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Kurzfassung

In den vergangenen Jahren ist das Interesse an Tiefenkameras stark gestiegen, und es
sind einige Systeme auf dem Endkundenmarkt erschienen. Time-of-Flight Kameras sind
dabei das System mit dem kleinsten Formfaktor. Bald werden Tiefenkameras in mobile
Geräte wie Tablets und Smartphones integriert werden. Time-of-Flight Kameras messen
die Tiefe für jeden Pixel, indem Licht ausgestrahlt wird und die Laufzeit gemessen wird.
Ein Bildsensor ist mit einem Photonic Mixture Device für jeden Pixel ausgestattet, mit
dem es möglich ist die Phase zwischen ausgestrahltem und gemessenem Licht zu erfassen
und in eine Spannung umzuwandeln.

Wie alle anderen Tiefenkameras sind die Daten eines Time-of-Flight Systems nicht
perfekt. Durch das relativ große Photonic Mixture Device auf jedem Pixel ist die Auflösung
beschränkt. Dadurch, dass nur wenig ausgestrahltes Licht zum Sensor zurückreflektiert
wird, sind die Tiefenwerte leicht verrauscht.

Durch die Kombination von einer Time-of-Flight mit einer Farbkamera, lässt sich die
Qualität der Tiefendaten stark verbessern. Wenn das Farbbild als Hilfe zum Aufskalieren
verwendet wird, kann man dabei die Auflösung verbessern und gleichzeitig das Rauschen
verlustfrei unterdrücken. Künftige mobile Geräte mit Time-of-Flight Kameras werden eine
geeignete Farbkamera haben. Wenn man für jeden Farbwert auch Tiefeninformation hat,
öffnet das neue Möglichkeiten in den Bereichen Computer Vision, Augmented Reality und
Computational Photography.

Diese Masterarbeit erforscht die Durchführbarkeit der Farb- und Tiefendaten Fusion
auf mobilen Geräten mit hohen Bildraten. Dazu werden zuerst State-of-the-Art Algorith-
men vorgestellt und evaluiert. Ein neuer Ansatz wird vorgestellt, welcher Qualität und
Geschwindigkeit kombiniert.

Mit der High-End Qualcomm Snapdragon 810 Plattform und einer Farb- und Tiefenkam-
era wird ein Prototyp gebaut. Die Bildverarbeitungspipeline wird auf dem mobilen Grafikprozes-
sor implementiert. Das Ergebnis ist ein System, welches die Fusion von Farb- und Tiefen-
daten mit interaktiven Bildraten durchführt. Eine ausführliche Evaluierung zeigt, dass die
Tiefendaten eine deutlich verbesserte Auflösung und geringeres Rauschen aufweisen.
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Abstract

In recent years, depth sensing systems have gained popularity and have begun to
appear on the consumer market. Of these systems, Time-of-Flight (ToF) are the smallest
available and will soon be be integrated into mobile devices such as smartphones and
tablets. Time-of-Flight cameras measure the depth of a pixel by emitting pulsed light, an
image sensor then measures the time it takes the light to travel to the scene and back.
This works with a photonic mixture device on each pixel, which is able to convert the
phase shift of the incoming light into a voltage.

Like all other available depth sensing systems, Time-of-Flight cameras do not produce
perfect depth data. This imperfection is due to the large photonic mixture device on each
pixel and therefore the resolution is limited. Time of Flight data is noisy, because the
large quantity of emitted light does not travel back to the image sensor.

Combining the data of a Time-of-Flight and a color camera can vastly improve depth
image quality. By using the color image as guidance, the depth image can be upscaled with
resolution gain and noise reduction. Future mobile devices with ToF cameras will feature a
suitable high-resolution color camera. When there is depth information available for every
color pixel, new possibilities in computer vision, augmented reality and computational
photography arise.

This thesis explores the feasibility of fusing color and depth data on mobile devices
with high frame rates. State-of-the-art algorithms are reviewed and evaluated. A novel
depth upscaling algorithm is introduced, combining the creation of high quality depth
data with fast execution.

The high-end Qualcomm Snapdragon 810 platform, a color and ToF camera are used
to create a sensor fusion prototype. The complete processing pipeline is implemented on
the mobile GPU to maximize performance. The result is a system capable of fusing color
and depth data at interactive frame-rates. As an extensive evaluation reveals, the depth
data demonstrates improvement in resolution and reduced noise.

4



Danksagung

Diese Diplomarbeit wurde im Jahr 2015 am Institut für Technische Informatik an der
Technischen Universität Graz durchgeführt.
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Chapter 1

Introduction

In recent years, there have been huge advancements in depth sensors. The first mass-
produces device on the consumer market was the Microsoft Kinect Sensor, which had a
massive impact on research, products and applications in the field.

Currently, depth sensors are on the edge of becoming available on mobile devices.
Depth sensing based on the Time-of-Flight principle, is the smallest system available.
The Time-of-Flight method is based on measuring the time a photon takes to travel from
the camera to the scene. This time is proportional to the depth of each pixel. The principle
is illustrated in Figure 1.1.

Figure 1.1: The principle of a Time-of-Flight depth sensing system [Dru+15]

An active illumination unit emits a modulated light signal. The light signal is reflected
by the scene captured by the ToF sensor. The ToF sensor measures the phase difference
of the incoming to the outgoing light. A photonic mixture device on each pixel enables
the conversion of the phase to a voltage, which is proportional to the depth. All available
systems have flaws and disadvantages. Currently, there is no superior depth sensing system
on the market. Some weaknesses of the Time-of-Flight technology include:

� Noise

ToF sensors often produce noisy data. The amount of sensed light decreases dra-
matically over distance.

14
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� Resolution

A ToF camera measures the phase difference directly per pixel on the sensor chip
with the photonic mixture device. The device makes the pixels relatively large which
limits the resolution.

� Measurement Errors

Various errors are introduced during the measurement process, causing not all pixels
to contain valid depth values. The most common is the low-signal error, when
sufficient light is not reflected.

There are numerous countermeasures for these errors, but using additional information
is the best way to counter these flaws. While a combination of several different depth
sensing systems makes sense and has been thoroughly researched, practical applications
are limited due to the increased complexity. Fusing depth and color can enhance depth
resolution and reduce noise.

1.1 Motivation

The availability of Time-of-Flight based depth sensing systems in smartphones and tablets
soon is approaching. Their resolution is limited and their applications are currently fo-
cused on mapping and indoor-navigation. High-resolution color cameras are ubiquitous
on mobile devices like smartphones and tablets. Research has shown, that depth image
quality can be improved immensely by using color information. There is a strong corre-
lation between depth and color discontinuities. These discontinuities can be preserved,
when upscaling the depth image, causing the depth image to improve resolution. When
every color image pixel is associated with a depth value, new applications for depth sensors
arise. Fields like augmented reality, computational photography and computer vision in
general can benefit of a unified color and depth sensor.

This master’s thesis aims to show the feasibility of color and depth sensor fusion on
mobile devices. State-of-the-art sensor fusion methods are reviewed and tested. A novel
algorithm, capable of improving Time-of-Flight depth images in terms of resolution and
lossless noise reduction is proposed. The key difference between state-of-the-art approaches
is the speed and feasibility for an efficient implementation on a mobile platform’s GPU. A
prototype is developed to demonstrate the proposed algorithm and to verify the feasibility
by reaching interactive frame-rates.
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1.2 Objectives

The focus is on the implementation of a sensor fusion system on a mobile platform. Lit-
erature research is conducted in the fields of image sensors, depth sensor fusion and GPU
computing. State-of-the-art fusion algorithms are evaluated in terms of performance and
quality. The target platform is examined and an efficient GPU-assisted implementation is
designed and developed. These activities can be categorized into:

� Research on fundamentals and similar state-of-the-art projects

� Design of a suitable sensor fusion algorithm

� Component selection and setup of the sensor fusion platform

� Implementation of the algorithm and a demonstration application

The outcome of this thesis is a mobile platform with a color and ToF camera, producing
a fused color and depth image.

1.3 Outline

The way this thesis is structured resembles the process of the project. Chapter 2 reviews
the related research and is the result of extensive literature research. After introducing
the various topics of this thesis, the state-of-the-art publications are listed and reviewed
in this chapter. Chapter 3 specifies the design requirements for the sensor fusion hard-
ware components and how they are met. It shows the evaluation of the most recent color
and depth fusion algorithm, and how the final algorithm is designed. Aspects of software
development and GPU computing on the mobile platform are mentioned as well. Chapter
4 describes the implementation of the software on the CPU and GPU and shows the final
sensor fusion platform. The results are discussed in detail in Chapter 5. The perfor-
mance, quality and parameters of the sensor fusion algorithm and its intermediate steps
are evaluated and discussed. Chapter 5 contains the conclusion and possible future work.



Chapter 2

Related Work

2.1 Time-of-Flight Cameras

Time-of-Flight (ToF) cameras are range cameras that sense depth. Each pixel encodes
the distance between the camera and a point in the scene. This works by illuminating the
scene with pulsed light and measuring how much time the light takes to travel from the
scene, back to the camera.

2.1.1 Principle

Figure 2.1 shows the principle of a ToF camera system. An active illumination unit emits
pulsed infra-red light. The light is reflected and captured by the image sensor. With the
use of optical filters and additional signal processing measures, other light-sources do not
influence the measurement.

Figure 2.1: The princple of a ToF depth sensing system [Han+13]

The incoming pulsed light signal has a phase shift in comparision to outgoing light. The
phase shift is caused by the travel time of the light and is thus proportional to the distance.
There is a photonic mixture device for each pixel on the sensor, as shown in Figure 2.2.
The purpose is to convert the phase difference into a voltage. Electron holes are created by
the photons arriving on the sensor’s surface. They are directed into either of two buckets.
Depending on the modulation, an electrical field regulates which bucket is filled. After

17
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Figure 2.2: The photonic mixture device. The difference between +um and −um is pro-
portional to the depth [RH07]

several cycles, the content of the buckets is read out. The phase shift of the light depends
on the voltage between the buckets. The measured depth is proportional to this voltage.
The voltage is digitized and converted to a distance in a further processing step.

2.1.2 Problems

One of the goals in this project is to improve the depth image quality. This section provides
an overview of the imperfections of ToF sensing systems and their countermeasures.

Multi-Path Interference

A light pulse illuminates the complete scene. Since some light is diffusely reflected, some
areas are indirectly illuminated. Consequently, this indirectly reflected light is also cap-
tured by the ToF sensor and can cause erroneous measurements. Stefan Fuchs [Fuc10]
introduced a multi-path interference compensation method, based on simulating direc-
tional interference on captured depth images.

Background Light

Other light sources, like daylight, can influence the measurement. The active illumination
unit therefore emits infrared light. An optical filter eliminates most of the background
illumination. There exist on-chip per-pixel signal processing circuitry to counteract the in-
fluence of the background light. The patented PMD SBI [Mö+05] method is implemented
on the ToF camera used in this master’s thesis.

Transparent/Reflective Surfaces

Surfaces that do not reflect light diffusely are a challenge for most active illumination based
depth sensing systems. If a surface does not sufficiently reflect light from the illumination
unit, there is no measurement possible.
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Resolution

The current generation of ToF sensors has a relatively low image resolution. This is due
to the the relatively large photonic mixing device for every pixel. One of the goals of
this thesis is to improve the low resolution depth images by using high-resolution edge
information from an additional color image sensor. Various state-of-the-art methods of
image guided depth super-resolution are introduced in section 2.2.2.

Power Consumption

The small form-factor of ToF sensors enables usage in mobile devices. Since the scene is
actively illuminated ToF systems have a relatively high power-consumption. The power
of the active illumination unit can be reduced, if the pixels on the image sensor are more
functional to incoming light. Due to the photonic mixture device, only a limited area of
each pixel is sensitive to light. An array of micro-lenses can be placed over the sensor. Each
pixel has its own micro-lens, projecting the incoming light to the relevant photosensitive
area.

Depth Bias

If a surface is dark, only a small amount of light is reflected, causing erroneous depth
measurements. Figure 2.3 shows the depth bias on a checkerboard. When dark surfaces
reflect a specified portion of light, the depth bias can be compensated using calibration.
Ferstl et al. [Fer+13] derive a function of the depth bias and compensate the bias to a
certain degree.

Figure 2.3: Depth bias on a checkerboard target. Left: Intensity image; Right: The depth
data visualized in 3D [Zhu+11]

Motion Artifacts

Each depth value is measured by the phase difference of several incoming light pulses. If
there is movement between these pulses, the depth image suffers in quality. Due to the
high frame rates of ToF systems, this effect is less inferior than motion blur during color
image acquisition.
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2.1.3 Post Processing Enhancements

This section introduces post-processing techniques, which refine the measured depth data.
The sensor fusion implementation of this masters project can also be seen as post-processing
technique since it improves depth data quality. The techniques in this section however
are applied only on the depth data and do not use a color image as guidance. Figure 2.4
shows three established post-processing techniques. These techniques are used by PMD
SDK [Tec14], a software development kit for PMD ToF cameras, which is used in this
project.

Figure 2.4: Various ToF depth post-processing techniques, applied to data of the PMD
PicoS ToF camera with the LightVis [Tec14] software. The first image is unprocessed
raw depth data.

Pixel Flagging

Time-of-Flight cameras are also able to measure the amplitudes of reflected light. The
higher the amplitude, the more light is reflected. This provides a reliability measure
for each pixel. Pixels with too low amplitude can be flagged by the sensing system or
processing software. These pixels might be disregarded from further use.
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Bilateral Filtering

The bilateral filter [TM98] is introduced in Section 2.2.2. It can be used to filter noisy raw
depth data directly. The bilateral filter is edge-preserving and thus useful in smoothing
noisy Time-of-Flight depth data. The filter can also be modified to use the amplitudes
image as guidance [Tec14].

Frame Averaging

If a fixed camera captures a static scene, the depth frames can be averaged to minimize
noise. This is a good way to receive a reference measurements for testing post-processing
methods.

2.1.4 Advantages to other Depth Sensing Systems

Structured Light

In a structured light system, a pattern is projected. The depth is estimated by capturing
the pattern and calculating the disparity for each pixel. Since the projector and the camera
need a baseline of several centimeters, the form factor is rather big. Some areas of the
depth image may not hold any depth information due to occlusions. Means of filling these
undefined holes in depth images were published in [Liu+13] and [DBC12]. Since holes
can also appear in ToF cameras due to invalid measurements, hole-filling methods are
discussed in Section 2.2.3.

Stereo

When depth is retrieved from stereo matching, the algorithms are usually computationally
complex. The image resolution is good, the depth calculation however fails for areas
without distinctive texture. There are very promising attempts to combine a ToF sensor
with a stereo camera system to combine the advantages of each system [Nai+13].

2.2 Color and Depth Sensor Fusion

RGB-D sensor fusion is the combination of data from a color (RGB) and a depth camera
(D). Associating a color image with depth information provides a better approximation of
reality.

The human brain understands the depth of a scene by interpreting the two images
from the eyes. Computers can also use two cameras to recognize depth, but have to
run a stereo matching algorithm. ToF systems provide a direct measurement of depth.
Every depth imaging system has its flaws and currently, no superior system has been
established. Imperfect depth data can be improved however, by fusing depth with color
images. Numerous approaches are reviewed in Section 2.2.2. As shown in Figure 2.5, there
are three categories of fusing depth and color data:

� Mapping color to depth

Each depth value is assigned a color value. The result is a point-cloud with color in-
formation for each point. This the can be useful for 3D reconstruction [Kai+12] and
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Figure 2.5: Means of RGB-D sensor fusion, from top to bottom: Mapping color to depth;
Mapping depth to color; Creating a virtual viewport

feature matching in simultaneous mapping and localization (SLAM) based systems
[Goo14].

� Mapping depth to color

Every pixel in an RGB image holds an approximated depth value. Since the RGB
images in most camera systems have a higher resolution, there is a lot of research on
image-guided upscaling methods, see Section 2.2.2. The main goal of this project is
to implement this way of color and depth sensor fusion on a mobile device.

� Virtual Viewport

At first every color value is associated with an approximate depth value. With
this mapping, the image can be warped to an arbitrary viewport. This is known
as view synthesis and has applications in CGI, movie production [FBK10] and
mixed/augmented reality.

2.2.1 Sensor Fusion Rigs

This section shows camera setups used for depth and color sensor fusion. Ferstl et al.
[Fer+13] use a ToF and a high-resolution color camera for sensor fusion. The algorithm
they developed is introduced in Section 2.2.2. After deriving the intrinsic and extrinsic
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camera parameters, they define the intensity camera position as the world coordinate
center. Depth values are projected to world coordinates and re-projected to the image
space. Depth values are associated just with the nearest RGB pixel, resulting in an image
frame with sparse depth values. The missing depth values are assigned during their super
resolution upsampling algorithm. The algorithm uses information from the RGB image
to create a super resolution depth image and is described briefly in Section 2.2.2. The
cameras are mounted vertically in this setup. Since the dimensions of the cameras have
a larger width than height, stacking the cameras on top of each other brings the optical
centers closer together. A depth and RGB camera pair can be arranged arbitrarily, as long
as both face the scene. In such a dual camera setup, the disparity between the cameras is
ideally as small as possible. Otherwise, there can be huge areas without depth information
after warping. Various approaches to interpolate these holes are shown in section 2.2.3.

Figure 2.6: Left: Sensor Fusion Rig; Right: Calibration target with holes [Par+11]

The rig used by Park et al. [Par+11], shown in Figure 2.6, is used to demonstrate the
depth image upsampling algorithm that was used. A SwissRanger ToF camera is mounted
next to a Point Grey Research RGB camera. As there is no intensity image available with
this ToF camera, the method of calibration is different. A planar calibration pattern with
circular holes is used. The holes in this pattern, can be located by the depth and the RGB
camera.

Gudmundsson et al. [GAL08] built a system to fuse a ToF camera with a stereo depth
sensing system. The images of the RGB cameras are cropped to get the same field of view
as the ToF camera. Stereo-calibration is used to calibrate the ToF camera with each color
camera. The high resolution image is down-scaled to the resolution of the ToF camera.
The stereo cameras are then calibrated using the full resolution.

Another stereo and ToF fusion system was set up by Zhu et al. [Zhu+11]. Besides
geometric calibration, they also perform photometric calibration of the ToF sensor. A
planar checkerboard target is captured with 16 different distances. Their experiments
conclude that the depth bias can be described as a per pixel linear function. From this
observation, per pixel look-up tables are generated, and the depth values are refined.
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2.2.2 Depth Super-Resolution

Since depth cameras usually offer lower image resolutions than RGB cameras, improving
the resolution of the depth sensor is a well researched topic. Langmann et al. [LHL11]
review a number of approaches.

To be able to compare the results of a depth upsampling algorithm, there needs to
be a metric to quantify the quality of the new depth image. Scharstein et al. [SS02]
compare the results of various stereo matching algorithms with groundtruth data. They
use the RMS error and the percentage of bad matching pixels to compare the generated
depth image d with groundtruth data g. The RMS error R is the mean quadratic distance
between the depth values. N is the number of pixels.

R = (
1

N

∑
(x,y)

|d(x, y)− g(x, y)|2)
1
2

The percentage of bad pixels B, is a measurement on how many pixels differ more than a
defined tolerance δ from the groundtruth.

B =
1

N

∑
(x,y)

(|d(x, y)− g(x, y)| > δ)

Color image guided depth upsampling methods can be classified by local and global meth-
ods. Local depth image upsampling means that mapped depth values have a limited local
influence on the output. These methods are sometimes simple, however when applied
iteratively may be complex. The global methods generally yield to better results, but are
more computationally intensive.

Local Methods

The premise of these upsampling methods is that depth values are mapped to the high-
resolution color image. There are many undefined depth values in the resulting sparse
depth image. The local methods aim to interpolate these undefined values. Some meth-
ods, like the one introduced in this thesis, overwrite the mapped depth values for noise
reduction.

Figure 2.7 shows the simplest methods. The color images in the figure demonstrate how
simple viewport wrapping appears in each upsampled depth image. The most primitive
method is nearest neighbors upsampling. Each pixel is assigned the closest depth value.
Bicubic upsampling uses bicubic interpolation of the surrounding depth values for each
pixel. Gaussian upsampling weight the distance to the surrounding depth values with a
Gaussian kernel.

The last upsampling method shown in Figure 2.7 however, is a method which takes
the color image as guide. It is a variation of the bilateral filter by Kopf et al. [Kop+07].
Bilateral filtering of color images is first introduced by Tomasi [TM98]. It was intended to
smooth images while preserving edges. It works by calculating an average neighborhood
for each pixel. The neighboring pixels are weighted by color similarity and the euclidean
distance. Homogenous areas in the image are smoothed, while sharp edges are preserved.
Camera pairs consisting of a depth and RGB camera can improve their depth resolution
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Figure 2.7: Simple local depth upsampling methods [TM98]

by bilateral filtering using the color image. Kopf et al. [Kop+07] introduced this idea
which works by weighting the image kernel by the color distance of the guidance image.
It enhances the information of the depth image, because depth discontinuities correlate
with edges of corresponding color images [TF03]. The joint bilateral filter is one of the
inspirations of the design of the filter used in this project.

There have been many attempts at using bilateral filtering to enhance depth maps so
far. An advanced approach was published by Yang et al. [Yan+07]. Figure 2.8 sketches
their idea: First they construct a cost volume and apply a bilateral filter to each slice of
the volume. The best cost is then selected and iteratively applied to the depth map. The
refined depth map is updated and a new cost volume is created. This process is applied
iteratively until a final depth map is generated.

Figure 2.8: Depth upsampling with cost volumes [Yan+07]
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Lui et al. [LTT13] propose a depth upsampling algorithm utilizing geodesic distances.
The approach is also based on the premise of having a high resolution color image and a 1-1
mapping between the depth and color pixels. A geodesic curve in this context means the
shortest path on an 8-connected image graph. The weights of the graph are the differences
of the intensity values. For each pixel, the geodesic distance to the location of all projected
depth values is calculated. By weighting the depth values with the geodesic distance,
the value of the high resolution depth-map image is estimated. With this algorithm,
known depths are propagated on the high resolution image, while depth discontinuities
are preserved. Since this method has a complexity of O(n2 log n), the authors introduce
restrictions to reduce the complexity. They assume that only K geodesic closest depth
pixels are needed for a good approximation. It is further assumed that pixels with a
low geodesic distance are spatially close. With these restrictions, an algorithm with the
complexity of O(K · n) is proposed. Since this upsampling method starts with a high
resolution sparse depth image, it is robust against missing depth information. If large
areas are affected, the parameters of the algorithm need to be adapted.

Global Methods

Ferstl et al. [Fer+13] improve the lateral depth resolution by formulating a convex
optimization problem. The data term forces the solution to be similar to the initial depth
map. A second order regularization term preserves sharp edges according to the color
image. The optimization problem is convex, but not smooth and is minimized by primal-
dual optimization. The computation can be parallelized, however the optimization is
computationally complex, and not realtime capable. A sample of the algorithm is shown
in Figure 2.9.

Figure 2.9: From left to right: Low resolution depth input: High resolution intensity input;
3D result, Depth image result [Fer+13]

Dai et al. [Dai+15] follow a similar approach. They claim that their algorithm improves
quality and performance of the previously mentioned solution by Lui et al. [LTT13].
The algorithm also interprets the color image as a graph. The depth values are sparsely
mapped to the RGB image and are denoted as seed pixels. Instead of using the geodesic
distance to determine the filtering weights of the depth seed pixels, the method uses
the minimax path. The minimax path is the path between two nodes in a weighted
bidirectional graph which minimizes the maximum edge weight. Using the minimax path
distance as a measure to distribute depth information along an image has the advantage
that depth information barely spills across color discontinuities, resulting in a sharp depth
image. Since all minimax paths of the high resolution color image need to be calculated,
the problem can be formulated as the minimum spanning tree problem. The spanning
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tree, as seen in Figure 2.10, is then cut into many smaller trees on the depth seeding point
nodes. This is possible because it is assumed that one depth seed pixel is the most reliable
source of depth information hence no further depth information has to be spread on this
path. The authors introduce a number of optimizations, to reduce the computational
complexity to O(n). They propose a node updating algorithm where every pixel on the
image graph has to be visited twice. The benchmarks of this method are comparable to
global methods, however the authors do not publish high quality results for the evaluation.
Since this algorithm appears to be ideal for the sensor fusion prototype, it was implemented
and evaluated in Chapter 3.

Figure 2.10: Minimax based upsampling from left to right: The minimax Path and the
geodesic path on an image; Seed depth values in image graph; Minimum spanning tree;
Subseeds; Each subtree is traversed [Dai+15]

2.2.3 Depth Map Hole Filling

When a depth image is warped to a new viewport, some areas of the new image might not
be assigned with any depth. In this project, the new viewport is the color camera, which
is located next to the depth camera, both facing in the same direction. The holes are
regions which are occluded in the original image. The same artifacts occur in structured
light systems, when objects occlude the projector. Figure 2.11 shows the geometric cause
of holes. They also occur in RGB-D sensor fusion, when the depth image is mapped to
the coordinate space of the RGB image. The sensor fusion prototype does not suffer from
holes since the cameras are mounted very closely together. However, holes in the form of
invalid measurements can appear and are evaluated in Section 5.4.1.

Another reason for undefined depth pixels are invalid measurements. This is mostly
caused by depth pixels out of range of the sensor or in the case of the active illumination
systems transparent or reflective surfaces. Since the Microsoft Kinect camera system
is prone to delivering incomplete depth frames, a lot of publications use this system to
demonstrate hole filling methods.

Danicu et al. [DBC12] propose a fast method of filling holes in Kinect depth images
based on morphing operations. The method uses an algorithm to processes the horizontal
lines of the depth image. The depth value profile of each line is scanned for holes and
filled with the neighboring depth value which is further away. This exploits the fact that
holes in the depth frame can be seen as shadow cast on the background of the scene. No
information from the color image is used for interpolation. It also applies to holes caused
by depth image warping, since this scenario is comparable.

Liu et al. [Liu+13] formulate an energy minimization problem to gather the missing
depth information. They use the RGB camera of the Kinect to exploit the correlation
between color and depth values as described in Section 2.2.2. The idea is to use an
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Figure 2.11: The concept on holes caused by shadows in a structured light camera system
[DBC12]

energy function based on the correlation between depth pixels and a small RGB image
neighborhood. To preserve sharp edges, a TV21 prior is incorporated into the energy term.

It is also possible to use the depth upsampling method of Ferst et al. [Fer+13] as
described in Section 2.2.2. As previously mentioned, this method improves the depth
image resolution by using RGB information and claims to also fill holes. As larger holes
do net seem to be perfectly filled, using a different method to fill holes as a pre-processing
step might be an advantage. The method of Lui et al. [Dai+15] introduced in Section
2.2.2, interpolates holes automatically.

2.2.4 Calibration

Camera calibration is an essential step in many fields of computer vision. Calibration
makes the difference between measuring and sensing. Calibration of camera systems can
be classified into intrinsic and extrinsic calibration. The intrinsic parameters of a camera
describe the internal workings.

The extrinsic camera parameters enable a transformation between 3D world coordi-
nates to 3D camera coordinates. Depending on the calibration method, the origin of the
world parameters can either be a calibration target or an arbitrary point. In a multi-
camera setup, it might be convenient to define the origin of the coordinate system in the
center of one of the cameras. To describe a camera in world coordinates, the simple pin-
hole camera model is a sufficient approximation. Calibrating a depth and a color camera
is not straight forward, since it requires a precise depth target.

Herrera et al. [HCKH11] describe a practical process to calibrate a depth and color
camera pair. They come to the conclusion, that calibrating cameras individually and then
calculating the pose introduces error. They propose an unified approach, where color and
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depth features simultaneously improve the calibration of the camera pair. The calibration
can be performed using a checker board pattern for the RGB camera and a planar surface
like a table for the depth camera.

Figure 2.12: Calibration images of Herrera’s method [HCKH11]

A sample calibration image pair is shown in Figure 2.12. The benefit is that no high
cost calibration equipment, like depth targets or robot arms are necessary. An advantage
of ToF depth cameras are the availability of an intensity image. This image is a gray-
scale representation of the scene, illuminated by the ToF light source. It is gathered by
measuring the amplitude of the emitted light impulses. Calibrating a system of two 2D
cameras is simpler and more practical. The classic method of calibrating a 2D camera
system involves capturing a planar visual pattern. The 3D coordinate system of the
checkerboard is known and a projection matrix from 2D to 3D can be estimated. There are
well-established methods and tools like OpenCV or Bouguet Camera Calibration Toolbox
for Matlab [Bou15]. The later is used for calibration in this project.

It is also possible to do camera self-calibration as described by Cui et al. [FLM92]. A
self calibration only requires multiple images from the same static scene, captured by the
same camera from multiple positions. Self calibration is useful, if the geometric relation
between the cameras is not fixed. While the calibration procedure is simple and flexible,
self calibration methods prove to be inferior compared to calibration with a planar pattern
according to [CN10].

2.2.5 Refining RGB-D Data with Additional Geometric Data Models

It is possible to use depth image sequences to create a 3D map of the captured objects
or scene. While these techniques are not the subject of this thesis, these maps can be
reprojected and be used to refine depth images. A very popular and well working algo-
rithm is Kinect Fusion [Iza+11]. It reconstructs a dense surface model by integrating
2D pointcloud data over time. Due to 6 degrees of freedom (DoF) pose tracking, it is
possible to move the depth camera and gather depth images from multiple viewports. As
seen in Figure 2.13, the captured 3D representation of the scene increases its detail during
the capturing process. Errors introduced from the depth sensing system (in this case the
Microsoft Kinect) decrease over time as seen Figure 2.13.

Since the camera position and orientation are tracked, it is possible to convert the
gathered surface model into a high quality RGB-D image. Knowing the camera position
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Figure 2.13: The result of the Kinect Fusion algorithm demonstrated with an increasing
number of captured frames [Iza+11]

and having a high quality surface model, also opens possibilities for high quality augmented
reality. It is possible to place virtual objects precisely into an existing scene. Ray-tracing
the surface model gives a good depth map and enables high quality occlusions. The
drawback on this algorithm is that modern PC hardware is required to archive interactive
frame rates. Fast camera movements cause the tracking to fail and re-initializtion takes
some time. It also does not solve the problem of detectable surfaces like glass.

2.2.6 Multi-Camera Fusion

Fusing depth and RGB data is not limited to a camera pair. There are a variety of
approaches to fuse data from multiple cameras. Stereo cameras can also sense depth by
matching patches of the images and calculating disparities. This can lead to high resolution
depth images, however there are serious drawbacks. Some areas often do not have depth
information. This is due to missing texture or repetitive patterns. The calculation of the
depth map is also computationally complex. Using a second low resolution depth camera
can compensate for these flaws. The stereo depth computation can be sped up, since
knowing the approximate depth reduces the search space during feature matching. The
topic of stereo and ToF fusion is well researched and Grzegorzek et al. [Nai+13] provide
an overview in their survey.

Zhu’s [Zhu+11] approach fuses a ToF camera with an RGB stereo camera system
based on reliability. First they apply a photometric calibration which is described in
Section 2.2.1. They use the different characteristics of the cameras to calculate a reliability
map for each depth sensing system. The reliability of the stereo system is retrieved from
the costs of the stereo matching algorithm. As previously mentioned, the accuracy of ToF
depth acquisition suffers from dark areas. Since the active illumination unit and the lens
are imperfect, the reliability decreases towards the edges of the images. These sources of
unreliability are incorporated into the ToF reliability model. The depth image from the
two sensing systems is ultimately refined by a local and a maximum a posteriori (MAP)
based Markov Random Field energy-minimization approach [DT05].
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Creating content for 3D television requires conservatively two synchronized cameras.
The stereoscopic 3D effect depends on the baseline of these cameras. To acquire close
up images, the baseline needs to be so small, that the cameras can not be physically
moved together. This problem can be avoided when 3D content is generated by using
depth information. Frick et al. [FBK10] introduce a combination of two Time-of-Flight
cameras and five color cameras. Reconstructing virtual viewpoints often suffers from
the problem that some areas in the new viewpoint are undefined. This is caused by
occlusions, as discussed in Section 2.2.3. Color images from additional cameras are used
in this approach to fill the occluded areas.

The OmniKinect project [Kai+12] uses multiple Kinect RGB-D cameras in a circular
setup, which is shown in Figure 2.14. The object in the center is captured from all
sides simultaneously. The Kinect cameras produce an RGB-D data stream from all sides
with interactive frame-rates. To fuse the data, the Kinect Fusion algorithm [Iza+11] is
modified for multiple cameras. Kinect Fusion, introduced in Section 2.2.5, is a method for
fusing multiple depth images captured from one camera to a 3D model. The difference of
OmniKinect is that these frames are captured simultaneously. The modified algorithm of
OmniKinect replaces the live position tracking to one-time initial pose estimation. Since
structured light sensors interfere with each other, small vibrating motors are attached to
each Kinect camera. The vibrations blur the projected IR pattern of the other cameras.
The cameras are not affected from their own vibrations because the IR projector and
sensor are connected rigidly.

Figure 2.14: Left: Scheme of the OmniKinect system; Right: 3D visualization of the setup
[Kai+12]

2.3 Computer Vision on Graphics Hardware

Computer vision in general faces a lot of ill-posed and inverse problems. Increasing sensor
resolution, more complex algorithms and higher quality expectations, feed the ever last-
ing demand for high performance computer vision systems. Programmable shader units
on graphic cards initiated the area of general purpose computing on graphics hardware
(GPGPU). Recently, graphics programming API’s like OpenGL, Direct X and recent Vul-
can started to support general purpose computing. Many computer vision algorithms are
prone to be parallelized and thus suitable to run on graphics hardware.
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2.3.1 Khronos OpenCL

OpenCL is an open high performance computing standard, maintained by the Khronos
consortium [Con15]. This API is used for the sensor fusion processing in this project.
It was chosen because it is an open standard and the only GPGPU API available on the
target platform. A detailed description and usability in the context of this project is found
in the Design chapter of this thesis.

2.3.2 Khronos Vulkan

During the process of this thesis, the Khronos consortium unveiled the new open graphics
API Vulkan [Con15]. Vulkan aims to unify computing and graphics on modern devices.
It is designed to run on any device, on any platform. These features make it a very
interesting option for the sensor fusion system developed in this project. However, it has
not been released yet.

2.3.3 Renderscript

Google is developing a new mean of utilizing the GPU on a large scale of Android devices.
This API aimes to simplify the development process as much as possible. The language
is C99-derived and was designed to scale well, across a large variety of Android devices.

2.3.4 Halide

Developing a high performance software for multiple devices often requires device specific
fine tuning. Scheduling synchronization, memory and data transfer are traditionally man-
aged by the developer in the computation code. This usually takes a lot more effort and
limits the complexity of the algorithms. The recently introduced Halide compiler [RK14]
introduces a new paradigm. Instead of developing highly optimized code for specific hard-
ware, the algorithm and the schedule is separated. The processing algorithm is defined as
straight forward without regard of the hardware. The scheduling and the necessary pa-
rameters are defined in a separate scheduling part. This enables adaption of high parallel
code to different architectures and devices. Different parameters can be explored without
the need to modify the algorithm. The Halide compiler is currently (2015) suitable for
multi-core CPUs and CUDA enabled GPUs.

2.3.5 OpenGL Compute Shaders

With OpenGL ES 3.0, it is also possible to use the OpenGL rendering API for computation
[Bai15]. The Compute Shaders work like other modern OpenGL shaders, but are not part
of the graphics rendering pipeline. Computer Shaders are usually used together with
OpenGL rendering and are invoked by the application before the rendering. The shaders
are small programs written in the GLSL shader language and are executed on the GPU
in parallel. The reason why this method of GPGPU computing was not chosen for this
project, was that zero-copy memory transfers between GPU and application memory space
seemed to be easier with OpenCL.
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2.4 Applications of RGB-D Images

This section introduces ways to use the result of the sensor fusion process. Many of
these applications benefit greatly of the quality gain, introduced during the depth image
upscaling. This section also lists fields of computer vision which profit from the use of
RGB-D sensors.

2.4.1 Image Segmentation

Image segmentation and object recognition tasks immensely benefit from depth informa-
tion. For instance, segmenting an object with the same color texture as the background is
only possible via depth information. Well established segmentation algorithms, like Graph
Cut [BFL06] can be adapted to be used with additional depth data. Graph Cut based
computer vision algorithms see the image as a graph where each pixel is a node and is
connected to either 4 or 8 neighbor pixels. An energy function is formulated for each edge
weight. The image segmentation line follows a path with minimal energy, which can be
seen as minimum flow problem.

The approach from Yu et al. [YZ12] performs image segmentation of RGB-D images,
captured by the Kinect sensor. It takes both color and depth information into account.
As seen in Figure 2.15, it enables the segmentation of objects that are the same color as
the background.

Figure 2.15: Graph Cut by Yu et al [YZ12]: Top: Input color and depth image; Bottom:
The result without and with depth influence

To incorporate depth information, they modify the iterative Grab Cut approach of Rother
et al. [CR04]. This Graph Cut based approach uses a Gaussian mixture model that
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incorporates two distributions to model foreground and background pixels. Yu models
the depth information as a single Gaussian model and multiplies it to the color term of
the foreground possibility model. For the background probability model, the depth is
modeled as a uniform distribution. The reason for the uniform distribution is that the
background is assumed to be complex with a lot of variation in depth values. Yu also uses
the statistical advantage of available depth data to speed up the traditional Graph Cut
algorithm.

2.4.2 Computational Photography

Computational Photography involves techniques of capturing, post processing and modi-
fying digital images. It involves popular applications like the computation of high dynamic
range images and panorama stitching. The use of depth cameras in computational pho-
tography is a relatively new area and not wide spread. Depthkit [JGM15] offers an
opportunity for photographers to combine a Microsoft Kinect depth camera with a DSLR
camera. These homemade rigs are mostly used to generate 3D images as an art form.

Depth cameras can be used for rapid auto-focus or enable selective focusing. This
can benefit smaller cameras on mobile devices, which are bound to contrast auto-focus
and a depth of field. Refocusing means to take an image with a wide depth of field and
blur arbitrary areas like the background. This can add simulated bouquet to an image
captured by a small camera. The Bouquet effect is traditionally only possible to capture
with cameras with a big sensor and a large aperture. Bouquet is generally accepted as
aesthetic since it can provide a better depth perception on images.

Refocusing a scene is usually associated with light field cameras, however RGB-D
frames can be refocused too. With a narrow depth of field, the sharpness of a region
depends on the distance to the camera. With high quality depth information, it is pos-
sible to blur certain regions which have similar depth values. The depth based Graph
cut segmentation, introduced in Section 2.4.1, can assist to split an image into fore and
background. However if an RGB-D image has perfect depth information, the image can
be refocused solely by the depth information.

2.4.3 Augmented Reality

One of the key applications of a fused RGB and ToF data is augmented reality. This section
introduces various means of augmented reality (AR), and shows how this field benefits of
the unified RGB-D sensor. Then Qualcomms Vuforia SDK [Qua15] is introduced and its
relation to this project is discussed.

Augmented reality in general, is about fusing the environment with computer generated
content. Fused color and depth information aids augmented reality in terms of reduced
computational power and quality of occlusions. The goal in AR is to enhance or modify
reality by embedding virtual information. This creates a number of new ways to interact
with computer systems. For instance, additional information can be pinned to specific
objects in a scene. It could increase efficiency in maintenance and in general work-flows,
where a lot of information must be looked up.

Not only is Augmented reality about embedding information, it has also various enter-
tainment purposes. Being able to embed virtual objects naturally into a scene has a lot of
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potential. Menki et al. [ML] provide an overview of the various applications. Augmented
reality is a very active research area and will benefit from emerging mobile depth cameras.
Applications for mobile AR are wide spread and range from commercial catalogs to virtual
furniture shopping.

The following steps are necessary to render virtual objects into a 2D image:

� Geometry acquisition

Assuming all sensors are calibrated, the position and orientation of the camera in
the environment needs to be calculated. This is a challenge, since the quality of the
augmented image largely depends on correct localization. Visual markers are the
most simple way to obtain a scene coordinate system. Markers like QR codes can
provide the AR system with additional information.

Simultaneous Localization and Mapping (SLAM) [Chr15] means to build a local
model of the environment and use it for localization at the same time. It works by
capturing multiple frames from different locations. Systems with a single camera use
triangulation of frame to frame correspondences to calculate the distance to salient
feature points.

A depth camera can speed up the geometry acquisition process and works better in
general.

� Localization

The device is localized by comparing the seen 3D points with a model of the scene.
A popular algorithm to retrieve the homography between these two pointclouds is
RANSAC [FB81].

� Rendering the Virtual Scene

Virtual objects are rendered using the previously acquired scene coordinate system.
If the virtual objects are supposed to blend into the scene, the camera characteristics
need to be simulated during or after the rendering. The immersion of the virtual
objects may also improve by realistic shading. Information about light sources may
be estimated by using information from the color camera.

If there is information embedded, like info-boxes, the scene coordinate system might
only be used for locating the information.

� Fusing the virtual scene with the image from the camera

Abstract items can be blended into the 2D image directly. Since cameras are imper-
fect, virtual objects might be visually adapted to match the camera quality. This
involves re-sampling to simulate the Bayer pattern of the sensor or adding noise and
motion blur [FBS06].

Occlusions are an important step in integrating an object into a scene. An occlusion
occurs if a real object is located in front of a virtual object. To be able to render
the virtual object behind the real object, it is necessary to know the distance from
the camera to each pixel. RGB-D camera systems provide this information which is
very convenient in handling occlusions. The resolution and precision of the depth to
RGB mapping is crucial for high quality occlusions.
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Qualcomm Vuforia

Qualcomm Vuforia [Qua15] is a software development kit for mobile platforms. It provides
the augmented reality functionality in the form of a software library. The default platform
are smartphones and tablets with color cameras. The most recent release (04/2015) also
supports virtual reality platforms. There is no support for depth cameras yet.

Vuforia tracks objects or markers and estimates the necessary parameters to render
virtual objects into a video stream. With the help of depth cameras, the SDK could lose
the need for specific objects for registration of the coordinate system. It is connected with
the graphics engine Unity [Tec15], which allows relatively simple high-end rendering.

As mentioned in Section 2.4.3, one of the problems of augmented reality is occlusions.
With just a color camera, it is a hard task to tell whether a virtual object is behind a
real one. The current state of Vuforia is object based occlusions (05/2015). For registered
real objects, a 3D model is created. This 3D model is rendered into the depth buffer. All
virtual objects with bigger depth values are occluded and thus not rendered.

Figure 2.16: Left: 3D model of a real object (toy car); Right: Virtual object, placed
behind toy car. [Qua15]

A color and depth sensor fusion result, containing depth information for each color pixel,
makes it easy to occlude virtual objects. There is no need for predefined objects, since the
occlusion check can be done just by comparing virtual and sensed depth.

Stereoscopic 3D Content

To create a stereoscopic 3D effect, two images with a shifted point of view are displayed
to each eye of the observer. It is possible to generate two virtual views from a RGB-D
image. As mentioned in Section 2.2.3 however, some areas will not contain information
and need to be interpolated. In computer generated graphics, a perfect depth map is
usually available. Generating and displaying a stereoscopic view in computer graphics
systems thus works very well. Since the perfect depth map is used, the scene is only
rendered once, and a second virtual viewport is created. Hence this does not cause a huge
performance loss. This creates another application for fused RGB-D data. Using a ToF
camera for generating 3D television content and movies is explored and tested by Frick et
al. [FBK10] and Huhle et al. [HFS07].
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2.5 Related Commercial Projects

There is a large spectrum of academic publications on depth and color image data fusion.
The most relevant work was mentioned in Section 2.2.2. However there are no academic
projects to our knowledge (2015), researching color and depth sensor fusion on a mobile
platform with limited resources.

In 2014, Intel announced their RealSense Technology [Inc15], which aims to make
3D sensors a part of peoples daily life. They released the Dell Venue 8 tablet, which
incorporates the RealSense system. The technology and algorithms of RealSense are not
publicized. It is however known that the sensor of the Dell tablet consists of a system
of two color cameras, where depth is calculated from stereo matching. The applications
of Intel RealSense are computational photography and gesture control. It is possible
to take pictures with a RealSense device and perform selective focusing,thus applying
artificial bokeh or depth sensitive filters to an image. This post-processing technique was
mentioned in Section 2.4.2 before.

Google Tango [Goo14] is a pioneer project, combining a motion tracking camera (gray-
scale, fish-eye), a color color and a depth camera on a mobile platform. The upcoming
prototype (07/2015) features the same Infineon/PMD ToF depth sensor as used in this
thesis.

A completely different way to retrieve RGB-D data is to use a hybrid sensor. Samsung
developed an image sensor in 2012 [Kim+12], which combines color and depth pixels.
Since the depth pixels need to compare incoming light with the modulation frequency,
as mentioned in Section 2.1, they need more space than simple CMOS pixels. As seen
in Figure 2.17, they place square depth pixels between the rows of the color pixels. The
problem with this sensor is that surface area of the depth pixels is too small to sense depth
properly. They are about 1-2 % of the size of recent (2015) Time-of-Flight depth cameras.
If there are color and depth image pixels on a sensor, it is not possible to filter unwanted
light from other light sources with an optical near infrared (NIR) filter on the lens. In
their approach, pixel-wise NIR filters were used which were not satisfactory according to
the authors.

Figure 2.17: The sensor architecture of the RGB-Z sensor [Kim+12]



Chapter 3

Design

This chapter introduces the selected hardware platform, explains the fusion algorithms
and discusses the software design.

3.1 Requirements of the Sensor Fusion System

The goal of this project is to create a system capable of fusing data produced by a color
and a ToF sensor. The design goals for the sensor fusion demonstrator are specified as:

� Precise Depth to Color Mapping

The cameras in the system are precisely calibrated, enabling a transformation of
depth values to the coordinate system of the color image. Several calibration methods
for depth sensing systems are discussed in Section 2.2.4.

� Depth Quality Enhancement

Using the higher resolution image of a color sensor, the depth image can be enhanced
in terms of noise-reduction and resolution. Various approaches are introduced in
Section 2.2.2.

� Performance

The goal is to prove the feasibility of depth and color sensor fusion on mobile devices.
The algorithms are therefore designed to be executed on the GPU in order to reach
interactive frame-rates.

3.2 The Sensor Fusion Platform

This section introduces the hardware platform, which is used for the color and depth sensor
fusion demonstrator. It lists the hardware specifications and how the GPU is interfaced
for computation.

The system consists of two cameras (ToF and color) and a Snapdragon 810 development
board. The cameras face the same direction, are rigidly mounted and calibrated. An
Android application uses native libraries to receive data from the sensors. The GPU of
the Snapdragon 810 platform is used for the sensor fusion computation.

38
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3.2.1 Snapdragon 810

The Qualcomm Snapdragon 810 is a System on a Chip (SoC). It unifies 8 CPU cores, a
GPU, a digital signal processor (DSP) and communication modules onto one chip. It is
the fastest smartphone SoC available (2015), and was chosen to prove the feasibility of
ToF and color sensor fusion on the upcoming hardware generations.

CPU Quad-core ARM Cortex A57 & quad-core A53
GPU Adreno 430 GPU
DSP HexagonV56 DSP

Table 3.1: The processing units on the Qualcomm Snapdragon 810 platform

For the sensor fusion implementation, the development kit Dragonboard APQ8094 is used.
The board features the Snapdragon 810 with 4 GB LP-DDR4 RAM. There are various
I/O ports, including 2x USB 3.0 and 2x MIPI. An on-board display is only optionally
available, so an external 1080p display is connected via HDMI.

3.2.2 High Performance Computing with the Adreno 430 GPU

Since performance is critical in this project, most of the processing algorithms are imple-
mented on the graphics processing unit (GPU). The embedded GPU on the Qualcomm
Snapdragon 810 platform is intended for rendering graphics, but can be utilized as a com-
puting device. The GPU driver therefore supports the OpenCL standard 1.2 which is
introduced in Section 2.3.1.

OpenCL is an open API for high performance computing on parallel architectures
like GPUs. It provides a framework to execute code on these architectures. Qualcomm
provides good developer support for their implementation of OpenCL, including a 60 page
programming guide, debugging and profiling tools.

The Adreno 430 GPU shares the same memory as the application processors, which
accelerates memory transfers. In a traditional PC system with a separate graphic card,
memory transfers are a bottleneck. The nature of the sensor fusion system requires a high
volume of memory data transfer. With shared memory, it is possible to retrieve a pointer
from OpenCL and directly write data to the video memory.

For GPGPU computing, the memory characteristics of a device are important. Since
the architecture allows massive parallel execution, the internal GPU memory transfers
affect the performance dramatically. Table 3.2 shows the memory specifications of the
OpenCL computing model.

Global Memory Size [MByte] 1811

Local Memory Size [KByte] 32

Maximum Work-Group Size [1] 1024

Global Memory Cacheline Size [Byte] 64

Global Memory Cache Size [KByte] 128

Table 3.2: The OpenCL memory model characteristics of the Adreno 430 GPU
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Developing with OpenCL

A program executed on the computing device is called a kernel. The code is compiled at
run-time by the CPU and is executed on the GPU by calling an OpenCL function. Each
kernel is executed multiple times with different parameters. A decrease in processing time
can only be achieved, if the computation problem is able to be split into several thousand
kernels that are executed at the same time. Otherwise, the kernel execution overhead is
too high and a CPU implementation may be faster [RT12].

The OpenCL C language is based on C99 with extensions and restrictions to fit the
device model. It does not permit certain C features such as function pointers or recursion.
To use the instruction parallelism, there are built-in high precision vector data types.

Figure 3.1: The memory model of OpenCL [K.11]
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When developing with OpenCL, it is important to regard the memory model shown in
Figure 3.1. Unlike CPU based systems, there are multiple kinds of memory, which have
different purposes and access patterns. The OpenCL memory model is the same for all
devices, supporting OpenCL. It is an abstract model and does not represent the actual
hardware. It consists of:

� Host Memory

This is the main memory (RAM) of the device. The GPU does not have access,
therefore the RAM and GPU memory are not shared. This issue is resolved by
using RAM-GPU memory transfers when required. OpenCL helps to either map
the global GPU memory to host memory or to copy complete buffers. RAM-GPU
data transfer is commonly a bottleneck however SoCs like the Snapdragon 810 share
the memory with the GPU.

� Global and Constant Memory

This is the main memory of the computing device. It is simultaneously accessible
for all work-items. All input data for the computation needs to be transferred to
this memory before computation. An exception to this are kernel arguments, which
are parameters for execution and usually do not contain input data themselves. The
kernels access this memory by pointers, which are provided by the kernel arguments.
The access is slow compared to the other types of memory. It is coalesced, which
means that single requests from work-items are bundled together and handled si-
multaneously.

On the Snapdragon 810 platform, this memory is a part of the system memory. Hence
it is possible for the CPU to directly access GPU memory. This is an advantage since
RAM and GPU memory transfers are often a bottleneck on separated CPU and GPU
platforms. For the sensor fusion application, it means that the device drivers of the
cameras can directly write their data to this memory. This avoids any memory
copies which cause a noticeable delay.

� Local Memory

The local memory is shared with all items in one work-group. The access latency is
much lower than global, however it is higher than private memory latency. When two
threads try to access an address located at the same memory bank simultaneously,
there is a bank conflict. Bank conflicts can slow down the execution immensely and
are best avoided during the algorithm design.

� Private Memory

This is the fastest memory in the OpenCL memory model. Each work item has its
own memory and it cannot be accessed from outside. This memory is typically not
managed by the developer. Usually the OpenCL compiler takes care to utilize this
memory. It is possible to allocate static arrays in private memory, but when too
much is allocated, global memory is used instead automatically. This can cause a
tremendous slow-down.
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When designing and implementing algorithms for GPUs, this memory model needs to be
regarded. The basic principle is to design an algorithm, which can be executed in parallel
and requires as less memory access operations as possible. The parallel threads should be
as independent of each other as possible. Synchronization methods exist, but they cause
performance drawbacks. It is often better to split the computation into several different
GPU programs, and execute them subsequently. The different kernels of this project are
discussed in Section 4.5.

Figure 3.2: The OpenCL work-groups [K.11]

A fundamental concept is the grouping of work-items as shown in Figure 3.2. Each
work-item performs a certain task on the input data. The work-items are grouped into
work-groups and executed simultaneously. Each work-group has its own local memory. It
is possible to arrange the work-groups in up to three dimensions, depending on the device.
The dimensionality of the work-items are dependent on the dimensionality of the input
data. Since all GPU computing in this thesis uses images as input data, all work-groups
are arranged in a two-dimensional grid. The global position and the local position inside
a work-group can be requested by every work-item. This is how each thread knows its
location and thus the spatial parameter for the computation. The maximum size of the
work-groups (local work-group size) is determined by the GPU hardware and depends on
the individual device. The local work-group size can have the same number of dimensions
as the global size, but it is not required to use them. Due to the memory cache, it is not
trivial to find the optimal local work-group size. Qualcomm recommends a brute force
performance evaluation in their OpenCL developing guide.

Before a kernel is executed on the computing device, kernel arguments are specified.
These arguments are a way for the host program to propagate information to all GPU
work-items. The arguments usually contain computation parameters and pointers to data
in the global memory. They can be set by the OpenCL API, and are treated in the kernel
code as function parameters.
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Conditional statements on GPUs are sometimes problematic. GPU programming APIs
like OpenCL or CUDA, have a C-like syntax with some extensions and limitations. The
code is however not executed like on a CPU. Conditional statements can cause massive
computation overhead, depending on the implementation of the vendor.

Vectorization of data is another important performance aspect. There are vectorized
datatypes provided by OpenCL, containing up to four elements of integers or floats. Using
vectorized data types does not only increase computation performance, it also helps to
accelerate memory transfers. Copying a data vector is nearly always as fast as copying a
single element.

To show parallel GPGPU development with OpenCL in this project, it is a good
approach to use an image as an example. A GPU program (kernel) is executed for every
pixel. This pattern of GPGPU computing is used in the sensor fusion implementation of
this project. The work-items are arranged into a 2D grid. The global work-group size is
the pixel dimensions of the image. The image is zero-padded, so that the image dimensions
can be evenly divided by 32. The local work-group size for each dimension is a number,
evenly dividing the global work-group dimensions. The sum of work-items per work-group
is limited by the GPU device and can be requested by the OpenCL API. Each kernel
acquires the position on the image by requesting the global work-item ID. A pointer to
the image in global GPU memory is provided as kernel argument. The work-item can
now address the image and copy the value of its pixel to private memory, then perform
the necessary processing operations. If work-items need to access the neighboring pixels
(for example to do Gaussian filtering), it is faster to copy these values to local memory
first. Each work-item copies its pixel into shared memory. Each kernel can now access
the neighboring pixels by local memory access. After the work-group is done with the
processing, these values are copied back to global memory. This technique is used in this
project to maximize computation speed.

An important performance aspect is the usage of local memory. Local memory access
is significantly faster than global memory access. The threads (work-items) are executed in
packages (work-groups). Each work-group has a certain amount of local memory available.
The size of the available local memory depends on the device and can be requested with
the OpenCL API. The input data for the work-items is usually placed in global memory.
If the kernel accesses and manipulates this memory, it is a good idea to transfer it to
local memory. A good access pattern divides the memory transfer tasks evenly among the
threads.

OpenCL on Android

Applications for Android are usually developed in Java. The OpenCL libraries can only
be used in C or C++, so a native library for an Android application needs to be created.
The native implementation uses the Java Native Interface(JNI) to interface with the Java
application. The libOpenCL.so library, containing the OpenCL implementation is usually
provided by the device vendor. It can often be retrieved directly from the device with the
Android Debug Bridge (ADB) and then be integrated into the application. The OpenCL
programs are usually text-files and are attached to the Android application as asset file.
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Figure 3.3: OpenCL in Android [Int15]

3.2.3 OpenGL ES 3.1

The Adreno 430 GPU supports the OpenGL ES 3.1 standard. OpenGL is an open graph-
ics API and enables rendering on the GPU. OpenGL ES 3.1 is very similar to standard
OpenGL, however not all datatypes or geometry shaders are available. Vertex and frag-
ment shaders are supported. Vertex shaders allow dynamic geometry manipulation and
generation on the GPU. Fragment shaders enable the manipulation of every rendered pixel
directly. This is important for an application that wants to use the sensor fusion product.

3.2.4 OpenCL and OpenGL Interoperability

It is possible to exchange pointers to memory buffers between the APIs OpenCL and
OpenGL. In this project, the upscaled depth and color images are located in GPU memory
during complete processing with OpenCL. When an application wants fast GPU access of
the sensor fusion results, OpenCL-OpenGL interoperability is the fastest way.

To use this feature of OpenCL, the extension cl khr gl sharing is used. At first the
OpenGL context is created and then shared with OpenCL. It is possible to share OpenGL
textures or pixel buffer objects (PBOs). The memory access needs to be managed by the
application, so that there are no access conflicts. OpenCL for computing and OpenGL
for rendering can be done on the GPU simultaneously. GPU computing execution might



CHAPTER 3. DESIGN 45

be halted in favor for rendering tasks. Depending on the vendor, it may be important to
keep the kernel execution times low to increase the rendering rate.

3.2.5 The Selection of the Color Camera

The camera system consists of a depth ToF camera and a color camera. While the depth
camera was provided by Infineon (Infineon Time-of-Flight eval. kit), the choice of the
color camera was arbitrary. The project’s hardware platform, the desired application and
the specifications of the depth camera, were considered to compile a list of color camera
requirements:

� Wide Viewing Angle

The measured horizontal viewing angle of the ToF camera is 88 degrees. The ideal
color camera would have the same viewing angle, so no depth information is lost.

� USB Interface

A USB interface is ideal since the Dragonboard development kit does not offer a
compatible MIPI color camera (01/2015).

� UVC-Compliant

In order to use the V4L (Video for Linux) drivers, which are provided by Android,
the camera needs to be UVC compliant.

� Image Quality

The image of the color camera is a guidance for the depth image upscaling and thus
has an impact on depth image quality. During upscaling, color saturation differences
and RGB color space distances are regarded to detect discontinuities. Ideally, the
image is not distorted, so the distortion correction would not occupy resources on
the sensor fusion platform.

� Configurability

V4L defines a rich set of camera setup commands. Most cameras however do not sup-
port all commands. Important for this project is the ability to disable the auto-focus.
While focusing on lower end camera systems, the image size changes and makes
calibration a difficult task. Direct image adjustments like saturation, brightness,
sharpening or contrast is interesting for experimentation with the depth upscaling
algorithm, but are not required.

These requirements led to the choice of the Logitec B910 Webcam. It meets all require-
ments, however the horizontal viewing angle of 78 degrees could be wider. An assessment
of other available cameras possessed an even narrower angle of 60 degrees.
Figure 3.4 shows how much of the depth camera image can be mapped to the color
camera image. An unfortunate characteristic of the camera is the limited viewing angle
on resolutions with 4:3 aspect ratio. Setting the camera in a resolution mode like VGA, the
raw sensor data is cropped on the sides of the image, limiting the horizontal viewing angle.
Since both aspect ratio modes (4:3 and 16:9) cover about the same amount of depth pixels,
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Figure 3.4: Areas of the depth image covered by the Logitec color camera. Left:
VGA(640x480); Right: QHD (640x360)

the VGA(640x480) resolution with 4:3 aspect ration was chosen. VGA has more pixels
than the similar, but wider QHD mode. A higher resolution mode like HD(1280x720)
would exhaust the workload for the mobile platform. It would also require on-camera
compression, since the USB bandwidth is too low to transfer uncompressed HD video
data at feasible frame-rates.

3.3 ToF and Color Sensor Fusion Procedure

Fusing ToF and color image sensor data in this project means to map depth to color data.
The final result is a unified color and depth sensor, delivering a high-resolution color image
with a depth data association for each pixel. The motivation for this category of sensor
fusion is applications in augmented reality, computational photography and refinement of
the depth data itself. These and several other ways of depth and color fusion are listed in
Section 2.2.

Figure 3.5: The RGB-D sensor fusion processing pipeline, demonstrated with the 2005
middlebury dataset [HS07]
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Figure 3.5 shows the outline of the sensor fusion procedure. At first, an RGB and depth
image are gathered from the sensors. The depth image has a much smaller resolution than
the RGB image. The depth values are mapped to the image space of the RGB image. The
upscaling algorithm interpolates this sparsely mapped depth image. Depth discontinuities
are preserved by using the discontinuities of the color image as guidance. The result is a
high-resolution depth image with a 1-1 mapping to the RGB image. This is referred to as
RGB-D frame in this thesis.

3.3.1 Calibration

Like in many computer vision systems, camera calibration is an important preparation
task. Camera calibration is the process of retrieving knowledge of the camera parameters.
Since two cameras are used, an intrinsic and extrinsic calibration is necessary.

Intrinsic camera calibration in this context means to resect the camera and get the
internal camera parameters. These parameters describe the projection between 3D and
2D camera image space. It must not be confused with photometric calibration, which is
not necessary in this context. A pinhole camera model is sufficient to describe the cameras
projective behavior.

The extrinsic parameters describe the spatial relation between the cameras. They are
necessary to map pixels from one camera coordinate system to another. Since the extrinsic
camera parameters of a rigid camera system never change after the assembly, an initial
calibration is required.

Figure 3.6: Left: Color coded depth image, Right: Amplitude image

Calibration methods for depth cameras are reviewed in Section 2.2.4. Standard 2D cali-
bration methods are much more common and well-established toolboxes exist. A method
is available to reduce the calibration procedure of a ToF camera to a simple 2D stereo
calibration:

Time-of-Flight sensors are capable of delivering an amplitude image, as seen in Figure
3.6. The amplitude image contains the measured amplitudes of modulated incoming light.
The amplitude is proportional to the amount of light reflected by the scene. The image can
be interpreted as a gray-scale 2D image, thus simplifying the calibration process. Planar
visual calibration patterns can be used and the extrinsic calibration procedure is the same
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as with a stereo camera pair. This is well researched and an implementation in the form
of a Matlab Toolbox from Bouguet [Bou15] is widely used.

To calibrate the camera system, several images of a checkerboard target are necessary.
The board is differently positioned and rotated in each image. It is possible to detect
the checkerboard corners with sub pixel accuracy. The camera parameters are estimated
by minimizing the re-projection error of these feature points. The calibration process
retrieves the following camera parameters:

� Distortion

Lenses are usually imperfect and cause barrel distortions. Calibrating the lens dis-
tortion is about finding the parameters of a function, which corrects distortion by
remapping pixels.

Distortion compensation is split into radial and tangential distortion. The radial
distortion is approximately radially symmetric. Wide-angle lenses are usually de-
signed to have this kind of distortion. Radial distortion is corrected by scaling the
normalized x and y coordinates by a factor. The factor depends on the distance
from the center r and is modelled as a polynomial:

xcorrected = x · (1 + k1r
2 + k2r

4 + kir
i·2 + ...)

ycorrected = y · (1 + k1r
2 + k2r

4 + kir
i·2 + ...)

The radial distortion factors are denoted as ki. It is sufficient to only take the first
three factors k1−3 into account for a good approximation.

Tangential distortion occurs when lenses are not perfectly parallel to the sensor. The
pixel position are corrected with the following formula:

xcorrected = x+ [2p1xy + p2(r
2 + 2x2)]

ycorrected = y + [p1(r
2 + 2y2) + 2p2xy]

� Intrinsic Matrix

The intrinsic matrix A contains parameters, which approximate the camera’s projec-
tion behavior in a pinhole camera model. With this model, it is possible to project

a 3D point
[
xw yw zw 1

]T
in homogenous world coordinates to homogenous 2D

camera image coordinates
[
xc yc 1

]T
.

The projection formula for homogenous coordinates is:

xcyc
zc

 = A


xw
yw
zw
1
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The intrinsic matrix A is composed the following way:

A =

αx 0 px 0
0 αy py 0
0 0 0 1


The parameters αx and αy are the focal lengths. αx and αy are different, when the
sensor pixels are not quadratic or the lens is not perfectly radial symmetric. px and
py are the offsets of the principal point from the image center.

� Extrinsic Parameters

The extrinsic parameters describe the spatial relation between the cameras. It is
common to express them as transformation matrix T and rotation matrix R. They
enable to map a 3D point from one 3D camera space to another.

3.3.2 Depth to Color Mapping

Mapping depth vales to color images is commonly described in literature. The method
of this thesis is inspired by approach of Ferstl [Fer+13]. Since it is difficult to mount
cameras in a way, that the optical axes are exactly parallel, this project also takes camera
rotation into account. Otherwise, this thesis uses Ferstl’s formulas and terminology.

Figure 3.7: Depth camera CL to color camera CH data projection from Ferstl [Fer+13]

The procedure of mapping a depth image to the image space of a color camera, as visualized
in Figure 3.7, is the following: The depth values with pixel position xi,j and depth di,j
are converted into 3D points Xi,j .

Xi,j = T +Rdi,j
P̃Dxi,j

‖P̃Dxi,j‖
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P̃D is the pseudo-inverse of the projection matrix of the depth camera. The image center
of the depth camera (pinhole model) is the origin of the 3D space. Hence, the extrinsic
parameters are applied as rotation R and translation T . The rotation matrix might be
ignored if the cameras are aligned perfectly parallel. The depth values Xi,j are now in the
3D color camera coordinate system.

x̃i,j = PCXi,j

The projection matrix PC is the intrinsic matrix of the color camera. The result of
the projection is a list of depth pixel positions x̃i,j in the image space of the color camera
DH . By rounding the new depth image coordinates x̃i,j , the depth-values are associated
with the nearest neighboring pixel. The result is a sparsely mapped RGB-D frame. This
can be interpreted as RGB image, where some pixels have depth information associated.

3.3.3 Image-Guided Depth Upsampling

As mentioned in Section 2.2.2, there are a lot of potential quality improvements by using
color information to upsample depth images. Upsampling in this context, refers to scaling
the depth image from the ToF sensor to the same size of the image of the RGB camera.

A property that can be exploited when a depth image is upsampled and a color image
is used as a guide is that the edges in a color image are often edges in a depth image.
Differently formulated, it means that depth discontinuities correlate with color disconti-
nuities

Figure 3.8: The blue line marks the edge of the aloe leaf. It is also a border in the depth
image. The red edge on the wallpaper does not have a corresponding depth discontinuity.

Figure 3.8 shows an example: The blue line can be extracted by an edge detection
algorithm. It is possible for a depth upscaling algorithm to refine the resolution of the
depth image in the area of the blue line. The red line marks one of the many edges without
a corresponding depth discontinuity. It is dependent on the algorithm whether there are
problems with edges such as the red one in Figure 3.8.

The input for the upsampling method in this project are depth values, mapped to the
image space of the RGB image. In Section 3.3.2 it is described how this sparse RGB-D
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frame is obtained. There is a large variety of image guided depth upsampling algorithms.
In Section 2.2.2 a selection of state-of-the-art algorithms is introduced. The criteria for
an ideal upsampling algorithm in this project includes depth noise reduction, resolution
gain, speed, and parallelism for an efficient GPU implementation.

3.4 Design of a Depth Upscaling Algorithm

The most sophisticated algorithm in the sensor fusion processing pipeline is the depth
data upscaling. In this step, the depth information is vastly improved in terms of noise
reduction and resolution. Edges of the color image are used for depth value interpolation.
In Section 2.2.2, literature on image-guided upscaling is introduced and discussed. This
section provides insight on the alleged best suitable approach (2015) and shows how it was
re-implemented for evaluation. A novel algorithm is then introduced, which eliminates
the disadvantages of many methods, performs well on noisy Time-of-Flight data and is
designed to reach high performance on a GPU.

3.4.1 Evaluation of the State-of-the-Art Upsampling Algorithm

A large number of existing algorithms are not suitable for the purpose of this project
because they are too computationally complex. Even the faster local methods such as
joint bilateral filtering, are often applied iteratively, which also yields to slow computation.
There are graph-based methods however, like the one from Dai et al. [Dai+15], which
have an O(n) complexity under certain circumstances. It is the most recent graph-based
method and claims to be superior to their predecessors. A description of the algorithm is
located in Section 2.2.2 along with other State-of-the Art image-guided depth upscaling
algorithms. This algorithm had to be re-implemented since the authors do not provide
an implementation nor were they contactable. Details on the re-implementation can be
found in Section 4.4 in the Implementation chapter.

The results were retrieved by downsampling ground truth data to the low resolution of
80x60 pixel. This was motivated, due to the sensor resolution of Time-of-Flight cameras in
general being low. As ToF data tends to be noisy decreasing the resolution down to 80x60
reduces noise. Dai’s method relays on perfect depth data and performs no noise reduction.
The re-implementation of Dai’s method, as described in Section 2.2.2 was applied to the
test data. It clearly shows a massive improvement of depth resolution however, there are
also numerous erroneous regions.

Figure 3.9 marks some of these regions. These errors are caused by the nature of the
algorithm: The minimum spanning tree (MST) minimizes the edge weights of the image
graph. In an image graph, every pixel is a node and edge weights are the color differences
of the pixels. Since the MST connects the complete image, it must cross edges at some
point. When these edges are crossed, depth values lose influence due to the interpolation
formula. The influence loss however is not enough. Numerous countermeasures have been
implemented to avoid these artifacts, but it was only possible to decrease their effect. The
difficult implementation on a GPU, the uncertainty to ever reach interactive frame rates
on the target platform and the artifacts lead to the decision to design and implement a
different algorithm. The ideas that depth values spreading influence across the image and
passing edges leads to less influence, inspired the design of a new upscaling algorithm.
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Figure 3.9: Errors of the upscaling algorithm of Dai [Dai+15]

3.4.2 Design of the Guided Depth Diffusion Upscaling Algorithm

Upscaling depth images with color images as guidance is well researched, as shown in
Section 2.2.2. However, most algorithms are designed with disregard to computation
performance and are not suitable for the requirements of this project. The requirements
of a depth upscaling algorithms in this project are:

� Speed

One of the goals of this master’s project is to prove the feasibility of depth and
color sensor fusion on mobile devices. The algorithm should be able to upscale
depth images on a mobile platform with at least 5 frames per second. The 5 frames
per second is a rather arbitrary choice, but it is sometimes considered the minimum
frame-rate for humans to experience motion. Besides the upscaling computation, the
platform should be able to run an application using the fused data simultaneously.

� GPU Computation

An efficient GPU implementation should be possible. Parallel computation and the
ability of local memory usage is beneficent for a successful GPU implementation.

� Depth Information Gain

The benefits of having high resolution color information available should be demon-
strated by retrieving a depth image of higher quality. Ideally, the resulting depth
image contains more information due to the higher resolution, but also has less noise.
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The Principle

The upsampling is a crucial part of the sensor fusion processing pipeline. It is executed
after low resolution depth values are mapped to the RGB image. The input, as seen in
Figure 3.10, consists of a buffer with some depth values (sparsely mapped depth frame)
and the color guidance image.

Figure 3.10: The input for the upscaling algorithm

The principle of the algorithm can be interpreted as depth values spreading their influence
over a local area of the image. The influence decreases when edges of the color image
are passed. Ideally, every pixel of the color image is reached by several depth values.
The influence for each pixel is saved in a separate buffer and updated every time a depth
value influences a pixel. In Section 3.4.2, the interpolation and updating algorithm are
explained in detail.

Figure 3.11: The influence path of depth value (7/5) to pixel (3/6).

Figure 3.11 shows the path of influence of a depth value. The dotted red line marks
the traveled path to the destination pixel. For every pixel on the path, the influence
is calculated and updated. Step 3 from pixel (5/1) to (4/1) passes a different colored
region. The influence decreases after this step. During the next step (4), another edge
is passed and the influence decreases again. In contrast to the joint bilateral filter, the
spatial distance between each pixel and the depth value has no influence.
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A Measure for Color Discontinuities

To be able to quantify how much influence each depth value loses on the output image,
a measure for color image discontinuities needs to be defined. These differences are the
edges of an image.

Dedicated edge detection techniques such as Canny, Sobel, Laplacian of Gaussians and
Prewitt were evaluated. The results of the evaluation are discussed in Section 5.2.3. This
evaluation lead to the conclusion that a binary edge detection is not the best way to create
an upscaling guidance image. After experimenting with numerous edge detection filters, a
simple filtering technique yielded the best results. The design of this filter was influenced
by the goal to create a fast GPU implementation. Since memory access consumes time on
a GPU, the filter only considers the values of the 4 surrounding pixels. The filter kernel
is shown in Figure 3.12. The numbers are the weight for each pixel. The guidance value
is the sum of these weighted pixels.

Figure 3.12: The guidance image filter kernel

The resulting guidance image can also be seen as a gradient image, since each pixel stores
the sum of gradients magnitudes to its neighbors. An experimental evaluation showed that
this filter yields the best results if applied to the color saturation and sum of RGB values
R of an image. The sum of the red, green and blue channels is a simple approximation of
brightness.

The saturation is a parameter of the HSV color model. It is used to detect edges
between objects which differ in color but not in brightness. The saturation S and RGB
sum R, are combined by calculating a guidance value for each of them (GR, GS) and are
applied to the larger value of the final guidance image G. It is wise to define an RGB sum
threshold TR, where no saturation gradient is able to influence the guidance image. This
is caused by saturation noise in darker areas and its compensation is evaluated in Section
5.2.3. The computation of the guidance image G is expressed as:

GR(x, y) = |R(x, y)−0.25·R(x−1, y)−0.25·R(x, y−1)−0.25·R(x+1, y)−0.25·R(x, y+1)|
GS(x, y) = |S(x, y)−0.25 ·S(x−1, y)−0.25 ·S(x, y−1)−0.25 ·S(x+1, y)−0.25 ·S(x, y+1)|

G(x, y) =

{
GR(x, y) if

(
GR(x, y) > GS(x, y)

)
GS(x, y) if

(
GS(x, y) > GR(x, y) + TR

)}
The fast GPU implementation is explained in detail in Section 4.5.2. In Figure 3.13, an
example color image with detected edges is shown. Since the edges are linearly mapped
to intensity values, not all edges on the figure are visible to the human eye.
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Figure 3.13: Left: The color image; Right: The guidance image

Influence Interpolation

The influence each depth value has on the final depth image is a scalar value w, which
is used during interpolation. When there are edges between the depth value d and the
current pixel p(x/y), w should to be low. For these properties, w is stated as function of the
sum of edge weights between the depth value d and p(x/y). The sum of edge weights SE is
called path length because of the previous approach to interpret the image as a graph. The
path length is calculated by looking up the guidance value of each pixel position between
d and p(x/y). The weight for interpolation w, is a function of the path length SE :

w = e
−SE
σ

The reason for using the exponential function ex is due to the vast decrease of influence
w with small changes of SE . The parameter σ regulates the decay of influence. In Sec-
tion 5.2.1, various values for σ are evaluated. The interpolation formula to calculate the
interpolated depth di for n depth values d with n edge weights w is:

di =

∑
dn · wn∑
wn

Ideally, four or more depth values influence the depth of one output pixel. The number
depends on how far each depth value spreads its influence. The covered area is a circle
with a radius of k pixel. Due to the dual camera setup, the position of each mapped
depth pixel depends on the depth value. This is the reason, why depth values cannot be
arranged in a homogenous grid on the color image. As the mapped positions of the depth
values change every frame, it is impossible to exactly predict how many depth values will
influence an output pixel. The interpolation formula is robust, if only one depth value
influences the pixel, the pixel value will be identical with the depth value. If there are no
depth values influencing a pixel, there is no interpolation and the value remains undefined.
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3.5 Software Design

The software for fusing the color and ToF sensor data was developed for the Snapdragon
810 platform, which is introduced in Section 3.2. The software runs in the Android
ecosystem, and the front-end part is thus developed in Java. The sensor fusion processing
algorithms are executed on the GPU. OpenCL is used as API for GPU computation. The
Java Native Interface (JNI) is used to load and interface with C libraries, which handle
the GPU computation with OpenCL.

Figure 3.14: The interface diagram between the Java and C part of the implementation.

As shown in the interface diagram 3.14, the application is divided into a Java and C
part and are connected with the JNI. The Java application acts as the controller of the
sensor-fusion system. Its tasks include:

� Camera Data Gathering

The Java class CameraHandler initializes the depth and color camera, by calling
functions in native libraries. The description how the cameras are accessed can be
found in Section 3.5.1 and 3.5.2. The class provides methods to copy camera data
directly to the GPU memory.

� Initialization and Control of the GPU Processing System

The implementation of the OpenCL initialization and processing is implemented in
C, and is accessed by Java via JNI. The Java application executes the functions of
the C libraries enabling the GPU computation, and adapts certain parameters for
performance optimization.
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3.5.1 Interface to Depth Camera

The depth camera (Infineon ToF Evaluation Kit) is accessed by using the PMD SDK from
PMD technologies. It is a C library that can be included and used with the JNI. There
is a plugin for depth data processing that is also a shared library. The processing and
capturing of data can be controlled with the SDK. The unprocessed depth data is first
copied to a private array on the main memory. The SDK provides a method to copy the
depth image to an arbitrary memory location. In the case of this implementation, it is a
location on the main memory dedicated for the GPU. The pointer is provided by OpenCL
after executing the command mapBuffer. The limited data transfer bandwidth of the USB
2.0 connection and the simultaneous use of the USB color camera limits the frame-rate to
about 15 fps.

3.5.2 Interface to Color Camera

The color camera, introduced in Section 3.2.5 is a Logitec webcam, connected by USB.
The Video for Linux 2 (V4L2) drivers supporting UVC are used with the native Android
Webcam Library [CP15]. The library is modified for this project, adding control of the
auto-focus. The interface is also rewritten, so that a custom pointer can be specified as
target for the image data. This enables the video driver to copy the image data to the
GPU memory.

3.5.3 Data Flow

The data flow is a crucial aspect of image processing systems. The aim of the software
design is to minimize data transfer and design memory access for optimal cache usage. The
way to avoid unnecessary memory transfer starts at the depth and color camera interfaces,
which talk to the drivers. The interfaces are described in the previous Sections 3.5.1 and
3.5.2. The Java application provides these interfaces with pointers to GPU buffers. These
GPU buffers are located in a certain sections of RAM, since the Qualcomm Snapdragon
810 platform has a shared memory architecture.

After the data is copied to the GPU memory, all further processing calculations are
done on the GPU. The depth image is mapped to the color image space, resulting in a list
of mapped depth data. This procedure was introduced in Section 3.3.2. The color image
is converted to a guidance image for depth image upscaling.

Finally an application, receives the upscaled depth and color data by sharing pointers
between OpenGL and OpenCL. The shaders are controlled by the Java OpenGL imple-
mentation and produce the desired visual output for the sensor fusion demonstration.
Alternatively, the data can also be copied into RAM.
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Figure 3.15: The data flow of the sensor fusion system



Chapter 4

Implementation

This chapter gives detailed insight into the sensor fusion system prototype. It begins by
examining the hardware platform and the setup, the configuration and calibration are out-
lined. The next focus is on the work-flow and methods for efficient software development.

The implementation is an Android application, developed for the Qualcomm Snap-
dragon 810 platform. The application consists of a sensor fusion framework, a native
library for GPU computing and three GPU programs, as shown in Figure 4.1. The
framework is developed in Java and can be integrated into any Android application. The
OpenCL 1.2 API is used to enable fast computation on the graphics device. The native
library manages the GPU processing, and is developed in C and the Android Native De-
velopment Kit (NDK). The GPU programs are developed in OpenCL C and form the
sensor fusion processing pipeline.

Figure 4.1: The components of the sensor fusion implementation

4.1 The Sensor Fusion Platform

4.1.1 Dual Camera Setup

The camera system consists of an Infineon Time-of-Flight evaluation kit depth camera and
a Logitec B910 color camera. The camera specifications were introduced in Section 3.2.5.
For optimal sensor fusion results, the cameras are mounted as close as possible and ideally

59
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face exactly the same direction. Like the setup of Ferstl et al. [Fer+13], the cameras are
mounted vertically. The final setup is shown in figure 4.2.

Figure 4.2: The sensor fusion camera system

As mentioned in Section 3.2.5, disabling the auto-focus of the color camera is crucial
for a precise depth data mapping. The Logitec B910 camera is able to do this by a UVC
command. To send this command, the Android webcam library [CP15] is modified. The
following code is inserted into the startup module:

set_autofocus( fd, 0);
set_focus(fd, -1);

The first command disables the auto-focus, the second one sets the focus to infinity.
The Logitec B910 webcam does not support the second command, however the camera
always sets the focus infinity on startup. Executing the command anyway helps with
compatibility to other UVC color cameras.

Another modification of the color camera is direct memory copy. The implementation
of the Android Webcam Library [CP15] copies the color data to a Java array. Because the
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Qualcomm Snapdragon has a shared GPU memory, it is possible to copy data directly to
the GPU memory. Therefore, the method loadNextFrameDirectly is added to the webcam
interface. It forwards the GPU buffer pointer directly to the webcam library.

4.1.2 Camera Calibration

Camera calibration is necessary to transform the depth values to the color image. This
section describes how the cameras of the sensor fusion platform are calibrated. Camera
calibration is explained in Section 3.3.1. Literature about camera calibration in a depth
sensing system is reviewed in Section 2.2.4.

The calibration of the camera system can be reduced to the simpler, well established
stereo camera calibration. This is possible because the ToF camera features an amplitude
image, which captures the incoming light for each depth pixel. Initially, the intrinsic
parameters are retrieved for each camera, then the extrinsic parameters of the system are
estimated by evaluating point to point correspondences.

The two most popular options for calibration are either OpenCV [Gar15] or Bouguet
Matlab toolbox [Bou15]. Both calibration toolsets yield to the same results, since they
use the same methods. They both take multiple images of checkerboard patterns as
input. For this project, the Bouguet Matlab toolbox was selected, as it is possible to
mark the checkerboard corners manually. The OpenCV calibration relies on automatic
corner detection, which does not always work with the low resolution intensity image of
the ToF camera. Both tools use the same algorithm and offer sub-pixel refinement of the
checkerboard corners.

At first, several images are captured with the sensor fusion system. The ideal calibra-
tion dataset consists of images with a rich variety of angles and distances. Figure 4.3
shows the camera configuration and the positions of the checkerboard patterns. The right
side of the Figure shows a sample calibration image of the color camera with mapped
checkerboard corners of the depth image. The calibration implementation minimizes the
error of this mapping.

Figure 4.3: Left: Visualization of the camera configuration and calibration targets by
Bouguet Matlab toolbox [Bou15]; Right: Calibration Image with mapped corners
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4.1.3 Processing Hardware

The sensor fusion processing platform, as shown in Figure 4.4, is the Dragonboard APQ
8094 with the Qualcomm Snapdragon 810 SoC. The hardware platform was introduced in
Section 3.2. All developed software is able run on smartphones with the same operating
system an similar hardware. The GPU implementation is self-optimizing, which means,
that it can optimize its computation parameters in a few seconds. The development kit is
rooted and the application needs read/write rights on the camera hardware. The access
is enabled by setting the privileges for dev/bus/usb (ToF camera) and /dev/video2 (color
camera).

Figure 4.4: The Dragonboard APQ 8094, a development kit for Snapdragon 810

4.2 Development

The development of the software implementation is not trivial. The main application
is developed in Java, but for color and ToF camera access and GPU computing, native
libraries are developed in C.

4.2.1 Development Environment

The sensor fusion Framework is developed with Android Studio. The C libraries and
GPU programs are developed and tested in Visual Studio on a PC, and then compiled
with Android NDK for the mobile platform.

Android Studio - Java

The Android Studio currently (2015) supports just Java development and is the main
platform for Android application development. Google recommends using Java as primary
language and to use the Java Native Interface (JNI) to execute code from pre-compiled
C or C++ libraries. Gradle is used as build system. The file build.gradle contains the
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parameters of the build. For this project the following lines need to be added to the
Android Section:

aaptOptions \{
noCompress '.cl', 'cl'
\}

These lines ensure, that the OpenCL kernel source code files are not compressed during
the packaging process. This might be necessary to prevent file corruption, since the GPU
programs are included in the assets directory of the .apk file.

Including native C libraries is not straight forward (2015). With the GCC compiler,
included in the NDK, the C source is compiled into binary .so files. These .so files need to
packed into a .jar archive file. The exact procedure is described in Section 4.2.1. To tell
the Gradle build system to regard the content in these .jar file, this command is added to
the dependencies section of the build.gradle file:

compile fileTree(dir: 'libs', include: ['*.jar'])

JNI - C

The Java Native Interface (JNI) enables Java applications to run C or C++ code. To use
it in Android the Native Development Kit (NDK) has to be installed. All native code can
only be executed by certain interface methods that contain certain datatypes and calling
conventions. While there might be functional code in these files, the usual way is to just
cast all datatypes and call the actual methods of the implementation.

To tell Android about the locations and properties of these files, there need to be two
files in the same folder as the source code for the interface methods: Android.mk and
Application.mk : In Android.mk, the source files for the Android application are specified.
To keep the Android configuration simple, only files with the JNI interface methods are
specified here. The source files are directly included into the interface file with the include
command. The Application.mk file contains build parameters and compiler options.

To compile the native C source, the NDKBUILD.cmd file is called upon. A simple
script (build.bat) is in the same directory and does everything automatically. It com-
piles the source by executing NDK-BUILD.cmd. Then it calls on another script called
build jar.bat. The compiler (GCC) generates .so files, which are shared binary libraries.
These libraries are packed to a .jar file with this script, so Gradle can find the libraries
and connect them with the Java implementation.

Android Studio offers the option to execute shell scripts before building the project.
It additionally checks if a script fails, and cancels the build. These scripts are executed
automatically in Android Studio before the build process.

OpenCL

The GPU programs are called kernels and are developed in OpenCL C. They have the file
extension .cl file are copied into the asset folder by the script copy computekernels.bat.
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Cross-Compilation

The Android tool-chain is not the best environment to develop experimental GPU code.
It takes minutes to compile and execute GPU code. A test framework for Windows there-
fore was developed and is located in the /jni/sensorFusionInterface/sensorFusionInter-
faceImplementation. Most files, except oclLoadKernel android.c, sensorFusionTesting.c
and oclLoadKernel windows.c, are used among both platforms. This test environment
loads test images from the hard drive, using OpenCV, and mimics the computation like
on the Android implementation. All operation system specific code is guarded by pre-
processor macros. The test-framework is written in C++ to use features like file streams.
The code for Android however is developed in strict C99. Figure 4.5 shows the modules
of this cross-platform implementation.

Figure 4.5: Modules of the dual-plattform implementation. Red: Module used by Win-
dows; Blue: Module used by Android; Red/Blue: Module used on both platforms

4.2.2 Workflow

The sensor fusion algorithms are developed in a work-flow shown in Figure 4.6. At
first a proof-of-concept prototype is developed with Matlab. All features and principles
are experimentally implemented. Before actual data was retrieved from the ToF and
color cameras, the Middlebury datasets [HS07] were used for evaluation. When each
algorithm was sufficiently developed, the Matlab Code was refactored. Since Matlab is
ideally used with vectorized data, all operations using vector data were replaced by scalar
data operations. The resulting Matlab code was a closer approximation of how the desired
GPU code appears. This step is also necessary to be able to compare intermediate results
for bug tracking and helps code translation.

A test framework in C++ is developed for Windows. Section 4.2.1 contains more in-
formation about the dual-platform implementations. The Matlab implementation of each
algorithm was re-implemented in OpenCL C, using the test-framework for verification.
The reason for this step was the faster development environment on a Windows PC. It
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takes several minutes for a project to compile, build and execute on a mobile device with
Android Studio and Gradle.

Figure 4.6: The development cycle for developing the sensor fusion algorithms

4.3 Sensor Fusion Framework

The sensor fusion framework is a crucial part of the final sensor fusion implementation. It
handles the interaction with the cameras, executes the GPU programs (OpenCL kernels),
and provides fused sensor data to other applications. The design choice to develop the
central part of the sensor fusion demonstrator as a framework was motivated to enhance
re-usability. As shown in Section 3.5, the framework consists of two parts: The Java
application, developed in the Android ecosystem, and the native libraries, developed in C.
The active C implementation is necessary to use the OpenCL API.

4.3.1 Android Java Implementation

The Java implementation of the framework is the heart of the sensor fusion processing
system. It connects the hardware with the sensor fusion computation on the GPU. It
unifies the color (RGB) and the depth (D) sensor into a unified RGB-D sensor. Other
applications can integrate the framework to gain access to the RGB-D data.

The classes of this framework are shown in Figure 4.7. The Android Activity class
is an Android application accessing the framework. The framework is provided by the
classes SensorFusionProcessor and CameraHandler. These classes handle the camera
system and the GPU sensor fusion system. The application can access various parameters
and data of the sensor fusion system, and can start the camera capturing and processing
system.

Class: CameraHandler

This class uses the native depth (PMD SDK ) and color camera interface (NativeWebcam)
to access the camera hardware. PMD SDK and NativeWebcam are interfaces to external
implementations. These are C libraries using the Linux camera drivers. The purpose of the
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Figure 4.7: Class diagram of the sensor fusion framework

CameraHandler class is to unify both cameras and simplifying access. The camera system
is started by calling the method openDevices(). The class SensorFusionProcessor uses the
methods writeDepthImageToBuffer() and writeColorImageToBuffer() to copy data from
the cameras hardware directly to GPU memory.

Class: SensorFusionProcessor

This class regulates the sensor fusion processing at a high level. It uses the interface class
SensorFusionJNI to access the native implementation sensorFusionInterface. This native
C implementation enables the execution of GPU programs and is described in detail in
Section 4.3.2. Since this class executes all steps of the GPU sensor fusion pipeline, this
class can evaluate the computing performance. The main loop does the following steps
per frame to calculate the sensor fusion product:

� Color and Depth Data Acquisition The depth image is transferred from the
camera to a memory buffer on the GPU. This works by requesting a pointer to
the GPU memory from OpenCL, by calling the method mapDepthBuffer(). This
pointer is provided to the camera system by calling writeDepthImageToBuffer().
This method requests the current image from the depth sensor via the PMD SDK
[Tec14] and copies the processed depth image directly the GPU buffer. The method
sensorFusionJNI.unMapDepthBuffer() closes access to the buffer and enables the
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GPU to use it. The color data is acquired the same way as the depth data, using
the adequately named methods.

� GPU program execution The GPU programs are executed by simply calling
the methods computeMapping(), computeGradient() and computeUpscaling() of the
sensorFusionInterface class.

� Sensor fusion data retrieval The sensor fusion result is in GPU memory. It
can be copied into the main memory, or used directly. With OpenCL and OpenGL
inter-operation, it is possible to access the sensor fusion result without any copy.

The application using the sensor fusion framework, can start and stop the computation
with the public methods of this class. An experimental implementation executes all GPU
programs with different local work-group size parameters, determining the optimal pa-
rameters within seconds. This automatically optimizes the GPU performance on different
platforms.

4.3.2 Native C Implementation

The purpose of the C implementation is to enable GPU computing with OpenCL. It
initializes the OpenCL API, creates GPU memory buffers and executes kernels. It is
also able to map data from the GPU memory to the main memory, and enables fast and
direct memory transfers. For developing purposes, it is possible to retrieve the hardware
specifications of the GPU to ensure optimal computing parameters. It is also possible to
read out intermediate results of the sensor fusion computation. This part of the framework
is implemented as C library, and interfaced with Java by JNI. The library’s characteristics
forbid the storage of data in the stack memory, and thus the complete data is saved in
a struct in heap memory. This data contains mainly OpenCL handles, but also memory
addresses for the buffers on GPU memory and computation parameters. For a description
of the parameters, see Section 3.2.2. Figure 4.8 shows the modules of the implementation.
The connections between the modules represent function calls.

Module: sensorfusionFusionInterface

This module is the interface to the Java implementation. It uses the JNI, and is compiled
with GCC. It also abstracts the GPU computation to a simple API with a view function
calls.

� initializeOCL()
Creates the OpenCL context. It loads and compiles the GPU programs and creates
and allocates buffers on GPU memory

� computeMapping()
Starts the mapping computation on the GPU.

� computeGradient()
Starts the computation of the guidance image on the GPU .
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Figure 4.8: Module diagram of the C implementation of the GPU processing handling

� computeUpscaling()
Starts the upscaling computation on the GPU.

� getMappingBufferFromGPU()
Copies the mapping computation result to the main memory.

� getGradientBufferFromGPU()
Copies the result of the guidance image computation to the main memory.

� getUpscalingBufferFromGPU()
Copies the upscaled depth image to the main memory.

� mapColorBuffer()
Requests a pointer to a GPU buffer, which is located in a GPU specific part of the
RAM. Access to this GPU memory needs to be requested with this call. The color
image is written to this buffer. The GPU might not be able to access this buffer as
long it is mapped.

� unMapColorBuffer()
Closes access to the color image buffer. After this function is executed, the GPU
can access this buffer again. The GPU might be able access this buffer anyway.

� mapDepthBuffer()
The same procedure as with mapColorBuffer(), but with the depth image.

� unMapDepthBuffer()
The same procedure as with unMapColorBuffer(), but with the depth image.
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� cleanup()
Releases the GPU buffers, closes the OpenCL system and frees all heap data.

This interface is used the following way by the Android application: At first initial-
izeOCL() is called. If this function is executed successfully, the GPU device is ready
and all GPU programs are compiled correctly. The next step is to transfer color and
depth data to the GPU memory. Since the Snapdragon 810 platform has a shared mem-
ory architecture, it is possible to request a pointer from the GPU directly. This works
by calling mapDepthBuffer() and mapColorBuffer() and copying data directly from the
camera drivers to this memory location. After the data is copied to GPU memory, un-
MapDepthBuffer() and unMapColorBuffer() are called to close access to the buffers. After
the data is in the GPU memory, computeMapping(), computeGradient() and computeUp-
scaling() are called. The GPU programs are started with separate methods, because this
enables to schedule the computation steps. An example, for applied GPU scheduling is a
system, which pushes camera data to GPU memory, while simultaneously executing GPU
programms. Separately executable GPU programs also allow to use getMappingBuffer-
FromGPU(), getGradientBufferFromGPU() and getUpscalingBufferFromGPU() to obtain
intermediate results for evaluation purposes.

Module: oclHelperFunctions

This module is the last layer of abstraction of the OpenCL API. It provides simple func-
tions for creating the OpenCL environment and creating GPU memory buffers. It can
also request the device specific parameters of the GPU.

Module: loadOCLKernel android

This module does the OpenCL C GPU programs loading in Android. There is also a
Windows version of this module with the windows post-fix.

Modules: oclMapping, oclGradient, oclUpscaling

These modules execute the GPU programs (kernels). Each of them is dedicated to a step
of the sensor fusion processing pipeline. Each module provides the following functionality:

� Initialization

The initialization function is typically called once. It creates all the GPU memory
buffers and connects their pointers with kernel arguments.

� Update

This enqueues the computation on the waiting queue on the GPU. It is optional to
also execute the OpenCL command clFinish(), which blocks until the computation
on the GPU is finished. It is possible to change the local work-group size at each
update, by setting the parameters. For the upscalingKernel(), it is also possible
to only schedule a part of the input data. This enables the application to stay
responsive.
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� Buffer Mapping

If the GPU program receives external data before execution (i.e. an RGB frame
from the color camera), OpenCL can provide a pointer for direct access to the GPU
memory. This is possible, because the GPU and main memory of the Snapdragon
810 is located on the same memory hardware.

4.4 Implementation of a State-of-the-Art Upscaling Algo-
rithm for Evaluation

The minimax path-based depth interpolation method of Dai [Dai+15] promises best
results for realtime applications (12/2015). Because there was no reference implementation
and the authors were not contactable, the algorithm was re-implemented. At first, a simple
prototype was implemented in Matlab, but not all concepts of Dai could be implemented in
Matlab. The minimum spanning tree (MST) was calculated with the Boost BGL library,
and it was not possible to modified the implementation to our needs. The algorithm
was then implemented in C to do the computations during the construction of the MST,
the authors intended. Figure 4.9 shows the results of the re-implementation after an
exhaustive evaluation of the parameter space.

Figure 4.9: Results of the re-implementation of the upscaling algorithm of [Dai+15] on
the Middlebury [HS07] datasets. From top to bottom: Color image; Ground truth depth
image; Upsampled depth image. The original depth image resolution: 80x60 pixel
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Before creating the C implementation, a lot of effort was put into the design of the MST
algorithm. Calculating the minimum spanning tree is by far the most computationally
complex part of the algorithm. There exist methods to run this algorithm on the GPU
[MGG12], but the speedup is limited. The MST computation does not map well on GPU
architectures. Every parallelizable step needs synchronization, and there is a massive
amount of memory access which is a bottleneck.

One way to optimize MST computation is to take properties of the graph into account.
In the case of an image graph, image pixels are nodes and the euclidean color distance
between the pixel are the edge weights. This means, that the graph is planar and each
node has only has 4 edges, which only connect to neighbors. There exist algorithms,
which are able to calculate the MST for a planar graph in linear time [Mat94]. The C
implementation was used to evaluate the results to see if it was suitable for this project.
As discussed in Section 3.4.1, the quality of the results was adequate, but the performance
was not sufficient. The implementation and study of Dai’s method lead to the invention
of a new approach, which is described in Section 4.5.3.

4.5 GPU Implementation of the Sensor Fusion Processing
Algorithm

The sensor fusion processing pipeline is developed for the GPU of the Snapdragon 810
platform. The purpose of this implementation is to explore the capability of mobile GPUs
for color and depth sensor fusion. The complete sensor fusion procedure is executed on
the GPU and split into 3 stages (mapping, guidance image calculation and upscaling), as
described in Section 3.3. Figure 4.10 shows the GPU programs in the context of the
system. The arrows represent memory access, and enables to see the origins of the in- and
outputs of the GPU programs. The OpenGL shader programs represent an application,
using the sensor fusion result. Alternatively, the data can be copied to a part of the shared
memory with CPU access. The upscaling kernel depends on the output of the other kernels
and is the last stage in the sensor fusion pipeline. The execution order of the other kernels
is arbitrary.

4.5.1 Mapping

The mapping is the transfer of depth data to the coordinate space of the color image.
The input for this algorithm is the depth image, which is copied directly to the GPU
memory. The intrinsic and extrinsic parameters of the cameras influence the mapping
transformation. They were retrieved during the initial calibration process, described in
Section 4.1.2. The precision of the camera calibration is discussed in Section 5.1. The
camera parameters are included in the kernel in form of OpenCL pre-processor constants,
and are located in either the fast OpenCL private memory, constant memory or even in
the registers. OpenCL determines the actual memory location during compile time.

The output of this GPU kernel is a buffer, containing a list of depth values and their
x and y position in the image space of the color image. This list contains the same
information as a sparsely mapped depth frame, which is commonly found in literature.
If mapped to the color image, not all positions hold a depth value. These positions
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Figure 4.10: The color and ToF sensor fusion procedure

are interpolated during the upscaling stage. Before the depth values are transformed to
the image space of the color camera, the lens distortion of the depth camera needs to
be compensated. While it is possible to distort pixels by simply applying the formula
introduced in section 3.3.1, undistorting pixels is an iterative process The algorithm for
the iterative solution according to [Pet15] is the following:

Normalize the pixel coordinates:
x = C−1 · ximg

Repeat until x converges:
r = ‖x‖2
m = k1r

2 + k2r
4

x =
C−1 · ximg

1 +m
denormalize:
xundist = C−1 · x

C is the camera matrix of the ToF camera. There are only a few iterations necessary. The
GPU implementation does 10 iterations. The undistortion is so fast on the GPU that it
can’t be measured. The mapping kernel then transforms the depth values as described in
Section 3.3.2:

Xi,j = T +Rdi,j
P̃Dxi,j

‖P̃Dxi,j‖
x̃i,j = PCXi,j
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The inputs are the depth image pixel positions xi,j , and the depth values di,j . The output
x̃i,j are pixel coordinates on the color image. T and R are the extrinsic camera parameters
and PD and PC the intrinsic camera matrices. Since the depth values are mapped to the
original color image, they need to be distorted to model the imperfect color camera lens.

x̃dist = x̃ · (1 + k1r
2 + k2r

4)

For the parallel computation, the work-items are arranged in a 2D grid. Each work-
item computes the mapping of one depth value. The grid has the same dimensions as
the mapped depth image. Each thread can request their global position with the simple
function call get global id(). The global position is the depth image pixel position xi,j .

OpenCL C supports vector data types and operations. The computation is vectorized,
and the matrix operations are split into rows. The GPU implementation was stripped
from all pre-processor statements, memory transfers and declarations and is listed here:

// Projection from 2D image space to the 3D image camera plane
v.x = PROJ_INV_FCX * depthImagePosition.x + PROJ_INV_CCX;
v.y = PROJ_INV_FCY * depthImagePosition.y + PROJ_INV_CCY;
vn.z = 1;

// From 3D camera image plane to 3D depth camera space
vn = normalize(vn) * depthValue;

// Transformation to color camera 3D space , using the extrinsic
parameters

pos3D.x = ROT_11 * vn.x + ROT_12 * vn.y + ROT_13 * vn.z + TRANS_1;
pos3D.y = ROT_21 * vn.x + ROT_22 * vn.y + ROT_23 * vn.z + TRANS_2;
pos3D.z = ROT_31 * vn.x + ROT_32 * vn.y + ROT_33 * vn.z + TRANS_3;

// Projection to color 2D image space
pos2Dh.x = COLOR_FCX * pos3D.x + COLOR_CCX * pos3D.z;
pos2Dh.y = COLOR_FCY * pos3D.y + COLOR_CCY * pos3D.z;
pos2Dh.z = pos3D.z;

// Conversion to inhomogeneous coordinates
colorImagePosition.x = pos2Dh.x / pos2Dh.z;
colorImagePosition.y = pos2Dh.y / pos2Dh.z;

Listing 4.1: GPU mapping computation

All work-items are bundled to work-groups and executed at the same time. This can
cause concurrency problems when the same threads access the same memory. Since all
algorithms in this projection are designed to be executed in parallel, this problem is
minimal. An evaluation of faulty data due to concurrency can be found in Section 5.4.3.
The vectorized datatypes speed up computation, since the GPU architecture is SIMD.
After computation, the kernels write their result in an array in global memory. Since
global memory access is very slow, multiple elements are written simultaneously, which
takes as much time as one element. The type of the output buffer is ushort4, which
contains 4 elements with 16 bit resulting in 64 bit data. The vectorized data is written to
the array in global memory the following way:
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nodeListEntry.x = (ushort) floor(colorImagePosition.x+0.5f);
nodeListEntry.y = (ushort) floor(colorImagePosition.y+0.5f);
nodeListEntry.z = (ushort) floor(depthValue*DEPTH_FACTOR +0.5);
nodeListEntry.w = 1; // Flag , can be set to 0 for invalid values
nodeList[outputIndex] = nodeListEntry;

Listing 4.2: GPU mapping result transfer

Qualcomm recommends 128 bit data transfer in each memory write access, so a future
optimization can process several depth values per thread and write them simultaneously.
The mapping kernel however is the fastest stage in the processing pipeline, and thus not
a subject for performance optimization.

4.5.2 Computation of the Guidance Image

The computation of the guidance image is done according to the procedure defined in Sec-
tion 3.4.2. The GPU implementation works by dispatching one kernel for every guidance
image pixel. Like the other kernels, the work-items are mapped to a 2D grid. The input
for this kernel is a buffer in global memory, containing the color image. The computa-
tion of the final guidance value is done according to the formulas in Section 3.4.2. The
saturation value S of each RGB pixel is calculated, using the standard formula:

S =

0 if
(
MAX(RGB) = 0

)
MAX(RGB)−MIN(RGB)

MAX(RGB)
else


The euclidean RGB distance DRGB is calculated by applying the L2 norm to the difference
of the RGB values. The guidance value is the higher value of DRGB or S and is written
into a buffer on global GPU memory. It is used in the next processing step, the depth
image upscaling. Section 5.2.3 contains an evaluation of parameters and edge detection
methods for guidance images.

4.5.3 Guided Diffusion Depth Upscaling

This is the last and most significant step in the sensor fusion processing pipeline. It is
the part of the implementation, which adds resolution to the depth data, and reduces
noise. This section is written in a top-down approach: It starts with a simplified, straight-
forward implementation of the algorithm and then introduces advanced concepts. It finally
ends with GPU performance optimizations. The complete depth upscaling is done in one
OpenCL GPU program and requires the most time in the pipeline. Figure 4.10 shows the
upscaling kernel in the context of the system. The in- and outputs and temporal buffers
of this kernel are visualized in Figure 4.11.

The gradientImage is a global memory buffer containing the guidance image. The
depthList is a buffer in global memory containing the pixel position and depth values.
The local memory buffers gradientImageCache and weightCache are used for performance
optimizations which are explained in Section 4.5.3. The upscalingResult is a global mem-
ory buffer that contains the senor fusion product at the end of the computation. During
the processing, this buffer is also used to store interpolation information. Each work-item
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Figure 4.11: The memory buffers of the depth upscaling GPU computation

holds an instance of the private memory array pathLenghtCache, which buffers a measure
of depth influence for each pixel.

The upscaling algorithm is introduced in Section 3.4.2. The implementation of this
algorithm works in the following way: Each depth pixel spreads its influence over a pixel
path on the color image. The pixel-paths are the pixels which are on a line between the
depth pixel and the currently processed pixel. Figure 4.12 illustrates a pixel path. The
area which that is influenced by a depth value is called kernel. A kernel size of 3 processes
all pixels with an euclidean distance of 3 pixels to the depth value. The path length p is
the sum of guidance image pixel values, which are on the path between the pixel location
of the depth value dn and pixel i. It is a measure on how many edges are between the
current pixel and the depth value. The higher the number, the less influence a depth value
has on the pixel.
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Figure 4.12: The influence of a depth value with kernel size of 3, and an example pixel
path

The processing of each pixel is a weighted interpolation of the influencing depth values
dn. This is the interpolation formula from Section 3.4.2:

wn = e
−p
σ

di =

∑
dn · wn∑
wn

There are n depth values which influence the pixel i. The depth values are weighted with
the weights wn and each weight is a function of the path length p. The goal is to decrease
the influence as much as possible, if depth spreads over the edges. The weight is therefore
a negative exponential function of p with the scalar parameter σ. For the implementation,
the sums in this equation are reformulated as an update function. Instead of calculating
the sum to get the final value di, dsum and wsum are introduced, and updated each time,
a depth value dn influences pixel i:

dsum = dsum + dn · wnew

wsum = wsum + wnew

di =
dsum
wsum

Every pixel has its own di, dsum and wsum value, which results in three image-sized buffers
on the GPU. For a VGA guidance image, this means 3 floating point buffers with (640x480)
entries. Due to their size, these buffers need to be in global GPU memory, where access
is very slow. To avoid at least one buffer, dsum can be re-calculated every time instead of
saved. dsum is recalculated by reshaping the update formula:

dsum = di ∗ wsum

wsum and di are updated after the calculation of dsum. The wsum and di values in the
formula are a result of a previous pixel update calculation.
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If depth value dn is the first depth value, then wsum and di are zero. This leads to the
final update formula, which is used in the implementation:

wn = e
p
σ

wsum = wsum + wn

di =
di · (wsum − wn) + dn · wn

wsum

This update formula is expressed in pseudo-code, using the buffer terminology, introduced
in Figure 4.11:

xy = retrieveCurrentPixelPosition ()
depthValue = retrievecurrentDepth ()
pathLength = pathLength + gradientImage(xy)
pathWeight = exp(-pathLength/sigma)
weightedDepth = upscalingResult(xy) * weightBuffer(xy)
weightBuffer(xy) += pathWeight
weightedDepth += weightBuffer(xy) * depthValue
upscalingResult(xy) = weightedDepth / weightBuffer(xy)

Listing 4.3: Basic operations for each pixel

Efficient Parsing

The introduced calculations are done for each pixel in the influence area of a depth value.
For each pixel the path length p is required, which is the sum of all guidance image values
along the path. An example path is shown in Figure 4.12. The idea for an efficient
algorithm is that every pixel in the influence area of a depth value is only visited once.
When the pixels are visited in the correct order, the path length can be updated during
each per-pixel operation. This can be done by starting with the pixels neighboring the
depth value and then processing their neighbors. The idea is to visit the pixels along
the path, avoiding to parse the path each time, Figure 4.13 illustrates the order of pixel
parsing.
The GPU implementation assigns one depth value to each work-group. This indicates that
all pixels in the sphere of influence of a depth value, are accessed by a single thread. The
private memory buffer pathLengthCache contains all path lengths of the influenced pixels.
When pixel is processed, the previously calculated path length is looked up in this buffer
and the new one is written to the current position in the buffer. This is necessary, as the
pixels have different predecessors, and are not necessarily on the same path. To ensure that
the pixels are parsed in the correct order and to avoid unnecessary calculations, a look-up
table is used. The look-up table gives a relative index of each pixel and its predecessor.

To generate the look-up table a Matlab script was created, enabling the generation
of look-up tables for arbitrary filter kernel shapes and dimensions. The script parses all
pixels of the filter kernel and samples all pixels along the path. If a pixel pair on the path
has no look-up entry, it is added. This is a brute-force approach, but since 15x15 is the
largest reasonable filter kernel dimension, it takes just a few seconds. After the Matlab
script outputs a string containing the valid OpenCL C code of the look-up table, it can
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Figure 4.13: Diffusion parsing. All operations depend on each previous step.

be copied directly to the upscaling GPU program. By using pre-processor statements,
multiple look-up tables with different filter kernel dimensions can be included in a single
GPU program for evaluation. The look-up table is stored in constant memory. This is
a read-only portion in global memory with fast access. The OpenCL program iterates
the look-up table with a for loop. In each iteration, a different pixel is processed. The
operations for each pixel are explained in the Section 4.5.3.

Local Memory Caching

The computation performance on GPUs is often restricted by memory transfers. The
OpenCL memory model is introduced in Section 3.2.2. Besides the big global memory,
there is the much faster local memory, which is shared among the members of a work-
group. The local memory is ideally used, when work-items need to access the same data
repeatedly. In case of the upscaling stage of the sensor fusion processing pipeline, the
buffers gradientImage, weightBuffer and upscalingResult qualify to be used in local mem-
ory. Each work-group performs multiple accesses on a local area of these buffers. The
obvious way would be to load parts of these global memory buffers into local memory,
perform all operations, and then write it back. This is however a disadvantage of the
proposed upscaling algorithm, because the location of these areas depends on the input
data. Due to the mapping of depth values to the color image space, these depth values are
mapped to different positions at every frame. If the complete area of the global memory
buffers would be copied to local memory, it would differ at each frame. It would often be
such a big area, that the local memory is too small. The solution is illustrated in Figure
4.14: Instead of copying the complete necessary area into local memory, only a part is
copied. When a thread accesses a value, the GPU implementation checks if local memory
contains a copy and uses it. Otherwise it redirects the access to global memory.

After the upscaling operations are finished within a work-group, the buffer segments
in local memory are copied back to global memory. The complete process is called local
memory caching. Local memory caching is in concurrency with the GPU memory caching.
There exists already a hardware memory cache and the local memory caching might be
unnecessary due to the copy overhead. However both caching strategies might be fruitfully
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Figure 4.14: The concept of local memory caching

combined. This is evaluated in Chapter 5.3. During the implementation, a different
aspect of local memory caching was discovered: If the vendor implemented the OpenCL
programing model precisely, the introduced local memory caching would work. However it
seems to be the case, that several work-groups are executed in parallel. This observation
was experienced on a Nvidia Quadro NVS 4200M GPU on the development workstation
and on the Adreno 430 GPU on the mobile platform. If more than one workgroup is
executed, one work-group would write data to a global memory buffer, and the other
workgroup would write their cached local memory over this data, resulting in corrupted
global memory. This leads to the conclusion that just the read-only gradientImage buffer
can be cached in local memory.



Chapter 5

Results

Figure 5.1: Left: Fused color and depth image; Right: 3D surface mesh

This chapter provides an extensive evaluation of the sensor fusion system. Firstly, the
camera calibration is discussed in Section 5.1. A precisely calibrated camera system is
fundamental to the color and depth sensor fusion. Section 5.2 illustrates the influence
and discusses the best choice for parameters. An important consideration of this thesis is
the feasibility study of ToF and color sensor fusion on mobile device, the performance is
a crucial aspect and is evaluated in detail in Section 5.3. In certain situations, the depth
data can be corrupted or of low quality. Section 5.4 evaluates how the sensor fusion system
compensates for low quality depth data. The final sensor fusion results are presented in
Section 5.5. The results are visualized and compared to other depth upscaling methods.
All visual results were filtered with a salt and pepper noise filter, eliminating single-pixel
depth artifacts.

80
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For testing and evaluation, several test-sets were captured with the sensor fusion sys-
tem. There is no ground-truth depth data available. This makes it hard to quantify the
quality of the depth image in a comparable measure. However a visual inspection is suf-
ficient to notice the introduced quality enhancements. The human eye can recognize, if
objects in depth images are sharper (more resolution), or smoother (noise reduction). To
aid the visual inspection the sensor fusion results are converted to textured 3D surface
meshes, as shown in Figure 5.1.

5.1 Camera Calibration

The camera system was calibrated similar to a stereo camera setup, using the amplitude
image of the ToF camera as 2D image. The Bouguet Matlab calibration toolbox [Bou15]
was used for the calibration procedure. The implementation offers an uncertainty predic-
tion for each parameter, which is approximately three times the standard deviation of all
calculated values. The camera system was calibrated using 47 images of a checkerboard.
Table 5.1 and 5.2 show the intrinsic parameters and the uncertainties.

Parameter Value Uncertainty

Focal Length X-Axis 541.208 1.514

Focal Length Y-Axis 542.515 1.398

Principal Point Offset X-Axis 316.197 2.361

Principal Point Offset Y-Axis 246.565 2.521

Table 5.1: The intrinsic parameters of the color camera

Parameter Value Uncertainty

Focal Length X-Axis 228.943 0.823

Focal Length Y-Axis 229.087 0.768

Principal Point Offset X-Axis 157.011 1.344

Principal Point Offset Y-Axis 142.722 1.369

Table 5.2: The intrinsic parameters of the ToF camera

The uncertainties are typical for the used cameras. The examples of the calibration toolbox
show similar uncertainties. The uncertainties of the ToF camera are lower, because of the
lower resolution. Figure 5.2 shows the re-projection error on the color image. The
re-projection errors in this image are the X and Y deviations of checkerboard corners
of the 47 ToF images, projected to the color image. During sensor fusion, the depth
values are projected to the color image the same way, using the intrinsic parameters for
transformation. A re-projection error under 0.5 pixels for X and Y means a pixel-perfect
mapping.



CHAPTER 5. RESULTS 82

Figure 5.2: The re-projection error of the color image in pixels [Bou15]

5.2 Exploration of the Parameter Space

This section introduces the processing parameters and how they influence the results.
Each subsection defines a set of rules to determine the optimal parameter. All further
evaluations use the optimal parameters.

5.2.1 Interpolation Parameter Sigma

The interpolation parameter σ is introduced in Section 4.5.3. σ is a scalar value and
is used during the depth data upscaling. The parameter regulates the decay of influence
when there are color edges between a depth value and the current pixel. The following
formula shows the influence of σ on the computation of the path weight wn.

wn = e
−p
σ

The smaller σ, the steeper is the exponential function and the larger the influence decay.
The logical consequence: The smaller σ, the sharper is the upscaled depth images. A
visual inspection confirms this. Figure 5.3 shows a depth image with different values for
sigma. Some areas in the image appear black due to σ beeing too small. This is caused
by depth weights, which are smaller than the 32 bit floating point variable can handle.
The image in the center of the figure shows the optimum value and the right image shows
blurred edges for large values of σ. The most suitable choice for σ is as small as possible.

5.2.2 Kernel Size

The kernel size is the radius of influence a depth value has on the result. The higher the
size the more pixels are influenced by a depth value, which yields to longer computation.
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Figure 5.3: Evaluation of the parameter σ

A higher kernel size enhances noise-reduction and makes the sensor fusion algorithm more
robust against invalid depth values. A smaller kernel size leads to immensely faster com-
putation. Reducing the kernel size from 5 to 4 reduces the number of operations by 32%.
This section reviews the visual influence of the kernel size. Section 5.3.2 discusses the
influence on computation performance.

The maximum possible kernel size in the implementation is set to 7. Higher values do
not lead to any significant improvement. Figure 5.4 shows 3 images with different kernel
sizes. It can be clearly shown, that the depth noise is smoothed with an increasing kernel
size, while the edges are preserved.

Figure 5.4: Evaluation of the kernel size

The difference between a kernel size of 3 and 5 is much more significant than 5 and 7.
Since the kernel size of 5 is also noticeable superior to 4, it is chosen as a compromise
between quality and performance.

5.2.3 Guidance Image

The guidance image is an edge image derived from the color image. It aids the depth
upscaling and enables the creation of super-resolution depth images while reducing noise
without loss. Section 4.5.2 describes this process.

An aspect of the guidance image computation is saturation restriction. As mentioned
in Section 4.5.2, both the euclidean RGB distance and color saturation are used to create
the guidance image. The saturation however can have drastic noise when the intensity
(luminance) of a pixel is too low. A threshold is therefore introduced, limiting the use
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of saturation to pixels with higher luminance. The threshold was chosen to be a third of
the maximum possible luminance value of a pixel. The luminance is approximated by the
sum of RGB values. Figure 5.5 shows the results of this procedure. On the lower images,
it is possible to observe a much cleaner guidance image and a depth image with far less
noise in this area. The conclusion is, that saturation restriction during the guidance image
calculation is very is valuable and does not come with any disadvantages.

The algorithms to create the guidance image can be seen as a parameter of the sensor
fusion computation. This section shows that the fast and simple algorithm introduced
in Section 4.5.2, was the best choice. Figure 5.6 shows the edge detection algorithms
and their influence on the result. The guidance images were created with several popular
edge detectors and are shown on the left side of the figure. The middle demonstrates the
upscaled depth images and on the right are magnifications.

Figure 5.5: Saturation restriction; Left: The guidance images; Right: The resulting up-
scaled depth images

A visual inspection shows that implementing a rather simple edge detector is sufficient. It
needs to be denoted that other edge detectors are binary, while the implemented detector
creates a scalar value for each edge.
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Figure 5.6: Evaluation of edge detectors for guidance image computation. Left: The
guidance images; Right: The resulting upscaled depth images
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5.3 Performance

The sensor fusion implementation aims to reach interactive (above 5 fps) frame-rate to
demonstrate the feasibility of color and depth sensor fusion on mobile devices. The pro-
totype accomplishes all sensor fusing processing operations below 100 ms, which can lead
to more than 10 fps. This section evaluates all parameters from which performance is
affected. It also gives details about the computational complexity and memory usage.
Since the camera setup is experimental, the time dedicated for image acquisition is not
accounted in the performance evaluation.

The execution time of each GPU processing pipeline step is visualized in a pie chart in
Figure 5.7. Each GPU module was executed a number of times and the execution speed
was averaged to retrieve the execution times. The best GPU parameter configuration was
derived for each measurement. It is clearly shown that the depth upscaling is the most
computationally intensive step.

Figure 5.7: The execution times of the GPU processing pipeline stages

5.3.1 GPU Parameters

Mapping Guidance Image Upscaling

Local
Work-Group Size

Execution Time
[ms]

Local
Work-Group Size

Execution Time
[ms]

Local Work-Group
Size

Execution Time
[ms]

12 x 64 0.76 20 x 48 2.5 24 x 2 89.5

6 x 128 0.78 16 x 48 2.6 48 x 1 90.25

18 x 32 0.79 16 x 60 2.9 12 x 4 92.25

3 x 256 0.81 40 x 10 2.9 6 x 8 100

24 x 32 0.81 40 x 20 2.9 32 x 2 100.5

Table 5.3: The execution times of the top 5 local work-group size configurations

The sensor fusion system optimizes its GPU computation parameters itself. This works by
trying all possible combinations of local work-group sizes, until the fastest configuration
is found. The local work-group size has a major influence on the computation, because it
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defines memory access patterns, the shader processor occupation and cache usage charac-
teristics. There are certain boundaries which reduce the number of valid local work-group
sizes to 460 combinations. Only a small part of them yield to good performance, enabling
the optimum size to be found within a few seconds.

Table 5.3 shows the top local work-group size configurations for all GPU processing
pipeline steps. There is no general optimal local work-group size, since the top configura-
tion varies a little bit on the data. The table also shows, that the execution speed of the
top configurations only vary slightly and using the top configurations exclusively yields to
good results.

5.3.2 Kernel Size

The relation between the kernel size and the quality of the upscaling results are discussed
in Section 5.2.2. Figure 5.8 shows the execution times and the memory transfer volume for
3 different kernel sizes. The memory transfer volume is proportional to the computational
complexity, as discussed in section 5.3.3. The figure shows that the execution time
develops linear, while the memory transfer develops exponentially. The reason for this is
the cache usage: A pixel is influenced by 10.5 depth values on average with a kernel size
of 3. With a kernel size of 7 however, a pixel is influenced by 44 depth values. The more
frequently the same memory address is accessed, the more operations are cached.

Figure 5.8: The memory transfer volume and execution time of the depth upscaling stage

5.3.3 Computational Complexity

The depth upscaling algorithm was developed for a mobile platform. The implementation
fuses 640x480 color with 288x256 pixel depth images with 10 fps. This section analyzes
the computational complexity of the guided diffusion upscaling. The complexity class of
the upscaling algorithm is O(k · ncolor) where ncolor is the number of color pixels and k
how many depth values influence a pixel on average. k depends on the kernel size and
depth resolution.

The most important aspect of GPU performance is the memory access. It is hard to
quantify the access in bytes, because a lot of bytes can be read and written simultaneously.
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Hence the number of memory access operations are also listed in this evaluation. The GPU
execution speed also depends on memory locality due to the cache usage. A well utilized
global memory cache may be faster than using local memory. Section 5.3.4 shows the
results of the introduced local memory performance optimizations.

Kernel
Size

Memory Read
[MOps.]

Memory Write
[MOps.]

Transfer Volume
[MByte/Frame]

Bandwidth for
30 fps [MByte/s]

3 9.8 6.5 53 1595

4 15.1 10.0 82 2455

5 22.1 14.7 120 3603

6 30.1 20.1 163 4894

7 40.7 27.1 221 6615

Table 5.4: The memory operations and bandwidth of the depth upscaling algorithm for
different kernel sizes

Table 5.4 shows the memory access operations for different kernel sizes per frame. This
table considers the depth upscaling algorithm without optimizations. The values in the
table assume a depth image with 288x256 pixel and a color image with 640x480 pixel.

The table also predicts the required memory bandwidth for a sensor fusion system,
running with 30fps. While the maximum global memory bandwidth of a GPU can be
measured, the estimated bandwidth does not include cached memory access. Cached
memory access greatly reduces the required data transfer bandwidth, but is difficult to
predict.

5.3.4 Local Memory Cache

The use of local memory during GPU computation can cause an increase in speedup.
Section 4.5.3 explains the concept in detail. Using the local memory requires also a
complete copy of the cached area from global memory. To explore the feasibility of local
memory usage, the GPU program was executed with all possible work-group sizes. The
cache size was chosen to cover a patch of 96x15 pixel, which lets the fastest (and most
relevant) local work-group configuration profit the most. The diagram in Figure 5.9
shows the speedup of using local memory caching. A positive dT value, means that the
local memory caching is y ms faster. On the x-axis are the top 20 fastest local-workgroup
configurations are listed.
The diagram demonstrates that the difference is marginal. Because of the copy overhead,
the local memory caching actually slows down the fastest configuration. The conclusion
is that local memory caching can cause a performance gain, however the fastest configu-
rations do not benefit. The reason for this is the GPU global memory cache, which seems
large enough to make a local memory caching implementation redundant.
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Figure 5.9: X-Axis: The top 20 fastest local work-group size configurations; Y-Axis: The
execution time advantage compared to no local memory caching

5.4 Robustness

Another quality criteria of a color and depth sensor fusion system is robustness against
poor sensor data. The fusion system prototype was not developed with extra measures
against invalid depth data. The upscaling algorithm however can compensate invalid depth
data to certain degree.

5.4.1 Holes

Holes in depth data were introduced in Section 2.2.3. The traditional cause of holes is
due to a large disparity between cameras. This was avoided by mounting the cameras as
close as possible (3 cm). Fast movements however, can cause invalid depth measurements
similar to these holes. Since the camera system is not synchronized, the holes are simulated
by creating a mask. The mask is applied to the original low-resolution depth image. A
non-black value causes the GPU mapping implementation to ditch the current depth value.

Figure 5.10 shows how holes are interpolated. The simulated holes are lines to mimic
holes caused by camera movement. The middle image clearly shows, that too large holes
cannot be interpolated. The right image shows that increasing the kernel size aids hole
interpolation.

5.4.2 Depth Resolution Reduction

Raw depth images will not always have a relatively fine resolution like in this sensor fusion
system. This can be caused by the usage of an inferior depth camera, or downsampling
to reduce noise. Another case can be a (temporal) depth resolution reduction to boost
performance. Bisecting the depth image dimensions means a four times faster computa-
tion, see Section 5.3.3. Figure 5.11 shows the upscaled depth image with the original and
reduced resolution. The depth image is not downsampled for this evaluation, only every
second row and column is ditched by the mapping computation module.
The Figure shows that the upscaling noise reduction suffers a lot due to the reduced
resolution. The noise reduction is worse, because each color pixel is influenced by fewer
depth values. Due to the guided diffusion depth upscaling algorithm, the edges are still
sharp.
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Figure 5.10: Interpolation of artificially created depth holes

5.4.3 Concurrency Evaluation

The GPU implementation does not use any kind of thread synchronization on purpose.
Synchronization comes with performance loss and leads to much more complex GPU
programs. By design, the upscaling algorithm does not have a lot of thread conflicts and
the influence might not even be noticeable. Thread conflicts happen when a different
GPU kernel changes a memory buffer, before a kernel has written its result. This section
evaluates the influence of thread conflicts. Thread conflicts can be measured by accessing
the memory buffers after the computation on each pixel and verify the consistency. Each
time a conflict happens, the is pixel marked. It is important to note, that a thread conflict
only affects one depth pixel influencing one image pixel. The concerned pixel does not
turn invalid. The look-up table is designed to avoid this, but it can happen nevertheless.
Table 5.5 lists the number of thread conflicts for 5 test images.

Test Image
#Corrupted

Pixels
Percentage of

Corrupted Pixels

1 131 0.043 %

2 52 0.169 %

3 0 0 %

4 1 0,003 %

5 0 0 %

Table 5.5: Corrupted Pixels due to GPU thread conflicts
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Figure 5.11: The sensor fusion result in comparison with a reduced original depth data
resolution

Testset 1 and 2 contain a lot of invalid Time-of-Flight data. The reason is that the depth
data is unprocessed and invalid values are not removed. If data is invalid, the depth values
are heavily noised, and mapped very irregular to the color image. This is the main cause
for thread conflicts. The low number of thread conflicts, verify the design choice of not
using memory access synchronization.
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5.5 Evaluation of the Sensor Fusion Result

This section presents the final sensor fusion results. The depth results are presented in
gray-scale depth images and 3D surface meshes. The results are also compared with other
up-scaling implementations.

Figure 5.12: The color images of the two test-sets

To demonstrate the fusion results in this section, two test-sets were captured: The first
test-set is a shot of an open office shelf. This test-set contains many invalid pixels and
demonstrates a realistic scene. Due to the larger distance, the depth data is a lot more
noisy. Many areas are undefined, because they are out of the range of the ToF camera.
Future implementations can avoid this problem by checking the signal strength of each
depth value, and replacing invalid depth values. The second test-set shows a table with
boxes and a piece triangular cardboard. All depth values are valid in this test-set. It
simulates a future final form of the sensor fusion system, where all input depth pixels
contain valid values.
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Figure 5.13: The sensor fusion result for the noisy test-set. Top: Depth images; Bottom:
3D surface meshes

Figure 5.13 shows the upscaling result on the first test-set (right). For comparison,
the original depth image is upscaled using the nearest-neighbor method (left). The Figure
shows a lot of background noise that is caused by invalid depth values. It also shows a
degree of noise-reduction, but also demonstrates a flaw of the guided diffusion upscaling
algorithm: Depth pixels on edges show only a slight increase in smoothness compared to
the rest of the image. This might aid lossless denoising, but also leaves some noisy areas
untouched.

Figure 5.14 shows the second test-set containing depth data with higher quality. In
the middle image set, the fine differences of the 3D meshes are shown by re-lighting the
surface with Meshlab. A massive gain in resolution can be observed, while the noise is
reduced tremendously.
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Figure 5.14: The sensor fusion result for the test-set 2. Top: Depth images; Middle: 3D
surface meshes re-lighted; Bottom: 3D surface meshes without additional lightning
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5.5.1 Comparison with the Joint Bilateral Filter

Figure 5.15: The joint bilateral filter [Kop+07] in comparison with the guided diffusion
filter. From top to bottom: Depth image; Zoomed depth image; 3D surface mesh; Sensor
fusion result with reduced original depth resolution

The joint bilateral filter by Kopf et al. [Kop+07] is a well-known image-guided up-
scaling method and is introduced in Section 2.2.2. This section is dedicated to showing
the differences between this filter in quality and computational complexity.

Firstly, the computational complexity is analyzed. The guided depth diffusion method,
introduced in this thesis, has a complexity of O(n · k). n is the number of pixels and k is
how often a pixel is visited. The fundamental difference to the bilateral filter is that the
guided depth diffusion algorithm is executed for every depth value, mapped in the color
image. The bilateral filter is executed for every color value. There is a lot less depth than
the color pixel. The bilateral filter has a complexity of O(n · k · i), where n is the number
of color pixels, k is the kernel size and i is the number of iterations.
The number of operations per pixel is identical with the kernel size k. Table 5.6 shows
the comparison of the guided diffusion upscaling algorithm and joint bilateral filter. The
operations per pixel is proportional with the computational complexity of both algorithms
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Figure 5.16: The bilateral filter can improve the image guided diffusion

and thus a good measure of performance. To evaluate the quality of the joint bilateral filter,
it was re-implemented. After the best parameters were determined, the filter was applied
to the data of test-set 2, as seen in Figure 5.15. The third row in the figure is a 3D surface
mesh, textured with the color image. The last row is a depth image with reduced input
resolution. The resolution was reduced to 144x128 pixels to simulate a large upscaling
factor. The comparison shows good results for the bilateral upsampling, especially after
4 iterations, as seen on Figure 5.15 the noise reduction is especially excellent. The joint
bilateral filter however is a lot more computationally complex and the 4 iteration version is
not real-time capable. Color information can introduce errors. The detail image of Figure
5.15 shows an erroneous region on the side of the triangle. The lines in the surface mesh
in Figure 5.15 reveal a loss of information on corners, such as the yellow box and the tea
can. The results in the last row of the figure reveal good upscaling qualities, if the depth
resolution is reduced. The original bilateral filter does not gain a lot performance, if the
depth resolution is reduced.

It is shown in the comparison that the joint bilateral filter is a great local upscaling
method. It can be better than guided diffusion in terms of noise reduction and can



CHAPTER 5. RESULTS 97

Kernel Size
Number of Pixels

per Kernel
Operations per Pixel

Guided Diffusion
Operations per Pixel
Joint Bilatheral Filter

3 44 10,56 44

4 68 16,32 68

5 100 24 100

6 136 32,64 136

7 184 44,16 184

Table 5.6: The number of operations per color pixel compared to the joint bilateral filter
(1 iteration) [Kop+07]

produce sharper edges. It is however far more computationally intensive and can introduce
erroneous regions and remove details.

An interesting possibility is a combination of guided diffusion upscaling with bilateral
filtering. Figure 5.16 shows the depth image for various upscaling methods. The last
image shows an image upscaled with guided diffusion with a kernel size of 3 and then
filtered with the joint bilateral filter. The result is better than guided diffusion with
a kernel size 5 and also, better than just one iteration of bilateral filtering. Upscaling
with a kernel size of 3 instead of 5 speeds up the computation by the factor 2.4, but the
combination with bilateral filtering will be much slower nevertheless.

5.5.2 Comparison with the Fast Minimax Path-Based Joint Depth In-
terpolation Method

This method from Dai et al. [Dai+15] proclaimed to be the best depth upsampling
method with high performance (12/2014). While the principle makes sense, it has been
shown to be not practically applicable in the sensor fusion system in this case. As shown
in image 5.17, the algorithm has not features of noise reduction. The reliance on perfect
depth values is the reason for its O(n) complexity. The results support the choice in
developing the proposed new algorithm.

Figure 5.17: The results of the minimax path-based depth interpolation [Dai+15], com-
pared to the original depth image and the proposed guided diffusion upscaling method
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5.5.3 Comparison with the Anisotropic Total Generalized Variation Method

This section compares the guided diffusion with the anisotropic total generalized variation
method by Ferstl et al. [Fer+13]. In this thesis, it was introduced in section 2.2.2.
The method belongs to the category of global upscaling methods which iteratively solve
an energy minimization problem. Global methods can produce the best depth images,
but are too slow for interactive applications. Figure 5.18 illustrates the comparison
which shows that a global method can produce great depth images using the sensor fusion
prototype. This demonstrates how much quality improvement is theoretically possible,
when performance disregarded.

Figure 5.18: Comparison of guided diffusion and anisotropic total generalized variation
upscaling methods



Chapter 6

Conclusion and Future Work

6.1 Conclusion

Depth sensing systems on mobile devices are a novelty and their capabilities and appli-
cations have only been partially explored. Fusion of data from a color and depth camera
however, is well researched. There are many solutions which can increase depth resolution
and reduce noise, but most of them are not designed to reach a high performance.

This thesis uses the state-of-the-art Snapdragon 810 platform to develop a prototype
to show the feasibility of depth and color sensor fusion on mobile devices. It uses a Time-
of-Flight image sensor, which is on the brink of being integrated into a new generation of
smartphones and tablets. The output of this system is a color and depth image, where
each color pixel is directly associated with each depth pixel. The output depth image is
significantly sharper and less noisy than the original.

The cameras are calibrated like a 2D stereo camera system, using the 2D amplitude
image of the ToF camera. The evaluation shows that the calibration is precise and the
re-projection error within normal boundaries.

While the depth warping algorithms are found in standard literature, the interpolation
algorithm is novel and was invented for this thesis. The algorithm is designed to generate
a high-quality depth image, while not being computational complex. It is non-iterative
and has an O(n · k) complexity. The algorithm is capable of being efficiently implemented
on GPUs. An extensive evaluation demonstrates these these claims.

The complete sensor fusion processing pipeline was implemented on the GPU of the
Snapdragon 810 platform with OpenCL. Due to the shared memory architecture, it was
possible to copy the sensor data directly to GPU memory without redundant memory
transfers. Utilizing the GPU on mobile devices for general purpose computation with the
API OpenCL, was shown to be a feasible way to build a high performing prototype. As long
as a device supports the OpenCL standard, the sensor fusion implementation is device-
independent. The implementation automatically optimizes the computation parameters
and maximizes the performance. Test and evaluation cycles for mobile GPU development
are too much time-consuming to directly develop software for a mobile GPU. It is therefore
necessary to develop GPU programs on a PC first then cross compile the framework for
the mobile platform.

99
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6.2 Future Work

The feasibility of color and depth sensor fusion on mobile devices has been verified by the
development of a prototype in this thesis. Depending on the application, there are certain
steps necessary to use sensor fusion method in practice. Future steps to improve quality,
speed and applicability involve:

� Dynamic Kernel Size

The upscaling GPU implementation is extended by the capability of using different
kernel sizes. For values close to color image edges, the kernel size is smaller than
for homogenous areas where noise needs to be reduced. This has the potential to
enhance the performance and improve the visual quality of the depth image.

� Partial Unguided Depth Interpolation

When there are no edges in the proximity of a depth value, it may be sufficient to use
a simpler depth interpolation algorithm to enhance performance. The GPU offers a
rich set of fast image interpolation methods.

� Joint Bilateral Filter

As shown in Section 5.5.1, it is possible to enhance the sensor fusion result by
applying the joint bilateral filter. While the guided diffusion upscaling can be sped
up, the application of the bilateral filter remains computationally expensive.

� Selective Sensor Fusion

There exist applications, where only small areas of the sensor fusion result are needed.
These areas can be calculated rapidly by adapting GPU computation parameters.

� Camera Synchronization

This step is absolutely necessary for a color and depth sensor fusion system. The
color and depth camera must capture an image at the same time. When at least one
camera can be controlled by software, synchronization is possible without hardware
modifications.

6.2.1 Future Applications

Every application using depth data profits from the high quality depth images produced
by color and depth sensor fusion. As mentioned in Section 2.4 numerous fields of com-
puter vision benefit from color and depth information. It enables augmented reality to
occlude virtual objects and computational photography to re-focus images without light-
field sensors. Images can be segmented more robustly and 3D reconstruction can uncover
finer details.
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