TU

Grazm

Sandra Fuchs, BSc

Design and Analysis of a Transaction
based Smartcard File System

MASTER'S THESIS

to achieve the university degree of
Diplom-Ingenieurin

Masters degree programme: Software Development and Business Management

submitted to

Graz University of Technology

Supervisors
Ass.Prof. Dipl.-Ing. Dr.techn. Christian Steger
Institute for Technical Informatics

Head of Institute: Univ.-Prof. Dipl.-Inform. Dr.sc. ETH Kay Uwe Romer

Dipl.-Ing. Martin Kaufmann, NXP Semiconductors Austria GmbH

Graz, May 2015



AFFIDAVIT

I declare that I have authored this thesis independently, that I have not used other than
the declared sources / resources, and that I have explicitly indicated all material which
has been quoted either literally or by content from the sources used. The text document
uploaded to TUGRAZonline is identical to the present master‘s thesis dissertation.

date signature



Abstract

As smartcards often contain and exchange sensitive information, the storage of this data
in the underlying file system and the related access control mechanisms are extremely
important in order to guarantee information security. The goal of this thesis is to design
a transaction based smartcard file system which allows to re-use memory.

In order to accomplish this, long-known file systems and memory management techniques
as well as state-of-the-art approaches are investigated and compared. As common flash file
systems are conceptualized for large memories, much adoptions on the system structure
are necessary but anyhow their usage within smart cards turns out to be improperly and
not efficient at all. Closer investigations show that structures based on a file allocation
table or on the basic functionality of the Extended File System are suitable for adaptation
for a smart card.

Several different file system concepts are developed and their efficiency in terms of per-
formance and memory usage is evaluated and compared for the purpose of finding the
most suitable one. The usage of reference transactions and careful comparisons of pro
and contra arguments finally leads up to a FAT based smart card file system design in
combination with a journaling mechanism being the most expedient one.

Keywords: smart card file system (SCFS), file system, card operating system (COS),
non-volatile memory, memory management, journaling, EXT, FAT, YAFFS

ii



Kurzfassung

Da Chipkarten sehr hiufig sensible Informationen enthalten sowie diese mit Kartenlesern
austauschen, ist die Art des Speicherns der Daten im Dateisystem auf der Karte sowie
der dazugehorige Datenzugriffsmechanismus essenziell, um die Sicherheit der Daten zu
gewdhrleisten. Das Ziel dieser Diplomarbeit ist der Entwurf eines transaktionsbasierten
Dateisystems fiir Chipkarten, welches die Wiederverwendung von Speicher ermoglicht.
Um dies zu erfiillen, wurden mehrere altbekannte Dateisysteme, Speichermanagement-
Techniken sowie die neuesten Forschungsergebnisse im Bereich der Chipkarten Dateisys-
teme untersucht und verglichen. Da bekannte Flash Dateisysteme eher fiir grole Speicher-
medien konzipiert wurden, sind viele Anpassungen an der generellen Struktur notwendig,
um sie fiir die Verwendung in Chipkarten passend zu machen. Trotzdem stellt sich heraus,
dass ihre Anwendung in Chipkarten wenig effizient ist. Weitere Untersuchungen zeigen,
dass Strukturen welche auf einem File Allocation Table (Dateizuordnungstabelle) oder
auf der grundlegenden Funktionalitit des Eztended File Systems beruhen, passend fiir die
Anforderung einer Chipkarte sind beziehungsweise erfolgreich adaptiert werden kénnen.

Mehrere unterschiedliche Dateisystem-Konzepte werden in dieser Diplomarbeit entwor-
fen und deren Effizienz in Bezug auf Leistungsfihigkeit, Funktionalitéit sowie Speicherver-
wendung wird ausgewertet und verglichen, um moglichst gut das am Besten passende
Dateisystem heraus zu filtern. Die Verwendung von Referenz-Transaktionen und das
sorgfiltige Abwigen zwischen Pro- und Contra-Argumenten identifiziert schlussendlich
das vorgeschlagene FAT-basierende Chipkarten Dateisystem in Kombination mit Journal-
ing als das vielversprechendste.

Stichworter: Chipkarten-Dateisystem, Dateisystem, Chipkarten-Betriebssystem, Spe-
ichermanagement, nichtfliichtiger Speicher, Journaling, EXT, FAT, YAFFS

iii



Acknowledgements

I would like to express my appreciation and thanks to several people who supported me
throughout the last months.

First and foremost, I have to thank my supervisors Martin Kaufmann from NXP Semi-
conductors Austria GmbH and Christian Steger from Graz University of Technology for
their patience, support and guidance. Thank you for your advice, enlightening discussions,
constructive criticism and review of draft versions of this thesis.

Second I would like to thank the Institute for Technical Informatics for making the cooper-
ation with the company NXP Semiconductors Austria GmbH and therefore the realization
of this thesis possible.

My thanks also go to my dear colleagues for their patience, help and efforts in providing
useful answers to my countless questions.

Finally I owe special gratitude to my whole family for their continuous and unconditional
support. I want to thank my parents, Christiane and Peter, for their confidence, encour-
agement and aid over the years of my academic studies. They both gave me motivation
during tiring times and believed in me when I had doubts. Also my other half, Martin,
encouraged and supported me and showed seemingly endless patience when discussing new
ideas. Thank you for everything.

Sandra Fuchs

v



Contents

2.4 Free Space management| . . . . . ... ..o Lo

[3 Common File Systems|

3.1 Journaling file systems| . . . . . . . .. ... o oo
3.2 Disk file systems| . . . . ... ...
3.2.1  EXT - Extended File System| . . . . . . ... ... ... .......
322 FAT - File Allocation Tablel . . . . . . .. ... ... ... ... ...

[3.2.5 BTREFS - B-Tree File System| . . . . . .. ... ... ... ......
[3.3 Flash file systems| . . . . . .. . ..o o oo
33T JEFS . . . .

[4 State-of-the-Art in Smartcard File Systems|

4.1 ISO/IEC memory organization| . . . . . . . . . . .. ... ... .......
4.2 Non-volatile memory management| . . . . .. .. .. ... ... .......
4.3 Various examples of flash and smart card file system designs and proposals|
[4.3.1 RIFFS - Reverse Indirect Flash File System|. . . . . . .. ... ...
4.3.2  FRASH - Hierarchical File System tor FRAM and Flash| . . . . . ..
4.3.3  FSOC - Flash Memory-based File System on Chip| . . . . .. .. ..




[4.3.4  Implementation of a Smart Card Operating System| . . . ... ... 24

44  Conclusionl . . . . . . . . 26
[5 Design and Conception of potential Smartcard File Systems| 27
[5.1 Design decisions (based on the reference file system)| . . . . ... ... ... 28
5.2 Journaling file system design| . . . . ... ... ... L. 28
[5.2.1  Normal journaling| . . . ... ... ... ... ... ... ....... 29
[5.2.2  Reverse journaling] . . . . . .. ... ... .. ... ... ... ... 29
[.2.3  Comparison of both solutions| . . . . . . ... ... ... .. ..... 30

5.3 Proposals based on the usage of a file allocation table] . . . . ... ... .. 30
[5.3.1 File system using two FATs (Double FAT approach)| . . . . ... .. 31
15.3.2  File System using a FAT in combination with journaling|. . . . . . . 36

5.4 Design approach based on the EX'T file system structurel. . . . . . . . . .. 39
[5.4.1  EX'T based file system in combination with journaling| . . . . . . .. 39

[5.5  Design approach based on the YAFFS file system|. . . . . ... .. ... .. 43
[5.5.1  Mixture between YAFEFS1 and YAFFS2 design| . . . . . .. ... .. 43

[5.6 'Tree based file system proposalg|. . . . . . ... ... .. L. 50
[5.6.1  Definition and mode of operation of B-trees . . . . . . . .. ... .. 50
[5.6.2  Dictionary operations| . . . . . . . .. .. .. ... . ... ..., 50
0.6.3  B-tree inside the smartcard| . . . . . . .. .. .. ..o 51

[6 Comparison of the different suggested File System Concepts| 52
6.1 General clarifications . . . . . . . . ... o o 52
6.1.1  Fragmentation| . . . . . . ... ... 0oL 52
[6.1.2  Handling of security relevant data (e.g. key data)|. . . . . . ... .. 53
[6.1.3  Linking of applications and files|. . . . . . .. .. .. ... ... ... 53

6.2 Examination ot the double FAT approach with application lists| . . . . . . . 54
[6.2.1 Create and write operations| . . . . . . . . ... ... ... ... ... 54
16.2.2  Update operations| . . . . . . . . . . ... ... ... ... 58
16.2.3  Delete operations|. . . . . . .. .. ... ... 58
6.2.4 Read operations| . . . ... ... ... ... ... L 59
[6.2.5  Synchronization of FAT's|. . . . . . . ... ... ... ... ..., 59
6.2.6  Measurement of standard operations| . . . . . . . ... ... ... .. 60

6.3 Examination ot the double FAT approach without separate application lists| 61
6.3.1  Create and write operations| . . . . . . . . .. .. ... ... ... 61
6.3.2  Update operations| . . . . . . . . . . ... ... ... 63
[6.3.3  Delete operations|. . . . . . .. ... ... L oL 63
6.3.4 Read operation| . . . . . . ... ... o 64
[6.3.5  Synchronization of FATs|. . . . . . . . .. ... ... ... ...... 64
16.3.6  Measurement of standard operations| . . . . . . . ... ... ... .. 65

6.4 Examination ot the FAT file system with journaling combination| . . . . . . 66
[6.4.1  Standard journaling with FAT| . . .. ... ... ... ... ..... 66
16.4.2  Reverse journaling with FAT| . . . . ... .. ... ... ....... 66
6.4.3  Create and write operation| . . . . . . . . .. .. ... ... ..., 66
6.4.4  Update operations| . . . . . . . . . . ... ... ... 70
16.4.5  Delete operations|. . . . . .. ... L oo 70

vi



[6.4.6 Read operation| . . . . . ... oo 71

[6.4.7  Synchronization process| . . . . . . ... Lo 71

[6.4.8  Measurement of standard operations| . . . . . . ... ... 71

6.5 Examination of the EX'T file system approach|. . . . . .. ... .. .. ... 72
16.5.1 Create and write operations| . . . . . . . . . . . ... ... ...... 72

[6.5.2  Update operations| . . . . . . . ... ... ... ... .. 75

16.5.3 Delete operations|. . . . . . . . ... . ... oo 75

[6.5.4  Synchronization process| . . . . . . . ... ... L. 76

16.5.5 Measurement of standard operations| . . . . . . . ... ... ... .. 78

6.6 Examination of the YAFFS file system approach| . . . . ... ... ... .. 78
6.6.1  Create and write operations| . . . . . . . . .. .. ... ... ... .. 78

6.6.2 Update operations| . . . . . . . . . ... ... ... .. 80

6.6.3  Delete operations|. . . . . ... ... oo 80

[6.6.4 Read operation| . . . . . ... ..o Lo 81

[6.6.5 File system check|. . . . . . ... ... o o oo 81

16.6.6 Measurement of standard operations| . . . . . . ... ... ... ... 82

[7  Evaluation of Results and Comparison with the Reference File System| 84
[7.1 Detailed analysis of the reference file system|. . . . . . . ... ... ... .. 84
[r.2 Evaluation of measurement resultsl . . . . .. .. ... ... .. 90
[7.3  Practical utilization of the proposed file system designs on the basis of |

[ reference transactions| . . . . . . . .. .. L L oL 93
7.4 Determination of the ideal suitable file system|. . . . . . . . ... ... ... 98

8 Conclusion and Future Workl 103
81 Future Workl . . . . . . .. 104
(Bibliography| 105

vii



List of Figures

2.1 Structureof alinked listl . . . . . . . ... oo oo 5
2.2 Structure of a double linked Tistl . . . . . . ... ... ... 5
2.3 Functionality of an hash tablel. . . . . . ... .. ... ... ... ... 6
2.4 Contiguous block allocation| . . . . . . . ... .. ... oo 000, 7
2.5 Linked allocationl . . . . . . . . .. oo 7
2.6 Linked allocation with a FATI . . . . . . ... ... ... ... . ..., 8
2.7 Indexed allocationl . . . . . .. ... . .. 9
BI Structure of an INodel . . . . . . . . ... 12
13.2  Layout of the three different FAT based file system types| . . . ... .. .. 13
13.3  Structure of FAT directory entries| . . . . . . .. .. .. .. ... ...... 14
3.4 Architecture of the Master File Table in NTESf . . ... ... ... ... .. 16
[5.1  Structure of a separate application list| . . . . .. ... ... ... ...... 31
5.4  Management block of a FAT based file system including an application list] 31
5.2 Memory layout including application lists] . . . . ... ... ... ... ... 32
5.3 Memory layout without application lists| . . . . . .. .. ... ... ..... 32
5.5  Management block of a FAT based file system without an application list| . 32
5.6 Structure of a FAT entry|. . . . . . . . . . .. o oo 33
5.7 Application header of a FAT based file system|. . . . . . . ... .. .. ... 35
5.8 File header of a FAT based file system| . . . . . . . ... ... ... ..... 35
5.9 Memory Layout of a FAT /journaling combination|. . . . . . . ... ... .. 37
5.10 Management block of a FAT /journaling combination| . . . . . . . ... ... 38
[5.11 Structure of a journalentry| . . . . . . . . .. .. .. ... ... ... 38
5.12 Example of a journal entry| . . . . . . .. .. oo oo 39
[5.13 Superblock of the EX'I" file system| . . . . . . ... ... ... ... ... .. 40
[p.14 Memory layout of an EXT /journaling combination| . . . . . ... ... ... 40
[5.15 Application node (ANode) with a file list| . . . .. .. .. .......... 41
15.16 FNode with an optional list containing pointers to data blocks| . . . . . .. 42
[5.17 Structure of a journalentry| . . . . . . . . ... 42
5.18 YAFFS based file system layout|. . . . . . ... ... ... ... ... .. .. 44
15.19 Chunk with tag and data region| . . . .. ... ... ... ... ....... 45
[5.20 Chunk with tag and application header| . . . . ... ... ... ... .... 47
[5.21 Chunk with tag and file header| . . . . . . . . ... ... ... ... ..... 47
6.1 Workflow of one transaction using the FAT file system design| . . . . . . . . 55

[6.2  Workflow of a transaction in a FAT /reverse journaling combined file system| 67

viii



6.3 Workflow of a transaction in an EX'I' based file system|. . . . . . .. .. .. 7
6.4 Workflow of a transaction in the YAFFS file system design| . . . . ... .. 83
7.1 Layout of the reference file system| . . . . . . .. ... ... ... ... .. 85
7.2 'The reterence Create Application operation| . . . . . .. ... ... ... .. 86
[7.3  The reference Create File operation|. . . . . . . . .. ... .. ... ..... 87
7.4  The reterence Delete Application operation| . . . . . . . . . ... ... ... 88
[7.5 'The reference Delete File operation|. . . . . . . . .. ... ... ... .... 88
[7.6  The reterence Write Data operation| . . . . . .. .. .. ... ... ..... 89
7.7 Example 1 - An exemplary reference transaction| . . . . ... ... ... .. 94
7.8 Ezample 2 - A reference transaction with common ticketing tunctionality| . 96

ix



List of Tables

b.1  Example for a log structured write to the file system| . . . . . . . . ... .. 48
b.2  Example for a log structured data update| . . . . . . . ... ... 49
6.1 Measurement results of the write operations needed for the standard oper- |
| ations in the FAT approach with additional separate applist| . . . . . . . .. 60
6.2  Measurement results of the write operations needed for standard operations |
| in the FAT approach| . . . . . . ... ... ... ... ... ... ..., 65
6.3 Measurement results of the write operations needed for the standard oper- |
| ations in the FAT /journaling approach| . . . . . . .. ... ... ... .... 72
6.4 Measurement results of the write operations needed for the standard oper- |
| ations in the EX'I"approach| . . . . . ... ... ... ... ... ....... 78
6.5  Measurement results of the write operations needed for the standard oper- |
| ations in the YAFFS based file system design| . . . . . . .. ... ... ... 82
[7.1 Measurement results of the write operations needed for the reference file |
| system standard operations| . . . . . . .. ... Lo 90
[7.2  Comparison of write operations needed in the best case scenario in the |
| different file system design approaches| . . . . . . . ... ... 91
[7.3  Comparison of write operations needed in the worst case scenario in the |
| different file system design approaches| . . . . . . .. ... ... ... .. 92
[7.4  Measurement results of the reference transaction Fxample 1|. . . . . . . .. 95
[7.5 Measurement results of the reference transaction Fxample 2|. . . . . . . .. 97
7.6 Pertormance difference between the reference solution and the proposed |
| designs|. . . . ... 98
[7.7 Positive and negative aspects of the journaling file system designs and the |
| reference file system| . . . .. ... oo oL 101




Chapter 1

Introduction

The first chapter of this thesis is designated to provide an overview of the content of this
document and to substantiate the motivation for discussing and examining the topic De-
sign of a Transaction based Smartcard File System.

This thesis was written in cooperation with the company NXP Semiconductors Austria
GmbH.

1.1 Motivation

The wish for a new file system design emerged out of the limitations on commonly used
file systems, i.e. transaction based together with re-use of deleted memory. A linked list
file system is taken as reference file system for this thesis. The two main components of
this kind of file system are applications and files.

The problem of the reference solution is that a kind of garbage collection mechanism
is not available and also would be very complex to realize.

Within the reference file system each file needs a shadow file connected to it in order
to guarantee data safety and consistency during updating transactions. This means that
twice the size of the file needs to be reserved in the memory to backup the whole file
data. Finding a different kind of data backup mechanism which consumes less memory is
desirable for a new, future design.

File or application deletion also is a very critical point. In case of a deletion, the memory
is actually not erased and released but only marked as unused. Currently these unused
memory blocks can not be reused and the space is lost.

This wasted space shall be eliminated in a new file system design. An effective mechanism
which enables memory re-usage after file or application deletion needs to be introduced.



1.2 Objectives

The requirements for a new designed file system cover multiple points. First of all the basic
functionalities, namely creation and deletion as well as read, write and update operations
applied on files and applications need to be possible.

As smart cards operate transaction-based, a built-in transaction mechanism is desirable.

A big requirement is the power-fail-safe design of the file system. The system must remain
in a consistent state all the time. Therefore a kind of backup management or mechanism
has to be introduced. In case of a transaction abort it needs to be possible to roll back
the changes and to return to the last stable file system state and consequently keep the
file system in a working state.

Such a backup-oriented design is enormously important for a smart card‘s file system as
a sudden power loss can happen anytime.

Memory reuse after file or application deletion is an additional extremely important aspect
and the main goal of this thesis. The data management on the card shall be realized in a
way that also free memory regions can be re-used effectively.

The new file system should save memory compared to the actual solution, if possible.
This could probably be achieved through omitting the usage of shadow images and intro-
ducing a new data backup mechanism.

Another requirement is that the performance all in all stays the same or improves, it
should definitely not get dramatically worse. Also less or the same number of write oper-
ations should be guaranteed by the new design, if possible.

1.3 Structure of the thesis

In this first chapter the motivation, objectives and main goals of the thesis have been
described.

The second chapter explains all the basics that can be used to design and implement
a new file system. Different methods and possibilities, like how to handle the file system‘s
objects and how to do the memory management, are explained.

Chapter three gives an overview of a selection of the most common file systems. Both
modern as well as older but well established file systems are quoted and explained in de-
tail. In this chapter the practical usage of some of the basics which have been introduced
in chapter two, can be traced. The stated file system designs herein also act as kind of
guidelines for the elaborated new designs in the later following chapters.

In the following chapter, the outcomes of the state-of-the-art research are captured and
discussed. The main points include memory management standards and different ap-
proaches regarding flash file system designs.



The actual proposals for a new file system design can be found in chapter five. Basi-
cally four different kinds of file systems are elaborated in detail. These include FAT,
journaling, EXT and flash based designs.

A more concrete elaboration of the produced design approaches, with the focus lying
on the functioning of concrete operations and transactions and the measurement of con-
sumed write operations, is situated in chapter six.

In chapter seven a comparison of the made investigations and measurement results is
carried out. The designed models are compared amongst each other and also to the refer-
ence file system with the aid of a reference transaction and general calculations. The goal
of this chapter is the finding of the most qualified design solution.

The last chapter recapitulates the main points of this thesis, shortly summarizes the
investigations that have been made and conclusions that have been drawn. In the end a
short future outlook is given and room for improvement is stated.



Chapter 2

File System Implementation
Methods

In this chapter multiple different ways, how a file system can be implemented, are dis-
cussed. In order to be able to make adequate design proposals which match the require-
ments of the new file system, all needed fundamentals and necessary components are
explained. An important point when designing a new file system is the organization of
directories and files what also includes block management, file allocation and free space
management. Also metadata and therefore access rights, permissions and location of file
contents need to be managed. To handle this, some different kinds of strategies and ap-
proaches are inspected in a more detailed way in the next sections.

First of all the two main components of each file system, the file and the directory, are
outlined in sections [2.1] and Following this, the different kinds of allocation methods
(e.g. contiguous, linked and indexed allocation) are illustrated in section In the last
section, the free space management techniques are presented.

2.1 File structure

A file is an abstract data type, it is a named collection of related information. It also
is a logical storage unit and usually recorded on secondary non-volatile storage. A file
is characterized through certain defined attributes, which are required by the underlying
file system. Usually a file‘s attributes consist of name, identifier, type, size, access rights,
modification times and much more. All the information concerning files is stored in the
directory structure in form of directory entries [SGGO05].

There are multiple operations which can be performed on a file: creating, writing, reading,
deleting, updating. This is just the basic set of operations and can be extended to much
more, e.g. a user can get and set various attributes of a file [SGGO05].

An important point when designing a new file system is to pay attention on the sup-
port and recognition of file types. When a system recognizes the file‘s type, it can act in
a certain way and operate on the file in reasonable ways. Depending on the file type, only



dedicated operations can be executed on the file and different kinds of information can
solely be stored in a certain type of file [SGGO05].

2.2 Directory structure

Directories are needed to keep track of the file system's files. Choosing the right directory-
allocation and directory-management method can be a difficult decision as it affects effi-
ciency, performance and reliability of the file system [SGGO5].

In order to locate and open a file, its corresponding directory entry needs to be found.
Therefore the root directory must be located first, what can be done through information
blocks like the Superblock or the Master File Table, or either can be found at a predefined
fixed position. After the successful location of the root directory, the desired directory can
be found by searching through the directory tree. The found directory entry finally gives
information concerning the location of the data blocks in the memory [Tan06].

2.2.1 Linear list

A simple realization method of a directory structure is the usage of a linked list containing
pointers to data blocks, which can be seen in figure [2.1] This method is really easy to
program and simple to understand but brings along one critically disadvantage: searching
and finding in a linear list requires a linear search and therefore is time consuming. A
possible solution concerning the linear time for searching could be the implementation of
a sorted list. Unfortunately this approach complicates creating and deleting files, since
the list needs to be updated after every change of directory information [SGGO5].

The advanced version of the linked list is the double linked list. It has the advantage
that the list can not only be traversed in one direction but in two, so each block contains
a pointer to the next and also to the previous data block. This structure is depicted in

figure

Data Next Data Next Data Next Data Next Data Next

Figure 2.1: Structure of a linked list

Prev Data Next Prev Data Next Prev Data Next Prev Data Next

I I I

Figure 2.2: Structure of a double linked list




2.2.2 Hash table

Another approach for the implementation of a file directory is a hash table, which uses
a linear list as well as a hash data structure. The hash table does the mapping from file
name to file location on the disk. It accepts a hash value from a file name and then returns
a pointer to the file name in the linear list. No directory search is needed any more and
also insertion and deletion work uncomplicated [SGGO05]. A picture of the model of a hash
table can be seen in figure [2.3

Keys Hash Function Hashes
/
—
[ —
o
<
\\

Figure 2.3: Functionality of an hash table

2.3 Allocation methods

An important point when implementing a file system is to allocate space for files, so that
the memory is used in the most efficient way, and to keep track of which file is stored in
which certain memory block. Three widespread methods of memory allocation are the
contiguous, linked and indexed allocation which are described briefly hereafter.

2.3.1 Contiguous allocation

A simple allocation scheme is the contiguous allocation which demands that each file
occupies a set of contiguous memory blocks. To find out, where a certain file is located in
memory, only the address of the first block and the number of blocks used by the file need
to be known. This contiguous placement in memory, which is depicted in figure 2.4] makes
the read performance excellent because only one single operation is required. However,
the contiguous allocation method has some major drawbacks. One problem is external
fragmentation and the other one is finding space for a new file. To be able to reuse space,
the maintenance of a free block list which shows the location and size of memory holes
is necessary. Additionally to this also the final size of a new file needs to be known in
advance in order to find a matching space [Tan06].



filel y

] = = FREaEe e sl

fileS file2 14

IR = A 19

file2 fileS 10

2 [ ] v ool o[
file3

e
zL—».zs‘ ‘zs ‘27‘ zs‘ |20 |

0 [a1| |32 33| |34 || |

NU oW Ww

filed

«[ v » el
Lo w s e[ o[

Figure 2.4: Contiguous block allocation

2.3.2 Linked allocation

This method of allocation gets rid of the problems of the contiguous allocation as every
single disk block can be used and no space is lost due to external fragmentation. Every
file is represented through a linked list of memory blocks. The parent directory contains
a pointer to the first and to the last block of the file and each file block again contains
a pointer to the next block. The size of the file does not need to be announced before
file creation because a file is able to grow as long as free blocks are available. When
extending the file, a free block needs to be found and written to and then linked to the
end of the file [SGGO5]. In figure this allocation method can be considered closely.

directory
file start end
filel 19 40

Figure 2.5: Linked allocation

A well-known and popular variation on linked allocation is a file allocation table (FAT).
For the realization of a FAT a small section at the beginning of the volume is kept free in
order to store the table. This table is set up in an increasing order, containing an entry
for each memory block and a corresponding index [SGGO5].



Basically a FAT works similar to a linked list. In order to find the location of a file,
the directory entry gives information about the starting block number of the file and the
corresponding FAT entry contains the block number of the next block of the file. This
chain of blocks continues until one FAT entry contains a special value like NULL or NIL,
what signals the end of the file [SGGO05]. The schema of a FAT is illustrated in figure
Free block management is made easy with a FAT, because all free blocks can be identified
quickly by their containing value (0x00).

ir ntr FAT
file start block 0

filel 0x0026
0x0026/ 0x0058

0x0034 OxFFFF

0x0058 0x0034
0x0059

Figure 2.6: Linked allocation with a FAT

2.3.3 Indexed allocation

As linked allocation (without using a FAT) can not support efficient direct block access,
another method which solves this problem is needed, namely the indexed allocation (por-
trayed in figure . This method uses one special structure: the index block, also called
index node or INode. Each file has its own index block, which is a list of block addresses
[SGGO5].

At file creation all entries in the index block are set to NULL and only if a block is writ-
ten, its address is placed in the corresponding entry in the index block. Direct access is
supported out of the box, without the risk to suffer from external fragmentation. Un-
fortunately indexed allocation has a disadvantage concerning wasted space, because the
pointer overhead is greater than the pointer overhead of a linked allocation scheme. Even
if only one pointer is needed for a file a whole index block needs to be allocated [SGGO05].

A variation of this method is the usage of multiple indirect blocks. Therefore only a lim-
ited number of pointers is kept in the file‘'s INode (e.g. sixteen pointers per INode). The
INode structure is also used by the EXT2 file system and therefore will be explained in
detail in chapter



directory

0 1 2 3 4 ‘ 5 ‘ file index block
filel 29

16
36
45
33
18

29

2| |a a| as a| |ar| |

Figure 2.7: Indexed allocation

2.4 Free Space management

Memory management is a major concern because memory space is limited and there is a
need to reuse space from deleted files. Most of the popular file systems split the whole
memory up into blocks of a fixed size which are then available for directory and file storage.

When splitting up the memory into fix-sized blocks, an important decision concerning
the size of the single allocation unit needs to be made. A large allocation unit means that
every file (even a one byte file) reserves the whole block size of memory, whereas a small
allocation unit means that big files will consist of really many blocks, and reading so much
blocks will slow down the whole file system [Tan06].

In order to keep track of the free memory space respectively the free blocks, the file
system needs to maintain some sort of structure which reflects the actual memory usage.
The most common used techniques are the linked list and the bit vector.

The linked list simply links together all the free memory blocks, with each free block con-
taining a pointer to the next free block. The free list is used from the head of the list,
what means that if a free block is needed, simply the first block in the free list is taken
[SGGO5].

Another very often used management technique is the bit vector (or bitmap). In a bitmap
each block is represented by one bit. This means that a volume with n blocks also requires
a bitmap with n bits. If a block is free, the corresponding bit is set to 1, otherwise it is set
to 0. Maintaining a bitmap requires only little space, is very simple to realize and efficient
in usage [Tan06].

Methods which can also be used but are less popular, and therefore not specified in this
thesis, include Grouping and Counting.



Chapter 3

Common File Systems

A file system is an important aspect of an operating system, as it provides the possibility
for storage and access to data as well as programs of the operating system. It resides
permanently on secondary storage, which is intended to store a large amount of data.
Usually a file system is built up of two main parts namely a directory structure, which
organizes files and gives information about them, and a file structure, which stores data
and information. Because file systems are existent on many different kinds of devices and
all of them have some special needs, file systems need to be optimized for many different
platforms [SGGO05].

This chapter gives an overview of the most common file systems nowadays. In the first
section the functionality of the often used journaling file system is introduced. Following
this, popular disk file systems like EXT, FAT12/16/32 and NTFS are described. In sec-
tion a selection of common flash file systems including YAFFS and JFFS is explained
in detail.

3.1 Journaling file systems

In the first section a very often used kind of file system is described in detail. A journaling
file system is a kind of file system which writes information about upcoming updates and
changes to a journal before committing them. The journal usually is a circular log or a
kind of buffer which contains log structured entries and is placed in the near of the tail
of the file system. Journaling enables fast file system recovery after a crash and does not
need scan-based recovery (e.g. via fsck), which is relatively slow. In comparison to non-
journaled file systems, journaling file systems provide improved structural consistency,
faster restart times, high-performance, better recovery mechanisms and generally come
along with the features of a more advanced file system [Mag02].

Basically a journaling file system does not write upcoming data changes directly in the
working file system structure, but stores the changes which are made during a transac-
tion in the separated journal. Not until after a commit happens and the transaction was
completed successfully, the changes are transferred to the file system. This mechanism
guarantees that the file system is in a consistent state at every time.

10



The most popular journaling file systems are JFS, XFS, ReiserF'S and EXT3. The detailed
mode of operation of ReiserF'S and EXT3 can be read in section

3.2 Disk file systems

This section is dedicated to the most common secondary storage medium, the disk. Two
important aspects make the disk to a useful and expedient medium for information storage:
on the one hand a disk can be rewritten in place and on the other hand a disk can directly
access every block of information at every time [SGGO05].

A disk file system contains several kinds of information, like the number of total data
blocks, the number of free blocks, the directory structure, file information and of course
how to boot the stored operating system [SGGO05].

Subsequent some of the nowadays most used disk file systems are presented and detailed.

3.2.1 EXT - Extended File System

The Extended File System with all its successors is the flagship of Linux and was especially
designed for the Linux kernel. The first version, EXT, was the very first implementation
that used the virtual file system and was soon superseded by EXT2.

EXT?2 splits the disk up into blocks and groups them into block groups, which are simply
contiguous groups of blocks. Each block group has the same size and consists of a copy of
the superblock and a block group descriptor table, a block bitmap, an INode bitmap, an
INode table and data blocks.

The superblock is a vital block as it contains necessary information about the file sys-
tems size, configuration and layout. It is read at mounting of the file system and is crucial
for the whole boot process. Each block group is represented via a certain data structure,
the group descriptor. It stores the location of the block bitmap, inode bitmap and the
start of the inode table for every block group. And these, in turn, are stored in a block
group descriptor table [Wanl1].

In each block group the block bitmap provides information concerning the state of a block
within that block group. Each bit of it represents one block in the block group. The INode
bitmap works similar as the block bitmap. With each bit it represents the status of an
INode in a block group [Poilll].

The INode (index node) is a certain structure which represents the EXT2 file system
objects. An INode represents a single physical file, what means that each file or directory
on the disk is associated with exactly one INode. The different types of physical files
are: directory, regular file, symbolic link and special file. The INode structure contains
pointers to the file system blocks which contain the actual data held in the object and also
all of the objects metadata. The metadata of an object includes permissions, owner, flags,
size, number of used blocks, modification times and some more essential attributes [Poill].

As already said, each INode points to the location of its data on disk. Therefore one

INode contains fifteen pointers to data blocks. The first twelve pointers point to direct
blocks, what means that the file‘s data can be referenced directly and accessed quickly.

11



The thirteenth pointer points to an indirect block. This indirect block again contains
pointers which point to data blocks. The fourteenth pointer points to a doubly-indirect
block, which contains pointers to indirect blocks, and the fifteenth pointer points to a
triple-indirect block, which contains pointers to double-indirect blocks. To get a better
idea of this concept, the INode structure is depicted in figure All these single INodes
are stored in an INode table, which is available for every block group [Poill].

attributes

direct blocks o
L]
:

single indirect o

TEX]

double indirect o

triple indirect o

data

FXX)

data

FXX)

-

Figure 3.1: Structure of an INode

i b

FXX)

data

One disadvantage of the EXT2 file system is the enormously long recovery time after a
crash. To get control of this issue, the new file system version EX'T3 was developed on the
basis of a journaling scheme. Journaling achieves fast file system recovery because at all
times data which is potentially inconsistent has to be recorded in the journal. Resulting
from this consequent recording, recovery can be obtained by scanning the journal and
copying back all committed data into the main file system area [Twe9§].

The journal is stored on the disk in form of a unique numbered INode and keeps record
of three different types of data blocks: metadata, descriptor and header blocks. During
the execution of transactions the journal has to record the content of the file system‘s new
metadata blocks. After a successful commit of a transaction, the new file system blocks
are located in the journal itself but nothing has been changed in the main file system and
the blocks have not been synced to their actual location on disk. The old original blocks
on disk need to keep unchanged until a commit of the total journal is performed. Once
the journal has been committed, the data blocks in the journal can be written back to
disk and the old disks version is not relevant any more [Twe98§].

12



The EXTS3 file system design offers some significant advantages compared to its predeces-
sor. Availability as well as reliability of the file system are increased and of course crash
recovery can be performed much quicker and should not cause much performance delay

any more [Twe98].

3.2.2 FAT - File Allocation Table

The file system based on a FAT (a form of an index table) was implemented by Microsoft
in three different types: FAT12, FAT16, FAT32. The different numbers in the names of
the file system (12, 16, 32) are also reflected in the bit size of the entries in the FAT
structure on the disk. FAT12 was initially developed as a file system for floppy drives,
but in order to overcome the limitations of address length and volume size, soon FAT16
and FAT32 were released [BhaO7]. A graphic which compares the three different FAT file
systems can be inspected in figure [3.2

FAT12/16
Foot
Reserved FAT Directory Data
Area Area | Area
- i = Num of
Reserved ! MNum of Root .
Mum of FATS * ; - Sactora In
Seclors Size of each FAT Directory Entries File System
FAT32
R
Reserved FAT Di,ﬁmw Data
Area Area | Area
;—’.—r—. N ‘-\ '
L ! A Num of
Reserved b *u Sectors in
Seclors Mum of FATS * Root Directory File Systern

Size of each FAT Starting Location

Figure 3.2: Layout of the three different FAT based file system types

Nowadays FAT is primarily used for removable media, such as floppy disks, flash memory,
USB drives and digital cameras but is nearly not used on hard drives any more.

A FAT is a table containing entries for each cluster of the volume. Each entry of the
FAT gives one of the following information about the data blocks and their usage:

e Cluster is free

Volume is damaged at the clusters position

Cluster is in use: Number of next cluster is given

Cluster is in use: It is the last cluster in the chain

13



A FAT file system is structured into four basic regions [Cor05]:

e Reserved Region

FAT Region (location of FAT and FAT copy)

e Root Directory Region (not existing on FAT32)

File and Directory Data Region

In the reserved region, also called boot sector, the BPB (Bios Parameter Block) is located.
The following sector is a very important data structure namely the FAT itself. A FAT
basically defines a linked list of the clusters of a file and maps the data region of the volume
by cluster number, with the first data cluster starting at cluster number two [Cor00)].

A FAT directory simply is a regular file, which is characterized through a special at-
tribute which indicates the directory type. The content stored in a directory can be other
files as well as sub-directories. These directory contents are called directory entries and
are data series with a size of 32 bytes. A directory entry is associated with one file and
stores the cluster number of the first cluster of the file [Cor05]. An image of some FAT
directory entries can be seen in figure [3.3]

directory entries EAT
- 0x0001 | 0x0000
file start block 0x0002 | 0x0000
filel 0x0003 »| 0x0003 | 0x0004 -
. 0x0004 | 0x0005
file2 0x0008 0x0005 | OxFFFF_ ¢
file3 0x0010 0x0006 | 0x0000
0x0007 | 0x0000

0x0008 0x0009
0x0009 0x000A
0x000A 0x000D
0x000B 0x0000
0x000C 0x0000
0x000D OxFFFF
0x000E 0x0000
0x000F 0x0000
0x0010 0x0011
0x0011 OxFFFF :I
0x0012 0x0000
0x0013 0x0000
0x0014 0x0000

Tt

Figure 3.3: Structure of FAT directory entries

The root directory is a special directory and created during the initialization of the volume.
It is present on every formatted volume and immediately follows the last file allocation
table [Cor05].

The free clusters of the file system are managed through a list of all clusters contain-

ing the value 0x00 in their FAT cluster entry. This list of free clusters is not sorted and
needs to be computed at every mounting of the volume.

14



3.2.3 NTFS - New Technology File System

NTES is the default file system of the Windows operating system and was developed by
Microsoft. It includes advanced features which can not be found in a FAT file system
and was designed with focus on performance, reliability and security. Log files and check-
pointing are two techniques used to restore the file system consistency after a crash or
sudden power loss. NTFS supports large volumes and manages disk space efficiently by
increasing the cluster size. Another benefit is the support of the Encrypting File System
(EFS) technology which can be used to store encrypted files on the NTFS volume.

NTFS is the preferred file system for hard disks but can not be used on removable media.
In order to format floppy disks or flash media, FAT file systems are used [Cor03].

The file system splits the disk up into clusters, with one cluster being the smallest amount
of disk space that can be allocated to store a file. Clusters are numbered sequentially from
the beginning of the partition, starting at cluster number zero, and each cluster again
is partitioned into sectors. As the cluster size can be chosen when formatting a volume,
every file system has a different maximum number of clusters it can support. The smaller
the cluster size is, the more efficient the disk can be managed and store information. The
supported cluster sizes range from 512 bytes to 4 kilobytes [Cor03].

A NTFS file system is structured into four basic regions:
e NTFS Boot Sector
e Master File Table (MFT)
e File System Data

e Copy of the Master File Table

The first sixteen sectors of a NTFS volume are allocated for the boot sector and the boot-
strap code.

In the Master File Table all the necessary information for file retrieval is stored. It is a
record table containing one entry (consisting of the file‘'s name and attributes) for every
file on the NTFS volume, including the MFT itself. In figure[3.4] the structure of the MFT
can be regarded.

As the MFT stores information about itself, the first sixteen records of it are reserved
for metadata files. These metadata files are vital for the correct functionality of the file
system, with each of it being responsible for a different area. Emerging of the importance
of the MF'T, a backup copy of it is stored somewhere else on the disk, which can be read
in case of corruption of the original MFT. Both data segment locations (for the MFT and
the backup MFT) are stored in the boot sector [Cor(3].

Each file of the file system typically is represented through one file record in the MFT.

Only if a file has a very large number of attributes it maybe needs more than one record.
Folder records store index information. Small folder records are entirely stored within the

15



Master File Table

0 MFT
1 MFTMirr File Record
2 LogFile Standard information
3 Volume Filename
4 AttrDef Data Stream Extents
5 Attr. 1 Resident
6 Bitmap Attr. 2 Extents
7 Boot
8 BadClus
9 Secure
10 Upcase
11 Extend

12-15 RFU
16 User files / dirs

Figure 3.4: Architecture of the Master File Table in NTFS

MEFT structure whereas large folders are organized as B-tree structure. For folders which
are arranged as B-tree, the MFT contains records with pointers to external clusters which
contain the actual folder entries. The B-tree structure offers a big benefit: when searching
a particular file, NTFS outperforms FAT, because in large folders FAT must scan through
all file names [Cor(3].

3.2.4 ReiserFS

ReiserF'S was developed for Linux by Hans Reiser and his company Namesys. It is a
journaling file system and uses balanced trees (also called B+ tree) for file and directory
storage [Buc03].

A ReiserFS volume is divided into memory blocks of a fixed size, which are ordered se-
quentially. The first file system block is the superblock. It contains important information
like the block size, block numbers as well as journal and node information [Buc03].

After the superblock, a bitmap of free and used blocks follows, and subsequently the jour-
nal is situated. The size of the bitmap is relative to the block size of the file system [Buc03].

The whole Reiser file system is built up of a balanced tree composed of internal and
leaf nodes, with each node being a memory block. Each file, directory or other item of
the ReiserF'S is associated with a unique key. This key can be compared to an index or
INode number in other file systems [Buc03].

Keys in the ReiserF'S are used to uniquely identify items, to locate them in the tree and
also to keep track of item groupings (all items which belong to the same directory are
grouped together). Each key is made up of four objects: a directory ID, object ID, object
offset and type [Buc03].

Internal nodes consist of a block header, keys and pointers to child nodes, whereas leaf
nodes are located at the lowest level of the tree and include data within them. They are
made up of a block header, item headers and items. Items finally contain all the actual

16



data and are categorized into one of four different types: stat, directory, direct and indirect
items. Files are made up of direct or indirect items [Buc03].

The ReiserF'S journal is a continuous set of disk blocks and keeps track of transactions
which are made to the file system. Before performing any changes to the file system
directly, the belonging transactions are written into the journal. Only after a positive
commit and a successful realization of all logged transactions, the journal can be flushed.
The journal is a circular log and consists of a journal header and transactions of a variable
length [Buc03].

A transaction describes an upcoming file system change in detail and writes all neces-
sary information into the journal instead of directly modifying file system blocks. One log
entry is built up of a transaction description block, which represents the type of trans-
action, a list of blocks affected by the transaction and a commit block, which signals the
termination of a transaction [Buc03].

3.2.5 BTRFS - B-Tree File System

BTRES is a Linux file system which is based on copy-on-write and uses B-trees as un-
derlying data structure. Checksumming is used for integrity and reference counting for
space reclamation. Instead of using memory blocks, BTRFS manages extents (a contigu-
ous page-aligned on-disk area), which eliminates the need for a special block size [Rod13].

The B-tree structure of BTRFES is generic and only knows about certain kinds of data
structures, namely keys, items and block headers. Block headers have a fixed size and
keep track of important information fields like checksum, flags, and IDs. Internal tree
nodes hold key pairs (in form of a block pointer) whereas leaf nodes hold an array of
items (data pairs). Item data can have a variable size and type. Several items are usually
grouped together to an object. The file system is made up of objects and its contained
items are logically arranged in the B-tree [Rod13].

Small files which only need the space of one leaf block can be directly placed into the
B-tree. Larger files are stored in the file system‘s extents, which only hold the user data
without needing additional header blocks or formatting. An extent maps from a logical
area in a file to a physical area in memory. When storing a file in a few large extents, then
a file read can be efficiently performed with only a few disk operations, what is a very big
benefit of the usage of extents [Rod13].

A directory contains multiple directory items, more precisely said two sorted lists of them.
These two lists are used for path look-up and also for bulk directory operations. The
directory item is an element, which contains a file name and a key [Rod13].

3.3 Flash file systems

Nowadays flash memory is often used in embedded systems and devices because it brings
along many benefits in terms of data density, I/O performance and power consumption.
Flash memories can be classified into two main categories: NOR flash, which is most used

17



for code execution, and NAND flash, which is commonly used for data storage and the
main basic module for secondary storage systems in the embedded sector. Unfortunately
NAND flash memories bring along some drawbacks: the memory cells have a limited life-
time, in-place data updates are not possible and erase/write operations are asymmetric.
All these drawbacks bring along the need for a certain management of the flash memory,
which can be achieved through special flash file systems [OBS12].

Data of a NAND flash memory is organized in a hierarchical way. The memory is di-
vided into blocks and each block again is divided into pages, which contain the actual user
data and metadata. The three key operations of flash memory are read, write (performed
at page level) and erase (performed at block level). A flash file system has to get along
with all the above mentioned drawbacks of flash memory, has to provide a sort of garbage
collection mechanism, has to care about wear levelling and of course needs to introduce a
bad block management mechanism [OBS12].

To get an insight into this topic, some widely used flash file systems are listed below
and are explained in detail.

3.3.1 JFFS

JFFS (the Journaling Flash File System) is a log-structured file system, intended to be
used on flash devices in embedded systems [Woo01]. It structures the memory as a circular
log and therefore enforces wear levelling. Occurring changes to files and directories are
written to the tail of the log in the form of a node. A node consists of a header, containing
metadata, and file data. Nodes are chained together via pointers and can change their
status to either be valid or obsolete.

The successor of JFFS, namely JFFS2, splits the memory into blocks and these blocks
may be filled with nodes from bottom up, there is no circular log any more. In JFFS2
there is also a distinction between different types of nodes made. The three node types
include the INode, the dirent-node and the cleanmaker-node. The INode contains all the
metadata as well as a range of data belonging to the INode. The dirent-node contains a
directory number, an INode number and a name. It either represents a directory entry or
a link to an INode. The cleanmaker-node is used to show the success of an erase operation
and is written to an erased block.

3.3.2 TFAT

The Transaction-Safe FAT File System (TFAT) is a file system designed by Microsoft in
order to provide transaction-safety and a consistent file system without corruption in case

of power loss or sudden removal of a storage device. The file system is available in three
different versions: TFAT12, TFAT16 and TFAT32.

TFAT works with two copies of the file allocation table, a FATO table which represents a

stable copy of the last known good FAT, and a FAT1 table in which current operations
are recorded [Corl0]. In case of a transaction failure, the disk is set to the same state as it

18



has been before the transaction started, whereas in case of a successful completion of all
transactions, the FAT1 table is copied to the FATO table and the file system reaches a new
valid state. When modifying an existing file, a new cluster is allocated for the modified
bits and the FAT is updated to include this new cluster. This mechanism is necessary to
ensure the consistency of the original file, if a transaction fails to finish the file modification
respectively to complete successfully [Corl0).

3.3.3 YAFFS

YAFFS (Yet Another Flash File System) is a robust open-source file system specifically
designed to be high performing and suitable for the embedded use with flash memory
(NAND and NOR flash). It is a log-structured file system, provides wear levelling and can
be easily ported.

The advancement of the original version is called YAFFS2. Its concept is similar to YAFFS
and shares most of the code. The benefit of YAFF?2 is the support of the new NAND flash
with 2 kilobytes page size instead of the old 512 bytes sized pages [Ltd02].

YAFF2 is a true log structured file system, meaning that it only writes sequentially with-
out using deletion markers. The log entries either are a data chunk or an object header
and each chunk again has a tag associated with it. The tag gives important information
regarding the dependency of chunk and object, the position of a chunk within a file and
the currency of the chunk. No file allocation tables or other mapping structures are needed
by the YAFFS2 file system. This fact makes the system robust and additionally reduces
the writing and erasing operations [Ltd02].

In order to work with the newer NAND types, YAFFS2 has to fulfill the objectives of
zero overwrite and sequential chunk writing, and therefore has to make use of alternate

mechanisms like the usage of the sequence number and the so-called shrink header marker
ILtd02].

All objects in the file system (files, directories, hard links, symbolic links and special
objects) are represented in form of a yaffs-object. The main function of such an object is
the storage of metadata and type-specific information. Therefore yaffs-objects store the
object ID, the type, a pointer to the parent, permissions, access rights and other attributes.
The YAFFS2 directory structure is built up by a tree of directory objects. This structure
is necessary to quickly access a file system object by name and to perform operations on it.
Each yaffs-object has a double linked list node to maintain its siblings inside a directory.
Additionally to that, directory objects have a double linked list node to maintain their
children (meaning all contained files and sub-directories) [Ltd02].

The file objects in the YAFFS2 file system are characterized through the following main
values: file size, depth of the TNode tree, pointer to the top of the TNode tree. Each single
file has one TNode tree in order to map the file position to the actual memory address.
The TNodes are organized in levels and either point to other TNodes in a level beyond
(takes effect for TNodes of level one and above) or directly to the data block‘s location in
NAND memory (takes effect for TNodes of level zero) [Ltd02].

19



YAFFS2 keeps track of every memory chunk and its state in order to operate on it in
a meaningful way. When a new free memory chunk is needed, it needs to be allocated
from the so called allocation block. This block serves as available memory pool, whereof
the chunks are allocated sequentially. In case this block is fully allocated, a new empty
block is chosen to become the allocation block. As a fresh allocation block is defined after
every power loss, this allocation mechanism slightly increases the amount of produced
garbage but definitely improves robustness [Ltd02].

20



Chapter 4

State-of-the-Art in Smartcard File
Systems

This chapter provides information regarding the current state of research in the field of
smartcard file systems. Relevant approaches and ideas have been examined and are pre-
sented in the following sections.

Unfortunately this specific topic does not offer really much information and nearly no
concrete design proposals are available at all. It was not possible to find any concrete
guidelines or existing smartcard file system designs.

In order to anyhow give an overview of the topic range, related fields of research and
comparable systems have been investigated.

The next few examples concentrate mostly on flash file systems respectively the memory
organization and usage of EEPROM. The techniques and approaches which are used for
organizing and maintaining flash memory and EEPROM can be taken as guiding principle
and adapted to also be suitable for a tiny smartcard file system implementation.

4.1 ISO/IEC memory organization

According to the ISO/IEC 7816-4 technical reference, two main structures for applications
and data are specified - the dedicated file DF and the elementary file EF. A dedicated file
hosts applications, groups files and stores data objects. It can also be the parent of other
files, which are situated directly under the DF. An elementary file stores data and can not
be the parent of another file. An internal EF stores data which is interpreted by the card,
and a working EF stores data which is not interpreted by the card [fSEC05b].

The logical organization of dedicated and elementary files can be done in two ways. On
the one hand a hierarchical organization with a master file MF, and on the other hand
a parallel organization without any apparent hierarchy of dedicated files, can be realized
[[SEC05D)].

21



4.2 Non-volatile memory management

In the paper Non-volatile memory management methods based on a file system, written by
Shuichi Oikawa, several methods which enable the integration of the main memory and
file system management for NV memory are presented. Three methods, namely direct,
indirect and mmap are described in detail. The direct method directly utilizes the free
blocks of a file system by manipulating its management data structures. The indirect
method indirectly allocates blocks through a file that was created in advance and is ded-
icated for the use of main memory. The mmap method uses the mmap system call for
block allocation though memory mapped files [Oik14]. The content of the paper is not
directly relevant to the topic smart card file system as it does not explain anything about
file system implementation directly. However, the mapping techniques and memory man-
agement methods introduced in the paper, give an overview of how memory organization
could be implemented.

First of all the author examines some of the upcoming non-volatile memories, which enable
high performance along with persistent data storage without the need of a power supply,
like PCM, MRAM and ST-RAM. The major memory devices are currently DRAM and
flash memory, which use electrical charge to memorize binary information. NV memory is
considered as a candidate to replace or to be used along with DRAM and flash memory in
order to get rid of problems like leakage or other power consumption problems. These new
NV memory devices can maintain data without power supply and use resistance values
instead of electrical charge [Oik14].

The main goal of the paper is the combination of the memory allocator which is used
for DRAM and the file system which is utilized in NV memory to a big, virtual memory
system and the creation of a link between DRAM and NV memory.

For this integrated memory management, the three already mentioned methods can be
used to provide the linking between memory allocator and file system [Oik14].

4.3 Various examples of flash and smart card file system
designs and proposals

As already mentioned, the research findings did not include any specific design proposal
for a smart card file system. Therefore the next pages contain information about flash
and other non-volatile file systems as well as the current progress in this area.

4.3.1 RIFFS - Reverse Indirect Flash File System

First of all I would like to present RIFFS, the Reverse Indirect Flash File System. RIFFS
is a file system for flash memories with the focus on the characteristics and needs of this
kind of memory. To overcome the limitations of flash, data is stored inside of the proper
file and files are managed via a reverse-tree. RIFFS is designed as a competitor to the
well-known and often used JFFS2 file system and also obtains better results in a direct
comparison [PFm04].

22



The RIFFS project creates a special structure called file context, so altogether there are
three structures within the file management: the file, the file context and the logical data
blocks. The file context is responsible for adding control information to the file. It is im-
plemented as a block inside the flash and contains among others a reference to the father
context, which is necessary for the management of directories, and file attributes [PEFm04].

Each logical block of a file contains a version that identifies the various parts of a file.
When sorting it in ascending order, the organized data of the file can be accessed. This
makes it possible to write the file blocks randomly to the memory and nevertheless guar-
antee its reconstruction at the start of the file system [PEm04].

The directory management of RIFFS is done through a reversed linked tree. The struc-
tures belonging to this tree contain all the information concerning itself, eliminating direct
references in the system. The navigability of this structure is not adequate for a file system
and therefore it is necessary to construct it in the RAM memory. A directory is imple-
mented as a file, containing all its attributes. This way, each directory has a reference to
its father, what successively characterizes a reverse tree [PFm04].

4.3.2 FRASH - Hierarchical File System for FRAM and Flash

Another approach, namely FRASH, is designed for byte-addressable NVRAM and NAND
flash devices to enhance the efficiency of the file system in various aspects and also aims
at exploiting physical characteristics of these two different kinds of memories [PEm04].

In FRASH, the Hierarchical File System for FRAM and Flash, the NVRAM is mapped
into memory address space and contains file system metadata and file metadata. Metadata
information is stored in FRAM and data information is stored in the NAND flash region.
The consistency between NVRAM and NAND flash is guaranteed through transactions
[kKSgJO7].

The objective of the paper “FRASH* is to resolve the file system mount latency issue
and the overhead of metadata update while retaining the performance advantage of the
log structure based file system. The proposed file system consists of the metadata and the
data layer and uses YAFFS as a baseline. The metadata layer contains tag information and
an object header. Tags are responsible for ordering the file data in the data layer, whereas
the object header corresponds to the INode, which is familiar from Unix file systems, and
stores all information regarding a file or directory: name, size, ownership. The tag also
connects to an object header and is vital for building up the TNode tree [kKSgJ07].
When a scan operation occurs, the operating system scans the tag and the object header,
validates the tag information and decides if the corresponding NAND pages in the data
layer are valid or not. If everything is okay, the TNode tree can be created and used for
the representation of the order of the file data in the data layer [kKSgJ07].

The FRASH file system designer‘s main goal is to achieve the best possible performance,

combining FRAM and NAND memory. The file system can be directly built up using in-
formation in FRAM and the scan phase can be omitted, what has a great impact on speed

23



and performance. However, as FRASH is built up hierarchical, consistency across data
storage can be guaranteed but produces a lot of overhead and therefore the performance
goes down again [kKSgJ07].

4.3.3 FSOC - Flash Memory-based File System on Chip

In order to provide interoperability between portable storage devices and hosts, a storage
device with embedded file system is presented in [ACLT07]. The paper describes FSOC,
a Flash Memory-based File System on Chip, and focuses mainly on the easy interaction
between a host system and a device and how an embedded file system implementation can
be conductive on the arising needs.

The emerging benefits of FSOC according to the authors are both qualitative as quan-
titative. On the one hand, FSOC provides a high degree of interoperability, there is no
need for host system developers to implement a file system, and FSOC improves the file
system performance through optimizing it for a special purpose. On the other hand, the
execution of the file system directly on the storage device offers advantages for the host.
Data traffic can be reduced and also the energy consumption of the system goes down due
to reduced data traffic [ACLT07].

The designers of this FAT-based file system incorporated three vital requirements into
their design. As most important requirement, a quick recovery after power failure was
figured out. For this reason, a journaling mechanism was added to the file system.

The second requirement was the efficient execution on low performance processors and the
last requirement was the compact size of the code, due to memory limitations |[ACLT07].

However, the main goal of the innovators was not situated in the elaboration or invention
of a new file system, but the priority lies in improving the efficiency of the storage device
and its interaction with the host |[ACLT07].

4.3.4 Implementation of a Smart Card Operating System

In the paper Design and Implementation of Smart Card COS, the authors directly address
the topic of this thesis. They explain what a COS (Card Operating System) is and which
factors need to be considered when focusing on a new design respectively implementation.

Despite the COS architecture, working principle, transmissions and so on, also the file
management is discussed shortly. The authors propose to use the ISO/TEC7816-4 logical
structure for the smart card file system, which adopts the tree structure with hierarchical
data management [YJXLIO].

As the smart card file system is not strictly specified and has only the logical form of or-
ganization underlying, but no requirement for a specific physical implementation, a high
flexibility can be achieved according to the authors [YJXL10].

In order to make a smart card faster, an efficient data structure is needed, as the ac-
cess time on chip data depends on how the data actually is stored and how complex the

24



underlying data structure is organized in terms of space and time [JSPK13].

In [JSPK13] multiple data structures which can be applied to a smart card file system
are examined and compared. The authors assume the usage of the file organization which
has been presented in [YJXL10] and therefore use a differentiation between three types of
files, which are the already known master file, dedicated file and elementary file.

Before the actual analysis is done, several types of referencing are introduced, namely
file, data and record referencing methods:

e Files can be referenced by the file identifier, by the path (a concatenation of file
identifiers, starting from the MF), by the short EF identifier or by the DF name
[JSPK13].

e Data can be referenced either in the form of records, data object or data units.
The data can be stored either in a single continuous sequence of records, or in a
single continuous sequence of data units. For referencing a record or a data unit, the
related EF needs to be selected and then any of the already mentioned file referencing
methods can be used. After that, a particular record or data unit can be referenced
either by the record number or by setting parameter bytes [JSPK13].

e Each and every record of a selected EF can be referenced with the record identifier
or with the record number. When a reference is given with respect to the record
identifier, an indication will also be there for specifying the logical position of the
record [JSPK13].

In order to find the most efficient data structure the authors examine several different ones
(array, linked list, double linked list, stack, queue, binary search tree BST, hash, heap)
and come to the following conclusion:

e Regarding the insertion operation, nearly all structures need O(1) time, respectively
O(n) time when the insertion needs to be done after at a specific position inside the
structure, whereas BST and heap need O(logn) time [JSPK13].

e For the deletion operation, nearly all structures need O(1) time, respectively O(n)
time when the deletion needs to happen at a specific position inside the structure,
whereas BST and heap need O(logn) time [JSPK13].

e For performing the search operation, every data structure except the BST takes O(n)
time, whereas the BST needs O(logn) time [JSPK13].

According to |[JSPK13| the search operation has been identified as the most vital one.
The authors state that the usage time of a smart card is directly proportional to the time
which is needed for searching of data that is stored on the smart card, and that the overall
performance of operations is dependent on the time taken by the search process and not
on the time which is needed for insertion or deletion of a record.

25



Out of this reasons [JSPK13] suggests the binary search tree (BST) as the best suitable
data structure for performing smart card operations.

4.4 Conclusion

As already mentioned at the beginning of this chapter, the research in the area surrounding
smartcard file systems proved itself to be difficult. It was not possible to get any detailed
information regarding the internal design respectively the physical implementation. As
also [JSPK13| observes, the logical form of organization and structuring data is specified
through the ISO/IEC standard, but the further use of data structures is total flexible for
the user. Numerous data structures including arrays, lists, heaps, trees and so on can be
freely chosen by the implementer and used according to the special needs of a customized
file system.

Although the authors of [JSPK13| suggest the binary search tree as the preferable data
structure, they do not support their decision very well in my point of view. It might be the
case that a BST fulfills the requirements of their file system implementation at the best,
however it is not applicable in order to make an appropriate replacement of the reference
file system. The reasons therefore are the extensive use of random access memory, what
can not be provided from the card which is used as reference, additionally a high amount
of write operations and time intensive re-structuring operations are needed by a BST.

26



Chapter 5

Design and Conception of
potential Smartcard File Systems

This chapter presents some design proposals of potential smartcard file systems. Therefore
already existing file systems have been examined in detail in chapter [3} in order to get a
good understanding for the basic functionality and different ways of realization of such an
important management system. Additionally, the underlying basic structure of multiple
existing file systems was adapted in a way that it accomplishes the needs of a modern
smart card file system and the results are represented on the following pages.

A smart card file system has to fulfill multiple requirements and has to cope with ag-
gravated conditions like very limited space.

As contactless memory cards support the usage of multiple applications, the file system
has to administrate a variable number of applications as well as the corresponding files,
whereby files can be of different types and sizes. When designing a file system, the overall
memory overhead should be kept as small as possible and the whole memory management
needs to be done quite carefully. In case of application or file deletion the allocated mem-
ory shall be releasable and reusable.

The file system should also be based on a power-fail-save design, meaning that it has to
remain in a consistent state at every time and has to support some kind of backup or
rollback mechanism. Overall goals also include fast data access and a small number of
needed write operations.

In the first section of this chapter the two approaches of journaling file systems are ex-
plained. One of the suggestions uses the well-known standard journaling way of work,
namely writing everything into a buffer before actually modifying the last good, working
data. The other, reverse one was invented for this thesis, and illustrates a slightly modified
version.

Following this, two different proposals based on a design using file allocation tables are
discussed: a double FAT approach and one proposal based on a FAT in combination with
journaling.

The next suggested file system is similar to the extended file system, which is used by
Linux and uses INodes as the main management structure.

27



In the fourth section a design based on the flash file system YAFFS is made. This file sys-
tem is based on the usage of a log-structure, categorizing the memory blocks into chunks.
Finally the tree based file systems are discussed shortly.

5.1 Design decisions (based on the reference file system)

As all of the file system designs which are presented in the following sections are structured
in a block oriented way, a common block size is required as well. Depending on the total
size of the user memory, a matching block size needs to be figured out. Possible values
are for example 32 bytes, 64 bytes, 96 bytes, etc.

As the reference file system, which is discussed in detail in chapter [7] uses a block size of
32 bytes and also to be able to provide a certain degree of comparability, a block size of
32 bytes is chosen as default value for the file system designs within this thesis. (This is
only an exemplary assumption and can of course be changed when effectively using one
design.)

5.2 Journaling file system design

In this section no file system design is presented directly, but the mode of operation of
normal and reverse journaling is explained and analysed in detail. How a journaling file
system basically works can be read in chapter

At the beginning of the user memory, a management block is situated. This is followed
by the actual memory blocks and the journal region. In a journaling based approach the
user can choose how much space he wants to reserve for the journal.

The journal is empty in the beginning and as the rest of the memory split in blocks
of 32 bytes. Each time a memory block will be written or modified, an entry in the
journal will be made.

Writing data to the journal

The journal does not only store the plain user data but also very important information
that is necessary to later on store the data at the right position in the file system.
Writes to the journal are made using journal entries. Each entry contains the block num-
ber of the data block which should be modified, the offset in bytes, the length of the data
and the actual data.

The exact structure of a journal entry and a short description can be seen in section 77.

Basically there are two ways of using a journal, which are explained in the next two
sections. Both do normally not use any other kind of indexing methods like trees or a
FAT, which is the only thing that is used is the journal. When realizing a whole file system
without any indexing structure and only using journaling, the data blocks which belong
to one data structure (like a file) need to be written sequentially.

28



This journaling-only approach therefore is not examined any further and only the ba-
sic principles of journaling are explained in this chapter, so that they can be reused for a
combined file system design.

5.2.1 Normal journaling

In the normal mode, everything that is written to the card is not directly placed into the
concerned memory blocks in the real file system, but first in the journaling area. This
makes it possible, that nothing is changed immediately in the file system and that the new
data is made available in the journal and offered for further use.

After writing to the journal and committing the transaction successfully, the new written
data is completely available in the journal and can be synced to the actual destined mem-
ory blocks.

When the transaction can not be finished or is disrupted in any way, the data in the
journal is not completely available and therefore not synced to the memory blocks in the
file system. The old state of the file system remains active and is not changed at all. In
this case, no rollback or any recovery mechanism is used, because the original file system
state stays unmodified.

Procedure after successful commit

When a transaction was finished without disruption, and a commit was executed, the new
data can be written from the journal to the actual position in the file system. The old data
in the memory blocks in the file system can simply be overwritten, as the newer version
is backed up in the journal.

Unfortunately this copy operation takes a lot of time and write effort after the com-
mit action happened. As the commit needs to be fast and the card needs to be ready for
new transactions, there is no time available for a complex write operation like this.
Copying it before a new transaction can start or even during the commit operation is im-
possible and therefore this normal journaling mechanism can not be used for a smartcard
file system.

5.2.2 Reverse journaling

In the reverse mode, everything that is written to the card is written directly in the file
system, into the concerned data block. In order to introduce a security mechanism, the
file system is not modified immediately, but the original data which is located in the block
that is going to be modified is copied to the journal. After making this backup copy, the
destined memory blocks can be overwritten with the new data.

So before overwriting or deleting any data of the working file system, the concerned block
or piece of data is copied to the journal in form of a journal entry. After securing the
original data, the new data can be directly written into the file system.

29



When the transaction was successful and the commit action happened, the file system
is immediately in the right state. As the data writes were executed directly in the user
memory blocks, all data is up to date and the journal is not needed any more. After a
successful commit, the journal can be emptied.

In case of a failure during a transaction, everything which was already written into the
file system needs to be reversed. After a disruption, the file system is in an inconsistent
state and the original data blocks which are located in the journal need to be copied back
to the user memory.

This means, that all changes which were made are obsolete. After the whole content of
the journal is copied back to its original location, the old, stable state of the file system
is re-established and it can be used again. After copying everything back to the right
memory blocks, the journal also is not used any more and its content can be deleted.

5.2.3 Comparison of both solutions

The first, normal journaling proposal offers a great protection for the working file system.
Through first writing all upcoming changes to the journal, no data in the actual user mem-
ory blocks is corrupted. However, this solution needs to write all data from the journal to
the file system during a commit operation, respectively at the end of a transaction.
Such a big write operation is infeasible and therefore this proposal can not be used.

The second, reverse journaling proposal also guarantees the consistency of the file sys-
tem through saving the original data in the journal.

This idea is especially faster when writing to empty blocks, as not the whole block needs
to be written to the journal. Therefore the amount of bytes which need to be written is
less in comparison to the other solution.

Another advantage is the actuality of the file system. The new data is directly written
to the right block and the old data immediately saved in the journal. This guarantees an
up-to-date file system at all times, without any need to copy journal contents at the end
of a transaction. Therefore a quick commit operation is ensured.

A little disadvantage of this solution is the rollback mechanism in case of transaction fail-
ure. Everything that is saved in the journal needs to be written back to the file system,
what again is really time consuming but acceptable.

5.3 Proposals based on the usage of a file allocation table

In this section two possible file system solutions which make use of a file allocation table
are presented. The functionality and structure of a FAT is explained in detail in chapter
in section [3.2.2)

The first presented solution makes use of two FATs whereas the second solution utilizes
one FAT and a journal to keep the data consistent.

30



5.3.1 File system using two FATs (Double FAT approach)

In this solution the whole user memory is split up into multiple essential parts. At the
beginning, a management block is situated, which keeps track of important information
concerning the file system.

Subsequently a FAT table as well as its copy are located. Following the FAT section, a
structure called application list and its copy are held in the memory. This application list,
which is depicted in figure does nothing more than listing references to all applications
which are available on the card. The application list is optional, there is no explicit need
to store this separate list as the applications could also be linked through the application
header blocks. Its a design decision, whether an application list should be used or not.
After this optional list, the data section starts and occupies the whole left over memory.

The overall memory layout can be seen in the pictures and Depending on which
design is chosen either an application list is included or not.

32
2 2 2 2 2 2 2 2 2
Ref Next
Ref App1 | RefApp2 | RefApp3 [ Ref App4 | Ref App5 | Ref App 6 Ref App 14 | Ref App 15 App List

Figure 5.1: Structure of a separate application list

The management blocks, which are also diverse, depending on the usage of a separate
application list, can be regarded in the figures and

32
2 2 2 2 2 2 2 2 2 14
Ref App Ref App Ref Data # Free
Ref FATO | Ref FAT 1 ) ) ; # Apps # Blocks FAT Flags RFU
List 0 List 1 Region pp Blocks &
Bit0:1 ... FAT Qs active
Bit 1:1... FAT 1is active
Bit 2: 1... Updated FAT 0
Bit 3: 1... Updated FAT 1 1 1 1 1 - l. - 1. z
Bit 4: 1 ... FATs are equal FATO FATl FATO FAT1 equal App |TI$t 0|App |?|St 1|App List 0| App List 1 RFU |
Bit5: 1... App List 0 is active active active updated | updated active active updated | updated
Bit 6: 1 ... App List 1 is active
Bit 7: 1... Updated App List O
Bit 8: 1 ... Updated App List 1
Bit 9-15: RFU

Figure 5.4: Management block of a FAT based file system including an application list

31



Management Block Management Block

FAT 0 FATO
FAT 1 FAT1
Application List 0 0x0001
0x0002
Application List 1 0x0003
0x0004
0x0001 0x0005
0x0002
0x0003
0x0004 Data Blocks -

0x0005 Application and Data Area

Data Blocks -
Application and Data Area

Figure 5.2: Memory layout including ap- Figure 5.3: Memory layout without appli-
plication lists cation lists
32
— 2 2 2 2 2 2 2 1 17
. Ref Data # Free
Ref FATO | Ref FAT 1 |Ref First App| Region # Apps # Blocks Blocks FAT Flags RFU
. . . y) 1 1 1 1 3
Bit 0: 1 ... FAT O is active FATO FATL FATO FATL
Bit 1: 1 ... FAT 1is active active active updated | updated equal RFU |

Bit 2: 1... Updated FAT O
Bit 3: 1... Updated FAT 1
Bit4: 1 ... FATs are equal
Bit 5-7: RFU

Figure 5.5: Management block of a FAT based file system without an application list

The disk organization is done in blocks: the whole user memory is split up into memory
chunks of the same size, namely 32 bytes. Every block is addressed through a 2 byte
address. For each memory block, one FAT entry exists. This FAT entry consists of a 2
byte sized entry, namely the usage of the memory block, so the whole FAT contains the
usage of each memory block of the file system. The index in the FAT represents the block
number and the entry at this index gives information about its usage and the following
block, if available.

32



Depending on the information in the FAT one block can either be free, damaged or used:
e 0x0000: the block is free
e OxFFFE: the file system is damaged at the blocks position
e 0x0001 - OXFFFD: the block is in use and the number of next block is given

e OxFFFF: the block is in use and that it is the last block in the chain

Memory consumption

As one FAT entry only needs 2 bytes of space and the memory is separated into blocks of
32 bytes, one memory block can contain a total of 16 FAT entries, one after another. The
structure of a FAT entry is depicted in figure

The size of one total FAT therefore makes up %6 of the whole user memory. With consid-
eration, that two FAT tables are needed, the required space doubles to é .

Example: In order to address a user memory consisting of 8 kilobytes, a FAT table with
only 16 blocks (each containing 16 FAT entries) is needed. This results in a size of 512
bytes per FAT table.

32

2 2 2 2 2 2 2 2 2
Block Usage | Block Usage | Block Usage | Block Usage | Block Usage ] Block Usage Block Usage | Block Usage | Block Usage
0x0001 0x0002 0x0003 0x0004 0x0005 0x0006 0x000D 0x000F 0x0010

... Block Number

Figure 5.6: Structure of a FAT entry

Additional to that, the space for the application list makes up at least 32 bytes. De-
pending on the amount of available applications, also more blocks could be needed. Each
application needs a field of 2 bytes for the application pointer inside the list.

In order to translate the block number to the real block address of the file system, a
little calculation has to be done. The block number one is the data block located at the
address of the data region which is contained in the management block. So the formula
for calculating the block address is:

block address = address of data region + block number - 1

Design of the transaction-safe structure

In order to guarantee transaction safe modifications on a file system, two copies of a FAT
(FATO and FAT1) are stored internally. In the beginning both copies hold the same con-
tent and during the transaction process, one of them always is kept as kind of a stable
backup version, while the other one is modified according to the changes which are made

33



during a transaction. The one which represents the latest good status is the active FAT
whereas the one which is modified during the transaction is the inactive FAT.

The stable file system version is indicated via a certain flag, the active flag. If this flag is
set, the FAT is the last known good one and represents the latest working version of the
file system.

All modifications on the file system are retained in the inactive FAT. After modifying
the file system and successfully completing the modification, several flags need to be set
to indicate the changes of the file system.

If a transaction is disrupted through power loss or something else, the active flag will
not be toggled and therefore the already made changes to the file system will be lost and
the working version (active FAT) will not be influenced at all.

The setting of the active flag as well as the setting of the updated flag is included in
an atomic operation which concludes an entire transaction and commits it.

After the active flag has been toggled and a change of the active FAT as well as the
application and block counters was made, the new modified file system is active. However,
the two FAT images have a different content after switching the active FAT, and need to
be synchronized before a new transaction can start.

If the two FAT images are not synchronized, the inactive FAT will still contain the status
of an old file system version and new upcoming changes will bring the whole file system in
an inconsistent state. Therefore it is extremely important that the active FAT is copied
to the inactive FAT after a successful modification and commit, so that both are the same
and represent the latest working file system version. The synchronization actually is done
when starting a new transaction, that means that before doing any new modification to the
file system, all changes are copied and both versions are synchronized. After successfully
synchronizing both FAT images, the equal flag needs to be set. These two flags signalize
the equality of both FATS.

As already said, a check of the FAT management flags needs to be done in order to
guarantee file system consistency, when a new transaction starts.

Application and file creation

When creating an application in the file system, the first free data block is allocated for
the 32 byte sized application header. This block number is then stored in the applica-
tion list (if available), in order to collect all available applications and provide a method
for quick application access. Additionally the application counter which is located in the
management header, is increased.

The application header consists of multiple fields, which can be inspected in figure

34



32

2 2 2 2 2 2 14 2 2 2
Application | e | Block # File [P FNOY  colgs | Field 6 Field14 | Field 15 CRC
ID Application

Figure 5.7: Application header of a FAT based file system

The fields Bock# File, Block# Next Application, etc. are no references but contain block
numbers of the blocks, where the according information is stored. If one of these informa-
tion is not needed (e.g. empty application which has no file associated with it), 0x0000 is
written into the field and no FAT entry and no data allocation is necessary.

When a file is created, first of all a check whether the necessary free space is available is
made. If there are enough blocks available for the file content and its 32 byte sized header,
then the file can be written to the file system.

Important Note: Data is always written in blocks of 32 bytes. Even if only 1 byte is
needed, a whole block needs to be allocated and the remaining 31 bytes stay unused.

If there is enough space available, the file header is written. The structure of a file header
is depicted in figure

32
2 2 6 2 2 2 10 2 2 2
File ID Config File Params BIO.Ck # Next Field 5 Field 6 Field 12 Field 13 CRC
FileNode

Figure 5.8: File header of a FAT based file system

Basically a file header contains the configuration settings of a file, its size, the block num-
ber where the file data starts, various access right sets as well as the block number of the
next file node.

After the file header has been written, the file data is written to memory. The data
is written to any free block in the whole memory. If the file is bigger than 32 bytes and
therefore needs multiple blocks, it is preferable that these blocks reside continuously in
the memory, but if this is not possible, they can also be placed in distributed locations.

The management of such distributed blocks is done through the FAT. He cares for the
correct linking of one data block to another and so builds up whole files and their contents.

35



The file node only needs to be linked to its application or the predecessor file, if one
exists. If it is the first file of an application, the block number of the file node needs to be
written into the field Block# File of the application header. Otherwise this number needs
to be written into the field Block# Next FileNode of the previous file node.

Application deletion/file deletion

The big benefit of this file system structure is the possibility to easily delete files and
applications and to reuse the new available space.

In order to delete a single file, the block number of the file node has to be erased from
the whole file system. That means that the block number may not be referenced from an
application header nor from another file.

Is the file which shall be deleted the first one of an application, the file node block number
of the next file, or simply 0x0000 if there are no more files in the application space, needs
to be written in the application header. Else if the file is not the first one, the previous
file header needs to be updated in a way that it contains the block number of the file next
after the actual one. In this way the actual file is left out and the files of an application
are chained up anew.

Besides this also the FAT needs to be updated in order to update the block usage and to
signal that all the previously used blocks are free.

If a whole application shall be deleted, the application ID needs to be removed from
the application list and the application counter has to be decreased. After that, all the
files that belong to this application need to be marked as free in the FAT.

5.3.2 File System using a FAT in combination with journaling

The file system design which is proposed in this section is very similar to the basic struc-
ture of the previously presented design in section [5.3.1}

Like in the previous proposal, the whole memory is split up into blocks of 32 bytes each,
which are addressed through a 2 byte address. The overall memory layout looks similar
but has one important additional part included, namely the Journal. This can be seen in
figure[5.9

36



Management Block

FAT

Data Blocks -
Application and Data Area

Journal
(including copy of FAT)

Figure 5.9: Memory Layout of a FAT /journaling combination

Instead of relying on two FAT images for safe file system modifications, transaction safety
is guaranteed through a separate memory area called the journal.

The journal is a memory section, where all affected data blocks are stored before do-
ing any upcoming changes to the file system. The size of the journal can be defined by
the user, he specifies how much memory the file system should reserve for backup reasons.
When defining only a small section for the journal, the usable user memory area remains
bigger and therefore more data can be stored on the card. Otherwise, if the journaling
area is defined bigger, more data can be backed-up and secured. The option which requires
the most memory but provides perfect security is splitting the available memory in two
halves, one for the user data and one for the journal. This makes it possible to make a
backup of the whole data that is stored on the card.

However, normally this will not be necessary and therefore the user can choose, how much
memory he will reserve for the journal. The only limitation that emerges is that the jour-
nal needs to be at least big enough to store a copy of the FAT, to be able to restore the
block linkage in case of a crash.

In the first part of the memory, the management block is located. It looks different
than in the previous solution and can be seen in figure [5.10)

37



32

2 2 2 2 2 2 2 2 2 14
Ref Data | ReflJournal | Ref Journal # Free # Journal |# Free Jour.
REERAT Region FAT Copy |Data Region #Apps # Blocks Blocks Blocks Blocks RFU

Figure 5.10: Management block of a FAT /journaling combination

The following parts are the FAT and the data blocks. The last memory section contains
the journal, which internally includes a copy of the FAT.

The journal is empty in the beginning and, as the whole memory, split into blocks of 32
bytes. Each time a file or an application will be written or modified, an entry in the
journal will be made.

The valid FAT will be copied to the journal in order to secure it and to backup the latest
working version of the file system. So before modifying the original file system in its
working state, a copy of the data which is going to be modified will be made and written
to the journal in form of a journal entry. After writing the journal entry and consequently
securing the original data, the changes to the file system can be made.

Writing to the journal

Every time a new transaction starts, the journal is cleared completely. All journal entries
look the same. First of all the block number of the data block which is going to be modified
is written to the journal. Next the offset inside the block and then the length of the data
which is going to be modified in bytes is added. Finally the actual data is appended.

The structure of a journal entry is illustrated in figure [5.11] Each single entry consists of
the already named parts (block number, offset, length, data).

32
|

2 2 2 XX 2 2 2 XX 2 2 2 XX

| Block # | Offset | Length l Data I Block # I Offset | Length | Data | Block # | Offset

Length | Data |

Figure 5.11: Structure of a journal entry

The journaling mechanism makes it possible to backup every kind of data, that is available
in the file system. It does not matter if it is about metadata, header data, user data or
something else. Everything can be stored, only the block number and data length need to
be known.

38



In order to illustrate the structure of a journal entry, one example can be seen in fig-
ure [o.12)

138

2 2 32 2 2 2 32 2 2 2 32 2 2 2 14

Data Block 1 Data Block 2| Data Block 3 Data Block 4

0x0003 | 0 | 32

0x0007 ‘ 0 | 32

0x0008 | 0 ‘ 32

0x0014 I 0 | 14

Figure 5.12: Example of a journal entry

Memory consumption

As already mentioned in section one file allocation table needs 1—16 of the whole user
memory.

The space which is required for the journal can be specified by the user and is therefore
not known beforehand. It needs at least to be big enough, to store one FAT as a secure
copy and to offer some memory which can be taken for journaling purposes.

All the remaining memory is available for the user data.

5.4 Design approach based on the EXT file system structure

Based on the basic functionality of the Extended File System which is explained in chap-
ter [3 in section [3.2.1] a possible file system solution is designed and explained in this
section.

5.4.1 EXT based file system in combination with journaling

The basic structure for managing metadata that is used is the INode. The INode stores all
information which is connected to one file, except the actual user data itself. Its modified
structure is designed similar to the one which is used original by the EXT file system, but
instead of using 15 pointers, the proposed solution uses less fixed pointers but rather a
dynamic solution.

For an EXT based file system memory layout, the overall organization of the data struc-
ture is done in blocks. The whole user memory is split up into blocks of the same size,
namely 32 bytes. The first block of the file system is the superblock. It contains important
management information, like the amount of blocks and free blocks, and pointers to the
block usage bitmap, the data area and the journal. It can be seen in figure [5.13

Subsequently the data area follows. It contains all user data as well as the later on ex-
plained INodes. This section is followed by the journal. The size of the journal is not fixed
and can be chosen by the user at file system initialization.

The memory layout is depicted in figure [5.14

39



32

2 2 2 2 2 2 2 2 2 2 2 10
Ref Bitmap | Ref Data Ref First | Ref Journal | Ref Journal # Free #Journal |# Free Jour. RFU
Copy Region ANode Data Start | Data End Blocks Blocks Blocks

# Blocks

Ref Bitmap # Apps

Figure 5.13: Superblock of the EXT file system

Superblock

Block Usage Bitmap

ANodes and FNodes

and Data Area

Block Usage Bitmap 2 (Copy)

Journal

Figure 5.14: Memory layout of an EXT/journaling combination

ANodes and FNodes

First of all a distinction between two important types, namely application-INodes and
file-INodes (further on called ANode and FNode), needs to be made. Applications contain
one up to multiple files and therefore probably need to store more meta information than
a single file does. Both types (applications as well as files) are represented through an
inode, but the structure and size of the inode slightly differs.

The ANode contains important information concerning the application itself as well as
a pointer to a so-called file list. The file list contains 15 reserved fields which are intended
to store pointers to files of the application. Initially they are all set to NULL and only
get changed if there are files added to the application. If one application needs more than
15 files, the sixteenth field can be used to point to a new file list, which again offers space
for pointers to 15 new files. This chaining of file lists can be done as long as there is space
available on the card. A picture of an ANode and the mentioned file list can be inspected

40



beyond in figure [5.15]

32
2 2 2 2 2 2 14 2 2 2
Application ) Ref File List/ ) ) . .
D Config Flags Ref First File Field 5 Field 6 Field 14 Field 15 CRC
32
\
L2 2 22 2 2 2
Ref File 1 | Ref File 2 | |Ref File 14|Ref File 15| "' Next
File List

Figure 5.15: Application node (ANode) with a file list

If an application needs more than the 15 designated files, a new list can be allocated and
the sixteenth pointer can be used to point to its location.

The FNode is basically structured in the same way as the ANode. It contains important
information concerning the file and a data block list instead of a file list, as the ANode
does. This means that the FNode does not point to file headers but contains pointers to
data blocks. The organization of the pointer list is done in the same way like it is done
for the ANode. This data block list however only is needed, if the single data blocks of
one file are located fragmented in the user memory. If it is possible to write the data into
continuous memory blocks (what should be preferred) only one pointer to the first data
block is needed. Then no additional memory block needs to be used and a single block
pointer is sufficient.

Whether the data can be written sequentially or not needs to be recorded in the config-
uration settings of the FNode. In the Config field the Block List bit needs to be set to
true if a separate data block list is needed, and to false in case no list but only one data
pointer is needed.

An example of the layout of an FNode can be seen in figure [5.16

41



32

2 2 4 2 2 2 12 2 2 2
File ID Config | File Params |1 D22 80ck)  Fielg 5 Field 6 Field13 | Field 14 CRC
ist / Ref Data
32
) \ ,
~ S
N 2 2 22 2 2 2
’I Ref Data | Ref Data | | Ref Data | Ref Data | Ref Next
Block 1 Block 2 Block 14 | Block 15 [ File List

Figure 5.16: FNode with an optional list containing pointers to data blocks

Journaling mechanism

The data backup mechanism which has been selected for this file system design is the
reverse journaling, as it is described in the subsection The principle workflow looks
similar to the proposed solution in combination with a FAT, which is explained in subsec-
tion ?7?. However, instead of using a FAT, no special kind of management data structure,
except of a bitmap, is needed within this approach.

Also in this design the user can specify the size of the memory section that he wants
to use for the journal himself. Journal entries are structured in pretty the same ways
as they are structured in the FAT-based design. The only big difference to the previous
presented journaling version is, that no block numbers are used any more. Instead of
numbering each memory block, their address is taken. This address is also written to the
journal entry to identify which memory block is going to be modified. The other fields
which represent the offset and length stay the same. A journal entry and the small changes
can be seen in figure [5.1

32

2 2 2 XX 2 2 2 XX 2 2 2 XX
Ref Data Ref Data Ref Data
Block Block Block

Offset

Offset | Length I Data |

Offset | Length l Data

Length I Data |

Figure 5.17: Structure of a journal entry

Memory consumption

The memory consumption for this EXT based design approach is quite low. 32 bytes are
needed for the Superblock, 1 bit for each block in the data section is needed for the block

42



usage bitmap and the size of the journal can be specified by the user and is therefore un-
known beforehand. The journal contains one copy of the block usage bitmap, so it needs
to have at least its size.

Although the memory consumption is quite low for management structures, the actual
realization of the file system might tend to waste a bit of space. The file list and also the
block lists are (if needed) allocated in form of a whole block and therefore it might be the
case, that they might waste space if not all available fields in one block are needed.

5.5 Design approach based on the YAFFS file system

Based on the basic functionality of Yet Another Flash File System which is explained in
chapter [3] in section [3.3.3] a possible file system solution is designed and explained in this
section.

The structure which is used by the YAFFS files system is a log structure. One entry
in the file system is called a chunk, which basically is a memory block. Each chunk con-
sists of a memory region and some tags which are used for management reasons. Originally
YAFFS1 has a modified log structure whereas YAFFS2 has a true log structure. A true
log structure means that writes to the file system only are done sequentially.

YAFFS1 uses deletion markers and serial numbers within each chunk. The serial number
is incremented every time, a chunk is replaced and deletion markers are used to track
the status of each chunk. This means that old chunks are re-accessed and marked as
deleted or unused, and therefore an overwrite or write-back occurs in a non-sequential
manner. YAFFS2 follows the philosophy of zero overwrites, meaning that the usage of
deletion markers is forbidden and write operations have to be performed strictly sequen-
tial. YAFFS2 has a better write performance than YAFFS1. However, as YAFFS2 does
not use deletion markers, scanning is significantly more complex and takes more time for
this file system version. A big disadvantage is that the chunks have to be ordered each
time the file system is accessed and that the scan has to be performed backwards, meaning
in reverse chronological order.

5.5.1 Mixture between YAFFS1 and YAFFS2 design

As in the previous proposals, also in this suggestion the user memory can be split up into
blocks of 32 bytes but for later on explained reasons the block size actually is set to 40
bytes.

In the presented file system the user memory is structured as one big log. No man-
agement block or any directories are needed at all. The log structured memory contains
all kind of user data, including headers, key data and so on. Both application and file
information as well as the connected headers are stored in this part of the memory.

The log structured memory is maintained in a log based chronological order. No matter
which kind of data is written to the memory, writing is done chronological starting from
the top. When a new data block is written, the first next free block is allocated and

43



used. This simple basic layout can be modified in order to get a quicker access to free
memory blocks. When maintaining an optional additional block usage bitmap, the first
free memory block can be found very quickly. The big benefit of keeping a block usage
bitmap in memory is that searching the next free block is faster than traversing each block
of the log structured area until a free one is found. On the other hand the drawback is the
additional memory consumption as for each memory block one additional bit is needed for
maintaining the usage list. The basic idea of the layout of the log structured file system
can be seen in figure [5.18

40

[]

! (- — Block Usage Bitmap
Tag Data
Tag Data
Tag Data
Tag Data
Tag Data
Tag Data
Tag Data
Tag Data
Tag Data
Tag Data Log Structured Area
Tag Data Chunks for Data and Headers
Tag Data
Tag Data
Tag Data
Tag Data
Tag Data
Tag Data
Tag Data
Tag Data
Tag Data

Figure 5.18: YAFFS based file system layout

Chunks of the log structured memory

A memory block is called chunk and is 40 bytes big. Each chunk consists of a tag and
a data region. In the data region the user data is written and in the tag region some
information which is necessary for the log management is stored. This means that not
the whole 40 bytes can be used for the plain user data because some bytes are used for
tagging. A chunk with a size of 40 bytes contains a 8 byte sized tag and 32 bytes are
reserved for user data. A chunk is depicted in figure [5.19

44



- 2 2 1 1 2 7 ™

Prev Pointer|Next Pointer] Chunk ID | Bytes used | Tag Config Data

1 2 2 3 8
Write | Deletion [ Serial REU |
Mode Marker | Number
0... Normal 00 ... Empty
1...Tearing Save 01 ... Used

Type

10 ... Deleted
11...Bad

Figure 5.19: Chunk with tag and data region

A chunk is characterized through its tags. The tags comprise the following important
fields:

e Prev Pointer: This pointer is used to point to the previous chunk or to the parent
application, if no previous chunk is available.

e Next Pointer: This pointer is used to point to the next chunk.

e Chunk ID: This ID is used to specify the chunk sequence, if more than one chunk is
used to represent the user data.

e Bytes used: It reflects how many bytes of the data region of this chunk are used. It
contains a number between 1 and the size of the data region.

e Tag Config: This field contains the write mode, deletion marker and the serial
number.

The deletion marker gives information about the status of a chunk. Each chunk may be
in one of the following states:

e EMPTY 0x0: This chunk has nothing in it and can be allocated. In the beginning,
when the card is initialized, each chunk is in this state. When it is allocated it moves
to the USED state.

e USED 0x1: This chunk is allocated and in use. If it is not used any more and
replaced by a newer version it comes into the DELETED state.

e DELETED 0x2: This chunk is not used any more and its content can be deleted.
After actual erasure its state is set to EMPTY.

e DEAD 0x3: This chunk is corrupted or bad. This is a final state.

45



The serial number is a two bit counter, starts with the value 0x0 and goes up to 0x3. It
is modified each time a chunk is changed and re-written as a new chunk. When the limit
0x3 is reached, counting restarts from the beginning.

The type specifies, which kind of data is stored in the data region of the chunk. The
type is also essential for the writing mode of the chunk. Depending on the type writ-
ing/updating either is done tearing safe or in the standard way.

Memory consumption

The current proposed solution combines each 32 byte sized data block with a 8 byte sized
tag.

Ezxample: In order to address a user memory consisting of 8 kilobytes it first is split up
into blocks of 40 bytes. As the result is not even, 204 blocks can be addressed and the
rest of the memory unfortunately stays unused. Therefore only 8160 bytes out of 8192
can be used. To build up a bitmap for this memory structure, 204 bits are used, that are
25 bytes and 4 bits, which can be round up to 26 bytes. So the amount of space which is
required by a bitmap is really small.

B-Tree design based on original YAFFS2 using a true log structure

The original YAFFS file system uses no pointers or other structures at all in the non-
volatile memory, it only consists of the log and nothing else. For easier access to directories
and files, a binary tree is built up when mounting the file system and is updated each time
a change is done. This tree is normally held in RAM.

When approaching the design of the card file system in exactly this way, without using
references to chunks at all, the benefit is, that every chunk can be rewritten without doing
any update on the actual block and therefore no tearing safe write operations are needed.

However building and maintaining a binary tree on the smart card is infeasible due to
space issues and timing reasons. With every little change in the log also a change in the
tree would be necessary and all pointers of the tree would have to be chained anew.
Emerging of this, the linear search has to be used to make data access possible without
using a binary tree. The huge drawback is, that reading and accessing an object (appli-
cation or file) in the right order is slow, because the chunks are not sorted and every part
needs to be searched separately. Searching through a list takes linear time, that means
that in the worst case, all elements of the list need to be traversed. The linear search
is proportional to the number of elements in the list, what makes the performance really
bad.

Design using pointers inside the log structure

In order to get rid of the need of a binary tree and to avoid the linear search, the structure
of the YAFFS file system has been modified and also pointers have been included in the
log entries. The references inside the chunks point to the previous and next chunk and
make data access easier but unfortunately complicate the management of the chunks.

46



In the depicted chunks in figures and which represent application and file head-
ers, references to other chunks are used. This makes the log structured write to the file
system a bit more complicated.

8 32

2 2 1 1 2 2 2 2 2 2 2 14 2 2 2
Application
|

Prev Pointer|Next Pointer| Tag Config Ref File

Chunk ID I Bytes used

Config | Flags

Field 5 | Field 6 | | Field 14 | Field 15 | CRC |

Figure 5.20: Chunk with tag and application header

8 32

2 2 1 1 2 2 2 6 2 2 2 10 2 2 2

Prev Pointer|Next Pointer| Tag Config File Params |Ref Next File|

Chunk ID | Bytes used

File ID | Config

Field 5 | Field 6 | | Field 12 | Field 13 l CRC |

3
Type | RFU I

Figure 5.21: Chunk with tag and file header

When writing a new object nothing special has to be considered and the write operation
can be performed in a normal way. This means, that for each data block a new chunk is al-
located and tag as well as data section are written in the freshly allocated chunk. However,
when doing an update operation and the data therefore is written to a new chunk, also
the pointer references in the chunk before and the chunk following the currently updated
one, need to be updated in order to keep the file system consistent. These pointer up-
dates need to be done tearing safe, as the modification is done directly in the original block.

The only type which is updated using a new allocated chunk, copying the data into it
and appending it to the log, is the file data. Updating all other kinds of data is done
tearing-safe directly in the concerned chunk. The usage of pointers makes the file system
to a false log structured one, allowing write-backs and overwrites.

An example of a practical use case is given in the table 5.1} In this example the transac-
tions happened in the same order as the data is written to the memory. First of all an
application is created and the application written to block 0x0000. An application header
only needs one chunk, therefore the fields Prev Pointer and Next Pointer in the tag section

47



are set to the value OXFFFF. As the application is going to have an additional application
information block and one file connected to it, the data section of the application header
chunk contains pointers to these addresses. Subsequently the three additional application
info blocks are written. After this, the file header and the file data is written to the file
system. The data is 82 bytes big and therefore needs three chunks.

Chunk Adr || Prev Next Chunk | Bytes Tag Config | Data

Pointer Pointer D used
0x0000 0xFFFF 0xFFFF 0 32 10100000 | Application Header
0x0028 0x0000 0x0050 0 32 10100001 | Add App Info
0x0050 0x0028 0x0078 1 32 10100001 | Add App Info 2
0x0078 0x0050 O0xFFFF 2 32 10100001 | Add App Info 3
0x00A0 0x0000 OxFFFF 0 32 10100100 | File 1 Header
0x00C8 0x00F0 0x0140 1 32 00100101 | File 1 Block 1
0x00F0 0x0118 0x0168 2 32 00100101 | File 1 Block 2
0x0118 0x0140 OxFFFF 3 20 00100101 | File 1 Block 3
0x0140 0 0 0 0 00
0x0168 0 0 0 0 00
0x0190 0 0 0 0 00

Table 5.1: Example for a log structured write to the file system

All objects which belong directly to an application are also connected to this one via a
pointer. The first chunk of these objects uses the Prev Pointer (which normally is not used
in the first chunk of a new object and would point to 0xFFFF) as Parent Pointer which
points to the address of the belonging application.

In all other cases the Prev Pointer is used to point to the previous chunk and to connect
chunks which belong to each other, in order to build a sequential double-linkage of data.

The usage of the Parent Pointer makes it easier to manage object dependencies inside
the log structured file system and provides a possibility which allows a quick navigation
to the parent application starting from any object.

When updating the data in chunk 0x0118 the chunk is not overwritten, but a new version
of it is appended to the log. When the operation succeeds and the new chunk is written
successfully, the pointer of the previous chunk is updated tearing safe and set to the new
written chunk. Also the deletion marker of the old chunk can be set to DELETED in a
tearing safe operation. The table has been updated and shows the made changes.

Changes in the tag region of a chunk are always done tearing safe directly in the con-

cerned chunk. A new chunk only is allocated and written, if an update of the data region
of a file occurs, or if totally new information is written.

48



Chunk Adr || Prev Next Chunk | Bytes Tag Config | Data
Pointer Pointer 1D used

0x0000 0xFFFF 0xFFFF 0 32 10100000 | Application Header

0x0028 0x0000 0x0050 0 32 10100001 | Add App Info

0x0050 0x0028 0x0078 1 32 10100001 | Add App Info 2

0x0078 0x0050 O0xFFFF 2 32 10100001 | Add App Info 3

0x00A0 0x0000 0xFFFF 0 32 10100100 | File 1 Header,
tearing safe
pointer update
in data region

0x00C8 0x00F0 0x0140 1 32 0100000 | File 1 Block 1,
old version, tear-
ing safe configu-
ration update

0x00F0 0x0118 0x0168 2 32 00100101 | File 1 Block 2

0x0118 0x0140 OxFFFF 3 20 00100101 | File 1 Block 3

0x0140 0x00F0 0x0140 1 32 00101101 | File 1 Block 1
updated, new
block written

0x0168 0 0 0 0 00

0x0190 0 0 0 0 00

Table 5.2: Example for a log structured data update

The proposed solution makes it possible to do write operations of new objects and updates
of file data in a log structured way. For all other kinds of updates the already existing
chunks are modified in a tearing-safe way.

When updating file data and therefore writing a new chunk, deletion markers are used
to mark the old chunk as deleted. The data inside this chunk is not erased immediately,
the label only signals that it has to be deleted. It is not erased immediately during the
commit operation because this would take too much time and the commit operation shall
be as fast as possible. Therefore it is only marked as deleted and the actual erasure is done
each time before a new transaction starts. Before starting a transaction, the file system is
checked quickly and the content of all chunks which are marked as DELETED is erased,
their deletion marker is set to EMPTY and so the chunk can be reused again.

As old unused chunks are marked as deleted and consequently erased, holes with un-
allocated memory emerge in the log structure. These holes provide space for new chunks
and can be allocated and used for new data blocks. The reuse of holes is possible as
coherent data blocks do not need to be written contiguously. However this reuse leads to
fragmentation.

49



5.6 Tree based file system proposals

As file systems which are based on B-trees rank among the most used disk file systems,
they also have been taken into consideration regarding their possible usage on smartcards.
A brief explanation of two common tree-structured file systems, namely ReiserFS and
BTRFS, is given in chapter [3]in sections and

Additional to the already provided information, more details on B-trees in general and
the associated dictionary operations are discussed in this section.

5.6.1 Definition and mode of operation of B-trees

A B-tree is a dynamically updatable, balanced tree-like index structure, also specified as
multiway search tree. The B-tree can be seen as an extension to the well-known balanced
binary tree, as a B-tree is always balanced [Lz09].

In the B-tree every node corresponds to one disk block. An internal node stores a list
of keys and a list of pointers and a leaf node stores a list of records, each containing a key
and a value. Every node except the root node has to be at least half full. If the root node
is an internal node it must have at least two child pointers. [Lz09].

The keys of an internal node act as separation values which divide the sub-trees. This
leads to the fact that the number of branches or child nodes of a node will be one more
than the number of keys stored in the node [Lz09].

B-trees support the insertion and deletion operations in O(log,n) time on a hard disk,
with n being the number of records in the tree and p being the page capacity in number
of records [Lz09].

5.6.2 Dictionary operations

The B-tree supports two kinds of queries, the exact-match query and the range query.
This means that on the one hand searches for a record with a certain key and on the
other hand searches for records whose keys belong to a range, can be executed. Search
operations always start at the root [Lz09].

In order to insert a new record into the tree, an exact-match query has to be performed
first, in order to locate the leaf node in which the record should be stored. If there is
enough space available, the record is stored in the node, and if not, the leaf node is split
and a new one is allocated. After a split, the records with the larger keys of the overflowing
node are moved to the new node. This may also cause the parent node to overflow and so
on. In the worst case, all nodes along the insertion path are split [Lz09].

The deletion of a record from the B-tree also uses the exact-match query as first step
to locate the leaf node which contains the record, and afterwards the record is under-
flowing removed from the found leaf node. If this node is at least half full, the operation
is finished, otherwise the node and the contained records need to be re-distributed to a
sibling. If the redistribution is not possible, the node needs to be rotated or is merged
with a sibling. After deletion, the tree needs to be rebalanced. Rebalancing starts from a

50



leaf node and proceeds towards the root [Lz09].
As the deletion of a key implicates expensive operations like redistribution, rotation, merg-
ing and rebalancing, it is a much more complex operation than the insertion.

5.6.3 B-tree inside the smartcard

The usage of a B-tree brings along certain kinds of necessities. Besides the main memory,
which is separated into blocks, an additional area needs to be reserved for the organization
of the tree. The structure of the whole tree is built up through pointers. Each node except
the leafs contains some own information, keys and pointers to child nodes. The leaf nodes
contain the actual information.

As the accumulation and chaining of pointers requires much space and a complex way
of storage, the effect of quick search and insert operations is already marred. Through
the B-tree a data block can not simply be accessed over one pointer and often a traversal
of a long pointer chain is necessary until the desired block is reached. This possibly long
pointer chains slow down the access time and may unnecessarily lengthen read operations
on the smart card.

Additional to this, the deletion of a file or single data block can really be horrible for
the performance. It is infeasible for a smartcard to completely re-structure a whole B-tree
in case of erasing a node. Rotating and rebalancing consume much time and write opera-
tions. As many pointers need to be set anew in the worst case, countless write operations
would have to be performed, what simply is unacceptable.

Based on the facts that a B-tree based file system is memory consuming as well as totally
non-performant with respect to write operations and timing issues, it is rather not suit-
able for smart cards. As a result, this kind of file system is not examined any further and
regarded as unqualified.

o1



Chapter 6

Comparison of the different
suggested File System Concepts

This chapter deals with the comparison of the in chapter [5| presented different file system
approaches. In order to find out the most appropriate file system, which provides the
best performance and memory utilization, the key operations which are performed on a
smartcard are examined in detail.

In the following sections, each presented file system approach is investigated thoroughly
by means of the operations write, read, update, delete, commit on the smart card objects
application and file.

The results of the investigation give an insight in the required write operations and memory
usage.

6.1 General clarifications

In the following sections different types of file systems and design approaches are explained
and compared in detail, what requires a short discussion of general requirements and an
explanation of different ways to approach these.

6.1.1 Fragmentation

As the majority of the suggested designs is block oriented, it might be said that a block-
oriented design is most efficient if blocks which belong together are also situated next to
each other in the memory. A continuous placement of adjacent memory blocks is a big
benefit for read as well as for write operations. A low fragmentation decreases access
times and makes it possible to do one longer, bigger operation instead of multiple smaller
ones, which are costlier. A high internal fragmentation leads to a high distribution of data
blocks which would belong together and therefore increases read and write times.

Emerging from this fact it is desired to write belonging blocks continuously as far as
possible. Therefore an additional field in the file header and application header of the file

52



system designs is available, which can distinguish between two types of data positioning:
fragmented or continuous. When file data or any other object data is written continuous
and that is also marked in the belonging header, the read operation can be performed
with knowing only the starting block and data length, no further information about block
linkage or block association is needed.

6.1.2 Handling of security relevant data (e.g. key data)

Each application can have some kind of security relevant data connected to it, for example
its own application key file. A security object can be accessed through the application, as
the reference to it is always stored in the application header.

If an application key file or other kind of security relevant object is needed, it is always
created together with the application. During the creation of an application the object
needs to be initialized.

As this kinds of objects are very sensitive and managed by an independent instance,
they need to be written continuously into the memory, meaning that the blocks need to
be placed next to each other. A distributed storage of e.g. key blocks is not possible and
therefore a check which searches through the file system that tries to find a big enough
memory chunk needs to be made before creating an application.

Depending on the number of keys, which need to be specified in order to create one
application according to the reference file system, the number of blocks which are required
for one key file can differ. As all keys need to be written sequentially, the free blocks need
also to be found successively in the memory. If not enough adjacent free memory blocks
can be found, the key file can not be written and therefore also the application can not be
created. This kind of limitation needs to be made in order to ensure the sensitive handling
of security relevant data as well as to guarantee the unproblematic access to the data from
hardware elements. Security objects often are accessed from and treated by hardware and
therefore require this kind of protection which prohibits the usage of splitted of memory
blocks.

6.1.3 Linking of applications and files

Basically two different kinds of ways, how applications and files can be linked to each
other in order to apply a kind of directory structure are available. On the one hand the
approach of the reference file system can be used, which basically is the linking of one ap-
plication to another through a pointer in the application header. And on the other hand
a separate structure, the application list, can be used. The application list is basically a
memory block which contains only pointers (respectively block numbers) which refer to
all applications that are available in the file system.

Both solutions are well suitable for the new file system, however both bring along cer-
tain drawbacks.

The linked list of applications is really fast when accessing an application in the first sec-
tion of the list. The longer the list grows, the slower it gets. In contrast to that, the

53



application list performs better when accessing an application at the end of the block.

The application list wastes memory, when only a few applications are stored on the card.
As a whole block needs to be allocated it is a very inefficient solution when not using
many applications. The linked list therefore does not waste any memory. The 2 byte
sized field, which is required to store a reference or a block number, is available in the
application header. No additional block is required and the linking can be done out of the
box. Another drawback of the application list is the limitation to sixteen applications. In
case more applications are needed, a second block needs to be allocated and linked to the
first one, what again wastes expensive memory.

Based on the discussed reasons it can be said, that the linked list approach basically
is the preferable one. However, the application list can be the better performing solution
sometimes and also is required in order to realize some design approaches. Therefore both
presented ways are used in this thesis.

6.2 Examination of the double FAT approach with applica-
tion lists

In this section the file system approach based on two FATs with the help of using appli-
cation lists is explained in detail. The standard operations like write/update/delete are
explained in detail and the needed write operations are counted.

The measurement results of the standard operations applied on the FAT file system using
two application lists can be seen in table at the end of this section.
In figure a diagram that depicts the workflow of an transaction, can be inspected.

6.2.1 Create and write operations

In order to create an application in the file system, first of all the management block needs
to be read. This needs to be done to check if the double FAT system is consistent, namely
if the two FAT tables are equal and reflect the same file system status. Also the amount
of available empty blocks needs to be checked in order to guarantee that there is enough
space left and the new application can be written.

The file system state is okay and equal for both FATSs, if the flags are set in the fol-
lowing way: equal == 1, FAT0/FAT1 updated == 0, AppList0/AppList1 updated == 0.
In case the flag equal is set to zero, some synchronization steps need to be done, which
are explained in the subsection [6.2.5] If the equality of the two FATSs is guaranteed and
there is enough space left on the card, the write operation can begin.

In order to write an application, the following steps need to be executed:

First of all, the first free block of the file system needs to be found. As all free blocks are
characterized through a 0x0000 entry in the FAT, this can be done by starting from the
top and traversing all FAT entries until the first free one is found. Additionally to one free

o4



Initial Situation

Is (Applist0/Applistl

updated ==1) ?

Synchronize active Applist
with old Applist
Applist0/1 updated = 0

A 4

| Synchronize active FAT

with old inactive FAT

A 4
Set the flags:
equal=1

FATO/FAT1 updated = 0

A 4

Ready to start a new
transaction and modify the
filesystem with the
inactive FAT and inactive
application list
Setequal =0 at
transaction start

P| Active FAT is last working version of
file system

Is (equal == 1) ?

d

needed

No synchronization

Reset flags:

FATO/FAT1 updated = 0
(Applist0/1 updated = 0)

Transaction
successful ?

Set the flags:
FATO/FAT1 updated = 1

(After application
creation also
Applist0/1 updated = 1)

A 4

Indicate that the updated
FAT is active:
FATO/FAT1 active = 1
(Applist0/1 active = 1)

Figure 6.1: Workflow of one transaction using the FAT file system design

55



block, which is required for the application header, also free blocks for the application key
file need to be found.

When the required free blocks have been found, the transaction can be started. The
content of the application header can be written into the data region and the blocks need
to be marked as used in the inactive FAT. After this, the number of the block where the
application header was written to, needs to be written to the inactive application list in
order to have a connection to the new application.

After this has been done, several fields and flags in the management block need to be
modified in one tearing-safe write operation. The free block counter needs to be decreased
and the inactive application counter needs to be increased. The FAT0/FAT1 updated flag
needs to be set to true, the equal flag needs to be set to false and the active flag needs to
be set to the freshly updated FAT.

For this transaction, three normal write operations (write application header, write to
FAT, update application list) and one tearing-safe write operation (update management
header) are needed.

When creating a file in the file system, again a free block needs to be found in the FAT.
When it was found and if there are enough free blocks for the file‘s content, the file header
can be written to the file system. After writing the file header and initializing the blocks
for the file data with zeros, the FAT needs to be updated accordingly. In the best case,
namely when enough blocks are available sequentially and not fragmented, only 1 write
operation is needed for writing the header and initializing the file‘s data blocks.

If the previous mentioned steps succeeded, the created file still needs to be linked ei-
ther to the parent application (if it is still empty) or to the previous file. Subsequently,
the data can be written to the file.

Instructions for creating an application:
1. TS-Write: Update the management header and modify flags (equal)
2. Write: Write the application header
3. Write: Update the inactive FAT
4. Write: Store the application reference in the inactive application list

5. TS-Write: Update the management header and modify flags (updated FAT, active
FAT, active App List, updated App List)

56



Instructions for creating a file:

1.

2.

TS-Write: Update the management header and modify flags (equal)
(1 to n) * Write: Write the file header and initialize the blocks of the data area

Write: Update the inactive FAT

. TS-Write: Store the file reference in the previous file header or the parent application

TS-Write: Update the management header and modify flags (updated FAT, and
active FAT)

In order to write data to a file, the affected block or blocks are written anew and need to
be linked correctly in the FAT. So the original data is not touched but copied to another
block and modified there. This new block then needs to be linked correctly after writing
it, so that a file‘s content stays usable.

Instructions for writing file data:

1.

2.

TS-Write: Update the management header and modify flags (equal)

Depending on the case, different operations need to be executed. If only certain
bytes inside a block need to be modified:

(a) Write: Copy the data block which should be modified to a new, free block

(b) Write: Write the new data bytes in the new block, where the copied data
content was placed

If whole data blocks need to be modified:
(a) (1 ton)* Write: Write the new data to I to n new, free blocks

Write: Link the blocks in the inactive FAT, instead of the old ones now the new
data blocks are integrated

Instructions for writing file data (without backup):

1.

(1 to n) * TS-Write: Write the new data directly into the 1 to n blocks which should
be updated, without security protection. Then also no commit operation is needed
afterwards.

Instructions for the commit operation (after writing file data):

1.

(1 to n) * TS-Write: Update the file header(s) (update the file pointer if the first
block is moved and eventually disable the contiguous flag)

2. TS-Write: Update the management header and modify flags (updated FAT, and

active FAT)

o7



6.2.2 Update operations

If an update operation needs to be done, it depends on which kind of object the update
should be executed. If a header should be updated, the update is done through a tearing-
safe write operation directly in the concerned block. No update on the FAT needs to be
done and no new linking is required.

Instructions for updating an application or file header:

1. TS-Write: Update the desired block through a tearing-safe write operation

6.2.3 Delete operations

A delete operation does not really modify the file system but more or less only updates
the FAT accordingly. If a memory block is not used any more and shall be erased, the
related FAT entry is set to unused, namely 0x0000. This signalizes that the block is free
and available for further use. Additionally, the free block counter needs to be increased.

The update of the FAT is done with a normal write operation and the update of the
management block is done tearing-safe. Therefore one normal and one tearing-safe write
operation is needed.

If an application is deleted, additionally the application list needs to be updated, respec-
tively the application entry needs to be deleted, with 1 normal write operation.

As also all the files which are contained in one application need to be freed, all the blocks
which are used by the files of an application and by the application itself need to be marked
as unused in the FAT.

When deleting a single file, the reference to this file needs to be eliminated. Therefore
either the header of the previous file or the application header (if it only contained one file)
needs to be modified tearing-safe. The pointer to the erased file needs to be overwritten,
so that the field contains a pointer to the next file or if the application is empty, it points
to OxFFFF. This is done tearing safe.

Instructions for deleting an application:
1. TS-Write: Update the management header and modify flags (equal)
2. Write: Set the blocks which shall be deleted to unused 0x0000 in the inactive FAT
3. Write: Remove the application reference from the inactive application list

4. TS-Write: Update the management header and modify flags (updated FAT, active
FAT, updated App List, active App List)

o8



Instructions for deleting a file:
1. TS-Write: Update the management header and modify flags (equal)
2. Write: Set the blocks which shall be deleted to unused 0x0000 in the inactive FAT

3. TS-Write: Remove file pointer from the previous file header or the parent application,
if it was the first file

4. TS-Write: Update the management header and modify flags (updated FAT, and
active FAT)

6.2.4 Read operations

In order to read a file, the matching application has to be found in the application list.
Therefore the application list has to be pursued until the right application is found. When
this has been done, the application header can be read and through the pointer to the first
file, the first file header can be read. Each file header contains a pointer to the ensuing
file, what makes it possible to read one file header after the other until the desired one is
reached.

6.2.5 Synchronization of FATSs

Before a new transaction can begin, it has to be guaranteed that the file system is in a
valid state and that the two FATSs, the application lists and the fields of the management
block are synchronized.

In order to be sure that the file system is in a synchronous state, the flags equal, FAT0/FAT1
updated, FATO/FAT1 active, AppList0/1 active and AppList0/1 updated need to be ex-
amined.

The file system state is okay, if the flags are set in the following way: equal == 1, Ap-
pList0/1 updated == 0, and FATO/FAT1 updated == 0.

If the flag equal is set to 0, some of the following steps need to be executed:

1. If the flag FATO/FAT1 updated is set to 1, this FAT was updated during the last
transaction and also is the active one now. The active FAT needs to be copied to
the inactive one and the FAT0/FAT1 updated needs to be set to 0.

2. If the flag AppList0/1 updated is set to 1, this App list was updated during the last
transaction and also is the active one now. The active App List needs to be copied
to the inactive one and the AppList0/1 updated needs to be set to 0.

3. Finally, if all synchronization steps have been done, the equal flag needs to be set to
1 again.

For the whole synchronization, two normal write and one tearing-safe write operations are
needed (two normal write operations for copying the FAT and the application list and one

99



tearing-safe write for flag updates in the management block).

The synchronization is not done during or after the commit, but immediately before a
new transaction starts. The flags indicate, which data needs to be copied and synchro-
nized. Before doing any modification to the file system, the status always needs to be
checked and synchronization has to be done, if necessary. If this is not done, a new trans-
action can not start.

Instructions for synchronization in case equal == 0, AppList0/1 updated == 1, FAT0/FAT1
updated == 1:

1. Write: Copy the whole updated FAT to the inactive one

2. Write: Copy the updated application list to the inactive one

3. TS-Write: Update the management header, reset flags and set the equal flag

Instructions for synchronization in case equal == 0, AppList0/1 updated == 0, FAT0/FAT1
updated == 1:

1. Write: Copy the whole updated FAT to the inactive one

2. TS-Write: Update the management header, reset flags and set the equal flag

6.2.6 Measurement of standard operations

In the subsequent table the write operations which are required to execute some stan-
dard operations are listed.

standard operations ‘ best case ‘ worst case ‘
create application 2 TS-Write + 3 Write

create file 3 TS-Write + 2 Write | 3 TS-Write + (n + 1) Write
delete application 2 TS-Write 4+ 2 Write

delete file 3 TS-Write + 1 Write

update application header 1 TS-Write

update file header 1 TS-Write

write file data (without 1 TS-Write n TS-Write
backup)

write file data (with backup) 1 TS-Write 4+ 2 Write | 1 TS-Write + (n + 1) Write
commit 2 TS-Write (n 4+ 1) TS-Write
synchronization (after modifi- | 1 TS-Write + 1 Write 1 TS-Write + 2 Write
cation)

synchronization (after crash) 2 Write

Table 6.1: Measurement results of the write operations needed for the standard operations
in the FAT approach with additional separate applist

60



6.3 Examination of the double FAT approach without sep-
arate application lists

In this section the file system approach based on two FATs without using separate appli-
cation lists is explained.

Most of the operations work nearly in the same way as they do for the approach us-
ing application lists, which was presented in section Only small changes are applied,
as the updates to the application list are not needed any more and the management header
therefore requires tearing-safe writes.

6.3.1 Create and write operations

As for the previously presented example also for this one, the first step is the check of
the management block in order to guarantee that enough space is free, and a file system
consistency check needs to be done. If both FATSs are equal, everything is okay, otherwise
a synchronization has to be performed.

If the equality of the two FATSs is guaranteed, and there is enough space left on the
card, the write operation can begin.

In order to write an application, the following steps need to be executed:

First of all, the first free block of the file system needs to be found. As all free blocks are
characterized through a 0x0000 entry in the FAT, this can be done by starting from the
top and traversing all FAT entries until the first free one is found. As already explained
in the previous section, also enough adjacent blocks which are required for the key store
file, need to be found.

When the free blocks have been found, the transaction can be started. The content
of the application can be written into the data region and the blocks need to be marked
as used in the inactive FAT.

After this has been done, two tearing-safe writes need to be executed. One is used to
link the application to the previous application and the second is used to update sev-
eral fields and flags in the management block. In the management block, the free block
counter needs to be decreased by one, the application counter needs to be increased, the
FATO/FAT! updated flag and the FATO/FAT1 active flag need to be set.

For this write operation of an application, two normal write (write application header,
write to FAT) and one to two tearing-safe write operations (update management header

and optionally link the application) are needed.

File creation works in the same way as it does for the previous presented file system
example.

61



Instructions for creating an application:

1.
2.

TS-Write: Update the management header and modify flags (equal)
Write: Write the application header

Write: Update the inactive FAT

. TS-Write: Link the application into the linked list of applications, therefore update

the previous application header if necessary (otherwise do it together with the next
write operation and update the management block if it is the first application in the
file system)

TS-Write: Update the management header and modify flags (updated FAT, active
FAT)

Instructions for creating a file:

1.
2.

TS-Write: Update the management header and modify flags (equal)

(1 to n) * Write: Write the file header and initialize the blocks of the data area
Write: Update the inactive FAT

TS-Write: Store the file reference in the previous file header or the parent application

TS-Write: Update the management header and modify flags (updated FAT, and
active FAT)

In case of a data write, the affected block or blocks are written anew and need to be linked
correctly in the FAT. So the original data is not touched but copied to another block
and modified there. This new block then needs to be linked correctly during the commit
action, so that a file's content stays usable.

Instructions for writing file data:

1.

2.

TS-Write: Update the management header and modify flags (equal)

Depending on the case, different operations need to be executed. If only certain
bytes inside a block need to be modified:

(a) Write: Copy the data block which should be modified to a new, free block

(b) Write: Write the new data bytes in the new block, where the copied data
content was placed

If whole data blocks need to be modified:

(a) (1 ton)™* Write: Write the new data to n new, free blocks

. Write: Link the blocks in the inactive FAT, instead of the old ones now the new

data blocks are integrated

62



Instructions for the commit operation:

1. (1 to n) * TS-Write: Update the file header(s) (update the file pointer if first block
is moved and eventually disable the contiguous flag)

2. TS-Write: Update the management header and modify flags (updated FAT, and
active FAT)

Instructions for writing file data (without backup copy):

1. (1 to n) * TS-Write: Write the new data to the n blocks which should be updated,
without security protection. Then also no commit operation is needed afterwards.

6.3.2 Update operations

If an update operation needs to be done, it depends on which kind of object the update
should be executed. If a header should be updated, the update is done through a tearing-
safe write operation directly in the concerned block.

Writes to the management block as well as linking of new files or applications are done
tearing-safe every time.

Instructions for updating an application or file header:

1. TS-Write: Update the desired block through a tearing-safe write operation

6.3.3 Delete operations

A delete operation does not modify the file system at all but only updates the FAT accord-
ingly. If a memory block is not used any more and shall be erased, the related FAT entry
is set to unused, namely 0x0000. As all the files which are contained in one application
need to be deleted, all the blocks which are used by the files of an application and by
the application itself need to be marked as unused in the FAT. This signalizes that the
blocks are free and available for further use. Additionally, the free block counter needs to
be increased. Also the application key store file needs to be deleted, if present. It does
not suffice to mark the blocks of the key store file as unused, because the whole content
needs to be removed completely and the keys need to be overwritten.

Additionally to the FAT update also the link to this application must be eliminated.
So the previous application header or the pointer to the first application in the manage-
ment block needs to be deleted and substituted by the following application pointer.

The update of the FAT is done with a normal write operation, the update of the manage-

ment block is done tearing-safe and also the new linking is done tearing-safe. Therefore
one normal and two tearing-safe write operations are needed.

63



If only one single file is deleted, also the reference to this file needs to be eliminated. There-
fore either the header of the previous file or the application header (if it only contained
one file) needs to be modified tearing-safe. The pointer to the erased file needs to be over-
written, so that the field contains a pointer to the next file or if the application is empty,
it contains OxFFFF. Therefore one normal and two tearing-safe write operations are needed.

Instructions for deleting an application:
1. TS-Write: Update the management header and modify flags (equal)
2. Write: Set the blocks which shall be deleted to unused 0x0000 in the inactive FAT

3. TS-Write: Remove/Replace the application pointer from previous application header
or the management block, if it was the first application

4. TS-Write: Update the management header and modify flags (updated FAT, and
active FAT)

Instructions for deleting a file:
1. TS-Write: Update the management header and modify flags (equal)
2. Write: Set the blocks which shall be deleted to unused 0x0000 in the inactive FAT

3. TS-Write: Remove/Replace file pointer from previous file header or the parent ap-
plication, if it was the first file

4. TS-Write: Update the management header and modify flags (updated FAT, and
active FAT)

6.3.4 Read operation

In order to read a file, the matching application has to be found through the linked list
of application headers. Therefore one after another application header has to be perused
until the right application is found. When this has been done, the file header can be read.
Each file header contains a pointer to the ensuing file, what makes it possible to read one
file header after the other until the desired one is reached.

To read the data content of a file or another object which needs more than one block,
the FAT is used, because it links one block to another and forms a chain of blocks. The
starting block of the content of one file always is known and the FAT simply provides
linking to the following one.

6.3.5 Synchronization of FATSs

Basically the synchronization is executed nearly in the same way as it is done in sec-
tion The only difference is, that the application list does not need to be copied and
synchronized, as there is no application list available in this design. The synchronization
is not done during or after the commit, but immediately before a new transaction starts.

64



The flags indicate, which data needs to be copied and synchronized. Before doing any
modification to the file system, the status always needs to be checked and synchronization
has to be done, if necessary. If this is not done, a new transaction can not start.

Instructions for synchronization in case equal == 0, FAT0/FAT1 updated == 1:
1. Write: Copy the whole updated FAT to the other one

2. TS-Write: Update the management header, reset the FAT0/FAT1 updated flag and
set the equal flag

In case of transaction failure, also a synchronization needs to happen before any new
transaction can be executed. This is necessary in order to get rid of differences which
might have occurred during the last transaction. Therefore the following operations need
to be done:

1. Write: Copy the whole active FAT to the inactive FAT

6.3.6 Measurement of standard operations

In the subsequent table the write operations which are required to execute some stan-
dard operations are listed.

standard operations \ best case \ worst case

create application 2 TS-Write 4+ 2 Write 3 TS-Write 4+ 2 Write
create file 3 TS-Write + 2 Write | 3 TS-Write + (n + 1) Write
delete application 3 TS-Write + 1 Write

delete file 3 TS-Write + 1 Write

update application header 1 TS-Write

update file header 1 TS-Write

write file data (without 1 TS-Write n TS-Write
backup)

write file data (with backup) 1 TS-Write 4+ 2 Write 1 TS-Write (n + 1) Write
commit 2 TS-Write (n 4+ 1) TS-Write
synchronization (after modifi- | 1 TS-Write + 1 Write

cation)

synchronization (after crash) 1 Write

Table 6.2: Measurement results of the write operations needed for standard operations in
the FAT approach

65



6.4 Examination of the FAT file system with journaling
combination

In this section a file system which uses a FAT in combination with journaling is examined
in detail. This special composing of two structures makes the whole workflow of the
file system complicated and difficult to realize. However the solution guarantees great
protection for the file system‘s data and provides consistency.

6.4.1 Standard journaling with FAT

The normal journaling mode basically is explained in section As already explained,
the data is not written directly into the file system but into the journal. After writing
to the journal, when the transaction was completed successfully, the new written data is
completely available in the journal and can be synced to the actual memory blocks.

Unfortunately, this solution is not applicable as it does not fill the requirements of a
modern smartcard. After writing to the card and finishing a transaction, a commit oper-
ation is executed. As stated in the requirement section, the commit has to be really fast
and should not contain any costly operations.

The presented solution is not practicable, as the commit operation would include one large
write operation, what is in contrast to the specified requirements. The whole content of
the journal would need to be written to the file system during the commit, what would
take far too much time.

Due to the impracticability of the proposed approach, the normal journaling mechanism
is not investigated any further.

6.4.2 Reverse journaling with FAT

In this section the approach, which is based on the reverse journaling that is explained in

section is investigated and explained in detail.

In figure the whole workflow of a transaction to the journaling file system can be
inspected and is described in the following paragraphs.

6.4.3 Create and write operation

The first step that needs to be done is to check the management block in order to guar-
antee that enough space is free. Only if there is enough space left on the card, the write
operation can begin.

When writing a new block to the file system, a free one needs to be searched in the
FAT. As all free blocks are characterized through a 0x0000 entry in the FAT, this can be

done by starting from the top and traversing all FAT entries until the first free one is found.

Before starting a transaction, a status check is done. This is basically necessary, in order
to guarantee a synchronized state between file system and journal. The requirements and

66



Initial Situation

File system itselfis in a
good state but the FAT

Journal (in order to save
current data)

needs to be copied to the

A 4

delete journal content
copy FAT to the journal
ready =1

l

Ready to start a new
transaction
Set the flags:
ready =0
finished =0

P| Active FAT is last working
file system

version of

Is (ready == 0) ?

No synchronization
needed
Journal is empty and
contains latest FAT

Previous transaction was

aborted

Roll back all changes
Copy content of the

Transaction
successful ?

system

journal to the file system
(data and FAT)
A\ 4
Set the flags:
finished = 1
feady =1
<
End of transaction, after lnkins edacwdlies)

storing the old content in a & lications
the journal and writing the f—-—9»1 Sztpthe flag:
new data to the file ! &
finished = 1

67

Figure 6.2: Workflow of a transaction in a FAT /reverse journaling combined file system

process of this synchronization is described later on. After this step, when a stable file
system status can be guaranteed, the actual write operation starts.

In this journaling mode the upcoming data is directly written into the file system at
the desired position. As this approach implicates that the old (valid) data is simply over-
written in case of an update, this data therefore needs to be backed up in the journal.



A backup is necessary in case of a transaction failure, meaning that the new content can
not be written completely to the file system and therefore it is left in an inconsistent state.
In this case, the old data needs to be available so that the old file system state can be
restored.

Additionally to the data blocks also the FAT needs to be secured in the journal, for being
able to restore the linking of data blocks and file system structures.

When writing totally new data to an unused block, there is no need to store the old
content in the journal, as there is no content which could be stored. Therefore writing
new data is basically twice as fast as updating data. When writing new data to unused
file system blocks, no damage can be done at all. Only if the new written blocks are linked
in the file system, inconsistencies can arise.

After writing new data blocks and also updating the FAT accordingly, they need to be
integrated into the file system. This is done at the end of each transaction.

Depending on which kind of object was written, different kinds of actions are required. If
an application was written, it needs to be put into the chain of applications: a reference
to the application needs to be written into the previous application header or into the
management block, if it is the first one in the whole file system.

If a file header was written, it needs to be put into the chain of files of one application: a
reference to the file needs to be written into the previous file header or into the application
header, if it is the first file of an application.

When everything was written successfully, also the finished flag needs to be set. After
this has been done, the new data is integrated into the file system and switched to active.
In order to use the journal again, as already said, a synchronization step needs to be
executed before starting a new transaction.

For the create application command, two normal write operations (write application
header, write to the FAT) and three tearing-safe write operations (update management
header in the beginning and end and link the application) are needed.

For the create file command at least two normal write (write file header, initialize data
blocks, write to FAT) and three tearing-safe write operations (update management header
in the beginning and end and link the file) are needed.

Instructions for creating an application:
1. TS-Write: Set the ready and finished flag to zero
2. Write: Write the application header

3. Write: Update the FAT

4. TS-Write: Link the application into the linked list of applications, therefore update
the previous application header or the management block if it is the first application
in the file system

5. TS-Write: Update the management header and set the finished flag

68



Instructions for creating a file:
1. TS-Write: Set the ready and finished flag to zero
2. (1 to n) * Write: Write the file header and initialize the blocks of the data area
3. Write: Update the FAT
4. TS-Write: Store the file reference in the previous file header or the parent application

5. TS-Write: Update the management header and set the finished flag

In contrast to the already presented create operations, which only write to unused blocks,
the write data operation is more complex. When updating existing data, the content which
is going to be replaced has to be secured before overwriting it. The storage of the old
data is done via writing it into the journal as one journal entry. A journal entry consists
of the block number and the actual data. Just after copying the old data to the journal,
the new data can be written directly into the file system. At this point no update of the
FAT is necessary, as write data operations are always executed on already linked blocks.

As preliminary to actually writing to the file system the old data needs to be written
to the journal, the write operation is basically needed twice and therefore the whole pro-
cess takes more or less twice as much time.

When a transaction can be finished successfully, the finished flag as well as the ready
flag need to be set. The ready flag can instantly be set because no changes were made on
the FAT during an update operation.

Instructions for writing file data:
1. TS-Write: Set the ready and finished flag to zero (only at transaction start)

2. (1 to n) TS-Write: Copy block numbers and data contents of the blocks which are
going to be replaced to the journal

3. (1 to n) Write: Write the new data to the destined blocks in the file system

Instructions for the commit operation:

1. TS-Write: Update the management header and set the finished flag and ready flag
Instructions for updating file data (without backup):

1. (1 to n) * TS-Write: Write the new data to the n blocks which should be updated,
without security protection through the journal

69



6.4.4 Update operations

If an update operation needs to be done, it depends on which kind of object the update
should be executed. If a header should be updated, the update is done through a tearing-
safe write operation directly in the concerned block. No update on the FAT needs to be
done and no new linking is required.

Instructions for updating an application:

1. TS-Write: Update the application through a tearing-safe write operation

Instructions for updating a file header:

1. TS-Write: Update the file header through a tearing-safe write operation

6.4.5 Delete operations

In case a file or an application is not needed any more, the corresponding blocks need to
be marked as unused in the FAT and the links to the object need to be removed from the
previous file header respectively application header.

When deleting an application, the optional application key store file needs to be deleted
permanently from the memory through overwriting its contents.

The update of the FAT is done with a normal write operation and following this, the
update of the management block and also the new linking is done tearing-safe during the
commit operation.

Instructions for deleting an application:
1. TS-Write: Set the ready and finished flag to zero
2. Write: Set the blocks which shall be deleted to unused 0x0000 in the FAT

3. TS-Write: Remove/Replace the application pointer from previous application header
or the management block, if it was the first application

4. TS-Write: Update the management header and set the finished flag

Instructions for deleting a file:
1. TS-Write: Set the ready and finished flag to zero
2. Write: Set the blocks which shall be deleted to unused 0x0000 in the FAT

3. TS-Write: Remove/Replace the file pointer from previous file header or the parent
application if it was the first file

4. TS-Write: Update the management header and set the finished flag

70



6.4.6 Read operation

Reading is done in the same way as it is done for the previously explained double-FAT
approach and can be read in detail in section [6.3

6.4.7 Synchronization process

Each time a new transaction is started, the file system state has to be checked. The two
flags finished and ready which are situated in the management block give information
about the state of the whole system.

The positive finished flag means that the last transaction was successful. Additionally, a
positive ready flag signalizes that the file system is ready for upcoming modifications, the
journal is empty and the FAT is in a synchronized state. If only the ready flag is not set,
this means that the clean-up/update of the journal was interrupted.

When everything is okay, the new updated FAT needs to be copied to the journal in
order to keep it up-to-date before a new transaction can start. Also the rest of the jour-
nal content needs to be deleted. This is necessary for having a new and current journal
available and to be ready for upcoming operations.

In case the transaction fails, nothing is changed in the management block and the flags
finished and ready remain unchanged and still are set to 0. This means that a roll-back
needs to be performed and the old data which was securely stored in the journal needs to
be copied back to the file system. The secured FAT which is available in the journal needs
to be synced with the file system and of course all data blocks need to be copied back to
their original position.

Instructions for synchronization in case finished == 1 and ready == 0:

1. Write: Copy the whole FAT to the journal

2. TS-Write: Update the management header and set the ready flag and the journal
to empty

Instructions for synchronization in case finished == 0 and ready == 0:

1. n * Write: Copy the data content of one journal entry after the other back to the
correct block in file system

2. Write: Copy the FAT from the journal to the file system
3. TS-Write: Update the management header and set the finished flag, the ready flag
and set the journal to empty
6.4.8 Measurement of standard operations

In the subsequent table the write operations which are required to execute some stan-
dard operations are listed.

71



standard operations ‘ best case ‘ worst case

create application 2 TS-Write 4+ 2 Write 3 TS-Write 4+ 2 Write
create file 3 TS-Write + 2 Write | 3 TS-Write + (n + 1) Write
delete application 2 TS-Write 4+ 1 Write 3 TS-Write 4+ 1 Write
delete file 3 TS-Write + 1 Write

update application header 1 TS-Write

update file header 1 TS-Write

write file data (without 1 TS-Write n TS-Write
backup)

write file data (with backup) 2 TS-Write + 1 Write | (n + 1) TS-Write + n Write
commit 1 TS-Write

synchronization 1 TS-Write + 1 Write 1 TS-Write + (n + 1) Write

Table 6.3: Measurement results of the write operations needed for the standard operations
in the FAT /journaling approach

6.5 Examination of the EXT file system approach

This section dedicates itself to the extended file system design proposal which was dis-
cussed in section

The fundamental decision that needs to be made when using an EXT file system is, if
an application list in a separate memory block should be used or not. Depending on that,
two different designs of the later used application node (ANode) are possible.

When using an application list, the ANode has two bytes more of empty space which
can be used for an additional file list pointer, which makes it possible to access all 32 files
directly from the ANode. When no application list is used, only one file list pointer can
be used and the file list needs to be linked internally. The information regarding whether
an application list is used or not can be found in the superblock, in the Config field.

The following detailed explanation of the workflow of the file system is done for the version
which does not use a separate application list.
6.5.1 Create and write operations

The first step that needs to be done is to check the superblock in order to guarantee that
enough space is free. Only if there is enough space left on the card, the write operation
can start.

When writing a new block to the file system, a free one needs to be found in the file
system. Therefore the bitmap needs to be traversed, starting from the beginning. All free

blocks are characterized through a 0.

Before starting a transaction, a status check is done. This is basically necessary, in order

72



to guarantee a synchronized state between file system and journal. The requirements and
process of this synchronization is described later on. After this step, when a stable file
system status can be guaranteed, the actual write operation can start.

In this journaling mode the upcoming data is directly written into the file system at
the desired position, as already explained in the example of the FAT and journaling com-
bination, that was presented in section As this approach implicates that the old
(valid) data is simply overwritten in case of an update, this data therefore needs to be
backed up in the journal beforehand. Additionally to the data blocks also their original
storage position needs to be secured in the journal, for being able to restore the linking of
data blocks and file system structures.

When creating a new file, it is desirable to allocate contiguous blocks for the data content.
If this is possible, no data block list is necessary and only a pointer to the first data block
needs to be written into the file header.

When writing totally new data to an unused block, there is no need to store the old
content in the journal, as there is no content which could be stored. Therefore writing
new data is basically twice as fast as updating data. When only writing new data to
unused file system blocks, no damage can be done at all. Only if the new written blocks
are linked in the file system, inconsistencies can arise. After writing new data blocks and
also updating the bitmap accordingly, they need to be integrated into the file system.

When everything was written successfully, also the finished flag needs to be set. After
this has been done, the new data is integrated into the file system.

In order to use the journal again, as already said, a synchronization step needs to be
executed before starting a new transaction.

Instructions for creating an application:
1. TS-Write: Set the ready and finished flag to zero
2. Write: Write the application header
3. Write: Update the bitmap

4. TS-Write: Link the application into the linked list of applications, therefore update
the previous application header or the management block if it is the first application
in the file system

5. TS-Write: Update the management header and set the finished flag

73



Instructions for creating a file:
1. TS-Write: Set the ready and finished flag to zero
2. Write: Write the file header (and eventually the data block list)
3. (1 to n) * Write: Initialize the blocks of the data area
4. Write: Update the bitmap

5. TS-Write: Link the file header into the linked list of files, therefore update the
previous file header or the parent application header if it is the first file

6. TS-Write: Update the management header and set the finished flag

Also for the EXT based file system the write data operation is complex. In order to secure
the old data, which is going to be overwritten, it is written to the journal in the form of a

journal entry. A journal entry consists of the reference to the original block and the actual
(old) data.

Just after copying the old data to the journal, the new data can be written directly
into the file system. At this point no update of the bitmap is necessary, as write data
operations are always executed on already reserved and linked blocks.

As preliminary to actually writing to the file system the old data needs to be written
to the journal, the write operation is basically needed twice and therefore the whole pro-
cess takes twice as much time.

When a transaction can be finished successfully, the finished flag as well as the ready
flag need to be set. The ready flag can instantly be set because no changes were made on
the FAT during an update operation.

Instructions for writing file data:
1. TS-Write: Set the ready and finished flag to zero (only at transaction start)

2. (1 to n) * TS-Write: Copy block pointers and data contents of the blocks which are
going to be replaced to the journal

3. (1 to n) * Write: Write the new data to the destined blocks in the file system

Instructions for the commit operation :

1. TS-Write: Update the management header and set the finished flag and ready flag

Instructions for writing file data (without backup):

1. (1 to n) * TS-Write: Write the new data to the destined blocks in the file system
without security protection through the journal

74



6.5.2 Update operations

If an update operation needs to be done, it depends on which kind of object the update
should be executed. If a header should be updated, the update is done through a tearing-
safe write operation directly in the concerned block. No update on the FAT needs to be
done and no new linking is required.

Instructions for updating an application or file header:

1. TS-Write: Update the desired block through a tearing-safe write operation

6.5.3 Delete operations

As already sufficiently explained in previous sections, a delete operation does not delete
the content of the file system (except of the security relevant data) but changes the man-
agement structure, which is in this approach the block usage bitmap, and the linking of
data blocks.

In case a file or an application is not needed any more, the corresponding blocks need
to be marked as unused in the bitmap and the links to the object need to be removed
from the previous file header respectively application header.

The update of the bitmap is done with a normal write operation and following this,
the update of the management block and also the new linking is done tearing-safe.

Instructions for deleting an application:
1. TS-Write: Set the ready and finished flag to zero
2. Write: Set the blocks which shall be deleted to unused 0 in the block usage bitmap

3. TS-Write: Remove/Replace the application pointer from previous application header
or the management block, if it was the first application

4. TS-Write: Update the management block and set the finished flag

Instructions for deleting a file:
1. TS-Write: Set the ready and finished flag to zero
2. Write: Set the blocks which shall be deleted to unused 0 in the block usage bitmap
3. TS-Write: Remove the file pointer from the file list in the parent application

4. TS-Write: Update the management block and set the finished flag

75



6.5.4 Synchronization process

The synchronization is done immediately before a new transaction starts. The flags in-
dicate, which data needs to be copied and synchronized. Before doing any modification
to the file system, the status always needs to be checked and a synchronization has to be
done, if necessary. If this is not done, a new transaction can not start because it would
lead to an inconsistent state and the data content would not be readable any more.

Instructions for synchronization in case finished == 1 and ready == 0:

1. Write: Copy the whole active bitmap to the inactive one (bitmap 2 in the journal
region)

2. TS-Write: Update the management block, specify that the journal is empty and set
the ready flag

Instructions for synchronization in case finished == 0 and ready == 0:

1. (1 to n) * Write: Copy the data content of one journal entry after the other back to
the correct block in file system

2. Write: Copy the FAT from the journal to the file system

3. TS-Write: Update the management block and set the finished flag, the ready flag
and set the journal to empty

A detailed example of how a transaction can be executed and which synchronization steps
need to be done can be inspected in the figure [6.3]

76



\ 4

File system itselfis in a
good state but the block

usage bitmap needs to be
copied to the Journal (in
order to save current data)

Initial Situation

A 4

delete journal content
copy bitmap to the journal
ready =1

l

Ready to start a new
transaction

Set the flags:
ready =0

Is (ready == 0) ?

No synchronization
needed

Journal is empty and

contains latest bitmap

Previous transa
aborte

Roll back all changes
Copy content of the
journal to the file system
(data and bitmap)

ction was
d

A 4

fead

Set the flags:
finished = 1

y=1

finished =0

Transaction
successful ?

End of transaction, after
storing the old content in
the journal and writing the
new data to the file

linking of new files/
applications
Set the flag:
finished =1

|

system

Figure 6.3: Workflow of a transaction in an EXT based file system

77



6.5.5 Measurement of standard operations

In the subsequent table the write operations which are required to execute some stan-
dard operations are listed.

standard operations \ best case \ worst case

create application 2 TS-Write 4+ 2 Write 3 TS-Write 4+ 2 Write
create file 3 TS-Write + 2 Write | 3 TS-Write + (n + 2) Write
delete application 2 TS-Write 4+ 1 Write 3 TS-Write + 1 Write
delete file 3 TS-Write + 1 Write

update application header 1 TS-Write

update file header 1 TS-Write

write file data (without 1 TS-Write n TS-Write
backup)

write file data (with backup) 2 TS-Write + 1 Write | (n + 1) TS-Write + n Write
commit 1 TS-Write

synchronization 1 TS-Write + 1 Write 1 TS-Write 4+ (n + 1) Write

Table 6.4: Measurement results of the write operations needed for the standard operations
in the EXT approach

6.6 Examination of the YAFFS file system approach

This section explains the YAFFS file system design more precisely and presents the mea-
surement results regarding number of write operations and performance.

6.6.1 Create and write operations

As this file system design does not use a management block or a similar management struc-
ture, the status of the file system has to be determined via iterating through the whole
file system'‘s log and reconstructing its state. The whole checking-process is described in
a later following subsection.

In order to write a new block to the file system, an empty block has to be found in
the block usage bitmap. All free blocks are characterized through a O in the bitmap.
Depending on which kind of data is written, it may be the case, that multiple blocks are
needed for one object.

When writing new data to the file system to a free memory chunk, the data simply is
written to the data section of the chunk. After doing that, also the corresponding tag
needs to be updated. The fields Chunk ID, Bytes used, and Tag Config need to be set
accordingly. Also the pointer fields need to be updated in order to mark connections be-
tween single chunks.

At the end of one transaction the new written chunks are integrated in the file system:

78



a new application is linked to the previous application and a new file is linked to the
previous file. In order to do this, the tag section of the chunk which needs to include a
pointer to the new object needs to be modified tearing-safe. Additionally to this also the
block usage bitmap needs to be updated accordingly in order to keep track of used and
unused memory chunks.

A detailed overview of the exact work flow of a write operation can be seen in figure

Instructions for creating an application:

1. TS-Write: Write application to the data section of the selected chunk and update
its tag section

2. TS-Write: Update the bitmap

3. TS-Write: Link the application into the linked list of applications, therefore update
the previous application header

Instructions for creating a file:

1. (1 ton)* TS-Write: Write the header to the data section of the selected chunk and
update its tag section, also allocate the chunks for the data blocks and update their
tag sections

2. TS-Write: Update the bitmap

3. TS-Write: Link the file header into the linked list of files, therefore update the
previous file header or the parent application if it is the first file

When writing file data, the data section is rewritten and updated to a new, empty chunk.
Also the tag is written to the new tag section and its fields are updated accordingly. Ev-
erything needs to be written tearing-safe because the file system check needs to be able to
read through every chunk.

Instructions for writing file data:
1. (1 to n) * TS-Write: Copy the chunk(s) to a new empty chunk

2. (1 to n) * TS-Write: Do the data update in this copied chunks and also update the
tag sections, increase the serial number and maybe set the pointers anew

3. TS-Write: Update the pointer of the previous chunk so that the new updated
chunk(s) is integrated in the file system

4. (1 to n) * TS-Write: Update the tag section of the old chunks, set the deletion
marker to deleted in order to signalize that the old chunks are not used any more

5. TS-Write: Update the bitmap

79



Instructions for writing file data (without backup):

1. (1 to n) * TS-Write: Update the data directly in the original chunk and update its
tag sections, increase the serial number

6.6.2 Update operations

The update operation is more complex than the write operation, as it overwrites respec-
tively re-writes data.

Updates of any object that is no file data are always done tearing-safe directly into the
containing chunk. Also updates to the tag region are always done in a tearing-safe way.
The only update that is done in another way is the update of file data.

Instructions for updating an application or file header:

1. TS-Write: Update the desired chunk through a tearing-safe write operation

6.6.3 Delete operations

In case a file or an application is not needed any more, the corresponding blocks need to
be marked as unused in the bitmap and the links to the object need to be removed from
the previous file header respectively application header. Also the deletion marker of the
tag section of all chunks which shall be deleted need to be set to Deleted.

Instructions for deleting an application header:

1. TS-Write: Update the bitmap: Set the block which shall be deleted to 0 in the block
usage bitmap

2. TS-Write: Remove/Replace the application pointer from previous application header

3. (1 to n) * TS-Write: Set the deletion markers of the chunks which are going to be
deleted to Deleted

Instructions for deleting a file:

1. TS-Write: Update the bitmap: Set the blocks which shall be deleted to 0 in the
block usage bitmap

2. TS-Write: Remove/Replace the file pointer from the previous file header or from the
application header if it is the first file

3. (1 to n) * TS-Write: Set the deletion markers of the chunks which are going to be
deleted to Deleted

In case the delete operation can not be finished, a system-check needs to continue the
deletion before a new transaction starts. When the operation already fails before updating
the bitmap, nothing is changed at all and the whole transaction needs to be done again.

80



Otherwise, if the update of the bitmap was finished and the operation failed later on, the
deletion needs to be continued, what can be done in the following way:

As the bitmap is always updated tearing-safe, it represents the valid state of the file system
at any time and therefore each block that is marked as unused in the bitmap can never be
allocated or used in the file system. This means that by iterating through the bitmap and
comparing the block usage with the entry in the tag section of the chunk, each mismatch
can be found and removed. All deletion markers of unused chunks need to be set to Deleted
and also all references to unused chunks need to be superseded.

6.6.4 Read operation

Reading a file works through finding the parent application in the linked list of applica-
tions and from there on having access to all its files. When the right application is found,
all files which belong to it can be read by reading one file header after the other, because
each file header points to the next one.

In order to read the data content of a file, the pointer to the data which is stored in
the file header needs to be read. This pointer directs to the first data chunk. If more
chunks are needed for the content of the object, the next ones can be reached through the
tag section of one chunk.

6.6.5 File system check

The file system check needs to be done before a new transaction can be started. The block
usage bitmap is the main reference for examining the file system status. The bitmap is
always updated tearing-safe and timely after a data write or before a data deletion. If a
transaction fails, the bitmap nevertheless reflects the right, valid file system state.

Chunks which are marked as unused in the bitmap are also not used in the file sys-
tem. If a pointer points to a block which is marked as unused in the bitmap, it needs to
be erased from the whole file system. It needs to be excluded from the linked pointer lists
(applications and files) and also marked as deleted in the deletion marker.

A mismatch of the entry in the bitmap and the chunk‘s deletion marker can arise, when a
deletion happened and it could not be finished. Then the leftovers need to be eliminated
from the file system. Another possible reason is the creation of a new object or the al-
location of a new block and its incomplete integration into the file system. A new block
could have been written already, but not linked correctly, what means that it needs to be
erased as no relation to other objects can be determined at all.

81



Instructions for the file system check:

1. Go through the whole bitmap and compare the block usage with the deletion marker

of the according chunk in the file system

. If they reflect the same usage, nothing has to be done. This is the case when the
bitmap entry is set to 0 and the corresponding chunk‘s deletion marker is set to
Empty or when the bitmap entry is set to 1 and the corresponding chunk‘s deletion
marker is set to Used.

. If the bitmap entry is set to 0 and the corresponding chunk‘s deletion marker is set
to Deleted:

(a) Remove the content of the data section

(b) Reset the tag section and set the deletion marker to Empty in order to be reused

again

. If the bitmap entry is set to 0 and the corresponding chunk‘s deletion marker is set
to Used:

(a) If necessary, remove all references to this field from the file system. Exclude it
from an application/file linking.

(b) Set the deletion marker to Deleted

In the worst case, the file system check needs n tearing-safe write operations to set the
deletion marker to a correct value and additionally n tearing-safe write operations to

update applications or file headers.

6.6.6 Measurement of standard operations

In the subsequent table[6.5] the write operations which are required to execute some stan-

dard operations are listed.

standard operations best case worst case
create application 3 TS-Write

create file 3 TS-Write (n + 2) TS-Write
delete application 3 TS-Write (n + 2) TS-Write
delete file 3 TS-Write (n + 2) TS-Write
update application header 1 TS-Write

update file header 1 TS-Write

write file data (without backup) 1 TS-Write n TS-Write
write file data (with backup) 5 TS-Write (3n + 2) TS-Write
synchronization 2 TS-Write 2n TS-Write

Table 6.5: Measurement results of the write operations needed for the standard operations

in the YAFFS based file system design

82




> Initial Situation

\ 4

Perform a file system check through
iterating over all bitmap entries and
comparing them with the chunk’s
deletion marker

No synchronization
needed
Chunk is in use

Is (deletion marker ==
Deleted) ?

Is (bitmap entry == 0) ?

Usage is synchronous
Reset the tag section of
the chunk so that it can be

reused

Remove all references to
this chunk
Remove it from linked
application/file lists

\ 4
Erase the content of the
chunk’s data section if it
contains sensitive data

Set the deletion marker to

Deleted
\ 4
Set the deletion marker to
Empty
Ready to start a new
transaction
Set the flags: - «
ready =0
finished =0

End of transaction, after

Transaction writing the new data to Updating the bitmap
successful ? the file system and —» Linking of new files/
’ updating the tag section applications

(deletion marker to Used)

Figure 6.4: Workflow of a transaction in the YAFFS file system design

83



Chapter 7

Evaluation of Results and
Comparison with the Reference
File System

This chapter examines the results of the detailed investigation of the proposed file system
approaches which were made in chapter [6| and compares them to the reference file system.

First of all the reference file system is described in detail. Therefore the workflow of
some standard operations is explained and visualized, and also the requirements for a
new file system are recapitulated shortly. In order to provide a basis for comparison, the
number of access operations is measured for standard use cases as it has been done for all
other file system proposals in the previous chapter.

7.1 Detailed analysis of the reference file system

This file system is, as already mentioned shortly in chapter [I} realized in form of a linked
list conforming to the ISO 7816-4 standard. The two main components of the file system
are applications and files.

Applications are structured as a linked list and chained to each other.
Files are also structured as a linked list and the reference to this file list is stored in the
corresponding application node. The file size always is a multiple of the block size and

different kinds of files are supported.

A picture of the file system structure is depicted in figure

84



Q Directory Header

‘ Application Node m File Node m File Node

e L
File Data

‘ Application Node

Figure 7.1: Layout of the reference file system

The reference file system supports two different ways how data can be written to the
memory

e Write data without security protection

e Write data with a security protection after making a secure copy or guaranteeing
the recoverability of the old content (shadow image needed for this approach)

The secure way of writing data makes use of a shadow image. This shadow image is
needed for guaranteeing data integrity in case of tearing. Basically using a shadow image
means that twice the space is needed because critical data needs to be copied to a second
identical-sized memory location, called the shadow image. All updates or write operations
are executed on this inactive shadow image. Only if the operation succeeds, data validity
can be ensured and the shadow image can be switched to active.

This security mechanism on the one hand provides perfect data security, but on the other
hand is kind of wasting memory, as really much data needs to be copied and therefore is
available twice on the card.

The main point which needs to be improved at the reference solution is the handling
of deleted memory. After file or application deletion the memory which becomes available
is not really erased and released but only marked as unused. These unused memory blocks

can not be reused at the moment and their space is wasted.

FEmerging of these facts, the requirements for the new file system design emerge. Highest

85



importance has the re-usability of deleted memory chunks. Another important point is
to minimize the write operations. As write operations are the most expensive operations
which can be performed, they have to be used carefully and restricted. Also the develop-
ment of a new data backup mechanism, which consumes less memory than the reference
file system, is desirable for a future design.

In the following sections the performance and functionality of the standard operations
when applied to the file system is measured and explained clearly.

Create an application (visualized in figure
e Write: Write the ANode

e Depending on the file system state: If the ANode is the first one in the whole system:

— TS-Write: Link the ANode to the previous ANode, therefore update the previ-
ous ANode header

e TS-Write: Write the configuration

Create Application
Initial Situation

Write the Application Node to the file system
1 normal write

Is the Application the first
one in the file system?

Link the Application Node to the previous
Application Node
1 tearing-safe write

Write the configuration
1 tearing-safe write

Write the configuration
1 tearing-safe write

Figure 7.2: The reference Create Application operation

86



Create a file (visualized in figure
o Write: Write the FNode

e TS-Write: Update the FNode reference in the ANode if the FNode was the first one
or link it to the previous FNode

o TS-Write: Write the configuration

Create File
Initial Situation

Write the File Node to the file system
1 normal write

Link the File Node to the parent Application or to the
previous File Node
1 tearing-safe write

Write the configuration
1 tearing-safe write

Figure 7.3: The reference Create File operation

87



Delete an application (visualized in figure

e TS-Write: Mark the application as unused, therefore set a flag in the Config field of
the application header to false

Delete Application
Initial Situation

Set a flag to false in the Application Node and so mark it
as unused
1 tearing-safe write

Figure 7.4: The reference Delete Application operation

Delete a file: (visualized in figure

o TS-Write: Mark the file as unused, therefore set a flag in the Config field of the file
header to false

Delete File
Initial Situation

Set a flag to false in the File Node and so mark it as
unused
1 tearing-safe write

Figure 7.5: The reference Delete File operation

88



Write data (without backup):
o TS-Write: Write data to the desired block(s)

Write data (with backup):

e Write: Copy the content of the active image to the inactive image in order to syn-
chronize the content

e Write: Write the new data to the inactive image
Commit:
The command Commit Transaction validates all write access of the ongoing transaction

e TS-Write: Update some flags in the ANode

The write operations as well as the following commit operation are visualized in figure[7.6]

Write Data
Initial Situation

Write the data securely
backup mechanism included)?,

Copy content of the active image to the inactive image
(to the shadow)
1 normal write

Write data to the desired blocks

1 tearing-safe write

Write data to the inactive image (shadow)
1 normal write

. . Set the shadow image valid and active
Commit Transaction X i
1 tearing-safe write

Figure 7.6: The reference Write Data operation

89



Measurement of standard operations

In the subsequent table the write operations which are required to execute some stan-

dard operations are listed.

reference standard opera-
tions

best case

worst case

create application

1 TS-Write + 1 Write

2 TS-Write + 1 Write

create file 2 TS-Write + 1 Write
delete application 1 TS-Write
delete file 1 TS-Write
update application header 1 TS-Write
update file header 1 TS-Write
write data (without backup) 1 TS-Write
write data 2 Write
commit 1 TS-Write

Table 7.1: Measurement results of the write operations needed for the reference file system

standard operations

7.2 Evaluation of measurement results

In the following tables the write operations which are required from the different file system
designs are compared. Table [7.2] shows the amount of write operations which are needed
in the best case, table shows how many of them are needed in the worst case.

90




sopeoldde USISOp WOISAS o[ JPUSIDPIP ) Ul OLIRUSIS 9SBD 159( 91} Ul Popasu suolperado 931im Jo uostredwio)) :g ) 9[qRI,

SIL & | N8+SLL | N8+SLL | NG6+SLSI N IT + ST AT N7+ SL6 uns

we)sAs o[y Jo

SL ¢ NT+SLT NT+SLT NT+SLT NT+SLT UOTJRZIUOTIYOUAS

SLT SLT SL ¢ SL G SL T o

SL ¢ NT+SLG NT+SLG N¢+SLT N¢C+SLT N ¢ BIRD 9[f 9jLIM

(dnxporeq Jnotyim)

SL T SL T SLT SL T SL T SL T BJED O 9JLIM

SL T SL T SL T SLT SLT SL T Iopeoy Ay 9jepdn

Iopeay uor)}

SLT SLT SLT SLT SLT SLT -eorpdde  ojepdn

SL € NT+SLE NT+SL¢ NT+SL¢ NIT+SL¢ SLT Ol 93P

SL € NI+SLG NI+SLG NTI+SLE NG +SLG SLT uoryentdde 23979p

SL € N¢Z+SLE NC+SL¢ NC+SL¢ N¢+SL¢ NT+SLZ o[ 93eaId

SL € NZ+SLG NZ+SLg NZ+SLG NE+SLG NTI+SLT uorjeorydde ajeaId
§151) u0VIYddn

buypuanol moypum §151) uorvoYddn woysfhis uoswuond

ub159p SAAVA ub1sap [ XH ynm Lvd LVd 219nop yrm Ly 219nop o1y ouaafal “woo 9sDI 1539

91



soyprordde USISop WOYSAS o[l JUSIOPIP 9UJ Ul OLIRUIOS 9SBD JSI0M 9} Ul papedu suorjerado 91uim Jo uostreduwo)) :¢°) o[qer,

N (L + ug) N (L + ug) N (L + ug) N (6 + ug)
SL (€1 + up) +6L(L1+ug) | +sL(L1+ug) | +SL(LT+ug) | + 81 (9T + ug) N ¥ + SI 0T wms
w)sAs o[y Jo
SL ug N(T+w+SLT|NI+u+SLT NT+SLT NG+SLT UOIYRZIUOIPUAS
SL T SL T SL (1 + w SL (1 + w SL T HUIWIOD
SL (g + ug) NU+SL(T+W [NU+SL T+ [ NO+W+SLT|NT+W+SLT NG ©YEp Oy JLLM
(dnxoeq notyim)
SL U SL U SLu S u S SLT BIRp 9  9jLM
SLT SLT SL T SLT SLT SLT I9peat] o[y dyepdn
Jopeay uory
SLT SL 1T SL T SLT SL 1T SLT -eorpdde  ojepdn
SL (¢ + w) NI+SL¢€ NI+SLE NI+SLE NT+SL¢ SL 1T o[y 03[0
SL (¢ + w) NT+SLE NT+SLE NT+SLE NZ+SLZ SL1I uoryeotdde 91979p
SL (¢ + u) N@+uw+sLe|N@@+w+sre | NO+w+sre | NT+u+sL¢g NT+SLG o[y dYeaId
SL € NZ+SLE NZ+SLE NZ+SLE NE€E+SLC NT+SLZC uorjeoridde 91ea10

§151) u010IYddn

buyuanol noygm 157 ©010IYddD wa1shis U0S14DdU0d
ub189p SIAVA ub1sop X5 ypm v LVA 219nop yum LV 2]Qnop o1 20u42 ol asDI 3s40m

92



7.3 Practical utilization of the proposed file system designs
on the basis of reference transactions

In order to be able to compare the suggested designs and to draw a conclusion from the
different possibilities, reference transactions are used. A reference transaction can be car-
ried out by each file system candidate and is used to show the number of needed write
operations and the consequential performance. After utilization of the transactions and
collection of all results, the numbers can easily be compared and a potential final file sys-
tem candidate can possibly be figured out.

In order to get informative results, two reference transaction are carried out.

The first one, further on called Example 1, is a fictional one, which has been designed to
reflect the Write and Update operations and their impact on the overall performance in
the best possible way.

The second reference transaction, Example 2, is a real one which is normally used for
ticketing.

The sequence of operations of the first reference transaction is depicted in figure and
the second example can be seen in figure [7.8

The focus of both examples lies in the relevant operations Read Data and Write Data.
The other types of operations, like Create Application, Create File, Delete File and Delete
Application are negligible because they are not executed in the electric field (e.g. only at
card personalization) and therefore are not directly transaction-relevant.

The assumption that is made for both examples is that all files do already contain data,

so all write operations that are carried out in fact need to be performed as an update
operation.

93



Reference Transaction

Activate Card

l

|
N —
| Authentication | Write Data File # 1 (96 bytes, plain) | i8
T T _—
| Select Application #1 | Commit Transaction | 9 i
> ————— | D—— .
| Read Data File #0 (32 bytes, plain) | Deselect |
N3 J
| Read Data File # 1 (128 bytes, plain) | Select Application # 1 |
| Read Data File #i(64 bytes, plain) Write Data File # 0 (32 bytes, plain) 10
Write Data File # 0 (32 bytes, plain) (Do an update of the whole file)
N2 N3
Write Data File # 1 (128 bytes, plain) Write Data File # 1 (38 bytes, plain) f111
Write Data File #\lé (64 bytes, plain) (Only do an update: offset = 5, length = 38)
N2 00000000
Commit Transaction | Write Data File # 3 (128 bytes, plain) | (12
T T
| Deselect | Commit Transaction | 13
€ y
| Select Application # 2 | Deselect |
€ N2
Write File no backup # 0 (64 bytes, plain) | Select Application # 2 |
N2 N
| Write Data File # 0 (128 bytes, plain) i B 56 s, 14
- N - (Only do an update: offset = 17, Ien'gth =59)
Commit Transaction
N2 N
| Read Data File # 1 (96 bytes, plain) | Commit Transaction | {15
| N e
| Write File no backup # 0 (64 bytes, plain) | i16
b
| Deselect |

Figure 7.7: Fxample 1 - An exemplary reference transaction



[ 9)dwxr UOTIDESURI) 9OUDIDYAI 9} JO SHMNSOI JUSWINSBIN §7°L 9[]e],

SL LG SLOE+ NPT | SLOE+ NPT [ SLOE+NGZ | SLOE+ NG | SLL+NSI | ums
SLT SL T SL T SLT SLT SL T 91
SL ¢ NT+SLT NT+SLT NT+SLT NT+SLT ouAs

SLT SLT SL¢E SLT SL T )
SL S NT+SLZ NT+SLZ NE€+SLT NE€+SLT N ¢ !
SLG NT+SLT NT+SLT NT+SLT NT+SLT ouAs

SLT SLT SL7¥ SL¥ SLT !
SL & NIT+SL¢ NIT+SL¢g NZ+SLT NZ+SLT N ¢ 4
SL & NT+SL¢ NT+SL¢g NE+SLT NE+SLT N ¢ 1
SL ¢ NT+SLzg NI+SL¢Z NZ+SLT NZ+SLT N ¢ 01
SL ¢ NT+SLT NT+SLT NT+SLT NT+SLT ouAs

SLT SL T SL¢ SLT SL T 6
SL & NT+SLZ NT+SL¢Z NZ+SLT NZ+SLT N ¢ 8
SLG NT+SLT NT+SLT NT+SLT NT+SLT ouss

SLT SLT SL¢ SLG SL T L
SL & NI+SLg NI+SLg NZ+SLT NG+ SLI N ¢ 9
SLT SLT SL T SLT SLT SLT g
SL G NT+SLI NT+SLI NI+SLT NT+SLT ouAs

SL T SL T SL7¥ SL7¥ SL T ¥
SL ¢ NT+SLz2 NI+SLzZ NZ+SLI NZ+SLT N ¢ €
SL ¢ NT+SLZ NI+SL¢Z NZ+SLI NZ+SLI N ¢ 4
SL S NT+SLZ NI+SLzZ NZ+SLT NZ+SLT N ¢ I

buyuanol 150ddo ypum washis
ubisap SIAVA | ubsap [XH ypm Ly IV 219nop IV 219nop a1y 20ud.La[21

95



Reference Transaction Ticketing

Activate Card

L

Select Application # 2

g

Authentication

N2

Read Data File # 0 (32 bytes, plain)

N3

Read Data File # 1 (128 bytes, plain)

N

Authentication

N2

Write Data File # 0 (32 bytes, plain)

g

Write Data File # 1 (32 bytes, plain)

N2

Commit Transaction

N3

Select Application # 1

N

Authentication

N2

_________

Write Data File # 0 (32 bytes, plain)

N

Authentication

L

Write Data File # 1 (32 bytes, plain)

L

Authentication

N2

Write Data File # 2 (32 bytes, plain)

N

Commit Transaction

N2

Select Application # 2

N

Authentication

N

Write Data File # 0 (32 bytes, plain)

N2

Commit Transaction

N

Deselect

Figure 7.8: Example 2 - A reference transaction with common ticketing functionality

96



a m?&gs&m UorjoesuRI} 90UaI”Jol 97} JO SHNSaI JUIUWLRINSBIIN :G*), 9[RBT,

| sp9e | SL8I+NG6 | SL8+N6 | SL8I+NGI [ SL8I+NGI | SLe+Ngl | wms |
SL T SLT SL G SL ¢ SL T 6
SL ¢ NT+SLZ NT+SLZ N¢C+SLT N¢+SLT N ¢ 8
SL¢ NT+SLT NT+SLT NT+SLT NT+SLT ouss
SL T SL T SL ¥V SL ¥ SL T L
SL G NT+SLZ NT+SLZ NZ+SLT NZ+SLT N ¢ 9
SL G NT+SLZ NT+SLZ NZ+SLT NZ+SLT N ¢ g
SL G NT+SLZ NT+SLZ NZ+SLT NZ+SLT N ¢ i
SL ¢ NT+SLT NT+SLTI NT+SLTI NT+SLT ouds
SL T SLT SL € SL € SL T €
SL ¢ NIT+SLG NIT+SLZT NC+SLTI NC+SLTI N ¢ [4
SL ¢ NT+SLZ NT+SLZ N¢C+SLT N¢+SLT N ¢ 1
SL¢ NT+SLT NT+SLT NT+SLT NT+SLT ouss
bugpuanol 159ddo ypm wayshis
ubrsap SIAVA ubisap X yrm L yd LVAd 219nop LVd 2qnop o1y 20uduafa4

97



As the measurement results of the two reference transactions which can be seen in ta-
ble [7.4] and table [7.5] show, the file system designs which use a journaling mechanism are
performing best in comparison to the other ones.

These results prove, that on the one hand the FAT with journaling and on the other
hand the EXT design could be best suitable for a new smartcard file system.
However, when comparing their performance results with the number of write operations

which are needed by the reference file system, a huge gap can be determined, as can be
seen in table [T.6]

reference file FAT with EXT design

system journaling
Example 1 I8N+ 7TS 14 N 4+ 30 TS 14 N + 30 TS
Example 2 12N 4+ 3 TS 9N + 18 TS 9N + 18 TS

Table 7.6: Performance difference between the reference solution and the proposed designs

The comparison of the needed amount of write operations clarifies that the reference file
system is performing far better than the new design proposals. Apart from that fact, the
new design proposals offer other benefits like more efficient memory management and the
functionality to reuse released memory.

7.4 Determination of the ideal suitable file system

For the purpose of figuring out the ideal file system solution, all positive and negative
aspects of the two journaling based designs and the reference file system implementation
are contrasted.

All in all the memory consumption of the currently implemented reference file system
is really low. Nearly no management structures are needed at all, as the whole system is
build up through a linked list and arranged with the aid of pointers and block linking. The
user memory area is bounded through two pointers which are situated in a configuration
block, outside of the user memory itself. Therefore the customer really has the whole
empty user memory at his disposal.

The drawback of the actual solution nevertheless is the impossibility of freeing mem-
ory after data erasure. This fact makes it impossible to reuse memory which is not needed

anymore and therefore wastes a lot of useful space after delete operations were carried out.

Both journaling solutions enable the memory reuse after data deletion and therefore pro-
vide a distinct advantage over the currently used solution.

The combination of FAT with journaling uses multiple blocks of the user memory for
system management purposes:

98



e 32 bytes: Management Block
. 1—16 of the user memory: FAT

1—16 of the user memory: Copy of the FAT, situated in the Journal region
e defined by user: Size of the Journal region, needs to be at least big enough to store
the copy of the FAT and some additional blocks

As the journal size can be defined by the user, its hard to predict, how much space will
be used for it. It should at least be big enough to store the copy of the FAT (if it is kept
in the user memory) and to backup the content of one backup data file. In the ideal case
it is big enough to store the content of all files which are modified during one transaction,
but of course also this size differs from case to case.

The management block is not fully stretched and only 18 out of the reserved 32 bytes
are effectively needed and the rest is reserved for future use. If it is possible, it would be
a good opportunity to swap the fields of the management block out to free fields in the
non-volatile memory. This would reduce the allocation of the user memory and free one
block.

As the FAT and its copy in total make use of % of the whole user memory, it would
be worth considering storing the copy of the FAT somewhere outside the user area. If
there is space for it anywhere in the non-volatile memory, it would reduce the user mem-
ory occupancy drastically and consequently offer more free space to the customer.

The EXT based design requires the following amount of memory blocks for management
purposes.

e 32 bytes: Management Block

e 1 Bit for each block: Block Usage Bitmap

e 1 Bit for each block: Copy of the Block Usage Bitmap

e 32 Bytes: each file list that is needed (exact memory consumption is unpredictable)

e 32 Bytes: each data block list that is needed (exact memory consumption is unpre-
dictable)

e defined by user: Size of the journal region, needs to be at least big enough to store
the copy of the bitmap and some additional blocks

As for the FAT file system design, also here the journal size can be defined by the user,
and therefore it is hard to predict how much space will be needed for it. It should at least
be big enough to store the copy of the bitmap and to backup the content of one backup
data file.

99



The management block is also in this design proposal not fully stretched, only 20 out
of the reserved 32 bytes are effectively needed and the rest is reserved for future use. The
same principle applies here: if it is possible, it would be a good opportunity to swap the
fields of the management block out in order to free one block in the user memory.

The block usage bitmap requires 1 bit of space for each memory block. For an 8 kilo-
byte sized user memory, 256 blocks can maximally be used and therefore 32 bytes (exactly
one block) are needed for the block usage bitmap. Obviously the bitmap is not using much
space and very memory efficient.

Additionally to the bitmap the file system structure needs more blocks, depending on its
use. Applications are connected through one field in the application header, the Ref AN-
ode, which simply points to the next application and builds up a linked list of applications.

Files can be connected through different ways: Either the application itself points to
a file list, which basically is one block containing further references to files, or the appli-
cation points to the first file and this file again points to the next file and again builds up
a linked list of files. Depending on the utilization, the application either requires one or
two memory blocks at application creation time. The second block would be needed for
the already mentioned file list.

Both possibilities can be used. The method with the separate file list needs one memory
block more, but makes the deletion of one file very simple, as it just needs to be eliminated
from the said list and no other file header needs to be accessed and modified. The second
method with one file header pointing to the next one saves one memory block, but when
deleting a file, the files need to be linked anew and therefore the previous file header needs
to be updated.

The organization and linking of the data blocks again can be done in two different ways.
If there is enough memory space free to write the file data contiguously into blocks, no
separate data block list is needed and only one pointer (to the start of the connected data
blocks) needs to be stored in the file header.

Otherwise, if the data blocks can not be written contiguously, a separate memory block
needs to be allocated, which needs to store the so called data block list. The data block
list is one block which contains references to the blocks where the file's data is stored.
Consequently one file header either requires one or two memory blocks. If the data can be
written contiguously only one block is needed, otherwise a second one needs to be allocated.

One benefit of the EXT based design is the fact, that nearly no blocks need to be re-
served for management structures. Only the management block and the two bitmaps are
required, all other memory blocks can be used more or less autonomously by the customer.
If additional blocks are needed (second block for file list respectively data block list), they
are only allocated when they are needed and not from the beginning, like it is the case
when using a FAT.

100



For reasons of clarification, a comparison of positive and negative aspects of the two final-
ists and the reference file system is arranged in table [7.7

reference file system

FAT with journaling

EXT design

+ whole user memory can be
used by customer

+ linked list structure is really
easy to realize

+ quick switching between ac-
tive and inactive image

+ no fragmentation can ap-
pear at all

+ no management structure
needed at all

+ journal size can be defined
by customer

+ FAT structure is easy to re-
alize

+ FAT makes release of un-
used blocks easy

+ fragmentation is avoided as
long as possible

+ management block and
copy of FAT can eventually be
swapped out of the user mem-
ory

+ memory can be reused after
data deletion

+ data can also be written in
non-adjacent blocks if neces-
sary

4+ memory consumption is
predictable

+ journal size can be defined
by customer

+ EXT structure is really easy
to realize

+ bitmap makes release of un-
used blocks easy

+ fragmentation is avoided as
long as possible

+ management structures
do not need much space
(only management block and
bitmap are needed)

+ memory can be reused after
data deletion

+ data can also be written in
non-adjacent blocks if neces-
sary

+ bitmap only needs 1 bit of
space per memory block

- memory can not be reused
after data deletion

- realization of a garbage col-
lector is too difficult at the
moment

- data can only be written se-
quentially

- one FAT needs % of whole

user memory

- data block list will waste
space, if not fully utilized

- consumption of memory is
not predictable (need for a
data block list is not known
beforehand)

4 positives, 3 negatives

8 positives, 1 negative

8 positives, 2 negatives

Table 7.7: Positive and negative aspects of the journaling file system designs and the

reference file system

101




Both the measurement results of the reference transactions and the pros and cons which
have been illuminated in table [7.7] show that the two approaches FAT in combination with
journaling and EXT based design are qualified for becoming an efficient new smartcard
file system.

The designs show equally good performance in terms of write operations and both make
use of journaling and the same security mechanism.

In terms of memory consumption, the FAT based design however has an edge over the
other approach. Although the solution requires more memory blocks for management
structures, these can be swapped out of the user memory if possible, what makes the
overall memory usage smaller than for the EXT design approach. A big disadvantage of
the EXT design is the unpredictability of the usage of data block lists. The exact amount
of required memory blocks is not known beforehand and depends on the size of a data
file. This fact makes it difficult to guarantee the optimal usage of the user memory and
therefore the FAT approach is favorable.

For the named reason I consider the FAT in combination with journaling based file system
design as the most promising one and suggest to take its realization and implementation
into consideration.

When comparing the FAT in combination with journaling design to the reference file
system, the second one outperforms the FAT design easily when doing operations in the
electric field. Nevertheless I believe that the very efficient use of the user memory and the
possibility to reuse memory blocks after erasure will offer a tremendous advantage in the
future.

102



Chapter 8

Conclusion and Future Work

In this thesis multiple different kinds of existing file systems have been examined, analysed,
reused and partly combined in order to create a new efficient transaction based smart card
file system.

Implementation techniques, which are needed for the whole structure and realization of a
new file system have been introduced and also commonly used disk-, flash-, and further
popular file systems have been analysed and interpreted in great detail. After having laid
the foundation through exposing file system basics, latest state-of-the-art subjects gave
a deeper insight into smartcard specific research findings. Especially the concepts which
are used in current flash file systems can be taken over and be used for the EEPROM
organization of a smartcard.

Based on the made perceptions, a closer selection of file systems and techniques which
came into question for further elaboration, has been made. This selection included the
Extended File System, the File Allocation Table management structure, the Journaling
backup mechanism and Yet Another Flash File System. Through reuse, alteration and
further development of the mentioned technologies, new customized file system designs
have been created. These approaches were adapted according to smartcard-specific needs
and requirements like a strongly limited available memory, the need for a small implemen-
tation of file and application structure and a matching block size in order to loose as few
memory space as possible. Furthermore low transaction times and consequently fast data
access as well as an appropriate error recovery mechanism have been taken into consider-
ation. In chapter [5| the conception of five different file system drafts can be investigated.

The design drafts have been refined and compared in terms of needed write operations
during a transaction in chapter [6] This differentiation together with the observation of
the memory consumption was essential for drawing conclusions and also comparing the
individual approaches among themselves and also to the reference file system.

After using reference transactions for retrieving realistic measurement results and a care-
ful consideration of pro and contra arguments, I suggested the FAT in combination with
journaling design approach as the most promising one. In comparison to the reference file
system, the proposed one is not as fast in writing data because the journaling mechanism

103



requires some additional security-relevant writes and flag updates. The advantages of the
file system are noticeable in terms of memory consumption and management and a lot of
benefits arise through the possibility to reuse memory.

8.1 Future Work

In the future probably tree-based file system designs can become more and more worth-
while for the application inside smart cards. As binary trees offer great performance for
insert and search operations, namely O(logn), the time which is needed for data access
could be reduced and transaction times could be kept very low. At the moment a tree-
based file system can not be used for a realization, as the tree structure certainly requires
a lot of maintenance and re-structuring operations and the little RAM space on the smart
card is not suitable for this kind of requirements.

104



Bibliography

[ACL*07]

[Bha07]

[Buc03]
[Car05]

[Cor00]

[Cor03]

[Cor05]
[Cor10]

[FB]
[fSECO5a)

[fSECO5b)]

[JSPK13]

[kKSgJ07]

Seongjun Ahn, Jongmoo Choi, Donghee Lee, Sam H. Noh, Sang Lyul Min,
and Yookun Cho. Design, Implementation, and Performance FEvaluation of
Flash Memory-based File System on Chip. Journal of Information Science and
Engineering 23, 2007.

Pramod Chandra P. Bhatt. An Introduction to Operating Systems: Concepts
and Practice, Second Edition. PHI Learning Private Ltd., 2007.

Florian Buchholz. The structure of the Reiser file system. 2003.

Brian Carrier. File System Forensic Analysis. Addison-Wesley Professional,
2005.

Microsoft Corporation. Microsoft Extensible Firmware Initiative. FAT32 File
System Specification. FAT: General Overview of On-Disk Format. December
2000.

Microsoft Corporation.  NTFS Technical Reference. |http://technet.
microsoft.com/en-us/library/cc758691%28v=ws.10%29.aspx, 2003.

Microsoft Corporation. Microsoft FAT Specification. 2005.

Microsoft Corporation. Transaction-Save FAT File System. http://msdn.
microsoft.com/en-us/library/aa911939.aspx, 2010.

Florian Frank and Jrn Bruns. Journaling Dateisysteme. SelfLinux-0.12.3.

International Organization for Standardization/International Electrotechni-
cal Commission. ISO/IEC 7810: Identification cards - Physical characteristics.
Technical report, January 2005.

International Organization for Standardization/International Electrotechni-
cal Commission. ISO/IEC 7816: Identification cards - Integrated curcuit cards.
Part 4: Organization, security and commands for interchange. Technical re-
port, January 2005.

Shalini Jain, Anupan Shukla, Bishwajeet Pandey, and Mayank Kumar. Effi-
cient Data Structure Based Smart Card Implementation. 2013.

Eun ki Kim, Hyungjong Shin, and Byung gil Jeon. FRASH: Hierarchical File
System for FRAM and Flash. 2007.

105


http://technet.microsoft.com/en-us/library/cc758691%28v=ws.10%29.aspx
http://technet.microsoft.com/en-us/library/cc758691%28v=ws.10%29.aspx
http://msdn.microsoft.com/en-us/library/aa911939.aspx
http://msdn.microsoft.com/en-us/library/aa911939.aspx

[Ltd02]

[Lz09]

[Mag02]

[Man12]

[Mic08]

[NMLO09]

[0BS12

[Oik14]

[PFm04]

[Poill]

[Rod13]

[SGGO5]

[Tan06]

[Twes]
[Wanll]
[Woo01]

[YJXL10]

Aleph One Ltd. YAFFS Yet Another Flash File System. http://www.yaffs.
net/), 2002.

Ling Liu and M. Tamer zsu. Encyclopedia of Database Systems. Springer US,
2009.

Linux Magazine. Journaling File Systems. Advanced Linux file systems are
bigger, faster, and more reliable. Linux Magazine, 2002.

Charles Manning. How Yaffs Works. Technical report, March 2012.

Sun Microsystems. System Administration Guide: Devices and File Systems.
Sun Microsystems, 2008.

Gap-Joo Na, Bongki Moon, and Sang-Won Lee. In-Page Logging B-Tree for
Flash Memory. 2009.

Pierre Olivier, Jalil Boukhobza, and Eric Senn. Performance Evaluation of
Flash File Systems. CoRR, abs/1208.6390, 2012.

Shuichi Oikawa. Non-volatile main memory management methods based on a
file system. 2014.

Marcelo Trierveiler Pereira, Antonio Augusto Froehlich, and Hugo marcondes.
RIFFS: Reverse Indirect Flash File System. 2004.

Dave Poirier. The Second Extended File System, Internal Layout. 2001 - 2011.

Ohad Rodeh. BTRFS: The Linux B-Tree Filesystem. ACM Transactions on
Storage, Vol. 9, August 2013.

Abraham Silberschatz, Peter Baer Galvin, and Greg Gagne. Operating System
Concepts, Seventh FEdition. John Wiley & Sons, 2005.

Andrew S. Tanenbaum. Operating Systems Design and Implementation, Third
Edition. Pearson Education, Inc., 2006.

Stephen C. Tweedie. Journaling the Linux ext2fs Filesystem. 1998.
Paul S. Wang. Mastering Linux. Taylor & Francis Group, 2011.

David Woodhouse. JFFS: The Journalling Flash File System. Ottawa Linux
Symposium, 2001.

Chen Yuqgiang, Guo Jianlan, Hu Xuanzi, and Liu Liang. Design and Imple-
mentation of Smart Card COS. 2010.

106


http://www.yaffs.net/
http://www.yaffs.net/

	Introduction
	Motivation
	Objectives
	Structure of the thesis

	File System Implementation Methods
	File structure
	Directory structure
	Linear list
	Hash table

	Allocation methods
	Contiguous allocation
	Linked allocation
	Indexed allocation

	Free Space management

	Common File Systems
	Journaling file systems
	Disk file systems
	EXT - Extended File System
	FAT - File Allocation Table
	NTFS - New Technology File System
	ReiserFS
	BTRFS - B-Tree File System

	Flash file systems
	JFFS
	TFAT
	YAFFS


	State-of-the-Art in Smartcard File Systems
	ISO/IEC memory organization
	Non-volatile memory management
	Various examples of flash and smart card file system designs and proposals
	RIFFS - Reverse Indirect Flash File System
	FRASH - Hierarchical File System for FRAM and Flash
	FSOC - Flash Memory-based File System on Chip
	Implementation of a Smart Card Operating System

	Conclusion

	Design and Conception of potential Smartcard File Systems
	Design decisions (based on the reference file system)
	Journaling file system design
	Normal journaling
	Reverse journaling
	Comparison of both solutions

	Proposals based on the usage of a file allocation table
	File system using two FATs (Double FAT approach)
	File System using a FAT in combination with journaling

	Design approach based on the EXT file system structure
	EXT based file system in combination with journaling

	Design approach based on the YAFFS file system
	Mixture between YAFFS1 and YAFFS2 design

	Tree based file system proposals
	Definition and mode of operation of B-trees
	Dictionary operations
	B-tree inside the smartcard


	Comparison of the different suggested File System Concepts
	General clarifications
	Fragmentation
	Handling of security relevant data (e.g. key data)
	Linking of applications and files

	Examination of the double FAT approach with application lists
	Create and write operations
	Update operations
	Delete operations
	Read operations
	Synchronization of FATs
	Measurement of standard operations

	Examination of the double FAT approach without separate application lists
	Create and write operations
	Update operations
	Delete operations
	Read operation
	Synchronization of FATs
	Measurement of standard operations

	Examination of the FAT file system with journaling combination
	Standard journaling with FAT
	Reverse journaling with FAT
	Create and write operation
	Update operations
	Delete operations
	Read operation
	Synchronization process
	Measurement of standard operations

	Examination of the EXT file system approach
	Create and write operations
	Update operations
	Delete operations
	Synchronization process
	Measurement of standard operations

	Examination of the YAFFS file system approach
	Create and write operations
	Update operations
	Delete operations
	Read operation
	File system check
	Measurement of standard operations


	Evaluation of Results and Comparison with the Reference File System
	Detailed analysis of the reference file system
	Evaluation of measurement results
	Practical utilization of the proposed file system designs on the basis of reference transactions
	Determination of the ideal suitable file system

	Conclusion and Future Work
	Future Work

	Bibliography

