fine tuning by the users.

Consistency The relationship between the estimations and the auditory results

is monotonic (internal consistency). The absolute estimated values
have approximately the same magnitude as the auditory results

(external consistency).

Further according to Figure 2.1 instrumental measures can be split into signal-based intrusive
and non-intrusive models. Signal-based means that the model uses physical signals or some
representation of them for the model input. Intrusive models then evaluate a score based on
the information provided by the clean reference signal x(n) and the degraded/enhanced signal
y(n)/x̂(n) while non-intrusive models only use the degraded/enhanced speech signal. In this
work only non-intrusive models are utilized.

In the next two Sections 2.1 and 2.2 first some conventional instrumental measures commonly
used to evaluate speech quality are introduced and second the new phase-based candidates are
presented.
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2 Quality Measures

Figure 2.1: Intrusive and non-intrusive speech quality models, [41].

2.1 Conventional Instrumental Measures

Actual conventional quality measures can be divided into three different groups, depending on
how they are calculated.

The first group are the SNR-based metrics. These measures are quite simple and calculate the
signal-to-noise ratio between the clean/degraded/enhanced speech signal and the noise signal.
This can be done either in the temporal or in the frequency domain. Examples for the temporal
domain are the global SNR (GSNR) [43] and the segmental SNR (SSNR) [43], described in
Sections 2.1.1 and 2.1.2. The frequency based measure is termed as frequency-weighted SNR
(fwSNR) [44] and calculates the SNR in temporally segmented bands. The last measure to be
accounted for a SNR-based one is the blind source separation evaluation (BSS EVAL) [45]. In
a strict sense this measure was invented to evaluate the performance of a separation algorithm
applied on audio mixed signals. Since speech enhancement and source separation are very fa-
miliar research fields, this measure can also be applied to enhanced speech signals by slightly
modifying the metric input.

The second group are spectral distance measures based on linear predictive coding (LPC).
These measures assume that speech follows an auto-regressive process within short time frames
modelled by linear prediction. Examples are the log-likelihood ratio (LLR) [46], the Itakura-
Saito distance (ISa) [31], and the cepstral distance (CEPS) [47], presented in Sections 2.1.5 -
2.1.7.

The metrics of the first two groups are simple to implement and easy to evaluate but their
ability to predict perceived quality is limited because they are not close enough to the signal
processing happening in the auditory periphery. Much research has been conducted on devel-
oping an auditory based measure and after more than ten years of evolution this yielded into a
new model, termed Perceptual Evaluation of Speech Quality (PESQ) [36], standardized as the
ITU-T Rec. P.862 (2001). More information about PESQ is given in Section 2.1.8.

2.1.1 Global SNR (GSNR)

The GSNR is the oldest known instrumental measure to evaluate quality. It is sample by sample
comparison of temporal signals and is calculated using the following equation

SNR = 10 · log

( ∑N
n=1 x

2(n)
∑N

n=1[x(n)− x̂(n)]2

)

, (2.1)

where x(n) is the clean speech, x̂(n) is the enhanced or degraded speech and N is the total
number of samples of the entire utterance.
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2.1.2 Segmental SNR (SSNR)

The upper definition in Eq. (2.1) is not well related to different types of speech distortions since
it evaluates the speech quality by computing the SNR as an average over the entire utterance.
Because speech is known to be quasi-stationary, there happens fluctuations of speech energy
over time causing regions, where speech energy is large and noise energy is small, to be masked
by regions, where speech energy is low and the noise is audible and vice versa. To overcome this,
the SNR can be calculated in short frames and averaged afterwards as defined as the segmental
SNR [43]

SSNR =
1

L

L−1∑

l=0

10 · log

( ∑Ml+M−1
n=Ml x2(n)

∑Ml+M−1
n=Ml [x(n)− x̂(n)]2

)

, (2.2)

where M is the frame length and L is the number of frames. The length of the frames is
chosen to be 32 ms to capture the stationarity of speech. To split the signal into frames a
Hamming window with 87.5% overlap is used. The above Eq. (2.2) computes the logarithm
before averaging over the frames resulting in an arithmetic average. This causes frames with
high SSNRs to be weighted less and emphasis on frames with low SSNRs. One problem with
the estimation of the SSNR is the SNR contribution of silent frames. This frames exhibit very
low SNR values and therefore bias the overall result. A possible remedy is to bound the SNR
values within a certain range. In [48], the authors suggested to limit the values within the range
[-10, 35] dB also used in this thesis.

2.1.3 Frequency Weighted SNR (fwSNR)

An extension to the SSNR is to calculate the SNR in the frequency domain to produce the
frequency-weighted SNR (fwSNR) [44]

fwSNR =
1

L

L−1∑

l=0

10 ·

∑J
j=1Wj · log

(

X2(j, l)

[X(j, l) − X̂(j, l)]2

)

∑J
j=1Wj

, (2.3)

where X(j, l) and X̂(j, l) are the clean and enhanced amplitude spectra at time frame l and
frequency band j. Wj are band weightings based on the articulation index studies [49] applied
to 25 critical bands spanning the frequency range of 50 to 3600 Hz.

2.1.4 Blind Source Separation Evaluation (BSS EVAL)

As mentioned in Section 2.1 BSS EVAL [45] was developed for blind source separation. The
implementation in [50] takes the clean and estimated source signals as input. However, fixing
the second source to the noisy signal assumes that there is no enhancement on this source signal
which is exactly a speech enhancement scenario.

The BSS EVAL metric consists of three different SNR-based metrics: Source-to-Distortion
Ratio

SDR = 10 · log

( ∑N
n=1 s

2
target

∑N
n=1[einterf + enoise + eartif ]2

)

, (2.4)

Graz, August 30, 2015 – 10 –



2 Quality Measures

the Source-to-Interference Ratio

SIR = 10 · log

(∑N
n=1 s

2
target

∑N
n=1 e

2
interf

)

, (2.5)

and the Source-to-Artefact Ratio

SAR = 10 · log

(∑N
n=1[starget + einterf + enoise]

2

∑N
n=1 e

2
artif

)

, (2.6)

where starget denotes the true desired source modified by an allowed distortion and einterf , enoise,
and eartif are the interference, noise and artefact error terms. These four terms are estimated
by orthogonal projections

starget = Psj ŝj (2.7)

einterf = Psŝj − Psj ŝj (2.8)

enoise = Ps,nŝj − Psŝj (2.9)

eartif = ŝj − Ps,nŝj (2.10)

with the orthogonal projectors defined as

Psj =
∏

{sj} (2.11)

Ps =
∏

{(sj′ )1≤j′≤n} (2.12)

Ps,n =
∏

{(sj′ )1≤j′≤n, (ni)1≤i≤m}, (2.13)

where sj is the j
th target source, sj′ are the unwanted sources and ni are the noise sources.

2.1.5 Log-likelihood Ratio (LLR)

The LLR metric as well as the other two metrics below (ISa, CEPS) use the assumption that
the production of speech follows a source-filter model represented by the pth order all-pole filter
of the form

x(n) =

p
∑

i=1

ax(i)x(n − i) +Gxu(n) (2.14)

where ax(i) are the filter coefficients of the all-pole, Gx is the filter gain, and u(n) describes the
excitation signal of the glottis modelled as unit variance white noise. The all-pole coefficients are
determined using linear prediction. The LLR measure is computed as the dissimilarity between
the all-pole models of the clean and enhanced speech signals x(n) and x̂(n) by the following
equation

dLLR(ax,ax̂) = ln

(
aTx̂Rxax̂

aTxRxax

)

, (2.15)
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where ax and ax̂ are the LPC coefficients of the clean and enhanced signals and Rx is the
autocorrelation matrix of the clean signal. The LPC coefficients describe the filter of the vocal
tract and thus the formants in the amplitude spectrum. An LP model order of 10 is used for
speech signals with a sampling frequency below 10 kHz, to be of interest in this evaluation.
Eq. (2.15) can be seen in a way that it penalizes differences in the formant location. The
distances are calculated at frames of length 32 ms using a Hanning window with 87.5% overlap
and the overall score is obtained by simple averaging over the frames. This procedure is also
used for the following two measures presented in Sections 2.1.6 and 2.1.7. The LLR measure is
limited in the range of [0,2] where 0 belongs to the upper bound that x(n) = x̂(n).

2.1.6 Itakura-Saito Distance (ISa)

The Itakura-Saito distance [31] is very similar to the log-likelihood ratio. The only difference is
that it incorporates the filter gains in the calculation of the distance measure

dISa(ax,ax̂) =
σ2x
σ2x̂

aTx̂Rxax̂

aTxRxax
+ ln

(
σ2x
σ2x̂

)

− 1, (2.16)

where σ2x and σ2x̂ are the all-pole gains for the clean and enhanced speech. According to the
implementation of Loizou [17] the ISa distance is limited between [0,100].

2.1.7 Cepstral Distance (CEPS)

The Cepstral distance provides an estimate of the difference between the log spectral amplitudes
of two different spectra and uses the cepstrum coefficients for computation [47]

dCEPS(cx, cx̂) =
10

ln(10)

√
√
√
√2

Q
∑

q=1

[cx(q)− cx̂(q)]2, (2.17)

where cx(q) and cx̂(q) are cepstrum coefficients of the clean and enhanced signals, respectively
and Q is the order of the LPC analysis. The real cepstral coefficients are obtained by taking
the ISTFT of the log amplitude spectrum and can be used to separate the excitation signal (de-
scribed by the higher coefficients) from the vocal tract filter (described by the lower coefficients).
Another way to get access to the cepstral coefficients is to calculate them recursively from the
LPC coefficients [51]

c(m) = am +

m−1∑

q=1

q

m
c(q)am−q 1 ≤ m ≤ Q. (2.18)

The cepstral distance is limited in the interval of [0,10].

2.1.8 Perceptual Evaluation of Speech Quality (PESQ)

As mentioned in the introduction of this chapter, PESQ is a proposed metric by the ITU-T
recommendation. Its main purpose is to evaluate perceived speech quality of coded speech (e.g.
CELP) transmitted over a telecommunication channel. These distortions are different than
those introduced by a speech enhancement algorithm. However, PESQ was reported to be a
good predictor for speech enhancement [52] or speech separation [53]. The computation of the
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PESQ score is algorithmically complex and thus out of scope to be explained in detail. A basic
overview is shown in Figure 2.2.

Figure 2.2: Basic structure of PESQ computation, [54].

The original and degraded signals are level aligned to a standard listening level of 79 dB SPL
and filtered to model a standard telephone handset. In the next step the two input signals are
time aligned assuming piecewise constant delays of the transmission channel. Delay changes in
speech are allowed. The inner representations, which are used to calculate the score are in gen-
eral loudness spectra obtained by auditory filtering. Therefore the incoming signal is split into
frames of 32 ms with an overlap of 50% and then a FFT with a Hamming window is performed.
The frequency bins are then grouped equally spaced on a modified Bark scale. Further steps
are frequency equalization of the clean to the degraded signal, gain variation equalization of the
degraded to the clean signal and a loudness mapping (Sone).

The obtained original and degraded loudness spectra are used to calculate the absolute dif-
ference, termed disturbances. PESQ treats positive and negative differences differently, because
these differences contribute differently to the perceived quality. Distortions by additive noise
components are more likely to be audible then distortions that happens by omitting some fre-
quency content. This is considered by two different disturbances: the average disturbance value
dsym and the average asymmetrical disturbance value dasym where the averaging over frequency
and time is done by different Lr norms

Lr =

(

1

L

L∑

l=1

disturbance[l]r

)1/r

, (2.19)

where r is separately chosen for dsym and dasym for the frequency as well for the time average.
The final score is computed by linear weighting of the disturbances:

PESQ = 4.5− 0.1 · dsym − 0.0309 · dasym. (2.20)

The weighting was found by performing a training on a database of 30 subjective listening tests.
The score lies between 1.0 (bad quality) and 4.5 (no distortion).

2.2 Proposed Instrumental Measures

As presented in Section 1.3 conventional quality measures show incompleteness in estimating the
speech quality outcome of a phase-aware method. In particular they ignore the modifications
of the phase at the signal reconstruction stage and calculate a distance based on the amplitude
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spectrum.
The proposed measures calculate a distance based on the phase spectrum only, either direct

on the phase values termed as mean square error of phase (MSE) described in Section 2.2.4 or on
some representations derived from the phase which show correlation to the amplitude spectrum.
These representations are the group delay (GD), the instantaneous frequency deviation (IFD),
and the phase deviation (PD) introduced in Sections 2.2.1 - 2.2.3. The representations are not
new by themselves but so far were not used to predict speech quality.

In general all proposed measures are frame-based with a frame length of 32 ms according to
the quasi-stationarity of speech. A FFT is applied on each frame using a Chebyshev window
with a dynamic range of 25 dB and an overlap of 87.5%. The use of a Chebyshev window with
25 dB dynamic range is motivated by an investigation of Paliwal in [34]. There he studied the
influence of different analysis windows to obtain the phase spectrum. The Chebyshev 25 dB
window was experimentally found to be optimal to obtain the clean spectral phase out of the
clean reference signal. With this clean phase the speech signal was then reconstructed after the
noisy spectral amplitude was enhanced by the MMSE-STSA approach, invented by Ephraim
and Malah [23].

2.2.1 Group Delay (GD)

The instantaneous phase spectrum of the STFT is difficult to interpret. It has a random structure
due to the mapping of the phase values to the interval of [−π, π]. Other representations are
necessary to get useful information out of the phase spectrum. A simple approach is to have
a look at the first derivative. Since the STFT is a time-frequency representation of the speech
signal, a derivation in time and frequency is possible. The group delay is defined as the negative
frequency derivative of the phase spectrum

τ(ω) = −
∂φ(ω)

∂ω
. (2.21)

For discrete-time processing the group delay is approximated by

τ(k, l) = −∆kφ(k, l) = −(φ(k, l)− φ(k − 1, l)), (2.22)

where k and l denote the frequency bin and frame index. Figure 2.3 shows the amplitude
spectrum, the cos(−∆kφ(k, l)), and the instantaneous phase of the utterance ”bin blue at l four
soon” for a noisy, enhanced (MMSE-LSA [24]), and clean scenario taken from the GRID corpus
[28]. While the instantaneous phase exhibits no explicitly visible structure, the group delay
shows a clear structure reflecting the harmonics of the amplitude spectrum. To get an accurate
estimate of the group delay the phase has to be unwrapped prior to estimation. This is down by
the Matlab function ”unwrap”. The function subtracts multiples of 2π if the jump of consecutive
phase values is greater than π or adds multiples of 2π if the jump of consecutive phase values is
less than −π. This unwrapping procedure is also used for the other proposed metrics introduced
in the following sections. As summarized in [55], the group delay has been reported useful in
various speech processing applications.

The group delay instrumental measure is defined as the distance of the group delay spectrum
of the clean and enhanced signals x(n) and x̂(n) averaged over time and frequency

dGD =
2

L ·K

L∑

l=1

K/2
∑

k=1

(

cos(−∆kφx(k, l))− cos(−∆kφ̂x(k, l))
)2

(2.23)
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where K and L are the number of frequency bins and time frames, respectively. This metric
was first used in [8] and later presented in more detail in [3] to resolve the ambiguity in phase
estimation for single-channel speech enhancement. The cosine function in Eq. (2.23) is employed
to avoid errors due to the 2π periodicity of the phase. The GD measure has a range between
[0,4].

Time (s)

F
re

qu
en

cy
 (

H
z)

Noisy @ White Noise 5 dB

0 0.5 1 1.5
0

1000

2000

3000

4000

Time (s)

F
re

qu
en

cy
 (

H
z)

Enhanced (MMSE−LSA)

0 0.5 1 1.5
0

1000

2000

3000

4000

Time (s)

F
re

qu
en

cy
 (

H
z)

Clean

 

 

0 0.5 1 1.5
0

1000

2000

3000

4000

Time (s)

F
re

qu
en

cy
 (

H
z)

0  0.5 1  1.5
0   

1000

2000

3000

4000

Time (s)

F
re

qu
en

cy
 (

H
z)

0  0.5 1  1.5
0   

1000

2000

3000

4000

Time (s)

F
re

qu
en

cy
 (

H
z)

 

 

0  0.5 1  1.5
0   

1000

2000

3000

4000

Time (s)

F
re

qu
en

cy
 (

H
z)

0  0.5 1  1.5
0   

1000

2000

3000

4000

Time (s)

F
re

qu
en

cy
 (

H
z)

0  0.5 1  1.5
0   

1000

2000

3000

4000

Time (s)
F

re
qu

en
cy

 (
H

z)

 

 

0  0.5 1  1.5
0   

1000

2000

3000

4000

−30

−20

−10

0

10

−1

−0.5

0

0.5

1

−3

−2

−1

0

1

2

3

Figure 2.3: Spectrogram (top), group delay (middle), and instantaneous phase (bottom) for the noisy, en-
hanced, and clean female utterance ”bin blue at l four soon”.

2.2.2 Instantaneous Frequency Deviation (IFD)

The derivation of the phase spectrum across the time axis is called the instantaneous frequency
(IF) [56]. It is calculated from the STFT phase spectrum as follows

ν(ω, t) =
∂φ(ω, t)

∂t
. (2.24)

For discrete-time processing the above equation is given as

ν(k, l) = (φ(k, l) − φ(k, l − 1)). (2.25)

Another way to calculate the IF is to use Kay’s method [57] that avoids the issues due to the
unwrapping problems

ν(k, l) = ∠(Xc(k, l)−Xc∗(k, l − 1)), (2.26)

where Xc(k, l) is the complex STFT spectrum at frequency bin k and time frame l and ∗ denotes
the complex conjugate. Eq. (2.26) limits the IF into the range of [−π, π].

The IF spectrum has been applied to speech recognition [58], pitch extraction [59] and formant
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extraction [60]. As discussed in [61], the narrow-band IF spectrum (where the duration of the
analysis window is between 20 and 40 ms) contains information of the excitation source but
does not reveal the formant frequencies. Therefore they introduced a new representation that
displays the pitch as well as the formant structure, called instantaneous frequency deviation
(IFD)

IFDφ(k, l) =
1

2π
(φ(k, l)− φ(k, l − 1)) −

2πFk

K
, (2.27)

or following Kay’s method (Eq. (2.26)) [57]

IFDφ(k, l) = ∠

(

Xc(k, l)−Xc∗(k, l − 1) · exp

(

−j
2πFk

K

))

, (2.28)

where F denotes the frameshift in samples of consecutive frames. Figure 2.4 shows the cos(IFDφ(k, l))
and its relation to the amplitude spectrum, similar to the GD. A Chebyshev 50 dB window was
used to generate the phase plots while a Hamming window was used to obtain the spectrograms.

The IFD instrumental measure is defined as

dIFD =
2

L ·K

L∑

l=1

K/2
∑

k=1

(

cos (IFDφx(k, l)) − cos
(

IFDφ̂x
(k, l)

))2
(2.29)

The measure is bounded in the interval of [0,4] with 0 denoting the best speech quality and was
used in [62] to resolve the ambiguity in phase estimation for single-channel speech enhancement.
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Figure 2.4: Spectrogram (top), instantaneous frequency deviation (middle), and instantaneous phase (bot-
tom) for the noisy, enhanced, and clean female utterance ”bin blue at l four soon”.
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2.2.3 Phase Deviation (PD)

The phase deviation is defined as the difference between the noisy and clean phase spectra

φdev(k, l) = φy(k, l)− φx(k, l). (2.30)

Its geometric representation is shown in Figure 2.5. In [63], Vary first introduced the concept of
PD and determined that it can be used to clarify when phase distortions become perceptually
audible in a speech enhancement application. In particular, roughness in synthesized speech was
observed when the threshold of φdev > 0.679 was exceeded. It was further shown that this value
corresponds to a local SNR ≥ 6dB between the clean and noisy spectral amplitude where the
noisy phase provides a reasonable estimate for the clean phase. The PD was employed for joint
noise reduction and echo cancellation [64] and for phase estimation [3].

Figure 2.5: Geometric representation for the single-channel speech enhancement problem; showing noisy,
clean, and noise complex spectra denoted by Y c(k, l), Xc(k, l), and V c(k, l), respectively. The
phase deviation φdev is shown as the phase difference between the clean and the noisy speech
signal, [65].

Figure 2.6 shows an example of the cos(φdev(k, l)). For high SNR regions, e.g., at the harmonics,
cos(φdev(k, l)) → 1 and hence φdev(k, l)) → 0 while for low SNR regions, e.g., where the low
energy fricatives are located, cos(φdev(k, l)) → −1 and hence φdev(k, l)) = ±π.

The cos(φdev(k, l)) has an exact relation to the local a priori SNR denoted as SNR(k, l) =
X2(k,l)
V 2(k,l)

and the local a posteriori SNR denoted as SNRpost =
Y 2(k,l)
V 2(k,l)

, recently derived in [66]

cos(φdev(k, l)) =
SNR(k, l) + SNRpost(k, l)− 1

2
√

SNRpost(k, l)SNR(k, l)
. (2.31)

In this way the following proposed instrumental measure can be seen as a SNR-based measure
defined by the following equation

dPD =
2

L ·K

L∑

l=1

K/2
∑

k=1

(

cos(φdev(k, l)) − cos(φ̂dev(k, l))
)2

(2.32)

where φ̂dev(k, l) = φy(k, l) − φ̂x(k, l) defines the estimated phase deviation given the estimated
phase. As the GD and the IFD the PD measure is bounded in the interval of [0,4].
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Figure 2.6: Spectrogram (top), phase deviation (middle) and instantaneous phase (bottom) for the noisy,
enhanced and clean female utterance ”bin blue at l four soon”.

2.2.4 Mean Square Error of Phase (MSE)

To complete the set of phase-based metrics the mean square error of phase is introduced. It
is a simple metric based on the local phase differences between the clean and enhanced speech
signals averaged over all frequency bins and time frames

dMSE =
2

L ·K

L∑

l=1

K/2
∑

k=1

(

cos(φx(k, l)− φ̂x(k, l))
)2

. (2.33)

The cosine function wraps the values within the interval of [0,1]. In estimation theory, the MSE
quantifies the amount of estimation error introduced by an estimator [67]. On the basis of the
MSE measure the impact of the instantaneous phase towards quality prediction is studied.

2.2.5 Speech Squared Error (SSE)

The Speech Squared Error (SSE) here is used to measure the distortion between the original
and the phase-distorted signals x(n) and x̂(n). This is not the same as looking at the distortion
of original and distorted phase spectra only. The SSE was defined in [68] as

η(X̂(k, l),∆φ(k, l), l) =

K∑

k=1

|Xc(k, l) − X̂c(k, l)|2, (2.34)

where ∆φ(k, l) is defined as φx(k, l) − φ̂x(k, l) and k and l are the frequency bins and time
frames, respectively. Assuming that the enhanced speech signal x̂(n) differs only in its phase
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spectrum and considering symmetry of the Fourier coefficients, Eq. (2.34) becomes

η(X̂(k, l),∆φ(k, l), l) = 8

K/2
∑

k=1

X̂2(k, l) sin2
(
∆φ(k, l)

2

)

. (2.35)

This equation was used in speech coding [68] to find the optimal linear phase when the phase
distortion is given. The overall score is computed as the average over the time frames l, given
as

dSSE =
1

L

L∑

l=1

η(X̂(k, l),∆φ(k, l), l) (2.36)

2.2.6 Weighted Speech Squared Error (WSSE)

In a realistic speech enhancement scenario the processed signal x̂(n) will not only contain phase
distortions, but also amplitude distortions that have to be accounted. Therefore the Weighted
Speech Squared Error (WSSE) is evaluated from Eq. (2.34) as

η(X(k, l), X̂(k, l),∆φ(k, l), l) = 2

K/2
∑

k=1

(X(k, l)− X̂(k, l))2 +4X(k, l)X̂(k, l) sin2
(
∆φ(k, l)

2

)

,

(2.37)

where additional emphasis is given to the distortion of the amplitude spectrum. Similar to
Eq. (2.36), the final score is computed as the average over time frames

dWSSE =
1

L

L∑

l=1

η(X(k, l), X̂(k, l),∆φ(k, l), l) (2.38)
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PAPE - Phase-Aware Performance Evaluation

3
Intelligibility Measures

There are two aspects of speech quality; the perceived speech quality discussed in Chapter 2 and
the speech intelligibility. The speech intelligibility measures the accuracy of how well a message
can be understood by a listener. It is a percentage of the correctly identified responses relative to
the overall number of responses. It may be evaluated on phones, syllables, words, and sentences.
Here we deal with identifying words and letters as a test unit placed in a ”command-sentence”
like structure explained in Section 4.4.1.

Conventional state-of-the-art instrumental measures are introduced in Section 3.1 followed by
the proposed phase-aware candidates in Section 3.2.

3.1 Conventional Instrumental Measures

Conventional intelligibility metrics rely on different concepts to approximate the speech intelli-
gibility.

The first group is based on the Articulation Index (AI) [37], proposed first by French and
Steinberg [69] and later refined by Kryter [49]. These measures estimate intelligibility via cal-
culating the speech audibility at frequency bands expressed as SNR under the assumption that
the bands carry independent contribution to the total intelligibility. The SNRs are limited to
a certain SNR range, normalized between [0, 1] and combined to an overall averaged score by
a perceptually motivated weighting. The models based on the AI are the Speech Intelligibility
Index (SII) [70], the Coherence Speech Intelligibility Index (CSII) [71], and the SNRloss [72]
discussed in Section 3.1.1 - 3.1.3.

The second group is based on the Speech Transmission Index (STI) proposed by Houtgast
and Steeneken [38]. Additional to linear only degradation (as originally formulated for the AI),
STI also is capable to handle convolutive degradations, e.g. reverberance. It therefore observes
the reduction of the temporal amplitude modulation depth of the clean speech signal due to the
influence of reverberation and additive noise. An extended version of the STI is the Normalized
Covariance Metric [73], described in Section 3.1.4.

While the methods of the first two groups are suitable to predict speech intelligibility for
distortion types including additive noise, convolutive noise, clipping, and filtering, they are less
appropriate for non-linear filtering distortion types, e.g., ITFS processing [74]. Therefore other
intelligibility measures such as the DAU measure [39] or the Short-Time Objective Intelligibility
(STOI) [19] were proposed. Unlike STI or SII these measures rely on comparing the envelopes
via short-term measures rather than relying on the long-term statistics. DAU and STOI form
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the third group, presented in detail in Sections 3.1.5 and 3.1.6.
The last group, historically seen the latest one, comes out of the field of information theory

and is based on mutual information. Mutual information between the message transmitted by
the talker and the message interpreted by the listener has been widely used as a natural measure
to assess the intelligibility [75]. The intelligibility measurement could be applied at the sequence
of uttered words, sequence of states of the auditory system or on the message. In [75] it was
also shown that the mutual information concept for predicting speech intelligibility turns out
to be a generalization of the heuristically derived SII which is a common standard for speech
intelligibility prediction and has a long history of development. Sections 3.1.7 and 3.1.8 describe
two different implementations of the MI idea: Mutual Information based on KNN (MIKNN)
[76] and Speech Intelligibility based on Mutual Information (SIMI) [77].

3.1.1 Speech Intelligibility Index (SII)

The SII is described in the ANSI S3.5-1997 standard [70]. As mentioned above it is an extension
of the articulation index (AI) and additionally takes into account spread of masking, vocal
effort and hearing loss. Masking becomes an issue when higher energy vowels make lower energy
consonants inaudible. The vocal effort takes into account that extreme high sound pressure levels
decrease speech intelligibility. The block diagram for SII calculation is shown in Figure 3.1.

Figure 3.1: Block diagram showing the computation of the SII, [17].

First of all, equivalent speech spectrum levels Xj (in dB) are calculated in 18 one-third octave
bands by subtracting the free-field to eardrum transfer functions from the speech spectrum levels
measured at the eardrum. The same procedure is done for the equivalent noise spectrum levels
Vj . Together with the equivalent hearing threshold levels Tj , these three quantities are the input
of the model.

The next step is to compute the equivalent masking spectrum

Zj = 10log

(

100.1Vj +

j−1
∑

m=1

10
0.1[Bm+3.32Cmlog

(

0.89fj

fm

)

]

)

(3.1)

with fj being the center frequencies of the one-third octave bands. The parameter Cj defines
the slope per one-third octave band of spread of masking and Bj is a function of the self-masking
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spectrum, given by:

Bj = max(Xj − 24, Vj). (3.2)

The disturbance spectrum level is defined as

Dj = max(Zj , Nj), (3.3)

where Nj is the equivalent internal noise spectrum defined as

Nj = Rj + Tj , (3.4)

with Rj as the reference internal noise spectrum describing an external masker signal that pro-
duces the pure-tone threshold in quiet. The effective band SNR (also called audibility function)
in band j is clipped between [-15,15] dB and mapped into the range of [0,1]

SNRj =
Xj −Dj + 15

30
. (3.5)

The last stage adjusts the audibility function to account for the speech level distortion factor
Lj and the band-importance function Wj

SII =

18∑

j=1

Wj · SNRj. (3.6)

The band-importance function is responsible to fit different speech data sets, e.g., non-sense
syllables and sentences. In this thesis those values are taken corresponding to average speech.
The score of SII ranges between [0,1] where a number above 0.75 corresponds to a good speech
intelligibility and a value below 0.45 indicates a poor intelligibility.

3.1.2 Coherence Speech Intelligibility Index (CSII)

The CSII is an extension of the SII and is reported in [71] as a reliable speech intelligibility
predictor for non-linear distortions such as peak- and center-clipping. The main difference of
the CSII to the SII is that it replaces the SNR term by a Signal-to-Distortion ratio (SDR)
computed from the coherence between the clean and processed speech signals x(n) and y(n).
The magnitude-squared coherence function (MSC) is calculated out of the cross- and autospectra
averaged across the windowed data segments. For L data segments the MSC is given by

MSC =

∑L−1
l=0 |Xl(k)Y

∗
l (k)|

2

∑L−1
l=0 |Xl(k)|2

∑L−1
l=0 |Yl(k)|2

, (3.7)

where the asterisk denotes the complex conjugate. Xl(k) and Yl(k) are the spectral amplitudes
at frame l and frequency bin k. The speech power spectrum is computed as

P̂Y = MSC · Syy(k) (3.8)
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and the noise power spectrum is given by

P̂V = [1−MSC]Syy(k) (3.9)

with Syy(k) defined as the output power spectral density. The SDR is then estimated using the
MSC:

SDR(j) =

∑K
k=1Wj(k)MSC · Syy(k)

∑K
k=1Wj(k)[1 −MSC]Syy(k)

, (3.10)

whereWj(k) are simplified ro-ex filters to model the auditory filter bank with center frequencies
and bandwidths given by the ANSI S3.5-1997 standard [70]. The general procedure to compute
the CSII score is the same as in the SII, but with the SNR term replaced by Eq. (3.10) and the
equivalent speech and noise spectrum levels replaced by the terms in Eq. (3.8) and Eq. (3.9),
respectively.

The authors in [71] further divided the clean speech signal envelope into three amplitude
regions leading to CSIIlow, CSIImid, and CSIIhigh. The regions are defined by the relative root-
mean-square (rms) level of each frame in comparison to the rms level of the whole utterance.
Frames with an relative rms level greater than or equal to the overall rms level are termed as
high-level frames. Frames with an rms-level between [-10,0] dB are termed as mid-level and
frames between [-30,-10] dB are termed as low-level. The three-level CSII terms are computed
separately and are linearly weighted to obtain a complete score

I3 = wlowCSIIlow + wmidCSIImid + whighCSIIhigh. (3.11)

The investigation in [71] showed that mainly the mid-level score dominates the prediction of
speech intelligibility.

3.1.3 SNRloss

The authors in [72] presented the SNRloss measure as a reliable intelligibility predictor for
noisy speech modified by some speech-enhancement algorithm. The basic idea of this measure
is to calculate a spectral distortion as the difference between the input Signal-to-Noise ratio
SNRX(j,m) and the effective Signal-to-Noise ratio SNRX̂(j,m) of the enhanced signal, termed
as SNRloss

L(j, l) = SNRX(j, l)− SNRX̂(j, l)

= 10 · log

(
X(j, l)2

V (j, l)2

)

− 10 · log

(

X̂(j, l)2

V (j, l)2

)

= 10 · log

(

X(j, l)2

X̂(j, l)2

)
(3.12)

where X(j, l), X̂(j, l), and V (j, l) are the spectral amplitudes of the clean, enhanced, and noise
signals at frequency band j and frame l, respectively. The STFT analysis length is 20 ms with
75% overlap between adjacent frames using a Hamming window.

The SNRloss can be either positive or negative referring to the presence of spectral attenuation
distortions or spectral amplification distortions. According to Figure 3.2, this distortions are
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Figure 3.2: Mapping between clean and enhanced signals to SNRloss. The slope of the mapping function is
controlled by the parameters C+ and C− and the SNR range ([−SNRLim, SNRLim]), [72].

limited to a range of SNR levels [−SNRLim,SNRLim]

L̂(j, l) = min(max(L(j, l),−SNRLim),SNRLim), (3.13)

and mapped to the range of [0, 1] using the following equation

SNRloss(j, l) =







−
C−

SNRLim
L̂(j, l) if L̂(j, l) < 0

C+

SNRLim
L̂(j, l) if L̂(j, l) ≥ 0

(3.14)

where the parameters C+ and C− (defined in the range of [0, 1]) are used to emphasise differently
on attenuation and amplification distortions. However, in [72] the values for the dynamic SNR
range were found experimentally to be [−3, 3] dB and C+ = C− = 1. The final SNRloss score is
computed by averaging over all frames and frequency bands using a band-importance function
denoted by W (j), and given by:

SNRloss =
1

L

L−1∑

l=0

∑J
j=1W (j) · SNRloss(j, l)

∑J
j=1W (j)

, (3.15)

where L is the total number of frames and J is the total number of bands. The band-importance
functions were taken from Table B.1 (short-passage functions) in [70] and linearly interpolated
to the 25 critical-band center frequencies used in the implementation. The SNRloss measure is
defined in the interval of [0, 1]. The value of 0 means perfect intelligibility.

3.1.4 Normalized Covariance Metric (NCM)

The NCM measure is a speech-based alternative of the well-known STI measure [38], computed
as follows [73]. Instead of using a sinewave-modulated signal, a speech signal is used as a probe
signal. The clean and enhanced signal is first band-pass filtered into 20 bands with center
frequencies ranging form 300 to 3400 Hz. Then the Hilbert transform is used to calculate
the envelope of these signals and downsampled afterwards to 25 Hz to obtain the modulation
envelopes xj(n) and x̂j(n) of the clean an enhanced speech in each band j. These are used to
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calculate the normalized covariance in each band

ρj =

∑

n(xj(n)− µj)(x̂j(n)− νj)
√∑

n(xj(n)− µj)2
∑

n(x̂j(n)− νj)2
, (3.16)

where µj and νj determine the mean values of xj(n) and x̂j(n) respectively. The SNR is
calculated as

SNRj = 10log

(

ρ2j
1− ρ2j

)

, (3.17)

and limited to the range of [-15,15] dB. A linear mapping scheme is used to compute the trans-
mission index (TI) at frequency band j, given by

TIj =
SNRj + 15

30
. (3.18)

The NCM measure is then given by averaging the transmission indices across all frequency bands
with additional weighting factors Wj used in the SII standard [70]

NCM =

∑J
j=1WjTIj
∑J

j=1Wj

. (3.19)

The NCM measure is reported in [17] to be the best predictor for reverberant speech.

3.1.5 DAU Auditory Model (DAU)

Unlike the previous measures which are based on calculations on the physical acoustic signal,
the DAU measure predicts speech intelligibility by using an internal representation of the speech
signals. The used psycho acoustically validated model of auditory processing shown in Figure 3.3
was first presented by Dau in [78]. The incoming signal is filtered by a fourth-order gammatone
filterbank consisting of 32 bandpass filters with center frequencies ranging from 100 to 8000 Hz.
Afterwards each channel gets half-wave rectified and low-pass filtered at 1 kHz to preserve the
temporal fine structure of the signal for low frequencies and to extract the envelope for high
frequencies. This stage roughly simulates the oscillations of the basilar membrane into receptor
potentials in the inner hair cells. The next stage consists of a chain of five non-linear adaptation
loops with time constants of 5, 50, 129, 253, and 500 ms. This adaptation loops simulate the
fire rates of the inner hair cells which depend on the speed of fluctuations of the speech signal.
Furthermore masking effects are described with this loops. The 8 Hz modulation low-pass filter
extracts the envelope of the pre-processed signal. To account for the limited resolution of the
auditory system, an internal noise with constant variance is added at the end.
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Figure 3.3: The auditory perception model by Dau [78].

The above described model was later used by Christiansen et al. to predict speech intelligibility
and is described in [39]. An overview of the intelligibility model is shown in Figure 3.4. After pro-
cessing the reference and degraded signals with the auditory model, the linear cross-correlation
coefficient is calculated between the two inner representations in frames of length 20 ms and
with an overlap of 50%. At the same time the root-mean-square (rms) level of every frame of
the reference signal is compared to the rms level of the whole reference signal and categorized as
high- mid- or low-level. The cross-correlation coefficients are then averaged separately for each
level and finally are linearly weighted to obtain an overall score

DAU = wlowρ̄low + wmidρ̄mid + whighρ̄high, (3.20)

where wlow, wmid, and whigh are the weights and ρ̄low, ρ̄mid, and ρ̄high are the averaged level
scores. High-level segments are defined to have an rms level of 0 dB or higher than the overall
rms level. The mid-level segments are limited between -5 to 0 dB and the low-level segments are
defined between -15 to -5 dB. This level-based calculation is motivated by [71] but the bounds
are a little bit different. In the investigation in [39] the best weighting was found by only taking
high level frames into account also used in this thesis.

In the implementation of this measure a logistic function is used to map the objective scores
to the subjective scores. This mapping is replaced by another one to fit the data described in
Section 4.1.
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Figure 3.4: Schematic of the DAU measure, [39].

3.1.6 Short-Time Objective Intelligibility (STOI)

The intelligibility measure STOI proposed in [19] is one of the most widely used speech intelli-
gibility metric in the speech enhancement community and is known to have high correlation to
noisy and time-frequency weighted noisy speech. STOI compares the temporal envelopes of the
clean and degraded speech in short-time regions by means of a correlation coefficient. Its basic
principle is shown in Figure 3.5.

Figure 3.5: Principle of the STOI measure, [19].

After resampling the speech samples to 10 kHz in the first step, the clean and degraded speech,
denoted by x and y respectively, are TF-decomposed into frames with a length of 256 samples
(25.6 ms), where each frame is zero-padded up to 512 samples. For the STFT a Hann window
with 50% overlap is used. Silent frames, which do not contribute to speech intelligibility, are
removed by excluding all frames, where the speech energy is lower than 40 dB with respect to
the maximum energy of the speech signal. Then DFT-bins are grouped into 15 one-third octave
bands with center-frequencies from 150 Hz to 4.3 kHz. The norm of each band is referred as a
TF-unit, defined as

Xj(l) =

√
√
√
√
√

k2(j)−1
∑

k=k1(j)

|x̂(k, l)|2, (3.21)
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where x̂(k, l) denotes the kth DFT-bin of the lth frame and k1, k2 denote the one-third octave
band edges of the jth band.

This TF-units are stacked into vectors with N = 30 elements yielding an analysis length of
384 ms and is called short-time temporal envelope of the clean speech:

xj,l = [Xj(l −N + 1),Xj(l −N + 2), · · · ,Xj(l)]
T . (3.22)

Before comparison, the degraded short-time temporal envelope yj,m is first normalized to the
energy of the clean temporal envelope xj,m and is clipped, so that the local Signal-to-Distortion-
Ratio between the clean and degraded envelopes does not fall below -15 dB. The normalization
compensates for global level differences which should not strongly affect the speech intelligibility
while the clipping procedure upper bounds the sensitivity of the model related to one TF-unit.

The intermediate intelligibility measure is then calculated as the correlation coefficient between
the clean and modified degraded vector ŷj,m

dj,l =
(xj,l − µxj,l

)T (ŷj,l − µŷj,l
)

‖xj,l − µxj,l
‖‖ŷj,l − µŷj,l

‖
. (3.23)

The overall measure is finally obtained by averaging over all frames and bands:

d =
1

JL

∑

j,l

dj,l, (3.24)

where L represents the total number of frames and J is the number of one-third bands. The
STOI measure is defined in the interval of [0, 1] with a higher number meaning a better speech
intelligibility.

3.1.7 Mutual Information based on KNN (MIKNN)

Other than employing some kind of Signal-to-Noise ratio (SNR) or a correlation-based compar-
ison between the spectro-temporal representations of clean and enhanced speech, the method in
[76] calculates the speech intelligibility by relying on the estimated mutual information between
the clean and enhanced speech at temporal envelopes.

Mutual Information is a general measure of dependence between two random variables X and
Y

I(X;Y ) =

∫∫

PZ(x, y)ln

(
PZ(x, y)

PX(x)PY (y)

)

dxdy, (3.25)

where PX(x) and PY (y) are the marginal probability density functions and PZ(x, y) is the joint
density of Z = (X,Y ). MI can also be defined by the differential entropy h(X) that expresses
the degree of information that the observation of the random variable provides

h(X) = −

∫

PX(x)ln(PX(x)) dx. (3.26)
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Together with the joint entropy h(X,Y ) the MI can be rewritten as

I(X;Y ) = h(X) + h(Y )− h(X,Y ) (3.27)

where

h(X,Y ) = −

∫∫

PZ(x, y)ln(PZ(x, y)) dxdy (3.28)

The mutual information is always greater than or equal to 0 if X and Y are independent. In the
used implementation the MI is estimated by a k-nearest neighbour (KNN) approach by Kraskov
et al. [40]. This non-parametric statistical approach has the advantage that no prior knowledge
about the distributions of the random variables has to be known. The speech intelligibility score
is obtained as shown in Figure 3.6.

Figure 3.6: Speech intelligibility prediction based on mutual information. The mutual information is esti-
mated by a k-nearest neighbour approach, [76].

The time-frequency representation of the clean signal x and processed signal y is exactly the
same as the one used in the STOI measure described in Section 3.1.6. The intermediate in-
telligibility score is calculated through comparing the long-term temporal envelopes Φxj =
[Φxj (1), · · · ,Φxj(L)]

T and Φyj = [Φyj(1), · · · ,Φyj (L)]
T of the clean and processed speech sig-

nals at each one-third octave band by means of mutual information with l and j denoting the
frame and band index and L and J being the total number of frames and bands, given by:

dj = Î(Φxj ,Φyj ). (3.29)

The final score is the average of the intermediate scores dj over all sub-bands

d =
1

J

J∑

j=1

dj . (3.30)

3.1.8 Speech Intelligibility based on Mutual Information (SIMI)

Similar to Taghia and Martin, at quite the same time Jensen and Taal came up with their idea
of predicting speech intelligibility based on mutual information in [77]. In their investigation
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they assumed that intelligibility is monotonically related to the mutual information between
critical-band amplitude envelopes of the clean signal and the corresponding processed signal.
By lower-bounding the mutual information I(X,Y ) the resulting model turns out to be a simple
function of the mean-square error that arises when estimating a clean critical- band amplitude
using a minimum mean-square error (mmse) estimator based on the processed amplitude. The
average intelligibility score is computed by the following equation

Ĩ(X,Y ) =
1

J |ZX |
×

∑

l∈ZY ∩ZX

J∑

j=1

min(Î(Xj(l);Yj(l)), Imax), (3.31)

where Xj(l) and Yj(l) are the critical-band amplitudes of the clean and processed speech signals
at time frame l. The term J |ZX | denotes the number of speech-active critical-band amplitudes in
the clean signal and l ∈ ZY ∩ZX is the appropriate frame index set. An upper bound Imax = 0.2
per critical-band amplitude is introduced to avoid that a single high-information time-frequency
unit dominates the overall information score. This value was determined heuristically. For
further information about the estimation of MI in the bands please refer to [77]. The results in
[77] confirmed that methods with amplitude-only modifications of the critical band amplitudes
can not improve the predicted speech intelligibility coinciding with the previous observation in
[79].

3.2 Proposed Instrumental Measures

The introduction of some new phase-aware instrumental intelligibility measures follows the same
idea as for the quality estimation, that new measures have to be found that reliably predict
the speech intelligibility of an enhanced speech signal provided by a phase-aware enhancement
method. These are the unwrapped harmonic phase SNR (UnHPSNR) and the unwrapped root-
mean-square error (UnRMSE) described in Sections 3.2.1 and 3.2.2 both measuring the phase
estimation error in the unwrapped domain. This is motivated by reports where the phase
information was shown to have impact on intelligibility or was successfully used in a speech
enhancement framework to increase speech intelligibility [20,26,80,81].

Additionally the proposed quality measures in Sections 2.2.1 - 2.2.4 are considered as intel-
ligibility measures as well. As mentioned in Chapter 3, speech quality is subdivided into the
parts perceived quality and speech intelligibility. ”The relationship between perceived quality
and speech intelligibility is not entirely understood. However, there does exist some correla-
tion between these two. Generally, speech perceived as “good” quality gives high intelligibility,
and vice versa. However, there are samples that are rated as “poor” quality, and yet give high
intelligibility scores, and vice versa” [54].

3.2.1 Unwrapped Harmonic Phase SNR (UnHPSNR)

We define the unwrapped harmonic phase SNR as follows:

UnHPSNR = 10 · log

(

1

L

L∑

l=1

∑K/2
k=1X

2(k, l)
∑K/2

k=1X
2(k, l)(1 − cos(Ψx(k, l) − Ψ̂x(k, l)))

)

, (3.32)

where K and L denote the number of frequency bins and time frames, X(k, l) is the clean
spectral amplitude and Ψx(k, l) and Ψ̂x(k, l) are the unwrapped phase spectra. According to
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[82] the unwrapped phase is obtained through the approach of phase decomposition

ψ(h, l) = ∠V T (h, l) + ψd(h, l)
︸ ︷︷ ︸

Unwrapped phase Ψ(h,l)

+h ·

l∑

l′=0

ω0(l
′)(t(l′)− t(l′ − 1))

︸ ︷︷ ︸

Linear phase ψlin(h,l)

, (3.33)

where ω0(l) = 2πf0(l)/fs with f0(l) being the fundamental frequency at frame l and h denotes
the harmonic number. A robust fundamental frequency estimator (PEFAC) [83] is used to
extract the fundamental frequencies from the clean, noisy, and enhanced speech signals. The
first term ∠V T (h, l) corresponds to the minimum phase spectrum related to the vocal tract
filter. The second term is called dispersion phase ψd(h, l) and captures the information of the
excitation signal. The third term is the linear phase part that wraps the instantaneous phase
across time. The unwrapped phase Ψ(h, l) is calculated by

Ψ(h, l) = ψ(h, l) − ψlin(h, l), (3.34)

capturing the phase contributions of the excitation signal and the vocal tract.
As seen in Eq. (3.32) the UnHPSNR score is weighted by the clean spectral amplitude which

forces the score to impact more on spectral harmonics. Furthermore, the measure is calculated
only at voiced frames where the V/UV detector in the PEFAC implementation with a threshold
greater 0.99 is used. According to the recommendation of [66] a Blackman window is used
to obtain the phase spectrum. Frames are 24 ms long and the frameshift is determined at
3 ms. The UnHPSNR measure has a lower bound of -3 dB and reaches infinity for perfect
phase reconstruction. To make the UnHPSNR more credible the upper bound is set to 25 dB.
This leads to a dynamic range of 28 dB which is in alignment with other conventional speech
intelligibility instrumental measures.

3.2.2 Unwrapped Root Mean Square Error (UnRMSE)

The unwrapped root mean square error is beside the UnHPSNR the second measure that quanti-
fies the estimation error occurring in the unwrapped phase, introduced by the phase modification
procedure. It is defined as

UnRMSE = 10 · log




1

L

L∑

l=1

√
√
√
√

∑K/2
k=1X

2(k, l)(Ψx(k, l)− Ψ̂x(k, l))
2

∑K/2
k=1X

2(k, l)



 . (3.35)

and follows the same computation for the unwrapped phase Ψ(h, l) and the framing, as discussed
above in Section 3.2.1. The clean phase attains the minus infinity value and is lower bounded to
0 dB. Together with the theoretical upper bound, UnRMSE attains values between [0, 5] dB.
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4
Listening Test

Attention has to be drawn to a careful design of the subjective listening test to obtain useful re-
sults. This not only involves the test design itself but also the choice of the participants, the used
speech database and the used benchmark methods. Following [84] a satisfactory measurement
method is required to meet the six following characteristics as listed in [41]:

Objectivity The test results are reproducible (verifiable) over different listeners

(inter-subjectivity).

Reliability The test results show no large scattering when a stimulus is repeated to

the same listener (intra-subjectivity).

Validity The parameter measured by the test is the one intended to be measured.

Sensitivity The distinctions enabled by the test are as fine as those made by the

listener.

Comparability The test is applicable to a wide range of benchmark methods and makes
possible comparisons between groups of conditions.

Utility The pieces of information provided by the listening test are useful.

Sections 4.1 and 4.2 introduce the speech database and benchmark methods utilized in the
perceived quality and intelligibility listening tests presented in Sections 4.3 and 4.4. Both tests
were conducted in a quiet environment at Graz University of Technology using AKG K 601
High-End Stereo Headphones. The participants were supposed to be normal-hearing given the
information of the test questionnaire, but it has to be mentioned that no screening of their
auditory system had been undertaken. The perceived quality and intelligibility listening tests
were held on different days with different participants to some extent.

4.1 Speech Material

The test material was taken from the GRID corpus [28]. It is a free large multitalker audiovisual
corpus that supports evaluations in an automatic speech recognition (ASR) and speech percep-
tion context. The corpus consists of 34,000 phonetically balanced high-quality audio and video
recordings spoken by 34 native-english speaking talkers (18 male, 16 female). Each sentence
exhibits a six word command like structure as presented in Table 4.1. The color, letter, and
digit are the ”key words” used for perceptual listening tests. Each talker produced all possible
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combinations of these components, leading to 1000 sentences per talker in total. By performing
intelligibility tests on the clean speech utterances in [28] it is suggested that the utterances are
easily identifiable under quiet testing conditions.

Table 4.1: Sentence structure for the GRID corpus.

command color preposition letter digit adverb

bin

lay
place
set

blue
green

red
white

at
by
in

with

A-Z

excluding W
1-9, zero

again
now

please
soon

Out of this database, 50 sentences were chosen for the setup of the upcoming quality and intel-
ligibility listening tests in Sections 4.3 and 4.4 including female and male speakers. A detailed
list of the utterances used in the listening tests is provided in Appendix A. The utterances were
downsampled to 8 kHz.

4.2 Benchmark Methods

The benchmark methods were chosen to be representative for a phase-aware speech enhance-
ment framework. Therefore, all different types of speech enhancement methods incorporating
the noisy, some enhanced, and clean phase introduced in Section 1.1 were considered to be in the
analysis. Table 4.2 gives an overview over the benchmark methods with the according abbrevia-
tion used in the following and marks, whether the method is used in the perceived quality (QT)
or intelligibility (IT) test. For details about the different methods please refer to the literature
quoted in Table 4.2. A short description is given below.

Table 4.2: List of benchmark methods used in the objective and subjective analysis

Benchmark method Type Abbr. used in
QT

used in
IT

Clean Utterance Reference Ref x x
Noisy utterance Unprocessed UP x x

Minimum mean-square-error

log-spectral estimator (MMSE-LSA) [24]

Conventional C x x

MMSE-LSA + phase estimation

using phase decomposition [20]

Phase-enhanced C + PE x x

MMSE-LSA + STFT

phase improvement [21]

Phase-enhanced C + STFTPI x

MMSE-LSA + clean phase Phase-enhanced C + clean x

MMSE-LSA + iterative closed-loop

phase-aware speech enhancement [3]

Phase-aware C + PA x x

The noisy utterances (unprocessed, UP) were produced by mixing the clean utterances with
white and babble noise files taken from NOISEX-92 database [85] at specific SNRs. These
files were then enhanced by the conventional minimum mean-square error log-spectral estimator
(MMSE-LSA) proposed by Ephraim and Malah, denoted as Conventional (C) [24]. The method
applies a frequency-dependent gain function on the noisy DFT coefficients given a priori and

Graz, August 30, 2015 – 33 –



4 Listening Test

a posteriori SNR estimates and employs the noisy phase at the signal reconstruction stage. The
noise estimate is given by the improved minima controlled recursive averaging (IMCRA) [86]
noise estimator.

On top of the conventional approach, the phase-based enhancement algorithms replace the
noisy phase by an improved phase. The upper bound is fixed by the conventional method
that employs the clean phase, extracted from the clean utterance, at the signal reconstruction
(C + clean).

Short time phase improvement (STFTPI) [21] transforms the instantaneous phase to its base-
band representation

φX̂B
(k, l) = ∠X̂B(k, l) = ∠X̂(k, l)e−j

2πk
N
klF , (4.1)

where X̂(k, l) denotes the enhanced amplitude spectrum at frequency bin k and time frame l
and F is the frameshift of two consecutive time frames. Phase reconstruction is done at voiced
frames by using a recursive computation of the baseband STFT-phase along time and frequency
given a harmonic signal model and assuming that a STFT bin k is dominated only by the closest
harmonic. The accuracy of the method depends on a reliable fundamental frequency estimator
to obtain the harmonic frequencies. In their implementation they used the YIN estimator [87]
for fundamental frequency estimation.

Figure 4.1: Phase estimation using phase decomposition and temporal smoothing, [20].

Figure 4.1 illustrates the block diagram of the phase estimator relying on phase decomposi-
tion (C + PE), proposed in [20]. The method decomposes the instantaneous phase ψ(h, l) at
harmonics h into an unwrapped and linear phase part as described in Section 3.2.1, using pitch-
synchronous segmentation and PEFAC [83] for f0 estimation. The unwrapped phase Ψ(h, l) is
modelled by a von Mises distribution [88] defined as

VM(µc(h, l), κ(h, l)) =
eκ(h,l) cos(Ψ(h,l)−µc(h,l))

2πI0(κ(h, l))
, (4.2)

where µc(h, l) and κ(h, l) denote the circular mean and concentration. Phase enhancement is
achieved by smoothing Ψ(h, l) along time frames to reduce the phase variance at harmonics
given by

Ψ̂(h, l) = ∠

l+R/2
∑

l′=l−R/2

ejΨ(h,l
′

), (4.3)

with R as the number of frames within 20 ms time span. Before reconstruction, the linear phase
part is added back to the enhanced unwrapped phase leading to the enhanced instantaneous
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phase

ψ̂(h, l) = Ψ̂(h, l) + ψlin(h, l). (4.4)

The iterative phase-aware approach, denoted as (C + PA) [3], is shown in Figure 4.2. The first
stage consists of a conventional amplitude estimator [24] followed by a phase estimator, that
minimizes the geometric representation of the single-channel speech enhancement problem (see
Figure 2.5) at spectral peaks forcing a group delay deviation constraint to resolve the ambiguity
in phase, as presented in [8]. The enhanced phase is then used as input to the spectral amplitude
estimator given by:

X̂φ̂x
(k, l) =

√
2

β1

D−2(z)

D−1(z)
, where z = −

2Y cos(φy − φ̂x)
√

2β1σ2v
(4.5)

where D−ν(·) is the parabolic cylinder function of order ν and β1 = 1/σ2v + 1/2σ2x̂ where σ2x̂
and σ2v denote the enhanced speech and estimated noise power spectral densities with complex
Gaussian distribution for the joint distribution of Y and φY . A complex spectrogram X̂c,(i) is
build by the enhanced amplitude and phase to enter the next iteration i. The iteration is stopped
if convergence according to the inconsistency constraint [6], defined in the complex domain as
F(Xc,(i)) = STFT ◦ iSTFT(Xc,(i))−Xc,(i), is reached.

Figure 4.2: Block diagram of the closed-loop single-channel speech enhancement algorithm, [3].

4.3 Quality Listening Test

4.3.1 Setup

A panel of 11 listeners were recruited to participate in the quality test. All participants were
students from Graz University of Technology with an age between 19 and 29 years and got paid
for their participation. The test database described in Section 4.1 was corrupted with white and
babble noise at SNRs of 0, 5, and 10 dB to obtain the unprocessed noisy stimulus (UP) and was
processed afterwards by four speech-enhancement algorithms:

• Conventional (C)

• Conventional + clean phase (C + clean)

• Conventional + phase-enhanced (C + PE)

• Conventional + phase-aware (C + PA)
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introduced in Section 4.2. Following the MUlti Stimulus test with Hidden Reference and An-
chor (MUSHRA) standard [89], a Hidden Reference as well as an Anchor was included. The
Anchor is defined as the low-pass filtered reference signal (Ref) with a cut-off frequency of 2.5
kHz. This choice is different to the original standard that uses an Anchor with fc = 3.5 kHz,
because the clean reference signal is already downsampled to 8 kHz. The lower cut-off frequency
guarantees a perceptual difference to the original clean reference signal. The filter is designed
as a FIR equiripple filter of order 34 with a stopband attenuation of 50 dB and a bandpass rip-
ple < 0.1 dB. Together with the Hidden Reference and the Anchor, seven benchmark methods
were used in the listening test.

The graphical user interface is shown in Figure 4.3. Each participant had to evaluate 12
sample-sets chosen out of the drop-down menu. Every sample-set consisted of the open ref-
erence and the seven benchmark methods mentioned above. The first six sample-sets were
corrupted with white noise and the last six sample-sets were corrupted with babble noise both
with increasing SNRs from 0 to 10 dB, leading to two sample-sets per test condition and par-
ticipant. All utterances were chosen randomly out of the test database and the methods were
scrambled independently at each sample-set. Participants were asked to rate the perceived qual-
ity on a scale from 0 (bad) to 100 (excellent), where the main attention had to be drawn to the
noise reduction and the introduced distortions. To simplify the ranking procedure between the
benchmark methods, a ”sort ranking” button was provided that sorted the rankings from low
(left) to high (right). Participants had the possibility to switch forth and back the 12 sample-sets
to also adjust the ranking across SNRs and noisy types. The duration of the test was 45 minutes
on average. No training phase was provided in this test.

Figure 4.3: Graphical user interface of the perceived speech quality listening test.

4.3.2 Test Results

Figure 4.4 illustrates the Mean Opinion Scores (MOS) and 95% confidence intervals averaged
over the 11 participants. The results are differentiated by the test conditions, showing white
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noise results at SNRs of 0, 5, and 10 dB at the top and babble noise results accordingly at the
bottom. For all noise types and SNRs the same ranking is observed: The unprocessed condition
(UP) determines the lower bound followed by the conventional method (C). All methods that
incorporate phase enhancement perform better than C, where the iterative phase-aware approach
(C + PA) performs on top followed by the phase-enhanced using the clean phase (C + clean) and
the phase-enhanced using the estimated phase (C + PE). At this point it has to be mentioned
that the iterative approach outperforms the phase-enhanced approach utilizing the clean phase
even though it does not have knowledge about the clean phase.

Paired-sample t-tests were conducted to justify the significance of these rankings. Except
between C and C + PE, all other rankings were significant with respect to each other with p <
0.05. However, C + PE outperforms C significantly for the white noise scenario at SNR = 0 dB
as well as at SNR = 5 dB with p = 0.077 suggesting that a higher number of participants would
also lead to a significant result in this condition. In general, phase enhancement benefits more at
low SNR scenarios (0, 5 dB) also visible for babble noise compared to the conventional method.
This is confirmed by Vary in [63] where he stated that at local SNRs greater than 6 dB the noisy
phase provides a good estimate.

The comparison between white noise and babble noise points out that degradations by babble
noise are perceived less annoying by the participants. Babble noise has a lower power spectral
density (PSD) than white noise and therefore is percepted at a lower loudness level at equal
SNR. On the other hand the overall perceptual quality improvement between UP and C + PE
is more pronounced in white noise than babble noise while the improvement between UP and
C is approximately the same for both noise types. This is because the phase estimation stage
of the PE method [20] relies on f0 estimation [83] used for phase decomposition which is more
accurate in white noise.

Finally the observation along SNRs shows consistent perceived quality improvement for each
method and increasing SNRs.
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Figure 4.4: Mean Opinion Scores (MOS) of the MUSHRA test for (top) white and (bottom) babble noise
scenario shown for eleven participants.

Graz, August 30, 2015 – 37 –



4 Listening Test

4.4 Intelligibility Listening Test

4.4.1 Setup

A group of 12 listeners participated in the subjective intelligibility test. The group consisted
of people that also participated in the quality test as well as some that did not participate in
the quality test and were students from Graz University of Technology with an age between
19 and 29 years. Payment was offered to the participants after the test, which had an average
duration of 30 minutes. The test database was the same as used in the quality test described
in Section 4.1 and was corrupted with white and babble noise at SNRs of 0 and 5 dB to obtain
the unprocessed noisy speech signals (UP). Four speech-enhancement scenarios were included
similar to the quality test:

• Conventional (C)

• Conventional + STFT Phase Improvement (C + STFTPI)

• Conventional + phase-enhanced (C + PE)

• Conventional + phase-aware (C + PA)

that we already explained in Section 4.2. Together with the clean reference (Ref) and the un-
processed signal (UP), this leads to six benchmark methods used in the test. The test procedure
followed the standard described in [90].

Figure 4.5 shows the graphical user interface used to collect the inputs from the participants.
The participants were instructed to choose the right ”key words” (colour, letter, number) at
each presented utterance and had the possibility to play the utterance several times. As an
additional aid, the possibilities of each key word as well as the structure of the GRID sentence
itself were visualized on the GUI.

The test was organized in four blocks according to noise type and decreasing SNR, shown in
Table 4.3. Within each block, for each benchmark method four randomly selected utterances
were presented to the participants, where the order of the benchmark methods itself also was
randomized. To check the reliability of the participants, at each block two clean reference
utterances were included. Participants were rejected if their intelligibility scores of the clean
utterances were lower than those of the noisy utterances. This procedure led to ten participants
left in the analysis.

Table 4.3: Block organization of the intelligibility listening test.

Block Nr. Noise type SNR (dB)

1 White 5
2 Babble 5

3 White 0

4 Babble 0

A training session was provided built up by two steps. In the first step, a small set of clean
utterances were presented to the participants to get familiar with the structure of the GRID
sentences. The second step was intended to get familiar with the GUI by rating eight examples
that were designed to be representative for the noise types and benchmark methods used in
the listening test. The training database was independent of the test database and is given in
Appendix A.2.
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Figure 4.5: Graphical user interface of the intelligibility listening test.

4.4.2 Test Results

The speech intelligibility scores and 95% confidence intervals, obtained from the subjective
listening test averaged over ten participants, are shown in Figure 4.6. The scores were evaluated
by adding the errors over all three keywords (colour, letter, number) and are differentiated in
terms of noise types and SNRs. At same SNR scenarios the intelligibility scores are higher for
babble noise rather than white noise except for C + STFTPI and C + PE at SNR = 0 dB. This
observation is in alignment with the observation made in the quality test in Section 4.3.2. The
benchmark methods C + STFTPI and C + PE replace the noisy phase by an enhanced one
using a harmonic representation. Therefore a reliable estimate of the fundamental frequency is
necessary which is an erroneous task in an adverse noise condition as babble 0 dB, leading to
worse intelligibility scores. This fact also supports the better improvement in intelligibility for
white noise rather than babble noise of C + PE compared to C also observed in the quality
listening test in Section 4.3.2.

The iterative method (C + PA) outperforms all the other benchmark methods in every test
condition. However, this improvement is only significant for babble noise at 0 dB. A two-
proportion z-test was conducted to calculate the significance at the 95% confidence level. PA
also showed significant improvement in comparison to C except for babble noise at 5 dB.

In addition, observing Figure 4.6, better performance in speech intelligibility is only achieved
by benchmark methods that also modify the spectral phase (C + PE, C + PA) in comparison
to the unprocessed speech signals (UP) while the conventional method (C) degrades the speech
intelligibility, showing the potential of single-channel phase enhancement. The conclusion that
conventional speech enhancement algorithms that only modify the spectral amplitude degrades
the speech intelligibility is confirmed by observations reported in [91,92].
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Figure 4.6: Intelligibility scores showing the mean and 95% confidence interval for (top) white and (bottom)
babble noise scenario averaged over ten participants.

A similar trend of the intelligibility scores is illustrated in Figure 4.7. Here the results are
separated by the three key words, i.e., colour, letter, and number, averaged over all noisy types
and SNRs. Colours were most intelligible with scores above 90% followed by the numbers and
letters. The low intelligibility scores of the letters can be explained by the misidentification
of e.g. /v/ with /b/ and /p/ which differ only by their onsets while showing a very related
harmonic structure. The onsets carry less energy and are therefore more likely to be masked by
additive noise. The same confusion happened to /m/ and /n/. This observation was also made
in [28].

C + PA performs on top showing significance compared to C in each case and showing
significance to every other benchmark method for letter and number intelligibility. As stated
before, C degrades the speech intelligibility. The performance of C + PE is slightly better than
UP, however no significance is determined. Test results differentiated by noise types and SNRs
are available in Appendix B.1.
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Figure 4.7: Intelligibility scores showing the mean and 95% confidence interval separated by (left) colour,
(middle) letter and (right) number averaged over all noise types and SNRs for ten participants.
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5
Performance Evaluation

The instrumental measures presented in Chapters 2 and 3 have to be evaluated in terms of how
well they reflect the results obtained from the subjective listening tests, presented in Chapter 4.
A valid instrumental measure has to reliably predict the subjective scores over a wide range of
distortions. To assess the performance of the instrumental measures in a phase-aware single-
channel speech enhancement framework, the processing conditions are adapted to be focused
on the spectral phase. Therefore, different benchmark methods that modify the spectral phase
are included in the evaluation process in addition to the conventional ones. The unprocessed
conditions are considered for two different noise types, a stationary noise (white noise) and a
non-stationary noise (babble noise), at SNRs of 0, 5, and 10 dB being representative for a speech
enhancement scenario in real life.

In the speech enhancement community, a common methodology to evaluate the correlation
between subjective scores and the values of the instrumental measures is statistical analysis.
We follow the approach described in [93] by computing the normalized correlation coefficient ρ,
the root mean squared error σ, and Kendall’s tau τ . A normalization and mapping procedure
is included to account for the gain variations at the output of the different enhancement algo-
rithms and the non-linear relation between the subjective and objective scores. The evaluation
procedure is explained in detail in Sections 5.1 - 5.3.

Perceived quality and intelligibility performance results of the instrumental measures are then
presented in Sections 5.4 and 5.5. These results were first published in less detail in [65, 94].
Here, the evaluation is extended to also include the conventional and proposed quality measures
in the intelligibility performance assessment as well as to include the conventional and proposed
intelligibility measures in the quality performance assessment to get an overall picture of the
performance of each instrumental measure.

5.1 Mapping

The evaluation criteria described in Section 5.3, used for the performance analysis, assume that
the subjective and instrumental scores are linearly related. This is in general not the case and
a fitting function is necessary that describes the relationship between the subjective and the
instrumental measurements. In the literature different methodologies are described that provide
a reasonable fit, e.g., using a quadratic relationship [95] or a logistic function [96]. We follow the
methodology in [93] and apply a logistic function to the average instrumental scores d̄, defined
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as

F (d̄) =
1

1 + ead̄+b
, (5.1)

where a and b are two free parameters adapted in order to fit the subjective scores. The
average instrumental scores d̄ are obtained by averaging the individual distance outcomes over
the selected speech database (50 sentences from the GRID corpus) for each processing condition.

Figure 5.1 illustrates an example of the mapping procedure for the PD measure. Subplot (a)
shows the mean opinion scores (MOS) gathered from the subjective perceived quality listening
test as a function of the processing conditions. The processing conditions, illustrated by stars,
include noise types, SNRs, and benchmark methods (without clean and anchor) leading to
2×3×5 = 30 processing conditions where the MOSs are ranked in an ascending order. According
to these 30 processing conditions the appropriate averaged instrumental scores d̄PD are shown
in subplot (b) and are mapped to the subjective scores by the logistic function F (·) illustrated
in subplot (c). Subplot (d) shows that the instrumental scores are linearised after the mapping
and can be used for calculation of the Pearson’s correlation coefficient, described in Section 5.3.
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Figure 5.1: Example for the mapping procedure for the PD measure.

Eq. (5.1) can be used if the instrumental measure exhibits a linear relation with the SNR. Some
instrumental measures are exponentially related with the SNR and therefore need a different
mapping

Fexp(d̄) =
1

1 + ea·ln(d̄+c)+b
, (5.2)

where c is an extra parameter introduced. To find the free parameters, a non-linear least squares
procedure (MATLAB: nlinfit) is used for each individual instrumental measure.

5.2 Normalization

Due to the processing of the degraded speech signal the energy of the enhanced speech signal
x̂(n) can be significantly different compared to the energy of the clean speech x(n). While this
difference will not affect the subjective perceived quality and intelligibility judged by the human
listeners, some instrumental measures are sensitive to it. For instance, the SNR-based measures
including GSNR and SSNR computed in the time domain are calculated by a sample-by-sample
comparison between the clean and the enhanced speech signals. A global difference in the gain
of the clean and enhanced speech signal will therefore lead to a lower SNR score.
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To avoid this loss in prediction performance, a global normalization scheme is considered
where the speech energy of x(n) and x̂(n) are equalized. A normalization factor α is computed
using the following equation

α =

√
∑N

n=1 x(n)
2

∑N
n=1 x̂(n)

2
, (5.3)

where N denotes the total number of samples. The normalized enhanced speech signal is then
given by

x̂normalized(n) = α · x̂(n). (5.4)

This normalization is applied to every enhanced speech signal prior to the computation of
the instrumental scores. Note, that this normalization procedure does not affect or replace the
normalization procedures that are inherent in some existing conventional instrumental measures,
i.e., PESQ and STOI.

5.3 Evaluation Criteria

After linearisation, as described in Section 5.1, the correlation between the subjective listen-
ing scores and the scores of the instrumental measures can be obtained using the normalized
Pearson’s correlation coefficient defined as

ρ =

∑

c(Sc − S̄)(Oc − Ō)
√
∑

c(Sc − S̄)2
∑

c(Oc − Ō)2
, (5.5)

where Sc and Oc = F (d̄) denote the subjective and mapped objective scores at the cth processing
condition and S̄ and Ō represent the average values computed over all processing conditions,
respectively. The numerical value of ρ is defined between [0, 1] where 1 indicates a high correla-
tion.

The second figure of merit is the root-mean-square error (RMSE) between the subjective and
the mapped objective scores computed over all conditions, given by:

σ =
1

100

√

1

C

∑

c

(Sc −Oc)2, (5.6)

where C denotes the total number of processing conditions. It is normalized in the range between
[0, 1] and provides information how the scores obtained from the instrumental measures scatter
around the true subjective scores obtained from the listening tests. Hence it is a measure of
accuracy.

Finally, Kendall’s tau is included defined as

τ =
Nc −Nd

1
2C(C − 1)

. (5.7)

Here Nc and Nd are the number of concordant and discordant pairs in the evaluated set of
processing conditions. Let (S1, O1), (S2, O2), · · · , (SC , SC) be the set of observations of the
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subjective and corresponding mapped objective scores. Any pair of observations (Si, Oi) and
(Sj , Oj) are said to be concordant if the ranks for both elements agree; that is, if Si > Sj and
Oi > Oj or if Si < Sj and Oi < Oj . The pairs are discordant, if Si > Sj and Oi < Oj or if
Si < Sj and Oi > Oj . Kendall’s tau is a rank correlation coefficient that tests whether there
is a monotonic relation between the subjective and objective scores and is independent of the
selected mapping. The value lies in the range of −1 < τ < 1 where -1 and 1 define a perfect
disagreement/agreement between the two rankings.

The three figures-of-merit introduced above have a direct relation to the criteria discussed in
Chapter 2 which define a good instrumental measure. While ρ and σ determine the Accuracy,
τ reveals the Consistency of an instrumental measure.

5.4 Perceived Quality Results

For each instrumental measure, the correlation coefficient, the RMSE, and the Kendall’s tau
are shown in Figure 5.2. The results are differentiated in the noise type and ranked in terms of
the correlation coefficient increasing from left to right. Also the scatter plots of the combined
noise scenario between the mapped objective scores and the mean opinion scores are illustrated
in Figure 5.3, where in the legend (W-) and (B-) denote white and babble noise results. For
further details, the scatter plots of the mapped results separated in terms of the noise type as
well as the scatter plots of the unmapped results together with the fitted mapping functions are
provided in Appendices B.2.1 and B.2.2, respectively.
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Figure 5.2: Perceived quality performance evaluation of the instrumental measures categorized to (top) white,
(middle) babble and (bottom) both noise types.
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As expected, most of the instrumental measures designed for predicting speech intelligibility
showed a poor performance (ρ < 0.8) in predicting the perceived quality. These measures
include SII, CSIIh, SNRloss, NCM, DAU, STOI, MIKNN, and SIMI in the set of the conventional
measures and UnHPSNR and UnRMSE in the set of the proposed phase-aware measures. The
rationale behind this is a significant overprediction of the perceived quality of the unprocessed
speech signals as observed in Figure 5.3. This is as a consequence of that the unprocessed (noisy)
speech signals corrupted by some noise at low SNRs are perceived as low perceived quality while
they can be still quite intelligible. The CSII-based measures, except CSIIh, performed at a
moderate level (0.8 < ρ < 0.85) showing a similar performance supported by the fact that they
correlate well to each other as reported in [71].
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Figure 5.3: Mapped scatter plots of the perceived quality predictions for all instrumental measures in a com-
bined white and babble noise scenario at 0, 5, 10 dB.
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A reasonable performance was obtained by the proposed phase-aware quality measures GD, IFD,
PD and MSE which all performed better than the conventional ones: GSNR, fwSNR, SAR, LLR
and CEPS in every noise scenario. The PD measure exhibited high correlation across noise types
(ρ > 0.9) and outperformed all the conventional measures, including PESQ, in all noise scenarios.
It predicted the unprocessed conditions with better accuracy than any other measure. In general,
the unprocessed conditions were overestimated by all instrumental measures in comparison to
the enhanced speech conditions. The GD measure was the most reliable predictor in white noise
but showed significant degraded performance in babble noise. This could be explained due to
the robustness of the group delay representation against additive white noise, as reported in
[97]. The proposed quality measures SSE and WSSE that also incorporate spectral amplitude
information showed a moderate performance, where the simpler SSE model obtained a higher
correlation. Out of the SNR-based measures the SIR showed the highest correlation supported
by the observation in [98] with similar performance to ISa and PESQ.

Table 5.1 summarizes the measures that revealed a correlation ρ ≥ 0.8 in each noise scenario.
The mean values of the instrumental scores in the last column of the table were computed
by averaging over the three different noise scenarios. The PD measure obtained the highest
correlation (ρ = 0.92) on average followed by SIR and GD (ρ = 0.89). The intelligibility measures
CSII and CSIIm were at the bottom of this ranking. A reliable metric should also perform stable
across different conditions. Stable performance was observed for PD, PESQ and CSII where
only PD showed a reasonable high correlation. Furthermore, the PD measure exhibited the best
performance in terms of σ and τ . All together, PD showed reasonable performance in terms of
accuracy and consistency.

Table 5.1: Statistical analysis of the top performing measures showing ρ ≥ 0.8 for each noise scenario.

White noise Babble noise Both noises Mean
ρ σ τ ρ σ τ ρ σ τ ρ σ τ

PESQ 0.86 0.07 0.79 0.87 0.07 0.77 0.86 0.07 0.73 0.86 0.07 0.77

SSNR 0.86 0.08 0.75 0.85 0.07 0.67 0.80 0.09 0.64 0.84 0.08 0.69
SIR 0.92 0.06 0.90 0.90 0.06 0.77 0.86 0.07 0.73 0.89 0.06 0.8
ISa 0.91 0.06 -0.75 0.87 0.07 -0.73 0.86 0.07 -0.68 0.88 0.07 -0.72

GD 0.96 0.04 -0.87 0.84 0.07 -0.70 0.87 0.07 -0.71 0.89 0.06 -0.76
IFD 0.89 0.07 -0.81 0.84 0.07 -0.68 0.86 0.07 -0.71 0.86 0.07 -0.73

PD 0.93 0.05 -0.89 0.91 0.06 -0.77 0.91 0.06 -0.76 0.92 0.06 -0.81
MSE 0.90 0.06 0.81 0.83 0.08 0.70 0.86 0.07 0.75 0.87 0.07 0.75

SSE 0.86 0.07 -0.71 0.88 0.06 -0.71 0.81 0.08 -0.63 0.85 0.07 -0.68
CSII 0.84 0.08 0.73 0.85 0.07 0.71 0.83 0.08 0.68 0.84 0.08 0.71

CSIIm 0.81 0.09 0.73 0.86 0.07 0.73 0.82 0.08 0.70 0.83 0.08 0.72

5.5 Intelligibility Results

Figure 5.4 illustrates the performance of the speech intelligibility prediction of each instrumental
measure differentiated in noise types where the top, middle, and bottom subfigures show the
white, babble, and combined noise scenarios. The results are ranked by means of the correlation
coefficient increasing from left to right.

A similar observation to the results in the previous section was made in terms of that most of
the conventional perceived quality measures showed a low correlation (ρ < 0.8) in predicting the
subject intelligibility results due to underestimation of the unprocessed conditions, as illustrated
in the scatter plots in Figure 5.5. In particular the LPC-based measures CEPS, LLR, Isa, and
the proposed phase-aware measure GD were affected to this. The other proposed perceived
quality measures IFD, PD, and MSE showed a moderate correlation (0.8 < ρ < 0.9) but were
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Figure 5.4: Intelligibility performance evaluation of the instrumental measures categorized to (top) white,
(middle) babble and (bottom) both noise types.

not able to reach the top-performing intelligibility measures. The rationale behind this is that
the quality measures compute a score based on the STFT representation without a weighting
function in contrast to the intelligibility measures that use weighted band representations known
to be more suitable for intelligibility prediction.

The proposed intelligibility measures UnRMSE and UnHPSNR showed the highest correlation
for white noise and a reasonably high correlation for babble noise. Although UnHPSNR is
calculated in the same domain as UnRMSE, it showed less correlation. This could be explained
by two facts: First, in the unwrapped domain the exact difference between the unwrapped phases
(ψ−ψ̂) is more reliable than a metric which uses an additional cosine term and second, UnHPSNR
computes scores only at voiced segments and neglects frames capturing spectral transitions
argued to be important for speech intelligibility in [99]. Both metrics performed better for white
noise than babble noise which is a result of the inaccuracy in f0 estimation, required for phase
decomposition, in the babble noise scenario. Although UnRMSE and UnHPSNR revealed a
reliable performance in the separated noise scenarios, they were not able predict the subjective
results in the combined noise scenario due to a consistent underprediction of the babble noise
conditions and a clearly visible overprediction of the STFTPI method at 0 dB for babble noise.
As illustrated in Figure 5.5 this significant overestimation was observed for every instrumental
measure and explains the degraded performance for the combined noise scenario in comparison
to the performance obtained in the separated noise scenarios.

The CSII-based measures exhibited reliable prediction in all the three noise scenarios. For
babble noise and the overall scenario, CSIIm was the top performing metric. This is supported
by the earlier observation by Kates [71] demonstrating that the mid-level CSII contains much
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Figure 5.5: Mapped scatter plots of the intelligibility prediction for all instrumental measures in a combined
white and babble noise scenario at 0, 5 dB.

information on the envelope transients and spectral transitions as shown in Figure 5.6. These
indicate the place and manner of articulation [99]. The CSIIh score mainly represents vowel
nuclei and does not distinguish between e.g. /v/ and /b/ which differ in their onsets but share
the same vowel phoneme resulting in a lower correlation than CSIIm.

The mutual information based measures MIKNN and SIMI, reported to be reliable predictors
for speech intelligibility in a single-channel speech enhancement framework [76,77], here showed
a moderate performance. Note, that these measures compute a score on long term statistics
which may cause the inaccurate results using the short sentences (∼ 1.5 s) of the GRID corpus
as the speech database. Finally, the DAU measure also performed at a moderate correlation
similar to the results presented in [19,74]

Table 5.2 summarizes the top performing instrumental measures that exhibited ρ ≥ 0.8 for
intelligibility prediction in each noise scenario. Three of the proposed phase-aware quality mea-
sures (IFD, PD, MSE) together with STOI, the conventional SII, CSII, CSIIh, and CSIIm
constitute the subset. On average the highest correlation was obtained by CSIIm (ρ = 0.91)
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Figure 5.6: Time-domain (top) and spectral (bottom) representation of the GRID sentence ”bin blue at l
four soon” showing the relative RMS level (dB) and the according regions used to compute CSIIl
(green), CSIIm (red) and CSIIh (no colour).

which outperformed all other measures followed by the CSII and IFD measures. High per-
formance of CSII-based measures for single-channel enhanced speech was already reported in
[19,74,100]. The IFD and MSE measure showed better performance than STOI in all scenarios.
Although the PD measure exhibited the lowest correlation coefficient in this subset of the top
performing intelligibility measures, it showed a comparable performance to CSIIm in terms of τ
and furthermore revealed the most stable results across noise types, a property that was already
observed in the perceived quality evaluation in Section 5.4.

Table 5.2: Statistical analysis of the top performing measures showing ρ ≥ 0.8 for each noise scenario.

White noise Babble noise Both noises Mean
ρ σ τ ρ σ τ ρ σ τ ρ σ τ

IFD 0.90 0.04 -0.74 0.89 0.07 -0.75 0.81 0.07 -0.64 0.87 0.06 -0.71
PD 0.83 0.05 -0.80 0.83 0.08 -0.81 0.80 0.08 -0.67 0.82 0.07 -0.76

MSE 0.90 0.04 0.71 0.89 0.07 0.81 0.80 0.07 0.68 0.86 0.06 0.73
STOI 0.89 0.04 0.68 0.84 0.08 0.81 0.80 0.07 0.63 0.84 0.07 0.70

SII 0.91 0.04 0.77 0.81 0.09 0.75 0.80 0.07 0.66 0.84 0.07 0.73
CSII 0.91 0.04 0.77 0.90 0.06 0.78 0.84 0.07 0.74 0.88 0.06 0.76

CSIIh 0.84 0.05 0.77 0.89 0.07 0.81 0.83 0.07 0.72 0.85 0.06 0.77

CSIIm 0.92 0.04 0.80 0.94 0.05 0.84 0.86 0.06 0.68 0.91 0.05 0.77

5.6 Combined Performance of Perceived Quality and Intelligibility
Prediction

The title of this section may be misleading in terms of to think that there exists a measure that
reliably predicts both, perceived quality and speech intelligibility. In fact, it is not clear how
the perceived quality and speech intelligibility are related to each other. As an example, Jensen
and Taal in [77] reported that speech intelligibility cannot be improved by any processing of the

Graz, August 30, 2015 – 49 –



5 Performance Evaluation

noisy critical-band amplitudes that on the other hand were used to enhance the perceived speech
quality while the phase-based method by Kulmer and Mowlaee in [20] showed joint improvement
for both as verified by the listening tests in Sections 4.3.2 and 4.4.2.

The intention here is to find an instrumental measure that guides the way towards an upgraded
single-channel speech enhancement algorithm that improves both perceived quality and speech
intelligibility within a phase-aware framework. Therefore Table 5.3 presents those measures
that showed ρ ≥ 0.8 in each noise scenario in the perceived quality and intelligibility evaluation.
The mean performances of the measures, computed as the average over the six performance
conditions, were almost the same showing a slight benefit for PD and CSIIm. In general the
proposed phase-aware quality measures (IFD, PD, MSE) exhibited higher correlation in the
quality evaluation termed as (-q) while the conventional intelligibility measures (CSII, CSIIm)
showed a better correlation to intelligibility (-i), as to be expected. The benefit of PD and
CSIIm against the other measures should not be drawn-out too much. Analysing Tables 5.1 and
5.2 concludes that PD was the best performing measure for perceived speech quality and CSIIm
the best performing one for speech intelligibility respectively, but they also showed the lowest
correlation in the opposite evaluation field within the subset of the better performing measures,
presented in Tables 5.1 and 5.2. Only in terms of the rank correlation coefficient τ , the PD
measure revealed a reasonable greater correlation. The CSII measure showed the most stable
results across all conditions in terms of ρ and τ .

Table 5.3: Statistical analysis of the combined perceived quality and intelligibility performance of the instru-
mental measures showing ρ ≥ 0.8 for each scenario.

White noise Babble noise Both noises Mean
ρ σ τ ρ σ τ ρ σ τ ρ σ τ

IFD-q 0.89 0.07 -0.81 0.84 0.07 -0.68 0.86 0.07 -0.71
0.86 0.07 -0.72

IFD-i 0.90 0.04 -0.74 0.89 0.07 -0.75 0.81 0.07 -0.64

PD-q 0.93 0.05 -0.89 0.91 0.06 -0.77 0.91 0.06 -0.77
0.87 0.06 -0.78

PD-i 0.83 0.05 -0.80 0.83 0.08 -0.81 0.80 0.08 -0.67
MSE-q 0.90 0.06 0.81 0.83 0.08 0.70 0.86 0.07 0.75

0.86 0.07 0.74
MSE-i 0.90 0.04 0.71 0.89 0.07 0.81 0.80 0.07 0.68
CSII-q 0.84 0.08 0.73 0.85 0.07 0.71 0.83 0.08 0.68

0.86 0.07 0.74
CSII-i 0.91 0.04 0.77 0.90 0.06 0.78 0.84 0.07 0.74

CSIIm-q 0.81 0.09 0.73 0.86 0.07 0.73 0.82 0.08 0.70
0.87 0.06 0.75

CSIIm-i 0.92 0.04 0.80 0.94 0.05 0.84 0.86 0.06 0.68

5.7 Properties with Regard to Additive Noise

A good instrumental measure has to be credible. This means that the score it produces has
to be easy interpretable. The following experiment clarifies how the top performing measures
of Table 5.3 evolve over SNRs for speech corrupted by additive white and babble noise. For
the sake of completeness the conventional state-of-the-art perceived quality and intelligibility
measures PESQ and STOI are also included in the analysis as well as the proposed intelligibility
measure UnRMSE that showed reasonable performance in the intelligibility evaluation.

Figure 5.7 shows the scores and 95% confidence intervals for each measure averaged over the
50 sentences from the test data set. The boundaries of the SNRs were determined to -20 and
30 dB where the lower bound refers to a speech signal that is completely masked by the additive
noise and hence is not intelligible. The upper bound of 30 dB is perceived as the clean speech
signal with a slightly audible background noise and leads to a completely intelligible speech
signal. All measures except PESQ and UnRMSE reveal a smooth sigmoid function within the
defined dynamic range. These two measures are more sensitive to slight distortions in high
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Figure 5.7: Mean objective scores of the best performing instrumental measures evaluated over 50 sentences
from the GRID corpus corrupted by additive noise.

SNR regions showing a more linear relationship to the SNR. According to the noise types each
measure except UnRMSE shows a better score for babble noise rather than white noise which
is in line with the observations of the listening tests. The UnRMSE underestimates the scores
in babble noise, an observation already made in Section 5.5. The CSII-based measures are the
only one that exploit their whole definition range of [0,1] to evaluate the noisy utterances from
not intelligible to intelligible. The proposed measures IFD, PD, and MSE smoothly reach their
upper bound towards a clean speech signal defined as zero for IFD and PD and one for MSE.
However, comparing the subplots of IFD, PD, and MSE in Figure 5.7 with their definitions
in Eq. (2.29), (2.32), and (2.33) it is clear that the bound of four for IFD and PD and zero
for MSE will not be reached. Those measures compute a score in the STFT domain based on
different phase representations only. The representations show a clear structure at harmonics
while revealing a random structure between harmonics and at noise only frames thus leading
to a bound somewhere below the theoretical value. The PD measure saturates for low SNRs
to a value about 1.5. Good speech quality is interpreted by values less than 0.1 while a score
greater than 1 indicates bad speech quality. For the IFD the same lower bound for good speech
quality can be observed. Bad speech quality is determined by a value greater than 0.8 where
the measure overall saturates to approximately 1.

5.8 Properties with Regard to Phase Modifications

The second property to be explored is the influence of pure phase distortions to the scores of
the instrumental measures. Let φx(k, l) be the STFT phase of the clean speech signal x(n)
at frequency bin k and frame index l. The phase information ψx(h, l) at the harmonics h are
obtained by linear interpolation of the spectral phase φx(k, l) at the harmonics. Following the
phase decomposition in [20] the unwrapped phase is computed by removing the linear phase
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part, given as

Ψx(h, l) = ψx(h, l) − ψxlin(h, l). (5.8)

The unwrapped phase is modified by adding a random phase with uniform distribution in the
interval of [−π, π] according to the following equation

Ψxmod
(h, l) = Ψx(h, l) + α · U [−π, π], (5.9)

where α lies in the range of [0,1] and determines the variance of the distortion. The distorted
unwrapped phase is transformed back to the STFT domain by first adding the linear phase part
back to the distorted unwrapped phase. Then the frequency bins are modified within the width
of the main-lobe of the analysis window denoted by Np:

φxmod
(⌊hω0K⌋+ i, l) = ψxmod

(h, l), ∀i ∈ [−Np/2, Np/2]. (5.10)

with K as the DFT size and ω0 = 2πf0/fs. The complex spectrum is then constructed using
the clean spectral amplitude together with the modified phase given as

Xc
mod(k, l) = |Xc(k, l)|ejφxmod

(k,l), (5.11)

and is reconstructed to the time-domain modified speech signal by applying an inverse STFT.
The impact of the added random phase to the clean speech signal is illustrated in Figure 5.8.
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Figure 5.8: Spectrograms (top) and circular variances (bottom) of the sentence ”bin blue at l four soon”
corrupted by a random phase at different α values.
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The subplots at the bottom show the circular phase variance which is a measure of the uncer-
tainty of a phase value along time. Phase variance has been reported as a reliable measure for
voice quality assessment in [101]. At voiced frames, the circular variance is zero and reflects
the harmonics given a clean speech utterance. With increasing α, the structure observed in
the circular variance gets destroyed and for the extreme case, i.e. α = 1 only the fundamental
harmonic is visible. This residual structure is due to the pitch-synchronous phase decomposition
that employs some phase information of the fundamental frequency at the signal reconstruction
stage. The spectrograms are illustrated on the top row, revealing that the harmonics scatter
corresponding with increasing α. While the formant structure is hardly affected by the added
random phase, the harmonic content decreases for increasing α and is totally lost for α = 1,
perceived as roughness. Since the formants are preserved to a certain extent, the modified speech
signals remain quite intelligible, confirmed by informal listening.

The performance of the instrumental measures is shown in Figure 5.9. Because of an im-
perfect analysis-synthesis framework of the pitch-synchronous phase decomposition, no measure
obtained its best score for α = 0. In comparison to the experiment in the previous section and
Figure 5.7, all measures obtained better scores indicating better perceived quality/intelligibility
for phase distortions at α = 1 than the low SNR additive noise scenario at -20 dB, verified by
informal listening. Remarkable was the insensitivity of STOI to the introduced phase distor-
tions which resulted in an overprediction of speech intelligibility for high α values. The PD
and CSII-based measures were most sensitive spanning a wide range with respect to the scores
and showed no saturation towards α → 1. Over-sensitiveness of the CSII-based measures with
respect to phase was also reported in [74].
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Figure 5.9: Mean objective scores of the best performing instrumental measures evaluated over 50 sentences
from the GRID corpus corrupted by phase distortions controlled by α.
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6
Conclusion

6.1 Performance of the Instrumental Measures in a Phase-Aware

Framework

In this investigation, we addressed the following research questions: First, which existing instru-
mental measures reliably assess the perceived quality and speech intelligibility of the enhanced
speech when both, spectral amplitude and spectral phase are modified. Second, whether a new
phase-aware measure outperforms the existing ones in terms of predicting the subjective results
and third, if any instrumental measure is capable to determine both, perceived quality and
speech intelligibility.

A MUSHRA test and a intelligibility test, following the recommendation by Barker and Cooke,
were conducted to collect the subjective quality and intelligibility scores in white and babble
noise conditions. A test database consisting of 50 sentences from the GRID corpus was used.
The listening test results suggest that the incorporation of a phase modification stage in the
enhancement procedure leads to improved perceived quality and speech intelligibility in com-
parison to the conventional MMSE-LSA method, proposed by Ephraim and Malah, that only
modifies the spectral amplitude while copying the noisy phase at signal reconstruction. These
results are pronounced more at low SNRs for white noise rather than babble noise due to the
inaccurate fundamental frequency estimation in babble noise, an essential task for phase decom-
position applied in the benchmark method C + PE.

A statistical analysis was performed to quantify the correlation between the scores of the
instrumental measures and the subjective listening results using the Pearson’s correlation coef-
ficient ρ, the root-mean-square error (RMSE) σ, and Kendall’s tau τ . The well-known measures
PESQ and STOI, widely used for perceived quality and speech intelligibility assessment, exhib-
ited a reasonable high correlation but are not the top performing measures in the evaluated test
setup.

In particular, the proposed quality measures GD, PD, and MSE outperformed PESQ on av-
erage where the PD measure revealed the highest performance (ρ = 0.92, σ = 0.06, τ = −0.81)
for perceived quality evaluation and was the top performing measure in the babble and com-
bined noise scenario. The GD measure was an accurate predictor in white noise (ρ = 0.96, σ =
0.04, τ = −0.87) but significantly overestimated the unprocessed speech signals in babble noise.

The proposed intelligibility measures UnHPSNR and UnRMSE showed a reliable estimation
of speech intelligibility in white noise (ρ > 0.95), though they were poor predictors in the com-
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bined noise scenario. The rationale behind this is the consistent underestimation of the scores in
babble noise as a result of the inaccurate f0 estimation in non-stationary noise. The f0 tracker
is part of the phase decomposition to extract the unwrapped phase used in UnHPSNR and
UnRMSE calculation. On average, the CSII-based measures showed a reasonable high correla-
tion to the subjective speech intelligibility scores where CSIIm exhibited the best performance
(ρ = 0.91, σ = 0.05, τ = −0.77) and outperformed all other measures in the babble and combined
noise(where the mapping between the subjective and objective scores was applied to babble and
white conditions) scenarios.

At least, no measure was capable to reliably predict perceived quality and speech intelligibility
jointly. This observation might be straightforward since an enhanced speech signal perceived
with better speech quality not necessarily has to be more intelligible and vice versa. However, a
moderate average correlation of ρ = 0.87 across perceived quality and intelligibility performance
evaluation of the PD and CSIIm measures indicate that there has to be some connection between
these two characteristics.

6.2 Outlook

The results showed that the proposed phase-aware quality measures GD, IFD, and PD revealed
a high correlation to the subjective listening results. However, the analysis conditions were
isolated to phase-aware single-channel enhancement algorithms operating in white and babble
noise. Further investigations should study the reliability of the proposed measures for other
noise types and processing conditions, i.e., Ideal Time Frequency Segregation (ITFS). The per-
formance of these measures in terms of predicting the speech intelligibility was at a lower level
but nevertheless exhibited a moderate correlation for IFD and PD. Since the proposed measures
are easily extendible, more research could be done on employing band-importance functions
known to be an important part in the computation of well-known state-of-the-art intelligibility
measures and analyse if this increases the speech intelligibility prediction.

The proposed phase-aware speech intelligibility measures UnHPSNR and UnRMSE showed
a high performance in white noise while they revealed a significant worse performance in the
combined noise scenario, where the objective scores were fitted to the subjective scores includ-
ing white and babble noise conditions. This is due to the inaccurate fundamental frequency
estimation in the adverse noise scenario. These two measures could benefit from a more reliable
f0 tracker.

The presented measures are simple and compute a score based on the pure difference be-
tween some phase representation of the enhanced and clean speech signals. A recently proposed
single-channel speech enhancement system [20], reported to enhance perceived speech quality
and speech intelligibility, operates on circular statistics at harmonics. In this sense a new more
sophisticated measure could be thought of a distance measure between the enhanced and refer-
ence probability distributions of the spectral phase at harmonics with an additional amplitude
weighting.
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A
Speech Database

A.1 Test Database

audio file utterance colour letter number

bbal4s.wav bin blue at l four soon blue l 4

bbal5n.wav bin blue at l five now blue l 5

bbap9s.wav bin blue at p nine soon blue p 9

bbbs4n.wav bin blue by s four now blue s 4

brap4n.wav bin red at p four now red p 4

brap7a.wav bin red at p seven again red p 7

brav9s.wav bin red at v nine soon red v 9

brbj6p.wav bin red by j six please red j 6

brbj7a.wav bin red by j seven again red j 7

brbq1a.wav bin red by q one again red q 1

brbx2n.wav bin red by x two now red x 2

brbx3s.wav bin red by x three soon red x 3

brbx4p.wav bin red by x four please red x 4

bric2n.wav bin red in c two now red c 2

lgal1s.wav lay green at l one soon green l 1

lgal3a.wav lay green at l three again green l 3

lgap1p.wav lay green at p one please green p 1

lgwm4p.wav lay green with m four please green m 4

lrii2p.wav lay red in i two please red i 2

lrii3a.wav lay red in i three again red i 3

lriizn.wav lay red in i zero now red i 0

lrio5s.wav lay red in o five soon red o 5

lrio7a.wav lay red in o seven again red o 7

lriv1a.wav lay red in v one again red v 1

lrivzp.wav lay red in v zero please red v 0

lrwj3s.wav lay red with j three soon red j 3

lrwp6n.wav lay red with p six now red p 6

lrwp7s.wav lay red with p seven soon red p 7

Graz, August 30, 2015 – 56 –



A Speech Database

lrwp9a.wav lay red with p nine again red p 9

lrwx1s.wav lay red with x one soon red x 1

lrwx2p.wav lay red with x two please red x 2

lrwxzn.wav lay red with x zero now red x 0

pbiu3n.wav place blue in u three now blue u 3

pgin2p.wav place green in n two please green n 2

sbam9n.wav set blue at m nine now blue m 9

sban1p.wav set blue at n one please blue n 1

sban2a.wav set blue at n two again blue n 2

sbanzs.wav set blue at n zero soon blue n 0

swab7a.wav set white at b seven again white b 7

swihzn.wav set white in h zero now white h 0

swiu2s.wav set white in u two soon white u 2

swiu4a.wav set white in u four again white u 4

swwc3p.wav set white with c three please white c 3

swwc4a.wav set white with c four again white c 4

swwi6s.wav set white with i six soon white i 6

swwp1p.wav set white with p one please white p 1

swwp2a.wav set white with p two again white p 2

swwpzs.wav set white with p zero soon white p 0

swwv3n.wav set white with v three now white v 3

swwv5p.wav set white with v five please white v 5

A.2 Training Database

audio file utterance colour letter number

bbax7n.wav bin blue at x 7 now blue x 7

bbbr9a.wav bin blue by r 9 again blue r 9

lgay9s.wav lay green at y 9 soon green y 9

lgbmzs.wav lay green by m 0 soon green m 0

prig9n.wav place red in g 9 now red g 9

priu8s.wav place red in u 8 soon red u 8

swbi2s.wav set white by i 2 soon white i 2

swwv1p.wav set white with v 1 please white v 1

Graz, August 30, 2015 – 57 –



PAPE - Phase-Aware Performance Evaluation

B
Supplemental Figures

B.1 Intelligibility Listening Test
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Figure B.1: Intelligibility scores showing the mean and 95% confidence interval separated by (left) colour,
(middle) letter, and (right) number for white noise @ 5 dB SNR averaged over ten participants.
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Figure B.2: Intelligibility scores showing the mean and 95% confidence interval separated by (left) colour,
(middle) letter, and (right) number for white noise @ 0 dB SNR averaged over ten participants.
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Figure B.3: Intelligibility scores showing the mean and 95% confidence interval separated by (left) colour,
(middle) letter, and (right) number for babble noise @ 5 dB SNR averaged over ten participants.
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Figure B.4: Intelligibility scores showing the mean and 95% confidence interval separated by (left) colour,
(middle) letter, and (right) number for babble noise @ 0 dB SNR averaged over ten participants.
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B.2 Perceived Quality Evaluation

B.2.1 Mapped Scatter Plots
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Figure B.5: Mapped scatter plots for all instrumental measures in a white noise scenario at 0, 5, 10 dB.
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Figure B.6: Mapped scatter plots for all instrumental measures in a babble noise scenario at 0, 5, 10 dB.
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B.2.2 Unmapped Scatter Plots
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Figure B.7: Scatter plots for all instrumental measures together with the fitted mapping function in a white
noise scenario at 0, 5, 10 dB.
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Figure B.8: Scatter plots for all instrumental measures together with the fitted mapping function in a babble
noise scenario at 0, 5, 10 dB.
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Figure B.9: Scatter plots for all instrumental measures together with the fitted mapping function in a com-
bined white and babble noise scenario at 0, 5, 10 dB.
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B.3 Intelligibility Evaluation

B.3.1 Mapped Scatter Plots
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Figure B.10: Mapped scatter plots for all instrumental measures in a white noise scenario at 0, 5, 10 dB.
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Figure B.11: Mapped scatter plots for all instrumental measures in a babble noise scenario at 0, 5, 10 dB.

Graz, August 30, 2015 – 66 –



B Supplemental Figures

B.3.2 Unmapped Scatter Plots
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Figure B.12: Scatter plots for all instrumental measures together with the fitted mapping function in a white
noise scenario at 0, 5 dB.
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Figure B.13: Scatter plots for all instrumental measures together with the fitted mapping function in a babble
noise scenario at 0, 5 dB.
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Figure B.14: Scatter plots for all instrumental measures together with the fitted mapping function in a com-
bined white and babble noise scenario at 0, 5 dB.
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