

Diese Arbeit ist den vielen Menschen gewidmet die mich während meiner Studienzeit und
speziell während dieser Masterarbeit unterstützt haben. Diesen möchte ich hiermit meinen

Dank ausdrücken:

Meiner Familie und allen Verwandten, die mir in dieser anstrengenden Zeit mit Rat und Tat
zur Seite gestanden haben

Meinen Freunden, welche mir Mut und Motivation verschafften

Allen Wegbegleitern, die mich bis hierher brachten

Weiters gilt mein Dank dem Institut für Kommunikationsnetze und Satellitenkommunikation
der Technischen Universität Graz, ebenso der Abteilung Weltraumtechnik und

Kommunikationstechnologie von Joanneum Research, wobei ich vor allem Johannes Ebert
und Wilfried Gappmair wegen der sehr guten Betreuung erwähnen möchte, sowie Karin

Plimon für die vorgeschlagenen Korrekturen

Abstract
Modern satellite communication systems have a vast set of parameters to
choose from, like the hardware to use, objectives to maximize, like data-
throughput and requirements like availability, or overall cost of the system.
The aim of this master thesis was to provide a generic interface to find
optimal parameter settings in satellite systems against objectives, while
maintaining a set of requirements. In order to achieve this, numerical
optimization methods were employed on several satellite communication
problems and used to gain knowledge about the potential relationships between
the system variables. To provide meaningful results, an existing simulation
software, developed by Joanneum Research, was used and extended to simulate
theoretical satellite communication systems, in which the generic interface was
also embedded to provide the means to optimize any simulation. In a final
step, the developed components were used in several experiments of increasing
complexity to show the possibilities of optimization on a system level and to
shed a new light on the design of multi-beam satellite systems.

Kurzfassung
Moderne Satellitenkommunikationssysteme können vielfältig gestaltet werden,
beispielsweise durch die genutzte Hardware, während bestimmte Ziele
bestmöglichst erfüllt werden soll, wie die Maximierung der Datendurchsatzrate,
gleichzeitig aber Anforderungen ebenfalls berücksichtigt werden müssen (z.B.
eine Mindestverfügbarkeit). Aufgabe dieser Masterarbeit war es, eine einfach
zu bedienende Optimierungssoftware zu erstellen, um optimale Konfigurationen
genannter Satellitenkommunikationssysteme, unter Berücksichtigung der
Anforderungen, zu berechnen. Zu diesem Zwecke wurden Numerische
Optimierungsverfahren auf die Probleme angewandt und das in diesem Zuge
gewonnene Wissen genutzt, um die Beziehungen zwischen den Systemvariablen
besser zu verstehen. Um die Sinnhaftigkeit der Ergebnisse zu gewährleisten,
wurde ein bestehender, von Joanneum Research entwickelter Simulator genutzt
und um die Möglichkeit zur Simulation theoretischer
Satellitenkommunikationssysteme sowie um die Schnittstelle zur Optimierung
erweitert. Alle entwickelten Komponenten wurden in einem finalen Schritt in
mehreren Experimenten kombiniert genutzt, um die Möglichkeiten der
Optimierung auf Systemebene zu zeigen und ein neues Licht auf die Chancen
beim Design von Multi-Beam Satellitensystemen zu werfen.

Table of Contents
 1 Introduction..3

 1.1 Motivation and Background...3

 1.2 Overview of the Thesis...4

 2 Optimization Fundamentals...5

 2.1 Algorithms..7

 2.1.1 Downhill-simplex...7
 2.1.2 Simulated Annealing (SA)...8

 2.1.3 Genetic Algorithms (GA) & Evolutionary Algorithms (EA)...8
 2.1.4 Particle Swarm Optimization (PSO)..9

 2.1.5 Artificial Bee Colony...9
 2.1.6 Nondominated Sorting Genetic Algorithm II (NSGA-II)..10

 3 Related Work..11

 3.1 Parameters in Optimization..13

 3.1.1 Algorithm Portfolios...13
 3.1.2 Self Adaptation...16

 3.1.3 Meta Optimization..17

 4 Design...19

 4.1 Simulator..19

 4.2 Optimizer..22

 4.3 Link Budget..23

 4.4 Multi-Beam Systems...29

 4.5 Benchmark..35

 4.6 Output & Result Evaluation..36

 4.7 Planned Algorithms..37

 5 Implementation...38

 5.1 Current Structure...38

 5.1.1 Simulation Core..38

 5.1.2 Burst Container..38
 5.1.3 Simulation Main Loop...38

 5.1.4 Sections and Multi Threading..39

 5.2 Restructuring..39

 5.2.1 Simulation Core..40
 5.2.2 Burst Container..40

 5.2.3 Simulation Main Loop...40
 5.2.4 New Modules...40

 5.2.5 Matlab Tool..47

 5.3 Final Class Diagrams..53

 6 Evaluation..56

 6.1 Benchmark..56

 6.2 Simple Crossover Experiment...58

 6.3 Advanced Interference Mitigation Experiment...64

 6.4 System Cost Experiment..66

 7 Conclusion and Future Work..73

Bibliography..76

List of Listings
Listing 4.1: Simple Simulation File Example..20

Listing 4.2: Result File of the Simulation shown in Listing 4.1..20
Listing 4.3: Simulation File with Optimization Tags...22

Listing 5.1: Exemplary instantiation of the Optimizer Module...41
Listing 5.2: Code to update the Velocity of each Particle, according to Equation (2.5)......................42

Listing 5.3: Exemplary Text Output File of an Optimization..44
Listing 5.4: Final Version of the Link Budget Modules...44

Listing 5.5: Interference Modules..45
Listing 5.6: Command to call the Script for Processing the Binary Files..49

Listing 5.7: Script to interpolate the Surface from the Function Evaluations......................................51
Listing 6.1: Output of the Optimization, showing the best Results...62

List of Figures
Figure 2.1: Visualization of a Pareto Frontier. The lines show the range of domination. From
Wikipedia on Pareto-efficiency [28]..6
Figure 2.2: Nelder Mead Optimization on the Example of a Half-Sphere...8

Figure 3.1: Reconstructed Far Field Radiation Pattern for the Pyramidal Horn. (a) Amplitude. (b)
Phase, from [8]...11
Figure 3.2: Cost Function Evolution over the Number of Function Evaluations................................14

Figure 3.3: Cost Evolution Function, with Lines created through Linear Regression.........................14
Figure 3.4: Created Distribution through the Function 'ksdensity'..15

Figure 3.5: Evolution of the Probabilites in the SaDE algorithm. From [13]......................................17
Figure 4.1: Preliminary Class Diagram of the additional Optimization Modules................................23

Figure 4.2: Simplified View of a Satellite System...24
Figure 4.3: 4+12APSK Modulation Symbol Positions from [27]..28

Figure 4.4: Simplified View of a Satellite System, with a few possible variables, constraints and an
objective...29
Figure 4.5: Exemplary Generated Radiation Pattern [dBi], Cartesian representation.........................30

Figure 4.6: Closeup of Figure 4.5 on the Main Lobe with marked Crossover Angle of 3dB..............31
Figure 4.7: Visualization of a Spot Beam...31

Figure 4.8: Hexagonal Spot Beam Pattern in use...33
Figure 4.9: Normalized C and I values for the scenario shown in figure 4.8, from [23].....................33

Figure 4.10: Planned Modules and Information Flow between them..35

1

Figure 5.1: Visualization of the Workflow of the Simulation with different Sections.........................39

Figure 5.2: Hexagon Pattern in use..46
Figure 5.3: Surface of Function Number Eight of the CEC 2013 challenge [24]................................50

Figure 5.4: Interpolated Surface Reconstruction. Blue Dots mark the sampled Points by the PSO
algorithm..52
Figure 5.5: Performance Evaluation for every Iteration of every Particle...53

Figure 5.6: Class Diagram of the Optimization Classes..54
Figure 5.7: Class Diagram of the Link Budget and Interference Classes..55

Figure 6.1: Best, Worst and Average Performance of PSO on the Sphere Function............................57
Figure 6.2: Best, Worst and Average Performance of Nelder-Mead on the Sphere Function..............57

Figure 6.3: Crossover vs Avg Goodput on the whole Surface...63
Figure 6.4: Second Experiment, comparing different Frequency Reuse Settings................................65

Figure 6.5: Modcods and their required linear SNR (Threshold)..66
Figure 6.6: Point Cloud of the Third Experiment: Varying the EIRP and Crossover..........................71

Figure 6.7: Point Cloud of the Third Experiment with the Constraint 'Availability > 99%'................72

List of Tables
Table 3.1: Covariance Matrix of 5 Algorithms on a Test Set of 10 Functions, from [16]....................16

Table 5.1: Current Meta Data Structure...48
Table 6.1: Modcod Thresholds from [27]...59

Table 6.2: Distribution of the Atmospheric Attenuation, Q-Band, Location Graz...............................60
Table 6.3: Distribution of the Atmospheric Attenuation, V-Band, Location Graz...............................60

Table 6.4 Best found Solution for the Cost Experiment without any Constraints...............................68
Table 6.5 Optimal Solution after adding the Availability Constraint to the former Case....................69

Table 6.6 Multiple Optimal Cases found after adding the Bandwidth as a Variable............................69

2

 1 Introduction

 1.1 Motivation and Background

Numerical Optimization is a research field, motivated by the need to approximate solutions or
automate the process of solving complex, non-linear systems. The need can arise from the
difficulty to analytically calculate the minima/maxima, or the missing knowledge about the
cost function. As such, the optimization algorithm tries to use only little information from the
function to optimize (usually only the first few derivatives), or none at all.

More complex systems do not even provide closed formulas, as is the case with the Simulation
Software at hand. Luckily, adapting and optimizing the parameters of such simulations is
inherently not different for most derivative-free optimizers, as long as we still retain a proper
cost function to optimize.

The Simulation Software of Joanneum Research, at which the developed optimization
algorithms are aimed, allows easy composition and rearrangement of simulation components.
This is meant to provide a universal tool for creating satellite scenarios to simulate. This
comes at the before mentioned cost when optimising: Instead of deriving equations to solve
and tuning optimization parameters to the task, one needs to find a robust algorithm, suitable
for almost all simulations, or an operator who intelligently chooses an algorithm from the
available ones.

Still, the simulations may be more demanding to compute, leaving us with less function
evaluations within the given time budget. When dealing with simulations of satellite systems,
we could try to analyse the composed simulation with great detail, derive closed formulas and
try to design efficient optimization for given simulation, but there is the need to freely change
the simulation, its components and parameters, which might leave the optimization useless
once again.

Alternatively, one could resort to choosing one optimization algorithm for all simulations as a
trade-off between speed and quality, but it would probably only provide adequate
performance in the average case, while also being difficult to find.

Yet better, we could provide multiple algorithms and let the user, or the program intelligently
choose one. This master thesis tries to design and implement such an optimizer and integrate
it into the existing simulation software, which we look into further detail in section 4.1. The
optimizer will then be applied to solve practical problems in satellite communications, which
should offer insight into the problem domain. The gathered data may then be used to
reconstruct some parts of the cost function.

These optimization methods can and will be employed in the Q/V-Band of the Alphasat

3

project [1] to offer further insight into this new domain.

 1.2 Overview of the Thesis

Section 2 will deal with the fundamental theorems and definitions of optimization, to lay the
foundation of the thesis.

In section 3, we will analyze existing approaches to deal with complex optimization. We will
present the various algorithms and different approaches, which have been developed and
weigh their advantages against the disadvantages for our application. Some metrics and
definitions from previous works will find their way in this thesis.

Section 4 will present the concept, developed after consulting existing literature and choosing
an appropriate way to optimize simulations. We will start with the simple optimization of a
link-budget, which will be presented in detail in section 4.3.

After that, section 5 will document the more concrete way of implementing the algorithms.
Changes and deviations from the initially designed concept will also be documented there, as
well as additional features which were implemented.

Section 6 will provide an in-depth review of the retrieved results, for both the optimization
performance, as well as the calculated optimal solutions for the given satellite system
scenarios.

Finally, in section 7, we will summarize the knowledge obtained, explain shortcomings in our
work and give hints for future, possible works.

4

 2 Optimization Fundamentals
When optimizing functions, we either try to maximize a given value, usually called fitness, or
try to do minimize it, which is then usually declared as cost. The optimization of the function
is pursued by the means of an iterative algorithm that tries to approach the global optimum
in every iteration.

All free parameters open to variation are contained in the vector x, which we usually refer to
as feature vector. Other common names are variable vector, unknowns, or parameters. We
call the whole space, described by x, the feature space. Our task is to find a feature vector
that minimizes the function, where we usually have to keep in mind some constraints, limiting
the feature space. We use the notations and definitions from [2]:

min
x∈ℝ

n

f (x) subject to {ci (x) = 0
c j (x) ≥ 0 (2.1)

f is called the objective function, while ci and c j are the equality and inequality constraint
functions respectively. The space which satisfies all constraints ci and c j is called feasible
region, or feasible space.

Many algorithms and papers deal with global optima, while avoiding local optima. A useful
definition of these terms is also given in [2], which we will cite here:

“A point x * is a global minimizer if f (x *)≤f (x) for all x∈ℝ
n .”

“A point x * is a local minimizer if there is a neighborhood N of x * such that

f (x *)≤f (x) for x∈N “ (Note: N is not to be confused with the natural numbers)

Optimization problems are not limited to real number problems as specified above, but it is a
very common optimization problem. We can conclude that a global minimum is the special
case of a local minimum, where the neighborhood extends over the whole feature space.
Determining if the current local minimum is a global minimum is of course not an easy task
and has extensively been researched in past works.

If we want to maximize an objective function, we can also apply the same theorems and
algorithms as for minimization since:

min
x

f (x)=max
x

−f (x) (2.2)

5

Until now, we only spoke of the so-called single objective optimization, where only one
objective function exists. If we extend this theory on multiple objective functions, we have to
add a few definitions. Now F (x)={ f 1(x), ..., f n (x) } is the objective vector. Unfortunately,

in most cases we cannot find a x , such that we minimize all elements of the vector F(x), but

we can use the definition of dominating points to rank individual solutions.

F 1(x)={ f 1,1(x) ,... , f 1,n (x) }, F 2(x)={ f 2, 1(x) ,... , f 2,n(x) }

∀ i : f 1, i (x) ≤ f 2,i (x) ∧ ∃i : f 1,i(x) < f 2,i
(2.3)

Practically speaking, equation (2.3) says that all cost functions of F 1(x) are at least as good

as the cost functions in F 2(x) while there is also at least one cost function, which is better. If

equation (2.3) holds, solution F 1(x) dominates F 2(x) . Dominated solutions are inefficient,

since they are strictly worse than the solutions by which they are dominated. The set
containing all non-dominated solutions, is called the Pareto Frontier. An example on how
such a Pareto Frontier could look like, is given in figure 2.1, as the red line. The Pareto
Frontier is approximated by the available non-dominated solutions, marked as blue dots.

The roughest distinction one could possibly make for numerical optimization methods, is
between deterministic and heuristic/stochastic algorithms. The first class of algorithms relies

6

Figure 2.1: Visualization of a Pareto Frontier. The lines show the
range of domination. From Wikipedia on Pareto-efficiency [28]

on traditional ways, mainly calculus (derivatives and gradients), to find the optimum. The
behaviour is deterministic, i.e. the algorithm will always behave the same way, given the same
situation in an iteration. Their decision on how to modify the feature vector is usually based
on either the finite differences between multiple function evaluations, derivatives of the
function, or a combination of the mentioned.

On the other hand, algorithms belonging to the latter class use a type of randomness, usually
tolerating minor deteriorations in the quality of the function, in order to explore the search
space. Characterizing the multitude of existing algorithms is not a straightforward task, since
the algorithms usually employ multiple aspects. Algorithms of both classes will be discussed
in section 2.1.

While the fundamental ideas behind the algorithms are usually easily described, the
algorithms itself introduce their parameters as new subjects to study and optimization.
Heuristic algorithms are especially sensitive to these parameters.

This way, the optimization is a recurring problem. In section 3, many works will be presented
which deal with searching optimal parameters for problems of certain problem domains.
These will greatly vary between the domains, but we will also see that optimal parameters
shift even if we change the problem within domain, or only its characteristics.

Heuristic algorithms usually have a robust method to explore the feature space, but at the
cost of additionally needed function evaluations. This can pose problems for time-critical,
online optimizations, or computationally expensive function evaluations.

If we consider a time budget, which limits the given time and in further consequence the
number of function evaluations, we may prioritize earlier convergence into a local minimum
to slower, possible convergence towards the global minimum outside the time budget.

Since the time to converge is highly dependent on the parameters, they should be chosen
according to the given time budget. Section 3 will therefore provide references to works,
where the time budget is taken into consideration when choosing parameters and algorithms.

 2.1 Algorithms

This chapter contains a short description of algorithms which are used throughout this thesis,
or well-known optimization algorithms, on which new algorithms are usually based. They
serve as a first foundation of better understanding Numerical Optimization.

 2.1.1 Downhill-simplex

Downhill-simplex, or Nelder-Mead method [3] uses a general simplex with n+1 vertices,
where n is the number of dimensions of the problem.

7

For the two-dimensional case, figure 2.2 illustrates a simple example how the optimization
works: The simplex is defined by the three red points. The upper point is the worst point, and
thus we calculate the centroid of the two better points, which lies in the middle of the line
between the lower two points. The worst point will be reflected, expanded and contracted
along the centroid of the two better points. If all of these new points, marked in blue, offer no
improvement, all current points of the simplex are moved towards the best point (reduction).

 2.1.2 Simulated Annealing (SA)

Simulated Annealing is a thermodynamically inspired algorithm. The algorithm was described
in [4] as follows: From a point x a new point y is randomly created. The new point is

immediately accepted if f (y)≤f (x) . Otherwise, it is accepted with the probability according

to the Boltzmann distribution, given in equation (2.4). The parameter T is called the
temperature and is a decreasing series, according to a cooling-down schedule.

p=exp(
f (x)− f (y)

T
) (2.4)

 2.1.3 Genetic Algorithms (GA) & Evolutionary Algorithms (EA)

Differentiating between GA and EA is not easy and the terms are used interchangeably in the
literature. As Mitchell already said it in [5]:

8

Figure 2.2: Nelder Mead Optimization on the Example of a Half-Sphere

“It turns out that there is no rigorous definition of "genetic algorithm" accepted by
all in the evolutionary−computation community that differentiates GAs from other
evolutionary computation methods. However, it can be said that most methods
called "GAs" have at least the following elements in common: populations of
chromosomes, selection according to fitness, crossover to produce new offspring, and
random mutation of new offspring”

The same usually holds for evolutionary algorithms, but evolutionary algorithms usually code
the problem as real number problems, while genetic algorithms try to find bit string
encodings of the problems.

 2.1.4 Particle Swarm Optimization (PSO)

PSO belongs to the class of so-called Swarm Intelligence algorithms. What differentiates them
from EAs is that the created population in the beginning is used throughout the whole
optimization process. In PSO, we give every member of the population (particle) a starting
velocity, and calculate the velocity of the next iteration according to equation (2.5), presented
in [6]. This equation shows, how a particle is drawn towards the best positions, while being
restrained from sudden velocity changes by inertia. The factors w ,ϕp ,ϕg

are inertia,

cognitive and social factors respectively, r1 and r 2 are uniformly distributed random
numbers drawn from the interval [0, 1] and p best , gbest are the personal and global best known

positions respectively.

v '=w⋅v+ϕpr 1⋅(pbest−x)+ϕgr 2⋅(gbest−x) (2.5)

 2.1.5 Artificial Bee Colony

This is another algorithm, inspired by nature, belonging to the class of Swarm Intelligence
algorithms. The hive consists of three different types of bees: Scout, onlooker and employed
bees. Scouts look for new food sources, which they report back to the waiting onlookers,
which will in turn become employed bees and gather that food source. In optimization, the
position of a food source is a parameter setting, while the quality of the food source
corresponds to the function evaluation at that point. Employed bees now make minor
modifications to their position to test the surrounding area of their current food source. If the
modification offered an improvement, the employed bee will report the better position back to
the onlooker bees in the hive. The scout population is maintained throughout the whole
procedure to explore the search space. Since onlookers have many food sources to choose
from, they randomly choose one of the presented positions, where the probability is

9

proportional to the quality. The parameters for this algorithm are simple: Population size,
number of onlookers, number of scouts and number of employed bees.

 2.1.6 Nondominated Sorting Genetic Algorithm II (NSGA-II)

This is one of the most popular multi objective optimization algorithms, which tries to find
the Pareto frontier. First shown in [7], it is a speed- and performance-wise improvement over
the first NSGA algorithm. It uses the characteristics of an EA algorithm, but changes the
selection: All non-dominated solutions are found, and get rank i, after which they are removed
and the procedure starts over for rank i+1. Within the ranks, a crowding metric is used, to
distinguish between solutions in crowded areas and non-crowded areas. Solutions in non-
crowded areas are preferred during selection, to better explore and find the whole Pareto
frontier.

10

 3 Related Work
There is a vast range of topics in engineering and satellite communications, which use
numerical optimization to solve difficult problems. In [8], the algorithms Simulated Annealing,
Genetic Algorithm, Downhill-simplex and Particle Swarm Optimization were compared in
their ability to reconstruct the far-field radiation pattern of antennas, from near-field
measurements. Multiple variations of PSO were also tested: One can decide, if the best fitness
value is immediately shared, or only after all individuals have all evolved one iteration
(asynchronous and synchronous respectively), and if all individuals share the global best
fitness value, or only within clusters of particles (global and local).
The comparison showed that all algorithms were capable of mostly reconstructing the
patterns, like can be seen in figure 3.1 but PSO with global asynchronous updates exceeded
the performance of all other mentioned algorithms by converging faster.

PSO can also be used to solve combinatorial problems, like resource scheduling, demonstrated
in [9]. The authors combined the genetic operators selection and crossover, with PSO in order
to achieve a resource scheduling optimization of a satellite system with constraints. The

11

Figure 3.1: Reconstructed Far Field Radiation Pattern for
the Pyramidal Horn. (a) Amplitude. (b) Phase, from [8]

system was restricted by few minor constraints and the available power and memory. It
consisted of six payloads p1 ,... , p6

, each of which can be turned on, or off (represented by 0

or 1). So the position x of a particle is defined as x=[p1, ..., p6] . PSO was able to find an

optimal schedule, respecting the constraints.

Since there is such a wide range of algorithms, there is the need to compare all of them
through metrics and challenges in order to rank them and identify 'superior' algorithms to
'inferior' ones. However, when talking about ranking algorithms, there is a fundamental
theory developed by Wolpert and Macready, which we always have to keep in mind when
trying to compare optimization algorithms. In their paper [10], they developed a number of
theorems, for which they concluded that all optimization algorithms are equally good, if we
would consider all existing real number problems, and give them the same a-priori
probability, or in their words:

“[...]for any algorithm, any elevated performance over one class of problems is offset
by performance over another class.”

This leaves us with the conclusion that a general algorithm, which is better than all its
competitors for every problem, cannot exist. As demotivating as this sounds, if we take into
account that on one hand, we do not need to solve every possible problem, and on the other
hand that we are fine with average performance in the worst case, the problem is less
prevalent.

One way to achieve a good benchmark of algorithms, is to define a set of problems and
functions, which employ very different aspects and compare the final minima obtained in
multiple runs. A popular example is the annual CEC congress on evolutionary computing,
which regularly releases challenges on different optimization topics [2005 and 2008]. The exact
definitions, problems and graphs for the 2D problems in the year 2005 on real valued
problems can be seen in [11]. The dimensionality of the problems can be adapted to much
higher dimensional cases, to more realistically reflect practical problems.

Numerical Optimization algorithms need some parameters to be set. Optimal parameter
settings have been subject to study for many investigations. Works like [12] try to provide a
good overview for the operator, which algorithms and parameters to choose depending on the
problem at hand, but this approach requires an operator with enough knowledge of the
problem domain. Alternatively adaptive algorithms exist, like the one presented in [13], which
uses differential evolution and automatically adapts the parameters to the given situation for
a good overall performance. A more traditional way is to take a few problem examples from
the problem domain and fine-tune the parameters to it. One example for this way is shown
in [14], where the symbols of an APSK modulation were optimized on the polar coordinate
system, to decrease the symbol error rate for a low Signal-to-Noise-Ratio. The different test
scenarios were: 16-APSK and 32-APSK with no, single, or double symmetry for both cases.

12

Multiple crossover and selection parameters of the genetic algorithms were combined, which
resulted in sixty different variations, where all of them were tried. The optimal crossover and
selection heuristics, which lead to the best fitness, or converged faster, changed between
nearly every modulation scenario. The margin was not exceedingly large, but this example
demonstrates that even small changes within the problem domain can change the optimal
parameters for the optimization methods.

 3.1 Parameters in Optimization

When looking at the presented related work in practice so far, we can see that optimization
can effectively deal with complex problems, but introduces another hurdle at the same time:
The parameters necessary for the algorithms. Their number and significance greatly vary from
algorithm to algorithm, but a wrong set of parameters can undermine the algorithms
efficiency, or even completely shut it down. This section presents a few papers, where the
authors tried to overcome this problem in different ways.

 3.1.1 Algorithm Portfolios

Algorithm Portfolios try to deal with this problem, by combining multiple algorithms, or a
single algorithm with multiple parameter settings, into one single portfolio.

One could argue that by composing the portfolio, we introduce another, even more complex
parameter, namely all algorithms in the portfolio and their parameters, but an automated
approach to solve this dilemma will be presented later in this section.

The hard part is now the decision, when to choose which algorithm for the next iteration,
since the number of function evaluations is very limited. In [15], Yuen et al. propose a method
for choosing the best algorithm from a set of algorithms, through predicting their future
fitness. The computational time is then invested in the best predicted algorithm, since it most
likely leads to a better fitness. The prediction and selection is done every iteration. In figure
3.2, we can see an exemplary cost curve, where the x-axis represents the number of function
evaluations, while the y-axis shows the best fitness until that point.

13

They now want to predict the fitness of each algorithm, at the nearest common point in
future, which is defined as the longest number of times an algorithm has run, plus one. They
define the set C i={c1, ..., ci } , where ci is the cost after i function evaluations. We now create
a line using linear regression for each of these sets C 2,... ,Cn , for each algorithm. As
visualized in figure 3.3, we now intersect each line with the nearest common point in future.
Using these fitnesses, we create a distribution from which we sample a predicted fitness.

In their paper, creating the distribution with the Matlab function 'ksdensity' offered the best
prediction, but they were able to produce nearly similar performance using a histogram based

14

Figure 3.2: Cost Function Evolution over the Number of
Function Evaluations

Figure 3.3: Cost Evolution Function, with Lines created through
Linear Regression

distribution. The distribution generated from the points of figure 3.3, can be seen in figure
3.4. The red crosses mark the points of intersection.

At the start, we need to run each algorithm a few times until the fitness is decreasing, or
otherwise the algorithm would never be chosen. An advantage of this prediction is that it
does not need any control parameters.

Another question which still remains, is how to compose the portfolio. Which algorithms, and
how many should we choose? We want a diverse set, applicable on a broad range of problems,
but keeping the portfolio under a certain size, to reduce the overhead cost. In [16], an
algorithm is introduced which (almost) automates the composition of such portfolios. We
define a set of algorithms, from which the portfolio can be composed. All algorithms are used
on a set of benchmark functions (they used the CEC 2005 functions [11]) and they are ranked
according to their performance on each function. We now build a covariance-matrix between
the rank of all algorithms and compose a portfolio of the two algorithms with the lowest
covariance. This portfolio acts as a new algorithm for the next iteration of the algorithm. We
stop, if the newly composed portfolio offers no improvement over the old one. The presented
covariance matrix from [16] can be seen in table 3.1.

15

Figure 3.4: Created Distribution through the Function 'ksdensity'

Since we combine algorithms with the lowest covariance, we ensure that the portfolio offers a
good performance on a diverse set of functions and the stopping criterion prevents us from
bloating the portfolio with unnecessary algorithms which offer no gain in performance.

One such example of an algorithm portfolio is also shown in [17], where four multi-objective
algorithms are composed into a portfolio to surpass the performance of one. Additionally,
individuals of all populations migrate between the algorithms and less successful algorithms
also create less offspring. This migration technique is also a common form of using multiple
optimization algorithms, but all algorithms are usually from the same type, since it is easier
to migrate their parameters.

 3.1.2 Self Adaptation

Another approach is, to use the same algorithm, but vary the parameters accordingly to the
current state of the search. One such example can be found in [13], where a self adaptive
algorithm is developed, using Differential Evolution at the core. Differential Evolution is an
algorithm presented in [18], by Storn and Price, which uses mutation, crossover and selection
operations for a population of real number problems.

The problem with Differential Evolution is that the performance is very sensitive to
parameters like mutation and crossover rate. In [13], Qin et al. regard the parameter setting
for Differential Evolution, but their conclusion can basically be applied to almost any
parameter-sensitive optimization algorithm:

“In DE literatures, various conflicting conclusions have been drawn with regard to
the rules for manually choosing the strategy and control parameters, which
undesirably confuse scientist and engineers who are about to utilize DE to solve
scientific and engineering problems. In fact, most of these conclusions lack sufficient
justifications as their validity is possibly restricted to the problems, strategies, and
parameter values considered in the investigations.”

The self adaptive algorithm (named SaDE by Qin et al.), tries to solve this problem, by
adaptively choosing these parameters. In their paper, they randomly draw the sensitive

16

Table 3.1: Covariance Matrix of 5 Algorithms on a Test
Set of 10 Functions, from [16]

parameters several times within a certain interval. The algorithm is now randomly run with
one of the drawn parameters, where the probability to choose the parameter is dependent on
the success, or failure rate of it so far. One such evolution of the probabilities can be seen in
figure 3.5, where the Griewank function of the CEC was used as a benchmark.

In contrast to the portfolios, the current population is kept, even when changing the
parameters.

 3.1.3 Meta Optimization

Both portfolios and self adaptation aim at the same target, with similar means: Some
parameters are varied through measuring and analyzing their success rate on the fitness
function. If we look at it in a simplified way, we use one optimizer to configure another
optimizer. This procedure is commonly known as meta optimization, or hyper heuristics. One
possible way to find the optimal parameters, is to try different variations on a benchmark set
of problems. Many works like [19] and [20] show that the optimal parameter setting for
optimization is crucial and that the overlying optimizer for the parameters is more robust
against wrong parameter settings. Advanced approaches like SaDE and portfolios are heavily
researched since they can better deal with problems, not similar to the benchmark problems

17

Figure 3.5: Evolution of the Probabilites in the SaDE algorithm. From [13]

on which the parameters were tuned on.

18

 4 Design
This section will present the planned design and consider possible problems which could
occur. Section 4.1 offers a short introduction into the currently available simulator. In section
4.2, we will show the preliminary design of the optimizer and continue with its practical
application for the link budget calculation in section 4.3. Lastly, section 4.5 contains
information on the planned test bed for testing and evaluating future optimization algorithms.

 4.1 Simulator

The Simulator is composed of modules, where the data to process are passed from the top
module, through all modules until the bottom module. There is no restriction on the ordering
and processing of modules to offer the maximum amount of flexibility. In listing 4.1, an
example simulation file is shown. The indented lines below a module are parameters from the
user to configure the modules, where 'x1' marks a parameter which is varied in a fixed way:
In this example, the Signal-to-Noise-Ratio (SNR) for the Additive White Gaussian Noise
(AWGN) module is increased from 5dB to 20dB, in 1 dB increments for each simulation.

In listing 4.2, the result file is shown for the above simulation. The first column shows the
varied x1 parameter, namely the SNR, while the second column shows the calculated
corresponding Symbol Error Rate (SER). Obviously, the SER decreases, as the SNR
increases. The used modulation is QPSK.

19

20

Listing 4.1: Simple Simulation File Example

Listing 4.2: Result File of the
Simulation shown in Listing 4.1

Naturally, there is the need to leave the general structure of the simulation file untouched,
while providing easy means to mark parameters for the optimizer. Since a recompilation is
undesirable when changing the optimization configuration, the optimization parameters are
marked in the simulation file. These so-called 'tags' retain the relatively simple, original
structure of x1 and x2. According to this syntax, the tags were implemented as follows:

Variables:

Parameters that can be varied by the optimizer in order to achieve the best possible
performance.

v [Parameter name] [min] [max] [step size]

Constraints:

If a parameter is marked as a constraint, the optimizer will look at its value at the end of
each evaluation. The parameter's value needs to be smaller, higher, or exactly equal to the
given value, or the solution will receive the worst possible performance, which is positive or
negative infinity, depending if the objective needs to be maximized or minimized.

c< [Parameter name] [initial value] [max]

c> [Parameter name] [initial value] [min]

c= [Parameter name] [initial value] [required value]

Objective(s):

The objectives report the performance of the current simulation setting. The optimizer will
look at the value obtained and adapt its strategy to improve the performance. o+ maximizes
the parameter, while o- minimizes it. The employed underlying technique, to achieve both
maximization and minimization applying only minimization algorithms, will be similar to
equation (2.2).

o+ [Parameter name] [initial value]

o- [Parameter name] [initial value]

Each spacing can consist of an arbitrary collection of whitespace characters.

In the beginning, only one parameter may be marked as an objective. If time allows it, later
releases will switch to multi objective optimization algorithms if multiple parameters are
marked as an objective. For multi objective optimization, a suitable algorithm for finding the
Pareto frontier, which has already been discussed in section 2, will be applied.

21

A simulation file with a few of these tags added, for the link budget example, which will be
introduced in section 4.3, can be seen in listing 4.3. The tagged parameters are highlighted in
a red rectangle.

 4.2 Optimizer

There are two main requirements for developing the optimizer: On the one hand, its
integration into the simulator has to be as easy as possible for the end-user and secondly, it
needs to be extensible in the sense that new optimization algorithms can quickly be
integrated.

The first requirement will mainly be ensured by an easy extension for the simulation files,
which was already presented in section 4.1, but also by making the optimizer a module itself.

22

Listing 4.3: Simulation File with Optimization Tags

By making the optimizer a module, we can set its parameters like any other module during
start-up and without recompilation by modifying the simulation file. Since the parameters of
the algorithm heavily depend on the number of variables and other function specific
properties, parameterless algorithms are preferred over very parameter-dependent algorithms.

In figure 4.1, the planned class hierarchy is shown. The base classes should provide enough of
the main functionality for optimization (bound values to step size, translate between feature
points and module parameters,...) to keep the actual algorithms as short as possible.
Additionally, we can benefit from this structure by decoupling the simulator-specific module
interfaces, from the actual optimization.

In a first step, a stand-alone benchmark is planned to ensure functionality and quality of the
algorithms, before integrating them into the simulator. The planned benchmark is described
in more detail in section 4.5.

 4.3 Link Budget

A satellite system, when regarded in a very simplified way, can be depicted as shown in figure
4.2:

23

Figure 4.1: Preliminary Class Diagram of the additional Optimization Modules

We have a data stream, which is modulated on the carrier signal, amplified by the HPA and
transmitted over the gateway towards the satellite, usually termed as 'Uplink'. In this figure,
the satellite is considered to be a transparent repeater, which simply receives the signals,
amplifies them and sends them to a terminal, which might be the transmitting gateway again
(Loopback mode). In contrast, we call the second part of the transmission 'Downlink'.

Since naturally not all satellite systems are similar with respect to their performance, we have
to firstly define a few parameters, constants and quality criteria, which influence the quality
of the links:

General:
Wavelength: λ [m]

Distance to satellite: R [m]

Free Space Loss:

LFS=(4 πR
λ)

2

(4.1)

Boltzmann’s constant: k [J
K]

24

Figure 4.2: Simplified View of a Satellite System

Aperture efficiency: ε
Antenna diameter: d [m]

Antenna gain:

G=ϵ(π⋅d
λ)

2

(4.2)

Uplink:
Transmit power: PT [W]

Transmit antenna gain: TG

Antenna feed losses: frL

Antenna depointing loss: dL

G/T of satellite: G /T SAT [1
K]

EIRP towards satellite:

EIRPGS=
PT GT

LdL fr

[W] (4.3)

Power flux density at satellite without atmosphere:

ΦSat=
EIRPGS

4 πR2 [W
m 2] (4.4)

Atmospheric attenuation: AL

Uplink C/No:

(C
N 0)U=

EIRPGS⋅G /TSAT

k⋅LFS⋅LA

[Hz] (4.5)

Effective transponder noise bandwidth: SATB

Uplink C/N:

(C
N)

U
=(C

N 0
)U /BSAT (4.6)

Power robbing:

25

Lrob=
C +N

C
=1+1 /(C

N) (4.7)

Downlink:

Receive antenna gain: RG

Antenna feed losses: frL

Antenna tracking loss: dL

Maximum satellite EIRP: EIRP SAT [W]

Satellite transponder output backoff: OBO [W]

Power flux density at ground station without atmosphere:

ΦGS=
EIRPSat−OBO

4 πR2 [Wm 2] (4.8)

Atmospheric attenuation: SKYA

Mean sky temperature: Tm [K]

Sky noise temperature1:

T SKY=T m (1−ASKY)+
2.7

ASKY

[K] (4.9)

Ground noise collected by receiver antenna: TGR [K]

Antenna noise temperature:

TA=T SKY+T GR [K] (4.10)

LNA noise temperature: TLNA [K]

Downconverter noise temperature: TDC [K]

Reference temperature: 0 290KT =

Receiver temperature2:

1 2.7K is cosmic background noise
2 The gain of the LNA is typically so large, that the noise contribution of the down
converter is negligible.

26

TR=T LNA+
T DC

GLNA

≈T LNA [K] (4.11)

System noise temperature:

TSYS=
TA

L fr

+T 0(1−
1

L fr)+T R [K] (4.12)

G/T of ground station:

G /T=
GR

T SYS
[1
K] (4.13)

Downlink C/No without power robbing:

(C
N 0)D '

=
(EIRP SAT−OBO)⋅G /T

k⋅LFS LALdL fr

[Hz] (4.14)

Downlink C/No with power robbing:

(C
N 0

)D=(C
N 0

)D '
/Lrob [Hz] (4.15)

Total C/No:

(C
N 0

)TOT
=

1

1/(C
N 0)U

+1 /(C
N 0)D

[Hz]
(4.16)

Downlink C/N

(C
N)

D
=(C

N 0
)D

/B (4.17)

SNR=(C
N 0

)TOT
/B (4.18)

Especially equation (4.18) will play a recurring role in this thesis as a general quality measure
of the link. All of the above equations were taken from [21], where they are thoroughly
explained.

Obviously, as one can see from equations (4.1) through (4.17), there is a multitude of factors
which influence either the uplink, or downlink, or even both. Many of those include decisions
on the location and hardware to choose when designing such a system.

27

In order to link these physical calculations into actual data throughput, we need to add the
modulation and coding schemes, usually referred to as Modcod. The modulation tells us how
the carrier is altered in order to transmit the symbol, but for this thesis, the order of the
modulation provides enough information: How many bits are transmitted per symbol. The
code rate is usually included in the name. In equation (4.19), we can see how we calculate the
bits per symbol transmitted, where k denotes the effectively transmitted bits, while n is the
total bits:

η=
k
n⏟

Coderate

log2 (# Symbols)⏟
Modulation Order

(4.19)

This thesis will mostly use PSK and APSK modulations with different code rates. Figure 4.3
shows an example from [22] for the placement of the symbols for an exemplary 16APSK
modulation. In section 6.2, all used Modcods and their efficiencies will be introduced.

The overall quality of the up- and downlink is usually described by Total C/No, given in
equation (4.16). Higher C/No values allow for better coding schemes which increases the total
data throughput the system can achieve.

This already reveals a lot of parameters in the satellite system, which can be tuned: One
could change the location of the ground station to change the weather effects on the signal,
but also vary the frequency of the carrier. A more complex problem involves splitting up the
total available bandwidth by multiple carriers, while keeping the total output power constant.

28

Figure 4.3: 4+12APSK Modulation Symbol Positions from [27]

Each carrier could employ different modulation and coding, further increasing the complexity.

Figure 4.4 again shows the previous satellite system, but this time also depicts a few of the
multitude of parameters a designer could choose from, when designing such a system. They
are depicted in light blue text. Additionally, two constraints (total cost and availability) and
one objective, the data-throughput, are marked as red.

When designing satellite systems, the design could require a minimum bit-error-rate
(objective), while keeping the costs below, or the link availability above a certain threshold
(constraint). Although in [9], it was shown that Particle Swarm Optimization could handle
constraints, dealing with multiple requirements through constraints is actually a sub-par way,
since constraint-violating solutions are usually simply invalidated. However, since there is a
hard decision boundary, the knowledge that we are close to violating a constraint cannot be
used. A better way would be to use multi objective optimization algorithms, planned for later,
but at first we will stick to the approach using constraints.

 4.4 Multi-Beam Systems

The link budget, previously discussed in section 4.3 lays the theoretical foundation for further
analysis of satellite system scenarios. It can provide sufficient information for a satellite

29

Figure 4.4: Simplified View of a Satellite System, with a few possible variables, constraints and
an objective

system with a single transmitting antenna, which covers the whole area which needs to be
served. Nevertheless, newer satellite systems are equipped with multiple antennas, usually
referred to as (spot) beams, where each beam covers only a part, or even only a fraction of
the area to be covered.

According to [22], we can compute the linear gain a symmetrical-aperture antenna according
to equations (4.20) and (4.21). The parameter D denotes the antenna diameter [m], ε is the
aperture efficiency (typically 0.6), λ describes the wavelength [m], J 1 represents the first
order Bessel function of the first kind, and θ denotes the off-axis angle measured in radian:

G=ϵ⋅(πD
λ)

2

[2⋅J 1(μ)
μ]

2

(4.20)

μ=(πD
λ)sin (θ) (4.21)

In figure 4.5, such a generated radiation pattern on a logarithmic scale (dBi) can be seen for
the specifications: ϵ=0.6 , λ=0.015m , D=3.7m , taken from [23].

How close the spot beams are placed to each other and therefore where their pattern overlap

30

Figure 4.5: Exemplary Generated Radiation Pattern [dBi],
Cartesian representation

is dependent on the so-called crossover-level. It is described by the difference in dB towards
the maximum gain at zero degree. In figure 4.6, we can see the crossover angle for the
radiation pattern in figure 4.5 for a crossover level of 3dB. It is approximately 0.12° for the
above mentioned case.

We depict one spot beam as a circle, where the perimeter marks the given crossover-level, as
can be seen in figure 4.7.

In order to bring these definitions into physical dimensions, we have to define another few
equations:

Knowing the angle α at the crossover-level, we can view the signal propagation as a cone.
Thus, the diameter of the circle, covering the earth's surface can be calculated according to
equation (4.22). We use the simple circle area formula, shown in equation (4.23) to calculate
the area covered on the surface.

31

Figure 4.7: Visualization of a Spot Beam

Figure 4.6: Closeup of Figure 4.5 on the Main Lobe with marked Crossover Angle of 3dB

d=2⋅h⋅tan(α /2) (4.22)

A=
π⋅d 2

4
(4.23)

Combining equations (4.8) and (4.23), the received power on a given surface area can be
calculated according to equation (4.24):

PGround=ΦGS⋅A [W] (4.24)

Typical spot beam patterns employ placement like shown in figure 4.8. The central spot
beam, marked as blue, is the user spot beam, where the diamond represents the user position.

Since the spot beams are placed closely to each other in order to cover the whole needed area,
they also influence each other. The ratio between the power of the signal of the main beam,
transmitting data to the desired user, and the total interference power caused by the

neighboring beams is called
C
I

 and simply expressed in terms of equation (4.25), where C is

the power of the carrier and I is the total power of all interferers, both measured in dBW.

C
I

=C−I [dB] (4.25)

Using the radiation pattern depicted in figure 4.5 with a crossover-level of 3dB on the spot
beam pattern in figure 4.8, we receive the overlapping radiation patterns from figure 4.9,
where the normalized power at the chosen user position is marked as a circle on each pattern.

32

It is to be noted that not all radiation patterns of all spot beams are shown.

If we now wish to compute the desired total I value and subsequently
C
I

 from equation

33

Figure 4.9: Normalized C and I values for the scenario shown in figure 4.8, from [23]

Figure 4.8: Hexagonal Spot Beam Pattern in use

(4.25), we transform the interference powers back into watts and sum them all up. This is
expressed in equation (4.26), where I i is the power of the i-th interferer in dBW, and n is
the total number of interferers taken into account.

I Total=10⋅log10(∑i=1

n
10 ^(I i /10)) (4.26)

Since we still have to keep the C/N value in mind, we use the definition of the SNIR in order
to express the total ratio between the noise and the signal. In equation (4.27) the exact
calculation can be seen, which we will use to calculate the actual error rate and the
modulation and coding scheme to use:

SNIR=−10⋅log10
(10

−
C
N

/10

+10
−

C
I

/10) (4.27)

We will try to use a modular approach, calculating the values for the link budget and the
interferences in multiple modules. We will use existing structures to pass the information
between the modules and separate the calculations to ensure the modularity of the system.
The planned flow of information and modules can be seen in figure 4.10.

The two link budget modules at the top calculate the C/N0, already presented in equation
(4.15), which is one component of the calculation of the SNIR value. In the Beam Setup
module, the beam grid should be constructed and the position of all beams needs to be
determined. With this information the module Beam Interference will randomly decide a
position for the user and calculate the total interference at this position, according to
equation (4.26).

Continuing with this information, the SNIR module calculates the SNIR value and passes it
to the Modem, which will adaptively or statically choose a Modcod.

The final module named Overall Performance will record average error rates, availability,
throughputs and goodputs throughout one simulation.

34

 4.5 Benchmark

Like already mentioned in section 3, when ranking optimization algorithms, we usually reduce
the used procedure to empirical ranking on a set of complex problems. The planned
benchmark class will provide the means to automate this procedure for optimization
algorithms, targeted at the simulation software. The set of problems will be comprised of all
functions, presented at the CEC 2013, which can be found in [24].

The test conditions are very similar to the conditions presented in the paper:

35

Figure 4.10: Planned Modules and Information
Flow between them

• All 28 problems will be run available in the dimensions: D∈ {2, 5, 10, 20, 30, 40, 50,
60, 70, 80, 90, 100}

• x∈[−100, 100]
D where D is the number of dimensions

• Real-valued, meaning arbitrary step-sizes

• Maximum number of function evaluations = D⋅105

• Optimum found if |f *
−f|<10−8 , where f * is the global optimum

• 51 runs for each problem

The computational costs of the algorithms themselves are not recorded, since they are
probably negligible in comparison to the computational costs of the simulation.

The following simplified values will be evaluated and visualized through Matlab scripts as a
result:

• Minimum squared error of all runs over dimensions, for each problem (best-case-
analysis)

• Maximum squared error of all runs over dimensions, for each problem (worst-case-
analysis)

• Mean squared error of all runs over dimensions, for each problem with standard
deviation

There will be no hard criterion, on which to decide which algorithm to take, since the CEC
problems probably cannot be compared to the satellite problems at hand. Still, the intent is
to identify robust and global algorithms which have more chances at finding feasible
solutions.

To directly compare two algorithms, some papers like [15] use the Mann-Whitney U-Test. We
will also use this test for new algorithms, to directly compare a new algorithm to the best old
one.

 4.6 Output & Result Evaluation

An additional part of this thesis is the evaluation of the results obtained by the optimizer
through Matlab scripts. The planned design involves storing immediate output from the
optimizer in a human-readable format to provide instant feedback on how well the
optimization is doing. Additionally, binary files will be created and written with in-depth
information on the exact parameter settings and the respective fitness evaluations. Through
the simulation file, the user should be able to choose between multiple ways and the location
of storing the obtained information. Matlab scripts will be written, which can read this raw
data and use this information for example to estimate the cost function through evaluated

36

points.

 4.7 Planned Algorithms

At the start, we will restrict ourselves to the more simple algorithms for optimization. Since
the simulations do not usually offer a close formula, we can only employ derivative-free
optimization algorithms. One could use gradient approximation, but many simulations are not
expected to be continuous, so the gradient would probably not be very useful, or maybe even
mislead the algorithm. The planned order of implementation is the following:

• Nelder-Mead Method

• Particle Swarm Optimization

• Artificial Bee Colony Optimization (ABC)

• Self Adaptive Differential Evolution (SaDE)

and if multi objective optimization becomes relevant:

• NSGA-II

These algorithms should already provide a first estimate, how efficiently we can solve the
problems at hand. All listed algorithms require only a small amount of parameters, which we
will gather from empirical analyzes by other researchers like in [25]. In a later step, we may
combine several algorithms into a portfolio, to increase the performance and verify the results
from [15], mentioned in section 3.1.

37

 5 Implementation
This section provides an insight of the previous state of the simulator and the way things
were changed in order to make optimization and other discussed features possible.

 5.1 Current Structure

This subsection describes the state of some parts of the simulator, as they were found at the
beginning of the implementation phase.

 5.1.1 Simulation Core

The simulation core is the head of the simulation. It is a class only to be instantiated once,
but does not use the Singleton pattern. It contains the essential information about the
simulation like the path in which the simulation was executed, the path to the simulation file
and the state of the simulation. The methods to parse the simulation file, instantiate and
track the modules and push the parameters into the modules are also contained.

It is also responsible for getting the intermediate and final results from the modules and write
them to the result file.

 5.1.2 Burst Container

The burst container is basically a simple aggregate structure of data and variables to be
passed between modules. The exact composition of the container depends on the project to be
compiled and can contain a wide variety of information. At the start of the program, a fixed
number of bursts will be generated and stored in a burst pool, from which they are drawn
when needed, in order to avoid dynamic allocation during runtime.

 5.1.3 Simulation Main Loop

The simulation main loop controls the execution and initialization of the modules. To be more
precise, it is responsible for fetching the burst containers from the available pool and execute
the modules in the right order, handing burst pool from module to module. The number of
times this procedure is executed per simulation is dependent on a parameter in the simulation
core.

However, this simplistic sequence of operations is only true if the simulation only consists of
one section, whereas section 5.1.4 will show how a simulation can be split up into multiple
sections for better performance.

38

 5.1.4 Sections and Multi Threading

In the previously presented approach in section 5.1.3, all modules are executed according to
the order in the simulation file, where bursts are handed from the top to the bottom module,
before the procedure starts over once again. One single thread will handle this task.
Alternatively, simulations can be split up into different sections, where each section can be
processed by one or multiple threads. This complicates the handling of the burst containers:
Each section now needs a queue at its beginning and end for the containers needed to be
processed in this section and the ones which are ready for the next section respectively. A
section can be marked as a parallel section with the tags PAR_START and PAR_END,
meaning that all modules in it will be processed in parallel. The number of available threads
for a parallel section is given at runtime as a command line argument. Alternatively, the
command PIPELINED splits the flow into different sequential sections. A visualization of
both cases is shown in figure 5.1.

For parallel sections, all modules to be processed in parallel need to be instantiated for each
thread.

 5.2 Restructuring

Following the state prior to the changes of this thesis, shown in section 5.1, this section will
provide a rough overview of the changes and additions made to the already existing software.

39

Figure 5.1: Visualization of the Workflow of the
Simulation with different Sections

 5.2.1 Simulation Core

The importance of the central core for the simulation was already discussed in section 5.1.1.
Likewise, the optimizer is also an important central aspect and therefore the optimization
module was integrated into the core. Additionally, methods to set parameters as variables,
constraints, objectives or outputs were also added.

 5.2.2 Burst Container

The burst container was not modified for the optimization process, but the modules for the
link budget calculation and multi-beam scenario, presented in sections 4.3 and 4.4
respectively, needed to pass a few parameters between them. These were added in the burst
container.

 5.2.3 Simulation Main Loop

For the addition of the optimizer, the main loop of the simulation was extended: While it
already contained three cascading loops for iterating multiple times each simulation, for each
x1 and each x2, another loop was added which runs the simulation until the optimizer
converges or the maximum number of function evaluations has been reached.

The optimization algorithm has a flag at its disposal to signal premature convergence. If it is
never set, the process is interrupted after the optimization has evaluated the simulation a
given number of times, set by the operator in the simulation file.

The optimization module is responsible for setting the parameters for each simulation, since
the main loop needed to remain as unaltered as possible.

There are currently no plans to use the optimization in conjunction with x1 or x2 parameters,
although the possibility exists.

 5.2.4 New Modules

A few major modules were added, which we will take a look at in this section.

 Optimizer

Due to the fact that the optimizer demanded features similar to modules, like dynamic
instantiation and parameter setting, it was implemented as one. However, the exact class
hierarchy is not revolved around the base class Module, but around another base class named
Optimizer, as we will later see in section 5.3.

Listing 5.1 shows how the optimizer can be instantiated. The module name is Optimizer,
followed by the name of the algorithm to be used. In the file moduleswitch.h, the string after
Optimizer is extracted and passed to the optimizer constructor as a parameter.

40

The specific parameters for the algorithm are registered after this creation, like w ,ϕp ,ϕg
 in

listing 5.1, needed for PSO (equation (2.5)), whereas total_func_evals and filehandlers are
algorithm-independent parameters, responsible for the maximum number of function
evaluations an algorithm may use and the binary log file for Matlab evaluation respectively.

The base class already provides a lot of functionality to ease the development of upcoming
algorithms:

Number of Function Evaluations

We track the total number of exhausted function evaluations in the Optimizer-Module class,
because it is limited to the number given in the simulation file by the user. The optimizer
algorithm may signal that it has converged, ending the optimization prematurely, but if it is
not converged, the module will stop the optimization after the total available number of
function evaluations have been exhausted.

Manage Objectives, Constraints and Variables

The base module already handles the objectives, constraints and variables, by providing the
simulation core with a way to register all parameters for the optimization. The algorithms
itself want to track their own points, but they need to be independent of the parameters
which they vary and the parameter(s) they want to optimize, ignoring the actual simulation
parameter behind the scene. For evaluation, the current fitness is read and passed to the
algorithm in the evaluation function.

Interface between Parameter Descriptions and Points (Vectors)

Optimization requires many, possibly complex calculations of vectors, whereas the simulation
is handled through so-called 'Parameter Descriptions', storing information about the type and
location of the parameter. Since we wanted to hide the implementation details of the
simulator for the optimization algorithms, the Point-class acts as a simplified vector-like class

41

Listing 5.1: Exemplary instantiation of the Optimizer Module

used for calculation. Arithmetic operations like addition, subtraction, scalar multiplication
and scalar division have been implemented through operator-overloading to retain readability
and ease-of-use of the algorithms. One such example can be seen in listing 5.2, where the loop
to calculate and update the velocity of all individuals of the PSO algorithm is shown. This
code snippets computes the necessary calculations, which were already presented in equation
(2.5).

In order to use a calculated point for evaluation, it can be placed into a queue, also provided
by the base class. The base class will dequeue the points in the right order, set the parameters
accordingly and run the simulation for each enqueued point before returning control to the
optimization algorithm, with all calculated fitnesses. It is assumed, that after initialization
and after every evaluation, some points were enqueued for evaluation.

To improve performance, the points which were set are remembered in a map to avoid
multiple evaluations of the same simulation configuration. If points were enqueued, which
were already evaluated, the simulation for this point will be skipped and a simple map lookup
will provide us with the fitness.

Initialization is also simplified, since the algorithms for uniformly-distributed points already
exist.

Tracking of Evaluations

In addition to the already mentioned map, another list of all function evaluations is kept.
This list retains the information of the order, in which the points were evaluated, and also
stores to which generation each configuration belongs. All points queued for evaluation at the

42

Listing 5.2: Code to update the Velocity of each Particle, according to Equation (2.5)

same time are considered to be within the same generation. Variable generation sizes are also
supported, but this was not yet tested.

Furthermore, the base class always keeps track of the best known solution and one can always
retrieve it.

Maximization/Minimization

Maximization, as well as minimization can both be done by the optimizer, where we exploit
the theorem we already provided in equation (2.2): The base class will automatically multiply
the fitness by -1, so that we can always view the optimization problem as a minimization
problem. When storing the fitness into the output file, it will be translated back to the correct
value.

Result Output

Since the operator wants immediate, readable results, a textual format is necessary to provide
feedback of the optimization, especially during runtime. The optimization probably takes a
long time and early termination might be required if the progress is insufficient. In such case,
the applied algorithm or total optimization setup needs to be changed immediately to limit
the computational time loss.

Consequently, a simple output file is produced, which immediately shows the current best
found configuration. Listing 5.3 shows how such a file could look like. Every line contains the
iteration a better solution is found, where the first iteration is always taken regardless of its
fitness if it does not violate any constraints, the whole parameter setting and all output
variables. As soon as a better solution is found, it is recorded and flushed to the file.

Binary Logging

The optimizer also provides the means for binary storage of all tried evaluations, after the
simulation has been finished, for later in-depth analysis. The logging is initiated by setting
the parameter filehandlers of the optimizer-module with the way of storage and the respective
path. Results are written to the disk at the end of the simulation. More detail on how the
data is stored and how it is loaded into provided scripts, will be available in section 5.2.5.

Output Variables

During development and a first few tests, the need arose to track some parameters, like
availability, even though they are unrelated to the actual optimization, since they are neither
variables, nor objectives, nor constraints. They are stored similar to variables.

43

 Link Budget

In contrast to the original plan of implementing all of the link budget calculation in one
module, hinted in listing 4.3, it was split between two modules, for up- and downlink
respectively. This new concept now needed the burst container to store the results of the
calculation, but this was necessary, since advanced simulations like interference mitigation
will need the results of the calculation anyway later on.

The two modules and an exemplary setting of their parameters can be seen in listing 5.4.

 Interference

In order to implement the former mentioned scenario of multiple spot beams in section 4.4,

44

Listing 5.3: Exemplary Text Output File of an Optimization

Listing 5.4: Final Version of the Link Budget Modules

many more modules were implemented to achieve this task.

Listing 5.5 shows the script of a simulation file with the interference modules, which were
already planned and presented in figure 4.10. In this listing we can also see some of the
parameters of the modules. The beam setup records the planned coloring scheme (frequency
reuse), crossover-level, available bandwidth in addition to the actual setup. Within the beam
interference module, we record the path to the file containing the radiation pattern of the
antenna. The modem setup obviously needs the used rolloff and modcod.

If the number of beams is set to zero and the crossover-level is known, the given coverage
area defines the needed number of beams to cover the given area. We already looked at the
covered area of a circle on the earth's surface, given the aperture angle and the distance to
the antenna of the satellite in equations (4.22) and (4.23), but as we can see from figure 4.8
the circles do not cover the whole surface. The boundaries between the beams and the
decision, to which beam a user belongs can better be expressed in terms of a hexagonal
pattern as can be seen in figure 5.2. We have both red and blue hexagons, which demonstrate
how the pattern could look like for a two color frequency reuse scenario. The centers stay the
same and this way, the transition between the beams is seamless. For now, the grid
constructed is as quadratic as possible, with ⌈√n ⌉ rows and ⌊√n ⌋ columns, where the last row

is only filled until we have n beams in total. Assume a case where we need 200 spot beams:

45

Listing 5.5: Interference Modules

The grid will consist of 14 rows with 14 columns and the 15 th row will only be composed of 4
beams, since 14²=196 .

In order to determine the position of the user for which we will calculate the total
interference, we choose a random hexagon in which we will place the user, randomly sample
one of the six triangles it contains and then use equation (5.1) presented in [26] to uniformly
pick a position P for the user within the triangle, where r1

 and r 2
 are uniformly

distributed random numbers within the interval [0, 1] and A, B, C are the vertices of the
triangle:

P=(1−√r1)A+√r1(1−r 2)B+√r 1r 2 C (5.1)

Due to the fact that our calculations are now based on the coverage of hexagons, the area
calculation in equation (4.23) now became invalid for our application. Therefore we used
equation (5.2) to compute the circumradius of the hexagon, and equation (5.3) to calculate
the total area of the hexagon, which serves now as the area covered by a spot beam:

rcircum=
2 r inner

√3
(5.2)

46

Figure 5.2: Hexagon Pattern in use

AHexagon≈2.598rcircum
2

(5.3)

 5.2.5 Matlab Tool

The implemented Matlab module is a simple collection of functions which serves the purpose
of analyzing the binary data collected in the process of optimization. In this section, we will
first take a look at the used binary format and the reasoning for it and continue with the
implemented Matlab functions.

 Binary Format

Since a simple stored list of numbers would be too less information for the binary file, some
kind of meta data header was implemented to provide at least a bit of information about the
file in use. The requirements demanded at least the names of the variables which were varied,
on the one hand, and the objective function on the other hand. Since the meta data format is
probably subject to change in the future, a version number is included in the meta data which
should be changed each time the meta data structure is modified in order to ensure
backwards compatibility.

The meta data as the day of writing is shown in table 5.1. Each string is terminated by a
comma as the delimiter, which is thus a forbidden character in all strings.

(String)* means that there might be zero to n strings.

47

Name Size
[Bytes]

Data Type

Version Number 4 Unsigned Integer

File Handler ID 4 Unsigned Integer

Optimization Algorithm Variable String

Objective Name Variable String

Max-/Minimization 1 Boolean

Number of Variables 4 Unsigned Integer

Variable Names Variable (String)*

Number of Constraints 4 Unsigned Integer

Constraint Names Variable (String)*

Number of Outputs 4 Unsigned Integer

Output Names Variable (String)*

Table 5.1: Current Meta Data Structure

Since we are perhaps not interested in all gathered information but only part of it, there were
multiple ways implemented of storing the known evaluations. For this purpose, another
simple ID is saved alongside the meta data to identify the representation used. The currently
available 'file handlers', as they are called in the software, include:

ID 1

This file handler, currently known as 'SingleObjectivePerformancePreprocessor', flattens the
retrieved values, in the sense that we drop the information to which generation a
configuration belongs (look at section 5.2.4 for exact information) and only saves the current
best known configuration. When a better configuration is found, the iteration it was found is
stored as an unsigned integer, followed by the configuration. The size of the resulting file is
heavily dependent on the optimization problem.

ID 2

If we choose the file handler 'SingleObjectiveFlattenedRawSave', the data will again be saved
in a flattened format, but this time each function evaluation will be saved every iteration
along with its parameters, no matter how bad or good it is. This can provide us with all
gathered evaluations of the whole optimization, but will drop the generation information,

48

which could provide us with further insight how well the optimization algorithm is doing for
each generation.

ID 3

The file handler 'SingleObjectiveRawSave' with the ID 3, is the file handler which stores the
maximum amount of information. Like the previous file handler, it stores all evaluations, but
before it starts to save another generation of fitnesses or parameters, it writes the size of the
upcoming generation on the file. This way we can reconstruct to which generation a
configuration belongs. In the next section, we will use such information to track the fitness of
each particle as it rises and descends on a function.

ID 4

With this file handler, we only save the best retrieved configuration, thus the name
'SingleObjectiveOnlyBest'. This may seem to be too less information to use, since the text
output file, which we previously addressed in section 5.2.4, already provides more information
without the need for scripts. However, this format may be useful for Benchmark applications
since we can immediately spot the best solution obtained, without using much space on the
HDD and easily parse the value obtained into a program.

 Matlab Functions

The Matlab Functions were kept as simple as possible. To load the information gathered by
the Optimizer, one simply needs to use the function 'readData' to load the meta data,
parameters and fitnesses, like shown in listing 5.6.

The function will load the data according to both the version number of the meta data and
the ID of the file handler. Any modifications and additions to these values, file handlers or
the meta data structure have to be reflected on this function. The whole 'readData' script is
shown in the Appendix.

To demonstrate the possibilities of reading the evaluation data and analyzing it in Matlab, we
again considered the examples of the CEC, presented in [24]. The surface of the chosen
function with the number eight can be seen in figure 5.3. It poses a lot of complexity with a
very noisy surface and only a very narrow chasm which holds the global minimum,
surrounded by many local minima in which algorithms tend to get stuck.

49

Listing 5.6: Command to call the Script for Processing the Binary Files

To find the global minimum, we applied the PSO algorithm to the function, with only 500
function evaluations. Adding the fact that we had a two-dimensional problem at hand (chosen
for easier visualization), we decided to choose the following parameter setting according to
[25]:

• Total number of Particles (S): 29

• Inertia (ω): -0.4349

• Cognitive Factor (ϕp
): -0.6504

• Social Factor (ϕg
): 2.2073

50

Figure 5.3: Surface of Function Number Eight of the CEC 2013
challenge [24]

The script shown in listing 5.7 loads the parameters from the file and uses the built-in Matlab
function 'TriScatteredInterp' to interpolate a surface using the sampled points, resulting in
the surface shown in figure 5.4. The blue dots mark the evaluated points, which were
considered for the interpolation. Comparing figures 5.3 and 5.4, we can see that the algorithm
was able to reconstruct the surface fairly well, also building a chasm with the global
minimum. It is not as deep as in the original function, but some of the properties of the
surface remain nonetheless.

51

Listing 5.7: Script to interpolate the Surface from the Function Evaluations

In the script shown in listing 5.7, we receive the parameters as a 2x29x18 matrix, since we
have two parameters, with a generation size of 29 and the procedure was limited to 500
function evaluations (the last 22 entries of the matrix are filled with NaN entries). With the
gathered information we can also track the evaluation and path of each particle. We decided
to plot the fitness evolution of each particle for demonstration purposes, which can be seen in
figure 5.5. Some particles have one evaluation less since 500 function evaluations cannot be
evenly divided among 29 particles.

52

Figure 5.4: Interpolated Surface Reconstruction. Blue Dots
mark the sampled Points by the PSO algorithm

 5.3 Final Class Diagrams

After the implementation phase, the most important classes, their attributes and methods
have been recorded to create a class diagram. Figure 5.6 presents the classes associated with
the Optimizer, while the classes created for the link budget and interference experiments were
separately visualized in figure 5.7.

53

Figure 5.5: Performance Evaluation for every Iteration of every Particle

Figure 5.6: Class Diagram of the Optimization Classes

Figure 5.7: Class Diagram of the Link Budget and Interference Classes

 6 Evaluation
This section covers discussing the results which we obtained by the software developed in this
context. We will start off by looking how well the optimization algorithms achieve on the
CEC functions in section 6.1. Furthermore, we will analyze if the parameters we chose from
the literature for PSO can perform well, even on high dimensional functions, or if we will need
to implement other optimization algorithms for such complex optimizations.

Sections 6.2 through 6.4 deal with optimization experiments of increasing complexity and
their in-depth analysis.

 6.1 Benchmark

In contrast to the proposed benchmark in section 4.5, where we suggested to test problems up
to 100 dimensions, we deemed the benchmark to be sufficient for the dimensions
D∈{2,5,10, 20,30 } , since our first experiments will surely not exceed these dimensions. We

stuck to the CEC function set in [24].

Surprisingly, even though Nelder-Mead is a very simple, deterministic algorithm, it can
severely outperform PSO in some occasions. On the first function, which is a simple sphere
function given by equation (6.1), out of 51 runs, Nelder-Mead could always find the minimum
of the function, whereas PSO struggles from 10 dimensions upwards.

f 1(x)=∑i=1

D
(x−o)

2
−1400 (6.1)

On more complex functions, like the Ackley function, shown in figure 5.3, both algorithms
have similar best and average errors, but PSO was not able to clearly outperform Nelder-
Mead in the total of 51 runs.

For two reasons PSO is still the algorithm of choice for the upcoming experiments: Firstly, it
provides better general exploration by not getting stuck in a local minima, which we can
deduce from the fact that the best, worse and average case are closer together than for
Nelder-Mead (compare figures 6.1 and 6.2). Secondly, because applying Nelder-Mead would
demand a restart feature, which runs the simulation several times, demanding additional
computational resources.

56

57

Figure 6.2: Best, Worst and Average Performance of Nelder-Mead on the
Sphere Function

Figure 6.1: Best, Worst and Average Performance of PSO on the Sphere
Function

 6.2 Simple Crossover Experiment

For this experiment, we analyze the dependency of the average goodput, of the multiple spot
beam scenario presented in section 4.4, on the crossover-level of the spot beams. We first
calculate how many spot beams we need to cover the given area, then place a user randomly
per simulation point on the covered area. For this user, the whole link budget calculation
presented in section 4.3 is performed, the total C/N and C/I values are calculated and we use
these to get the total SNIR value. The atmospheric attenuation is independently drawn from
a distribution given in the simulation file for each simulation step. If the ACM algorithm is
turned on, we simply choose the most effective modulation and coding scheme for the current
SNIR, ignoring the possible delay between setting the scheme on the ground station and
receiving the change on the satellite. This feature would give rise to the need of interactive
fade slopes when drawing from the atmospheric attenuation, perhaps overcomplicating the
planned experiment with only little impact on the results.

The average goodput is defined as the average bits correctly received per transmission. We
decided that a transmission is erroneous, simply if the calculated SNIR is lower than the
threshold according to table 6.1, where the values for this table were taken from [22]. These
are the Modcods which are used in Alphasat Aldo Paraboni Payload experiment [1].

58

SNR
threshold [dB]

Modcod Efficiency
[bits/s/Hz]

1.3 QPSK-1/2 1

2.9 QPSK-3/5 1.2

3.6 QPSK-2/3 1.33

4.4 QPSK-3/4 1.5

5.5 QPSK-5/6 1.66

6.6 QPSK-8/9 1.77

7.3 8PSK-2/3 2

8.5 8PSK-3/4 2.25

9.7 16APSK-2/3 2.66

10.7 16APSK-3/4 3

12.3 16APSK-5/6 3.33

13.4 16APSK-8/9 3.55

Table 6.1: Modcod Thresholds from [27]

If we use the ACM algorithm, the only case were a frame error occurs, is when the SNIR is
lower than the threshold required for the least efficient Modcod, which is 1.3dB for QPSK-1/2
in our case.

For the first setup, we will consider a land mass of 543,965km²3, which is approximately the
area of metropolitan France. Weather conditions are assumed to be similar to the Austrian
atmospheric models, shown in tables 6.2 and 6.3 for the downlink and uplink respectively.

3 According to http://www.auswaertiges-
amt.de/DE/Aussenpolitik/Laender/Laenderinfos/01-
Nodes_Uebersichtsseiten/Frankreich_node.html (retrieved at 23rd August 2015)

59

http://www.auswaertiges-amt.de/DE/Aussenpolitik/Laender/Laenderinfos/01-Nodes_Uebersichtsseiten/Frankreich_node.html
http://www.auswaertiges-amt.de/DE/Aussenpolitik/Laender/Laenderinfos/01-Nodes_Uebersichtsseiten/Frankreich_node.html
http://www.auswaertiges-amt.de/DE/Aussenpolitik/Laender/Laenderinfos/01-Nodes_Uebersichtsseiten/Frankreich_node.html

Annual Time
[%]

Atmospheric Attenuation
[dB]

75 0.5

50 0.6

10 1.6

5 3.7

1 8.1

0.5 10.8

0 25

Table 6.2: Distribution of the Atmospheric Attenuation, Q-Band, Location Graz

Annual Time
[%]

Atmospheric Attenuation
[dB]

75 1.6

50 1.8

10 3.2

5 6.3

1 12.4

0.5 16

0 30

Table 6.3: Distribution of the Atmospheric Attenuation, V-Band, Location Graz

For the calculation of the C/No-value in the link budget, the following configuration was
considered:

Uplink

• Antenna Diameter: 3m

• Antenna Efficiency: 54%

• Antenna Feed Loss: 0 dB

• Distance to Satellite: 38,175 km

60

• Depointing Loss: 0.3 dB

• Power: 200W

• Frequency: 47.85 GHz

• Wavelength: 0.00626 m

• Antenna Gain (equation (4.2)): 60.87 dB

• G/T: 4.4 dB/K

Downlink

• Antenna Diameter: 0.6m

• Antenna Efficiency: 0.59

• Antenna Feed Loss: 0.96 dB

• Distance to Satellite: 38,175km

• Tracking Loss: 0.2 dB

• Frequency: 37.85 GHz

• Wavelength: 0.00792 m

• Antenna Gain (equation (4.2)): 45.239 dB

• Mean Sky Temperature: 270K

• Ground Temperature: 30K

• LNA Noise Temperature: 205K

• LNA Transmission Loss: 0.52 dB

• Satellite EIRP working point: 56.9 dBW

• 2 Color Frequency Use

• Bandwidth: 50 MHz -> 25 MHz per Color

• Crossover Point: [0.5, 5]dB

• Antenna Radiation Pattern similar to figure 4.5

• Advanced Interference Mitigation

• ACM on

61

• Rolloff: 0.2

Advanced Interference Mitigation was simply implemented by ignoring the effect of the
strongest two interferers for the two color case, or the strongest six interferers for scenarios
with only one color.

We used PSO with 400 available function evaluations and the setting we already used in
section 5.2.5. The parameter to optimize is the average goodput calculated by the
'OverallPerformance' module (see figure 4.10), which measures the effective throughput of the
whole system on the whole covered surface area. The only parameter varied is the crossover
point.

The output of the optimization can be seen in listing 6.1, showing the best found solution is
obtained using a crossover-point at approximately 1dB, with a total average goodput of
7.6GB/s, an availability of 97% and the most used Modcod is QPSK-1/2 (index 1). The
inefficient Modcod is required since the interference becomes more and more of an issue with
the decreasing crossover-level. Solutions with higher Modcods, like the first one recorded, are
less efficient, since they cannot match the additional goodput obtained by having more spot
beams available.

To increase the information gained, also the raw binary format for Matlab evaluation was
used to get more insight into the function. The result, visible in figure 6.3, shows the average
goodput as a function of the chosen crossover-level. Since we selected arbitrary step sizes, the
optimizer can even try out small variations in the parameters and we can verify the obvious
result that around the maximum we have many more evaluations than in other areas.

We can see that if we lower the crossover-level to less than the 1dB, the goodput dramatically
decreases, since the interference becomes too much of an issue, impacting on the calculated
SNIR. The diminishing goodput at higher crossover-levels will partially be compensated by
better Modcods.

62

Listing 6.1: Output of the Optimization, showing the best Results

Figure 6.3: Crossover vs Avg Goodput on the whole Surface

Let's consider the plausibility of this example: One would assume that the dominating factor
of how many beams can be employed is the available power, since, as we increase the number
of beams, we need to split the available power on the satellite between them. However, the
power flux density at the ground, calculated according to equation (4.8), is constant since
proportionally to the lower power of the beam, its coverage area is also decreased.

If we lower the crossover-level to such minimal values like shown 1.1dB, we need 288 beams
to cover the before mentioned area of 543,965km², and each beam only covers less than 2,000
km². In order to achieve this, we would need to build a satellite with more and bigger spot
beam antennas to keep the aperture angle low enough. These are the optimal solutions,
because we do not take any physical or financial limitations into account, or even consider
them in the target function to be optimized.

We can conclude that crossover-levels of this magnitude are currently unrealistic, but the
optimization showed that theoretically more beams are always better until we cross the
threshold of losing too much SNIR.

This simple experiment serves more the purpose as a proof-of-concept, than a real
optimization problem: One could simply use the already implemented 'x1' tag to mark the
crossover-level as a variable parameter and look at the resulting average goodput.

 6.3 Advanced Interference Mitigation Experiment

For this example, we do not change the parameters of the link budget and interference
calculations from the previous experiment, but this time we let the optimizer compare
different possible scenarios regarding the frequency reuse:

• 1 vs 2 color vs 4 color frequency reuse (50 vs 25 vs 12.5 MHz Bandwidth per color)

• Advanced Interference Mitigation on/off (no effect on the 4 color case)

The result this time is not as clear as the previous if we think about it: In the 4 color case, we
have less interference and additionally a better C/N value, since according to equation (4.17),
C/No needs to be divided by the available bandwidth. The better SNIR should allow for
higher Modcods, but since the baudrate per carrier is calculated according to equation (6.2),
where B is the occupied bandwidth and α is the rolloff factor (0.2 for our case), the effective
baudrate per beam is halved.

Baudrate=
B

1+α
(6.2)

64

Figure 6.4: Second Experiment, comparing different Frequency Reuse Settings

The trace of the optimization can be seen in figure 6.4, also demonstrating how much inferior
the 2 color case without AIMT is. Note that for faster optimization we've chosen a step size
of 0.1 dB steps, since it also catches the properties of the dependency on the crossover-level.

Both the 2 and 4 color cases have their maximum near the low crossover-level of 1dB, already
described in the last experiment. However, while the performance of the 4 color case
drastically drops by increasing the crossover-level, the effect is much less apparent on the 1
and 2 color cases, making them much superior for the more realistic scenarios.

The reason behind the significant drop is related to the used Modcods and their efficiency,
already presented in table 6.1: Through plotting the efficiency of the used Modcod over the
linear SNIR required, we received the graph in figure 6.5. It is clear that by some very early
point already, the increased SNIR does only little to increase the efficiency. Thus, the better
Modcod cannot compensate for the loss of bandwidth in each beam.

However, the superiority of 1 color over 2 colors for higher crossover-levels is again probably
not realistic, since the AIMT algorithm would need to completely cancel the effect of all six
closest interferers in order to achieve this result. AIMT is probably much more effective for 2
colors, than it is for 1 color.

 6.4 System Cost Experiment

For this experiment, we now consider the cost of the satellite system under design, which we

66

Figure 6.5: Modcods and their required linear SNR (Threshold)

left out until now, favoring expensive systems for the sake of high throughput. As a first test,
we only take the power of the satellite's HPA and the number of required spot beams into
account, where we calculate the cost of the system according to equation (6.3). The EIRP of
the satellite is measured in dBW, whereas the resulting costs have no real relation to any
currency. n is the number of spot beams. This artificial cost function was used for
demonstration purposes, but satellite operators should replace this function with the exact
costs of a system to get more realistic optimization results.

Cost=10EIRP /10
⋅15+3n (6.3)

Because we want a good balance between goodput and the costs and not simply minimize or
maximize one of them, which is a trivial optimization, we additionally defined the target
function f in equation (6.4), where goodput is the average goodput of the whole system.

f =goodput
Cost (6.4)

Since the optimization algorithms compute the finite differences, the absolute values have
only a negligible influence on the optimization. The more important aspect is the order of
relation between the input variables and the output, similar to complexity classes for
measuring the computational requirements of algorithms.

For this setup, we redefine a few of the setup parameters:

• Crossover Point: [0.5, 5]dB

• Advanced Interference Mitigation on

• Satellite EIRP working point: [5, 100] dBW

• Bandwidth: 500 MHz

Since the costs increase exponentially with respect to the HPA power in dBW, the optimizer
will try to find the trade-off between transmission power for a better C/N value and
subsequently a higher Modcod, and the cost, at which the additional goodput comes.

Since we now have more variables, we also adapted the used parameters for the PSO
algorithm and increased the number of available function evaluations to 4000 according to
[25]:

• Total number of Particles (S): 156

67

• Inertia (ω): 0.4091

• Cognitive Factor (ϕp
): 2.1304

• Social Factor (ϕg
): 1.0575

In figure 6.6, the resulting point cloud is shown of all evaluations the algorithm has made. We
can see that the 4 color case dominates all other cases at about 54 dBW EIRP satellite power.
For higher EIRP values, the comparison between the different color cases is again similar to
the previous experiments, showing that two and four color can both offer the same
performance. Looking at the result file, we can get more insight into the reason for this
performance: The power is reduced and with it, the availability of the link drops to about
84% and the modulation is once again only QPSK-1/2. However, the saved money outweighs
the loss in terms of goodput. The optimal configuration found is shown in table 6.4.

Target Variables Outputs

f
EIRP
[dBW]

#Colors
Crossover

[dB]
Avg. Goodput

[Mbits/s]
Most used
Modcod

Availability
[%]

0.00811327 53.9 4 0.9 29881.4 QPSK-1/2 84.46%

Table 6.4 Best found Solution for the Cost Experiment without any Constraints

The question left is, why is the 4 color case so much superior for cheap systems. The
reasoning is that by choosing a low crossover-level, we place the beams very close to each
other and the AIMT is only able to eliminate the two strongest interferers for 2 colors.
However, the next beams of the same color are close enough to play an important role in the
interference, once again. In comparison, the 4 color setup has only half the interferers around
the main beam.

Since we do not want to run the satellite at its minimum working point in order to save as
much money as possible, we introduced a constraint, demanding at least 99% link availability
from the system. We again plotted another point cloud, seen in figure 6.7, but we now receive
much less points since many configurations became invalid, giving them −∞ fitness.

Once again, the two color case becomes superior in realistic scenarios: Many tried
configurations now have higher crossover-levels from 2.5 up to 4 dB, the power of the satellite
is dependent on the crossover-level, but 56-58 dBW is a good measure and due to the high
availability, the most used Modcod now is at least 8PSK-2/3, up to the most efficient
available Modcod of 16APSK-8/9. We have only given intervals for these solutions, since we

68

get different results in multiple runs.

This is one hand due to the before mentioned fact that PSO has problems with hard
constraints and on the other hand that PSO is probably not well fitted for these sensitive
problems. The algorithm does insufficient exploration and the parameters would need to be
tuned towards the problem.

In table 6.5, we can see one of the best solutions found.

Target Variables Outputs Constraints

f
EIRP
[dBW]

#Colors
Crossover

[dB]
Avg. Goodput

[Mbits/s]
Most used
Modcod

Availability
[%]

0.00310763 58.8 2 2 34305.2 8PSK-3/4 99.485

Table 6.5 Optimal Solution after adding the Availability Constraint to the former Case

Target Variables Outputs Constraints

f
EIRP
[dBW]

Bandwidth
[MHz]

Nr.
Colors

Crossover
[dB]

Avg.
Goodput
[Mbits/s]

Most
used

Modcod

Availability
[%]

0.00252593 57.2 165 4 1 19886.6 8PSK-3/4 99.04

0.00200722 58.8 233 4 1.2 22840.9 8PSK-2/3 99.03

0.00228311 59.9 276 4 1 33469.1 8PSK-3/4 99

0.00264635 55 104 4 1 12555 8PSK-3/4 99.07

0.00259688 56.2 135 4 1 16240.6 8PSK-3/4 99.04

Table 6.6 Multiple Optimal Cases found after adding the Bandwidth as a Variable

To raise the bar even higher, we now added the bandwidth as a variable for the optimization.
The bandwidth can be varied from 100 to 500 MHz in 1 MHz steps with no additional costs
attached.

There is a simple linear relation between the throughput and the bandwidth, shown in
equation (6.2), suggesting that by simply increasing the bandwidth, we can increase the total

69

goodput, but if we take a look at equations (4.6) and (4.17) for calculating the C/N value, the
situation becomes more complicated: The lower EIRP on the satellite decreases the C/No
value, but we could compensate this effect by reducing the bandwidth, saving money by
employing a cheaper HPA. Indeed, as shown in table 6.6, we now receive solutions where we
do not make use of the full available bandwidth. We optimized several times, because we
received many different solutions with similar fitness. In table 6.6, we have written the
configurations obtained in five different optimization runs, showing the diversity of the results
and the importance of a proper cost function.

The things that stay the same throughout the runs are are the availability which is kept
above 90% in order to avoid violating the constraint, the Modcod which is somewhere in the
upper half of the possible Modcods, using four colors to make a cheap setup with a low
crossover-level possible, which also stays the same for nearly all results obtained. Like in
figure 6.6, the system tends to lean towards a very cheap system with minimal throughput,
satisfying the constraint.

70

Figure 6.6: Point Cloud of the Third Experiment: Varying the EIRP and Crossover

Figure 6.7: Point Cloud of the Third Experiment with the Constraint 'Availability > 99%'

 7 Conclusion and Future Work
It's time to take a look back on the goals accomplished, to compare the results demanded and
obtained by this thesis.

This thesis aimed at providing an interface for the existing simulation software of Joanneum
Research, which was accomplished by integrating additional modules into the existing project.

In section 2, we focused on introducing a small set of optimization algorithms since the
objective of this thesis is not to provide complex algorithms, but to show the possibilities of
optimization on satellite communication systems, even with very simple ones. We also showed
the basic mathematical principles we applied to the algorithms in the software in order to
enable the optimization within the software. Some of the basic principles allow for the easier
development of upcoming optimization algorithms, like the minimization/maximization trick
in equation (2.2). Unfortunately though, there was only time to develop two basic
optimization algorithms (Nelder-Mead and PSO) and the implementation of multi objective
optimization is still pending.

The related work presented in section 3 already offered a promising prospect of how well
optimization can perform on system level optimization on the one hand, and the possibilities
of robust algorithms on the other hand. The satellite resource scheduling optimization was
one such task, proving that PSO was able to optimize systems that have to satisfy a
multitude of constraints.

We took much knowledge from the related work into our design that we introduced in section
4. Along with the link budget and multi-beam scenario, the planned extensions to the
software, new information flows and the planned tags were presented. Most of the design was
already advanced enough to find its way into the software, especially the whole set of
equations used for the link budget, as well as the calculations for the multi-beam scenario. We
also used the already existing syntax in the simulator to ensure the easy integration for the
users. At its core, the implemented classes retained the relations shown in the class diagram
in figure 4.1, although many more classes, relations, methods and variables were added.

Although it was not possible to leave the simulation software completely untouched, the
changes were isolated into a few parts of the program. Like shown in section 5.2, we mainly
made small alterations to parts in the simulation core, the burst container and the simulation
main loop. The new modules, including the optimizer module, the link budget modules and
interference modules, were discussed later in section 5.2.4 in great detail, revealing the exact
course of events of an interference simulation. In addition to this, many of the
implementation features of the software were presented and the chapter concluded with a
simplified class diagram in section 5.3, showing the most important aspects and relations

73

between the new classes.

From the evaluation in section 6, we learned that simple problems up to three variables can
be extensively explored to fully analyze the fitness function at hand, like we saw in figure 6.3
and 6.4. We need to keep in mind that the search space was small by the fact alone that some
of the variables, like the color, had very narrow bounds.

However, this may be achieved by simpler algorithms that may not use optimization at all, so
in the third experiment, we used the gained knowledge and applied it to a more complex
example, considering the system costs in ratio to the goodput. We quickly came to the
conclusion that the system tries to create cheap systems with minimum specifications to keep
the system up. This is due to the fact that in our created target function, the cost of the HPA
is by far the dominating factor. We tried to circumvent this problem by introducing a
constraint, demanding at least 99% availability. The results showed that PSO is able to
handle this constraint well enough, now providing us with a totally different solution, shown
in table 6.5. By further increasing the complexity through adding the bandwidth we now
receive different results for nearly every run, as we can see in table 6.6. This seems logical,
since there are many trade-offs that can be achieved, but there is already a significant
difference in the quality of the target function for each of these solutions found.

Nevertheless, if we compare tables 6.5 and 6.6, we see that without the variable bandwidth,
we have found a far superior solution. The question at hand is, why are the latter solutions so
different, again favoring cheap solutions? We can deduce the answer to some extent from
figure 6.7: 4 colors offer better solutions in general, whereas the 2 color case is superior in
specific settings. The PSO algorithm will stick to the more useful solutions, found for the 4
color cases and only try and explore the 2 color case once in a while. The good solutions
however, demand a high variation of the parameters: We need to increase the bandwidth up
to its maximum, add more power to compensate the loss in C/N for 2 colors and increase the
crossover-level to decrease the interference. If the algorithm fails to vary only one parameter
in the right way, the solution will not be competitive enough, or even become infeasible with
respect to the constraint.

This may be a shortcoming of the PSO algorithm, or our chosen parameters: The parameters
we used from [25] are tuned towards bounded real-valued problems, whereas we have mixed
real-valued and integer problems, where there is a strong dependency between each
dimension. Future work should focus on trying more advanced, robust algorithms to prove if
this is simply the fault of the algorithm, the cost function we used, or the problem domain at
hand.

For the link budget calculation, we used the suggested weather distribution shown in tables
6.2 and 6.3, independently drawing each attenuation from the given CDF in each run. This
simplistic weather model serves its purpose when it comes to expectation values, but for the

74

used ACM feature, we neglect the fact that switching Modcods is not an instantaneous action,
but requires time in which we lose some data. This feature however, requires a sophisticated
weather model, considering fade slopes during weather events. To compute more realistic
simulations, we suggest adding simple fade slopes to the software in the future, where in each
simulation step there is a chance to start such event, according to a Markov model.

As we discussed previously, the design of the target function can become a major issue of the
optimization, basically defining which solutions the algorithm will provide us with. We
consider the target function in equation (6.4) to be sufficient for our experiments, but in order
to avoid using constraints like we did, terms for penalizing lower link availability would prove
to be useful, since they alter the target function in a way, the particles can better
'understand'.

An additional simple feature planned would ease the use of letting the optimization run
multiple times: Currently we need to change the directory and call the program for each run
manually. A desired feature would include a simple parameter in the simulation file, or as a
startup parameter, which tells the algorithm, how many runs we want and if they are to be
parallelized.

75

Bibliography

[1] J. Ebert, M. Schmidt, H. Schlemmer, E. Turkyilmaz, S. Kastner-Puschl, and J. R.
Castro, “The Alphasat Aldo Paraboni experiment: Fade mitigation techniques in
Q/V-band satellite channels, first results,” in 2015 IEEE Aerospace Conference,
2015, pp. 1–9.

[2] J. Nocedal and S. J. Wright, Numerical Optimization, 2nd ed. New York: Springer,
2006.

[3] J. A. Nelder and R. Mead, “A Simplex Method for Function Minimization,”
Comput. J., vol. 7, no. 4, pp. 308–313, Jan. 1965.

[4] V. Černý, “Thermodynamical approach to the traveling salesman problem: An
efficient simulation algorithm,” J. Optim. Theory Appl., vol. 45, no. 1, pp. 41–51,
Jan. 1985.

[5] M. Mitchell, An Introduction to Genetic Algorithms, MIT Cambridge, Mass.: MIT
Press, 1998.

[6] R. Eberhart and J. Kennedy, “A new optimizer using particle swarm theory,” in ,
Proceedings of the Sixth International Symposium on Micro Machine and Human
Science, 1995. MHS ’95, 1995, pp. 39–43.

[7] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evol. Comput., vol. 6,
no. 2, pp. 182–197, Apr. 2002.

[8] J. B. J. R. Perez, “Comparison of Different Heuristic Optimization Methods for
Near-Field Antenna Measurements,” IEEE Trans. on Antennas Propag., no. 3, pp.
549 – 555, 2007.

[9] L. Jian and W. Cheng, “Resource planning and scheduling of payload for satellite
with genetic particles swarm optimization,” in IEEE Congress on Evolutionary
Computation, 2008. CEC 2008. (IEEE World Congress on Computational
Intelligence), 2008, pp. 199–203.

[10]D. H. Wolpert and W. G. Macready, “No free lunch theorems for optimization,”
IEEE Trans. Evol. Comput., vol. 1, no. 1, pp. 67–82, Apr. 1997.

[11]N. H. P. N. Suganthan, “Problem Definitions and Evaluation Criteria for the CEC
2005 Special Session on Real-Parameter Optimization,” 2005.

76

[12]F. G. Lobo, C. F. Lima, and Z. Michalewicz, Parameter Setting in Evolutionary
Algorithms, 1st ed. Springer Publishing Company, Incorporated, 2007.

[13]A. K. Qin, V. L. Huang, and P. N. Suganthan, “Differential Evolution Algorithm
With Strategy Adaptation for Global Numerical Optimization,” IEEE Trans. Evol.
Comput., vol. 13, no. 2, pp. 398–417, Apr. 2009.

[14]A. Meloni and M. Murroni, “On the genetic optimization of APSK constellations
for satellite broadcasting,” in 2014 IEEE International Symposium on Broadband
Multimedia Systems and Broadcasting (BMSB), 2014, pp. 1–6.

[15]S. Y. Yuen, C. K. Chow, and X. Zhang, “Which Algorithm Should I Choose at
Any Point of the Search: An Evolutionary Portfolio Approach,” in Proceedings of
the 15th Annual Conference on Genetic and Evolutionary Computation, New York,
NY, USA, 2013, pp. 567–574.

[16]S. Y. Yuen and X. Zhang, “On Composing an (Evolutionary) Algorithm Portfolio,”
in Proceedings of the 15th Annual Conference Companion on Genetic and
Evolutionary Computation, New York, NY, USA, 2013, pp. 83–84.

[17]J. A. Vrugt and B. A. Robinson, “Improved evolutionary optimization from
genetically adaptive multimethod search,” Proc. Natl. Acad. Sci., vol. 104, no. 3,
pp. 708–711, Jan. 2007.

[18]R. Storn and K. Price, “Differential Evolution – A Simple and Efficient Heuristic
for Global Optimization over Continuous Spaces,” J. Glob. Optim., vol. 11, no. 4,
pp. 341–359, Dec. 1997.

[19]J. J. Grefenstette, “Optimization of Control Parameters for Genetic Algorithms,”
IEEE Trans. Syst. Man Cybern., vol. 16, no. 1, pp. 122–128, Jan. 1986.

[20]M. Meissner, M. Schmuker, and G. Schneider, “Optimized Particle Swarm
Optimization (OPSO) and its application to artificial neural network training,”
BMC Bioinformatics, vol. 7, no. 1, p. 125, Mar. 2006.

[21]Gerard Maral, Michel Bousquet, Zhili Sun, “Wiley: Satellite Communications
Systems: Systems, Techniques and Technology, 5th Edition.” [Online]. Available:
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470714581.html.
[Accessed: 11-Aug-2015].

[22]ETSI, “Digital Video Broadcasting (DVB); Second generation framing structure,
channel coding and modulation systems for Broadcasting, Interactive Services,
News Gathering and other broadband satellite applications; Part II: DVB-S2

77

Extensions (DVB-S2X) Specification (Optional).” 2013.

[23]K. Plimon and J. Ebert, “System Demonstrator for Advanced Interference
Mitigation Techniques in Satellite Networks.”, Aug. 2015.

[24]B. Y. Q. J. J.Liang, “Problem Definitions and Evaluation Criteria for the CEC
2013 Special Session on Real-Parameter Optimization”, Tech. Rep. 201212
Comput. Intell. Lab. Zhengzhou Univ. Zhengzhou China, 2013.

[25]M. E. H. Pedersen, “Good Parameters for Particle Swarm Optimization.” Hvass
Laboratories, 2010.

[26]R. Osada, T. Funkhouser, B. Chazelle, and D. Dobkin, “Shape Distributions,”
ACM Trans Graph, vol. 21, no. 4, pp. 807–832, Oct. 2002.

[27]ETSI, “Digital Video Broadcasting (DVB); Second generation framing structure,
channel coding and modulation systems for Broadcasting, Interactive Services,
News Gathering and other broadband satellite applications (DVB-S2).” 2012.

[28]“Pareto efficiency,” 16-Aug-2015. [Online]. Available:
https://en.wikipedia.org/w/index.php?title=Pareto_efficiency&oldid=676363023.
[Accessed: 31-Aug-2015].

78

Appendix

A. Matlab Evaluation Script

function [meta_data, params, fitnesses] = readData(params_file_name, fitness_file_name)
 fileID = fopen(fitness_file_name);
 meta_data = readMetadata(fileID);
 %Read everything else as double
 fitnesses = readFitnesses(fileID, meta_data);

 fclose(fileID);

 fileID = fopen(params_file_name);
 meta_data = readMetadata(fileID);
 %Read everything else as double
 params = readParams(fileID, meta_data);

 if meta_data.filehandler_id == 1 || meta_data.filehandler_id == 2
 %Parameters are always stored in a flatted way
 params = reshape(params, size(meta_data.variables, 2), []);
 end

 fclose(fileID);
end

function result = readParams(fileID, meta_data)
 %Doubles were saved in a flattened way. We get an (1xn) vector where
 %n = number of function evaluations
 if meta_data.filehandler_id == 1 || meta_data.filehandler_id == 2
 params = fread(fileID, 'double');

 %Results were saved in the raw way, to reconstruct the generation
 %parameters and fitnesses
 elseif meta_data.filehandler_id == 3

 params = [];
 while 1
 generation_length = fread(fileID, 1, 'uint32');
 if feof(fileID)
 break
 end
 %TODO: Preallocate...
 tmp = inf(1, max(size(params, 2), generation_length) * length(meta_data.variables));
 tmp(1:(length(meta_data.variables) * generation_length)) = fread(fileID,
 generation_length * length(meta_data.variables), 'double')';
 tmp = reshape(tmp, length(meta_data.variables), []);

79

 %Concatenate along 3rd dimension
 params = cat(3, params, tmp);
 %params = [p
 end
 else
 error('Unknown file handler with id %d', meta_data.filehandler_id);
 end

 result = params;
end

function result = readFitnesses(fileID, meta_data)
 %Doubles were saved in a flattened way. We get an (1xn) vector where
 %n = number of function evaluations
 if meta_data.filehandler_id == 1 || meta_data.filehandler_id == 2
 fitnesses = fread(fileID, 'double');

 %Results were saved in the raw way, to reconstruct the generation
 %parameters and fitnesses
 elseif meta_data.filehandler_id == 3
 fitnesses = [];
 while 1
 generation_length = fread(fileID, 1, 'uint32');
 if feof(fileID)
 break
 end
 %TODO: Preallocate...
 tmp = inf(1, max(size(fitnesses, 2), generation_length));
 tmp(1:generation_length) = fread(fileID, generation_length, 'double')';
 fitnesses = [fitnesses; tmp];
 end
 else
 error('Unknown file handler with id %d', meta_data.filehandler_id);
 end
 result = fitnesses;
end

function meta_data = readMetadata(fileID)
 version_nr = fread(fileID, 1, 'uint32')
 switch(version_nr)
 case 1 %Preprocessed, non-increasing flat fitness
 meta_data = struct('version_nr', version_nr, 'filehandler_id', [], ...
 'algorithm_name', [], 'minmax', [], 'variables', [], 'constraints', []);

 %meta_data.variables =
 meta_data.constraints = struct('name', {}, 'min', {}, 'max', {});

80

 meta_data.filehandler_id = fread(fileID, 1, 'uint32')
 meta_data.algorithm_name = textscan(fileID, '%s', 1, 'whitespace', '', 'Delimiter', ',');

 meta_data.minmax = fread(fileID, 1, 'uint8')

 meta_data.variables = readVariables(fileID)
 meta_data.constraints = readConstraints(fileID);

 case 2
 meta_data = struct('version_nr', version_nr, 'filehandler_id', [], ...
 'algorithm_name', [], 'objective', [], 'minmax', [], 'variables', [], 'constraints', []);

 %meta_data.variables =
 meta_data.constraints = struct('name', {}, 'min', {}, 'max', {});

 meta_data.filehandler_id = fread(fileID, 1, 'uint32')
 meta_data.algorithm_name = textscan(fileID, '%s', 1, 'whitespace', '', 'Delimiter', ',');
 meta_data.objective = textscan(fileID, '%s', 1, 'whitespace', '', 'Delimiter', ',');

 meta_data.minmax = fread(fileID, 1, 'uint8')

 meta_data.variables = readVariables(fileID)
 meta_data.constraints = readConstraints(fileID);
 otherwise
 error('Unknown version nr: %d', meta_data.version_nr);
 end
end

function constraints = readConstraints(fileID)
 nr_constraints = fread(fileID, 1, 'uint32');
 constraints = struct('name', {}, 'min', {}, 'max', {}, 'step_size', {});

 for i = 1:nr_constraints
 constraints(i).name = textscan(fileID, '%s', 1, 'whitespace', '', 'Delimiter', ',');
 constraints(i).min = fread(fileID, 1, 'double');
 constraints(i).max = fread(fileID, 1, 'double');
 end
end

function variables = readVariables(fileID)
 nr_variables = fread(fileID, 1, 'uint32');
 variables = struct('name', {}, 'min', {}, 'max', {}, 'step_size', {});

 for i = 1:nr_variables
 variables(i).name = textscan(fileID, '%s', 1, 'whitespace', '', 'Delimiter', ',');
 variables(i).min = fread(fileID, 1, 'double');
 variables(i).max = fread(fileID, 1, 'double');

81

 variables(i).step_size = fread(fileID, 1, 'double');
 end
end

82

	1 Introduction
	1.1 Motivation and Background
	1.2 Overview of the Thesis

	2 Optimization Fundamentals
	2.1 Algorithms
	2.1.1 Downhill-simplex
	2.1.2 Simulated Annealing (SA)
	2.1.3 Genetic Algorithms (GA) & Evolutionary Algorithms (EA)
	2.1.4 Particle Swarm Optimization (PSO)
	2.1.5 Artificial Bee Colony
	2.1.6 Nondominated Sorting Genetic Algorithm II (NSGA-II)

	3 Related Work
	3.1 Parameters in Optimization
	3.1.1 Algorithm Portfolios
	3.1.2 Self Adaptation
	3.1.3 Meta Optimization

	4 Design
	4.1 Simulator
	4.2 Optimizer
	4.3 Link Budget
	4.4 Multi-Beam Systems
	4.5 Benchmark
	4.6 Output & Result Evaluation
	4.7 Planned Algorithms

	5 Implementation
	5.1 Current Structure
	5.1.1 Simulation Core
	5.1.2 Burst Container
	5.1.3 Simulation Main Loop
	5.1.4 Sections and Multi Threading

	5.2 Restructuring
	5.2.1 Simulation Core
	5.2.2 Burst Container
	5.2.3 Simulation Main Loop
	5.2.4 New Modules
	Optimizer
	Link Budget
	Interference

	5.2.5 Matlab Tool
	Binary Format
	Matlab Functions

	5.3 Final Class Diagrams

	6 Evaluation
	6.1 Benchmark
	6.2 Simple Crossover Experiment
	6.3 Advanced Interference Mitigation Experiment
	6.4 System Cost Experiment

	7 Conclusion and Future Work
	Bibliography

