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Abstract

This thesis covers a study on the applicability of using a one-dimensional, unsteady

momentum equation at an orifice differential pressure flow meter for time resolved

mass flow measurement of intake air and exhaust gas of internal combustion

engines.

A theoretical investigation on unsteady flow behavior in highly pulsating flows

indicates, that conventional unsteady inertia theory in the form ∆p = A
ρ J

2 +B ∂J
∂t

[1] with a constant steady coefficient A and constant inertance B, is only capable

of correctly modeling pulsation induced flow effects to a certain extent. When

pulsation frequencies are high and amplitudes are large compared to mean flow

velocity, unsteady effects will increase measurement uncertainties.

Computational fluid dynamics (CFD) simulations for both steady and pulsating

flows were applied to an orifice meter in corner tapping configuration to study the

flow behavior and errors of conventional mass flow equations and an alternative

mass flow equation that incorporates unsteady, dissipative effects and fast density

changes. The steady flow simulations revealed the importance of flow stagnation,

i.e. radial pressure and flow distribution effects, at an orifice flow meter with the

pressure tappings placed close to the orifice plate. Only a fraction of the measured

pressure difference in such a configuration can be attributed to the Bernoulli

effect. In the CFD simulations for pulsating flows, deviations in radial pressure-

and flow-distribution from the steady distributions, which underlie unsteady mass

flow calculations, were identified to be the cause of high uncertainties. For heavily

oscillating flows (e.g. 300 Hz with mean flow), minimum relative mass flow errors

of 10 % were encountered. Noteworthy increases of measurement errors up to
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20 %, were introduced by inertance values as recommended in ISO/TR 3313 [2].

Mass flow calculations on the simulated inlet flow of a two stroke engine running

at 4000 rpm, yielded relative mass flow errors around 1 % and root mean

square (RMS) errors below 2 %, supporting the basic applicability of the method.

Deviations in the pulsation cycle only occurred when local flow reversals were

present at the location of measurement, i.e. when the pulsation amplitude is in

the order of the mean mass flow. However, significant increases in mass flow and

RMS errors became apparent for over- and underestimated inertance coefficients,

which produced square-root- and inertial-errors, respectively.

A resonance tube, acoustically driven by a loudspeaker, with the possibility for

superimposed mean flow, was set up for an experimental determination of the

calibration parameters of a specific orifice meter. Steady calibration measure-

ments were in good agreement with simulation values, but revealed considerable

oscillations in the measured pressure signals. During resonance mode measure-

ments, these oscillations could be identified as resonances inside the pressure

measurement system of the orifice meter, possibly stemming from a Helmholtz

resonator behavior of the connected gauge lines and volumes.

Impedance calculations for the standing waves in the main resonance pipe at

resonance excitation, allowed an assessment of the pulsation amplitude at 30 Hz

for reference purposes and demonstrated conformity with the unsteady mass flow

calculations. At higher frequencies, the resonances in the pressure measurement

system and the associated high uncertainties prohibited an exact determination

of the calibration parameters. An adaptation of the orifice meter, i.e. eliminat-

ing the resonance behavior of the device itself, could allow for a more precise

determination of the calibration parameters in future measurements.

In addition, a method for fast and accurate temperature and density determi-

nation is introduced, combining two thermocouple compensation techniques for

temperature measurement with an adiabatic correction for pressure pulsation

induced temperature changes.
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1. Introduction

The steady drop of exhaust emission limits for internal combustion engines of

automobiles is continuously driving the need for an improvement of accuracy

in measurement of flow rates, since measurements of pollutant concentrations

commonly rely on flow rates for reference. An additional requirement for precise

air to fuel ratios to further optimize the combustion process, altogether propels a

demand for highly accurate, time resolving measurements for both intake air and

exhaust gas, that assist in realizing the technically achievable reductions.

Differential pressure flow meters have been employed in intake and exhaust gas

flow measurement for quite some time, due to their simple structure, which

makes them less susceptible to the harsh conditions in an exhaust environment

compared to devices relying on more complex or contamination prone sensing

elements. The absence of fast response pressure transducers to precisely resolve

pulsations in the intake or exhaust lines and shortcomings in the mathematical

description of pulsating flow, so far resulted in the need for supplemental flow

stabilizing and calming modules which in turn impacted the combustion unit

under measurement.

AVL List GmbH already conducted a feasibility study on the use of an orifice

meter in pulsating exhaust flow environments, which concluded that orifice meters

are capable of accurately delivering a time resolved mass flow measurement

under some conditions. High error rates and inconsistencies in measurement

performance in a variety of cases in laboratory experiments and in the exhaust of

an engine, however, inhibited a clear identification of the applicability of this type

1



1. Introduction

of measurement and led to further questions about the underlying mathematical

model.

This work in cooperation of the University of Technology Graz and AVL List

GmbH, aimed to further investigate and extend the scope of applicability for

a time resolved flow measurement in highly pulsating intake and exhaust gas

with the use of an orifice flow meter. Theoretical considerations about the flow at

orifices in a pulsating environment have been followed by an experimental study,

investigating a possible test and calibration setup for orifice meters.
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2. Theoretical Background and

Fundamentals of Orifice Flow

2.1. Intake Air and Exhaust Gas Flow

Flow measurement of intake air and exhaust gases of internal combustion engines

has to deal with various harsh circumstances, that are not present in other

measurement environments. The different stages in the combustion process and

the associated rapid opening and closing of the cylinder valves of an engine to

take air/fuel into and emit the exhaust gas out of the cylinders, creates pressure

waves, that travel down the intake and exhaust lines. Pressure differences of

several atmospheres between cylinders and exhaust system are being compensated

and result in significant density changes of the gases [3]. The pressure waves

subsequently cause a continuous acceleration and deceleration of the air or gas

inside the ducts and as a consequence, lead to a mean flow to and from the

engine with pulsations superimposed, which can locally reverse the direction of

flow. The periodicity of the pulsations is depending on the rotational speed of

the engine U [rpm] , the amount of cylinders/pistons C that are operated at the

same time and the number of strokes N a piston has to complete for one cycle.

An assessment of the main frequency f that will be present in the connected

lines, can be made by the simple formula given by [4]:

f =
2

N

U · C
60

. (2.1)

3



2. Theoretical Background and Fundamentals of Orifice Flow

For a typical four stroke engine with four cylinders and rotational speeds up to

7500 rpm [5], this implies pulsation frequencies up to 250 Hz that have to be dealt

with in intake and exhaust lines. However, as number of strokes, cylinders and

rotational speeds are increased, the extent of the pulsation effects are somewhat

attenuated.

Fast temperature transitions between about 300 ◦C at idle conditions and up

to 800 ◦C at maximum power in exhaust lines [3, 5] are the cause of additional

changes in gas properties and density, that have to be considered in the flow

measurement process.

2.2. Fluid Mechanics

Before discussing the specific details of the flow of intake air and exhaust gases

through orifice meters, it is useful to review some fundamentals of fluid mechan-

ics. Two basic laws in continuum mechanics, the continuity equation and the

momentum equation are shortly discussed, since those will be later applied to

the problem at hand.

2.2.1. Continuity Equation

For any arbitrarily defined control region (CR) in a fluid, which may be moving

and deforming, the basic law of conservation of mass has to hold. In sum, the

time rate of change of mass in the CR has to equal the mass flow into and out of

the control region. As formulated in [6, 7], this is given by:

d

dt
mV (t) +

∮
∂V (t)

ρ(~x, t)
(
~v(~x, t)− ~w(~x, t)

)
· d~S =

d

dt

∫
V (t)

ρ(~x, t) dV +

∮
∂V (t)

ρ(~x, t)
[(
~v(~x, t)− ~w(~x, t)

)
· ~n(~x, t)

]
dS = 0 . (2.2)

4



2.2. Fluid Mechanics

Where V (~x, t) is an arbitrary volume moving with velocity ~w(~x, t), ~S(~x, t) is

its surface vector, normal to the surface and pointing outward, and mV (t) is

the enclosed mass. The surface element d~S can be written as d~S = ~n dS. The

quantities ρ(~x, t) and ~v(~x, t) are density and velocity of the fluid at time t and

position ~x.

In a duct, the mass flow out of a control section is limited through the surrounding

walls and flow in and out of the fixed (i.e. ~w(~x, t) = 0) CR is only possible at

the fixed inlet and outlet surfaces A(x1) and A(x2). Since for all following

considerations, the two surfaces are chosen to be normal to the axis of the

pipe, we are only interested in the axial component u of the flow velocity:

[~v(~x, t) · ~n(~x, t)] dS = u · dA. This reduces Eq. 2.2 to

d

dt

∫
V

ρ(~x, t) dV +

∫
A(x2)

ρ(~x, t)u(~x, t) dA−
∫

A(x1)

ρ(~x, t)u(~x, t) dA = 0 . (2.3)

A useful and valid approximation in pipe flows is the assumption of constant

density over the cross section A(x) of the conduit and to furthermore introduce

the cross sectionally averaged velocity U(x, t) = 1
A(x)

∫
A(x) u(~x, t) dA in the axis

direction x. This allows to write the continuity equation in its differential form

∂

∂t
(ρA) +

∂

∂x
(ρAU) = 0 . (2.4)

If the control region of interest is only of short length L, in comparison to density

fluctuations along the axis (e.g. traveling pressure waves), we can neglect the

spatial dependence of the density entirely and inside the CR the density becomes

a function of time only: ρ = ρ(t). Under the above assumptions, the continuity

equation for a fixed control region in a pipe of volume V0 with equal front and

back boundary surfaces (A(x1) = A(x2) = A) can be expressed as

5



2. Theoretical Background and Fundamentals of Orifice Flow

∂ρ

∂t
V0 + ρAU2 − ρAU1 =

∂ρ

∂t
V0 + J2 − J1 = 0 . (2.5)

With J1,2(x, t) = ρ(t) A U1,2(x, t), the mass flow into the CR at boundary 1 or 2,

respectively.

2.2.2. Momentum Equation

In analogy to the above derivation of the mass balance in a conduit, we can derive

the momentum equation for the arbitrary CR. The rate of change of momentum

in the volume V (t), plus the momentum that is convected into the region across

its boundary, has to balance the external forces:

d

dt

∫
V (t)

ρ(~x, t)~v(~x, t) dV +

∮
∂V (t)

ρ~v(~x, t)
[(
~v(~x, t)− ~w(~x, t)

)
· ~n
]

dS (2.6)

=
∑

~Fext(t) ,

as stated in [6, 7, 8]. Here the external forces include all fluid-solid surfaces,

fluid-fluid surfaces and all forces applied to the fluid volume. For horizontal CRs

of short length we can neglect gravitational forces and therefore volume forces

can be set to zero. Fluid-fluid surface forces include pressure forces normal to the

boundaries
(
−
∫
∂Vfluid

~n · p(x, t) dS
)

and viscous forces acting in all directions.

Fluid-solid surfaces include friction forces between the fluid and the walls or any

solid obstacle, like an orifice plate. If we now view the momentum transport

equation for a horizontal conduit of length δx→ 0, using the above definitions

and simplifications made for the continuity equation and the external forces, we

can rewrite Eq. 2.6 to

6



2.2. Fluid Mechanics

∂

∂t

∫
A

ρu dA+
∂

∂x

∫
A

ρu2 dA = −
∫
A

∂p

∂x
dA+ fviscous + fwall , (2.7)

where the viscous and wall shear forces have been labeled fviscous and fwall,

respectively. Those will be considered in detail later on.

Again setting the density spatially constant in the CR and using an averaged

pressure gradient for the cross section A, allows to write the momentum equation

for a pipe in its differential form:

∂

∂t
(ρAU) +

∂

∂x
(βmρAU

2) = −A∂p
∂x

+ fviscous + fwall . (2.8)

βm is the momentum correction coefficient defined by βm = 1
A

∫
A
u2

U2 dA, to

take into account the deviations of the actual profile u(~x, t) from the cross

sectionally averaged velocity profile U(x, t). This βm should not be mistaken for

the commonly used β, which characterizes the orifice to pipe ratio and will be

labeled βd from here on.

For later reference, one final modification of the momentum equation is made.

Using the continuity equation 2.4 and basic laws of differentiation, the momentum

equation can be rewritten in the nonconservative form:

ρA
∂U

∂t
+ ρAU

∂U

∂x
+

∂

∂x

[
(βm − 1)ρAU2

]
= −A∂p

∂x
+ fviscous + fwall . (2.9)
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2. Theoretical Background and Fundamentals of Orifice Flow

2.2.3. Streamlines and Streamtubes

In the later discussion about steady flow metering equations, the concept of

streamlines and streamtubes is applied, which is why their definitions should be

briefly mentioned at this point. A streamline in a continuous flow field is defined

as a line that at any instant t is tangent to the velocity of the flow field [6]. This

line therefore indicates the instantaneous direction of the velocity of the fluid

particles on it. Since in steady flow the velocity field does not change in time,

the streamlines in steady flow are also the paths of the fluid particles.

A set of adjacent streamlines forming a tube is called a stream surface or stream-

tube. Streamtubes are often used in discussions about orifice meters and pipes

in general, since the pipe wall can be seen as a natural boundary of streamlines

enclosing a streamtube.

2.3. Characterization of Pipe Flow

2.3.1. Steady Pipe Flow

A fairly important question in flow metering is the question about the velocity

distribution inside the conduit, since this distribution is needed to calculate the

mass flow through any cross sectional area of an orifice meter. There are mainly

two flow regimes for newtonian fluids, where different velocity distributions occur:

Laminar and turbulent flow [6]. Because there is no clear cut boundary between

those two, a transitional region is defined that describes the transition between

laminar and turbulent flow.

Fluid-wall interactions force the fluid to come to a stop at the walls of the pipe,

this is called the no-slip condition. Shear stresses inside the fluid then only allow

a gradual, radial approach to a maximum flow velocity at the pipe center. At

low flow speeds, the laminar region, a fluid flows in parallel layers, resulting in a

parabolic shape of the velocity distribution:

8



2.3. Characterization of Pipe Flow

u(r) = umax − umax
( r
R

)2
, (2.10)

as given in [7], where R is the radius of the pipe. At higher velocities random

fluctuations, referred to as turbulence, occur in the velocities of the fluid particles.

This leads to an additional momentum transfer in the normal direction of the

main flow, allowing a steeper increase of the velocity in the vicinity of the wall.

In total a more evenly distributed velocity profile can be observed, which slightly

depends on fluid and pipe properties. Nevertheless an approximative definition is

given e.g. in [7] by:

u(r) = umax

(
1− r

R

)1/7
. (2.11)

This turbulent velocity profile is usually referred to as the 1/7-profile because of

the empirical 1/7 exponent.

A useful quantity in pipe flows, to distinguish between the different flow regimes

is the Reynolds number, defined by

Re =
UD

ν
, (2.12)

where D is the pipe diameter and ν is the kinematic viscosity of the fluid. In

pipe flow, the transition from laminar to turbulent flow occurs at a Reynolds

number of about 2330.

For air with a viscosity of approximately 15 · 10−6 m2/s and a pipe diameter of

roughly 10 cm as is the case for the metering sections in this work, the transition

would happen at mean flow speeds below 1 m/s. Since flow speeds encountered

in engine connected ducts, most of the time are much higher, flows in this work

are generally considered turbulent.
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2. Theoretical Background and Fundamentals of Orifice Flow

Steady Friction

The above mentioned shear stresses inside the fluid and at the fluid-wall boundary

both result in forces acting against the direction of motion. In steady pipe

flows these friction forces are usually described by the phenomenological Darcy-

Weisbach equation (given in [7]):

fviscous + fwall =
πDρfDU |U |

8
, (2.13)

where fD is an empirical constant, depending on pipe wall roughness, pipe

diameter and Reynolds number. When orifices are installed, losses are more

complex to describe theoretically and significantly higher than in smooth pipes,

due to the increased dissipation in the wakes of an orifice. This will be discussed in

detail later on, but is mentioned here, as these losses, although non-negligible, are

generally omitted in the derivation of orifice mass flow equations and additionally

play an important role in pulsating flows.

2.3.2. Pulsating Flow

In environments that include engine intake or exhaust flows, where fast varia-

tions in pressure and in flow speed arise, the above considerations and simple

descriptions for steady flow become invalid. The occurring pressure variations,

which often are periodic and generally termed pulsations, alter the flow behavior

and make a more detailed analysis necessary.

Strouhal and Womersley number

Two useful dimensionless quantities, that help characterizing the unsteadiness of

pulsating flows, are the Strouhal number St and the Womersley number Ws. In

the context of pulsating orifice flow they are defined by
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2.3. Characterization of Pipe Flow

St =
fd

Ud
, (2.14)

Ws =
d

2

√
f

ν
, (2.15)

as given in [9, 10], where f is the characteristic frequency of the pulsation, d is

the inner orifice diameter and Ud is the maximum mean velocity at the orifice.

They are proportional to the ratio of local to convective acceleration and the

ratio of local acceleration forces to viscous forces, respectively. In straight pipe

flow, as well as in orifice flow, both quantities help to distinguish between slow,

quasi-steady, and fast, pulsating flows, that need to be treated separately. The

magnitude and importance of these quantities for air intake and exhaust gas flows

will be addressed after a short illustration of the dynamics in pulsating flows.

Unsteady Flow Field

Plenty of research has been conducted on the topic of oscillating laminar flows

in unobstructed pipes and channels and analytical solutions to such flows exist.

Richardson [11] first described considerable differences between steady flow

profiles and the ones in unsteady flow. He and other authors [12, 13] described

flow profiles including off-axis maximum velocity magnitudes and reverse flow

near the conduit walls for higher frequencies (Fig. 2.1). Another, perhaps more

obvious consequence of the pulsating pressure, is an induced phase lag of the

mean fluid velocity relative to the applied pressure gradient due to the inertia of

the fluid. Phase shifts up to 90◦ for high frequencies can be found [14].

As mentioned before, the velocities of interest in intake and exhaust flows lie in

the higher Reynolds number turbulent and transitional flow regions. Transient

turbulent and transitional flows are less well-understood, but reasonable explana-

tions of the flow effects occurring are available nonetheless (e.g. He and Jackson

[15]):
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2. Theoretical Background and Fundamentals of Orifice Flow

Figure 2.1.: Oscillating laminar channel flow [14]. a) Pressure gradient with respect to time. b)

Velocity profiles in channel at different times in oscillation cycle.

When a pressure wave front passes at an arbitrary position in a pipe, the fluid at

that cross section is instantaneously accelerated or decelerated for some small

amount and the velocity profile can be imagined undergoing a small uniform

shift. Because of the no-slip condition at the wall, this will generate vorticity

inside the boundary layer. As a result of this process, shear waves will be created

at the wall and will travel towards the center of the pipe. Dissipation will then

attenuate the propagating shear waves as they are stretching into the fluid core.

Uchida [13] introduced a length scale in laminar flows for the attenuation inside

the fluid, giving the distance in which the shear wave is damped by a factor e.

The length scale is given by the Stokes layer thickness ls:

ls =

√
2ν

ω
, (2.16)

where ω is the angular frequency of the pressure oscillation. For both laminar

and turbulent flow, the attenuating shear wave will produce a variable change of

the velocity field inside the Stokes layer. In a distance from the wall greater than

the layer thickness, the flow velocity distribution will be altered uniformly and

practically behave like a plug flow.
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2.3. Characterization of Pipe Flow

Depending on the frequency of the pressure modulation, the distance that the

shear waves travel will stretch out farther into the main flow. For very high

frequencies, the Stokes layer will be confined to the viscous sublayer in the

immediate proximity of the wall and almost all of the fluid inside the pipe

behaves like a plug. Below a certain frequency, the Stokes layer starts to extend

deeper into the fluid and causes the observed, variable changes in the velocity

distribution as it attenuates.

When the characteristic times of the changes in one pulsation cycle start to

become much smaller than the time needed for the shear wave to reach the

center of the pipe, an equilibrium state can be reached at each point in time and

quasi-steady flow behavior can be observed.

The above introduced Womersley number is inversely proportional to the Stokes

layer thickness and therefore allows an assessment of the critical frequency, when

pulsation effects have to be considered. For low frequencies, i.e. 1
ls
∝ Ws � 1

, local acceleration forces are small in the governing momentum equation and

quasi-steady flow is present. When the pulsation frequency is increased and the

Womersley number reaches the order of one, i.e. the Stokes layer becomes smaller

than half the pipe diameter, no equilibrium state can be reached and the flow

behavior starts to deviate from the quasi-steady one.

For intake air flow with a kinematic viscosity of approximately 15 · 10−6 m2/s at

an orifice of 5 cm inner diameter this means, that viscosity effects already start

to play a role at frequencies as low as 1 Hz and certainly impact flow behavior

above 10 Hz. Beyond that, local acceleration forces are balanced by the viscous

terms and the additional phase shift between pressure differential and flow rate

will be clearly observable. As for exhaust gas flows, the increase of viscosity with

temperature slightly raises the critical frequency, but no significant differences

should be present.
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2. Theoretical Background and Fundamentals of Orifice Flow

Unsteady Friction

To account for viscosity losses in unsteady pipe flows, initially the phenomenolog-

ical Darcy-Weisbach equation (Eq.2.13) has been applied [8]. This approach can

lead to a significant underestimation of the friction when the frequencies of the

pressure changes lie in the above mentioned domain, where major deviations of

the flow field from a steady one are induced. For example when mean flow is zero,

the Darcy-Weisbach friction would give zero friction. In a transient flow however,

zero mean flow can be reached with a positive flow velocity in the core of the

pipe and flow reversal at the wall. These flow situations will cause particularly

high dissipation rates in smooth pipes as in orifices, because of the large velocity

gradients and the accompanied large shear stresses.

Several different methods have been introduced to account for the higher resistance

coupled with the unsteadiness of the flow. Convolution based methods as reviewed

in [8] in the form of

fviscous + fwall = fsteady −
νρ

A

t∫
0

W (t− t′)∂U
∂t′

dt′ , (2.17)

are computationally extensive and rely on the weighting coefficients W from

analytical solutions, that are not available for orifices. Simpler models are the

instantaneous acceleration based models, which were first considered for orifices

by Daily et al. [16]. They used a control region approach applied to orifices and

smooth pipes and introduced an unsteady friction coefficient k, which relates the

instantaneous acceleration ∂U/∂t with the additional unsteady friction:

fviscous + fwall = fsteady − kρA
∂U

∂t
, (2.18)

where fsteady denotes the steady friction part. Some corrections to this model

have been made by Brunone [17] and Bergant [18]. These corrections include
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2.4. Steady Orifice Flow

the convective acceleration to introduce higher friction when the flow is being

accelerated and lower friction when the flow is being decelerated, delivering

accurate dissipation results for fast transients in smooth pipes:

fviscous + fwall = fsteady − kρA
(
∂U

∂t
+ c sgn(U)

∣∣∣∣∂U∂x
∣∣∣∣) , (2.19)

where c is the velocity of sound.

Because the inclusion of the convective acceleration term in an unsteady friction

ansatz for orifice flow would inevitably imply the need for an additional calibration

constant, the instantaneous acceleration based model of Daily et al. in the form

of equation 2.18 will later be applied in the derivation of an orifice mass flow

equation for pulsating flows.

2.4. Steady Orifice Flow

All above considerations about steady and unsteady flows in the following will be

applied to review the principles of steady and unsteady flow measurement with

the use of orifice meters.

Figure 2.2.: Sketch of the streamlines and a streamtube in steady flow through an orifice.

When considering steady and, also expanding this analysis to the turbulent region,

statistically steady flow, the density and flow velocity become independent of time.
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2. Theoretical Background and Fundamentals of Orifice Flow

Thus the terms ∂
∂t(ρA) in the continuity equation 2.4 and ∂U

∂t in the momentum

equation 2.9 become zero. Additionally making the simplifications of assuming a

uniform velocity profile, i.e. setting βm = 1, and neglecting friction, the resulting

momentum balance reads:

ρU
∂U

∂x
= −∂p

∂x
. (2.20)

Further assuming incompressible flow allows to restate this relation in a form,

where it is known as the Bernoulli equation, valid for a horizontally running

streamline:

∂

∂x

(
1

2
ρU2 + p

)
= 0 . (2.21)

Simply integrating the Bernoulli equation over the length of the restriction of

the metering device gives:

1

2
ρ(U2

2 − U2
1 ) + p2 − p1 = 0 , (2.22)

where the subscripts 1 and 2 are the positions of the pressure tappings upstream

and downstream of the restriction, respectively. Using the continuity equation

for steady flow,

J = ρA1U1 = ρA2U2 , (2.23)

which merely states the fact that for incompressible flow, the flow into the control

region has to equal the flow out of the control region, allows to eliminate the

unknown flow velocities U1 and U2 in the above result, Eq. 2.22. Additionally
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2.4. Steady Orifice Flow

combining the two pressure variables into one pressure difference, ∆p = p1 − p2,

will lead to

J =
1√

1/A2
2 − 1/A2

1

√
2ρ∆p , (2.24)

for the mass flow J . In many illustrations this is further reduced to

J =
A2√

1− (A2/A1)2

√
2ρ∆p . (2.25)

2.4.1. Flow Meter Equation

Equation 2.25 only applies to idealized one-dimensional flow and neglects certain

characteristic attributes of real fluid flow through the orifice. To improve its

applicability, some considerations about the flow inside the flow meter have to

made.

Contraction Coefficient

The utilization of streamlines and a fixed uniform velocity profile in the above

derivations, basically defines a streamtube passing through the orifice. This

streamtube rather abruptly contracts approaching the orifice and gradually

recovers in cross section after passing through, as is sketched in Fig. 2.2. An

important feature of this streamtube, is the prolonged contraction of the stream

behind the orifice, due to the radially inward pointing inertia of the outer fluid

particles. This effect is commonly known as the vena contracta effect.

The concept of a streamtube carrying along the cross sectional averaged fluid

mass and momentum requires the additional declaration of the cross sections A1

and A2 of this tube, which in general are not equal to the pipe diameter. Usually

17



2. Theoretical Background and Fundamentals of Orifice Flow

this problem is addressed by the introduction of a velocity dependent contraction

coefficient CC , that relates the tubes cross section to the pipes cross section:

Atube = CCApipe . (2.26)

Since the flow upstream of the orifice should be undisturbed laminar or turbulent

flow, the diameter of the streamtube at the upstream pressure tapping is set

to the diameter of the pipe and therefore A1 = πD2/4. One has to be aware

of the fact, that this assumption becomes more inaccurate, the further the

upstream tapping is moved towards the orifice plate, because of the inward

bending of the streamlines and possible vortices prior to the obstruction. The

downstream streamtube cross section is most commonly related to the orifice

diameter, A2 = CCπd
2/4, resulting in the following mass flow equation:

J =
πd2

4

CC√
1− C2

Cβ
4
d

√
2ρ∆p , (2.27)

with βd = d/D, the ratio of orifice to pipe diameter. If one would consider the

contraction upstream of the orifice, the two effective contraction coefficients

labeled CC would be different.

Velocity Coefficient

Another feature not considered in the above derivation is the non-uniformity

of the cross sectional velocity profile in real flows and the implicated uneven

distribution of energy and momentum across the stream. This can be accounted

for in the integrated Bernoulli equation, Eq. 2.22, by the use of energy correction

coefficients α = 1/A
∫
A u

3/U3 dA, similar to the momentum correction coefficients

βm. Taking these corrections into account will lead to
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2.4. Steady Orifice Flow

J =
πd2

4

CC√
α2 − α1C2

Cβ
4
d

√
2ρ∆p . (2.28)

In an attempt to simplify this relation, one velocity coefficient CV is used in

place of the two energy correction coefficients:

J =
πd2

4

CCCV√
1− C2

Cβ
4
d

√
2ρ∆p , (2.29)

with

CV =

√
1− C2

Cβ
4
d

α2 − α1C2
Cβ

4
d

. (2.30)

Expansibility Coefficient

Up to this point the flow has been assumed incompressible. Since real fluids,

especially gaseous media, are compressible, one has to account for variable density.

This is done, by the use of a so called expansibility coefficient ε, which is simply

introduced as a multiplicative factor into the mass flow equation:

J =
πd2

4

ε CCCV√
1− C2

Cβ
4
d

√
2ρ∆p . (2.31)

It should be noted that this coefficient is presumed not to depend on Reynolds

number, but only on the isentropic exponent of the fluid and the static pressure

[19, 20]. Hence it only corrects for deviations in the mass flow due to static

pressure variations.
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Discharge Coefficient

It is obvious that the above form of the mass flow equation, Eq. 2.31, is incon-

venient for practical use, as it is difficult to identify and measure the different

coefficients. For this reason, the contraction and velocity coefficients are combined

to the discharge coefficient CD:

J =
πd2

4

ε CD√
1− β4

d

√
2ρ∆p . (2.32)

This is the well established steady flow meter equation as it is used in many devices.

Discharge and expansibility coefficients are usually determined by calibration or

by empirical equations, which exist for many different obstruction geometries and

configurations. Coefficient values for conventional orifice and venturi geometries

can for example be found in the ISO standard ISO 5167, where the discharge

coefficient is given by the Reader-Harris/Gallagher equation as a function of the

Reynolds number, calculated with respect do the pipe diameter D [21]:

CD =0.5961 + 0.0261β2
d − 0.216β8

d + 0.000521

(
106βd
ReD

)0.7

(2.33)

+ (0.0188 + 0.0063

(
19000βd

ReD

)0.8

)β3.5
d

(
106

ReD

)0.3

+ (0.043 + 0.08e−10L1 − 0.123e−7L1)(1− 0.11

(
19000βd

ReD

)0.8

)
β4
d

1− β4
d

− 0.031

(
2L2

1− βd
− 0.8

(
2L2

1− βd

)1.1
)
β1.3
d ,

where L1 and L2 are the quotients of the distances of the pressure tappings from

the respective orifice faces and the pipe diameter.
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2.5. Unsteady Orifice Flow

2.4.2. Permanent Pressure Loss

Up to this point, friction losses have been disregarded in the steady orifice flow

analysis. Installing an orifice plate in a pipe produces an increased pressure loss

in the pipe, because of the additional dissipation around the orifice. The total,

permanent pressure loss, i.e. the pressure difference one would measure upstream

(usually ≈ D) and downstream (≈ 6D) of the orifice plate at distances where the

flow is not directly affected by the orifice anymore, is given in the ISO standard

ISO 5167-1 [19]. A friction coefficient in analogy to the Darcy-Weisbach equation

is defined by

K =
∆$

1
2ρU |U |

=


√

1− β4
d(1− C2

D)

CDβ2
d

− 1

2

, (2.34)

where ∆$ is the permanent pressure loss. An approximate value of ∆$ can be

calculated by ∆$ = (1− β1.9
d )∆p. With a diameter ratio of βd = 0.7 the pressure

loss would amount to about half the measured pressure difference. Even though

it is difficult to make a statement about the distribution of the pressure loss over

the measured distance, this shows that frictional losses should be accounted for

in theory and could introduce an additional error in unsteady measurement.

2.5. Unsteady Orifice Flow

In the section about pulsating flow, some features of unsteady, oscillating flows

in circular pipes have already been discussed. Below, the common approaches to

deal with unsteady behavior in orifice flow and to measure unsteady mass flow

rates are reviewed.
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2.5.1. Quasi-Steady Theory

In the derivations for the equation of steady orifice flow, Eq. 2.32, the temporal

acceleration term ∂U
∂t in the momentum equation was set to zero. This of course

is not justifiable for unsteady flow. It is permissible though, to neglect the

temporal acceleration under the assumption that it is small in comparison to the

convectional acceleration term at the metering section [1, 22].

St ≈
∂U
∂t

U ∂U
∂x

� 1 (2.35)

A closer analysis of the ratio of accelerations by several authors [23, 24] has

shown, that this ratio is closely linked to the afore mentioned Strouhal number St.

As a logical consequence, disregarding the temporal acceleration term will only

yield acceptable results for very low frequencies or high pulsation amplitudes.

Inertial Error

Using the quasi-steady assumption and therefore neglecting inertial effects of the

fluid flow will lead to deviation in the flow rate called inertial error. Because of

its inertance, a moving or resting fluid will always try to stay in its previous state.

This results in the above described phase lag between pressure and flow rate

for pulsating flow. The measured pressure difference therefore can not directly

be connected to the momentary flow rate. Using the quasi-steady theory would

result in overestimating accelerated flow rates and underestimating decelerated

flow rates.

Additional sources of error in the quasi-steady assumption, are the flow coefficients

in Eq. 2.32. Such errors commonly are referred to as residual errors and stem

from the fact, that using coefficients determined for steady flow measurements

would implicate the same flow behavior in pulsating flows [22]. This of course is

not the case for higher frequencies and large amplitudes in comparison to the
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2.5. Unsteady Orifice Flow

mean flow:

It has been stated previously by several authors [16, 25, 26] that the flow profile

at an orifice under these conditions, drastically deviates from a steady one. The

reason for this behavior is the recirculation region that is formed downstream

of the orifice. Fluid in the recirculation region is flowing radially inwards at the

orifice plate and will first be accelerated in the reverse direction in a deceleration

phase. This leads to a pronounced annular effect and will occur well before the

main, core flow would reverse its direction (see Fig.2.3).

Figure 2.3.: Sketch of flow directions at an orifice at different phases φ of an oscillation cycle

[26].

Square Root Error

Another well documented source of error, while applying the steady flow equation

to pulsating flow, is the so called square root error [27, 28]. This error refers

to the deviation of the calculated mean mass flow from the actual mass flow,

which is introduced because of the nonlinear relation between mass flow and

the measured differential pressure. As a result of the nonlinear relation, the

mean of the measured differential pressure will not be equal to the differential

pressure belonging to the mean mass flow of a pulsating flow. This will cause an

overestimation of the mean flow rate. It is illustrated in Fig. 2.4a.
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(a)
(b)

Figure 2.4.: Illustrations of (a) square root error effect and (b) inertial error effect. K here is

the calibration constant [27].

2.5.2. Temporal Inertia Theory

Some crucial improvements to the quasi-steady theory have been made by allowing

for and incorporating the temporal acceleration into the measurement equations.

Still assuming incompressibility, including the unsteady term ∂U
∂t before integrating

Eq. 2.20 along the obstruction length will yield

∆p = J2 1− C2
Cβ

4
d

2ρ(CCεπd2/4)2
+ ρ

2∫
1

∂U

∂t
dx , (2.36)

for the instantaneous differential pressure. The last term containing the integral

cannot be evaluated without making some further modifications. Using the

continuity equation and arbitrarily splitting the temporal and spatial dependency,

i.e. J(t) = ρA(x)U(x, t), will result in

∆p = J2 1− C2
Cβ

4
d

2ρ(CCεπd2/4)2
+
∂J

∂t

2∫
1

1

A(x)
dx . (2.37)

24



2.5. Unsteady Orifice Flow

Since the dependency of the cross section along the integral path is not known,

it is customary to apply the concept of an effective length Lε, first introduced

by Mottram [1]. In analogy to his derivations for venturi tubes, he replaced the

integral by an empirical constant corresponding to the acoustic inertance of the

orifice:

2∫
1

1

A(x)
dx =

Lε

CC
πd2

4

, (2.38)

where Lε is a characteristic length, which depends on the shape and geometry

of the obstruction and is in the order of the diameter d of the restriction. From

a physical viewpoint the whole last term in Eq. 2.37 describes the additional

instantaneous pressure difference needed to accelerate the fluid at current mass

flow J . There are several different approaches to determine the actual value

of the effective length, but the underlying problem is to empirically assess the

flow dependent coefficients A(J(t), t) and B(J(t), t) in the nonlinear differential

equation

∆p =
A

ρ
J2 +B

∂J

∂t
, (2.39)

see for example [29, 30]. Various authors have carried out studies, both exper-

imental and numerical, to find an acceptable approximation for the effective

length Lε as part of estimating the coefficient B [29, 31]. However, the success of

the particularly chosen values appeared to be strongly depending on the main

frequency component of the pulsating flow and whether reverse flow occurred

in the measurements. The considerable error dependence on the flow situation

can, to a certain extent, be attributed to the differing flow profiles in pulsating

flow, compared to the assumed steady flow profiles in the calculations. Because

of these inconsistencies, no definite recommendations for the constant B can be

found and Doblhoff-Dier [29] even suggested the restriction of the applicability
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of Eq. 2.39 to small ratios of the pulsation amplitude Ũ to the frequency times

orifice diameter, i.e. fd. This is a similar demand like the one for small Strouhal

number made by Mottram for the applicability of the quasi-steady theory. All the

above underlines the assumption, that B is not a geometry dependent constant,

but rather a flow dependent variable.

Once again recalling the Womersley number, it should be noted at this point,

that the dependence of the Womersley number on the orifice diameter suggests,

that a reduced diameter would directly decrease the unsteady flow effects. For

a constant orifice to pipe area ratio, this can be achieved by using a multi-hole

orifice-plate, where each individual hole diameter is considerably smaller than

the single orifice diameter.

2.6. Acoustics

In addition to the flow effects at the orifice, it is crucial to examine the pressure

measurement system that transfers the pressure from the pressure tappings at

the orifice to the pressure transducers. Acoustic effects therein, like resonances,

will inevitably introduce considerable errors to the flow measurement.

Moreover, acoustic resonances will be deliberately applied in the experimental

investigation with a resonance pipe, since they present a well defined environment

for pulsation measurement.

2.6.1. Acoustic Impedance

A useful quantity in the following discussion is the specific acoustic impedance,

which is defined as the ratio of pressure p to the resulting particle velocity U

[32]:

z =
p

U
. (2.40)
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Using the linearized momentum equation, the characteristic acoustic impedance

of a one-dimensional plane wave in a pipe of cross section A then is

Z0 =
p

UA
=
ρ0c

A
, (2.41)

where ρ0 is the density of the air, c the speed of sound and p and U are the

amplitudes of pressure and cross sectionally averaged particle velocity of the

plane wave, respectively. The relation between pressure and velocity amplitude

in equation 2.41 can be used to estimate the amplitude of the flow velocity in a

pipe, when the pressure amplitude is measured.

2.6.2. Resonance Behavior

The gauge lines connecting the pressure transducers can be approximately viewed

as a tube rigidly terminated at the end of the transducer and open ended at

the tappings, forming the same basic but reversed structure as a resonance pipe

with a rigid acoustic driver at one end. If such pipes are acoustically driven

by a mechanical input impedance Zi = Force/U at frequencies for which only

plane waves will propagate, i.e. wavelengths are considerably longer than radial

extensions of the pipe, the pressure inside the pipe can be described by forward

(p+) and backward (p−) traveling plane waves [32]:

p(x, t) = p+e
j[ωt+k(L−x)] + p−e

j[ωt−k(L−x)] , (2.42)

where j is the imaginary unit, k = 2π/λ is the wavenumber and L is the total

length of the pipe. The particle velocity is given by the momentum equation,

using acoustic assumptions:
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2. Theoretical Background and Fundamentals of Orifice Flow

U(x, t) = − 1

ρ0

t∫
0

∂p(x, t′)

∂x
dt′ . (2.43)

The impedance of the waves in the pipe, Z0, is given by Eq. 2.41. Neglecting

damping and approximating the mechanical impedance of the rigid end with

infinity, the input impedance for plane waves in the pipe is given by [32]

Zi/Z0 = −j cot(kL) . (2.44)

When cot(kL) becomes zero, the velocity amplitude U at the point of application

of the input impedance becomes infinite and resonance (maximum amplitude)

occurs. The condition for cot(kL) = 0 and hence resonance is

L = (2n− 1)
λ

4
with n = 1, 2, 3, ... (2.45)

These resonances will occur when the quarter wavelength is an odd multiple of the

pipe length and are termed standing waves, since amplitudes are constant at each

point in the pipe. The resulting in pressure maxima p and particle velocity maxima

U are displaced by a quarter wavelength and hence pressure nodes are located at

velocity antinodes. Because there is sound radiated into the surrounding medium

at the open end, there has to be made a minor correction for the impedance at

the open end. When the resonance pipe is circular and cylindrical at the open

end, this correction results in a slightly longer effective length of the pipe and is

called end correction: Leff = L+0.85R, where R here is the radius of the pipe [32].

In the case of the connection tubes of the pressure measurement system used in

this work, which are approximately of 0.25 m length, the fundamental (n = 1) of

the resonance modes is located at approximately 340 Hz.
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2.6. Acoustics

This is not the only resonance behavior that has to be taken into account for

the pressure measurement system. The combined system of gauge lines and

transducer inner volumes will act as a Helmholtz resonator when excited with an

oscillating pressure from the outside. Compressible fluid inside a volume can be

considered a spring, that is connected to the outside by the fluid in the gauge

lines. The fluid in the tube, moving as a unit, acts as an oscillator mass. Such a

system then has a Helmholtz resonance fundamental of

f0 =
c

2π

√
A

L(V + LA
2 )

, (2.46)

as is shown in [32, 33], where V is the internal volume of the pressure sensor.

Doblhoff-Dier [34] already made an assessment for the pressure system in use,

stating a fundamental Helmholtz resonance frequency in the order of the λ/4

- resonance. Doblhoff-Dier however neglected the influence of the additional

volume that is connected to the pressure gauge lines at the tappings. There, a

cylindrical channel of 1.5 cm axial extension and approximately 1 mm width

spans around the whole main pipe. This introduces an additional volume of a few

cubic centimeters, which is large compared to internal pipe or transducer volumes

and will effectively lower the resonance frequency further. Although, because of

the complex geometry, the assumption of a simple Helmholtz resonator will not

be justified anymore and an accurate specification of a resonance frequency can

only be given by a numerical simulation or by experiment.
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3. Gas Density Determination

Rapid changes of pressure and temperature in the exhaust lines, will cause

considerable fluctuations in density that have to be accounted for in the measure-

ment process of mass flow rates. However, an exact in-flow measurement of the

resulting exhaust gas density proves difficult for two reasons. Primarily, exact

determination is not possible without knowing the composition of the exhaust

gas, which varies with changes in the injection and combustion process. Therefore

either dry air, the constituents of a stoichiometric (i.e. complete) combustion or

the composition of exhaust gas at measured lambda-values (air–fuel equivalence

ratio) has to be assumed. As found in previous studies by AVL GmbH [34], for

complete combustion, density deviations are below ±1 % compared to air at

similar conditions. During incomplete combustion, when unburnt hydrocarbons

are present, deviations from air density are significantly higher and can rise to

20%.

Secondly, conventional methods usually rely on the ideal gas law, which gives

good approximations for exhaust gases, to calculate densities from pressure,

temperature and specific gas constant [3]. The drawback of this method is the

slow dynamic response of suitable temperature measurement systems like ther-

mocouples or resistance temperature detectors (RTD). Commercially available

thermocouples with an active element of only a few micrometers could be used for

unsteady temperature measurements, but do not provide the robustness needed

in exhaust environments. Almost always a protecting sheath is required, which

in turn produces a lag in response time. An improvement on assessing transient

exhaust gas temperatures are two thermocouple probe (TTP) techniques, where

the response of thicker wires is improved by using two thermocouples with differ-
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3. Gas Density Determination

ent time constants at the same time and reconstructing the input signal of the

sensors [35, 36]. These methods, however, are highly susceptible to noise in the

temperature signal and will only provide accurate results, when the signals of

both thermocouples are well distinguishable. This is the case when temperature

changes are fast and high enough, that the differing dynamic responses create a

measurable temperature difference between the two thermocouples that is well

beyond the noise level.

An enhancement to density measurement, can be made when considering the

near-adiabatic nature of changes of the gas state inside the exhaust and intake

lines. The method introduced below uses the reconstructed gas temperature

signal of a two thermocouple probe and the fast signal of the pressure sensor to

reproduce the input temperature signal, assuming adiabatic changes of state for

variations of temperature.

3.0.3. Temperature Measurement

The rate of storage of heat qp of a wire element of a temperature sensor is equal to

the heat transfer rates into the the wire through heat convection qc, conduction

qk and radiation qr [37]:

qp = qk + qc + qr . (3.1)

It can bee shown that heat transfer through the latter two can be neglected when

using long and fine wires to minimize axial heat conduction and radiation [36,

35]. Looking at the rates in detail one gets

qp = ρwcw
∂Tw
∂t

πd2
w

4
, (3.2)

for the thermal inertia and
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qc =
Nukg
dw

(Tg − Tw)πdw , (3.3)

for the convective heat transfer. Where the following symbols were used:

ρw density of the wire

cw specific heat of the wire

Tw wire temperature

Tg gas temperature

dw wire diameter

Nu Nusselt number of the gas

kg thermal conductivity of the gas

Neglecting heat conduction and radiation, the balance equation can be rewritten

as

Tg = Tw + τ
dTw
dt

, (3.4)

introducing the time constant of the wire

τ =
ρwcwd

2
w

4Nukg
=
ρwcwdw

4h
, (3.5)

where h is the convective heat-transfer coefficient. The first order ordinary

differential equation 3.4 describes the dynamic temperature response of the wire

to a change in temperature of the surrounding gas. This behavior of the wire

temperature can also be viewed as a low-pass filter, damping all fast temperature

fluctuations of the measured gas:
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3. Gas Density Determination

T = T + τ
dT

dt
, (3.6)

with T = Tw, the filtered temperature signal. From the dependence of τ on

the Nusselt number, which generally is a complicated function of the Reynolds

and Prandtl number [38], it is clear, that the time constant itself will vary in

fluctuating flow conditions, i.e. varying flow velocity, temperature, etc. So for

all practical purposes one either has to a priori determine a mean time constant

experimentally or calculate the time constant in situ with a suitable method.

Two Thermocouple Compensation Method

This subsection is an alternate application of the two thermocouple compensation

technique first discovered by Pfriem [39] and advanced by Hung et al. [35, 40] in

recent years.

When two thermocouples are assumed in close proximity and therefore are

subjected to the same flow conditions, i.e. gas temperature and velocity, the

dynamic behavior of two thermocouple, Eq. 3.4, can be described by the following

system, where discrete time steps of sampling time ts with constant temperature

for each time step are assumed [35, 40]:

T1[n] = a1T1[n− 1] + b1Tg[n] ,

T2[n] = a2T2[n− 1] + b2Tg[n] , (3.7)

a1,2 = exp

(
− ts
τ1,2

)
, (3.8)

b1,2 = 1− a1,2 . (3.9)

To make a more general analysis of the time constant at any instance, starting

from system 3.7, one can eliminate the gas temperature Tg to result in the

difference equation
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∆Tn2 = βτ∆Tn1 + b2∆Tn−1
12 with

{
∆Tni = Tni − Tn−1

i

∆Tn−1
ij = Tn−1

i − Tn−1
j

, (3.10)

where βτ = b2/b1. This is essentially a two-variable linear optimization problem

~y = X · ~θ for the parameters βτ and b2 for a given number of measurement

points:

∆Tn
2 = [∆Tn

1 ∆Tn−1
12 ] [βτ b2]T (3.11)

One can perform a simple least squares fit ~θ = (XT~y)/(XTX) to obtain a

parameter estimate for a given set of data. When the parameter estimate for b2

and b1 = b2/βτ has been found, it is possible to reconstruct the input temperature

signal from Eq. 3.7.

Previous research showed, that this estimate is highly sensitive to noise in the

temperature signal, because the magnitudes of the differences in Eq. 3.10 have to

surpass noise-levels for a valid parameter estimate. A more sophisticated approach

using generalized total least squares (GTLS), allowing for noise on both input

variables can be used to reach a less noise susceptible solution.

As the faster thermocouples employed in this work still have response times of

approximately 0.5 − 1 s with signal noise levels of σ = ±0.3 K, this approach

can only be used to enhance temperature measurement, when characteristic

times of temperature changes are in the order and below the cutoff-frequency of

fc = 1/2πτ = 0.3 Hz [41] and measurable temperature changes are significantly

higher than twice the signal noise-level. Additionally it is advisable to artificially

enlarge sampling times for oversampled temperature measurements, for a less

noise-susceptible calculation of the differences ∆Tni = Tni − Tn−1
i .
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3. Gas Density Determination

3.0.4. Adiabatic Calculation of Density

As mentioned above, an additional improvement to density measurement can be

made by considering nature of changes of state of the intake or exhaust gas. Com-

pressible gas flow in short pipes and at higher flow rates, to a first approximation

can be modeled adiabatic, as heat losses are minor [42, 3]. Therefore, changes

in density and temperature arising from the propagating pressure pulsations,

generated by an engine, will follow the relations for an adiabatic process:

ρ =

(
ρ0p
− 1
κ

0

)
p

1
κ , (3.12)

T =

(
T0p

1
κ
−1

0

)
p1− 1

κ , (3.13)

where the subscript “0” is being used to denote a fixed, but arbitrary reference

state.

Measuring the temperature (Eq. 3.13) of the gas with an ordinary thermocouple

or RTD, as discussed above, gives a first order low-pass filtered temperature

signal:

T =

(
T0p

1
κ
−1

0

)
p1− 1

κ , (3.14)

where p1− 1
κ is the function p1− 1

κ filtered with the same time constant as the

temperature signal. If we now replace the reference temperature using the ideal

gas law,

T0 =
p0

Rsρ0
, (3.15)

for a gas with the specific gas constant Rs, we arrive at
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T =

(
p0

Rsρ0
p

1
κ
−1

0

)
p1− 1

κ =

 p
1
κ
0

Rsρ0

 p1− 1
κ . (3.16)

Rewriting this equation for the combination of reference values needed for the

calculation of a density change in an adiabatic process,

ρ0p
− 1
κ

0 =
1

RsT
p1− 1

κ , (3.17)

and actually inserting it into Eq. 3.12, one obtains a relation for the density as a

function of the measured temperature and pressure:

ρ(t) =
p

1
κ

RsT
p1− 1

κ . (3.18)

This means an instantaneous density can be calculated, using an artificial filter

with the same characteristics as the low-pass filter of the temperature sensors,

applied to the fast pressure signal.

Example calculation results on the combination of the two-thermocouple technique

and the correction based on the adiabatic assumption are plotted in figures 3.1

and 3.2. Two thermocouple signals were constructed from digitally filtering

(τ1 = 1 s, τ2 = 2 s) an exhaust temperature signal of a two stroke engine

simulated with AVL BOOST, exhibiting two discrete temperature jumps of

+100 and −50 K at 6.9 and 13.8 s,respectively. The thermocouple signals were

subsequently superimposed with normally distributed noise of σ = ±0.3 K

standard deviation. Gas density then was calculated by either reconstructing the

temperature with the two-thermocouple technique when the difference between

thermocouple temperatures, i.e. ∆Tn−1
ij = Tn−1

i − Tn−1
j , surpassed 5σ or taking
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3. Gas Density Determination

the measured temperature of the thermocouple with faster response otherwise.

Using Eq. 3.18 and the ideal gas law, Eq. 3.15, the temperature and density

were corrected for adiabatic changes of state, where filtered values fn(t) were

calculated by Eq. 3.24 using a time constant of τ = 1.09 s. This time constant

was the mean estimated by the TTP-method.

6 8 10 12 14 16 18 20
250

300

350

400

450

t [s]

T
[◦

C
]

Tcorr.

TR(TTP)

T1

T2

Figure 3.1.: Calculated thermocouple responses T1 (τ = 1 s) and T2 (τ = 1 s) for the exhaust

of a two stroke engine simulated with AVL BOOST. Reconstructed temperature

using the TTP-method on T1 and T2 is labeled TR. Temperature correction based

on the adiabatic assumption is plotted in Tcorr..

.

Density errors could be significantly reduced using the combination of the two

above discussed methods. Although the TTP-method is not capable of completely

eliminating errors at the times of temperature jumps, because of the high noise

levels in the used thermocouple signals. The adiabatic correction provided a

great reduction of continuous density errors made by the adiabatic temperature

changes from 3 % to purely noise related errors below 0.2%.

Uncertainty estimates for ∆ρ(∆τ) (Eq. 3.23) with an uncertainty for the time

constant ∆τ = 0.5 s, showed that the error is significantly affected by non-

adiabatic pressure changes, but the error introduced in density was generally

kept below 2 %.
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Figure 3.2.: Relative errors for calculated density when applying TTP-method together with

adiabatic correction (corrected) and when calculating the density from the ideal

gas law, using the faster response thermocouple temperature T1 (uncorrected).

Error Analysis

An accurate, a priori determination of the time constant of temperature sen-

sors proves hard to accomplish, considering the sensors flow dependent nature.

Therefore an error in the experimentally measured or empirically estimated time

constant is inevitable. To assess the effects of any deviations of the estimated

time constant on the calculated density, the accompanying error analysis should

be worthwhile. The goal is to estimate the error introduced by filtering the

function p1− 1
κ (t) with a different time constant than the time constant given by

the temperature measurement.

Starting from the solution of the differential equation of the filter function (Eq.

3.6)

f(t) =
1

τ

t∫
−∞

f(t′)e−(t−t′)/τ dt′ , (3.19)

the uncertainty of the function f(t) for small deviations ∆τ of τ is given by
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∆f(t) =

∣∣∣∣ ∂∂τ f(t)

∣∣∣∣ ·∆τ , (3.20)

where the derivative with respect to τ is

∂

∂τ
f(t) =

t∫
−∞

t− t′
τ3

e−(t−t′)/τf(t′) dt′

︸ ︷︷ ︸
1
τ
f̃(t)

−
t∫

−∞

1

τ2
e−(t−t′)/τf(t′) dt′

︸ ︷︷ ︸
1
τ
f(t)

=
1

τ

(
f̃(t)− f(t)

)
. (3.21)

Setting f(t) = p1− 1
κ (t), the absolute uncertainty can be written as

∆p1− 1
κ (t) =

∣∣∣∣1τ
(
p̃1− 1

κ (t)− p1− 1
κ (t)

)∣∣∣∣∆τ . (3.22)

Because our main interest lies in the error of the density, we use this result to

calculate the relative uncertainty ∆ρ/|ρ| by inserting ∆p1− 1
κ into Eq. 3.18 and

dividing by ρ(t). We arrive at a relation for the relative uncertainty of the density

in dependence of the relative error in the time constant:

∆ρ(t)

|ρ(t)| =

∣∣∣∣∣∣ p̃
1− 1

κ (t)

p1− 1
κ (t)

− 1

∣∣∣∣∣∣ ∆τ

|τ | . (3.23)

Notice that τ here is the actual, time dependent time constant of the temperature

sensor. Since we are only interested in the order of the uncertainty we can, in

a first approximation use the estimated time constant, which should be of the

same order as the actual one.
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Numerical Evaluation

In order to efficiently calculate the above described filters numerically, a recursive

relation is preferable. Using a Taylor expansion of f and f̃ in Eq. 3.21 and

identifying the definitions in the expansion, will lead to the following recursion

relations of third order accuracy [43]:

fn =
2τ
∆te
−∆t

2τ fn−1 + fn + fn−1

2τ
∆te

∆t
2τ

+O

([
∆t

τ

]3
)

(3.24)

f̃n = e
−∆t
τ f̃n−1 + ∆te

−∆t
τ fn−1 +

∆t2

2τ2
fn +O

([
∆t

τ

]3
)

(3.25)
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4. Methods

This chapter is a collection of all the calculation, computation and evaluation

methods used for the later discussion of simulation and experimental results of

pulsating flows in chapter 5.

4.1. Mass flow equation including unsteady friction and

compressibility

In the following, the instantaneous, acceleration based unsteady friction model of

Daily et al., discussed in section 2.3.2, will be applied in the derivation of a mass

flow equation for unsteady orifice flow with fast density changes.

Starting point of the analysis is the momentum equation in its differential form,

Eq. 2.8. The viscous and wall shear forces are approximated by the unsteady

friction only, Eq. 2.18: fviscous + fwall = −ρkA ∂U/∂t, where k again is the

unsteady friction coefficient.

Not including the steady friction, or pressure loss caused by it at this point will

introduce an error which will be termed EK in the following. Integrating the full

momentum equation in axial direction
∫ x2

x1
dx, over the distance L between the

pressure tappings will result in
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x2∫
x1

∂

∂t
(ρAU) dx+

[
βmρAU

2
]x2

x1
= −

x2∫
x1

A
∂p

∂x
dx (4.1)

− k
x2∫
x1

ρA
∂U

∂t
dx− EK .

Several assumptions or simplifications have to be made for the flow field, to be

able to solve the above equation for the mass flow. Because the distance between

the tappings is generally small in comparison with the wavelengths of pulsations

arriving at the orifice, the density inside the measurement volume will be assumed

constant. Yet, density is still considered time dependent, since large and rapid

variations in pressure or temperature may occur in exhaust flows.

Two major simplification have to be made for the axial pressure gradient. For

lack of information, the pressure has to be linearly approximated between the

measurement tappings with constant gradient: p(x, t) = p1(t) +x ∆p(t)/L, where

x ∈ (x1, x2). In a corner tapping configuration, where both pressure tappings are

placed adjacent to the orifice, this will produce small errors, but would significantly

impact measurements with D - D/2 (tappings are placed one diameter upstream

/ half a diameter downstream of orifice) and flange (tappings are placed 25.4 mm

upstream and downstream of orifice) tapping arrangements. This situation is

illustrated in Fig. 4.1.

The second, more severe simplification was already made in the derivation of the

momentum equation, when assuming a constant pressure over the cross section

of the pipe. As will be shown later, this assumption is not justified and will lead

to a significant error in the end. To bear this error in mind, an additional term

Ep is introduced in the momentum equation.

The argument of a short measurement distance and the small variability therein,

again is used for the unsteady friction term in Eq. 4.1. Local acceleration causing

unsteady friction is being assumed constant: ∂U(x, t)/∂t ≈ ∂U(x1, t)/∂t for

x ∈ (x1, x2). Carrying out the integration on the right hand side between the
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Figure 4.1.: Pressure over axial position x at centerline (axis) and wall of orifice meter with

orifice plate located at x = 0 m in a 10 m/s mean, steady flow. Different tapping

locations indicated by: C for corner tappings, D and D/2 for D −D/2 tappings

and F for flange tappings.

equal control region boundaries A1 = A2 = A with the above simplifications will

yield:

x2∫
x1

∂

∂t
(ρAU)︸ ︷︷ ︸

J

dx+ [βm ρAU2︸ ︷︷ ︸
J2/(ρA)

]x2
x1

= −V0∆p

L
− ρkV0

∂U1

∂t
− EK − Ep . (4.2)

For the remaining integral over the temporal change of the mass flow, a mean

value of inlet temporal change ∂J1
∂t and outlet temporal change ∂J2

∂t is formed:

x2∫
x1

∂J

∂t
dx =

L

2

(
∂J1

∂t
+
∂J2

∂t

)
. (4.3)

To identify the mass flow in the unsteady friction, the last term in Eq. 4.2 will

be extended by ρA. Additionally, the time dependence of the density has to be

considered when taking the time derivative:

45



4. Methods

L

2

(
∂J1

∂t
+
∂J2

∂t

)
+
βm,2J

2
2

ρA
− βm,1J

2
1

ρA
(4.4)

= −V0∆p

L
− kV0

A

(
∂

∂t
(ρAU1)−AU1

∂ρ

∂t

)
− EK − Ep .

With the definition of the mass flow this yields:

L

2

(
∂J1

∂t
+
∂J2

∂t

)
+
βm,2J

2
2

ρA
− βm,1J

2
1

ρA
(4.5)

= −V0∆p

L
− kV0

A

(
∂J1

∂t
− J1

ρ

∂ρ

∂t

)
− EK − Ep .

This form still contains mass flows at both tappings of the control region, but J2

can be eliminated with the use of the continuity equation, Eq. 2.5:

L
∂J1

∂t
− V0L

2

∂2ρ

∂t2
+
βm,2
ρA

(
J2

1 − 2V0J1
∂ρ

∂t
+ V 2

0

∂ρ

∂t

2)
− βm,1J

2
1

ρA
(4.6)

=− V0∆p

L
− kV0

A

(
∂J1

∂t
− J1

ρ

∂ρ

∂t

)
− EK − Ep .

Finally gathering all terms of ∂J1
∂t , J2

1 and J1 will lead to the time derivative

of the mass flow at the pressure tapping at x1. To allow a better comparison

with original flow meter equations, the term (βm,1 − βm,2)J2
1 will be replaced by

(βm,in − βm,out) sgn(J1)J2
1 , where βm,in and βm,out are the momentum correction

coefficients at the inlet and outlet boundaries,respectively, depending on flow

direction.
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∂J1

∂t
=

1

L+ kV0
A

{
1

ρA
(βm,in − βm,out) sgn(J1)J2

1 (4.7)

+ (2βm,2 + k)
V0

ρA

∂ρ

∂t
J1 −

V 2
0 βm,2
ρA

∂ρ

∂t

2

+
LV0

2

∂2ρ

∂t2
− V0

L
∆p− EK − Ep

}
.

Simply setting ∂J1
∂t = 0 and ∂ρ

∂t = 0 gives the steady, incompressible part of the

mass flow equation:

0 =
1

ρA
(βm,in − βm,out) sgn(J1)J2

1 −
V0

L
∆p− EK − Ep (4.8)

To evaluate the unsteady friction parameter, one may realign Eq. 4.7 to solve for

k:

k =
1

V0
A
∂J1
∂t − V0

ρA
∂ρ
∂t J1

[
1

ρA
(βm,in − βm,out) sgn(J1)J2

1 +
2V0βm,2
ρA

∂ρ

∂t
J1 (4.9)

− V 2
0 βm,2
ρA

(
∂ρ

∂t

)2

+
LV0

2

∂2ρ

∂t2
− L∂J1

∂t
− V0

L
∆p

− EK − Ep
]
.

Because we cannot asses the impact of steady friction EK and cross sectional

pressure distribution effects Ep, this is not solvable yet. For that reason further

examination of the flow and pressure effects is needed.
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4.1.1. Measured Pressure Difference

It is beneficial to have a closer look at the pressure difference measured between

the two taps upstream and downstream of an orifice. The measured differential

pressure ∆pmeasured is in fact a sum of several interrelated effects and could be

split into those major components contributing to the total pressure difference.

Originally there is a static pressure gradient ∆pstatic, which causes a pressure-

driven flow in a pipe in the first place. For steady flow, this gradient is needed to

overcome the frictional losses at the orifice and maintain a steady flow. In unsteady

flows, the static pressure gradient will be of time varying nature, common to

(acoustic) waves or, generally speaking, pulsations.

Superimposed to the already described static pressure gradient is a differential

pressure ∆pdynamic, which is the momentary, local pressure loss or increase

described by the Bernoulli effect, caused by the convective acceleration through

the orifice (Venturi effect).

An increase in the measured pressure difference has to be taken into account, if

the pressure is measured in the vicinity of the orifice plate. There, one additionally

measures a stagnation pressure at the upstream tapping: Because of the inertial

forces, the outermost fluid particles are not able to follow the main fluid stream

when it contracts through the orifice and thus will be slowed down at the orifice

plate. Another way to view this increase in pressure, is the outward pressure

increase linked with the inward curvature of the streamlines. Since at an ideal

stagnation point dynamic pressure is fully converted to static pressure, a square

like relation between flow speed and pressure increase could be expected.

On the downstream side, the sharp edge of the orifice plate forces the flow to

separate, beginning at relatively low Reynolds numbers, causing a separation

bubble, also called recirculation region, to form behind the plate. Fluid particles

from the recirculation region, that are at the boundary to the main orifice jet, are

entrained by faster vortices in the separated shear layer of the jet. This depletion

creates the name giving recirculation and an accompanying lower pressure directly

downstream of the orifice [44].
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The pressure increase in front, and the decrease behind the orifice are mainly

attributed to the form or geometry of the contraction and the location of the

pressure tappings. For that reason, those two in this work are combined into

one differential pressure termed impact pressure ∆pimpact, with the name being

coined by Mottram [1].

In sum the total, measured pressure difference can be written as:

∆pmeasured =∆pstatic + ∆pdynamic + ∆pimpact (4.10)

It has been already stated above, that the static pressure gradient acting on the

orifice meter can be (and in combustion linked flows is) of unsteady nature. If

a change in pressure occurs, the flow through the orifice will be accelerated/de-

celerated, trying to restore a stationary flow state. At very slow transients the

fluid will be able to follow the varying pressure gradient in quasi-steady flow

states, where the convectional forces on the left hand side of the momentum

equation, Eq. 2.7, approximately balance out the pressure and frictional forces on

the right side. As stated in the section about quasi-steady theory, section 2.5.1,

local acceleration forces can only be neglected for low Strouhal number flows,

i.e. flows at low frequencies. In most cases though, pressure changes occur much

faster, not allowing the fluid to compensate for the change because of its inertia

and viscous processes. This results in the before mentioned phase lag between the

flow and the applied pressure gradient. Therefore the additional local acceleration

has to be taken into account, which aims to correct present imbalances.

Based on the above considerations, we will further divide the static pressure

gradient into two integral parts. The first part will be labeled ∆peffective and

describes the part of the pressure gradient that is in phase with the flux and

is necessary to produce the momentary flux. For slow transients, ∆peffective is

approximately equal to the steady state static pressure gradient needed for the

respective flow rate. In the case of faster transients it will considerably deviate

from its steady state value, because of the pressure history dependent flow fields
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and associated momentum distributions.

The second part, which denotes the additional, out of phase pressure gradient,

which stems from a fast pressure transient that is not yet compensated by the flow,

is labeled ∆ptransient. This superimposed pressure gradient locally accelerates

the fluid. With this decomposition the resulting measured pressure difference

becomes

∆pmeasured = ∆peffective + ∆pdynamic + ∆pimpact (4.11)

+ ∆ptransient .

When calculating mass flow rates in practice, the measured pressure difference

∆pmeasured is used for the pressure difference ∆p in the equation for the temporal

change of the mass flow, Eq. 4.7. Consequently, impact pressure, as well as steady

frictional pressure losses are included in the calculation, but are usually neglected

in the mass flow equation, i.e. EK = Ep = 0.

Since the mass flow equation also has to hold for steady, incompressible flow, we

can see from inserting the above pressure decomposition into the steady mass flow

equation, Eq. 4.8, that including impact and friction pressure differences when

neglecting EK and Ep, will give an incorrect, higher calculated mass flux. For

steady flows this usually is corrected by the calibration constant in the quadratic

term, but may produce incorrect results, if the impact pressure and friction are

not purely a function of J2 .

For the full unsteady, compressible case the situation of course becomes more

complicated, but valuable conclusions may be drawn nonetheless. Making use of

the decomposition of the total measured differential pressure, Eq. 4.11, in the

differential mass flow equation 4.7 gives:
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∂J1

∂t
=

1

L+ kV0
A

{
1

ρA
(βm,in − βm,out) sgn(J1)J2

1 (4.12)

+ (2βm,2 + k)
V0

ρA

∂ρ

∂t
J1 −

V 2
0 βm,2
ρA

∂ρ

∂t

2

+
LV0

2

∂2ρ

∂t2
− V0

L

[
∆peffective + ∆pdynamic

+ ∆pimpact + ∆ptransient

]
− EK − Ep

}
.

As said, effective-, dynamic- and impact-related pressure differences all are a

consequence of the present, instantaneous flow field and do not cause a temporal

change of the mass flow. Thus they can solely be attributed to the first term

inside the curly brackets on the right hand side of Eq. 4.12 and the steady friction

and pressure distribution errors, EK and Ep. We can therefore identify

V0

L

(
∆peffective + ∆pdynamic + ∆pimpact

)
(4.13)

!
=

1

ρA
(βm,in − βm,out) sgn(J1)J2

1 − EK − Ep ,

where EK and Ep represent all steady friction and impact pressure dependencies

of the total pressure difference on the present, instantaneous flow field. Relation

4.13 is true for steady, as well as unsteady flows. Both sides together represent

the quasi-steady part of the total differential mass flow equation.

The terms thus cancel out in the differential mass flow equation 4.12 and any

change in mass flow for a given flux J with accompanying density and momentum

distribution hence is the result of either a transient pressure ∆ptransient or a

temporal change in density:
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∂J1

∂t
=

1

L+ kV0
A

{
(2βm,2 + k)

V0

ρA

∂ρ

∂t
J1 −

V 2
0 βm,2
ρA

∂ρ

∂t

2

(4.14)

+
LV0

2

∂2ρ

∂t2
− V0

L
∆ptransient

}
.

This allows to simplify the equation for the unsteady friction parameter k, Eq.

4.9, and leaves

k =
1

V0
A
∂J1
∂t − V0

ρA
∂ρ
∂t J1

[
2V0βm,2
ρA

∂ρ

∂t
J1 −

V 2
0 βm,2
ρA

(
∂ρ

∂t

)2

(4.15)

+
LV0

2

∂2ρ

∂t2
− L∂J1

∂t
− V0

L
∆ptransient

]
.

At zero mean flow and momentum distributions not differing too widely from a

uniform shape, the following relations, useful for the later analysis of transient

measurements, have to hold:

∆peffective + ∆pdynamic + ∆pimpact ≈ 0 (4.16)

∆pmeasured ≈ ∆ptransient (4.17)

4.2. Flow Simulations in OpenFOAM

Proving the validity of the proposed methods for pulsating flows in an experimental

setup obviously introduces a variety of unknowns to the measurements and does
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not allow an analysis of the flow mechanisms that produce the measured signals.

Moreover, accurate devices for flow measurements in unsteady flows generally are

scarce and usually expensive and no reference device that could correctly resolve

the dynamic behavior of the flow or flux was available for the purpose of this work.

To gain insight into the basic flow dynamics anyways, it was chosen to perform

computational fluid dynamics simulations of the problem in OpenFOAM [45], a

free, open source CFD software package that is licensed under the GNU General

Public License. This would allow a more precisely defined environment for the

evaluation of the discussed algorithms and their errors and would enable a more

detailed analysis of the flow effects occurring at an orifice. However, care must be

taken when comparing simulation results to real experiments and measurements,

since the chosen turbulence model or any detail not included in the simulation

models pose severe sources of error.

4.2.1. OpenFOAM Case Setup

A CAD model of the orifice meter in use for the experimental work was designed

using Gmsh [46], a three-dimensional finite element mesh generator. Since any

flow simulation of the full pipe geometry would have implied a considerable

amount of computing time, it was decided to exploit the rotational symmetry of

the problem and limit the simulation to a wedge geometry with an opening angle

of 2◦. The model had a total length of 400 mm and a main pipe diameter of 63

mm. In the middle of the pipe a sharp orifice with an inner diameter of 45.9 mm

and a thickness of 3.7 mm was placed. Directly adjacent to the orifice, the corner

tappings were modeled with connecting ports of 1 mm width, extending to a

diameter of 70 mm.

Again using Gmsh, a mesh of one cell thickness was created. The mesh was

sectioned into three segments: one middle section for the closer vicinity of the

orifice and two straight outer pipe sections. For the outer portions of the pipe,

a radial distribution of 50 hexahedrons with a grading ratio of 1.02 to smaller

cells towards the wall and an axial extension of 1 mm has been chosen. In the
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Figure 4.2.: Side view of wedge geometry used for simulations.

vicinity of the orifice plate a maximum edge length of 0.2 mm was set, to be able

to resolve the expected turbulent processes in the surrounding of the orifice. As

a result of the different mesh settings for the three segments, a majority of the

cells in the middle section ended up non-orthogonal (see Fig. 4.3).

Figure 4.3.: Side view of the mesh in the vicinity of the orifice.

4.2.2. Steady Flow Simulations

The first goal in an attempt to validate the proposed models for unsteady flow

measurement, was an assessment of the plausibility of the flow simulations for
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the case of steady air flow. To this end, several cases at different steady mass

flow rates were set up. Each simulation was configured for compressible flow,

using a standard k-ε turbulence model for Reynolds-averaged stress modeling.

Thermophysical property modeling was realized applying the perfect gas model

(perfectGas) for passive gas mixtures (pureMixture) and Sutherland’s formula

(sutherland) [47] for the calculation of the temperature-dependent transport

properties.

Boundary Values and Initial Conditions

The flow field inside the orifice meter was initially set to zero velocity and

uniformly distributed pressure of 105 Pa and temperature of 293 K. µt, αt, k and

ε were calculated individually for each case, in accordance to the definitions given

below, depending on the mean inlet velocity. For all cases an inlet turbulence

intensity of 4% was used, which is reasonable for the Reynolds numbers in question

[48]. The turbulent kinetic energy k and the turbulent dissipation rate ε were

determined by

k =
3

2
(IU)2 (4.18)

ε = C3/4
µ

k3/2

0.07D
(4.19)

where the empirical constant Cµ = 0.09. Turbulent viscosity µt then could be

calculated by µt = ρCµk
2/ε. Finally, the turbulent thermal diffusivity αt is

calculated from

αt =
µt
Prt

, (4.20)

where a turbulent Prandtl number of 0.85 for air was used for all calculations.
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At the upstream side of the geometry a mean inlet velocity U has been defined,

for which a turbulent 1/7 power law velocity distribution was calculated. This was

done by first calculating the maximal, center-line velocity umax = U(2n2 + 3n+

1)/(2n2), where the power law coefficient n = 7, and using this maximal velocity

to calculate the turbulent velocity distribution from 2.11. For cases that fall in

the laminar region, a laminar, parabolic profile has been used and turbulence

parameters were set to zero. In total, eleven steady flow simulations were set up

with mean inlet velocities of 0.05, 0.1, 0.5, 1, 2, 3, 4, 5, 10, 20 and 40 m/s. This

corresponds to volume flow rates of about 10 to 7700 l/min. Table 4.1 gives an

overview of the used boundary conditions for the flow variables at the wall, inlet

and outlet. Patches on the front and back of the wedge geometry were assigned the

wedge boundary condition for all variables to satisfy the axisymmetric condition

of the problem.

Table 4.1.: Overview of boundary conditions for steady flow OpenFOAM simulations. Entries

labeled ‘calculated ’ denote values calculated for each case in dependence of the mean

flow velocity.

Variable Wall Inlet Outlet

p zero gradient zero gradient wave transmissive - 105 Pa

u no slip calculated zero gradient

T zero gradient 293 K zero gradient

µt µt-wall-function calculated zero gradient

αt αt-wall-function calculated zero gradient

k k-wall-function calculated zero gradient

ε ε-wall-function calculated zero gradient

The needed boundary conditions for the turbulence parameters near the walls were

modeled using the OpenFOAM implemented wall functions mutkWallFunction,

alphatWallFunction, kqRWallFunction, epsilonWallFunction for µt, αt, k and

ε, respectively. . All cases were run on two processors, using the OpenFOAM
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rhoPimpleFoam solver for compressible, transient flow. Numerical schemes and

used solver algorithms are printed in the OpenFOAM dictionaries fvSchemes

and fvSolution in appendix A. For faster solution convergence of the steady

flow simulations, the under-relaxation technique has been used, which limits the

change of a flow field value from one iteration to the next by a multiplicative

relaxation factor. Table 4.2 lists the used relaxation factors.

Table 4.2.: Relaxations factors fR used in the steady flow simulations.

Variable fR

p 0.3

ρ 0.1

U , k, ε 0.7

Computation and Evaluation

All simulations were run until convergence was reached using a maximum CFL

number of 0.95. When steady flow conditions were achieved, several samples were

taken from the flow field. Flow rate measurements were taken at the inlet, outlet

and at the upstream pressure tapping by integrating flow velocity times density

over the cross section. The velocity profile at both tappings was used to calculate

the momentum correction coefficient βm. Additionally the pressure difference

was evaluated at the pressure tappings and compared to the pressure difference

acting at the axis.

4.2.3. Unsteady Flow Simulations

As a next step unsteady flow cases were set up, simulating pulsations, i.e. pressure

waves, traveling from the inlet past the orifice towards the outlet.
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p

p1 p2

Figure 4.4.: Example pressure field for simulated steady flow from left to right (574 l/min).

Black lines indicate sampling points for cross sectional flow field data and arrows

indicate pressure sampling points for tapping pressure values.

Boundary Values and Initial Conditions

The initial conditions for the flow fields were the same as in the steady flow

simulations. Three transient simulations have been run with various time-varying

pressure signals at the inlet on the left and a pressure wave transmissive (i.e.

non-reflecting) outlet on the right with a far field condition of a fixed pressure

level in a distance of 2 m:

• Sinusoidal with a frequency of 30 Hz and amplitudes of 5000 Pa around

105 Pa; far field set to 105 Pa

• Sinusoidal with a frequency of 300 Hz and amplitudes of 3000 Pa around

103000 Pa; far field set to 98000 Pa

• Pressure in intake system of a two stroke engine running at 4000 rpm,

simulated with AVL BOOST; far field set to 98000 Pa
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Frequencies, amplitudes, offsets and far fields of the sinusoidal simulations were

chosen this way because of the different flow effects being relevant for each case.

The 30 Hz, 5000 Pa signal for example should lie at the boundary where Strouhal

and Womersley numbers indicate, that inertial and viscous effects begin to play a

role (compare section 2.3.2). In the 300 Hz simulation, inertial and viscous effects

should play a dominant role and significant deviations in the flow profiles from

well developed ones can be expected. The same inertia-, and viscosity-dominated

behavior can already be observed at much lower frequencies, as was verified

in simulations at 140 Hz in the course of this work. Nevertheless, the highest

relevant frequency for combustion intake and exhaust flow was taken here, for

illustration purposes.

The far field condition for the 300 Hz pulsation should produce a mean flow,

without reverse mean flow occurring. In addition to the single frequency signals,

the engine intake pressure waveform provides a practically relevant signal to test

the performance of the proposed algorithms for a multi-frequency component

signal.

Velocity boundaries have been set to the OpenFOAM -implemented pressureIn-

letOutletVelocity boundary, which is a zero gradient condition for outflow and

for inflow calculates the velocity from the flux inside the patch. Temperature, vis-

cosity and turbulence boundaries have been set to inletOutlet boundaries, which

are zero gradient conditions for outflow, but use predetermined or calculated

boundary values for inflow. Table 4.3 gives a quick overview of the used boundary

conditions for each flow variable.

Computation and Evaluation

The simulations were run using a maximum CFL number of 0.95, while sampling

velocity, density and pressure distributions at the cross sections in front and

behind the orifice plate as indicated in figure 4.4 at a rate of 10 kHz. Again

flow rates and momentum correction coefficients were evaluated thereof and the

pressure difference was determined at the pressure tappings.
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Table 4.3.: Overview of boundary conditions for unsteady flow OpenFOAM simulations with

transient, case dependent inlet pressure. Entries labeled ‘calc.’ denote values calcu-

lated for each case and time in dependence of the mean flow velocity.

Variable Wall Inlet Outlet

p zero gradient transient wave transmissive

u no slip inletOutlet inletOutlet

T zero gradient inletOutlet - 293 K inletOutlet - 293 K

µt µt-wall-function inletOutlet - calc. inletOutlet - calc.

αt αt-wall-function inletOutlet - calc. inletOutlet - calc.

k k-wall-function inletOutlet - calc. inletOutlet - calc.

ε ε-wall-function inletOutlet - calc. inletOutlet - calc.

Based on the differential equation for the mass flux (Eq. 4.14), it is possible

to calculate the mass flow rate from the density and its derivatives and the

transient pressure ∆ptransient, when both the unsteady friction k and the steady

momentum correction coefficient βm,2 are known. To actually solve the differential

equation for the mass flow, Euler’s method was used. The mass flow at time ti is

solely based on the mass flow and its time derivative at time ti−1:

J1(ti) = J1(ti−1) +
∂J1

∂t
(ti−1) ·∆t , (4.21)

with the time step ∆t . It should be noted here, that a higher order Runge-Kutta

method would reduce the errors committed by the numerical scheme and should

be used in future work. However this was not implemented in this work, since

other sources of error were deemed far more significant at this stage.

Before any calculations could be run, the unsteady friction parameter k had to

be determined. For this purpose, the sinusoidal pulsation simulations were used,

because they provided a necessary, well defined environment. To determine k,
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equation 4.15 was used, where the needed mass flow rate, density and respective

derivatives where taken directly from the sampled data. Densities were averaged

over the cross sections and all derivatives were calculated using second order

accurate central differences. The momentum coefficient βm,2 was determined

using a piecewise cubic Hermite interpolating polynomial (PCHIP) to interpolate

the values calculated from the steady flow simulations (Fig. 5.2).

The biggest challenge was the determination of the transient pressure ∆ptransient,

but it was possible to accurately calculate it with the help of the following two

conditions:

• Acceleration at the orifice is caused by the gradient of the sinusoidal,

traveling pressure wave that is coming from the inlet. The phase of this

gradient or pressure difference between the two tappings can be calcu-

lated using the definition of a sinus wave traveling to the right - p(x, t) =

p0sin(2πfx/c− 2πft+ ϕ0). Amplitude p0, frequency f , speed of sound c

and phase constant φ0 are given by the initial and boundary conditions of

the simulation.

• The incoming pressure wave will be partly reflected at the orifice, creating

a higher pressure difference at the orifice. One can however calculate the

amplitude of the transient pressure at zero mean flow, making use of the

conditions previously stated for zero flow, equations 4.16 and 4.17. These

say that at zero flow, the measured pressure difference has to approximately

equal the transient pressure, since effective, dynamic and friction pressure

differences are approximately zero.

For the calculation of the mass flow rate, ∆ptransient had to be determined

without the use of information about the incoming pressure waves. According to

equation 4.11, the transient pressure is the measured pressure difference minus

the quasi-steady pressure differences:
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∆ptransient = ∆pmeasured −
(

∆peffective + ∆pdynamic + ∆pimpact

)
.

The quasi-steady pressure differences were approximated by applying relation

4.13 and using fourth order polynomial fits of the volume flow rate Q from the

steady simulations for the right hand side:

1

ρ̄

(
∆peffective + ∆pdynamic + ∆pimpact

)
= A1Q+A2 sgn(Q)Q2 +A3Q

3 +A4 sgn(Q)Q4 .

Volume flow rates were used at this point, to eliminate density based mass flow

differences. It should be mentioned, that Reynolds numbers should be used in

future work since at constant volume flow rate, the pressure differences can

still change because of the temperature dependence of viscosity. This should be

expected in exhaust flow, were large temperature variations and different gas

compositions are occurring.

To evaluate if this proposed procedure provides an enhancement on conventional

temporal inertia theory, the mass flow rate has been calculated according to

Mottram’s differential mass flow equation, Eq. 2.39. The coefficient A was again

determined using a quadratic regression of the steady flow simulation mass flow

rates. Several different inertance coefficients B have been used in the evaluation.

The specific values were taken as calculated by Doblhoff-Dier [34], since the same

orifice metering device was used:

• B = 0 [1/m]: Neglecting inertance at all, corresponds to the quasi-steady

theory and should result in a inertial error effect for pulsatile flow rates.
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• B = 37.5 [1/m]: Calculated in accordance to ISO/TR 3313 [2] (Eq. 2.38)

with an effective length of Lε = d :

B =
4

πdCC
, with CC =

1

β4
d + π2d4A

8

(4.22)

were A is the regression parameter.

• B = 52.5 [1/m]: As stated in [34], this value was used in earlier work done

by AVL List.

• B = 10.4, B = 22.4 [1/m]: These smaller inertance values were used to

represent smaller effective lengths Lε, but their exact values had no deeper

meaning.

Error determination

The different calculation models were evaluated based on two error quantities.

Since the most important measure in mass flow metering is the deviation of the

measured cumulative mass flow over a time span t2 − t1 from its true value, the

relative mass flow error was the first parameter to determine the quality of the

different models:

relative mass flow error [%] =

∫ t2
t1
J dt−

∫ t2
t1
Jref dt∫ t2

t1
Jref dt

. (4.23)

This error definition is problematic in the case of zero true mean flow, where

the denominator will be close to zero and relative errors would sky-rocket.

Therefore the absolute mass flow error was used for simulations and experimental

measurements with approximately zero mean flow, giving the rate of deviation

from the true mean:
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absolute mass flow error [kg/s] =

∫ t2
t1
J dt−

∫ t2
t1
Jref dt

t2 − t1
. (4.24)

Because mean values do not reveal any information about the dynamic behavior

of a time dependent function, a second quantity was needed to characterize the

different models. The (normalized) root mean square error (RMSE) is used as

a measure of the dynamic behavior. It is the mean squared deviation of the

calculated mass flow rates from the true rate, normalized by the peak-to-peak

interval of the true rate:

RMSE [%] =

√
1
N

∑N
i=1(J(ti)− Jref (ti))2

Jref,max − Jref,min
. (4.25)

4.3. Resonance Pipe Measurements

The ultimate aim of this work was an improvement of existing algorithms for mass

flow measurement of unsteady, pulsating flows using an orifice meter without

pulsation damping devices. For calibration purposes, to determine the unsteady

friction parameter k for the orifice in use and test the proposed measurement

algorithm in a pulsating environment, an experiment was set up. Since directly

deploying the device in a complex environment like an engine intake or exhaust

gas system would not have allowed for a well defined, controlled environment,

it was chosen to use a resonance pipe, described in detail below, to create the

desired pulsating flows. This however did not allow to reproduce the extreme

pressure variations and temperature jumps common in engine exhaust systems.

4.3.1. General Measurement Setup

There were several requirements to be met by the experimental test rig. First of

all, variable, steady mass flows of known flow rates were needed to calibrate the
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orifice meter for steady flows and gain an overall knowledge of the behavior of

the device. Secondly, pulsations of well defined amplitude and shape, without

any mean flow were necessary to gain insight in the unsteady measurement

performance of the proposed algorithm. Furthermore, the ability to test the

device in a pulsating environment with superimposed mean flow is necessary, as

the only reliable criterion for the evaluation of occurring measurement errors was

a comparison of the overall measured mean flow with the damped mean flow

measured by a reference device.

p

RB

PD
RU

DB

OM

T

Figure 4.5.: Main resonance pipe setup with: (OM) movable orifice meter including pressure (p)

and temperature (T) sensors, (DB) driver box including loudspeaker, (RU) reference

unit, (PD) pulsation damper and (RB) radial blower.

To this end the test rig, schematically drawn in figure 4.5 , was set up. It

consisted of six main elements: resonance pipe, acoustic driver box, orifice meter

with temperature measurement, reference unit, pulsation damper and radial

blower. The resonance pipe was assembled using smooth polypropylene pipe

elements of 70 mm inner diameter and different lengths. In total the resonance

pipe had a length of 6.45 ± 0.05 m, from the driver to the open end of the

pipe. At the hereby defined upstream end of the pipe, the acoustic driver box

containing the loudspeaker was attached. This was an aluminum cylinder of 255

mm diameter and 400 mm length, which had a conic section reducing to the

resonance pipe’s diameter within 200 mm at one end and was sealed at the other.
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Inside the driver box, at a distance of 300 mm of the closed end, a loudspeaker

with the same diameter was installed, resulting in the partition behind the speaker

acting as an spring to the driver. Gaps between loudspeaker chassis and the

enclosing pipe have been sealed with acoustic foam to prohibit any interference

of phase shifted, reflected waves from the back end of the tube with the standing

wave, but allowing for pressure equalization over time. The electric wiring of the

speaker was routed out of the box through a small whole, which was sealed to

prevent leakage. All signals applied to the driver were digitally generated using

LabVIEW software.

Figure 4.6.: Orifice meter, showing absolute and differential pressure transducer configuration.

Length scale in centimeters.

With variable position along the resonance pipe, the orifice measurement system

was installed. The orifice in use was taken from the AVL 442 Blow By Meter,

which is commonly employed in steady flow rate measurements of calmed blow

by gases in a range of 48 to 2400 l/min [49]. This 600 mm long pipe had an inner

diameter of 63 mm and a 3.8 mm thick, sharp, symmetrical orifice plate of 45.9

mm diameter placed halfway through. Two tubes of 250 mm length connected the

existing two corner tappings with a piezoresistive differential pressure transducer

of type KELLER PD-23 with a measuring range of ±100 mbar. At one tube,

additionally a piezoresistive pressure transducer of type KELLER PAA-23 with

a range of 0 to 2 bar for static pressure measurements was attached by a T-piece.
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4.3. Resonance Pipe Measurements

The opposing tube was compensated for the differing volume with a T-piece and

a tube of same length (see Fig. 4.6).

In light of the above considerations for fast density determination, two K-type

thermocouples of 0.5 and 1 mm diameter have been placed inside the orifice

meter. They were fixed with a spacing of 1 mm between the measuring tips at

the pipe center, using a thin wire running across the pipe cross section (Fig. 4.7).

The pipe section containing the temperature sensors was then attached to the

orifice pipe with a distance of about 300 mm to the orifice plate.

Figure 4.7.: Two thermocouple (0.5 and 1 mm �) configuration for fast temperature measure-

ment.

Pressure and temperature sensor signals have been digitally converted using

National Instruments A/D converters. The signals of both pressure transducers

were sampled at rates of 10kHz, whereas the thermocouples were sampled at the

highest possible rate of 100Hz.

A Y-junction element in the resonance pipe with a reduced inner diameter of 30

mm of the branch pipe was positioned in front of the driver box. This side branch

was used to create a steady mass flow inside the resonance pipe towards the open

end, drawn in Fig. 4.5 on the right side. The steady flow was set using a PILLER

radial blower with a maximum flow rate of 0.18 m3/s or 10000 l/min. Due to the

operating principle of the radial blower, inevitably generated pulsations which
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would influence any steady measurement had to be eliminated. For this reason a

pulsation damper was installed preceding the reference unit in the direction of

the flow. Employed damper and reference unit were an AVL 442 Blow By Meter

system for steady flow measurements up to a maximum flow rate of 600 l/min.

Drawbacks of the used flow meter were the low permissible flow rates on the one

hand, and a high pressure loss caused by the pulsation damper on the other.

4.3.2. Setup Characterization

At first an evaluation of the measurement setup, the sensors and the resonance pipe

at hand was necessary. This included an analysis of the measurement equipment

signals for potential error sources, evaluation of the calibration coefficients for

steady flow and a determination of the resonance modes of the resonance pipe.

Zero Flow Signals

The orifice meter was tested for its response in a quiescent setting to correct and

adjust for measurement errors induced by the setup components. Main points of

interest were the noise characteristics and the temporal drift of the differential

pressure sensor, already described by Doblhoff-Dier [34] for the same equipment.

After a system warm up phase of a few minutes and at no flow or other major

acoustic excitation, the differential pressure signal was initialized to zero by

averaging the sensor output voltage over a span of 5 seconds. Subsequently, the

pressure signals were monitored over a few minutes to determine any occurring

drift.

Pressure Transducer Analysis

Since measurement ranges and specified errors of the absolute and differential

pressure transducers in use were different, it was unclear if the transducers had

equal accuracy and temporal response in the frequency range of interest and
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4.3. Resonance Pipe Measurements

if the absolute static pressure at the tapping side where no absolute pressure

transducer was installed, could be approximated from the absolute pressure signal

at the opposite side and the differential pressure signal.

Disconnecting the differential pressure transducer at the side opposite to the

absolute pressure transducer and sealing the open ends of the disconnected tubes,

made it possible to compare the pressure responses at the absolute pressure

transducer side.

Steady Flow Calibration

For calibration purposes, the same setup as for the later conducted measurements

with pulsations, but with a shorter resonance pipe length was used. The resonance

pipe was shortened to reduce pressure losses and therefore allow for higher flow

rates.

Pressure signals at the orifice were recorded for a few seconds for each flow rate

set. Measurements were then repeated for the reversed orifice meter, to determine

if differences in the pressure response existed for reverse flow. As stated above,

only flow rates up to 600 l/min could be reached with the given setup.

Resonance Modes

To determine the resonance modes of the system, a white noise signal of constant

spectral density was applied to the loudspeaker. The orifice meter was placed at

the end of the resonance tube, resulting in a distance of 0.35 m between orifice

plate and the open end. Static pressure amplitudes there should still be high

enough for detection of the resonance modes.

Pressure signals at the orifice were then measured for a span of 30 s and a Fourier

analysis was applied to determine the spectral components of the measured

response.

The measured resonance modes were compared to numerically calculated reso-

nances for a smooth pipe connected to a driver box with a conical transition,
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using a frictionless plane wave ansatz in the cylindrical pipes and a spherical

wave ansatz in the conical section. Zero pressure amplitude boundary condition

at the open end plus end correction and a mechanical, sinusoidal excitation at the

driver side then were assumed to calculate the resonance frequencies according

to Marx et al. [50].

4.3.3. Resonance Frequency Excitation

Knowing the resonance modes of the main pipe, it was the aim to use the driver

to generate single frequency standing waves inside the pipe and use the well

describable pressure and flow fields of standing waves to allow a measurement

of the unsteady calibration parameter k. The orifice meter was first placed at

positions of pressure antinodes. There, flow velocity should be zero for all times

and therefore the differential pressure measured at the orifice should be small.

The static pressure transducer would provide the pressure amplitude of the

standing wave later needed to characterize the flow velocity at a pressure node.

All measurements were run for 30 s after an initial offset correction.

Since the exact wave pattern at the driver end is heavily influenced by the shape

of the driver box, all positions in the main pipe were referenced to the distance

to the open pipe end, including an end correction of 0.85 · r. There a well defined

pressure node and particle velocity antinode is present, which allows to better

locate standing wave nodes inside the pipe.

The resonance pipe was excited at several different resonance frequencies, although

the later detected influence of the resonance of the pressure measurement system

at a frequency as low as 140 Hz invalidated most of the measurements at

frequencies higher than 30 Hz. Therefore only two measurements are evaluated

in this work. Th 139 Hz excitation case was the pointer in identifying the

measurement resonances and the 30 Hz mode allowed an approximate assessment

of the proposed procedure, which is why the evaluation of those two is explained

in detail below.
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139 Hz excitation

At an excitation frequency of 139 Hz (11 · λ/4 - wave), the orifice meter was

first positioned in the resonance tube with a distance of 0.60± 0.02 m between

orifice plate and open end. This was the anticipated location of the first pressure

antinode, taking into account the end correction of 0.0256 m.

Subsequently the orifice was moved to distances of 1.22 and 1.85± 0.02 m from

the open end, where node and another antinode were assumed.

30 Hz excitation

For the excitation frequency of 30 Hz (3 · λ/4 - wave), the orifice was positioned

at a distance of 2.86± 0.02 m from the open end, what again was the location of

the first pressure antinode. The orifice meter was then moved all the way to the

open end of the pipe, resulting in a distance of 0.38 m between orifice plate and

open end plus end correction. This was the only way to measure at a pressure

node of the 3 · λ/4 - wave at the given total pipe length, since the driver box

dimensions did not allow to place the orifice meter any closer to it.

At both locations, a spectral analysis of the absolute and differential pressure

signals was done to identify the amplitudes of the 30 Hz components of the

signals. With the static pressure amplitude, the maximum (cross sectional) mean

flow velocity of the standing wave at a pressure node can be calculated using the

impedance of the pipe, Eq. 2.41:

U =
p

ρ0c
, (4.26)

with the velocity of sound c =
√
κp0

ρ0
and κ = 1.4 for air. To compare this

mean flow velocity to the calculated velocity of the unsteady friction model, the

measured signals were evaluated as follows.

Since, temperature stayed constant within the measurement uncertainty (±0.2 K),
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densities were determined using the measured temperature from the 0.5 mm

thermocouple combined with the static pressure measured at the pipe, exploiting

the adiabatic relation Eq. 3.18 given in the chapter about density calculation

(chapter 3). The specified time constant of τ = 1.5 ± 0.5s was used, where

the uncertainty has been generously estimated in light of the considerations

in chapter 3 for temperature measurement. The high uncertainty of the time

constant however would not impact density calculations, due to the near constant

mean pressure and temperature (see Eq. 3.18). Density derivatives were calculated

using smooth noise robust differentiators of 19th order [51], although this again

was of minor importance at this point, since obtained density variations were

small for the given setup at 30 Hz.
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5.1. Steady Flow Simulation in OpenFOAM

Although the main focus of this work was the unsteady flow measurement, it

became apparent that a detailed analysis of the steady flow effects was necessary

to reliably predict the unsteady behavior. In figures 5.1a and 5.1b velocity profiles,

evaluated at the pressure tappings upstream and downstream of the orifice in

the steady flow simulations are shown. The corresponding momentum correction

coefficients are drawn in Fig. 5.2. These considerably deviate from unity, although

this is traditionally assumed in orifice measurement theory. Main reason for this

deviation is the higher weighting of the outer pipe sections due to their area,

where the flow velocity is more severely affected by the orifice plate.

An asymptotic behavior towards βm,1 = βm,in = 1.90± 0.01 and βm,2 = βm,out =

2.54± 0.01 at higher flows can be observed for the momentum correction coeffi-

cients at the simulated flow speeds. At small flows larger changes in the coefficients

are noticeable and no convergence towards definite values can bee seen. Since

pressure measurement errors for flow rates Q < 200 l/min are already greater

than the measurable pressure difference itself (∆p ≈ 3 Pa in the simulation),

the error induced by using the asymptotic βm values for the whole measurement

range in the calculation process is minimal. For this reason, the conventional

steady flow meter equation in the form of ∆p = (A/ρ)J2, where A is a calibration

constant, is providing satisfying results for carefully set up measurements.

Plotted in figure 5.3 is an exemplary radial static pressure distribution at a flow
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Figure 5.1.: Velocity profiles at the pressure tappings (a) upstream and (b) downstream of the

orifice for steady flow at 1 to 20 m/s mean flow velocity.
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rate of 3814 l/min taken at the tappings, i.e. directly in front and behind the

orifice plate. As is noticeable in Fig. 5.3, some irregularities, especially at the

axis (r = 0), are visible in the pressure distributions. These irregularities are

created by the used OpenFOAM solver when solving the pressure fields at highly

non-orthogonal mesh cells, including the wedge shaped cells adjacent to the axis,

and effected the pressure field inside those cells. Therefore centerline pressure

values have a higher numerical uncertainty error.
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Figure 5.3.: Radial pressure distribution at the pressure tappings for steady flow at 20 m/s

mean flow velocity, corresponding to 3814 l/min.

Beginning in the vicinity of the edge of the orifice (r ≥ 0.023 m), the upstream

pressure shows a steep rise of about 600 Pa, caused by the stagnation at the

orifice plate. This increase from the core pipe static pressure (≈ 99970 Pa) is not

considered in conventional flow meter equations for corner tapping configurations,

although it amounts to almost half of the total measured pressure difference

∆pmeasured = 1404 Pa. At the downstream side, a rather gradual drop away from

the axis, up to the edge of the orifice can be observed (r ≤ 0.023 m). From there

on, the downstream pressure stays almost constant. The gradual drop is caused

by the velocity increase between the tappings and the associated Bernoulli effect,
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which is considerably larger at the edge of the orifice (compare Figs. 5.6).In figures

5.4 and 5.5 the pressure differences between the pressure tappings (indicated in

Fig. 4.4 by arrows) are marked by the red dots for the simulated steady cases.

Centerline pressure differences are drawn in blue. All pressures have been divided

by the cross sectionally averaged density to calculate the kinematic pressure,

eliminating density- or temperature-based pressure variations and allowing for

better comparison between measurements and simulations.

The large discrepancies between pressure differences at the tappings and the axis,

are mainly a consequence of the impact pressure that is measured at the tappings

in addition to effective and dynamic pressure drop. To underline the severity

of the influence of the impact pressure, the steady flow equation 4.8 has been

evaluated using mass flux and momentum correction coefficients from the CFD

simulations to calculate the theoretical values of the sum of effective and dynamic

pressure differences, ∆peff. + ∆pdyn.. This pressure difference is also plotted in

figures 5.4 and 5.5 and shows the large overestimation of the flow rate one would

obtain in a corner tapping configuration, using an uncorrected or uncalibrated

steady flow equation that simply attributes the measured pressure drop to an

acceleration caused by the difference in (effective) cross sections at the tappings.

At an ideal stagnation point, pressure velocity is zero and all kinetic energy,

i.e. dynamic pressure, has been converted isentropically to static pressure. Since

dynamic pressure in ideal flow is a function of the velocity squared and the stagna-

tion pressure is the main part of the impact pressure, the near quadratic behavior

of the total measured pressure difference ∆pmeasured = ∆peff.+∆pdyn.+∆pimpact

could be explained.

For the mentioned pressure differences, second order least squares fits with the

fit function ∆p/ρ̄ = A sgn(Q)Q2 have been carried out. These regressions were

done only using the simulation measurement points up to 950 l/min. Fitting

parameters A can be found in table 5.1. Comparing the fits in Fig. 5.5 to the

simulations at flows higher than 950 l/min shows the higher order dependency

of the measured, tappings pressure difference, that has to be considered. This
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is also visible in the experimental calibration measurements, which have been

plotted at this point for comparison purposes. Conventionally the additional

non-linear behavior is empirically accounted for in the discharge coefficient in

the Reader-Harris/Gallagher equation (Eq.2.33). The AVL 442 Blow By Meter

uses a simple calibration polynomial of third order.

Due to the fact, that even the theoretical evaluation of ∆peff. + ∆pdyn. showed a

noticeable higher order dependency for higher flow rates, both tappings pressure

difference and the sum ∆peff. + ∆pdyn. were fitted with the fourth order poly-

nomials ∆p/ρ̄ = A1Q+A2 sgn(Q)Q2 +A3Q
3 +A4 sgn(Q)Q4 for later use in the

calculations for unsteady flow. Regression parameters thereof can be found in

table 5.2.

Table 5.1.: Parameters A in least squares fits for pressure differences ∆p/ρ̄ = AQ2 in steady

flow simulations, only using flow rates up to 950 l/min.

∆p A [m−4]

∆ptappings -268194

∆paxis -38562

∆peff. + ∆pdyn. -50896

Table 5.2.: Fit parameters in least squares fit for pressure differences ∆p/ρ̄ = A1Q +

A2 sgn(Q)Q2 +A3Q
3 +A4 sgn(Q)Q4 in steady flow simulations.

∆p A1 [m−1s−1] A2 [m−4] A3 [sm−7] A4 [s2m−10]

∆ptappings 3.16829678 −258271.004 −692549.438 2739966.4

∆peff. + ∆pdyn. 43.377324 −53677.891 −43713.9393 466231.669
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5.2. Unsteady Flow Simulations in OpenFOAM

5.2.1. 30 Hz Pulsation

As mentioned before, the low frequency case should give good results even using

the quasi-steady approach, since inertia effects should still be low. Figures 5.6a

and 5.6a show the instantaneous velocity distributions plotted at quarters of the

full pulsation cycle. The velocity profiles are still in close agreement with the

steady ones and the momentum correction coefficients, drawn in Fig. 5.7, for most

of the time are close to the asymptotic steady values, which will be used in the

calculations later on. Only at the points in time where mean flow goes to zero, βm

becomes ill defined, because it is inversely proportional to the mean flow. At the

flow direction dependent inlet side, the momentum correction coefficient is mostly

below the asymptotic value βm,in. This increases the difference (βm,in − βm,out)
compared to the quasi-steady approximation and will lead to an overestimation

of the flow rate. At maximum flow rate for example, the difference is increased by

approximately 11 %, leading to an equivalent mass flow rate error (see Fig. 5.11).

First the unsteady friction parameter was determined. k is plotted in dependence

of the instantaneous acceleration/deceleration in figure 5.8. The large fluctuations

around zero acceleration are caused by the vanishing denominator in k. It is

distinguished between accelerating and decelerating flows, to examine if differences

in the unsteady friction parameter for acceleration and deceleration can be found,

as suggested by unsteady pipe flow theory.

Disregarding friction values of accelerations/decelerations near zero, showed that

k = 5.4± 0.5 for acceleration and deceleration. Because of the high uncertainty,

no difference between acceleration and deceleration friction values could be

determined. A fixed unsteady friction k = 5.4 was therefore used in the calculation

of the mass flow. Since this value was later confirmed for all unsteady simulation

cases, it was the one retained for all following mass flow calculations using the

unsteady friction model.
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Figure 5.6.: Velocity profiles at the pressure tappings (a) upstream and (b) downstream

of the orifice for the 30 Hz pulsation simulation. ϕ is the phase in the tran-

sient pressure difference cycle, starting at zero pressure difference (i.e. maxi-

mum flow rate). The phase angles of ϕ = 0, π/2, π, 3π/2 correspond to times

t = 0.0589, 0.0672, 0.0756 and 0.0839 s, respectively.

Figure 5.9 shows the measured pressure difference between the tappings for the 30

Hz simulation. The solid lines represent the quasi-steady and transient pressure

differences calculated with the proposed unsteady friction model. For comparison

purposes, the pressure differences which are calculated from the boundary condi-

tions of the CFD simulations with the traveling wave ansatz, according to page

61, are drawn in dashed lines.

One can see that the phase difference between the applied transient pressure

difference and the momentary flow, i.e. ∆pq.s., produces an asymmetric total,

measured pressure difference even though the mass flow is sine-shaped. This

behavior validates the assumption of the measured pressure difference being a

superposition of a quasi-steady and a transient part. There is another interesting

feature at the point of flow reversal: The quasi-steady pressure difference is forced

to go through zero with the assumed polynomial behavior, whereas the real pres-

sure difference does not exhibit this behavior. This causes a local underestimation

of ∆pq.s., which results in an overestimation of the transient pressure difference

∆ptrans. and the calculated change of the mass flow rate (compare Fig. 5.10, e.g.

at t ≈ 0.036 s), ultimately leading to an additional overestimation of the flow
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Figure 5.9.: Measured pressure difference ∆pmeasured in the 30 Hz pulsation simulation. Un-

steady friction model calculated quasi-steady and transient pressure difference

fractions, ∆pq.s. and ∆ptrans.. Pressure differences denoted “from b.c.”, are the

calculated values from the boundary conditions of the simulation.

The actual and calculated mass flow rates, as well as the respective mass flow

rate errors and root mean square errors are plotted in figures 5.11 and 5.12. As

expected, neither model or change in inertance B (as specified on page 62) seems

to cause a drastic deviation from the real flow rate. Though, RMS errors show

that the unsteady friction model and an inertance value of B ≈ 10 are best

capturing the dynamic behavior of the flow. Higher inertance values exhibit a

phase lag behavior in the calculated mass flow rate.
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friction model and the classical inertia model with B as specified on page 62, in

the case of a 30 Hz pulsation.

84



5.2. Unsteady Flow Simulations in OpenFOAM

5.2.2. 300 Hz Pulsation

At a pulsation rate of 300 Hz inertial effects should already play a dominant

role. Velocity distributions and corresponding momentum correction coefficients

of the 300 Hz simulation are plotted in figures 5.13 and 5.14. The momentum

coefficients again start to deviate strongly from the steady behavior when the

mass flow approaches zero. In the velocity distributions one can see, that locally

reverse flow occurs at the tappings even though mean flow is positive at all

times.
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Figure 5.13.: Velocity profiles at the pressure tappings (a) upstream and (b) downstream

of the orifice for the 300 Hz pulsation simulation. ϕ is the phase in the tran-

sient pressure difference cycle, starting at zero pressure difference (i.e. maxi-

mum flow rate). The phase angles of ϕ = 0, π/2, π, 3π/2 correspond to times

t = 0.0197, 0.0205, 0.0214 and 0.0222 s, respectively.

Evaluation of the unsteady friction revealed a slightly different pattern, than

the one at 30 Hz (Fig. 5.15). However, this can be attributed to the temporal

uncertainty of the calculated phase of the incoming traveling wave, as described

on page 61. It also explains a small difference observed between acceleration and

deceleration friction values and thus did not allow a distinction between those

two. Therefore, again only one unsteady friction parameter, k = 5.4± 0.5, could

be determined for acceleration and deceleration.
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Figure 5.14.: Actual momentum correction coefficients βm for 300 Hz pulsation simulation.

Steady flow, asymptotic values for inlet and outlet momentum correction coefficients

βm,in = 1.90 and βm,out = 2.54 are marked on y-axis.
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Quasi-steady and transient pressure differences calculated with the unsteady

friction model (see Fig. 5.16), are in good agreement with the ones inferred from

the boundary conditions. Nevertheless the eventually calculated mass flow rate

is overestimating the true value. This can be seen for all calculations including

the inertance of the orifice. Corresponding errors in figure 5.18 show, that the

overestimation of the mean flow rises with increasing inertance B. Since assuming

an inertia that is too high has an averaging effect, the square root error as

mentioned in section 2.5.1 will lead to the observed overestimation of the flow

rate.

As was the case in the 30 Hz simulations, the unsteady friction model and

the conventional inertia model with a value of B ≈ 10 produce similar results

since terms including the density derivatives are small in comparison to the

transient pressure difference term in the unsteady friction model. Both calcula-

tions produced relative errors of around 10 % and exhibited the best dynamic

behavior.
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Figure 5.16.: Measured pressure difference ∆pmeasured in the 300 Hz pulsation simulation.

Unsteady friction model calculated quasi-steady and transient pressure difference

fractions, ∆pq.s. and ∆ptrans.. Pressure differences denoted “from b.c.”, are the

calculated values from the boundary conditions of the simulation.

The quasi-steady calculation with B = 0 clearly illustrates the inertial error, as
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described in section 2.5.1, showing an overestimation during acceleration phases

and an underestimation of the flow rate during deceleration phases. It additionally

results in a drastic underestimation of the total flow rate in this case, because

a positive pressure difference is measured in deceleration phases and directly

assigned to a negative flow rate.
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Figure 5.17.: Actual and calculated mass flow rates for the 300 Hz pulsation case, using the

unsteady friction model and the classical inertia model with different values of B.
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Figure 5.18.: Relative mass flow errors and root mean square errors (RMSE) for the unsteady

friction model and the classical inertia model with different values of B in the case

of a 300 Hz pulsation.
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5.2.3. Engine Intake

Both simulations discussed above were special cases involving either no mean flow

(30 Hz simulation) or a pulsation frequency on the boundary of the practical

relevance (300 Hz simulation). They are important for the understanding of the

underlying flow physics, but do not allow to estimate the errors made in practical

situations. Results of the intake flows of a two cylinder engine running at 4000

rpm are presented in figures 5.20 and 5.21.

Because the pulsation amplitude is noticeably smaller than the mean flow most

of the time and therefore flow distribution stays in a quasi-steady state, the

momentum correction coefficients plotted in Fig. 5.19 are close to the asymptotic

steady inlet and outlet values. Only when flow is heavily decelerated to almost

zero mean flow at t = 0.027 s, considerable momentum distribution deviations

occur.
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Figure 5.19.: Actual momentum correction coefficients βm in the simulations of the intake of a

two cylinder engine running at 4000 rpm. Steady flow, asymptotic values for inlet

and outlet momentum correction coefficients βm,in = 1.90 and βm,out = 2.54 are

marked on y-axis.

Again, the unsteady friction model and the conventional inertia model with a value

of B ≈ 10 deliver the lowest errors, although both models fail to capture the real
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flow behavior when the flow rate comes close to zero. Higher inertial coefficients

again show a rising averaging behavior, resulting in a rising overestimation of the

total mean flow.
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Figure 5.20.: Actual and calculated mass flow rates for the intake of a two cylinder engine

running at 4000 rpm, using the unsteady friction model and the classical inertia

model with different values of B.
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Figure 5.21.: Relative mass flow errors and root mean square errors (RMSE) for the unsteady

friction model and the classical inertia model with different values of B simulated

for the intake of a two cylinder engine running at 4000 rpm.

5.3. Resonance Pipe Measurements

5.3.1. Setup Characterization

Zero Flow Signals

Power spectral densities of absolute and differential pressure signals recorded

for six minutes at no flow or deliberate acoustic excitation are plotted in figure

5.22. The spectra were calculated using Welch’s methed, computing the average

spectrum of 1 second, 50 % overlapping and Hanning-windowed time-segments.

Clearly electronic noise can be identified at frequencies above 1000 Hz. However,

there also were significant spectral components around 140 Hz present in the

measured differential pressure signal. The frequency was later identified as a

resonance frequency of the resonance pipe and of the pressure measurement

system. Since at the time of measurement the orifice meter was fully assembled

and installed in the resonance pipe, it remained unclear if this peak is a result of

the electronic setup, including the transducers, or a consequence of unwanted
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5.3. Resonance Pipe Measurements

exterior excitation causing repeated resonances in the resonance tube or the

pressure measurement system.
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Figure 5.22.: Power spectral densities of measured absolute and differential pressures with no

flow or acoustic excitation over a span of 6 min, calculated with Welch’s method.

The differential pressure signal showed a noise root mean square value of 2 Pa

and a drift of 0.2 Pa over the 6 minute span. Static pressure measurement relative

noise root mean square was 20 Pa. Because the noise peak-to-peak levels in the

differential pressure signal were low in comparison to the expected pressures

differences and in the case of the present high frequency noise only the mean will

effectively cause a flow, it was decided not to digitally filter the pressure signals.

One second, moving averages over the differential pressure showed a quick rise

of the offset up to 0.1 Pa in the first 10 seconds, even though the offset was

corrected before the start of the measurement. Since a mean differential pressure

of 0.1 Pa is already attributed to flow rates of about 40 l/min with the orifice

and pipe diameters in use, this results in substantial error rates. As a consequence,

dynamic flow rate measurements should be confined to short time spans and

offsets should be corrected in between to keep errors low.

Pressure Transducer Analysis

Two example response comparisons of the absolute pressure transducer and the

converted differential pressure transducer are shown in figures 5.23 and 5.24. At
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5. Results and Discussion

frequencies below approximately 100 Hz and amplitudes of 1000 Pa the signals

were still in good agreement, but were diverging above the given thresholds. It is

unclear which transducer is providing more reliable values, but because of the

high specified uncertainty of the absolute pressure transducer (±500 Pa) and

because of the sinusoidal response (which was the supplied loudspeaker signal) of

the differential pressure transducer, the latter one should be more trustworthy.

For the stated reasons, simple calculations of the static pressure on the side

opposite of the absolute pressure transducer by p1 = p2 −∆p significantly alter

the signal for higher frequencies or amplitudes and thus have high uncertainties.
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Figure 5.23.: Comparison of absolute pressure transducer signal and signal of differential pressure

transducer, which was converted to a relative pressure transducer, at 31 Hz and

low amplitude. p1 approximated by (p2 − ∆p).

Steady Flow Calibration

During the steady flow calibration measurements, oscillations at a frequency

around 140 Hz with amplitudes up to 25 % of the mean differential pressure were

present in the pressure signals. A similar behavior has already been reported by

Doblhoff-Dier [34] for the same device at slightly higher frequencies. There, a

combination of resonances in the main pipe and in the pressure measurement

system was suspected and made responsible for the occurring pulsations.
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Figure 5.24.: Comparison of absolute pressure transducer signal and signal of differential pressure

transducer, which was converted to a relative pressure transducer, at 142 Hz and

high amplitude. p1 approximated by (p2 − ∆p).

As is discussed below, the spectral peak at the frequency in question is clearly

identified as a resonance frequency of the pressure measurement system, justifying

the theory about the coupling between resonance pipe and connecting tubes.

The lower resonance frequency in this work compared to Doblhoff-Dier can be

explained by the additional volumes connected to the pressure measurement

system for the static pressure transducer and the volume compensation tube

on the opposite side. The resonance frequency itself, is well below what can

be anticipated from λ/4-waves in the pressure gauge lines, but a Helmholtz

resonance behavior including the volume of the connecting ports around the

orifice as discussed in section 2.6.2 could explain the low frequencies.

Another investigated explanation for the occurring oscillations, was the shedding

of vortices at the orifice plate due to weak resonance pulsations in the main

pipe, creating additional fluctuations in pressure at the downstream tapping.

According to Sigurdson et al. [52], vortices at the edge of an orifice would be

shed at the frequency of an inducing pulsation, narrowing the downstream jet

periodically. This results in a periodic increase/decrease of the Venturi effect and

an oscillating downstream pressure can be measured, due to the varying Bernoulli

effect. The fact, that the pulsations at steady flow could be detected with the
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static pressure transducer at the upstream tapping to an equal extent, indicated

that vortex shedding, although most certainly occurring, is not the root of the

high differential pressure oscillations measured.

If the pulsations can be attributed to resonances in the connecting tubes, the

resulting pressure at the transducers will be a superposition of the approximately

constant, steady pressures at the tappings and the standing waves in the con-

necting tubes. In the case of a symmetric deflections, the time average of the

pressure signal then provides the correct pressure at the tappings. Applying a

digital low-pass filter to cut off frequencies equal to and above the resonance

frequency for all later measurements, in the same manner as it was done by

Doblhoff-Dier, was deemed unsuitable for accurate unsteady flow measurement.

The reason being that the spectral analysis of the simulated sinusoidal pulsations

at significantly lower frequencies revealed differential pressure responses in the

frequency range of question (see Fig. 5.9).

Figure 5.4 shows the one second time averaged kinematic pressure differences

measured in both directions, where the direction of flow is indicated by the

upstream (US) or downstream (DS) position of the absolute pressure transducer.

The time averaged flow rate measurements showed good agreement with the

steady CFD simulations in the measurement range and no significant difference

in the pressure difference for reverse flow could be detected. However, the low

permissible flow rate severely limits the conclusions that can be drawn from the

calibration measurements.

Since higher pressure differences were encountered in later measurements, flow

rates above 600 l/min have been extrapolated with a quadratic regression of the

measurements up to 600 l/min.

In light of the above discussion about the pressure oscillations in steady flow,

the recommendation to shorten pressure gauge lines has to be stressed for future

work. It was not done in this work, since initially measurements at exhaust flows

were planned and short connection tubes would pose the risk of damaging the

pressure transducers in hot exhaust gas. A change in the layout of the device

96



5.3. Resonance Pipe Measurements

and a significant reduction of the connection tube lengths, however, is essential

in order reduce measurement errors or to further restrict error sources to the

pressure transducers or unconsidered flow effects at the orifice.

Resonance Modes

Plotted in figure 5.25 are the power spectral densities of the pressure signals

acquired with the orifice in the main pipe while white noise was applied to the

acoustic driver. The resonance peaks are clearly visible therein and compare well

to the numerically calculated, anticipated resonance modes for a setup without

orifice 5.26, although calculated frequencies generally were about 4 Hz too high.

Only considering frequencies up to 200 Hz, resonance modes could be located

with this method at 29, 56, 83, 111, 139, 166, and 194 ±1 Hz, which correspond

to n ·λ/4 - waves with n = 3, 5, 7, ..., 15. In the course of the subsequent measure-

ments, resonance frequencies varied about ±1 Hz, because of small variations in

pipe length for each specific setup.

Spectral densities of the measured response showed a rise in magnitude at fre-

quencies around 140 Hz, which again is mainly attributed to the resonance of

the pressure measurement system. Nonetheless frequency dependent sensitivity

of the loudspeaker (i.e. output sound pressure level) and damping characteristics

of the resonance pipe setup are most definitely contributing to the shape of the

response spectra. Due to the constant spectral power of a white noise signal

and the sensitivity of the driver, the lowest resonance mode (L = λ/4) at 7 Hz

for example, could not be detected in the response. Since the exact impact of

above listed effects was of low importance to the subsequent single component

excitation experiments, no further investigations were carried out on this subject.

97



5. Results and Discussion

0 100 200 300 400 500

−40

−20

0

20

40

f [1/s]

P
S
D

[d
b
]

p0

∆p

Figure 5.25.: Power spectral densities of measured absolute and differential pressures in resonance

pipe during excitation with white noise, calculated with Welch’s method.
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Figure 5.26.: Numerically calculated frequency response of particle velocity at open end (uoe)

to sinusoidal excitations of acoustic driver.
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5.3.2. Resonance Frequency Excitation

Drawn in figure 5.27 is an example of the measured pressure signals at the first

antinode (counted from open end) for an excitation with the speaker at 139 Hz.

Although zero differential pressure was expected there, a response in the order of

magnitude of the static pressure could be measured for all driver output levels.

Differential pressures in the order of 5 · 103 Pa would correspond to oscillations

between −30 and 30 m/s mean flow velocity, which is highly unlikely for the

given setup. Additionally, the pressure difference showed an asymmetric behavior

with respect to zero, which continuously increased with increasing driver power.

In the case of the measurements depicted in Fig. 5.27, this asymmetry resulted in

a mean differential pressure of −100Pa. An offset of this magnitude translates to

significant flow rates, which can not be explained by a process creating mean flow

and a leakage in the setup. The same anomalies could be found at the second

pressure antinode.

Both phenomena though can be explained by the presence of the before mentioned

resonances in the pressure measurement system. When the standing wave in

the main pipe is inducing resonances in the connecting tubes of the pressure

measurement system, differences in amplitude, frequency and/or phase of the

resonances in the two sides of the pressure measurement system, then would lead

to an asymmetric measured differential pressure.

All ensuing measurements were significantly influenced by the resonance mag-

nification of the pressure measurement system, since higher order harmonics of

the resonance modes below 80 Hz in the main pipe were drastically increased

by the resonance. Nevertheless it was attempted to make an assessment of the

proposed procedure to determine the unsteady friction parameter at 30 Hz. At

this frequency resonances were present, but of minor extent compared to higher

resonance modes.

Figures 5.28 and 5.29 show the measured pressure signals at the pressure antinode

and node, respectively. The pressure signal spectral components at 30 Hz are

given table 5.3. At the antinode a pressure maximum of 3200 ± 100 Pa was
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Figure 5.27.: Measured absolute and differential pressure at 139 Hz with orifice located at

pressure antinode.

found, but the measured differential pressure could not be reduced any further by

varying the position of the orifice plate. At the node, the superimposed resonances

of the pressure measurement system (146 Hz) are clearly visible.

Table 5.3.: Fourier components of absolute and differential pressure signals at 30 Hz with orifice

located at pressure antinode and node.

location p2 [Pa] ∆p [Pa]

antinode 3200± 100 15± 10

node −0.38 m 480± 50 190± 10

Using the pressure amplitude of p = 3200± 100 Pa at the antinode, measured

quiescent density ρ0 = 1.165 ± 0.005 kg/m3 and static pressure p0 = 97810 ±
20 Pa, allows to estimate the amplitude of the standing wave velocity to U =

8.0 ± 0.3 m/s. Also considering the positional displacement of 0.38 m of the
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Figure 5.28.: Measured absolute and differential pressure at 30 Hz with orifice located at

pressure antinode.
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Figure 5.29.: Measured absolute and differential pressure at 30 Hz with orifice located at a

distance of 0.38 m from pressure node.
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measurement location from the actual node location at 30 Hz, would reduce the

amplitude of the standing wave velocity to U = 7.8± 0.3 m/s. This calculation,

however, does not account for viscous losses in the pipe and at the orifice, which

would further reduce the velocity amplitude. Although, previous research has

shown, that orifice resistances are close to zero, when mean flow is zero [53].

The calculated velocity amplitude is in agreement with the calculations of the

flow velocity with the unsteady friction model (k = 5.4), plotted in figure 5.31.
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Figure 5.30.: Calculated density for 30 Hz measurement, with the orifice located at pressure

antinode.

At this point we have to refrain from a further interpretation of the above result

and from trying to determine the actual calibration parameter k for two reasons.

Primarily, measurement errors introduced by the resonances in the pressure

measurement system and the uncertainties that come with a simple spectral

analysis of a distorted signal are too large to allow an exact calculation. Secondly,

all considerations above neglected the influence that the orifice plate poses to the

standing waves inside the main duct. Moving the orifice meter for the measurement

of both, the pressure node and antinode, most certainly introduces a significant

error, because the pulsation amplitude inside the duct will likely change with the

repositioning of the orifice. Additionally, as was mentioned before and could be

seen from the simulations at 30 Hz, inertial effects at frequencies this low are

still subordinate, making an accurate determination inherently difficult.
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Figure 5.31.: Calculated flow velocity for 30 Hz measurement, with the orifice located at a

distance of 0.38 m from pressure node. An unsteady friction parameter of k = 5.4

was used.

5.3.3. Proposed Setup Modifications

To overcome the shortcomings of the setup used in this work, two suggestions for

a modified setup for future work will be listed below.

• Most importantly the layout of the the orifice meter has to be changed.

The tubes connecting the pressure transducers to the orifice have to be

shortened, to eliminate one error source of resonances in the pressure mea-

surement system. If resonances are persistent, the pressure transducers

should be re-evaluated.

• To be able to simultaneously measure orifice differential pressure, i.e. mass

flow, at a pressure node and measure standing wave amplitudes at an

antinode, an additional pressure transducer should be installed between

orifice meter and driver. It would be useful to add a second transducer at

a pressure antinode between orifice and open end, to have the ability to

measure a possible attenuation or phase shift of the pressure on the open

end side of the orifice. This of course would only be possible from the 5 ·λ/4

103



5. Results and Discussion

resonance mode upwards (56 Hz in our case).
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6. Conclusions

In an effort to improve and advance time-resolved engine intake and exhaust gas

flow measurement utilizing orifice meters without pulsation dampers, an attempt

was made to verify the relation between measured pressure difference and mass

flow rate at an orifice and enhance measurements by accounting for fast density

changes that are present in exhaust flows.

A review of literature and theoretical considerations about the flow of fluids in

steady and pulsating flows highlighted deviations in the flow fields in the vicinity

of the orifice from the flow fields presumed for conventional temporal inertia

theory orifice mass flow equations.

No proper incorporation of the increase in pressure difference due to the stagnation

the orifice plate in a corner tapping configuration could be found for steady orifice

flow theory. This was extensively discussed, since CFD simulations of steady flow

at a variety of flow speeds showed, that approximately half of the differential

pressure measured at an orifice in a corner tapping configuration is a result of the

stagnation at the upstream side of the orifice plate. The big influence of this impact

pressure on the measured pressure differential, seems to invalidate the simple

Bernoulli equation approach of explaining the pressure differences measured in

steady flows with the duct to vena contracta area ratio. Although this is of

little importance in steady flow measurement, because only the total functional

relation between pressure difference and mass flow is needed for calibration, an

incomplete consideration of this flow phenomenon inevitably leads to metering

errors and interpretation deficiencies in unsteady flow measurement.
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Following the encountered, well documented discrepancy between the quasi-steady

flow assumption that underlies inertial theory and the flow occurring at orifices in

pulsating flows, paired with the concerns of previous research by AVL List GmbH,

that the influence of the uncertainties of discharge coefficients and temporal inertia

may not allow for an accurate measurement with the use of orifices, an alternative

unsteady mass flow equation in a control region approach was proposed. The use

of an unsteady friction model, which accounts for unsteady pressure losses in

dependence of the local acceleration, backs up the fundamental relation between

temporal change of mass flow and measured pressure difference in the temporal

inertia theory. It additionally could explain the high losses previously observed

in unsteady orifice flow. The found increase of effective inertia through friction

would eliminate the need of an effective length that proves elusive to define

in terms of fluid dynamics. However, as was shown with the use of transient

CFD simulations, assuming a constant unsteady friction parameter or constant

inertia clearly introduces high errors to the predicted mass flow of pulsatile

flows when considerable deviations from a quasi-steady flow field are present,

e.g. when local flow reversal occurs. It may be possible to correctly capture this

behavior by allowing a variability of the unsteady friction in dependence of the

local acceleration or by additionally allowing a dependence on the convectional

acceleration, but this unavoidably would introduce an additional constant in need

of calibration. A constructional way of reducing the unsteady flow effects could

be to decrease the orifice hole diameter by using a multi-hole orifice and thereby

force the flow to a quasi-steady behavior. Admittedly, this needs to be validated

first by more CFD simulations.

The low errors achieved in the simulations for situations when the pulsation

amplitude is smaller than the bias flow validate the approach for pulsating intake

and exhaust flow measurement, if an accurate determination of the unsteady

friction parameter is experimentally possible and differential pressures can be

acquired correctly. Because of the high errors introduced by a wrong unsteady

friction parameter or inertial coefficient due to inertial and square root errors,

a precise determination of the unsteady friction parameter remains the main

priority for improving unsteady measurements. For the same reason, taking into
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account the temporal density changes in the model should be considered of

secondary importance. Nevertheless, the need of fast and accurate gas density

determination can be addressed by the presented method of combining the two

thermocouple compensation method with an adiabatic correction of the measured

temperature.

The experimental approach of determining the calibration parameters in a stand-

ing wave resonance pipe was shown to be heavily influenced by the presence

of resonances in the pressure measurement system. It is crucial for future work

with the device to determine the exact root of the resonances, before any further

measurements can be conducted. An adverse interference due to the overlap in

the measured pressure signal of frequency components that are flow induced and

resonance frequencies of the pressure measurement system certainly has to be

expected. If the assumption, that the unwanted resonances stem from a Helmholtz

resonance behavior is correct, shortening the connection tubes would immediately

shift the resonance frequencies upwards. Any offset in the measured pressure

difference signal that is not mean flow induced should be removed thereby.

Regarding the calibration principle itself, results at 30 Hz did show the essential

feasibility of the approach, but for a precise determination of the calibration

parameters, an improvement of the setup by including additional pressure trans-

ducers is necessary, to allow for a better characterization of the pulsations inside

the resonance tube.
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Appendix A.

OpenFOAM dictionaries

A.1. fvSchemes

/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗− C++ −∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗\
| ========= | |
| \\ / F i e l d | OpenFOAM: The Open Source CFD Toolbox |
| \\ / O perat i on | Vers ion : 2 . 3 . 0 |
| \\ / A nd | Web: www.OpenFOAM. org |
| \\/ M an ipu l a t i on | |
\∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
FoamFile

{
ve r s i on 2 . 0 ;

format a s c i i ;

c l a s s d i c t i ona ry ;

l o c a t i o n ” system ” ;

ob j e c t fvSchemes ;

}
// ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ //

ddtSchemes

{
d e f a u l t Euler ;

}

gradSchemes

{
d e f a u l t l e a s tSqua r e s ;

}

divSchemes

{
d e f a u l t none ;

div ( phi ,U) Gauss upwind ;

div ( phid , p) Gauss upwind ;

div ( phi ,K) Gauss l i n e a r ;

div ( phi , h ) Gauss upwind ;

div ( phi , k ) Gauss upwind ;

div ( phi , e p s i l o n ) Gauss upwind ;
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Appendix A. OpenFOAM dictionaries

div ( phi ,R) Gauss upwind ;

div ( phi , omega ) Gauss upwind ;

div ( ( rho∗R)) Gauss l i n e a r ;

div (R) Gauss l i n e a r ;

div (U) Gauss l i n e a r ;

div ( ( muEff∗dev2 (T( grad (U) ) ) ) ) Gauss l i n e a r ;

}

l ap lac ianSchemes

{
d e f a u l t Gauss l i n e a r co r r e c t ed ;

}

i n te rpo la t i onSchemes

{
d e f a u l t l i n e a r ;

}

snGradSchemes

{
d e f a u l t co r r e c t ed ;

}

f luxRequi red

{
d e f a u l t no ;

p ;

}
// ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ //

A.2. fvSolution

/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗− C++ −∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗\
| ========= | |
| \\ / F i e l d | OpenFOAM: The Open Source CFD Toolbox |
| \\ / O perat i on | Vers ion : 2 . 3 . 0 |
| \\ / A nd | Web: www.OpenFOAM. org |
| \\/ M an ipu l a t i on | |
\∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
FoamFile

{
ve r s i on 2 . 0 ;

format a s c i i ;

c l a s s d i c t i ona ry ;

l o c a t i o n ” system ” ;

ob j e c t f vSo lu t i on ;

}
// ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ //

s o l v e r s

{
p

{
s o l v e r PCG;

p r e cond i t i one r DIC ;

t o l e r an c e 1e−08;

r e lTo l 0 . 0 1 ;

}
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pFinal

{
$p ;

t o l e r an c e 1e−08;

r e lTo l 0 ;

}

”( rho |U| h | k | e p s i l o n | omega )”

{
s o l v e r smoothSolver ;

smoother symGaussSeidel ;

t o l e r an c e 1e−07;

r e lTo l 0 . 1 ;

}

”( rho |U| h | k | e p s i l o n | omega ) Fina l ”

{
$U ;

t o l e r an c e 1e−07;

r e lTo l 0 ;

}

}

PIMPLE

{
momentumPredictor yes ;

t r an son i c no ;

nOuterCorrectors 3 ;

nCorrectors 4 ;

nNonOrthogonalCorrectors 5 ;

rhoMin rhoMin [ 1 −3 0 0 0 ] 0 . 5 ;

rhoMax rhoMax [ 1 −3 0 0 0 ] 2 ;

r e s i dua lCont r o l

{
”(U| k | e p s i l o n )”

{
r e lTo l 0 ;

t o l e r an c e 0 . 0001 ;

}
}

turbOnFinalIterOnly o f f ;

}

r e l axa t i onFac to r s

{
f i e l d s

{
”p .∗” 0 . 3 ;

” rho .∗” 0 . 1 ;

}
equat ions

{
”(U| h | k | e p s i l o n | omega ) .∗” 0 . 7 ;

}
}
// ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ //
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[31] Andreas Brümmer, Patrick Tetenborg, and Roland Edlerherr. Numerische

und experimentelle Untersuchung pulsierender Strömungen in Wirkdruckmess-
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