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meiner Freundin für die Unterstützung bei meinem Studium in Graz bedanken.





Eidesstattliche Erklärung
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Zusammenfassung

Diese Masterarbeit beschreibt die Entwicklung eines echtzeitfähigen Fahrzeugmodells für
die Online-Simulation in einem Steer-by-Wire Prototypen. Der Modellansatz basiert auf
einem linearen und nichtlinearen Einspurmodell. In dieser Masterarbeit werden die Her-
leitung der verschiedenen Modellgleichungen sowie der aufwändige Validierungsprozess
beschrieben. Ziel der Arbeit ist, eine exakte Schätzung der fahrzeugspezifischen Werte für
Gierrate und Querbeschleunigung in nicht-kritischen Fahrsituationen zu gewährleisten.
Als Eingangsgrößen für das Modell werden der Lenkradwinkel und die Fahrzeuggeschwind-
igkeit verwendet. In kritischen Fahrsituationen wie Über- oder Untersteuern sollen die
geschätzten Werte des Fahrzeugmodells von den real gemessenen Werten abweichen. Ein
zusätzlicher Algorithmus soll gewährleisten, dass aufgrund der Abweichungen die kriti-
sche Fahrsituation erkannt wird. Diese Funktion zur Erkennung von kritischen Fahrsitua-
tionen wurde auf verschiedenen Fahrbahnoberflächen getestet und validiert. Zusätzlich
zum Fahrzeugmodell werden Reifenmessungen durchgeführt, um daraus ein detailliertes
Reifenmodell für das Testfahrzeug zu erstellen. Dieses Modell ist für die Erzielung eines
guten Simulationsergebnisses notwendig. Durch verschiedene Fahrmanöver wird die ko-
rrekte Funktion des Fahrzeugmodells mit kombinierter Unter- und Übersteuerdetektion
aufgezeigt. Das hier beschriebene Simulationsmodell bildet die Grundlage für die En-
twicklung von weiteren Funktionen des Steer-by-Wire Fahrzeugs.





Abstract

This master thesis deals with the development of a real time vehicle model for online sim-
ulation in a steer-by-wire prototype. The approach is based on the linear and nonlinear
single track model. The derivation of the different model equations is described as well
as the validation process of the models. The goal of this thesis is to estimate the yaw
rate and the lateral acceleration of the vehicle in non-critical driving situations. As input
signals for the simulation the steering wheel angle and the vehicle velocity are used. For
critical driving situations like under- and oversteering the model estimation and the real
measured vehicle data should diverge. Therefore, an algorithm has to be implemented
to detect the critical situation. This algorithm is validated in different driving situations
on varying driving surfaces. Additional to the vehicle model, tire measurements were
carried out for a tire model parametrization. The tire model is necessary for the vehicle
model implementation. The accuracy of the different simulation models should be shown
and the functionality of the under- and oversteering detection validated. This master
thesis is the base for further function development of a steer-by-wire vehicle.
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1 Introduction

1.1 ThyssenKrupp Presta AG

ThyssenKrupp Presta AG (in the following TKP) is a company with headquarters located
in Eschen in Liechtenstein. TKP is a subsidiary company of the ThyssenKrupp group and
part of the business area ”Components Technology”. TKP is specialized in cold forging
and builds steering systems for the automotive industry. In addition to complete systems,
TKP sells system parts individually. Therefore, there is a part from TKP in nearly every
newly produced passenger car [1]. TKP employs around 7000 people, of which around
people are employed in Eschen, which is also the location of the main research and
development department. TKP is a multinational company with 16 business locations
distributed all over the world. Amongst others, there are business locations in France,
USA and China. As part of the division ”Electric Power Assisted Steering Systems”, a
team consisting of ten engineers and two mechanics form the ”Vehicle Dynamics and
Testing” department. A team of three engineers of this department is currently involved
in a research project to investigate steer-by-wire systems (SbW). In the course of this
project, a prototype steer-by-wire system is to be developed and a prototype test vehicle
is to be built up.

1.2 Motviation

When introducing steer-by-wire into a passenger car, the mechanical connection between
the steering wheel and and steering gear is removed. Steer-by-wire systems therefore offer
advantages, such as additional available space, system modularity and many more [18].
The steering input of the driver is measured with sensors and transmitted to a control
unit. This control unit then actuates the steering gear. Therefore, it is no longer nec-
essary to transmit the steering input of the driver directly to the wheels. Steer-by-wire
introduces the road wheel angle as a possible control input. On the one hand, this sim-
plifies the implementation of systems already commercially available such as automated
parking or active lane keeping. There is no need for the steering wheel to rotate when
the car performs maneuvers; therefore, the driver does not need to remove his hands.
On the other hand, this offers the possibility to introduce new systems which actively
suppress or correct safety critical steering inputs of the driver. This way, the driver can
be supported while improving safety and performance. However, up to this point, steer-
by-wire technology was not attractive for series production. The main reason for this
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lies within the legal requirements regarding fail safety of the system. The only realizable
fallback solutions negate most of the advantages of the ideal steer-by-wire system and at
the same time increase the cost as well. In recent years, the idea regained some attractive-
ness because autonomous driving became a target of many automotive companies. To
realize autonomous driving, steer-by-wire is necessary. When introducing steer-by-wire,
the last mechanical connection of the driver to the vehicle is removed. With this last
step, vehicle dynamics can be fully controlled. On one side, an additional control input
can increase performance of the controller. On the other side, certain control strategies
are more effective in certain situations. One such scenario is µ-split braking. It describes
a braking maneuver which is executed while driving with one side of the vehicle on nor-
mal asphalt and with the other side on ice. When braking is initialized, the vehicle will
turn into the direction of the asphalt. That happens because the transmitted braking
forces are higher on asphalt than on ice. As a result, the vehicle begins to yaw. In ex-
treme cases, this can lead to instability of the vehicle. Anti-lock braking system (ABS)
and and the electronic stability program (ESP), which are standard in modern vehicles,
cannot prevent this effect satisfactorily [14]. Both systems act solely upon the brakes.
ABS reduces brake pressure at each wheel to prevent the wheels from locking, thereby
ensuring force transmission. ESP uses a wheel-individual braking input to stabilize yaw
movement of the vehicle. Since all tires are operated with maximal force transmission,
no additional brake force may be applied. To stabilize the vehicle nevertheless, ESP will
reduce brake pressure on the wheels on asphalt, equalizing force transmission on both
sides of the vehicle. As a result, braking performance is reduced to a similar behavior as
the braking on a pure ice surface. In this scenario, a controller which acts on the road
wheel angle in combination with the ESP breaking proves much more effective [9]. The
controller can compensate the introduced yaw moment by an active countersteer. This
strategy stabilizes the vehicle while, at the same time, improving braking performance.
Additionally, a similar system can stabilize the vehicle during unstable cornering. An-
other aspect in the steer-by-wire technology is the feedback of the steering wheel given
to the driver. The steering feel has to be generated with an additional power unit. To
produce this steering feel, certain driving situations have to be detected properly. For
normal driving situations, the steering feel can be generated depending from the vehicle
velocity and the steering wheel angle. If the vehicle gets in a critical driving maneuver,
like an understeering, the steering feel has to be adapted to give the driver the informa-
tion of the situation. The implementation of the safety functions, as well as the feedback
function of the steering wheel have one thing in common: the correct detection of the
critical situation by the vehicle computing unit.

2



1.3 Objective

1.3 Objective

Objective of this master thesis is the development of a real time vehicle model, which
estimates the different specific data of a vehicle, mostly the yaw rate and the lateral
acceleration. Based on this estimation, a function has to be developed to detect critical
situations like under- and oversteering. The principle of this detection should be a com-
parison of the measured and estimated yaw rate. If this data diverges too much, a critical
situation can be supposed. Two different approaches are implemented and validated as
simulation models: a linear and a nonlinear single track model. The simulation models
have to be well validated for non critical driving situations with lateral accelerations
lower than 5 m/s2.
Another part of this thesis is the development and implementation of a nonlinear tire
model, which is required for a nonlinear single track model. For this tire model, tire
measurements are done on a benchmark and evaluated afterwards. Different tire models
have to be reviewed and evaluated.
Finally, the under- and oversteering detection has to be validated for different critical
situations on varying driving surfaces.

3
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1.4 Test Vehicle

The test vehicle for the steer-by-wire project is a Roding Roadster. The vehicle is
depicted in figure 1.1. It is a two-seater with middle engine and rear wheel drive. The
placing of the engine in the middle leads to the car trunk in the front. Therefore, a lot
of space is available. This simplifies installation of the steer-by-wire steering gear and
sensor equipment. The vehicle weights about 1250 kg and features a 6-cylinder engine
producing 320 HP.

Figure 1.1: Roding Roadster prototype vehicle.

4



2 Vehicle Model

2.1 Coordinate System

Figure 2.1: DIN 70000 coordinate sys-
tem [13]

Figure 2.2: SAE J670e coordinate sys-
tem [13]

In order to describe the vehicle movement in space, it is important to have a well defined
coordinate system. Figure 2.1 and 2.2 show two normed coordinate systems. In this
master thesis, the ISO DIN 70000 (figure 2.1) is used to describe the movement of the
vehicle. This so called ”vehicle fixed coordinate system” is placed in the center of gravity
(CoG) of the vehicle. The orientation of the axis is shown in figure 2.1. The vehicle fixed
coordinate system performs a movement relative to the inertial coordinate system with
the yaw angle ψ. The orientation of the inertial coordinate system is shown in blue in
figure 2.1. To transform kinematic and kinetic vectors from the vehicle fixed coordinate
system into the inertial system, the transformation matrix T 0V from (2.1) is used:

0

ẋẏ
ż

 =

cosψ − sinψ 0
sinψ cosψ 0

0 0 1


︸ ︷︷ ︸

T 0V

V

vxvy
vz

 (2.1)

vx, vy, vz...velocity in x- y- and z- direction of vehicle fixed coordinate system
ẋ, ẏ, ż...velocity in x- y- and z- direction of inertial coordinate system

The tire fixed coordinate system of figure 2.3 is used to describe forces which act on the
tire. The front tire rotates around the z-axis because of the steering angle δ. Therefore,
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Figure 2.3: ISO 8855 tire fixed coordinate system [13]

the tire fixed coordinate system is introduced to make the description of the acting tire
forces easier. To transform the vectors from the tire fixed coordinate system into the
vehicle fixed system, the transformation matrix from (2.2) is used.

T V T =

cos δ − sin δ 0
sin δ cos δ 0

0 0 1

 (2.2)

Another transformation of the tire forces has to be done, if the tire is mounted with
camber γ. In this case the transformation from the W- to C- tire fixed coordinate
system (figure 2.3) with the matrix TWC of (2.3) and the equation (2.4) has to be done.

TWC =

1 0 0
0 cos γ − sin γ
0 sin γ cos γ

 (2.3)

WF = T T
WC · F +mw · g · Wez (2.4)

mW ...wheel mass
g...gravitational constant

Wez...unit vector in z-direction of W- Tire fixed coordinate System

6



2.2 Comparison of different Vehicle Models

2.2 Comparison of different Vehicle Models

First of all, an evaluation of different possible vehicle model implementations has to be
done. There are many possibilities to develop and implement vehicle models. Different
descriptions of vehicle models from [5] follow now:

• Single Track Model, Linear

• Single Track Model, Nonlinear

• Two Track Model, Linear

• Complex Multi-Body System

• Finite Elements Model

2.2.1 Linear Single Track Model

In the linear single track model, the front and rear tires are summarized to one tire for
each axle. Therefore, the degrees of freedom and the number of equations can be reduced.
The linear single track model is developed out of the three main vehicle equations, which
are simplified up to a certain point. These equations describe the main vehicle movement
along the x- and y-axis and the rotation around the z-axis. With the linear single track
model, you can describe the lateral dynamic of a vehicle up to a lateral acceleration
between 4 m/s2 and 5 m/s2. A detailed description of the linear single track model
follows in chapter 2.3.

2.2.2 Nonlinear Single Track Model

The main concept of the nonlinear single track model is based on the linear single track
model, but the difference between these two models is the supposed tire behavior. In the
linear single track model, the tire behavior is described as a linear equation between slip
angle and lateral tire force. In the nonlinear single track model, the behavior between slip
angle and tire force is described as a nonlinear tire model. To generate this tire model,
tire force measurements from test benches are required. In comparison to the linear
model, the nonlinear one has the advantage that the simulation result is accurate up to
higher lateral accelerations in the range of 10 m/s2 and 11 m/s2. A detailed description
of the linear single track model follows in chapter 2.4.

2.2.3 Two Track Model

In the two track model, every tire is described individually in all three dimensions of the
tire fixed coordinate system. Therefore, the number of equations rises and the influence
of tire load dynamic can be considered. The tire load dynamic has big influence at higher

7



2 Vehicle Model

lateral accelerations, where the tire slip angle becomes higher than 3 degrees. Parts of
the two track model, for example the tire load dynamic, can be extracted and used for
the single track models. For a detailed description see to chapter 2.5.

2.2.4 Complex Multi-Body System

A multi body system can be used to describe a mechanical system consisting of different
stiff bodys which are connected with bearings and pin-joints. Dependent on the number
of bodies in the system, the degrees of freedom in the whole system rises up to a number
higher than twenty. This increasing degrees of freedom results in the same high number
of equations. Due to this fact, the simulation time increases, and the real time simulation
requirement can not be guaranteed. The higher accuracy of the multi body system has
fewer advantages than the higher simulation time generates problems.

2.2.5 Finite Elements Model

The finite elements model is mainly used to describe elastic and plastic deformations
of bodies in a system. The model consists of different finite elements, whose possible
deformations are restricted by the so called trial function. The finite element model
results in a number of ordinary differential equations with a high number of freedom
degrees. The calculation of this kind of models is generally done offline because of their
high calculation time.

The main requirement for this model is to run in real time on an Autobox. Therefore,
many of the described different modeling methods are not suitable. Another requirement
is an accurate estimation of the vehicle yaw rate in the stable range of the vehicle. As
the linear single track model has a simple structure and a good accuracy in the linear
range of the vehicle, this kind of model is used to describe the lateral movement of the
vehicle in his linear range. Another aspect of the linear vehicle model is that it can
be easily extended with a nonlinear tire model and a dynamic tire load model. With
this extensions, an accurate estimation of the vehicle yaw rate is possible up to higher
levels of lateral accelerations. For the given application, a linear system is not accurate
enough. Because of these aspects, this kind of model has been implemented. The model
implementation and the results are described in following chapters.

2.3 Linear Single Track Model

The linear single track model, developed from Riekert and Schunk in 1940, is the simplest
way to describe the lateral dynamic of a vehicle. It is the standard model to describe
vehicle dynamics and is broadly used in specific literature as [5], [15] and [18]. The linear
vehicle model holds up to lateral accelerations between 4-5 m/s2. The main advantages
of the model are the intuitive structure and the close relation to physical properties

8



2.3 Linear Single Track Model

of a vehicle. Adaption of the model to a different vehicle is easily done by adjusting
the parameter set of physical properties. With the linear single track model, general
statements about the vehicle’s driving behavior can be made. Within the modeling,
some simplifications has to be done:

• The velocity of the vehicle in the center of gravity is supposed to be constant into
the direction of movement.

• Movements along the z-axis, as well as roll- and pitch movements, are neglected.

• The vehicle mass is assumed into the center of gravity.

• The front and rear tires have to be assumed to one tire for each axis.

• The pneumatic trail and the aligning torque have to be neglected.

• The tire load on front and rear axis have to be constant.

• The longitudinal tire forces, resulting out of the assumption of constant velocity,
have to be neglected.

Because of the first two simplifications, the degrees of freedom reduce. The two remaining
degrees of freedom are the yaw rate ψ̇ and the slip angle β, depicted in figure 2.4. The
yaw rate ψ̇ is the rotation around the z-axis of the vehicle fixed coordinate system. The
slip angle β describes the angle between the direction of the effective velocity of the
vehicle in the center of gravity and the longitudinal vehicle axis. The input of the model
is the angle of the rack input gear. Because of the steer-by-wire configuration of this
vehicle, an angle sensor is placed there.

2.3.1 Derivation of model equations

In the following chapters, a detailed derivation of the differential equations of the single
track vehicle model, called ”bicycle model”, is described based on the work of SCHRAMM,
HILLER, BARDINI [5] and HIRSCHBERG [12]. All given vectors are related to the
vehicle fixed coordinate system directed as shown in figure 2.4.

The vector z in (2.5) includes the three states with which the movement of the vehicle
can be described. The states are the velocity in x- and y- direction (vx and vy) as well
as the rotation around the z-axis ωz.

z =

vxvy
ωz

 (2.5)

The acceleration of the vehicle can be described with the following equation (2.6). It
contains a term a1, resulting out of the translatory movement of the vehicle and a term
ay, resulting out of the rotatory momentum arround the z-axis, which is also called
centrifugal force.

9



2 Vehicle Model

Figure 2.4: Figure with drawn vector orientation from [12]

a = v̇ + ω × v =

v̇xv̇y
0


︸ ︷︷ ︸
a1

+

 0
0
ωz

×
vxvy

0


︸ ︷︷ ︸

ay

(2.6)

a1 results out of the translatory vehicle movement.
ay results out of the rotatory vehicle movement around the z-axis, which is also called
centrifugal force.

For the first two rows of a you get the following equation (2.7):

a = v̇ + ω × v =

[
v̇x − ωzvy
v̇y + ωzvx

]
(2.7)

The angular velocity around the z-axis of the vehicle fixed coordinate system ωz is equal
to the first order derivation of the yaw angle ψ (2.8)

ωz = ψ̇ (2.8)

For the angular acceleration it can be written(2.9):

ω̇z = ψ̈ (2.9)

10



2.3 Linear Single Track Model

Out of the linear and angular momentum we get the following differential equations( (2.10)
and (2.11)) to describe the movement of the vehicle:

ma = F =

[
FxF + FxR
FyF + FyR

]
(2.10)

Θψ̇ = FyF lF − FyRlR (2.11)

Inserting (2.7) in (2.10) and (2.9) in (2.11), results in the following differential equation
system (2.12):

m 0 0
0 m 0
0 0 Θ


︸ ︷︷ ︸

M

v̇xv̇y
ω̇z


︸ ︷︷ ︸
ż(t)

= m

 ψ̇vy
−ψ̇vx

0


︸ ︷︷ ︸

k(t)

+

 FxF + FxR
FyF + FyR

FyF lF − FyRlR


︸ ︷︷ ︸

q(t)

(2.12)

M ... 3× 3 - mass matrix

ż ... 3× 1 - general vector of acceleration

k ... 3× 1 - vector of gyroscopic- and centrifugal forces

q ... 3× 1 -vector of applied forces and moments. In this case, it consists of tire forces
and their moments.

2.3.2 Tire force

The biggest influence on the model accuracy has the vector q(t) from equation (2.12),
which consists of the tire forces in x- and y- direction. As the main part of this master
thesis is to generate a model which describes the lateral vehicle dynamic, the focus is
directed towards the lateral tire forces. Also because the influence of the longitudinal
tire force into the lateral vehicle dynamic is small compared to the influence of the lateral
tire force.

The lateral tire force is a nonlinear dependency of the slip angle α. To identify this rela-
tion, complex tire measurements have to be done, as described in chapter 3.1. Further-
more, a more detailed description of the physical tire behavior is described in chapter 3.

A plot of a principle relation between the lateral tire force and the slip angle is depicted
in figure 2.5. As it can be seen, the lateral tire force consists of a linear range and
a saturation range. Under the precondition of small slip angles α, we can suppose a
linear tire force characteristic. This assumption holds if the lateral accelerations are
smaller than 4 m/s2 or 0.4 g. Therefore, we can write for the lateral tire forces ( (2.13)
and (2.14)):

11



2 Vehicle Model

FyF = −cαFαF (2.13)

FyR = −cαRαR (2.14)

cαF and cαR of equation (2.13) and (2.14) are the slopes of the tire force characteristic
curve at the linear area for slip angles less than about 3 deg.

Figure 2.5: Schematic depiction of lateral tire characteristic from [12].

2.3.3 Calculation of the tire slip angle

The slip angle of the tires is defined within equation (2.15), where vyT and vxT are the
tire velocity in the tire fixed coordinate system.

α = arctan(
vyT
vxT

) (2.15)

Figure 2.6 shows the vectors for the definition of the slip angles.

For the rear tires, the tire fixed coordinate system has the same direction as the vehicle
fixed coordinate system; therefore, no transformations have to be done. The velocity of
the rear tires are calculated with the following equation (2.16).

vR = v + ω × rR =

vxvy
0

+

0
0

ψ̇

×
−lR0

0

 =

 vx
vy − ψ̇lR

0

 (2.16)

12



2.3 Linear Single Track Model

Figure 2.6: Vectors for the calculation of the front wheel force from [12].

The rear slip angle is defined as:

αR = arctan(
vyR
vxR

). (2.17)

Supposing that the slip angle remains small, it can be written:

αR =
vyR
vxR

. (2.18)

. Entering (2.16) and (2.18) in (2.14) yields in:

FyR = −cαR
vy − ψ̇lR

vx
. (2.19)

There is a difference between the calculation of the rear and front tire force because of
the steering angle of the front tires.

The velocity of the front tires in body frame coordinates are given as:

vF = v + ω × rF =

v̇xv̇y
0

+

0
0

ψ̇

×
lF0

0

 =

 vx
vy + ψ̇lF

0

 (2.20)

For the calculation the vectors of (2.20) have to be transformed into the tire frame
coordinate system. The transformation matrix for this case is given as:

T =

cos δ − sin δ 0
sin δ cos δ 0

0 0 1

 . (2.21)

13



2 Vehicle Model

For small wheel angles less than 1 rad we can assume:

T ≈

1 −δ 0
δ 1 0
0 0 1

 . (2.22)

The tire velocity in tire frame coordinates is:

TvF = T TvF =

 1 δ 0
−δ 1 0
0 0 1

 vx
vy + ψ̇lF

0

 =

vx + δ(vy + ψ̇lF )

−δvx + vy + ψ̇lF
0

 (2.23)

The front slip angle is defined as:

αF = arctan(
vyF
vxF

). (2.24)

Supposing that the slip angle remains small, we can write:

αF =
vyF
vxF

. (2.25)

Entering (2.23) and (2.25) in (2.13) yields in:

TFyF = −cαF
−δvx + vy + ψ̇lF

vx + δ(vy + ψ̇lF )︸ ︷︷ ︸
�vx,insignificant

. (2.26)

For the back transformation of the front tire forces into the bodyframe coordinate system
the following equations are used:

FF = T · TFF =

1 −δ 0
δ 1 0
0 0 1

FxFFyF
FzF

 =

FxF − δFyFδFxF + FyF
FzF

 (2.27)

FyF = δFxF︸ ︷︷ ︸
�FyF

+TFyF . (2.28)

The front tire forces yields in:

TFyF = −cαF

(
−δ +

vy + ψ̇lF
vx

)
. (2.29)

Entering the tire forces (2.19) and (2.29) in (2.12) yields in the following system of
equations:
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2.3 Linear Single Track Model

mv̇xmv̇y
Θψ̈z

 = m

 ψ̇vy
−ψ̇vx

0

+


FxV + FxH

−cαF
(
−δ +

vy+ψ̇lF
vx

)
− cαR

vy−ψ̇lR
vx

−cαF
(
−δ +

vy+ψ̇lF
vx

)
lF + cαR

vy−ψ̇lR
vx

lR

 . (2.30)

The lateral acceleration v̇y can be written as follows:

v̇y =
d(v sinβ)

dt
= v̇ sinβ + v cosββ̇. (2.31)

We assume that the slip angle β is smaller than 1 rad, so we can write cosβ ≈ 1 and
sinβ ≈ β.

The slip angle β is also defined as follows:

β = tan
vy
vx
≈ vy
vx
. (2.32)

For the longitudinal velocity vx it can be written:

vx = v cosβ ≈ v. (2.33)

Entering (2.31), (2.32) and (2.33) in row two and three of (2.30) yields in the following
two equations:

mvβ̇ = −mv̇β − (mv2 + cαF lF − cαR lR)
ψ̇

v
− (cαF + cαR)β + cαF δ (2.34)

Θψ̈ = −(cαF l
2
F + cαR l

2
R)
ψ̇

v
− (cαF lF − cαR lR)β + cαF lF δ. (2.35)

Θ...vehicle inertia around the z-axis
lF , lR...distance from front and rear axle to the CoG

We assume that the vehicle is driving with constant speed v (v̇ = 0), so equation (2.34)
and (2.35) simplifies as follows:

β̇ =
1

mv
[ (−mv2 − cαF lF + cαR lR)

ψ̇

v
− (cαF + cαR)β + cαF δ] (2.36)

ψ̈ =
1

Θ
[−(cαF l

2
F + cαR l

2
R)
ψ̇

v
− (cαF lF − cαR lR)β + cαF lF δ] (2.37)

Equation (2.36) and (2.37) can be written as a state space model with the following state
variables:
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2 Vehicle Model

x =

[
x1

x2

]
=

[
ψ̇
β

]
(2.38)

[
ẋ1

ẋ2

]
︸︷︷︸

ẋ

=

 − 1
v

(cαF l
2
F+cαR l

2
R)

Θ − cαF lF−cαR lR
Θ

−1− 1
v2
cαF lF−cαR lR

m − 1
v

cαF +cαR
m


︸ ︷︷ ︸

A

[
x1

x2

]
︸︷︷︸

x

+

 cαF lFΘ

1
v

cαF
m


︸ ︷︷ ︸

B

[
δ
]︸︷︷︸

u

. (2.39)

The curve radius R of the road is defined as:

R =
v

(ψ̇ + β̇)
. (2.40)

On the other hand, the centrifugal force ay, which is orientated perpendicular to the
curve U , is defined as follows:

ay =
v2

R
. (2.41)

Entering equation (2.40) in (2.41) yields in the equation for the centrifugal force, which
depends on the slip angle velocity β̇, the yaw rate ψ̇ and the velocity v.

ay = v(ψ̇ + β̇). (2.42)

2.3.4 Steady state cornering behavior

To describe the steady state cornering behavior, the state space model (2.39) will be
analyzed by its steady state equations. Therefore the left side of the state space model
is set to zero:

[
0
0

]
=

 − 1
v

(cαF l
2
V +cαR l

2
R)

Θ − cαF lF−cαR lR
Θ

−1− 1
v2
cαF lF−cαR lR

m − 1
v

cαF +cαR
m

[x1

x2

]
+

 cαF lFΘ

1
v

cαF
m

 [δ] . (2.43)

For the stationary state variables, where ψ̇ and β̇ are set to zero, the following equations
hold:

ψ̇stat =
v

l +
lRcαR−lF cαF

cαF cαR

m
l v

2
δstat (2.44)

βstat =
lR
R

+
mlF
cαR l

ay. (2.45)
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2.3 Linear Single Track Model

With the equation (2.44) and the fact that for steady state behavior ψ̇stat can be written
as ψ̇stat = ay/v, equation (2.46) can be extracted.

δ =
lF + lR
R︸ ︷︷ ︸
≈δA

+
m

lF + lR

(
lR
cαF
− lF
cαR

)
︸ ︷︷ ︸

=SG

ay (2.46)

In consideration of equation (2.46), a general statement of the steering angle requirement
of the vehicle can be done. The term δA is the ackermann steering angle, as being
described in chapter 2.6. The term SG is called the ”self steering gradient” [5]. The self
steering gradient is an indicator of the steering tendency of a vehicle. Dependent of the
sign of the self steering gradient and of the lateral acceleration, a higher or lower steering
angle has to be applied to keep on the track.

For a positive self steering gradient, the vehicle is understeering. If the self steering gra-
dient is negative, the vehicle is oversteering. If the self steering gradient is equal to zero,
the vehicle behavior is neutral. In general, vehicles are build to have an understeering
behavior because of aspects of safety concerning the road traffic. A graphical represen-
tation of the under- and oversteering behavior of a vehicle is depicted in figure 2.7. For
the characteristic velocity vch of the vehicle, the double steering angle has to be applied
to stay in track. The critical velocity vcr is a measure for the stability of an oversteering
vehicle. In reference to real vehicles with nonlinear tire behavior, vch and vcr are only
target values. At the lateral acceleration, where these velocities are reached, the vehicle
leaves his linear working area, and the linear vehicle model does not hold anymore.

The sign of the self steering gradient can be identified out of equation (2.46):

cαR lR = cαF lF ... neutral
cαR lR > cαF lF ... understeer
cαR lR < cαF lF ... oversteer

Figure 2.7: Graphical description of vehicle steering tendency from [12].
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2 Vehicle Model

For the Roding Roadster the self steering gradient can be calculated with the following
Parameters:

m = 1376 kg
lF = 1.46 m
lR = 1.02 m
cαR = 51 967 N/rad
cαF = 84 629 N/rad

SG =
m

lF + lR

(
lR
cαF
− lF
cαR

)
= 0.0014 (2.47)

As it can be seen in equation (2.47), the vehicle has an understeering tendency in his
linear range. The linear calculated wheel angle and the real required wheel angle for the
Roding Roadster is depicted in figure 2.8. Up to a lateral acceleration of 5 m/s2, the
wheel angle of the real car increases linear. After this point, the wheel angle increases
nonlinearly.

Figure 2.8: Calculated and measured wheel angle to lateral acceleration on a constant
radius drive with a radius of 36 m.
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2.3 Linear Single Track Model

Another characteristic vehicle cornering parameter is the yaw rate related to the wheel
angle, which is called yaw gain. This parameter is only dependent from the velocity, not
from the cornering radius. It describes how sensitive a vehicle reacts to steering wheel
angle inputs. The yaw gain is described with the formula (2.48)

ψ̇

δ
=

v

l + SG · v2
(2.48)

As it can be seen in equation (2.48), the yaw gain is small for high (positive) self steering
gradients, which holds for understeering vehicles like the Roding. For small (negative)
self steering gradients of oversteering vehicles, the yaw gain is high, which means that
the vehicle reacts very nervous to steering inputs. Another fact that can be seen in

equation (2.48) is that the yaw gain becomes unstable for vcr =
√
− l
SG . This formula

has only a real solution for oversteering vehicles. For a more detailed description of the
critical velocity vcr, watch chapter 2.3.5.

For positive self steering gradients of understeering vehicles, a characteristic velocity
vch can be calculated, at which the yaw gain reaches his maximum. The characteristic
velocity is calculated with the following equation (2.49).

v2
ch =

l

SG
=
l2

m

(
cαRcαF

lRcαR − lF cαF

)
(2.49)

For the Roding, the characteristic velocity lies about vch = 42 m/s. This value seems to
be high in relation to general vehicles, but it is only a target value. The real value for
the vehicle lies much lower because of the non-linearity of the vehicle for higher lateral
accelerations.

2.3.5 Stability analysis of the linear Single Track model

Under the precondition of a straight ahead drive of the vehicle with constant speed, a
stability analysis of the linear single track model can be done according to [5]. For the
autonomous system without input (δ = 0), the differential equation of (2.39) can be
written as follows:

[
ẋ1

ẋ2

]
︸︷︷︸

ẋ

=

 − 1
v

(cαF l
2
F+cαR l

2
R)

Θ − cαF lF−cαR lR
Θ

−1− 1
v2
cαF lF−cαR lR

m − 1
v

cαF +cαR
m


︸ ︷︷ ︸

A

[
x1

x2

]
︸︷︷︸

x

. (2.50)

For a stable system, the real parts of the eigenvalues of the system matrix A have to be
negative. To determine the eigenvalues, equation (2.51) has to be solved.
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det(sE −A) = 0 (2.51)

This equation yields in the following characteristic polynomial of the system (2.52):

s2 − (a11 + a22)︸ ︷︷ ︸
a1

s+ a11a22 − a12a21︸ ︷︷ ︸
a0

= 0. (2.52)

According to the law of Hurwitz, for a polynomial with degree two, it is sufficient for
stability if the constants a0 and a1 are strictly positive. The calculation of a0 and a1

yields in the following two equations (2.53) and (2.54):

a0 =
cαF cαR(lF + lR)2 −mv2(cαF lF − cαR lR)

mΘv2
> 0 (2.53)

a1 =
cαF + cαR

mv
+
cαF l

2
V + cαR l

2
R

Θv
> 0. (2.54)

The equation (2.54) is always fulfilled because all parameters in it are positive. On the
equation (2.53) has to be looked in more detail. Concerning this equation, between two
cases must be differentiated:

1. The system is asymptotically stable for:

cαF lF < cαR lR. (2.55)

Concerning figure 2.47 it means, that an understeering vehicle is always stable,
even in its linear range.

2. The system is conditionally stable for:

mv2(cαF lF − cαR lR) < cαF cαR(lV + lH)2. (2.56)

As all parameters, beside the velocity v, are constant, the stability is only depen-
dent of v. It exists a critical velocity vcr, by which the system becomes unstable.
The critical velocity is calculated with the following equation (2.57):

v2
cr =

cαF cαR(lF + lR)2

m(cαF lF − cαR lR)
. (2.57)

A critical velocity exists only for oversteering vehicles.
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2.4 Nonlinear Single Track Model

Since the Roding Roadster is an understeering designed vehicle, as shown in chap-
ter (2.3.4), the linear vehicle model is stable for every velocity. But this fact does
not mean that the real vehicle is stable for the whole velocity range too, because of the
bounded validity of the linear model. For lateral accelerations higher than 4 m/s2, the
stability has to be reviewed with a nonlinear vehicle model.

2.4 Nonlinear Single Track Model

The nonlinear single track model is used to describe the vehicle behavior up to a lateral
acceleration of 10 m/s2. This is only possible if detailed information of the mounted
tires are available. This tire data has been measured in a separate measurement process,
described in chapter 3.

The general differential equations and assumptions for the nonlinear single track model
are the same as for the linear single track model, described in chapter 2.3.

The following equations (2.58), (2.59) and (2.60) are the main equations for the nonlinear
single track model, according to [15, pag. 60].

mv(β̇ + ψ̇) sinβ −mv̇ cosβ + FxR + FxF cos δF − Fair,x − FyF sin δF = 0 (2.58)

mv(β̇ + ψ̇) cosβ +mv̇ sinβ − FyR − Fair,y − FxF sin δF − FyF cos δF = 0 (2.59)

Θψ̈ − (FyF cos δF + FxF sin δF )lF +MzF + FyRlR −MzR − Fair,yeSP = 0 (2.60)

The vehicle velocity is supposed to be constant; therefore v̇ is equal to zero. Also the
forces along the x-axis are assumed to be small in reference to the lateral forces. The air
resistance is supposed to be small because of the aerodynamic design of the Roding. Also
the tire aligning torque is supposed to be small. With these assumptions, the differential
equation system can be reduced to the equations (2.61) and (2.62).
As mentioned, the biggest difference between the linear and nonlinear single track model
is the expected tire behavior. Another difference to the linear vehicle model is, that wheel
angles and slip angles are not supposed to be small anymore. Therefore, cosine, sine and
tangent functions can not be simplified by their first order Taylor series expansion.

mv(β̇ + ψ̇) cosβ − FyR − FyF cos δF = 0 (2.61)

Θψ̈ − FyF cos δF lF + FyRlR = 0 (2.62)
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2.4.1 Driving limit due to adhesion

As the nonlinear tire behavior of figure 3.9 and 3.10 shows, the maximal friction coeffi-
cient is at a slip angle of about α = 5◦. For higher slip angles, the friction coefficient
decreases. Thus, if the slip angle gets higher than the maximum slip angle, the tire
starts to glide to the lateral side. For the Roding, this adhesion limit lies at a lateral
acceleration of about 13 m/s2, which corresponds to a maximum friction coefficient of
µmax = 1.3, due to the following equations (2.63), (2.64) and (2.65).

µmax =

∑
Fy,max
Fz

(2.63)

m · ay,max =
∑

Fy,max (2.64)

Fz = m · g (2.65)

2.5 Dynamic wheel load transfer

2.5.1 Simplified dynamic tire load model.

In the linear and nonlinear single track model, the center of gravity is supposed to
be on the height of the road, and no roll or pitch movement can be considered. As
this assumption holds for a long range of lateral acceleration, the error of the model
prediction is low. In this case, one has to include that the Roding is a sports car, and
therefore its center of gravity is lower than the one of general vehicles. For a single
track model, without consideration of pitch and roll movements, the static wheel load
is calculated as follows in equation 2.66 and 2.67. The second part of the equations
is a result of the aerodynamic down force. As the Roding has no additional wings or
spoilers, the aerodynamic lift coefficient clA is assumed to be close to zero. Therefore,
the aerodynamic part of the equations can be neglected.

Fz,F =
lR
2l

(
mg +

1

2
ρclAv

2

)
(2.66)

Fz,R =
lF
2l

(
mg +

1

2
ρclAv

2

)
(2.67)

For better accuracy at lateral accelerations higher than 6 m/s2, a dynamic tire load
model is developed, according to [5]. With the dynamic tire load model, the dependency
of the lateral tire force from the tire load, described in chapter 3, can be considered.
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2.5 Dynamic wheel load transfer

For an easier derivation of the dynamic wheel load shift, two virtual pivot bearings were
introduced on the front and rear axis of the vehicle, shown in figure 2.9. The virtual
pivot bearings are on the height of the roll center hR. The following derivation of the
dynamic wheel load shift is a simplified variation, as it does not consider eventual spring
or damper force dynamics. Furthermore, the height of the CoG (hCoG) and the roll
center (hR) are assumed to be equal. The front and rear wheel track are assumed to be
equal (sA). Based on the shown forces and moments in figure 2.9, the following equations
from (2.68) to (2.74) can be written.

Figure 2.9: Linear roll model with forces and moments [5].

From the vertical force equilibrium the following equation (2.68) can be written:

mg = Fz,FL + Fz,FR + Fz,RL + Fz,RR. (2.68)

From the moment around the y-axis the following equation (2.69) can be derived:

My = −hR(Fx,F + Fx,R)− (Fz,FL + Fz,FR)lF + (Fz,RL + Fz,RR)lR. (2.69)

From the moment around the x-axis of the virtual pivot bearing of the front axis, the
following equation (2.70) is derived:

Mx,F = hR(Fy,FL + Fy,FR)− sA
2

(Fz,FL − Fz,FR). (2.70)
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Equation (2.71) can be written from the moment around the x-axis of the virtual pivot
bearing of the rear axis:

Mx,R = hR(Fy,FL + Fy,FR)− sA
2

(Fz,RL − Fz,RR). (2.71)

From the lateral force equilibrium on the front axis, the following equation (2.72) can
be written:

Fy,FL + Fy,FR =
lR
l
may. (2.72)

l...wheelbase

From the lateral force equilibrium on the rear axis, the following equation (2.73) is
derived:

Fy,RL + Fy,RR =
lF
l
may. (2.73)

From the longitudinal force equilibrium, yields in the following equation (2.74):

max = Fx,R + Fx,F . (2.74)

At equilibrium conditions (Mx,R ≡ Mx,F ≡ My
!

= 0) the equations, can be solved for
every Fz. This results in the equations for the ”simplified dynamic tire load model”.

Fz,FL =
lR
2l
mg − lR

l

hR
sA
aym−

hR
2l
axm (2.75)

Fz,FR =
lR
2l
mg +

lR
l

hR
sA
aym−

hR
2l
axm (2.76)

Fz,RL =
lF
2l
mg − lF

l

hR
sA
aym+

hR
2l
axm (2.77)

Fz,RR =
lF
2l
mg +

lF
l

hR
sA
aym+

hR
2l
axm (2.78)

In the simulation model, the dynamic and static tire load model was introduced to com-
pare the results of the simulated yaw rate and lateral acceleration. To see a difference
between the simulation result of the model with static and dynamic wheel load, a mea-
surement maneuver with high lateral acceleration has to be done. Therefore, a slalom
drive with a maximum lateral acceleration of 10 m/s2 was performed.
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2.5 Dynamic wheel load transfer

In figure 2.10, the measured yaw rate and lateral acceleration are compared to the model
result with static and dynamic wheel load. As it can be seen, the difference becomes
clear only at very high lateral accelerations. In the simulation with static wheel load,
the vehicle seems to react faster to steering wheel angle changes. This fact is traceable
because, when cornering with high lateral accelerations, the wheel load on the outer
wheels of the curve is much higher than on the inner side. Due to the fact that the
lateral tire force increases degressively in relation to an increasing wheel load, the vehicle
reacts slower to steering wheel input changes. Another factor which is responsible for
the slower reaction of the true vehicle is the slip angle of the front outer tire. In a curve,
this one is smaller, than the one on the inner side because of the ackermann steering
geometry, described in chapter 2.6. A smaller slip angle means a smaller lateral tire
force and therefore slower yaw rate changes as well. In summary, it can be concluded,
that the dynamic wheel load model leads into more accuracy of the simulation result.
A clear difference to the result with static wheel load can only be seen at higher lateral
accelerations.

Figure 2.10: Comparison of lateral acceleration and yaw rate between simulation with
and without dynamic wheel load model.
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2.6 Ackerman Steering Geometry

Since the first development of motor driven vehicles, different mechanical steering con-
structions have been designed and tested. The most common steering geometry of actual
vehicles is the so called ”Ackermann Steering”. This steering geometry follows out of the
consideration that the inner and outer wheel of a vehicle at a certain cornering maneu-
ver have to be orientated in a different angle. These angles are different because the
outer wheel follows a larger circle than the inner, and the wheels have to be orientated
tangentially to this circles [18]. This yields in the so called ”ackermann equations” (2.79):

arctan δo,A = arctan δi,A +
j

l
(2.79)

δo,A, δi,A...ackermann wheel angles
l...wheelbase
j = bF − 2r0

bF ...track
r0...offset steering

The parameters of the Ackermann steering are shown in figure 2.11. As it can be seen out
of this figure, the front wheels are orientated tangentially to a radius, which has his center
point in M . This ideal center point lies in axis to the rear tire. This assumption holds
only for low cornering speeds or low lateral acceleration. For higher lateral acceleration,
the point of center M moves toward the front axis.

The Ackermann steering geometry is a theoretical approach to the ideal movement of
both tires at cornering. In reality, the Ackermann steering geometry is approximated
and modified at certain working areas. At higher speeds where the steering angle is
small, the dynamic wheel load shift has strong influence on the vehicle behavior. In this
case, the outer wheel has applied a higher wheel load then the inner one. But according
to the ackermann steering geometry, the outer slip angle is lower than the slip angle
of the inner wheel, which means that less tire force can be brought up. Therefore, the
steering geometry is designed properly to reduce the angle difference of inner and outer
wheel at low steering angles. For racing vehicles it is common to design the steering to
have a higher steering angle on the outer wheel for lower steering angles, to get a more
dynamic behavior at cornering[7].
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2.7 Steering Geometry Measurement

Figure 2.11: Depiction of Ackermann Steering geometry of [18].

2.7 Steering Geometry Measurement

The modeling of the steering system is an important part of the whole vehicle model,
because it has strong influence on the simulation result. Therefore it is important to
know the transmission between steering wheel angle and the wheel angle. Generally, you
only have the angle position of the steering wheel as measurement data. As the steer-by-
wire car has no direct mechanical connection between steering wheel and rack, it has an
additional angle sensor, mounted on the input shaft of the rack. This second angle sensor
is among others necessary for the feedback loop of the steering controller. All of this
sensor signals are collected in the Autobox and can be used for further calculations and
simulations. The angle of the input shaft can be used as input signal for the simulation
of the vehicle model.

As the transmission between the rack angle and wheel angle δ is unknown, it has to
be measured. To measure this transmission in an easy and accurate way, two string
potentiometer are used. The position of the string potentiometer is shown in figure 2.12.
The measurement strings were mounted at the wheel rims in a horizontal line with the
center point of the wheel. To determine the wheel steering angle, equation (2.80) was

27



2 Vehicle Model

derived, according to figure 2.12.

δ = arcsin

(
lRght − lLft

d

)
(2.80)

Figure 2.12: Figure of wheel angle measurement benchmark.

At a detailed view of equation (2.80), it becomes clear that the error of the calculated
wheel angle becomes higher for higher steering angles because the strings of the string
potentiometers are not parallel anymore. Another error is introduced by the skew and
the steering radius of the steering axle. Therefore, the wheel is not rotating around
the vertical axis of the contact point between wheel and road as it is assumed of the
measurement. As the error is very small for lower wheel angle (δ < 15 ◦), the result is
acceptable also because the higher wheel angle can also be reached at very low speeds,
for example at parking. For this situation, a lower accuracy of the calculated wheel angle
is acceptable.

In figure 2.13, the resulting wheel angle over the rack angle is plotted. The measurement
was done for the left wheel, where a positive rack angle corresponds to a left cornering
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drive. As it can be seen of figure 2.13, for positive rack angles the wheel angle increases
faster than for negative ones. This is an indication for a design close to the ackermann
geometry.

Figure 2.13: Measured wheel angle over Rack angle.

To compare the ideal ackermann geometry for this vehicle, with the real design the
steering angle difference of the ideal Ackermann geometry and the real angle difference
is calculated [18].

The ackermann angle was calculated according to equation (2.79) with the geometrical
dimensions of table 2.1.

Parameter Value Unit

bf 1.62 m

r0 0.11 m

l 2.495 m

Table 2.1: Geometrical steering dimensions.

In figure 2.14, the ideal ackermann angle is depicted in contrast to the wheel angle of
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the inner wheel on cornering.

The equation for the calculation of the wheel angle difference is shown in equation (2.81)
and equation (2.82).

∆δF = δi − δo (2.81)

∆δA = δi,A − δo,A (2.82)

δi, δo... inner and outer measured wheel angle
δi,A, δo,A...inner and outer ackerman wheel angle

As it can be seen, the real steering of the Roding is close to the ideal ackermann geometry.
This means that the inner wheel at cornering is always applied with a higher wheel angle
than the outer one. The measured wheel angle difference differs from the ideal ackermann
steering only at higher wheel angles.

Figure 2.14: Steering difference angle.

For the vehicle model, the steering transmission was implemented as a look-up table
with the values plotted in figure 2.13. This is a simple way to implement a steering
model but accurate enough for this use case.
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2.8 Parameter Identification

2.8 Parameter Identification

For a correct and accurate simulation of the vehicle model, a list of parameters has to
be defined properly. As the vehicle is a mechanical system, most of the parameters can
be measured in an easy way. A list of the known parameters is given in Table 2.2.

Parameter Value Unit

lFA 1.4665 m

lRA 1.0285 m

l 2.495 m

hCoG 0.415 m

sR 1.61 m

sF 1.62 m

m 1259 kg

Table 2.2: Vehicle parameters.

The vehicle inertia around the z-axis Jz is a parameter which can only be measured
with special measurement equipment. As this equipment was not available, an identi-
fication algorithm had to be introduced to identify it out of a measurement run. As
equation (2.37) shows, the inertia has the biggest influence at the vehicle yaw rate.
Therefore, the measured yaw rate was used as reference for the identification problem.
As identification method, a greybox modeling method was used in matlab/Simulink.
This method has the advantage that you can define known and unknown parameters
of the model separately, and so you can solve an optimization problem in dependence
of the unknown parameter. Another advantage is the minor effort of this identification
method because of the possibility to use the model equations without any modifications.
For the identification, the linear model equations for the vehicle model were used to
reduce the optimization time. The identification could also be done with the nonlin-
ear model equations. Matlab/Simulink provides efficient identification algorithms with
which a fast solution is provided. As the linear vehicle model is valid up to a lateral
acceleration of 5 m/s2, the identification is done with a slalom maneuver which doesn’t
exceed this value for lateral acceleration. As optimization method, the prediction error
estimation algorithm was used. This kind of algorithm minimizes the error between mea-
sured and predicted output value. The cost function which is minimized is described in
equation (2.83). The Parameter e[n] is the error between measured and predicted model
output.

J =

N∑
n=1

e2[n] (2.83)

Because of the simplifications of the linear model, a varying yaw inertia has to be ex-
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pected for different reference driving maneuver. Another disadvantage of the use of the
linear model system identification is that the vehicle velocity is supposed to be constant.
If you want to take the vehicle speed as an input, the model becomes nonlinear and the
identification becomes more complex.

To minimize the influence of measurement noise of the reference data, filtering has to
be done. As forward filtering introduces a phase delay which influences the later inertia
identification heavily, a special form of filtering has to be done. For the identification
problem, the filtering can be done offline with the called forward-backward filtering.
With this method, the signal gets filtered in the forward direction, then the filtered
sequence gets reversed and filtered again with the same filter. Thanks to this method,
no phase delay is introduced to the signal. The final transfer function corresponds to
the squared magnitude of the original filter. An example for the raw yaw rate signal and
the filtred signal is shown in figure 2.15.

Figure 2.15: Filtred and raw sensor signal of yaw rate sensor.

The identification was done with different slalom maneuvers at different vehicle speeds.
Out of this set, a certain inertia that fits best within other driving maneuvers has to be
selected. The received parameter sets are listed in Table 2.3.

A possible way to assess the yaw inertia of a vehicle is the use of formula (2.84) with
data from [8], where c is a parameter which depends on the form of the vehicle.
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v Jz f ay,max
m/s2 kgm2 Hz m/s2

50 2099 0.3 7

60 1737 0.3 7

70 1685 0.26 5

Table 2.3: Identified yaw inertia for different velocities.

Jz = cm
l2

2
, c = const ∈ [0.6, ..., 1] (2.84)

For the in the model used yaw inertia of the Roding, the mean value of the different
identified values of table 2.3 was calculated. The resulting value for the inertia is J =
1840 kgm2. The simulation of the whole vehicle model was done with the different
identified yaw inertia, and it turned out that the calculated mean value suits best with
this model. It is also in the nearest range of the values from equation (2.84).

As it can be seen in table 2.3, the frequency of the performed sinus maneuver is low with
f = 0.3 Hz. This low frequency has the aim to minimize the influence of transient tire
behavior of the vehicle. As the inertia has the biggest influence on the phase shift of the
yaw signal, which is also influenced by the transient tire behavior, a proper maneuver
has to be done. As the time constant of the transient tire behavior is in a range of
10− 30 ms, the influence at lower yaw rate frequencies is low in relation of the influence
of a varying yaw inertia.

Due to the different identification results for the yaw inertia it is a challenge to get a
correct parameter set. The identification result is always affected by irregularities, and
the risk is high to generate an over trained model, which means that the simulation result
fits well with the reference simulation data, but the accuracy is low for other simulation
data. The decision for the final used value has been made on the base of the average
value of the estimated parameters also because the result of (2.84) was close.
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2.9 Implementation environment

The Roding Roadster is build up as a prototype for a steer-by-wire vehicle. For the real-
ization of the steer by wire system, lots of additional sensors and an additional computing
unit has to installed. This additional processing unit is a so called ”dSpace Autobox”,
a rapid prototyping hardware. The Autobox is a modular device which consists of the
powerful processing unit DS1005 and is extended with a Flexray and Can interface as
well as a multi channel I/O board [6]. Additionally, two incremental encoder for the
installed angle sensors are integrated. All sensors and bus data converge at the Autobox
and get processed there.

The main advantage of the dSpace Autobox is the compatibility with Matlab/Simulink.
Due to this, the whole steer by wire software is implemented as a Simulink model.
Therefore, also the vehicle model developed in this master thesis is implemented as a
Simulink model, which reduces the simulation effort a lot. For the real time simulation on
the Autobox, the vehicle model gets integrated in the steer by wire model and compiled to
C-Code. The final software gets loaded on the Autobox in the vehicle and can be executed
immediately. The high level compatibility of Matlab/Simulink and Autobox reduces the
implementation effort and provides useful features for the real time simulation.

Once loaded the software on the Autobox, the dSpace software on an external Computer
can be used to stream and record signals. Different dSpace layouts can be configured to
modify simulation Parameters in real time, without any rework on the Simulink model.
The provided functions of the dSpace software is also a useful instrument for a rapid
prototyping.

Due to the previous described advantages of the dSpace Autobox in combination with
Matlab/Simulink, the main focus of this master thesis can be directed on the model
development and simulation because the software implementation is less time consuming.
Also the input signal conditioning of the sensor signals, which generally is labor intensive,
is already done. Nevertheless, to guarantee the real time capability, it has to be kept in
mind not to build up the model in a too complex way. This has to be done because the
sampling frequency of the Autobox is set to Fs = 1 kHz. This sampling rate is necessary
to guarantee the stability of the rack position controller and can not be reduced in this
development phase.

The angles of the steering wheel and rack input shaft are measured with different angle
sensor implementations, like a relative and absolute angle sensor, to have a redundant
measurement system. To measure the vehicle velocity in an accurate way, an optical
velocity sensor is mounted on the assistant driver door. For the measurement of the
accelerations in all three axis of the coordinate system and the rotation around this axis,
a Racelogic measurement box is mounted in the center of gravity of the vehicle. The
high level sensor system integrated in the Roding is the base for a good simulation result.
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The main part of a well working vehicle model is a correct tire model of the mounted tires.
Getting measurement data of a certain tire is very difficult and expensive. Therefore,
a proper tire measurement has to be done on a tire measurement testbench. Out of
the measurement data, a tire model has to be selected and optimized. In the following
chapter, the tire measurement and model generation for the tires mounted on the Roding
Roadster is described.

3.1 Tire Measurement testbench

To gain tire measurement data which describe the dependence of the lateral and longi-
tudinal tire force of the vertical wheel load, complex measurement testbenches have to
be build up. In general, two different concepts for testbenches exist [20]:

• fixed measurement testbench

• mobile measurement testbench

The fixed tire measurement testbench consists of a drum roll or flat track, whereon
the measurement tire is moved. The biggest advantage of a fixed tire testbench is the
accurate reproducibility of the different measurement cycles. A disadvantage is the lack
of possibility to generate a real road surface, which you get only on the general road.

The tire measurements of the Roding Roadster where done with a mobile measurement
testbench in cooperation with the University of Applied Science Biel. The so called
”Mobile Tire Testing Laboratory” is depicted in figure 3.1.

The university has build up the mobile tire measurement truck step by step within
student projects. The base of the truck is a Mercedes Benz Actros 1853 with a weight
of 14 tons. Tires for measurement can be mounted on the truck on the left and right
side, so you can measure two tires at one run. Four piezo force sensors in one wheel hub
measure the forces in x-, y- and z- direction as well as the moments around this axis.
With the measurement truck, the lateral and the longitudinal tire force characteristics
can be determined. A hydraulic motor is built in as a secondary power unit for the
acceleration and deceleration of the wheel.

To get a clean zero crossing of the measurement data, the measurement wheel has always
been moved in the opposite direction at the beginning of the measurement; e.g. if the
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Figure 3.1: Mobile Tire Testing Laboratory

braking slip is measured, the measurement wheel is first accelerated at a speed higher
than the vehicle speed and braked down afterwards.

The wheel load can be changed continuously from 0 kN to 5 kN with the hydro-pneumatic
adjustable suspension of the measurement wheels. A big disadvantage of the measure-
ment truck is that the wheel load is not controlled. This means that the wheel load is set
to the desired value when the truck stands still. During the running of the measurement,
the wheel load is not adjusted anymore; therefore, the wheel load changes in a range
between ±10 % of the initial set value. This happens for example at roll movements of
the whole truck or because of the unevenness of the road. This fact introduces a lot of
inaccuracy, described in the following chapters.

The measurement truck is also able to wet the road with water to simulate low friction
between road and tire. Therefor a water pipe and a water tank with a volume of 2000 l
is mounted. A detailed view at the measurement testbench is depicted in figure 3.2.

On the Roding Roadster, the following tires are mounted:

• Front tire: Michelin 225/40ZR18

• Rear tire: Michelin 265/35ZR18
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Figure 3.2: Detailed view of the mobile measurement testbench with descriptions

3.2 Measurement Process

The tire measurement truck has a license to drive on public roads; therefore, the mea-
surements were done on a long straight road section. The advantage of this is that
you can do a series of 15 − 20 measurements at one drive. If you want to do this high
number of measurements on a test track of the University of Biel, you need much more
time because they do not have such a long straight road section. The disadvantage of
the measurements on the public road is the unevenness of the road, which introduces
measurement noise.

First of all, a measurement plan has to be prepared. The most important part of the
measurement is the selection of the right wheel load forces for the tires. To generate a
tire model afterwards, a measurement with the stationary wheel load for every wheel of
the Roding has to be done at least. To consider the variation of the wheel load in the
tire model, a second measurement on the double stationary wheel load is necessary. To
have a third measurement set for the validation of the model, a measurement on the half
stationary wheel load should also be done.
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To estimate the maximal possible wheel load, due to the dynamic wheel load transfer,
the equations (2.75), (2.76), (2.77) and (2.78) can be evaluated for the maximum possible
lateral and longitudinal acceleration. The equations with the geometrical dimensions of
the vehicle yield in the following equations (3.1) to (3.4).

Fz,FL =
1.0285 m

2 · 2.495 m
mg − 1.0285 m

2.495 m

0.415 m

1.62 m
aym−

0.415 m

2 · 2.495 m
axm (3.1)

Fz,FR =
1.0285 m

2 · 2.495 m
mg +

1.0285 m

2.495 m

0.415 m

1.62 m
aym−

0.415 m

2 · 2.495 m
axm (3.2)

Fz,RL =
1.4655 m

2 · 2.495 m
mg − 1.4655 m

2.495 m

0.415 m

1.62 m
aym+

0.415 m

2 · 2.495 m
axm (3.3)

Fz,RR =
1.4655 m

2 · 2.495 m
mg +

1.4655 m

2.495 m

0.415 m

1.62 m
aym+

0.415 m

2 · 2.495 m
axm (3.4)

With the maximal lateral and longitudinal acceleration, the following values for the
maximal and minimal wheel load can be calculated.

Fz,FLmax

∣∣∣∣
ay=g,ax=g

= 0.2 ·mg︸ ︷︷ ︸
FzF,nom

+
∣∣−0.1·mg

∣∣+∣∣−0.08·mg
∣∣ ≈ 1.9·FzF,nom = 4693N (3.5)

FzF,nom = 2470 N (3.6)

Fz,FRmax = Fz,FLmax (3.7)

Fz,RLmax

∣∣∣∣
ay=g,ax=g

= 0.3 ·mg︸ ︷︷ ︸
FzR,nom

+
∣∣−0.15·mg

∣∣+∣∣0.08·mg
∣∣ ≈ 1.76·FzR,nom = 6546N (3.8)

FzR,nom = 3705 N (3.9)

Fz,RRmax = Fz,RLmax (3.10)

With this estimation of maximal vertical tire force, the tire forces and options of tire
measurement, as described in table 3.1 and 3.2, were chosen.

As it can be seen, the values are not exactly the stationary and double of the stationary
wheel load because of the bounded maximal possible tire load of the measurement truck.
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tire: 225/40ZR18

tire force Fz lateral force Fy longitudinal force Fx
N - -

1500
√ √

2500
√ √

5000
√ √

Table 3.1: tire measurement plan for tire 225/40ZR18.

tire: 265/35ZR18

tire force Fz lateral force Fy longitudinal force Fx
N - -

1500
√ √

3000
√ √

5000
√ √

Table 3.2: tire measurement plan for tire 265/35ZR18.

For the rear tires of the Roding, a measurement with Fz = 3000 N is selected to be as
near as possible at the stationary wheel load of the rear tire. On the other hand, it
not selected to high, so that it is not too close to the maximum possible wheel load of
Fz = 5000 N.

For the tire force measurement, the right tire is mounted with −2 ◦ of camber. This was
done to get a second set of measurement data, depended on the camber. As the wheels
on the Roding where mounted without camber at the straight ahead drive, the focus is
upon the evaluation of the measurement data of the wheel without camber. For a more
detailed vehicle model, the camber of the tire has to be considered as well. Because of
the geometry of the steering suspension, the front tires changes their camber with the
steering angle.

The measurement speed of the measurement vehicle was selected with 60 km/h. At
every start of the measurement, a zero measurement was done to calculate the initial
offset of the piezo force sensors. Another zero measurement was done at the end of
one measurement run to calculate the offset drift of the piezo force sensors. Mostly the
sensors for the lateral tire force are sensitive to shearing strain and drifts away.
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The measurement truck can be configured to measure three different slip situations:

1. Lateral force: At the lateral force measurement, the wheels are moved from outside
−5 ◦ to inside 15 ◦. The time for this movement is set to 3 s. This time has to be
on one hand fast enough to avoid an overheating of the tire and on the other hand
slow enough to avoid the influence of the transient tire behavior to the measure-
ment data. A detailed description of the transient tire behavior and the problems
which occur at a so fast moving time is provided in further chapters. The rotation
of the wheels for one slip configuration and wheel load is repeated 15 - 20 times to
get enough data for the later evaluation.

2. Longitudinal force with acceleration slip: At the longitudinal force measurement
with acceleration slip, the wheel gets braked to a velocity lower than the vehicle
speed. Than the velocity gets increased up to a velocity 40 % higher than the ve-
hicle velocity. In the end, you get a curve with a clear zero cross at a slip rate of 0 %.

3. Longitudinal force with braking slip: During a longitudinal force measurement
with breaking slip, the wheel gets accelerated and braked down until it is blocked,
so it yields in a curve up to a slip rate of 100 %.

After every run, the asphalt and tire temperature were measured and reported. The
whole measurement data of one measurement run is saved in a file for the further evalu-
ation.

3.3 Tire data evaluation

The evaluation of the tire data has to be done separately for every slip configuration
and wheel load. In this chapter, the evaluation for the lateral tire force measurement
of the rear tires of the Roding (Michelin 265/35ZR18) at a wheel load of 5000 N is
described. With this measurement, the highest load appears on the measurement truck
and the measurement equipment. The general process for the other lateral tire force
measurements is the same.

First of all, a coordinate system for a general force and moment description has to be
defined. The coordinate system used is described in figure 2.3. This definition is very
important for the later integration into the vehicle model. Another important convention
is, in the SAE and also in the ISO coordinate system, that a positive slip angle leads to
negative lateral tire force.
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3.3.1 Lateral tire force characteristic

An essential part of the tire data evaluation is a correct filtering of the measured force
data. Because of the high load of the whole measurement truck during the measurement
drive, a lot of noise gets introduced into the measurement data. The main part of
the noise is generated by the mechanical resonance frequencies. Another part of the
introduced noise is due to the unevenness of the public roads [20]. To minimize the
influence of the noise in the final tire data, a proper filtering has to be performed. As
the data evaluation is done offline, the filtering becomes less challenging. The used
filtering method is the same as described and used in chapter 2.8. As the noise in this
case is much higher, the filter has to be selected carefully to extract the correct signal.

To identify the different frequency components of the measured signal, a Fourier trans-
formation is done. A cutting of the frequency plot is depicted in figure 3.3. As it can
be seen, the main frequency components lie in the range of 0 Hz to 7 Hz. Therefore, the
cut off frequency was selected at fc = 7 Hz.

Figure 3.3: Cutting of the frequency domain plot of the measured wheel load Fz.

As filter type, a FIR-Filter, designed with a Hamming window function was selected [2].
The frequency response of the used filter is shown in figure 3.4. The phase of the
used filter is less interesting, because the forward-backward filtering method is used to
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compensate the phase shift of the filter. For the filter design, it is important to select
a filter type which has a flat pass band at a value of 0 dB, to prevent a damping for
low frequent and constant signals. Because of the forward backward filtering method,
an eventual ripple in the pass band increases. This happens, because the magnitude
response of the resulting filter transfer function of the forward backward filtering is
equal to the square of the original filter function.

Figure 3.4: Frequency response of FIR-Filter.

An example for the raw measurement signal and the signal after filtering is depicted in
figure 3.5. As it can be seen, the right selection of the cut off frequency is important.
If the cut off frequency is selected too low, the risk of too much filtering is great. In
this case, the initial slope of the lateral tire force is filtered too much. This slope is
essential to determine the lateral tire stiffness, used in the linear vehicle model. As the
time in which the wheel is been moved from outside to inside for the measurement is
very fast, the change of the lateral tire force is fast as well. This fast change corresponds
to a relative high frequency part, which has to lie lower than the cut off frequency. An
estimation of the frequency part of the slope can be done with a simple measurement of
the slope, which lies about k = 26 660 N/s. The amplitude of the force value lies about
A = 5290 N. With this parameter, the maximum signal frequency can be estimated with
equation (3.11).
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fg =
k

2 · π ·A
(3.11)

This results in a frequency of about fg = 0.8 Hz, which is lower than the cut of frequency
of 3.9 Hz. A slower time for the measurement motion could reduce the influence of the
filter to the slope of the lateral tire force. The filtering has to be done for every measured
force.

Figure 3.5: Raw- and filtered signal of lateral tire force Fy.

For the tire which is mounted with a camber, a coordinate transformation has to be done.
The tire forces have to be transformed with the equation (2.2) from the C-coordinate
system into the W-coordinate system. The two important transformation equations
are (3.12) and (3.13) .

Fy,trans = Fy · cos(γ) + Fz sin(γ) (3.12)

Fz,trans = −Fy · sin(γ) + Fz cos(γ) +mwg (3.13)

A disadvantage of the measurement truck is that the wheel load is not controlled. This
means that the applied wheel load varies a lot during the measurement. One of the
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causes of the variation of the vertical force is the roll movement of the whole measurement
truck in case of a rough road. For a measurement truck with about 14 t of weight, this
variation can be in a range of ±10 % of the first applied wheel load. The second cause
of the variation are the moments around the x- and y- axis of the wheel, depended from
the applied slip angle. If the contact point between road and tire is not exactly in a line
to the vertical axis of the measurement wheel hub, a high force variation can be seen.
This becomes clear if you look at figure 3.6, where the wheel load over the slip angle is
depicted. For the shown measurement run, a wheel load of 5000 N was adjusted when
the truck is stopped.

Figure 3.6: Wheel load Fz over slip angle α.

The wheel load changes from a value of about 5100 N to a force of 4000 N, and, at the
same time, the slip angle is changing from negative to positive values. This means that
the measured wheel load is dependent from the measured lateral tire force and reverse.
Another interesting notice can be seen in figure 3.6 at a slip angle lower than α = −10 ◦.
At this point, the wheel load increases again. As it can be seen later in the lateral tire
force curve (figure 3.9 and 3.10), at this point of the slip angle, the lateral tire force
reaches its saturation. This shows again the dependency of lateral tire force and wheel
load.

As the different lateral tire force curves has to be generated for constant wheel loads,
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the measured lateral tire forces has to be scaled with the measured wheel load. This
happens with a simple linear equation 3.14.

Fy,scale = Fy,filt ·
Fz,nom
Fz,filt

(3.14)

As mentioned before, the wheel load was set at 5000 N for this measurement run. In
figure 3.14, it can be seen that this force is not reached for the important range between
0 ◦ to 15 ◦. Therefore, the wheel load for the scaling was reduced to a value of Fz,nom =
4500 N, to reduce the influence of the scaling.

In figure 3.7, a comparison between the measured force after filtering and the scaled
lateral force is shown. As it can be seen, there is less influence at the envelope of the
lateral tire force. The biggest influence occures when the slip angles are higher than 5 ◦

at the saturation of the tire force. In this range, the difference between scaled and not
scaled force is in a range of 10 %. This shows with how much carefulness the scaling has
to be handled to generate reliable tire data. With this figure, the disadvantage of the
non controlled wheel load becomes clear. With the big variation of the wheel load, a
high inaccuracy of the tire data, almost in the part where the tires reach their saturation,
gets introduced.

Figure 3.7: Lateral tire force Fy over slip angle α.
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In one measurement run, between 17-20 measurements were done for one wheel load
setting. With this series of measurement data, random measurement errors can be
reduced. An easy way to do this is to average over the different curves. In figure 3.8,
the set of lateral tire force curves are plotted in blue. The red curve is the average plot
of the different curves.

Figure 3.8: Lateral tire force Fy of different measurements and average value over slip
angle α.

As it can be seen at the saturation sections of the tire force curves, the lateral tire forces
varies in a range of 420 N. This is about 10 % of the applied wheel load. To minimize
this variation error, an average curve is calculated.
Another error, which is of a more systematically nature, can be seen at the zero cross
point of the lateral tire force. Theoretically, the lateral tire force of a tire with 0 ◦ of
camber should cross the coordinate origin [16]. In this case, the mean value of the
different curves has an offset of −1.27 ◦. This offset error has two different reasons. One
reason is the so called ”transient tire behavior”. The second reason is a measurement
error of the slip angle sensor. An accurate allocation of the two different effects is difficult,
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but an estimation of influences can be done. A detailed description of the transient tire
behavior is provided in chapter 3.4.

Generally it can be said, that the lateral tire force behaves like a first order dynamic
system with a time constant in a range of 10 ms to 30 ms at a speed of 60 km/h [19].
During the measurement run, the tire gets moved with an angular velocity of 16 ◦/s
from outside to inside. If we assume that the tires have a first order time constant of
25 ms, it corresponds to an angle movement of 0.4 ◦. This should show the influence
of the moving velocity of the wheel to the resulting measured forces. With a slower
motion of the wheel, the effect of the transient tire behavior would become insignificant.
In our case, a compromise has to be found to correct the offset angle. To compensate
the influence of the transient tire behavior, the measured wheel angle gets shifted about
25 ms to the right on the time axis. This is a very rough method to compensate the first
order dynamics, but the accuracy is high enough in relation to the whole measurement
errors. This compensation yields in a remaining angle offset error of 0.87 ◦. This error
gets compensated with a constant offset correction of the angle.

Figure 3.9: Lateral tire force Fy of the front tires at different wheel loads Fz.
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The evaluation of the tire data with different wheel loads yields in the lateral tire force
characteristic shown in figure 3.9 and 3.10. As described before, the evaluation of the tire
data is challenging because of different measurement errors, which can only be reduced
with some assumptions but not completely avoided. Due to this fact, it has to be always
kept in mind that the resulting tire characteristic of figure 3.9 and 3.10 can vary in
practice.

Figure 3.10: Lateral tire force Fy of the rear tires at different wheel loads Fz
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To illustrate the degressive behavior of the lateral tire force Fy in relation to the wheel
load Fz [12], the lateral tire characteristic is normed with the wheel load. The result for
the front is depicted in figure 3.11. The y-axis of the figure is the friction coefficient µ(α).
As it can be seen, the maximum of the friction coefficient lies in a range of the slip angle
α between 5 ◦ and 8 ◦. For the wheel load of 1500 N, the maximum friction coefficient is
about µmax = 1.4. The higher the wheel load Fz gets, the lower the maximum of the
friction coefficient becomes. For the highest wheel load of 4500 N, the maximum friction
coefficient is µmax = 1.15.

Figure 3.11: Lateral friction coefficient µ(α) of the front tire.

The previous described evaluation was done for the tires which were mounted without
camber γ. As this is the case for the Roding, this data is most important for the vehicle
model. Nevertheless, also the measured data for the wheels which were mounted with
γ = −2 ◦ of camber where evaluated. As mentioned before, for tires with γ = 0 ◦ of
camber the lateral tire force characteristic is zero, for a slip angle α = 0 ◦. For tires with
camber, this is not true anymore [13]. For tires with negative camber, a positive shift
along the y-axis of the lateral tire force is expected. As this offset shift is not known,
the evaluation is much more challenging than the evaluation of the tire characteristic
without camber as there is one unknown variable more. To estimate this offset value,
the difference between the maximum force values of the tire forces with camber γ = 0 ◦
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and γ = −2 ◦ has been taken. Afterwords, the lateral tire force curves get shifted along
the x-axis to set the estimated offset value at the slip angle of 0 ◦. This is a less accurate
method to generate tire data for tires mounted with camber but it is sufficient to have a
comparison with tire data without camber. The resulting lateral tire force characteristic
with γ = 0 ◦ and γ = −2 ◦ are depicted in figure 3.12 and 3.13.

Figure 3.12: Lateral tire characteristic for different camber settings of the front tires.
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Figure 3.13: Lateral tire characteristic for different camber settings of the rear tires.

The statement that the camber setting of the Roding is equal to γ = 0 ◦ is only valid
when no steering angle is applied to the wheels. Primary, the front wheels changes
their camber angle in relation to the applied steering angle. The different wheel loads
have influence to the camber settings of the vehicle as well. Tire models to consider
this change of the camber, which can be parametrized with the tire data depicted in
figure 3.12 and 3.13, exist. For the vehicle models described in chapter 2, a detailed
modeling of the steering and the vehicle body is necessary to consider the wheel camber.
This can be done in a further work to refine the vehicle model.
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3.3.2 Longitudinal tire force characteristic

Also the evaluation of the measurement data of the longitudinal tire characteristic is
done. This is made in prospect for the extension of the lateral vehicle model with
a longitudinal model of the vehicle. In the actual vehicle model implementation, the
longitudinal vehicle motion is neglected.

The longitudinal tire force characteristic is, like the lateral tire force, a nonlinear function
of the wheel slip rate. The slip rate is the difference between the rotation speed of the
wheel and the velocity of the vehicle. It is divided between the acceleration slip rate and
the braking slip rate. The different definitions from [13] are described in equation (3.15)
and (3.16). As it can be seen, the slip rate is positive at acceleration but negative at
braking.

sacc =
w · re − vx
|ω| · re

(3.15)

sbrake =
w · re − vx
|vx|

(3.16)

ω...wheel speed
re...effective radius of the wheel
vx...longitudinal velocity of the vehicle

The main evaluation of the longitudinal measurement data is the same as for the lateral
force data, but it is not described in detail in this chapter. The only difference is the
calculation of the slip rate out of the wheel speed and the vehicle speed. Also the
longitudinal tire characterisic was measured for a tire with 0 ◦ and −2 ◦ of camber. The
resulting tire data for the front and rear tire is depicted in 3.14 and 3.15. As it can
be seen, the camber has less influence on the longitudinal than the the lateral force
characteristic. Another notice is the different tire force maximum for acceleration and
brake slip, described in [13, pag. 23]. For the acceleration slip the maximum is higher
than for the brake slip. The maximum longitudinal tire force is in a slip range of 10 %.

At the measurement for a brake slip at a wheel load of 5000 N of the rear tires, the
secondary hydraulic motor has not enough power to brake down both wheels. Therefore,
the measurement works only for the left wheel; the right wheel is not braked down.
Because of this, no measurement data for the left wheel without camber is provided. As
the influence of the camber is insignificant, the curve of the right wheel can be taken
also for the left wheel. The evaluated tire data can be used to generate a tire model for
the longitudinal tire characteristic.
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Figure 3.14: Longitudinal tire characteristic for different camber settings.

Figure 3.15: Longitudinal tire characteristic for different camber settings.
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3.4 Transient tire behavior

The tire is a complex, nonlinear mechanical system with different transfer functions in
all directions of the different applied forces. In this chapter, the dynamic behavior of
the lateral force is described.

Tire forces are generated by local deformation of the rubber. As a result of this, longi-
tudinal and lateral tire forces have a transient behavior, which means that the lateral
tire force Fy follows the slip angle α after a certain time [20]. The modeling of this
effect is important for the dynamic description of the vehicle because a delayed tire force
generation yields in a delayed reaction of the vehicle.

The common method to the physical description of the transient tire behavior is based
on the theory of the stretchable band. [3] shows an abstract of the different approaches
to the transient tire behavior based on the theory of the stretchable band. There the
approaches of SCHLIPPE and DIETRICH [21, 22], SEGEL[23] and PACEJKA [17] are
described.

In this work, the approach of BÖHM [4] is considered. He describes the transient tire
behavior as a first order system with the following equation (3.17)

cα
cy · v

· Ḟy + Fy = cα · α (3.17)

The Laplace transformation yields in equation (3.18)

G(s) =
1

1 + sTe
(3.18)

The parameter Te is a time constant dependent from the wheel speed. A first approxi-
mation of the parameter Te can be done with the following equation [18]:

Te =
cα
cy · v

(3.19)

cα is the linear tire stiffness and cy the lateral spring stiffness of the tire. Whereas the
lateral tire stiffness is known from the tire measurement, the spring stiffness is unknown
but in a range of cyα = 200 N

mm [18]. For further simulations, the spring stiffness has to
be refined with different driving maneuvers.

The time constant Te, used in the simulation model, lies in a range between 15 ms and
40 ms, depending on the actual vehicle speed. This time constants seems to be small
compared to the maximal vehicle frequency of about 4 Hz. The influence of the transient
tire behavior becomes clear in dynamic maneuvers, like a step input.

To show the difference between the vehicle model with and without tire dynamics, a step
input with a maximum lateral acceleration of about 5 m/s2 was done. The difference of
the simulation of a model with static and transient tire behavior is depicted in figure 3.16.
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As it can be seen in figure 3.16, the simulation with the transient tire behavior follows the
measured yaw rate very well, almost in the initial phase where the highest steering wheel
change is done. The simulation with the static tire behavior has a clear phase difference
to the measured yaw rate. This phase difference can become a problem for the under
steering detection because the difference of the measured and estimated yaw rate is high.
Another difference between the model with static and transient tire behavior can be seen
at the overshoot of the estimated yaw rates. The simulation with a static tire force model
has a small overshoot and yields fast in the final yaw rate value. However, the model
with transient tire behavior has a higher overshoot, almost the same as the measured
yaw rate. This deviation in the overshoots can yield in a wrong over steering detection,
because the difference between the model with static tire force and the measured yaw
rate is high. To avoid these problems and to have a higher model accuracy, the dynamic
tire force model was introduced for the linear- as well as for the nonlinear single track
model.

Figure 3.16: Comparison of yaw rate with transient and static tire force behavior.
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3.5 Tire Model selection

In the chapter before, the tire data has been evaluated out of different measurement runs.
For an accurate vehicle model, a tire model has to be generated out of the evaluated tire
curves. As these models are the only connection between the vehicle and the road, an
accurate tire model is the most important part of a vehicle model. The challenging part
of the tire model is the modeling of the nonlinear part of the tire characteristic.

A lot of different tire modeling methods exist, which can be primary divided in three
different categories:

• mathematical models

• semi-physical models

• physical models

The exact classification of each tire model is not always fully clear. A detailed description
and classification of the different tire models is provided in [20]. In this work, the tire
models MF-Tyre, Burckhardt Tire Model and the TM-Simple tire model are presented,
which are also some of the most common used models in vehicle simulation.

3.5.1 Magic-Formula Tire Model (Pacejka Tire Model)

The Pacejka tire model [3], also called Magic Formula Model, is one of the most com-
monly used tire models. The original model is a mixture between physical and heuristic
model approaches and consists of around 15 parameters. As the magic formula was
presented decades ago, lots of derivations of this model exist. The basic equation of the
Pacejka Tire model is shown in equation (3.20).

y(x) = D · sin[C · arctan{B · x− E · (·x− arctan(B · x))}] (3.20)

The four parameter B to E are supposed to be constant for a simple version of the
Magic Formula model with four parameters. In the original version of the model, this
parameters are also functions of parameters. The meaning of the four Parameters is as
follows:

B...stiffness factor
C...shape factor
D...peak value
E...curvature factor

With two additional parameters, you can also provide a shift in horizontal and vertical
direction to consider tire pressure or camber influence on the tire force. The equations
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therefore are provided in (3.21) and (3.22):

Y (X) = y(x) + SV (3.21)

x = X + SH (3.22)
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A graphical description of the Magic formula parameters is provided in figure 3.17. For
a more detailed description of the Parameters see [16].

Figure 3.17: Graphical description of Magic Formula equation parameters from [16].

The main advantages of the Magic Formula model are:

• the qualitative characteristic tire force curve can be reproduced

• the curve is changeable within the four parameters, which comes with a small
parametrization effort

• the single parameters describe a physical tire characteristic, which simplifies the
parametrization

• a very accurate mapping of different input variables like wheel load, camber velocity
and tire pressure is possible

• the function is continuous, which is important for simulation algorithms.

• the function is symmetric to central point, what is important for the simulation of
positive and negative slip angles or slip rate.

The variation of the wheel load can be considered in the parameter D as a linear approach.
This would be important for the vehicle model to consider the variation of the wheel
load. This simple way has the disadvantage that the tire force is only linear dependent
from the wheel load, which satisfies the reality only in a bounded range. For the use in
the previous described vehicle model, the accuracy would be sufficient.
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3.5.2 Burckhardt Tire Model

Another simple approach for a tire model is the Burckhardt tire model [10]. He describes
the friction coefficient µres between wheel load Fz and tire force F . λres is the slip angle
or slip rate of the tire, and v is the vehicle speed. The equation of the Burckhardt model
is described in (3.23). The variation of the wheel load Fz is considered in the model of
Burckhardt, in common with the parameter c5. The dependency of the tire force from
the tire velocity is considered with the velocity v and the parameter c4.

µres = (c1 · (1− e−c2·λres)− c3 · λres) · e−c4·λres·v · (1− c5 · F 2
z ) (3.23)

For the parametrization of the Burckhardt tire model, the parameters c1 to c5 have to
be selected properly. The parameters c1 to c3 have a physical meaning. c1 affects to
the maximum value of the tire force, c2 shifts the maximum value along the horizontal
axis and c4 is the sliding coefficient. With this influence of the parameters, an easy
parametrization is possible.

3.5.3 TM-Simple Tire Model

The TM-Simple Model [11] is a simple tire model for lateral and longitudinal tire charac-
teristic. The model calculates the tire force in dependency of the slip rate or slip angle
and the wheel load Fz. The road is defined to be even and camber influence is neglected.
The main equation for the tire force is shown in equation (3.24).

Y = K · sin[B(1− e
−|X|
A )signX] (3.24)

X corresponds to the slip quantity. Furthermore, in this model, the parameters K,B
and A have physical influence on the model.

The Parameter K is the maximum force value of the corresponding tire force curve. It
can also be written as in equation (3.25).

K = Ymax (3.25)

The Parameter B is calculated out of the saturation value Y∞ and the maximum value
Ymax. The following equation (3.26) holds:

B = π − arcsin
Y∞
Ymax

(3.26)

The Parameter A is a combination of the previous described parameter K and B as well
as the initial envelope of the tire characteristic. The following equation (3.27) holds:
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A =
1

dY0
·K ·B (3.27)

A graphical description of the TM-Simple tire parameters is provided in figure 3.18.

Figure 3.18: Graphical description of TM-Simple equation parameters.

To consider the influence of the wheel load Fz three new polynomials where introduced
as follows (3.28), (3.29) and (3.30):

Ymax(Fz) = a1
Fz

Fz,nom
+ a2

(
Fz

Fz,nom

)2

(3.28)

dY0(Fz) = b1
Fz

Fz,nom
+ b2

(
Fz

Fz,nom

)2

(3.29)

Y∞(Fz) = c1
Fz

Fz,nom
+ c2

(
Fz

Fz,nom

)2

(3.30)
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For two measurements at different wheel loads, for example Fz = Fz,nom and Fz = 2 ·
Fz,nom, the coefficients an, bn and cn can be determined. Representatively, the equations
for a1 and a2 are described in equation (3.31) and (3.31). Due to the nonlinearity of the
equations (3.28), (3.29) and (3.30), the digressive influence of the wheel load Fz is taken
into account.

a1 = 2 · Y1,max −
1

2
Y2,max (3.31)

a2 =
1

2
Y2,max − Y1,max (3.32)

Another important feature of the TM-Simple model is the possibility of an easy com-
bination of lateral and longitudinal tire forces. If at a driving maneuver like braking
during cornering, longitudinal and lateral tire forces act on the tires, these forces are not
independent from each other [12]. The lateral tire force gets reduced for a simultaneous
acting longitudinal force and reverse. The graphical depiction yields in the so called
traction circle. Generally, the potential for longitudinal forces is higher than for lateral
forces; therefore it is more an ellipse than a circle. A principle figure for the traction
circle is depicted in 3.19.

Figure 3.19: Principle depiction of traction circel from [12].
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The slip angle α has to be transformed according to equation (3.33) and (3.34) in order
to consider the previous described dependency of longitudinal and lateral tire force.

sly :=
α

G(Fz)
(3.33)

G(Fz) :=
Ay
Ax

Kx ·Bx
Ky ·By

(3.34)

The longitudinal slip slx rate remains in its origin and the vector s in equation (3.35)
can be written. The vector includes the angle β.

s :=

[
slx
sly

]
(3.35)

Out of the new calculated vector s, the magnitude of the resulting force Vector F can
be interpolated as shown in equation (3.36). The forces F ′x and F ′y are the base values
for the longitudinal and lateral tire force.

F = |F | = 1

2

[
Fx′ + Fy′ + (Fx′ − Fy′) cos 2β

]
(3.36)

The vector F can be splitted in its lateral and longitudinal components as follows (3.37):

F :=

[
Fx
Fy

]
= F

[
cosβ
sinβ

]
(3.37)

These previous equations can be implemented in a simple and efficient way which ensures
the real time condition of the model. As at this moment no usable signals of the wheel
speed sensors are available, the combination of longitudinal and lateral tire force is not
needed. Nevertheless, the goal in further works is to extend the model with longitudinal
vehicle characteristic to generate a higher accuracy.

In the previous description, three commonly used tire models where presented and de-
scribed. All three tire models are easily implementable and provide real time capability.
For the simulation in the vehicle model, the TM-Simple tire model is been selected. This
selection has been done for different reasons. First of all, the TM-Simple model is the
one that has the smallest number of parameters to optimize. This makes it simple to
generate an accurate tire model. Another reason is the possibility to consider the digres-
sive wheel load influence to the tire force, which is important for driving maneuvers at
high lateral acceleration over ay = 5 m/s2. The last reason for the selection of the TM-
Simple model has been done in prospect of the further extension of the model. As the
combination of longitudinal and lateral tire force is possible with least effort in modeling,
the TM-Simple model has been choosen.
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3.6 Tire Model parametrization

In the previous chapter, several reasons for the selection of the TM-Simple tire model
have been shown. One further reason is the simple parameter identification. This allows
all the parameters of the TM-Simple formula (3.24) to be selected out of the measured
tire characteristic as described in figure 3.18.

For the parameter identification of the TM-Simple model a Matlab script was made
to automatize this progress. To generate a high accuracy between the measured tire
characteristic and the tire model, the Matlab function ”fminsearch” is been used. For the
initial values, a algorithm has been developed to determine the TM-Simple parameters
out of the measured tire characteristic. For the cost function of the optimization the
least squares error function, which is defined as follows (3.38), was selected.

J =
N∑
n=1

(Ymeas[n]− YTM [n])2 (3.38)

Ymeas...measured tire force
YTM ...tire force calculated with tire model

The optimization algorithm was executed for two different tire forces, which were 1500 N
and 4500 N. With this resulting parameter sets, the Parameters an, bn and cn can be
calculated to consider the influence of the different wheel loads. In table 3.3 the resulting
tire parameters are shown.

Parameter Front Tire Rear Tire

a1 2224.3 2258.8

a2 −168.63 −142.3

b1 38980 37807

b2 −2285.2 −1488.9

c1 1832.7 17581.1

c2 −218.1 −223.582

Fz,nom 1500 N 1500 N

Table 3.3: Tire Model Parameters.

To validate the generated tire parameters, the measured tire data for the tire load of
both the front tire (2500 N) and the rear tire (3000 N) have been used. The TM-simple
formula has been evaluated for the three different wheel loads of the tire measurement to
compare the difference between the model and the real measured data. In figure 3.20 and
3.21 the different tire characteristic for the front and rear tire is depicted. As it can be
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seen, for the front tire in figure 3.20, the tire model and the real tire measurement data
is very accurate for all three wheel loads. On contrary, for the rear tire in figure 3.21,
the accuracy for the validation tire data with a wheel load of 3000 N is lower. This lower
accuracy is a disadvantage of the TM-Simple tire model. The tire model was generated
with different wheel load combinations for the optimization, to compare the accuracy for
the validation data. The accuracy of the model showed no clear improvement; therefore
the tire model parameter of table 3.3 where used. The decision for this parameters was
also done in regard to the simulation of the vehicle model.

Figure 3.20: Comparison of TM-Simple model with real tire measurement data of front
tire.

64



3.6 Tire Model parametrization

Figure 3.21: Comparison of TM-Simple model with real tire measurement data of rear
tire.

Out of figure 3.20 and 3.21 can be seen how challenging the generation of an accurate
TM-Simple tire model can be. The single TM-Simple tire curve can be easily optimized
to suit the measured data, but because of the dependency of the wheel load, the accuracy
is lower. Also in this case, the decision for the model parameters has to be done after a
simulation of the whole vehicle model. To have two more degrees of freedom to refine the
vehicle model result, two separate gains for the front and rear tire have been introduced
to scale the tire force. The scaling factor lies in a range of ±3 % of the tire force. This
scaling factor is acceptable in relation to the measurement errors of the whole tire force
measurement and tire model generation. When using the tire model, it has always to
be kept in mind that the accuracy is limited due to the different measurement errors,
described in this chapter.

NO model has been generated yet for the longitudinal tire characteristic. For a further
extension with a longitudinal vehicle model, the algorithm which was previously shown
can be used to generate a tire model for the longitudinal tire characteristic.
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The vehicle model validation and improvement is a very complex process which requires
certain maneuvers, thus because of space requirements and safety the necessary test
drives can not be done on public roads. Therefore, the validation maneuvers were done
on the test track in Idiada within three test weeks, in which the model was refined step-
by-step. The necessary validation maneuvers have to be selected properly to cover a
wide spectrum of driving situations. Therefore, the following standard maneuvers were
selected:

• Constant radius

• Sinusoidal steering input

• Frequency response

• Step input

• Swept steer input

The main refining process of the vehicle model was done manually without any optimiza-
tion algorithm. This method is very time consuming but necessary because of the high
number of parameters and the strong dependency of each other. Before every variation
of a parameter, the influence of the parameter on the actual driving maneuver has to
be estimated. Otherwise there is a high risk to modify a wrong parameter too much
and this has low influence on the simulation result. Another challenge of the parameter
optimization is the consideration of the dependency of the different parameters on each
other. For this master thesis, the main aspect lies on an accurate estimation of the
vehicle yaw rate. Therefore, the simulation results were optimized in view of the yaw
rate. Deviations of the simulated lateral acceleration ay or the slip angle β from the
measurement are accepted up to a certain range. The validation of the simulated slip
angle β is challenging because of its complex measurement. The slip angle β can’t be
measured directly, but it has to be calculated out of the measured longitudinal an lateral
acceleration of the optical velocity sensor with the equation (4.1).

βmeas = arctan

(
vy
vx

)
(4.1)

As the measured lateral velocity vy is very low for normal driving maneuvers with a
lateral acceleration lower than 5 m/s2, measurement noise has a strong influence on the
measurement of vy and also on β. Because of this, the lateral acceleration ay is used as
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a second validation variable, which is measured directly with the Racelogic box and gets
influenced by the first order derivation of the slip angle β, due to equation (4.2). As the
variables ψ̇ and β̇ are calculated in the simulation, ay,meas can be determined with low
effort.

ay,meas = v · (ψ̇ + β̇) (4.2)

The measurement data for the model validation gets filtered with a FIR-Filter, as de-
scribed in chapter 2.8. There filtering is only done for the offline model validation. The
input data for the real time model on the Autobox is not filtered because the measure-
ment noise is low and to avoid time delays due to the filtering.

4.1 Constant Radius

The constant radius driving maneuver is used to evaluate the steady state behavior of
the vehicle and the vehicle model. During this maneuver, the vehicle gets driven on a
circle with constant radius. The velocity is slowly increased in order to have a too high
longitudinal acceleration. For this maneuver, the dynamic of the system can be neglected,
and the equations (2.44) and (2.45) holds. As it can be seen in these equations, the wheel
angle δstat has a big influence on this maneuver. Therefore, it is used to refine the look-up
table for the rack angle to wheel angle relation of chapter 2.7.

In figure 4.1, the lateral acceleration and yaw rate of a constant radius maneuver is
shown. This driving maneuver shows the main difference between the linear and the
nonlinear vehicle model. The yaw rate follows the measured yaw rate up to a lateral
acceleration between 4− 5 m/s2. At higher lateral accelerations, the yaw rate calculated
with the linear model increases very fast because of the expected linear tire behavior. In
the range where the linear calculated yaw rate is much higher than the measured yaw
rate, understeering can be detected very clearly. The yaw rate which is calculated with
the nonlinear vehicle model follows the measured yaw rate up to a lateral acceleration
of 10 m/s2. The main reason for this is the nonlinear tire model which is implemented
and also the wheel load shift at this high lateral accelerations.

As it can be seen in figure 4.1, there remains a small error between the measured and
the simulated nonlinear and linear yaw rate. This error arises from the simplifications
which where done of the steering model with a look-up table. To compensate this error,
the look-up table could be refined more, but this would result in a inferior result for
other driving maneuvers. As the error is in an acceptable range, the rack to wheel
angle look-up table was used as determined in chapter 2.7. Another reason for the error
is the unsymmetrical design of the Roding. The Roding is generating a lower lateral
acceleration and yaw rate in the left direction than in the right direction for the same
steering input angle. This phenomena was detected just at the first driving tests with
the Roding.
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Figure 4.1: Constant radius of 18 m driving maneuver with slow increasing velocity

4.2 Sine input

To evaluate the dynamic behavior of the vehicle model, slalom maneuvers where done at
different speeds with different maximum values of lateral acceleration. The main aspect
of the simulation model is that it is well validated at dynamic maneuvers up to a lateral
accelerations between 4− 5 m/s2. Therefore, most of the slalom drives where done with
this as a maximal lateral acceleration. Also, the frequency of the slalom maneuver has
influence on the simulation result and has to be selected properly. Statistical investi-
gations described in [18] have shown that a normal driver performs driving maneuvers
with a steering frequency lower than 0.5 Hz. Therefore, also the selected frequency for
the input steering angle is selected lower than this frequency. As the driving maneuvers
were done by a person and not by a steering robot, the frequency varies, and the form of
the input curve is not exactly a sinusoidal signal, but these deviations are not important
for the model validation.

For the slalom maneuvers, the yaw inertia, determined in chapter 2.8, is an important pa-
rameter which has a strong influence on the phase shift between measured and simulated
yaw inertia and lateral acceleration as well. The transient tire force behavior, described
in chapter 3.4, determines the phase shift. As the time constant of the transient tire
behavior is lower than 40 ms, which is small in relation to a maximal signal frequency of
0.5 Hz, the main view is directed on the yaw inertia.
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The tire model can also be validated with the slalom maneuver and its parameter can be
refined. For the optimization of the tire model, it has to be kept in mind that the different
slalom maneuvers cover only a small ranges of slip angles. This makes it challenging, to
optimize a tire model parameter because of the consequences to other maneuvers with
differing slip angles. Due to that, a variation of the in chapter 3 determined tire model
parameters has been done carefully. The best solution for the adjustment of the tire
model was the introduction of a constant gain, to scale the tire force in a very small
range between ±3 %.

In the following figures 4.2 to 4.5, different slalom maneuvers at different vehicle speeds
are shown. Because the vehicle speed is an input of the model as well, it has to be
validated at different vehicle speeds. The maneuvers where also done with different
maximal lateral accelerations from 2 m/s2 to 10 m/s2.

In figure 4.2, a sine maneuver at a vehicle speed of 50 km/h and maximal lateral accel-
eration of 6 m/s2 is shown. The steering frequency lies about 0.3 Hz. As it can be seen,
the accuracy of the simulation and the measurement is very high for the yaw rate and
for the lateral acceleration. The relative error is lower than 3 %. In figure 4.2, it can
also be seen that the difference between the linear and nonlinear model is low, which
also applies in case of lateral accelerations of about 6 m/s2. This means that the vehicle
has linear behavior in a long range.

Figure 4.2: Sine input with a velocity of 50 km/h and maximal lateral acceleration of
6 m/s2.
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In figure 4.3, the velocity of the vehicle gets increased to 60 km/h to evaluate the influence
of the vehicle speed to the simulation result. The steering frequency and maximal lateral
acceleration is not changed much. As it can be seen, the simulation result is again very
good, and no clear differences between simulated and measured values are visible. Also
the phase shift is very low.

Figure 4.3: Sine input with a velocity of 60 km/h and maximal lateral acceleration of
5 m/s2.
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In figure 4.4 a sine maneuver with a velocity of 70 km/h and a maximal lateral acceler-
ation of 2 m/s2 are shown. This maneuver was done to evaluate the model behavior at
lower lateral accelerations. Furthermore, you get a good result with this simulation. A
small offset error between simulated and measured signals. This error happens because
of an offset error of the Racelogic measurement box, which is corrected with a constant
parameter. This offset error is not constant at all; therefore, it can not be completely
prevented. This offset error is only visible during low accelerations and yaw rates and
has no major importance.

Figure 4.4: Sine input with a velocity of 70 km/h and maximal lateral acceleration of
2 m/s2.

To evaluate the simulation result for maneuvers at the driving limits, a slalom maneuver
with a velocity of 60 km/h is done. Figure 4.5 shows this slalom maneuver at a very high
lateral acceleration up to 11 m/s2, which a general driver should reach on normal driving.
In this figure, the difference between the linear and nonlinear simulation model can be
seen very clearly. The linear simulation model exceeds the measured values mostly on
the maximum values of the lateral acceleration, whereas the nonlinear model shows a
good behavior and follows the measured values. This behavior is to be expected because
of the nonlinear tire model, which shows his affect almost in the range of tire slip angles
higher than 3 ◦. In this range lies the maximum tire slip angle of this maneuver. But it
can also seen that the accuracy of the nonlinear simulation model is not so high as in
maneuvers with lower lateral accelerations. Reason therefore is the higher complexity of
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the vehicle behavior at the values of higher lateral accelerations. There are some more
physical effects that take influence on the vehicle behavior, but they are not considered
within this model.

Figure 4.5: Sine input with a velocity of 60 km/h and maximal lateral acceleration of
10 m/s2.

In figure 4.6 and 4.7, two frequency response maneuvers were done to evaluate the
simulation result for different input frequencies. The maneuvers were done again at
different vehicle speeds of 50 km/h and 70 km/h. The input frequency varies from 0.4 Hz
to 4 Hz. As it can be seen in figure 4.6 and 4.7, the simulation result for the yaw rate
is very accurate up to a frequency of 1 Hz. For higher frequencies, the damping of the
model is higher than this of the real vehicle. Therefor, the difference of the measured
and simulated yaw rate is clearly visible, but always in an acceptable range under 10 %.
For the simulation result of the lateral acceleration, the error for frequencies higher than
1 Hz increases faster. The phase shift becomes clearly visible as well. As the simulation
for the yaw rate works good for this measured frequency range, the model gets not
refined more to increase the accuracy of the lateral acceleration simulation. The result
for the simulation of the lateral acceleration is acceptable because the steering frequency
range higher than 1 Hz is not reached in normal driving situations. The reason for the
different damping of model and real vehicle could be the simplified dynamic tire load
model, which considers no damping and spring influence on the vehicle body.
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Figure 4.6: Frequency response at a velocity of 50 km/h.

Figure 4.7: Frequency response at a velocity of 70 km/h.
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4.3 Swept steer input

Figure 4.8 and figure 4.9 show a maneuver in which the steering wheel angle was slowly
increased up to a point where the vehicle understeers. The steering wheel angle in both
maneuvers was increased with different velocities. As it can see in figure 4.8 where
the steering wheel angle was increased slowly, the yaw rate and the lateral acceleration
follows the measured yaw rate very accurate. At this maneuver, the state variables reach
their stationary value, because of the slow maneuver.

Figure 4.8: Swept steer input with a velocity of 60 km/h.

A difference to the stationary drive in figure 4.8 can be seen in figure 4.9. In this
maneuver, steering angle was increased faster, so the state variables does not reach
stationary values, and therefore the maneuver is more dynamic. This can be seen at the
initial rise of the yaw rate: the model yaw rate rises faster than the measured yaw rate.
Furthermore, a small phase shift can be seen, but the value of the phase shift is in the
limits that allow to detect under- and oversteering.
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Figure 4.9: Swept steer input with a velocity of 40 km/h.

In the figures 4.8 and 4.9, the different behavior of the linear and nonlinear model on
lateral accelerations higher than 6 m/s2 can be seen. The linear yaw rate rises fast,
whereas the nonlinear yaw rate follows the measured yaw rate very well. In this case,
understeering can be detected.

4.4 Step input

Figure 4.10 shows a driving maneuver, in which step inputs were done in every direction.
The maximum lateral acceleration is about 4 m/s2. The simulation result is very accurate
in comparison to the measured values. With the step input maneuver, the dynamic of
the model can be analyzed very well. The dynamic at the point with the step from zero
degrees of steering wheel angle to the final value shows a very good performance. The
dynamic tire behavior, which has been considered with a first order low pass filter and a
time constant in a range of 30 − 40 ms, has the highest influence on this accuracy. Also,
the overshoot can be reproduced and tuned with the time constant of this low pass filter.
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Figure 4.10: Step input with a velocity of 40 km/h and maximal lateral acceleration of
4 m/s2.

4.5 Conclusion

As it was shown in this chapter, the performance and accuracy of the vehicle model
simulation, for a wide range of different velocities and input frequencies is very good.
The result is satisfying also because the model is kept simple. For a correct model
validation, it is always better to have different measured signals to compare with the
simulation. In this case it was the yaw rate and the lateral acceleration. The refining
process of the model is always a compromise between the accuracy of the yaw rate and
the accuracy of the lateral acceleration. As the main function of this model in the later
use is the detection of under- and oversteering on the basis of the yaw rate, the primary
task was to optimize the simulation result for the yaw rate.
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5 Understeering/Oversteering detection

The real time vehicle model is mainly used for the detection of critical driving situations
like under- and oversteering. A detection of critical situations in real time is very useful,
primary for safety functions of a vehicle. For example, if an oversteering situation is
detected, an active counter steering function can be implemented to stabilize the vehicle.
But this is only one possible application for the under- and oversteering detection.

For the steer by wire vehicle, the generation of a correct steering wheel feedback is one of
the most challenging parts. As at the steer by wire systems the mechanical connection
between steering wheel and rack is not available, the steering feel has to be produced
with a separate feedback actuator. One part of the feedback generation is the steering
feel at critical driving situations. If for example the vehicle is driving on a surface with
low friction coefficient and the vehicle understeers, the torque on the steering wheel has
to be increased to generate a road feedback for the driver. Therefore, a correct detection
of understeering is necessary.

5.1 Algorithm Structure

To detect under- and oversteering situations, the estimated yaw rate of the linear and
nonlinear vehicle model is compared with the measured yaw rate. The difference between
the measured and estimated yaw rate is calculated in detail. If this difference exceeds a
constant threshold, under- and oversteering situations are detected.

For the understeering detection, the estimated linear yaw rate is used. Due to the
expected linear tire behavior in the linear model, the estimated yaw rate rises linearly
to the input steering angle. In reality, the adhesion limit of the tires is reached with
lateral accelerations higher than 5 m/s2, and the vehicle yaw rate increases more slowly
than the estimated yaw rate in untersteering situations. Therefore, a clear difference of
the measured and estimated yaw rate is detectable, and a threshold can be set. The
use of the estimated nonlinear yaw rate for the understeering detection is limited. Due
to the nonlinear tire model implementation, the estimated nonlinear yaw rate follows
the measured yaw rate in understeering situations as well, and the difference for the
understeering detection is smaller.

On the other hand, the estimated nonlinear yaw rate is used for the oversteering detection.
In this situation, the measured yaw rate increases faster than the estimated yaw rate,
and again a threshold can be set at a certain value of the measured and estimated yaw
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rate. The use of the estimated nonlinear yaw rate was done because it follows the true
yaw rate up to high lateral accelerations of about 10 m/s2. If oversteering occurs in this
situation, the measured yaw rate exceeds the estimated nonlinear yaw rate much faster
than the estimated linear yaw rate. For this reason, oversteering can be detected very
fast with the nonlinear vehicle model. For oversteering situations at lateral accelerations
lower than 5 m/s2, oversteering can be detected with the linear vehicle model too.

The under- and oversteering detection was implemented as a stateflow chart in Simulink.
This implementation method provides a clear representation of different if- branches and
the corresponding driving states.

For the understeering detection, the condition (5.1) has to be fulfilled. The threshold
Us was set to 0.11 rad/s.

|ψ̇lin| − |ψ̇meas| > Us (5.1)

For the oversteering detection, the condition (5.2) has to be fulfilled. The threshold Os
was set to 0.06 rad/s.

|ψ̇meas| − |ψ̇nonlin| > Os (5.2)

As the threshold for oversteering detection is too small to detect this situations very fast,
some additional conditions where introduced to avoid wrong detections in case of model
errors or measurement noise. Condition (5.3) guarantees an oversteering detection only
for increasing yaw rates. Due to condition (5.4), oversteering is only detected when the
measured and estimated yaw rate diverges.

sign(ψ̈meas) = sign(ψ̇meas) (5.3)

sign(ψ̈meas) = sign(ψ̈nonlin) (5.4)

5.2 Algorithm validation

The determination of the different thresholds for the detection of critical driving situa-
tions was done on the normal asphalt surface within different under- and oversteering
maneuvers.

The validation of the thresholds was done afterwords on surfaces with lower friction
coefficients. These surfaces were wet asphalt, wet cobblestone and a wet ceramic surface.

In figure 5.1 an understeering maneuver on dry asphalt is shown. As it can be seen, the
lateral acceleration during the understeering period is of about 10 m/s2. The difference
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between the linear and the measured yaw rate is high in the understeering phase, and
the understeering flag is set properly. In figure 5.1 it can also be seen that there is
a difference between the nonlinear and the measured yaw rate during the untersteering
period. This difference is much smaller than the one between the linear yaw rate and the
measured yaw rate. The reason for the nonlinear model error is the higher complexity of
the vehicle behavior on lateral accelerations of 10 m/s2, which is not considered in this
nonlinear vehicle model.

Figure 5.1: Understeering maneuver on dry asphalt.

In figure 5.2, an oversteering maneuver on dry asphalt was done. The oversteering was
caused by an acceleration during the cornering. As the Roding Roadster is a rear wheel
driven vehicle, it tends to oversteer on acceleration. In figure 5.2 it can be seen clearly
how the measured yaw rate drifts away from the estimated yaw rate. Oversteering can
be detected very fast, at about 200 ms before the driver is able to react and countersteer.
As it can be seen, an oversteering detection is possible also with the linear vehicle model,
but this would work not as fast as with the nonlinear model.
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Figure 5.2: Oversteering maneuver on dry asphalt.

To validate the refined thresholds of the under- and oversteering detection, different addi-
tional maneuvers were done on wet asphalt. At these conditions, under- and oversteering
can be done very easily because the friction coefficient on wet asphalt is lower than on
dry one. The validation was done in real time with the dSpace software. On the software
layout, the under- and oversteering flag were implemented with a blinking light to have
an indication when the flags were set. The thresholds were refined in consideration of
the subjective under- and oversteering feeling of the driver and assistant driver.

In figure 5.3, an understeering maneuver, done within a step inputs to the left and right
direction, is shown. It can be seen that the linear yaw rate increases fast and exceeds the
measured yaw rate. The understeering flag is set and reset correctly in the right time
span. Furthermore, there is also a difference between the nonlinear model yaw rate and
the measured yaw rate in the understeering phase. This occurs because of the reduced
friction coefficient of wet asphalt, which is not considered in the vehicle model.
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Figure 5.3: Understeering maneuver on wet asphalt.

In figure 5.4, an oversteering maneuver is shown. The oversteering situation was per-
formed with a steering wheel input in combination with an increasing longitudinal ac-
celeration. As it can be seen in figure 5.4, the situation is clearly identified and the
oversteering flag is set. In this case, also the linear model yaw rate would work for the
oversteering detection because the lateral acceleration is lower than 6 m/s2.

To validate the algorithm for a more complex driving situation too, a maneuver was
performed on different surfaces. In detail, a surface change during cornering is performed.
The cornering is started on a wet ceramic surface with a very low friction coefficient. In
this situation, the vehicle understeers because the front wheels have too low adhesion.
During the cornering maneuver, the surface is changed to wet asphalt, which has a higher
friction coefficient than wet ceramic. The adhesion of the front wheels increases abruptly,
and the rear end of the vehicle skids: the vehicle starts to oversteer. In figure 5.5, the yaw
rate, the lateral acceleration for the described maneuver and the under- and oversteering
flags are shown. As it can be seen, the flags are set in the correct order and time span.
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Figure 5.4: Oversteering maneuver on wet asphalt.

Figure 5.5: Driving maneuver on different surfaces.
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6 Conclusion and next steps

As indicated in the previous chapter, the generation and validation of a vehicle model is a
complex process. In chapter 2, a detailed derivation of a linear and nonlinear single track
model is described. Additional model extensions like the dynamic wheel load chapter 2.5
and the steering model chapter 2.6 are described. Also the parameter identification
chapter 2.8 and the implementation environment chapter 2.9 is described. After this
theoretical description, a first model implementation was done in Matlab/Simulink. The
result was compared with available measurement data of the Roding to have a first
overview of the simulation result accuracy.

The second part of the master thesis is the tire measurement and tire model generation
described in chapter 3. In this chapter, a detailed description of the measurement process
with the appeared problems is described. Also, a theoretical insight to different tire
models is given in chapter 3.5. The final generated tire model in chapter 3.6 was validated
with the tire data of different wheel loads. The resulting model gives a good accuracy
for this use case, but can be refined with a more complex tire model. A longitudinal tire
model was generated for further work, to extend the vehicle model with a simulation of
the longitudinal vehicle characteristic.

The vehicle model was extended with the nonlinear tire model. After this, the model
implementation was ready for a first test on the dSpace Autobox under real driving
conditions. The driving tests have been done on a special test track in Spain. During
these test weeks, different driving maneuvers were performed, and the vehicle model was
refined step by step. The model validation process is described in chapter 4. The whole
validation process is very complex in view of the high number of different parameters,
which have influence on the model behavior. The challenge is to generate a vehicle
model which estimates an accurate yaw rate as well as an accurate lateral acceleration.
The outcome of the simulation and validation process was a very accurate model, which
works good in different driving maneuvers.

The main use case for this vehicle model was to be an extension to a correct detection
of critical driving situations. This algorithm is describe in chapter 5. The detection was
implemented with constant thresholds, which have to be found out in different driving
maneuvers. The validation of the algorithm in chapter 5.2 shows very good results and
a correct detection of under- and oversteering.

The vehicle model and the corresponding under- and oversteering detection is used for
a correct adaption of the steering feel in critical situations. The implementation of this
steering feel adaption is already implemented and tested. It shows good results and it is
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robust enough for different driving situations.

The further area of application for the vehicle model is very wide. A use for the estimation
of the rack force is in plan. Another application could be the use of the vehicle model
estimation for an active steering angle correction to support the driver in critical driving
situations. Therefore, the implemented under- and oversteering detection can be very
helpful.

The work on the vehicle model is not finished with this master thesis. The model can
be refined with different extensions. An important extension is the implementation
of a longitudinal vehicle model. As the problems with the wheel angle sensors of the
test vehicle, that occurred during these thesis, are solved already, and a base for the
longitudinal tire force model is provided within this work, this extension should be
implementable with less effort. Another extension is a more detailed model of the steering
system, which should improve the model accuracy for certain driving situations like
cornering at lower speeds with a large steering input. The model for the dynamic wheel
load shift can also be reworked and extended with the kinematics of spring and damper
system. This should increase the model accuracy at lateral accelerations higher than
5 m/s2.

In conclusion, the accuracy and robustness of the developed vehicle model in this master
thesis is high. In spite of the different simplifications in the derivation of the vehicle model
equations, the simulation provides good results which were confirmed trough different
driving maneuvers.
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