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Abstract

Regenerative Thermal Oxidizers (RTOs) are widely used in industry for the purification
of exhaust gases and waste airflow partially consisting of combustible elements. The
gas portions affected by contamination, mainly volatile organic compounds (VOCs), are
almost entirely decomposed to water and carbon dioxide by oxidation at high temper-
atures. The enthalpy of the hot purified gas is buffered in heat accumulators, e.g. in
ceramic beds to heat the incoming raw gas in order to save energy and gain process
efficiency.

This thesis delivers on the one hand sophisticated models for the simulation of these
plants, including all relevant components for a two-bed configuration and presents opti-
mized solutions for the implementation in Matlab Simulink as partial differential equa-
tions and complex system properties have to be taken into account and demand the
application of developed methods.

On the other hand this thesis provides a model based control of the gas temperature in
the combustion chamber by fuel injection, aiming to minimize the portion of VOCs in
the gas composition by spending as less fuel as possible. It thereby represents a proper
fundament for the design of further control loops, e.g. for the control of the RTO half
cycle period and for the modelling of additional systems of the plant. The developed
control concept is not restricted to the two-bed configuration, it can be applied to all
RTOs using some sort of fuel injection for combusting exhaust gases.

Furthermore, the monitoring of the dynamic behavior of temperature sensors in the com-
bustion chamber pointed out that the quality of measured signals needs to be doubted.
As a result, the developed mathematical models of these sensors could be exploited to
find accurate values for the real gas temperature.
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Kurzfassung

Anlagen zur regenerativen thermischen Oxidation (RTOs) finden breite Anwendung in
der Industrie zur Reinigung von Abgas- und Abluftströmen, die zum Teil aus brenn-
baren Bestandteilen bestehen. Das verunreinigte Rohgas beinhaltet oft flüchtige orga-
nische Verbindungen (VOCs), die bei hohen Temperaturen oxidieren und dadurch fast
vollständig zu Wasser und Kohlendioxid umgewandelt werden. Der Enthalpiestrom des
gereinigten Gases wird in Wärmespeichern, wie zum Beispiel in Keramikbetten zwi-
schengespeichert, um das eintretende Rohgas zu erhitzen und den Prozess möglichst
energieeffizient und wirtschaftlich zu gestalten.

Die Arbeit liefert zum einen anspruchsvolle Modelle für die Simulation solcher Anlagen
unter Berücksichtigung aller wesentlichen Komponenten für eine zwei-Bett Konfigurati-
on und präsentiert optimierte Methoden zur Implementierung in Matlab Simulink. Das
Zusammenspiel von komplexen Systemeigenschaften und partiellen Differentialgleichun-
gen erfordert die Verwendung der Methoden im Simulationsaufbau.

Zum anderen liefert die Arbeit ein modellbasiertes Konzept zur Regelung der Gastempe-
ratur in der Brennkammer durch Brennstoffzufuhr. Das Konzept gewährleistet durch die
Schaffung der richtigen thermischen Bedingungen den gezielten Abbau von Schadstof-
fen bei möglichst geringem Brennstoffverbrauch. Dabei stellt es ein robustes Fundament
für die Entwicklung weiterer Regelschleifen dar, wie zum Beispiel für die Regelung der
Periodendauer von RTO Zyklen, aber auch für die Modellierung weiterer Systeme und
Effekte der Anlage. Das entwickelte Konzept ist nicht an die betrachtete zwei-Bett Kon-
figuration gebunden, sondern kann an allen RTOs angewandt werden, solange sie unter
Brennstoffzufuhr Abgase oxidieren.

Weiters zeigte die Untersuchung des dynamischen Verhaltens der Temperatursensoren in
der Brennkammer, dass die Qualität der gemessenen Signale angezweifelt werden muss.
Die entwickelten mathematischen Modelle dieser Sensoren werden daher ausgenutzt, um
wesentlich genauere Werte der tatsächlichen Gastemperatur zu berechnen.
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1 Introduction

This thesis combines very different subjects in the areas of process, chemical, as well
as control engineering. Due to the interaction of various disciplines and the complex-
ity of the applied mathematical models for describing Regenerative Thermal Oxidizers
(RTOs), the modelling of plant components was only paid little attention as this issue
would readily fill further scientific papers.

The focus is set on control, which involves the processing of these models for simulation.
With the presumption that model based approaches could possibly improve process sta-
bility of the plant in the operating phase, the potential in terms of fuel consumption and
purification performance of the raw gas should have been analyzed.
However, the complexity of the system soon required to place the focus on a specific
aspect. The control of the gas temperature in the combustion chamber was favored,
whereas e.g. the controlling of the fan, which forces the gas to flow through the plant,
or the controlling of the half cycle periods remains open for future research and devel-
opments.

In the course of this thesis it became evident that the signals of the two temperature
sensors in the combustion chamber can not be used for proper control, as long as they do
not recognize fluctuation in temperatures, e.g. as a reason of changing input parameters.
Significantly long time responses and deviations to the real gas temperature required to
model these sensors, whereas in a second step this model is used for calculating more
accurate values of the real gas temperature during run time.

1.1 Machine Assembly

In order to design an appropriate control concept adapted to real conditions it was nec-
essary to integrate the main components of the RTO in the control loop. The valve
boxes (VB A & VB B), the ceramic beds (Bed A & Bed B), the combustion chamber
(CC) with integrated burner (B) and the two temperature sensors (S1 & S2) form the
considered system configuration as shown in figures 1.1.1 and 1.1.2.
The burner in the combustion chamber mainly undertakes the task of heating the raw
gas, which should establish the right thermal conditions to decompose harmful sub-
stances such as volatile organic compounds (VOCs).
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VB A VB B 

Bed A Bed B 

CC 

S1 S2  B 

Figure 1.1.1: First half cycle of the RTO.

In the first half cycle of the RTO the contaminated raw gas enters the plant on the left
side (as shown in figure 1.1.1) and passes via the valve box A (VB A) the ceramic bed A
(Bed A). At the beginning of the start-up phase of the plant the ceramic beds are cold (in
the range of the ambient temperature) and consequentially do not heat the incoming raw
gas, which will be also in the range of ambient temperatures or insignificantly higher. In
this case the raw gas is first heated in the combustion chamber, where the reaction heat
by the release of energy (due to the decomposition of VOCs) should also contribute to
reach the desired temperature range. The ceramic bed B (Bed B) serves the purpose of
buffering the supplied energy and simultaneously cools down the hot purified gas, which
leaves the plant via valve box B (VB B) and through the chimney.
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S1 S2  B 

CC 

Bed A Bed B 

VB A VB B 

Figure 1.1.2: Second half cycle of the RTO.

After switching the valve positions in the valve boxes A and B (VB A & VB B) the flow
through the plant reverses. Via valve box B (VB B) the raw gas enters the preheated
ceramic bed B (Bed B) and absorbs a part of the buffered energy through heat transfer
between solid and gas phase. This means that the gas has already reached higher tem-
peratures before entering the combustion chamber (CC). Nevertheless, the hot purified
gas delivers heat to the ceramic bed A (Bed A) before leaving the plant via valve box A
(VB A). As a result, temperatures gradually increase in the start-up phase of the plant
until the temperature sensors (S1 & S2) (should) recognize that the required temper-
ature range for ensuring the favored chemical reaction has been reached, which would
allow the reduction of the supplied fuel to the burner.
The ceramic beds play a key role as they retain the heat inside the closed system, which
makes it possible to reach quite high temperatures at a moderate fuel consumption level.

1.2 State of the Art

Until now the situation for controlling the gas temperature in the combustion chamber
is considered substantially simplified by applying PID (proportional-integral-derivative)
controllers, whose parameters are empirically determined. Research on the model based
control of Regenerative Thermal Oxidizers with regard to these subjects remained with-
out results.
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PID RTO 1/2 .
Ttarget y

−

Sensor 1

Sensor 2

Figure 1.2.1: State of the art.

The average of two signals from the two temperature sensors is simply used as output
quantity y, whereas the error between the reference temperature Ttarget and y feeds the
PID controller. The maximal amount of supplied fuel is certainly fixed by the geometric
dimensions of the valve in charge of the fuel injection.
The description displayed in figure 1.2.1 lacks the blocks for sampling and for digital
processing in between the measurement of temperatures and the controlling of the valve
feeding fuel to the burner, but it properly demonstrates the simplified approach for the
complex problem.

With the aim to develop a model based control concept, it was necessary to model the
considered components of the pilot plant and in a second step to install these models in
the control loop.
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2 Mathematical Description of Compo-
nents

In order to simulate the behavior of a two-bed Regenerative Thermal Oxidizer, the
currently applied mathematical models rely on valid, but also required assumptions and
simplifications. Most of the equations and identified parameters in the model are built
up on the research of Thomas Rieger, employed at CTP-Air Pollution Control [1] [2].

The equations describing the different components are not only connected by the tem-
perature of the flowing gas Tg and the volume fraction Φ of volatile organic compounds
(VOCs), but also by additional input variables such as the mass flow ṁ(t), the pressure
p(t), the ambient temperature Tamb(t) and the reference temperature in the combustion
chamber Ttarget(t), which can be time variant.

2.1 General Parameters

The simulation predominantly deals with SI units (Système international d’unités),
therefore all functions require temperature arguments in Kelvin [K], the volume fraction
of VOCs Φ in [m3/m3], the pressure in Pascal [Pa], the mass flow in kilogram per seconds
[kg/s], however the molar mass in kilogram per kilomole [kg/kmol]. This means that the
ideal gas constant Rid = 8314.4621

[
J

kmol K

]
is also adapted to [kmol].

Density
The density of the solid phase ρs is treated as a constant inside of the ceramic layers of
the bed (cf. figure 2.3.1) due to the low thermal expansion of ceramic, unlike the density
of the gas phase ρg, which satisfies the ideal gas law

Mmix =
N∑
k=1

xkMk (2.1.1)

ρg(Tg, p) =
pMmix

RidTg
(2.1.2)

consisting of the pressure p, the ideal gas constant Rid, the gas temperature Tg and a
mix of N molar masses Mk of the gas mixture. xk stands for the appropriate molar
volume fractions in the gas mixture, which are assumed constant during simulation.

Viscosity
The dynamic viscosity of pure gases is defined by fourth-order polynomials (Kleiber and
Joh in 2013 [4]). The specific coefficients Aη, Bη, . . . , Eη for corresponding materials are
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listed in the Appendix. In good approximation the viscosity of the gas mixture

ηg(Tg) =
N∑
k=1

xk
(
Aη,k +Bη,kTg + Cη,kT

2
g +Dη,kT

3
g + Eη,kT

4
g

)
(2.1.3)

is calculated by the weighted sum of the gas components.

Heat Conductivity
The heat conductivity of the solid phase λs is also treated as a constant inside of ceramic
layers, unless the heat conductivity of pure gas λg, which is defined by fourth-order
polynomials (Kleiber and Joh in 2013 [4]). The specific coefficients for corresponding
materials are listed in the Appendix. In good approximation the heat conductivity of
the gas mixture is defined as follows:

λg(Tg) =
N∑
k=1

xk
(
Aλ,k +Bλ,kTg + Cλ,kT

2
g +Dλ,kT

3
g + Eλ,kT

4
g

)
(2.1.4)

Heat Capacity
The heat capacity cs of the ceramic layers are available in form of third-order polynomials
[5], whose coefficients (attached) were determined by measurements. i characterizes the
corresponding ceramic layer.

cs,i(Ts) = Acs,i +Bcs,i(Ts − 273.15) + Ccs,i(Ts − 273.15)2 +Dcs,i(Ts − 273.15)3 (2.1.5)

The heat capacity of pure gas is calculated with the PDDS-equation (Physical Properties
Data Service) [6]. The parameters Acg ,k, Bcg ,k, . . . , Gcg ,k of the broken rational function
are provided in the Appendix.

cg(Tg) =
N∑
k=1

wkRs,k

{
Bcg ,k + (Ccg ,k −Bcg ,k)

(
Tg

Acg ,k + Tg

)2
[

1−
Acg ,k

Acg ,k − Tg(
Dcg ,k + Ecg ,k

Tg
Acg ,k + Tg

+ Fk

(
Tg

Acg ,k + Tg

)2

+Gcg ,k

(
Tg

Acg ,k + Tg

)3
)]}
(2.1.6)

Each portion of the gas mixture in cg is weighted by its mass fraction wk and its specific
gas constant Rs,k = Rid

Mk
, applying the ideal gas constant to the molar mass Mk.

Mean Heat Capacity
In order to provide correct values for the heat capacity within a temperature range, the
integral mean of cg

cg,m(Tg) =
1

Tg

∫ Tg

0

cg(T )dT (2.1.7)

will be taken into account. As one can see from the definition of cg(Tg) in equation
(2.1.6), it would be quite challenging to determine an explicit solution of this integral.
Therefore the numerical approximation by using the Matlab function trapz (.) and ap-
plying polyfit(.) for interpolation afterwards, helped to obtain a polynomial featuring
6th degree, which approximates cg,m with sufficient accuracy.
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Chemical Reaction
The Arrhenius law

C(Tg, p) =
p

RidTg
(2.1.8)

rg(Tg,Φ, p) = −C(Tg, p)ΦAkin exp

(
−Ea
RidTg

)
(2.1.9)

consisting of the gas temperature Tg, the volume fraction of VOCs Φ and the concen-
tration C describes the chemical reaction in each component of the RTO. The material
for chemical reaction, e.g. methane, can be adjusted via the activation energy Ea and
the kinetic parameter Akin. The reaction enthalpy ∆HR

[
J

kmol

]
has to be adapted as

well, it appears in the gradient of the gas temperature as part of the term describing
the reaction heat.

Gas Composition
Involved materials of the gas composition, which are considered in parameters like ρg
in equation (2.1.2), Mmix (2.1.1), λg (2.1.4) and cg (2.1.6) will not be modified with the
addition of VOCs during simulation, since it is presumed that their fractions are very
small and consequentially would lead to a negligible change in these parameters [2]. For
better understanding it has proved preferable to highlight this distinguishing feature by
applying the notation xk for volume fractions (wk for mass fractions), which have to
be chosen in preprocessing and Φ for the volume fraction of VOCs, which constantly
changes in all submodels.

At this early stage of the mathematical description of the two-bed RTO it needs to
be mentioned that the state variable Φ actually represents the volume fraction of one
material of volatile organic compounds as the Arrhenius law adjusts the reaction rate rg
(see equation (2.1.9)) to one specific material by parameters Akin and Ea. Nevertheless,
Φ still remains representative for the entire VOCs mixture in the gas.

2.2 Valve Box

In terms of the propagation of the incoming gas flow, the volumes of the valve boxes
can be divided into laminar and turbulent areas depending on their geometry. In this
thesis it has been assumed that a simplified model by means of a continuous stirred tank
reactor describes reality to sufficient level of detail, concerning the gas temperature Tg
and the portion of VOCs Φ (respectively the concentration) [2].

The two differential equations (2.2.1) are connected by the heat of chemical reaction
in the box. To put it simply, one could say that gas flow encounters a delay passing
the valve boxes specified by (for better readability function arguments are rendered as
a subscript)

7



dTg
dt

=

|ṁ(t)|
Vvb

(
cg,m(Tg,in)Tg,in(t) − cg,m(Tg)Tg

)
+ ∆HR rg(Tg ,Φ,pin) − klossavbV,loss(Tg − Tamb(t))

cg(Tg)ρg(Tg ,pin)

(2.2.1a)

dΦ

dt
=

|ṁ(t)|
MmixVvb

(
Φin(t) − Φ

)
+ rg(Tg ,Φ,pin)

C(Tg ,pin)

(2.2.1b)

whereas its behavior resembles the one of a PT1-element (proportional time) in good
approximation. Since parameters such as the heat capacity cg and the mixed heat
capacity cg,m depend on the gas temperature by higher order polynomials (see section
2.1), the ordinary differential equations, related to the initial conditions Tg(t = t0) = Tg,t0
and Φ(t = t0) = Φt0 , become nonlinear. Regarding parameter values such as the volume
Vvb or the profile Avb of the valve box see Appendix.

Switching Inputs/Outputs

ṁ
Tg,in
Φin

pin
Tamb

ṁ
Tg
Φ
pout

Figure 2.2.1: Block diagram of the valve box.

Parameters of the input stream characterized by the subscript ”in” such as the gas
temperature Tg,in, the inlet volume fraction of VOCs Φin and the inlet pressure pin
arrive as inputs of the RTO in the cold gas cycle → sign (ṁ) = 1, though they come
from the ceramic bed at xbed = HNl

(see section 2.3.1.1 and 2.3.1.4) in the hot gas
cycle → sign (ṁ) = −1.

2.2.1 Pressure Drop in the Valve Box

The calculation ensues with the pressure drop, which should be considered dynamically
in the inlet absolute pressure pin of the ceramic beds in cold gas cycles (cf. equation
(2.3.1)). For simplification it is assumed that the pressure drop

∆pvb =
ζvb

2ρg(Tg, pin)

(
ṁ

Abasis

)2

(2.2.2)

is exclusively caused by the turbulent flow, which is of course not entirely correct (see
[1] at page 18-21 and 49 for more information). Equation (2.2.2) applies the coefficient
ζvb = 213 (in reference to the pilot plant), which was determined by measurements, the
input parameters ṁ, pin and the output gas temperature Tg of the valve box, provided
by the solution of the differential equations in (2.2.1).
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2.3 Ceramic Bed

The early identification of the bed equations can be found in [1]. The considered basis
model ([1] page 39, equation 4-2 and 4-3) deals with a thermal description only. Among
others, a chemical reaction in the bed was added by now, so that the three coupled
partial differential equations (cf. [1], equations 4-2, 4-3, 4-36, 4-37 and 2-91)

∂Ts
∂t

=

Ia︷ ︸︸ ︷
λs(x)

ρs(x)cs(x,Ts)

∂2Ts
∂x2

+

IIIa︷ ︸︸ ︷
h(x,Tg ,ṁbed)aV (x)

(1− εB(x))ρs(x)cs(x,Ts)

(Tg − Ts)

IVa︷ ︸︸ ︷
−

klossa
bed
V,loss

(1− εB(x))ρs(x)cs(x,Ts)

(Ts − Tamb(t))

(2.3.1a)

∂Tg
∂t

=

Ib︷ ︸︸ ︷
aeff(x,Tg ,ṁbed,pin)

∂2Tg
∂x2

IIb︷ ︸︸ ︷
−

ṁbed(t)

εB(x)Abed ρg(Tg ,pin)

∂Tg
∂x

+

IIIb︷ ︸︸ ︷
h(x,Tg ,ṁbed)aV (x)

εB(x)ρg(Tg ,pin)cg(Tg)

(Ts − Tg)

+ ϕshape
64

2

ηg(Tg)

d2
h(x)ρg(Tg ,pin)cg(Tg)

(
ṁbed

εB(x) Abed ρg(Tg ,pin)

)2

︸ ︷︷ ︸
IVb

+
∆HR rg(Tg ,Φ,pin)

ρg(Tg ,pin)cg(Tg)︸ ︷︷ ︸
Vb

(2.3.1b)

∂Φ

∂t
= Dax(x,Tg ,ṁbed,pin)︸ ︷︷ ︸

Ic

∂2Φ

∂x2
−

ṁbed(t)

εB(x)Abed ρg(Tg ,pin)︸ ︷︷ ︸
IIc

∂Φ

∂x
+
rg(Tg ,Φ,pin)

C(Tg ,pin)︸ ︷︷ ︸
Vc

(2.3.1c)

with Neumann boundary conditions in the hot gas cycle → sign (ṁbed) = 1:

at x = 0

∂Ts
∂x

= 0 (2.3.2a)

∂Tg
∂x

=
1

aeff(0,Tg ,ṁbed,pin)

ṁbed(t)

εB(0)Abed ρg(Tg ,pin)

(
Tg − Tg,in(t)

)
(2.3.2b)

∂Φ

∂x
=

1

Dax(0,Tg ,ṁbed,pin)

ṁbed(t)

εB(0)Abed ρg(Tg ,pin)

(
Φ− Φin(t)

)
(2.3.2c)

at x = HNl

∂Ts
∂x

= 0 (2.3.3a)

∂Tg
∂x

= 0 (2.3.3b)

∂Φ

∂x
= 0 (2.3.3c)
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and Neumann boundary conditions in the cold gas cycle → sign (ṁbed) = −1:
at x = 0

∂Ts
∂x

= 0 (2.3.4a)

∂Tg
∂x

= 0 (2.3.4b)

∂Φ

∂x
= 0 (2.3.4c)

at x = HNl

∂Ts
∂x

= 0 (2.3.5a)

∂Tg
∂x

=
1

aeff(HNl
,Tg ,ṁbed,pin)

ṁbed(t)

εB(HNl
)Abed ρg(Tg ,pin)

(
Tg − Tg,in(t)

)
(2.3.5b)

∂Φ

∂x
=

1

Dax(HNl
,Tg ,ṁbed,pin)

ṁbed(t)

εB(HNl
)Abed ρg(Tg ,pin)

(
Φ− Φin(t)

)
(2.3.5c)

specify the distribution of the gas temperature Tg, the temperature of solid phase Ts
and the volume fraction of VOCs Φ over time t and space x. At the starting time t = t0
initial distributions

Ts(x, t0) = Ts,t0(x) Tg(x, t0) = Tg,t0(x) Φ(x, t0) = Φt0(x) (2.3.6)

over space have to be chosen. Since this thesis merely focuses on a bed with honeycomb
structures made of ceramic, the meaning of the solid phase temperature Ts is equivalent
to the temperature of the ceramic in the bed. Using a single dimension in space assumes
that the behavior over the horizontal bed profile is constant, which is of course not
entirely correct. This assumption was made in favor for implementation effort in Matlab
Simulink and to ensure bearable computation times. A more detailed description of the
equation can be found in section 2.3.1.5. For further information on the PDEs and its
boundary conditions see [2].

2.3.1 Parameters

The parameters in the equation (2.3.1) deal with strongly nonlinear dependencies, how-
ever it should be pointed out that the dependency on space x is piecewise constant in
most cases. More details on bed parameters for the pilot plant at CTP can be found in
the Appendix.

2.3.1.1 Space Dependencies

The count direction of space x starts at the top of the bed (cf. figure 2.3.1). The ceramic
is constructed by layers, in which parameters of the solid phase (characterized by the
subscript ”s”), such as the heat conductivity λs,i = λs(x), the density ρs,i = ρs(x),
the specific surface aV,i = aV (x), the porosity εB,i = εB(x), the hydraulic diameter
dh,i = dh(x), the layer boundaries of the ceramic height Hi = H(x) and the heat capacity
cs,i(Tg) = cs(x, Tg) are constant in the current layer i ∈ [1, . . . , Nl].

10



x

i
=

1

i
=

2

i
=

3

i
=

4

x
=
H

0
=

0

x
=
H

1

x
=
H

2

x
=
H

3

x
=
H

4

Tamb

pin

Φin

Tg,in

ṁ
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Figure 2.3.1: Overview of bed B in the first half cycle or bed A in the second half cycle.

This leads to their piecewise constant distribution in x. For instance, both beds of the
implemented pilot plant, which stands at CTP consist of four layers, whereas only the
one at the top (x ∈ [0, H1)) differs from the other ones.

2.3.1.2 Heat Transfer Coefficient

An explicit dependency on space is given in the heat transfer coefficient h. The coefficient
is a function of the heat conductivity of gas λg(Tg) and the Nusselt number Nu, which
relies on an empiric mathematical relation according to Muzychka and Yovanovich (1998)
(2004) [7]. Nu is treated as a function of the Reynolds number Re, the Prandtl number
Pr and the proportion of the hydraulic diameter dh,i = dh(x) over space x applied to the
height x̃i = x−Hi−1 for i = 1, . . . , Nl.

Nu =
h dh,i
λg(Tg)

Rei =
|ṁbed| dh,i

εB,iAbed ηg(Tg)
Pr =

ηg(Tg)cg(Tg)

λg(Tg)
(2.3.7)

The Reynolds number has to be checked, since the Nu relation is limited up to Re < 2300.
Therefore exceeding Re values are set to 2300 in the simulation. The following empiric
relation adapted to quadratic channels of the honeycomb ceramic bed is used to calculate
the Nusselt number

m̃ = 2.27 + 1.65Pr1/3

Nu =


 0.886[

1 + (1.909Pr1/6)9/2
]2/9

√
dh,i
x̃i

Rei Pr


m̃

+

((
1.7831

dh,i
x̃i

Rei Pr

)5/3

+ 3.615

)m̃/5


1/m̃

(2.3.8)

under state dependencies regarding the gas temperature Tg, a certain point x in the
layer i and considering the input parameter ṁbed, which can be time variant.

2.3.1.3 Diffusion and Dispersion Coefficients

Diffusion and dispersion coefficients are initially used for the propagation of mass and
temperature [2]. The absolute or effective diffusion coefficient

Dabs(Tg, pin) = 10−5

(
Tg

273.15

)1.75
1.01325 · 105

pin(t)
(2.3.9)

11



and the axial dispersion coefficient for mass transfer

Dax(x, Tg, ṁbed, pin) = Dabs(Tg, pin) +

(
ṁbed(t)

εB,iAbed ρg(Tg, pin)

)2 d2
h,i

192Dabs(Tg, pin)
(2.3.10)

and the dispersion coefficient for the gas temperature

aeff(x, Tg, ṁbed, pin) =
λg(Tg)

ρg(Tg, pin)cg(Tg)
+

(
ṁbed(t) dh,i
εB,iAbed

)2
cg(Tg)

192 ρg(Tg, pin)λg(Tg)
(2.3.11)

occur at the second space derivatives in the partial differential equations (2.3.1).

2.3.1.4 Switching Inputs/Outputs

Incoming physical quantities, such as the input gas temperature Tg,in, the inlet volume
fraction of VOCs Φin and the inlet pressure pin arrive from the valve box in the cold
gas cycle → sign (ṁbed) = 1 and from the combustion chamber in the hot gas cycle
→ sign (ṁbed) = −1. The subscript ”bed” is added to clarify the count direction of x.

ṁbed = −ṁ (2.3.12)

Tg,in and Φin (cf. figure 2.3.1) can be interpreted as input sources due to the relation
to the state variables Tg and Φ, which attract attention by the (global) appearance in
all model’s differential equations of the RTO. Alternatively, there are input parameters
pin, ṁ as well as Tamb (cf. figure 2.3.1), which could be potential control variables for a
global control strategy of the entire flue gas cleaning system.

2.3.1.5 Mathematical Terms in the PDEs

This paragraph refers to the mathematical terms Ia to Vc in the partial differential
equations of the ceramic bed (2.3.1). The equation has been brought to a consistent
form with time derivatives on the left hand side. Originally the equation goes back to
the one dimensional description of thermal distribution of heat in a given region over
time (heat equation [3]).

∂T

∂t
= a

∂2T

∂x2

The parameter a = λ/(ρc) (SI unit m2/s), equivalent to the term Ia , describes the
thermal conductivity, characterizing the shape of the thermal propagation in the ceramic,
but also of the gas temperature. The coefficient aeff at the second order space derivative
in (2.3.1b) can also be interpreted as a function of the thermal conductivity

λg
ρgcg

applied to the mass flow ṁbed and geometric dimensions. Similar to temperatures the
axial diffusion coefficient Dax characterizes the shape of the propagation of the volume
fraction of VOCs in the bed. The figures 2.3.2 to 2.3.4 assume a linear distribution of
the ceramic temperature Ts and the gas temperature Tg between 0◦C and 1100◦C over
space x. Parameters like cg and λg were adapted to air, with the usual gas composition
(table 6.1.1 and 6.1.2) at an atmospheric pressure of pin = 1.01325 · 105 Pa.
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Figure 2.3.2: Distribution of term Ia.

Figure 2.3.3: Distribution of term Ib = aeff, which is constant over x in the pilot plant.
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Figure 2.3.4: Distribution of term Ic = Dax, which is constant over x in the pilot plant.

When looking at figure 2.3.3 and 2.3.4 smooth distributions over the input parameter
ṁbed and the state variable Tg can be seen, whereas in figure 2.3.2 the discontinuous jump
at x = 0.3m visualizes the transition between ceramic layers. This can be attributed to
the change in density ρs of the layers, which occupy a height of 0.3m each in the pilot
plant.
In order to understand the small jump in the distribution of Ia at around Tg ≈ 600K
remember that the heat capacity cs(x, Ts) = cs,i(Ts) is continuous in Ts, but again a
discontinuous jump of polynomials occurs at x = 0.3m = H1. Due to the fact that the
temperature profile of the solid phase changes over space, the parameters Ts(x, t) and x
are no longer independent from each other.

The term II = IIb = IIc describes the thermal convection and is equivalent to the
velocity u of the incoming gas through the bed. (Keep in mind that ṁ = −ṁbed.)

u =
ṁ(t)

εB,iAbed ρg(Tg, pin)

This certainly explains its appearance at the first order space derivative in the PDEs
(2.3.1). Since the gas density ρg depends on Tg reciprocally, the term II is linear in ṁbed

and Tg.
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Figure 2.3.5: Distribution of term IIIa over T and x.

Figure 2.3.6: Distribution of term IIIa over ṁbed and x.
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Figure 2.3.7: Distribution of term IIIb over T and x.

Figure 2.3.8: Distribution of term IIIb over ṁbed and x.
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The terms III characterize the heat transfer between the gas temperature and the ce-
ramic temperature. When looking at figures 2.3.5 to 2.3.8 it has been assumed that
the temperature profile of the solid and the gas phase are equivalent T = Ts = Tg and
linearly distributed between 0◦C and 1100◦C over space x. The heat capacity cg was
adjusted to air, with the usual gas composition (table 6.1.1 and 6.1.2) at an atmospheric
pressure of pin = 1.01325 · 105 Pa.

The gain of the heat transfer coefficient IIIa for Ts in (2.3.1b) in the top ceramic layer

(cf. figures 2.3.5 and 2.3.6 at x ∈ [0, 0.3)m) provides a better absorption of heat coming
from the combustion chamber. This also points out that a tightening of the honeycomb
channels (by reducing εB) in the top ceramic layer would also increase the heat transfer
near the combustion chamber.
The coefficient is discontinuous, since it increases rapidly at the layer inlet points
x = Hi−1 for i = 1, . . . , Nl as a reason of the Nusselt equation (2.3.8). The visibly
sharper increases at x = 0m = H0 and also at x = 0.9m = H3 compared to x = H1, H2

occurred due to the choice of grid points in space x (cf. figure 3.3.1). As a reason of the
switching boundary conditions, the gaps between grid points will be much tighter at the
boundaries of the bed.

The coefficient IVa describes the behavior of heat loss to the surrounding area, consid-

ering the specific surface of the bed abedV,loss and a coefficient kloss, determined by mea-

surements. The dissipation term IVb will provoke an increase of the gas temperature

because of the pressure drop. Due to the chemical reaction the release of heat will also
increase the gas temperature, characterized by the term Vb . And again this leads to the
reduction of the volume fraction of VOCs, described by Vc .
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2.3.2 Pressure Drop in the Bed

Three different areas for the pressure drop in the ceramic bed have to be considered [1].
The pressure drop at the layer inlet points xin = [xin0 xin1 . . . xinNl−1]T (whereas xin0 = 0)
with the corresponding coefficient ζin = 0.67

∆pin(t) =

Nl−1∑
i=0

ζin
2ρg(Tg(xini ,t), pin(t))

(
ṁbed(t)

εB,iAbed

)2

, (2.3.13)

at the layer outlet points xout = [xout1 xout2 . . . xoutNl
]T with the coefficient ζout = 1.08

∆pout(t) =

Nl∑
i=1

ζout
2ρg(Tg(xouti ,t), pin(t))

(
ṁbed(t)

εB,iAbed

)2

(2.3.14)

and inside each of the Nl layers.

ζpipe,i(Tg(x,t)) = ϕshape
64

Rei(Tg(x,t))
(2.3.15)

∆ppipe(t) =

(
ṁbed(t)

εB,iAbed

)2 Nl∑
i=1

∫ xouti

xini−1

ζpipe,i(Tg(x,t))

2 dh,i ρg(Tg(x,t), pin(t))
dx

= ϕshape
64

2

Nl∑
i=1

∫ xouti

xini−1

ηg(Tg)

d2
h,i

|ṁbed(t)|
εB,iAbed ρg(Tg(x,t), pin)

dx

= ϕshape
64

2

Rid|ṁbed(t)|
Abed pin(t)Mmix

Nl∑
i=1

1

d2
h,iεB,i

(∫ xouti

xini−1

ηg(Tg(x,t))Tg(x, t)dx

) (2.3.16)

The distribution of the gas temperature Tg in the equations from (2.3.13) to (2.3.16)
has to be provided as a solution of the partial differential equations (2.3.1). The length
(one dimensional view), respectively the height (three dimensional view) of each layer
is characterized by Li = xouti − xini−1 for i = 1, . . . , Nl (whereas xin0 = 0). For required
discretization, there will be a substitution of space x by a grid of Nx + 1 points later
on. As a result, the integral will be replaced by the sum of Nx + 1 − 2Nl points with
corresponding grid gaps ∆xl for l = 1, . . . , Nx.

profile shape coefficient ϕshape

circle 1

square 0.89

Table 2.3.1: Shape coefficient (Kast &
Nirschl, 2013 [8]).

place pressure coefficient ζ

inlet 0.67

outlet 1.08

Table 2.3.2: Pressure coefficient (Kast
& Nirschl, 2013 [8]).
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2.4 Combustion Chamber

The equations for the combustion chamber resemble the ones of the ceramic bed (2.3.1).
Since the chamber does not consist of any porous layers inside, almost no parameters
with space dependencies have to be taken into account in the first place. The par-
tial differential equations (for better readability function arguments are rendered as a
subscript)

∂Tg
∂t

=

conduction︷ ︸︸ ︷
Dcc(Tg ,ṁ,pin)

∂2Tg
∂x2

−

convection︷ ︸︸ ︷
ṁ(x,t)

Acc ρg(Tg ,pin)

∂Tg
∂x
−

ambient loss︷ ︸︸ ︷
kloss a

cc
V,loss

ρg(Tg ,pin) cg(Tg)

(Tg − Tamb(t))

+
∆HR rg(Tg ,Φ,pin)

ρg(Tg ,pin)cg(Tg)︸ ︷︷ ︸
reaction heat

(2.4.1a)

∂Φ

∂t
= Dcc(Tg ,ṁ,pin)

∂2Φ

∂x2︸ ︷︷ ︸
conduction

−
ṁ(x,t)

Acc ρg(Tg ,pin)

∂Φ

∂x︸ ︷︷ ︸
convection

+
rg(Tg ,Φ,pin)

C(Tg)︸ ︷︷ ︸
reduction

(2.4.1b)

describe the distribution of the state variables Tg and Φ over time t and over space x
of the combustion chamber in single dimension. The equations are related to the initial
distributions

Tg(x, t0) = Tg,t0(x) Φ(x, t0) = Φt0(x) (2.4.2)

at the time t = t0, which have to be chosen. If the mass flow arrives from the bed
A (→ sign (ṁ) = 1 ∀x) Neumann boundary conditions are given by:
at x = 0

∂Tg
∂x

=
1

Dcc(Tg ,ṁ,pin)

ṁ(0,t)

Acc ρg(Tg ,pin)

(
Tg − Tg,in(t)

)
(2.4.3a)

∂Φ

∂x
=

1

Dcc(Tg ,ṁ,pin)

ṁ(0,t)

Acc ρg(Tg ,pin)

(
Φ− Φin(t)

)
(2.4.3b)

at x = Lcc

∂Tg
∂x

= 0 (2.4.4a)

∂Φ

∂x
= 0 (2.4.4b)

If the mass flow arrives from the bed B (→ sign (ṁ) = −1 ∀x) Neumann boundary
conditions are given by:
at x = 0

∂Tg
∂x

= 0 (2.4.5a)

∂Φ

∂x
= 0 (2.4.5b)
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at x = Lcc

∂Tg
∂x

=
1

Dcc(Tg ,ṁ,pin)

ṁ(Lcc,t)

Acc ρg(Tg ,pin)

(
Tg − Tg,in(t)

)
(2.4.6a)

∂Φ

∂x
=

1

Dcc(Tg ,ṁ,pin)

ṁ(Lcc,t)

Acc ρg(Tg ,pin)

(
Φ− Φin(t)

)
(2.4.6b)

Diffusion Coefficient
Similar to the dispersion in the bed (cf. equations (2.3.9) and (2.3.10)), the axial diffusion
coefficient for mass propagation (more information can be obtained in [2]) in the ceramic-
free combustion chamber

Dcc(Tg, ṁ, pin) = 0.04
|ṁ|

ρg(Tg, pin)
Lcc (2.4.7)

occurs at the second space derivatives in the partial differential equations (2.4.1).

Switching Inputs/Outputs

ṁin = ṁ

Tg,in

�in

pin

Tamb

ṁout = ṁ(x=Lcc)

Tg(x=Lcc)

�(x=Lcc)

pout
	

ṁfuel ṁair

�(x>Lcc/2) = �(x>Lcc/2)
ṁin

ṁ(x>Lcc/2)

ṁ(x>Lcc/2) = ṁin + ṁfuel + ṁair

x

1

Figure 2.4.1: Overview of the combustion chamber in the first half cycle.

The input gas temperature Tg,in and the inlet volume fraction of VOCs Φ come from
the ceramic bed A at xbedA = 0m in the first half cycle (→ sign (ṁ) = 1) and from the
ceramic bed B at xbedB = 0m in the second half cycle (→ sign (ṁ) = −1), assuming
that the heating by the burner is already considered in the PDEs (2.4.1) (see section
2.5.2). One would advise to be cautious with the contrary count directions of space in
the combustion chamber xcc and the bed xbed. The subscripted ”cc” for the combustion
chamber or the ”bed” for the ceramic bed is only added if clarification about the count
direction is needed.
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2.4.1 Increase of the Mass Flow

The volume fraction of VOCs

Φ(x > Lcc/2) = Φ(x > Lcc/2)
ṁin

ṁin + ṁfuel + ṁair

if ṁ > 0

Φ(x < Lcc/2) = Φ(x < Lcc/2)
ṁin

ṁin + ṁfuel + ṁair

if ṁ < 0

(2.4.8)

located in one half of the combustion chamber (depends on the sign of the mass flow ṁ)
has to be adapted to the proportion of inlet, respectively outlet mass flow, as a result of
the addition of the air-fuel gas mixture consisting of no VOCs (cf. figure 2.4.1).

2.4.2 Pressure Drop in the Combustion Chamber

Analogous to the previous equations another coefficient ζcc is required. Due to the lack
of honeycomb structures inside the chamber it is sufficient to take the mean value of the
gas temperature (as solution of (2.4.1)) over x

T g,cc(t) =
1

Lcc

∫ Lcc

x=0

Tg(x, t)dx (2.4.9)

for calculation of the pressure drop in the combustion chamber.

∆pcc(t) =
ζcc

2ρg(T g,cc(t), pin(t))

(
ṁ(t)

Abasis

)2

(2.4.10)

More details on parameter values are provided in the Appendix.
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2.5 Burner and Fuel Injection

The burner, located in the center of the combustion chamber xcc = Lcc/2 (referring to
the pilot plant), not only heats the surrounding gas, but also adds a mixture of fuel
gas (natural gas) and air to the mass flow, which explains the dependency on space
ṁ = ṁ(x, t) in the PDEs (2.4.1) (cf. figure 2.4.1). The temperature of the flowing
gas Tg located in the area of the burner in the combustion chamber should match the
reference temperature Ttarget. The portion of air added to the mass flow at xcc = Lcc/2
is fixed in the pilot plant, which means that the target air–fuel equivalence ratio λaf-ratio

will not be satisfied (status October 2015). Thus the fuel mass flow ṁfuel currently
serves as control variable for a PID controller, whose parameters were empirically de-
termined. ṁfuel varies according to sensor signals, respectively with the reference signal
Ttarget (see chapter 5).

A throttle valve controls the quantity of the fuel substance added, which will be limited
if the valve end position is reached. This certainly is the case if the desired jump between
measured temperatures and Ttarget is too high.

The integration of the burner in the simulation was achieved by two different concepts.
Either the combustion chamber has to be divided into two independent parts with the
burner in between, or the heating of the gas by the burner has to be considered to
some extent in the partial differential equations (2.4.1), facing additional implementation
efforts due to space dependencies.

2.5.1 Separation of Combustion Chamber through the Burner

If the burner is implemented as independent function between two separated (in space)
parts of the combustion chamber, the gas temperature increases isolated at the separa-
tion point. This does not represent the natural increase of temperature properly due
to its discontinuous distribution. Although not only computation time seems to benefit
from this concept, it is also easier to modify the burner equations, since one does not
have to deal with the partial differential equations. The challenge with this concept is,
that the gas temperature, which will feed (as input) the second half of the combustion
chamber, has to be calculated via enthalpy relations. The problem can be reduced to
the finding of zero points of a polynomial. The calculation ensues iteratively so far.
Starting with the temperature Tout,0 = Tin and the relative error ∆T0 = 1

while |∆Tj| > εR

Tout,j+1 =
ṁincg,m(Tg,in)Tg,in +

ṁfuel

Mfuel
HV

ṁoutcg,m(Tout,j)

∆Tj+1 =
Tout,j+1 − Tout,j

Tout,j

(2.5.1)

(for more information see [2]) the output gas temperature Tg,out = Tout,N can be provided
after Niter iterations with a relative error smaller than e.g. εR = 10−4. HV

[
J

kmol

]
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describes the heating value (or energy value or calorific value) of the fuel substance.
Tests have shown that in most cases a few iterations Niter < 10 are sufficient.

Switching Inputs/Outputs
The input parameters Tg,in and Φin (assuming that the mass flow ṁ does not change in
the valve box, in the ceramic bed and in the combustion chamber) switch with the same
sequence like the inputs of the other components. The burner represents the binding
element between the two symmetrical sides (A and B) of the RTO. Each side consists of
a valve box, a ceramic bed and one part of the combustion chamber characterized by a
capital A or B. So the mass flow enters the RTO in side A but leaves in side B and vice
versa. The inputs of the burner come from the same side, in which the mass flow enters
the plant.

2.5.2 Integration in Combustion Chamber

The integration of the burner in the combustion chamber can be described through the
increase of the time-gradient of the gas temperature in the equation (2.4.1a) by the
power term

ṁfuelHV

ρg(Tg)cg(Tg)MfuelAccLflame
. (2.5.2)

The length (one dimensional view) of the flame Lflame and the sign of the mass flow
sign (ṁ) specify the position of the integration. The power term (2.5.2) occurs at sub-
space xcc ∈ B

B =

{
xcc ∈ R

∣∣∣∣Lcc/2 ≤ xcc < Lcc/2 + Lflame

}
if sign (ṁ) = 1

B =

{
xcc ∈ R

∣∣∣∣Lcc/2− Lflame < xcc ≤ Lcc/2

}
if sign (ṁ) = −1

(2.5.3)

on the length Lflame adjusting to the direction of the mass flow through the plant. This
ensures an almost linear increase of the gas temperature over subspace B.
This concept models the real process more properly compared to the method, described
in section 2.5.1. Tests have shown that Tg(xcc, t) and as a solution of equation (2.4.1)
shows little change over space. Due to the integration of the power term (2.5.2) a
fundamental change of state variables appears in xcc ∈ B. In other words, because of the
significant difference of the space-gradient, smaller step sizes in time t might be necessary
to meet solver tolerances, which probably explains the additional computation time.
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3 Preconditions for implementing

In order to develop control concepts for the plant and to perform accurate testing, a
transparent implementation should not only facilitate the modification of equations and
the modelling of additional effects, but also provide a proper fundament for future de-
velopments.
System properties, particularly referring to the switch between cycles of the RTO, pro-
voke unpleasant effects in the solution and force the step size to become significantly
small periodically. As a result, the computation time will be negatively affected and
long simulation times carry additional weight.
The system including all mathematical models described in section 2 was implemented
in Matlab Simulink 2013a. One major issue was the handling of the coupled partial
differential equations in the ceramic bed (2.3.1) and the combustion chamber (2.4.1),
since Simulink does not support PDE-solvers. The appearance of algebraic loops also
complicates the implementation and slows down the simulation. Furthermore, emerging
stability and numerical problems have required to take further appropriate preventive
actions.

3.1 Strategy

The merging of all mathematical models (see section 2) to one united system for sim-
ulation occupies a central position for preparing model based control concepts for the
RTO (section 3.2). The aim was to implement the system with maximum accuracy,
considering all dependencies of state variables, space and input parameters in the first
place and then let the model undergo simplifications for control purposes.
Taking a closer look at the four, respectively three different mathematical models (com-
bined burner and combustion chamber equations), a single solver had to be chosen to
determine step sizes in time t for the united system. First attempts to convert the par-
tial differential equations to algebraic ones by discretizing space and time pointed out
that the system is very sensitive during cycle switches. A relatively large step size in t
can be admitted inside cycles, whereas it has to be reduced to its numerical minimum
during switches. So there commonly arises a step size of t (mod τ) ≈ 10−12s (depending
on solver tolerances), which highlights the high stiffness of the system.
As it turned out, it is advisable to convert all partial differential equations to ordi-
nary ones by approximating space derivatives by differential quotients. Therefore all
mathematical models manage to have the same time basis, chosen by the solver. The
comparison of solutions with small and large numbers of grid points in space confirmed
that the establishment of non-equidistant meshes delivers a significant higher accuracy.
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3.2 Linkage of Models

State of the Art
The implementation of the entire, constantly evolving system in Matlab, without using
Simulink has been achieved by Thomas Rieger [2]. He started implementing all models
independently from each other by using functions, wherein (differential) equations can
be solved by calling Matlab intern solvers. This allows the usage of different solvers.
Specified input and output parameters of those functions connect all subsystems to
one simulation model of Regenerative Thermal Oxidizers with two, three, even five bed
configurations. For other configurations, in particular for more-bed ones, the system
description in section 2 has to be extended by additional components such as cold and
warm bypass. During simulation the submodels are processed one after another by call-
ing the appropriate functions for each interval (function call interval).
The communication (the overall exchange of input and output values) between submod-
els is therefore clearly specified by the function call intervals. This interval has been
modified by now, so that input and output parameters are refreshed every second in
simulation time (status September 2015). This certainly corresponds with the PLC
(programmable logic controller) sample time of one second.
This form of linkage between models represents one decisive aspect in terms of simula-
tion time, accuracy and therefore of the overall performance of the implementation. It
turned out that as a result of stability issues and the high stiffness of the system, which
becomes apparent during cycle switches, some models (f.i. the ceramic bed) have to
undergo small time steps (chosen by the solver) to converge. Computation time presum-
ably benefits from the fact that input parameters remain constant within function call
intervals, which supports convergence of the solver algorithm of the current submodel.
It has to be noted that this form of communication between submodels will provoke
an error, which carries weight if the input parameters change rapidly within function
intervals (referring to cycle switches).

New Approach
Since control laws require the feedback of measured quantities, the implementation of
the system had to be somehow processed, so that desired quantities can be fed back,
at least each second (PLC sample time). At the beginning of this thesis (status March
2015) the function call interval was equivalent to the cycle interval (about 120 seconds)
of the RTO, whereas input and output parameters were handled as (time) vectors. So
input values were interpolated linearly in case the solver (of the current model) required
time steps, which have not been provided from the previous function, respectively from
the solver in the previous model.
Together with the possibilities to abstract models to blocks this motivated the applica-
tion of Simulink. The challenge was the implementation of partial differential equations,
since no Simulink PDE-solvers are available. Michael Wieser processed Simulink mod-
els in the way that they are compatible with the functions of Thomas Rieger using
Interpreted MATLAB Function blocks. The problem of solving PDEs was shifted out-
side Simulink and therefore the Matlab intern pdepe-solver could have been used. In
Simulink a discrete fixed-step solver with one second sample time allowed the call of all
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desired functions every second in simulation time. The drawback of this form of imple-
mentation is the use of the significantly slower Interpreted MATLAB Function blocks
for calling external functions and again the discretized communication (explained in the
first paragraph of section 3.2) between blocks.
In favor of accuracy and computation time the discretization of the PDEs in space was
established in the way that a global variable-step solver can determine step sizes in time
for all grid points, respectively for all submodels at once. So the differential equations
are basically solved by the Integrator block in Simulink. It turned out that the amount
of grid points, the method of approximating first and second space derivatives and espe-
cially the handling of boundary conditions have significant impact on the solution and
the computation time. The drawback of this method is that only one single solver can
be chosen to solve all coupled differential equations. Stability issues made it even more
difficult to chose a proper solver with appropriate tolerances and settings.

3.3 Discretization of Space

The finite difference method for discretization of space will be applied to the partial
differential equations (2.3.1) and (2.4.1) to convert them into ordinary differential equa-
tions. Initially Nx + 1 grid points

xl = x0 +
l∑

j=1

∆xj for l = 0, . . . , Nx (3.3.1)

starting with x0 = 0 and corresponding Nx grid gaps

∆xj for j = 1, . . . , Nx (3.3.2)

have to be chosen. The consideration of boundary conditions requires special treatment
of the grid points at the borders l = 0 and l = Nx. The substitution of first order space
derivatives by the Neumann boundary conditions should provide a proper approxima-
tion of the continuous solution (see section 3.3.3).
The choice of these points turned out to be decisive for accuracy of the numerical ap-
proximation of the PDEs solutions. Early simulation results highlighted that borders
required higher resolution. Think of a cold ceramic bed with an equally distributed
temperature Ts(xl, t0) = Tg(xl, t0) = 20◦C for l = 0, . . . , Nx in the solid phase, as well as
in the gas phase. Once the burner starts firing, bed B will be warmed up continuously,
but with the RTO cycle switch bed A will encounter a significant jump in temperature
(cf. figure 3.3.12), since one assumes that the incoming gas temperature of the RTO is
also in the range of the ambient temperature ≈ 20◦C. Therefore the derivatives on the
boundary of the bed B xbedB = 0 to the combustion chamber will increase rapidly in an
almost infinitesimal small time period.
In order to represent the space derivatives more accurately, one needs to tighten the
grid gaps, at least on the boundaries. To keep the computation times in a tolerable time
range, non equidistant meshes were established. For distribution either a trigonometric
function

xl = L
1− cos(l̃)

2
for l̃ ∈ [0, π] (3.3.3)
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or a third order polynomial

xl(l̃) = a3l̃
3 + . . .+ a1l̃ + a0 for l̃ ∈ [0, L] (3.3.4)

had been used. The range between l̃ ∈ [0, π] in equation (3.3.3) and between l̃ ∈ [0, L] in
equation (3.3.4) has to be represented with Nx + 1 equally distributed points (function
linspace). The coefficient of the polynomial can be provided by solving a linear equation
system. The conditions

xl(l̃ = 0) = 0

dxl

dl̃

∣∣∣∣
l̃=0

= 0

xl(l̃ = L) = L

dxl

dl̃

∣∣∣∣
l̃=L

= 0
(3.3.5)

lead to the following system
1 0 0 0
0 1 0 0
0 1 2L 3L2

1 L L2 L3



a0

a1

a2

a3

 =


0
0
0
L

 (3.3.6)

which can be uniquely solved by inverting the matrix on the left hand side. This matrix
is non singular if L 6= 0. L characterizes either the length of the combustion chamber
L = Lcc, or the height of the ceramic bed L = HNl

.
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Figure 3.3.1: Distribution of grid points in both ceramic beds with a trigonometric (blue)
and a polynomial (green) approach.

Figure 3.3.1 illustrates that the trigonometric approach ensures slightly smaller grid gaps
on the boundaries, therefore it will be applied to both ceramic beds. Additionally, the
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polynomial approach turned out to work efficiently with the space xcc of the combustion
chamber. Initial attempts of using different linear functions for the distribution of space
with higher slopes at the boundaries, produced inappropriate effects in the solution at
the transition points of these linear functions.
For further considerations the integration of the burner will be achieved by the addition
of the power term in equation (2.5.2) to the time derivative of the gas temperature
in the PDEs of the combustion chamber (2.4.1a). This addition of energy will lead
to significant change of the state variables at subspace B (see section 2.5.2), which
motivated the tightening of grid gaps in the area of the burner flame.
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Figure 3.3.2: Distribution of grid points in the combustion chamber with a polynomial
approach.

The combination of three polynomials, as shown in figure 3.3.2 has been used for the
distribution of grid points in the combustion chamber.
The construction of the ceramic bed by layers would also demand the use of smaller
grid gaps at the area of transition. This is one issue, which remains open for future
developments.

3.3.1 First Order Derivative

The methods for approximating first order derivatives are decisive for stability, conse-
quentially for computation time and even for convergence. The classical approach with
a central differential quotient (CDQ) (cf. [9]), also called symmetric differential quo-
tient, assuming an arbitrary, continuous function y(x, t) at a fixed time t = t∗ (notation:
yl := y(xl, t

∗))
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CDQ:
∂y

∂x

∣∣∣∣
x=xl

≈ yl+1 − yl−1

∆xl + ∆xl+1

for l = 1, . . . , Nx − 1 (3.3.7)

tends to provoke numerical oscillations, which are indeed non-physical. So backward
differential quotients (BDQ)

BDQ:
∂y

∂x

∣∣∣∣
x=xl

≈ yl − yl−1

∆xl
for l = 1, . . . , Nx (3.3.8)

as well as forward differential quotients (FDQ)

FDQ:
∂y

∂x

∣∣∣∣
x=xl

≈ yl+1 − yl
∆xl+1

for l = 0, . . . , Nx − 1 (3.3.9)

were tested. Variable y can be replaced by the state variables Tg, Ts and Φ. A combina-
tion between FDQ and BDQ depending on the (sign of the) mass flow ṁ turned out to
be the most robust, which gives a nice physical meaning to the problem. Whereas the
mathematical explanation can be presumably found (again) in the switching boundary
conditions on the one hand, but on the other hand in the missing interconnection of the
CDQ to the current grid point yl (see [11] and [12]). The RTO cycle switch forces ho-
mogenous Neumann boundary conditions (equation (2.3.3), (2.3.4), (2.4.4) and (2.4.5))
to become inhomogeneous ones (equation (2.3.2), (2.3.5), (2.4.3) and (2.4.6)) or vice
versa. This might be the reason why the following method

ṁ ≥ 0 ṁ < 0

BDQ FDQ

ṁbed ≥ 0 ṁbed < 0

BDQ FDQ

Table 3.3.1: Most robust method for approximating the first order derivatives.

outperforms all kinds of central differential quotients in terms of robustness. In case the
mass flow ṁ = 0 equals zero, the appropriate coefficients at the first order derivatives,
f.i. II in equation (2.3.1) (similar in the equation (2.4.1)) ensure that convection terms
equal zero. Since the sign of the mass flow was adapted to the count direction of the
space in the ceramic beds, the definition in table 3.3.1 holds in reference to ṁbed.
The drawback of differential quotients explicitly using two neighboring grid points (BDQ
& FDQ) becomes visible by approximating sharp edges, which will occur after the RTO
cycle switches in the gas temperature and particularly in the volume fraction of VOCs.

3.3.1.1 Test Configuration in terms of Stability

For demonstration purposes, a cold ceramic bed Tg(xl, t0) = Ts(xl, t0) = 20◦C ∀l with no
VOCs Φ(xl, t0) = 0 ∀l at starting time t0 = 0 is assumed. All parameters depending on
the composition of gas were adapted to air considering the main components (see table
6.1.1 and 6.1.2) at an atmospheric pressure pin = 1.01325 · 105Pa. The gas composition
for parameters like λg and cg will not be modified with the addition of VOCs during
simulation, since their fractions are negligibly small. At time t = t0 a hot gas Tg,in =
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850◦C and a volume fraction of VOCs Φin = 5 · 10−4 cause quite interesting effects in
the solution, considering transient reactions in a very small time window.

Figure 3.3.3: Distribution of Φ in the test configuration with input parameters, coming
from xbed = HNl

applying Central Differential Quotients (CDQ) with Nx + 1 = 130.
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Figure 3.3.4: 2D representation of Φ(xl, t) at different grid points l, applying Central
Differential Quotients (CDQ) with Nx + 1 = 130.
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Figure 3.3.5: Distribution of Φ in the test configuration with input parameters, coming
from xbed = HNl

applying BDQ and FDQ with Nx + 1 = 130 points according to table
3.3.1.
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Figure 3.3.6: Comparison of the two methods approximating first order derivatives at
different grid points xl over time with Nx + 1 = 130 in total.
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As figure 3.3.6 illustrates, there definitively will be a problem when using CDQ. The real
solution probably lies somewhere in between red and blue curves, whereas the red curves
obviously have serious issues due to numerical oscillations and the blue ones probably
flatten the edges substantially.
The distribution of Φ for demonstrating stability issues has been chosen on purpose.
Analyzing the transport equations (2.3.1c) and (2.4.1b), one can recognize the missing
coupling of the equation to the current grid point yl, which is provided by the heat
transfer terms in the PDEs (cf. III in equation (2.3.1b)) and by the term describing

ambient losses (cf. equation (2.4.1a) and IVa in equation (2.3.1a)). In finite difference

literature (see [11] and [12]) there are mathematical conditions, which guarantee stability,
arguing with the coefficient (at state variables) at the current grid point yl and those in
its neighborhood used for approximating derivatives. Numerical oscillations also appear
in the approximated solution of the gas temperature Tg when using CDQ, though their
impact might be less visible.
The crucial point was seen when linking all subsystems (see section 3.2) to one simulation
model for the two-bed RTO. When using CDQ, it was impossible to adjust solver settings
at a moderate number of grid points (cue: computation time), so that solver algorithms
safely converge during RTO cycle switches.

At this point, the use of the method in table 3.3.1 has to be recommended when using
the finite difference method for discretizing space. In case the model should be fed
with highly time invariant quantities, for instance with sensor signals, robustness will
be substantial for convergence.

Since the Matlab intern pdepe solver uses some sort of central differential quotient,
without the inclusion of the approximated solution at the current grid point yl (up to
current versions 2015 of this solver, discovered by code analysis), there have been major
differences to existing simulation results. Therefore a method for approximating first
order derivatives was developed, which relies on the basis of central differential quotients,
but provokes less numerical oscillations.

3.3.1.2 Modified Central Differential Quotient

The classical CDQ (equation (3.3.7)) can be interpreted as backward, respectively for-
ward differential quotient of inner mesh points

zl =
xl + xl−1

2
for l = 1, . . . , Nx (3.3.10)

which are located in the center between original grid points xl.

xxl−1 xl xl+1

zl−1 zl zl+1 zl+2

∆xl

Figure 3.3.7: Original and inner mesh points for l > 1.
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The linear average of two neighboring solutions (notation: yzl := y(zl, t
∗))

yzl ≈
yl + yl−1

2
for l = 1, . . . , Nx (3.3.11)

provides

∂y

∂x

∣∣∣∣
x=xl

≈
yzl+1

− yzl(
∆xl+∆xl+1

2

) ≈ yl+1 + yl − yl − yl−1

∆xl + ∆xl+1

=
yl+1 − yl−1

∆xl + ∆xl+1

for l = 1, . . . , Nx−1

(3.3.12)
CDQ according to equation (3.3.7). Due to the application of a linear average in equation
(3.3.11) the connection to yl got lost. The idea was to represent yl with a second order
polynomial using three points in space x and then interpolate yzl so that the difference
of the values yzl+1

−yzl would not entirely compensate the coupling to the point yl. Since
three points for interpolation are used, one has to decide the direction of inclination of
the polynomial approach. Facing the two possibilities

yzl
from→ yl−1, yl, yl+1

yzl
from→ yl−2, yl−1, yl

(3.3.13)

(cf. figure 3.3.7) the interpolation was adjusted to the boundary where the mass flow
arrives. In case of a positive mass flow sign (ṁ) = 1 the ansatz

al + blxl−2 + clx
2
l−2 = yl−2

al + blxl−1 + clx
2
l−1 = yl−1 for l = 2, . . . , Nx

al + blxl + clx
2
l = yl

(3.3.14)

leads to the linear equation system1 xl−2 x2
l−2

1 xl−1 x2
l−1

1 xl x2
l

albl
cl

 =

yl−2

yl−1

yl

 for l = 2, . . . , Nx (3.3.15)

by adjusting the interpolation to x = 0. For the following consideration one pardons the
mathematical incorrectness when equating yzl with the interpolated value.

[
1 zl z2

l

] albl
cl

 = yzl for l = 2, . . . , Nx

[
1 zl z2

l

] 1 xl−2 x2
l−2

1 xl−1 x2
l−1

1 xl x2
l

−1

︸ ︷︷ ︸
=:dT

l,+

yl−2

yl−1

yl

 = yzl for l = 2, . . . , Nx

(3.3.16)

When comparing equation (3.3.11) with (3.3.16), one may notice the absence of one
equation at l = 1 as a result of the inclination to one boundary. Intuitively the first
three points are used to interpolate the value yz1 .
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[
1 z1 z2

1

] 1 x0 x2
0

1 x1 x2
1

1 x2 x2
2

−1

︸ ︷︷ ︸
=:dT

1,+

y0

y1

y2

 = yz1
(3.3.17)

After applying the differential quotient according to equation (3.3.12) to the interpolated
values, one can define the modified backward differential quotient (MBDQ).

MBDQ:



∂y

∂x

∣∣∣∣
x=xl

≈ 2
∆xl−1+∆xl

dTl+1,+

yl−1

yl
yl+1

− dTl,+

yl−2

yl−1

yl

 for l = 2, . . . , Nx − 1

∂y

∂x

∣∣∣∣
x=x1

≈ 2
∆x1+∆x2

(
dT2,+ − dT1,+

)y0

y1

y2

 for l = 1

(3.3.18)
In case of a negative mass flow sign (ṁ) = −1 the polynomial interpolation needs to
be adjusted to the boundary x = xNx . The linear equation system1 xl−1 x2

l−1

1 xl x2
l

1 xl+1 x2
l+1

albl
cl

 =

yl−1

yl
yl+1

 for l = 1 . . . , Nx − 1 (3.3.19)

leads to Nx − 1 values of yzl

[
1 zl z2

l

] 1 xl−1 x2
l−1

1 xl x2
l

1 xl+1 x2
l+1

−1

︸ ︷︷ ︸
=:dT

l,−

yl−1

yl
yl+1

 = yzl for l = 1, . . . , Nx − 1
(3.3.20)

whereas the last point for interpolation yzNx
can be provided by

[
1 zNx z2

Nx

] 1 xNx−2 x2
Nx−2

1 xNx−1 x2
Nx−1

1 xNx x2
Nx

−1

︸ ︷︷ ︸
=:dT

Nx,−

yNx−2

yNx−1

yNx

 = yzNx
.

(3.3.21)

After applying the differential quotient according to equation (3.3.12) to the interpolated
values, the modified forward differential quotient (MFDQ) can be defined.

MFDQ:



∂y

∂x

∣∣∣∣
x=xl

≈ 2
∆xl+∆xl+1

dTl+1,−

 yl
yl+1

yl+2

− dTl,−

yl−1

yl
yl+1

 for l = 1, . . . , Nx − 2

∂y

∂x

∣∣∣∣
x=xNx

≈ 2
∆xNx−1+∆xNx

(
dTNx,− − dTNx−1,−

)yNx−2

yNx−1

yNx

 for l = Nx − 1

(3.3.22)
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Remark (Solvability). The invertibility of the matrices appearing in the vectors dTl,+,

as well as in dTl,− is guaranteed, since the points l = 0, . . . , Nx in space x are strictly
monotonically increasing and strictly positive.

Finally, one can sum up the modified method for approximating first derivatives on the
basis of the central differential quotient.

ṁ ≥ 0 ṁ < 0

MBDQ MFDQ

ṁbed ≥ 0 ṁbed < 0

MBDQ MFDQ

Table 3.3.2: Modified method for approximating the first order derivatives.

In case the mass flow ṁ = 0 equals zero, the appropriate coefficients at the first order
derivatives, f.i. II in equation (2.3.1) (similar in the equation (2.4.1)) ensure that con-
vection terms equal zero. As one may noticed, the vectors dTl,+, as well as dTl,− can be
calculated in advance ∀l, which saves quite a lot of computation time during simulation.
In addition, one should avoid the application of loops, which are indeed significantly
slow compared to vector operations in Matlab.

3.3.1.3 Beneficial Matrix Representations

In order to combine the equations for all mesh points the Hadamard Matrix Product [10]
will be introduced.

Definition: Hadamard Product. Let A and B be m×n matrices with entries in C.
The Hadamard product of A and B is defined by [A ◦B]ij = AijBij for all 1 ≤ i ≤
m, 1 ≤ j ≤ n.

As one can see, the Hadamard product is simply the element-wise multiplication of
matrices, which can be easily applied in Matlab using the element-wise operator (.* ).
Introducing the notations yz ∈ RNx×1 and D+, D−, Y+, Y− ∈ RNx×3

yz =

 yz1...
yzNx

 , D+ :=


dT1,+
dT2,+

...
dTNx−1,+

dTNx,+

 , Y+ :=


y0 y1 y2

y0 y1 y2

y1 y2 y3
...

...
...

yNx−2 yNx−1 yNx



D− :=


dT1,−
dT2,−

...
dTNx−1,−
dTNx,−

 , Y− :=


y0 y1 y2

y1 y2 y3
...

...
...

yNx−2 yNx−1 yNx

yNx−2 yNx−1 yNx



(3.3.23)

35



the interpolated values yz can be provided by the sum over columns

yz =
3∑
j=1

[D+ ◦Y+]ij if ṁ > 0 or ṁbed > 0

yz =
3∑
j=1

[D− ◦Y−]ij if ṁ < 0 or ṁbed < 0

(3.3.24)

with the Matlab equivalents: sum(D+.*Y+,2) and sum(D−.*Y−,2). The use of element-
wise operations could minimize the number of arithmetic operations and therefore is
preferable in comparison to block diagonal representations.
The matrices Y+ and Y− have to be evaluated during run time certainly, but their
indices can be set up in preprocessing as Matlab allows the application of matrix indices.
Introducing

y =


y0

y1
...
yNx

 , I+ =


0 1 2
0 1 2
1 2 3
...

...
...

Nx − 2 Nx − 1 Nx

 (3.3.25)

the interpolated values yz can be evaluated for instance in one line Matlab code: yz =
sum(D+.*y(I+), 2). However, one may not forget that Matlab indices have to start with
one corresponding with the Matlab code: yz = sum(D+.*y(I+ + 1), 2) and that the
matrices D+, as well as D− should be computed in preprocessing.

3.3.1.4 Results of Test Configuration

The method described in section 3.3.1.2 was implemented considering the aspects in
section 3.3.1.3 and then tested by applying the configurations of section 3.3.1.1.

It was no surprise when the method described in table 3.3.1 outperforms CDQ and the
method described in table 3.3.2 in terms of computation time, whereas the simulation
applying CDQ was most time consuming, as a result of stability issues.
Referring to figure 3.3.9 it becomes evident, that numerical oscillations were reduced
in comparison to CDQ. Although one has to be cautious, when zooming to Φ ≈ 0 it
can be recognized that the green curves tend to go slightly negative, which is of course
incorrect in physical terms. This problem will also occur when using CDQ in case of an
appropriate negative jump, for instance from Φin = 5 · 10−4 to Φin = 0.
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Figure 3.3.8: Distribution of Φ in the test configuration with input parameters, coming
from xbed = HNl

applying MBDQ and MFDQ with Nx + 1 = 130 points according to
table 3.3.2.
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Figure 3.3.9: Comparison of the methods approximating first order derivatives at differ-
ent grid points xl over time, with Nx + 1 = 130 in total.
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Not only three methods for approximating the first order derivatives in PDEs (2.3.1) and
(2.4.1), moreover, mixed versions were implemented, applying CDQ for the state vari-
ables Tg and Ts (hence equations (2.3.1a), (2.3.1b) and (2.4.1a)) and combined BDQ and
FDQ for the state variable Φ (equations (2.3.1c) and (2.4.1b)). Once again emphasizing
on the connection between for instance BDQ and MBDQ

∂y

∂x

∣∣∣∣
x=zl

≈ yl − yl−1

∆xl
for l = 1, . . . , Nx (3.3.26)

the defined backward differential quotient (cf. equation (3.3.8)) actually represents the
derivative at x = zl more accurately than the derivative at x = xl. As a result, a method,
which interpolates the derivative

∂y

∂x

∣∣∣∣
x=xl

at x = xl with a second order polynomial, using three points of

∂y

∂x

∣∣∣∣
x=xl

from→ ∂y

∂x
at x = zl−1, zl, zl+1 if ṁ < 0

∂y

∂x

∣∣∣∣
x=xl

from→ ∂y

∂x
at x = zl−2, zl−1, zl if ṁ > 0

(3.3.27)

the derivative in zl (interpolated central differential quotient - ICDQ), was also im-
plemented. The procedure of setting up the equations is quite analogous to the one
described in section 3.3.1.2. Since the results are almost identical to the method using
combined MBDQ and MFDQ, the formulation of equations will be no longer an area of
concerns.
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Figure 3.3.10: Comparison of MBDQ & MFDQ and ICDQ at different grid points xl
over time, with Nx + 1 = 130 in total.

38



However, if one zooms in figure 3.3.10 it can be recognized that at least a slight im-
provement (referring to t < 0.5s) could have been achieved.
The testing of higher order polynomials as candidates for interpolation confirmed that
the problem only gains complexity, whereas numerical oscillations accumulate with the
growing degree of polynomials. This might be the reason of the decreasing coefficient of
the solution at the current mesh point yl.

3.3.2 Second Order Derivative

There are various methods for calculating second order derivatives using differential
quotients. A method which relies on Taylor series [9], considering

yl+1 = yl + ∆xl+1
∂y

∂x

∣∣∣∣
xl

+
∆x2

l+1

2

∂2y

∂x2

∣∣∣∣
xl

+O(∆x3
l+1)

yl−1 = yl −∆xl
∂y

∂x

∣∣∣∣
xl

+
∆x2

l

2

∂2y

∂x2

∣∣∣∣
xl

+O(∆x3
l )

(3.3.28)

two series at l+ 1 and l− 1 up to the second order term was established. The first order
derivative can be expressed using the first equation, while the second one

∂2y

∂x2

∣∣∣∣
xl

≈ 2

(
yl+1 − yl

∆xl+1(∆xl + ∆xl+1)
− yl − yl−1

∆xl(∆xl + ∆xl+1)

)
for l = 1, . . . , Nx − 1

= 2
∆xl(yl+1 − yl)−∆xl+1(yl − yl−1)

∆xl∆xl+1(∆xl + ∆xl+1)
for l = 1, . . . , Nx − 1

(3.3.29)

serves for the approximation.

3.3.3 Boundary Conditions

At this point it has to be mentioned that the following application of the finite difference
method will only work properly, if there are sufficient small grid gaps at the boundaries.
The interconnection between grid points is guaranteed by the first and second order
space derivatives. Since the grid points at the borders l = 0 and l = Nx are represented
exactly, the first derivatives will be replaced by Neumann boundary conditions (2.3.2)
to (2.3.5) and (2.4.3) to (2.4.6) corresponding with sign of the mass flow. So the second
order derivatives only are responsible for keeping connection between grid points at the
boundaries. As a consequence, the infinitesimally small coefficient (f.i. Ia in the ceramic
bed, figure 2.3.2) at the second order space derivatives in the PDEs (2.3.1) and (2.4.1)
can provoke the connection loss between grid points. However, a gain of these coefficients
can be provided if small grid gaps appear in the dominator.
For demonstration, the simulation of a ceramic bed with the configuration from sec-
tion 3.3.1.1 applying an equidistant distributed mesh grid (figure 3.3.11) and a non-
equidistant distributed mesh grid (figure 3.3.12) using a trigonometric approach (cf.
equation 3.3.3) are compared. The switch of the RTO cycle was accomplished by the
time variant decrease of the mass flow, which changes its sign at t = 120s.
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Figure 3.3.11: Distribution of Tg after one RTO cycle switch applying an equidistant
mesh with Nx + 1 = 120 points.

Figure 3.3.12: Distribution of Tg after one RTO cycle switch applying a non-equidistant
mesh with Nx + 1 = 120 points.

40



As one can see in figure 3.3.11, the loss of connection in between points expresses after
the first RTO cycle switch at the boundary x = xNx = 1.2m, where the gas temperature
should cool down almost linearly (cf. figure 3.3.12). The second order derivatives can
be written as follows:

∂2y

∂x2

∣∣∣∣
xNx

≈

BCNx︷ ︸︸ ︷
∂y

∂x

∣∣∣∣
xNx

− ∂y

∂x

∣∣∣∣
xNx−1

∆xNx

(3.3.30a)

≈ 2

(∆xNx−1 + ∆xNx)

( BCNx︷ ︸︸ ︷
yNx − yNx−1

∆xNx

−yNx−1 − yNx−2

∆xNx−1

)
(3.3.30b)

∂2y

∂x2

∣∣∣∣
x0

≈

∂y

∂x

∣∣∣∣
x1

−

BC0︷ ︸︸ ︷
∂y

∂x

∣∣∣∣
x0

∆xNx

(3.3.30c)

≈ 2

(∆x1 + ∆x2)

(
y2 − y1

∆x2

−

BC0︷ ︸︸ ︷
y1 − y0

∆x1

)
(3.3.30d)

The first order derivatives, characterized by BCNx and BC0, appearing as part of the
second order derivative have to be replaced by the Neumann boundary conditions (2.3.2)
to (2.3.5) and (2.4.3) to (2.4.6) corresponding with sign of the mass flow. In order to
minimize the number of arithmetic operations, the calculation of the first order deriva-
tives of the ceramic temperature Ts can be avoided, since equation (2.3.1a) does not
include convection terms. Therefore the methods in reference to equation (3.3.30b) and
(3.3.30d) for approximating the second order derivative at the boundaries are used. Sim-
ulation results show that there is almost no visible difference between the method used
in equations (3.3.30a) & (3.3.30c) and the one used in (3.3.30b) & (3.3.30d), assuming
the first order derivatives are approximated by the methods in section 3.3.1.

3.3.4 Pressure

This section should clarify the issue how the pressure drop in the valve boxes 2.2.1, in the
ceramic beds 2.3.2 and in the combustion chamber 2.4.2 can be considered dynamically
in the simulation.
The absolute pressure as input of the RTO will certainly be in the range of the atmo-
spheric pressure at around 101325 Pa and will be decreased by the appropriate subsys-
tems. For instance, under the assumption that the mass flow enters the plant in side
A and leaves in side B, the pressure drop of the valve box A should lead to a decrease
of the input pressure pin of bed A and so on. Along with the next half cycle switch
this sequence will be changed and the pressure drop of the ceramic bed A should be
considered in the decrease of the input pressure pin of the valve box A. So the inputs
and outputs of valve boxes and the inputs and outputs of the ceramic beds, as well the
ones of the combustion chamber have to be connected with each other, since Simulink
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does not allow the dynamic linking of blocks during simulation. As a consequence, the
appearance of algebraic loops complicates the processing of Simulink models and may
possibly demand significantly longer computation times, presuming that the algebraic
loops can be solved. However, the solvability of the algebraic loops can not be guar-
anteed at cycle switches. In case of the connection between state variables and input
sources like Tg,in or Φin this will be no problem, because the Integrator block in between
explicitly breaks the loop. The issue with these algebraic differential equations should
have been made more comprehensible, since their calculation demands the explicit use
of the state variable Tg and not of its derivative.

3.3.4.1 Approximation of Integrals

Initially, the discretization of space will lead to the necessity of approximating integrals in
the relation of the pressure drop inside of the i = 1, . . . , Nl ceramic layers (cf. equation
(2.3.16)), considering the layer inlet points l = lin0 , l

in
1 , . . . , l

in
Nl−1 and the layer outlet

l = lout1 , lout2 , . . . , loutNl
points (space xbed of the ceramic bed)∫ xouti

xini−1

ηg(Tg(x,t))Tg(x, t)dx ≈
louti −1∑
l=lini−1+1

ηg(Tg(xl,t))Tg(xl, t) + ηg(Tg(xl−1,t))Tg(xl−1, t)

2
∆xl

(3.3.31)
as well as the integral in the calculation of the mean gas temperature (cf. equation
(2.4.9)).

Tg,mean(t) ≈ 1

Lcc

Nxcc∑
l=1

Tg(xcc,l, t) + Tg(xcc,l−1, t)

2
∆xcc,l (3.3.32)

Considering the two different half cycles of the two-bed RTO, the following relations
concerning the input parameter pin can be determined.

Input Output

VB A pin = 101325Pa pvbA,out
BED A pin = pvbA,out −∆pA,vb pbedA,out
CC pin = pbedA,out−∆pA,in−∆pA,pipe−∆pA,out pccout
BED B pin = pccout −∆pcc pbedB,out
VB B pin = pbedB,out−∆pB,in−∆pB,pipe−∆pB,out pout

Table 3.3.3: Pressure input parameter pin in the first half cycle of the RTO.

Input Output

VB B pin = 101325Pa pvbB,out
BED B pin = pvbB,out −∆pB,vb pbedB,out
CC pin = pbedB,out−∆pB,in−∆pB,pipe−∆pB,out pccout
BED A pin = pccout −∆pcc pbedA,out
VB A pin = pbedA,out−∆pA,in−∆pA,pipe−∆pA,out pout

Table 3.3.4: Pressure input parameter pin in the second half cycle of the RTO.
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The calculation of the sum of the pressure drop at the layer inlet points ∆pin (equation
(2.3.13)), as well as at the layer outlet points ∆pout (equation (2.3.14)) of the ceramic bed
is covered in section 2.3.2, whereas the calculation of the pressure drop in the combustion
chamber can be found in section 2.4.2.

3.3.4.2 Algebraic Loops

The appearance of algebraic loops can be attributed to the linkage of inputs and outputs
of submodels concerning the absolute pressure. Although the loops are not closed inside
of the cycles, Simulink discovers mutual dependencies due to the physical connection in
the block diagram. The switch between inputs/outputs was implemented using Switch
blocks, which are controlled by the sign of the mass flow.
These dependencies can be entirely suppressed if Simulink models are processed for
each cycle, which demands the need of four valve boxes, four ceramic beds and two
combustion chamber models as far as a two-bed configuration is concerned. In other
words, the implementation of n different RTO models will be necessary for simulating
the behavior of a n-bed RTO configuration, whereas only one single RTO model needs
to be enabled in the appropriate cycle. One of the challenges of this method is the
establishment of the communication between these different RTO models, since e.g. the
states of integrators have to be exchanged. Michael Wieser set the focus on this method
of implementing due to the application of Interpreted MATLAB Functions, which do
not break algebraic loops like Integrator blocks in Simulink.
Attempts of replacing Switch blocks by more advanced combinations of other blocks
failed, but in order to establish a proper connection without using delay elements another
approach was made.

d
dt

+

∫

−
G

+ −1

pout p̃out

Figure 3.3.13: Method for breaking algebraic loops concerning the pressure.

Taking the derivative of the outlet pressure pout and integrating afterwards produces
an explicit break point in the algebraic loop. The error made by the approximation of
the derivative, as well as by the approximation of the integration will be asymptotically
stable, since a negative gain of this error will be fed back. Almost no visible difference
between pout and p̃out can be seen when using a gain of e.g. G = 103. The addition
of the derivatives of the equations for the output pressure as a coupled one to the
model’s differential equations would be another possibility, whereas consequentially the
derivatives of input parameters such as pin would have to be approximated as well.
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3.4 Numerical Precaution

This section briefly introduces a simple action in order to reduce numerical oscillations,
which will be provoked due to the quite high range difference ∼ 106 between the volume
fraction of VOCs and temperatures. The application of a numerical factor e.g. αΦ = 107

in models’ differential equations (2.2.1), (2.3.1) and (2.4.1), considering a function f(.)
describing the time derivative in dependence of Φ

∂ (αΦΦ)

∂t
= f

(
αΦΦin, αΦΦ,

∂(αΦΦ)

∂x
,
∂2(αΦΦ)

∂x2

)
(3.4.1)

effectively suppresses numerical issues. If one analyzes the mentioned equations in more
detail, it can be seen that the function f(.) applied on these equations is linear in Φ and
in the input parameter Φin.

Φ =
1

αΦ

∫
t

f

(
αΦΦin, αΦΦ,

∂(αΦΦ)

∂x
,
∂2(αΦΦ)

∂x2

)
dt

=
1

αΦ

∫
t

αΦf

(
Φin,Φ,

∂Φ

∂x
,
∂2Φ

∂x2

)
dt

=

∫
t

f

(
Φin,Φ,

∂Φ

∂x
,
∂2Φ

∂x2

)
dt

(3.4.2)

The applied Integrator and Embedded MATLAB Function blocks for processing gradients
exclusively deal with the quantity αΦΦ, whereas outside of these blocks the real Φ can be
provided by the appropriate gain 1/αΦ. As a result, the reaction heat in the derivatives
of the gas temperature also need to be divided by αΦ.

3.5 RTO Cycle Switch

RTO cycle switches are controlled by the sign of the mass flow ṁ, which certainly ap-
pears as input parameter in all submodels of the plant. At the beginning of this thesis
simulation was terminated at the end of one cycle and then continued by the start with
the opposite sign of the mass flow. The modification of the function call interval (see
section 3.2) to one second did not change this method of switching.
The merging of all submodels to one united system for simulation facilitated the estab-
lishment of a continuous change in the mass flow from positive to negative sign or vice
versa. So the switches in between RTO cycles ensues dynamically without terminating
the simulation. It turned out that the sharp edges in ṁ force the step sizes in time to
become infinitesimally small and occasionally the solver algorithm does not converge.
As a result, the application of the central differential quotient (CDQ in equation (3.3.7))
for approximating first order derivatives particularly endangers convergence and thus
will not be used. Early attempts of using a square signal for the mass flow with a half
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period of τ = 120s pointed out that most computation time is spent for switches. So
not only convergence benefits from a continuous change in ṁ, also computation time.

The modelling of the change in the mass flow during the switches was accomplished by
a polynomial

pṁ(t̃) = ap3 t̃
3 + ap2 t̃

2 + ap1 t̃+ ap0 (3.5.1)

almost identical to the one used for the distribution of space (cf. equation (3.3.4)). Since
the absolute value |ṁ| eventually varies due to model intern characteristics, the poly-
nomial moves between pṁ ∈ [−1, 1] considering a transition time ttrans in t̃ ∈ [0, ttrans].
The following conditions

pṁ(t̃ = 0) = −1

dpṁ

dt̃

∣∣∣∣
t̃=0

= 0

pṁ(t̃ = ttrans) = 1

dpṁ

dt̃

∣∣∣∣
t̃=ttrans

= 0
(3.5.2)

lead to the system: 
1 0 0 0
0 1 0 0
0 1 2ttrans 3t2trans

1 ttrans t2trans t3trans



ap0
ap1
ap2
ap3

 =


−1
0
0
1

 (3.5.3)

The transition time highly depends on the characteristics of the valves in the valve boxes.
According to product specifications the transition can be guaranteed within ttrans = 3s
with an average of about two seconds.
The more challenging part was to accomplish the periodical change of the mass flow,
whereas the period of one half cycle can also depend on inner system quantities and
therefore can be understood as control variable. Therefore the RTO half cycle period has
to be interpreted as τ(t) time function, or even dependent on sensor signals. Considering
the modified time

t̃(t, τ) :=

(
t+

ttrans

2

)
(mod τ) (3.5.4)

(the addition of ttrans/2 is required if pṁ should affect both half cycles) for the polynomial
approach and the square function s(t, τ) for generating cycle switches, the mass flow can
be specified by:

s(t, τ) := sign
(

sin
(π
τ
t
))

ṁ = ṁabs(t)

{
s
(
t+ ttrans

2
, τ
)
pṁ(t̃) for 0 ≤ t̃ < ttrans

s(t, τ) for ttrans
2
≤ t (mod τ) < τ − ttrans

2

(3.5.5)

On the one hand the absolute mass flow ṁabs characterizes the input parameter of the
overall plant, on the other hand it can actually change in submodels. For instance the
fuel mass flow ṁfuel and the more or less corresponding portion of air ṁair are added
at the location of the burner in the system, or the consideration of bypasses would also
require the modification of the mass flow ṁ at the appropriate locations in the model.
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Therefore the modification of ṁabs, referring to the definition in equation (3.5.5) would
be sufficient. For demonstration, a small half cycle period of τ = 10s, a transition time
of ttrans = 3s and a constant absolute mass flow of ṁabs = 0.2383kg/s are considered in
figure 3.5.1.
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Figure 3.5.1: Modelling of the mass flow for a continuous RTO cycle switch.

Due to discontinuities (figure 3.5.2) for small |ṁ| < 10−3 in the Nusselt equation (2.3.8)
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Figure 3.5.2: Discontinuities for small |ṁ| < 10−3 in the Nusselt equation.

and numerical advantages, values smaller than |ṁ| < ṁmin = 10−3 are set to sign (ṁ) ·
ṁmin with the appropriate sign during cycle switches in the polynomial pṁ.
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It will be seen later on, it is highly recommended to replace the polynomial pṁ with a
function, which is based on measurements. This function should describe the dynamic
decrease of the mass flow specified by the valve boxes during switches.

3.6 Résumé and Thoughts on Improvement

Computation Time
In direct comparison between the Matlab intern pdepe solver and the processed Simulink
models using the stiff ode15s solver, a significant boost concerning subsystems e.g. at
the calculation of the ceramic bed could have been achieved, whereas same principles
are used. So the pdepe solver also discretizes the PDEs in space and then assigns the
ode15s solver as well to determine step sizes in t.
The main cause for this boost can be attributed to the fact, that the pdepe solver it-
erates through the points in space l = 0, . . . , Nx (up to versions 2015), whereas the
space-gradients were processed by taking advantage of matrix and vector operations.
However, this aspect motivated the modification of pdepe solver and as a consequence
the performance of the simulation of Thomas Rieger and Michael Wieser could be im-
proved as well.
After linking all submodels to one large model for the two-bed RTO a large amount of
coupled differential equations demand intensive computational power. Recapitulating,
there are two times three ODEs for the valve boxes, two times three times 130 (amount
of grid points) ODEs for the ceramic bed and two times 120 (amount of grid points)
ODEs for the combustion chamber, which leads to 1146 coupled differential equations for
a two-bed RTO without any consideration of preprocessing, sensors, control feedback
loops, sampling, and additional systems such as fans, which control the volume flow
through the plant, or hot, respectively cold bypass, etc. Under common circumstances
this would not be a problem, but the request of simulation times of up to 30 hours as
a result of the inertial thermal processes, places high demands on the processor, the
memory and the overall hardware architecture.
Again, this would not be a big deal when using stiff solvers like ode15s, but as already
mentioned, the RTO cycle switches cause substantial changes in the solution at an al-
most infinitesimal small period of time. Thus the solver algorithm is forced to tighten
step sizes periodically corresponding with the RTO half cycles. Furthermore, the con-
tinuous communication between blocks/models (see section 3.2) sensitizes the situation
due to stability issues.
In hindsight, it might be advantageous to keep the discretized communication between
the blocks (see section 3.2) and the separated calculation of submodels, since conver-
gence probably benefits. Although one might have to compare these two concepts of
implementing in detail, in order to determine the origins of the major differences in
the solution, whereas implementation errors can never be completely excluded. The
suppression of the change of inputs inside function call intervals (see section 3.2) pre-
sumably causes errors, in particular during cycle switches, which remains a substantial
aspect worth to analyze. Since this thesis focuses on control, there was no time left to
pay further attention to these issues.
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Applied Software
The intense use of matrix and vector operations in order to process gradients for the
PDEs stimulated the application of Embedded MATLAB Function blocks in Simulink.
These blocks significantly outperform the Interpreted MATLAB Function blocks in terms
of speed, although their (programming) syntax needs to be more restrictive, since they
are interpreted in C code. This form of implementation has facilitated the application
of the Rapid Accelerator Mode, which produces a standalone executable program of the
model. Although the gain in speed is quite modest, this can be considered the first step
towards the establishment of an embedded system operating on a real time capable OS.
Allowing a more differentiated view, it might be advisable to consider the possibility
of using another programming environment, since there presumably is high potential in
terms of speed, as long as one is aware of the high implementation effort.

Thoughts on Improvement
The code analysis of the pdepe solver pointed out that the application of ode15s solver
settings like the predefined JPattern, the Jacobian pattern, which describes the mutual
dependencies of the state variable vector by means of a block diagonal matrix, would
help to avoid iterations through the grid points in space, when using the solver intern
odenumjac(.) or numjac(.) function. Along with the ode15s setting Vectorized ’on’,
performance could be improved rapidly, at least when using Matlab without Simulink.
However, this option would demand the handling of multiple state vector inputs in the
time derivative function F (.) at once

d

dt

 y0,1 y0,2 . . . y0,n
...

...
...

yNx,1 yNx,2 . . . yNx,n

 =
d

dt

(
y1 y2 . . . yn

)
= F

([
y1 y2 . . . yn

])

which is quite challenging considering all parameter dependencies of the differential
equations. The bad news is that Simulink and Matlab use different versions of the
stiff ode15s solver and as a consequence these options are not available in Simulink,
as far as I have experienced. Research in Mathworks forums remained unsuccessful,
only a comment on the Mass option [13] rises the hope, that there eventually exists an
undocumented solution.
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4 Sensor Systems

At the moment the amount of available sensor data, which can be used for control
purposes, is quite limited, whereas the quality of these signals has to be questioned.
Restricted to the measurement of temperatures the aim to control, respectively to min-
imize the portion of VOCs, spending as few energy as possible results in a challenging
task for engineers.
This thesis sets focus on the temperatures in the combustion chamber and hence the sen-
sors located in this area have received adequate attention. The presumption, based on
experience and scientific knowledge, that temperature sensors designed for the combus-
tion chamber feature significant long response times, could be verified by mathematical
models. The almost complete lack of measurement data endangers the quality of the
informative value, given by these models.

4.1 Temperature Sensors in the Combustion Cham-

ber

In the pilot plant two temperature sensors consisting of straight thermocouples with the
following type

straight thermocouple AMK 1 × NlCr-Ni
nominal length 400mm
protective steel tube WNr. 1,4762 ∅ 22 × 2mm
inner ceramic tube of type KER710 (C799), ∅ 16 × 2mm
connector head form type AUSH, protection class IP 54
silicone sealant
DIN IEC 584-2 type K, class 1
CTP-Nr. AU.20.01.04.01

Table 4.1.1: Characteristics of the temperature sensors in the pilot plant.

are installed next to the burner, whereas the construction of temperature sensors in
combustion chambers in general, in all Regenerative Thermal Oxidizers, is quite identical.
Research on the modelling of sensors in harsh environments and high temperatures leads
to a paper about temperature sensors in biomass furnaces [14], featuring the almost
identical construction.
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Figure 4.1.1: Construction of the temperature sensors in the combustion chamber
(source: [14], figure 7).

4.1.1 Modelling

The modelling of the two temperature sensors located next to the burner in the combus-
tion chamber is based on the sections 2 to 4 in the paper What Is Really Measured by
Temperature Sensors in a Biomass Furnace ? [14]. See Appendix for more information
regarding parameter values of the sensors.

4.1.1.1 Theoretical Basis on Heat Flow and Radiation

Considering the exchange of energy by the release or absorption of heat of an isothermal
body with the temperature T , the differential equation

dT

dt
=

1

mc

∑
Q̇ (4.1.1)

involving the mass m, the heat capacity c and the sum of all incoming heat flows Q̇,
describes the dynamic behavior of the temperature.

Regarding the modelling of exchanging energy by radiation in between two isothermal
bodies 1 and 2 with surfaces A1 and A2, emissivity ε1 and ε2 and temperatures T1 and
T2, a simple configuration is considered, assuming that surface of body 2 will entirely
cover the surface of body 1. As a consequence, the heat flow Q̇12 by radiation from body
1 to body to 2 can be described by [14]

Q̇12 = A1ε12σ(T 4
1 − T 4

2 ) (4.1.2)

applying the Stefan-Boltzmann-constant σ and the radiational exchange number

ε12 =

(
1

ε1
+
A1

A2

(
1

ε2
− 1

))−1

. (4.1.3)
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In case the surface of body 2 is considerably much larger than the surface of body 1
(A2 � A1), the heat flow caused by radiation can be specified in good approximation
by:

Q̇12 = A1ε1σ(T 4
1 − T 4

2 ) (4.1.4)

4.1.1.2 Heat Transfer between Steel tube and Gas

The exchange of energy, respectively the heat flow Q̇ between the flowing flue gas (Tg)
and the protective steel tube (TST) can be specified by conductive heat transfer

Q̇conv,ST-g = mSTcST
dTST

dt
= hSTAST(Tg − TST) (4.1.5)

introducing the heat transfer coefficient hST, the effective surface AST, the mass mST and
the specific, constant heat capacity cST of the steel tube. The calculation of the heat
transfer coefficient ensues similar to the one for the ceramic bed (2.3.7)

hST = NuST(ṁ, Tg)
λg(Tg)

dh,ST
(4.1.6)

considering the empiric Nusselt number NuST, the heat conductivity λg and the constant
parameter dh,ST, describing the hydraulic diameter of the steel tube. The empiric relation
of the Nusselt number resembles the one used for the ceramic bed (cf. equation (2.3.8)),
depending on the dimensionless Prandtl Pr and Reynolds ReST number, considering the
borders 10 < Re < 107 and 0.6 < Pr < 1000.

ReST =
|ṁ| dh,ST
Acc ηg(Tg)

Pr =
ηg(Tg)cg(Tg)

λg(Tg)
(4.1.7)

NuST = 0.3 +

√(
0.664

√
ReST

3
√

Pr
)2

︸ ︷︷ ︸
laminar part

+

(
0.037Re0.8

ST Pr

1 + 2.443Re−0.1
ST (Pr2/3 − 1)

)2

︸ ︷︷ ︸
turbulent part

(4.1.8)

Taking a closer look at equation (4.1.8), one may notice that the Nusselt number can
be interpreted as a function of the gas temperature and the mass flow only, which will
be helpful for further considerations.

4.1.1.3 Heat Transfer between Thermocouple and Ceramic Tube

The difference |TCe − TSe|, considering the convective heat flow Q̇conv,Se-Ce between the
temperature of the thermocouple and the ceramic tube

Q̇conv,Se-Ce = mSecSe
dTSe

dt
= hSeASe(TCe − TSe)

y
dTSe

dt
=

1

mSecSe
Q̇conv,Se-Ce

(4.1.9)

or vice versa, will decrease rapidly in comparison to the difference |TST − TSe|, as the
mass of the thermocouple mSe will be significantly small. As a result, the temperature
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of the thermocouple can be equated to the temperature of the ceramic tube in good
approximation (cf. section 3 and 4 in [14]).

TSe ≈ TCe (4.1.10)

4.1.1.4 Heat Transfer between Thermocouple and Steel Tube

Analogous to above, the convective heat transfer between the thermocouple and the
ceramic tube can be specified as follows:

mSTcST
dTST

dt
= hCeACe(TSe − TST) (4.1.11)

whereas the temperature of the ceramic tube TCe was replaced by the temperature of
the thermocouple TSe. The heat transfer coefficient in terms of equation (4.1.11) can be
assumed constant, since no gas mixture will reach the inside of the sensor.
In addition to the convective part, the radiation between the surface of the steel and the
ceramic tube has to be taken into account

mSTcST
dTST

dt
= ACeεST,Ceσ(T 4

ST − T 4
Ce)

≈ ACeεST,Ceσ(T 4
ST − T 4

Se)
(4.1.12)

whereas the temperature of the ceramic tube TCe will be replaced by TSe in a second
step. The emissivity

εST,Ce =

(
1

εST
+
AST

ACe

(
1

εCe

− 1

))−1

(4.1.13)

referring to equation (4.1.3) applies the emissivity of both bodies to their surface ratio.

4.1.1.5 Radiation between Steel Tube and Wall

The radiation between the protective steel tube of the sensor and the wall of the com-
bustion chamber must not be neglected due to high temperatures near the burner. The
temperature of the combustion chamber wall remains one decisive aspect being uncer-
tain, since the form of consideration in the differential equations demands the usage
of a single temperature Tcc,wall, representative for the distribution of the temperature
over the entire inner surface of the combustion chamber. In a first approximation the
assumption was made, that Tcc,wall depends linearly on the gas temperature Tg and the
ambient temperature Tamb

Tcc,wall =
αcc,wallTg + kss,lossTamb

αcc,wall + kss,loss
(4.1.14)

whereas the linear parameters were determined by empiric knowledge. As one can see
in section 4.1 in [14], the modelling of this temperature demands further attention and
highly depends on the geometric characteristics, as well as on the gas composition and
on the reaction of VOCs and consequentially, on the exact position of the sensors in the
combustion chamber. The usage of a dynamic model similar to the one in [14] could
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probably improve accuracy, although the model in equation (4.1.14) might be sufficient
in case the parameters αcc,wall and kss,loss will be verified and eventually adjusted to mea-
surement data.

Since the inner surface of the combustion chamber can certainly be considered much
larger than the effective surface of the protective steel tube of one of the sensors, the
equation

mSTcST
dTST

dt
= ASTεSTσ(T 4

ST − T 4
cc,wall) (4.1.15)

presumably identifies radiation to a sufficient level of detail, as long as one is aware of
the issue regarding Tcc,wall.

4.1.1.6 Final Model

Introducing the definitions

css,1 :=
hSTAST

mSTcST

css,3 :=
hCeACe

mSTcST

css,5 :=
hCeACe

mCecCe

css,2 :=
ASTεST
mSTcST

σ

css,4 :=
ACeεST,Ce

mSTcST
σ

css,6 :=
ACeεST,Ce

mCecCe

σ

(4.1.16)

the second order mathematical model [14]

dTST

dt
= css,1(Tg − TST) + css,2

(
T 4
cc,wall − T 4

ST

)
+ css,3(TSe − TST) + css,4

(
T 4

Se − T 4
ST

)
(4.1.17a)

dTSe

dt
= css,5(TST − TSe) + css,6

(
T 4

ST − T 4
Se

)
(4.1.17b)

describes the dynamic behavior of the temperature of the protective steel tube, cou-
pled to the temperature of the thermocouple of the sensors, located in the combustion
chamber. It will be noted that the condition as a result of the definitions (4.1.16)

css,3css,6 = css,4css,5 (4.1.18)

might facilitate the determination of the coefficients css,j ∀j.
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4.1.2 Restoring of the Original Gas Temperature

Analyzing the equation (4.1.17), the determination of the original gas temperature Tg
by the sensor signal TSe can not be considered trivial. Tg obviously appears as input
parameter in the ordinary differential equation, hence the application of observers be-
comes problematic.
The restoring of the original gas temperature by taking advantage of the knowledge
provided by the mathematical model in equation (4.1.17) is therefore separated in two
steps. At first the temperature of the steel tube has to be calculated and then the
gas temperature. The method of recalculating Tg is simply based on the search of zero
points of polynomials, which feature 4th degree as a result of thermal radiation. Since
this method solves algebraic equations only, the derivatives

dTST

dt
and

dTSe

dt

need to be somehow approximated, whereas the quality of their approximation sub-
stantially affects the accuracy of the restored gas temperature. The dependency of the
thermal coefficient hST on Tg, as well as on ṁ additionally aggravates the determination
of Tg.

4.1.2.1 Restoring TST from TSe

In order to calculate the temperature of the steel tube TST from the actually measured
temperature (of the thermocouple) TSe, the equation (4.1.17b) receives the form (cf.
equation (36) and (37) in [14])

0 = T 4
ST +

css,5
css,6︸︷︷︸
=d

TST +
1

css,6

(
−css,5TSe − css,6T 4

Se −
dTSe

dt

)
︸ ︷︷ ︸

=e

(4.1.19)

of a 4th order polynomial with coefficients e and d, assuming that the derivative dTSe
dt

is
known. For determining TST in each time step, an analytical solution for the appropriate
real and positive zero point is preferable in terms of computational effort. It is worth
mentioning, that thanks to the definitions (4.1.16) and the physical meanings of the
parameters, the coefficient d > 0 remains strictly positive.
There certainly exist four zero points, whereas two will be complex and one negative,
which leads to one remaining possibility for TST. As a consequence of the strictly positive
coefficient d and the missing coefficients at TST to the power of two and three, the real
and positive solution will not change its position among the zero points. Lodovico Ferrari
could reduce the problem, so it requires the zero points of a third order polynomial (cubic
resolvent) to be found, which was achieved by Gerolamo Cardano [14].

w =
3

√√√√d2

16
+

√(
d2

16

)2

−
(e

3

)3

+
3

√√√√d2

16
−

√(
d2

16

)2

−
(e

3

)3

TST =

√
d

2
√

2w
− w

2
−
√

2w

2
(4.1.20)
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The appropriate solution remains positive and real, even in the case of a negative dis-
criminant as a reason of the structure.

4.1.2.2 Restoring Tg from TSe and TST

The method of restoring the original gas temperature turns out to be more complicated,
whereas the same principle is used. Again, a polynomial form

0 = T 4
cc,wall +

css,1
css,2

Tg −
css,1
css,2

TST

+
1

css,2

(
−css,2T 4

ST + css,3(TSe − TST) + css,4
(
T 4

Se − T 4
ST

)
− dTST

dt

) (4.1.21)

will help to reduce the problem to the search of zeros points. Assuming that the tem-
perature Tcc,wall depends linearly on Tg, it will be beneficial to solve the polynomial for
Tcc,wall (equation (4.1.14))

0 = T 4
cc,wall +

css,1
css,2

(
1 +

kss,loss
αcc,wall

)
Tcc,wall −

css,1
css,2

(
TST −

kss,loss
αcc,wall

Tamb

)
+

1

css,2

(
−css,2T 4

ST + css,3(TSe − TST) + css,4
(
T 4

Se − T 4
ST

)
− dTST

dt

) (4.1.22)

in the first place and recalculate Tg after the desired zero point has been determined.
The aim will be to formulate a depressed quartic polynomial [15]

0 = T 4
cc,wall + pT 2

cc,wall + qTcc,wall + r (4.1.23)

in Tcc,wall with the coefficients p, q and r. The dependency of coefficient css,1, respectively
of the transfer coefficient hST on Tg needs to be considered in more detail.

Heat Transfer Coefficient
In reference to equation (4.1.6), the heat transfer coefficient can explicitly be interpreted
as function of the mass flow and the gas temperature, whereas the complex relations
in equation (4.1.7) and (4.1.8) have to be somehow defused in mathematical terms.
Analysis on the distribution of hST over the gas temperature in the area of interest
Tg ∈ [0, 1100]◦C confirmed that the dependency can be considered linear in good ap-
proximation, particularly in that range.
Although one may not forget the additional dependency on the mass flow, which leads
to a continuous distribution of parameter hST over ṁ and Tg. In [14] the assumption
was made that the gas velocity (in the biomass furnace)

u =
ṁ

Aρg(Tg, pin)

is known and as a result the heat transfer coefficient could be parameterized by the
velocity hST ≈ hST(u). Hence, the solution of equation (4.1.22) could be provided by the
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same method used for calculating TST out of TSe in section 4.1.2.1, considering

d =
css,1
css,2

(
1 +

kss,loss
αcc,wall

)
e = −css,1

css,2

(
TST −

kss,loss
αcc,wall

Tamb

)
+

1

css,2

(
−css,2T 4

ST + css,3(TSe − TST) + css,4
(
T 4

Se − T 4
ST

)
− dTST

dt

)
for equation (4.1.20). In this thesis another, more accurate concept was developed, which
requires the knowledge of the mass flow ṁ, instead of u. The idea was to interpolate
the continuous surface of hST by another linear (in Tg) polynomial

hST(ṁ, Tg) ≈ phST(ṁ, Tg) = a1Tg + a2ṁTg + a3ṁ+ a4ṁ
2 + a5 (4.1.24)

with coefficients ai for i = 1, . . . , 5 to be determined. For the following consideration
parameters were adapted to air (table 6.1.1 and 6.1.2), referring to λg, ηg and cg. Using
the free polyfitn toolbox [16] the parameters could be calculated in the way that the
variance of the error (of a chosen set of values) between hST and phh has been minimized.
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Figure 4.1.2: Approximation (phST - white mesh) of the heat transfer coefficient (hST -
colored mesh).

In order to gain maximal accuracy this method was extended, which presumably will
not be necessary due to the interference of the far less accurate approximation of the
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derivatives of TSe and TST. Nevertheless, the usage of np polynomials of form (4.1.24)

hST(ṁ, Tg) ≈ pj,hST(ṁ, Tg) = aj,1Tg + aj,2ṁTg + aj,3ṁ+ aj,4ṁ
2 + aj,5 for j = 1, . . . , np

(4.1.25)
corresponding with np regions [ṁj, ṁj−1) for j = 1, . . . , np between np + 1 borders
vTṁ =

[
ṁ0 . . . ṁnp

]
of ṁ could help to improve the quality of the approximation. The

distances between borders were chosen with equal length, depending on the number of
regions.
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Figure 4.1.3: Approximation (phST - white mesh) of the heat transfer coefficient (hST -
colored mesh) by np = 10 polynomials.

The processing in Matlab is comfortable to handle by taking advantage of matrix and
logic operations. Introducing

AhST :=

 a1,1 . . . a1,5
...

...
anp,1 . . . anp,5

 (4.1.26)

the appropriate polynomial coefficient vector pTj,h :=
[
aj,1 . . . aj,5

]
can be chosen by

the Matlab code: pTh = AhST(sum(vTṁ < abs(ṁ)), :), assuming positive borders. AhST ,
as well as vTṁ should be calculated in preprocessing.
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Solution
At first the split of the parameter according to the definition in (4.1.16)

css,1 = hST(ṁ, Tg)c̃ss,1

≈ phST(ṁ, Tg)c̃ss,1 = Tg(a1 + a2ṁ)c̃ss,1 + (a3ṁ+ a4ṁ
2 + a5)c̃ss,1

(4.1.27)

in one dependent and one independent part is required, replacing the gas temperature

css,1 ≈ Tcc,wall c̃ss,1

(
1 +

kss,loss
αcc,wall

)
(a1 + a2ṁ)

+ c̃ss,1

(
(a3ṁ+ a4ṁ

2 + a5)− Tamb
kss,loss
αcc,wall

(a1 + a2ṁ)

) (4.1.28)

and thereafter reformulating equation (4.1.22)

0 = T 4
cc,wall + T 2

cc,wall

c̃ss,1
css,2

(
1 +

kss,loss
αcc,wall

)2

(a1 + a2ṁ)

+ Tcc,wall

c̃ss,1
css,2

(
(a3ṁ+ a4ṁ

2 + a5)− Tamb
kss,loss
αcc,wall

(a1 + a2ṁ)

)(
1 +

kss,loss
αcc,wall

)
+ Tcc,wall

c̃ss,1
css,2

(
kss,loss
αcc,wall

Tamb − TST

)(
1 +

kss,loss
αcc,wall

)
(a1 + a2ṁ)

+
c̃ss,1
css,2

(
kss,loss
αcc,wall

Tamb − TST

)(
(a3ṁ+ a4ṁ

2 + a5)− Tamb
kss,loss
αcc,wall

(a1 + a2ṁ)

)
+

1

css,2

(
−css,2T 4

ST + css,3(TSe − TST) + css,4
(
T 4

Se − T 4
ST

)
− dTST

dt

)
(4.1.29)

so that the coefficients p, q and r of the quartic polynomial (4.1.23) can explicitly be
determined and read off the equation (4.1.29). The solution can be provided by

γ = − p

12
− r δ = − p3

108
+
pr

3
− q2

8

w =
3

√√√√−δ
2

+

√(
δ

2

)2

+
(γ

3

)3

+
3

√√√√−δ
2
−

√(
δ

2

)2

+
(γ

3

)3

− 5

6
p (4.1.30)

Tcc,wall =



√
p+ 2w +

√
−3p− 2w − 2q√

p+2w

2
for

(
−3p− 2w − 2q√

p+2w

)
≥ 0

−
√
p+ 2w +

√
−3p− 2w + 2q√

p+2w

2
for

(
−3p− 2w + 2q√

p+2w

)
> 0

Tg =
(αcc,wall + kss,loss)Tcc,wall − kss,lossTamb

αcc,wall

(4.1.31)
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assuming a positive discriminant
(
δ
2

)2
+
(
γ
3

)3 ≥ 0 in equation (4.1.30), as well as a positive
mass flow ṁ > 0 in equation (4.1.29) and more importantly a non zero coefficient q 6= 0.

The condition
(
δ
2

)2
+
(
γ
3

)3 ≥ 0 assures that the two cases in equation (4.1.23) do not
interfere, however one has to be cautious. Since the derivative of TSe and TST has to
be somehow approximated, it eventually occurs that the mentioned discriminant goes
negative and as a result provokes complex solutions. This case needs to be intercepted
by for instance taking the absolute value of the discriminant in equation (4.1.30). In
case q = 0 the polynomial

0 = T 4
cc,wall + pT 2

cc,wall + r (4.1.32)

can easily be solved by substitution of the quadratic temperature.

4.1.2.3 Mathematical Background on a Depressed Quartic Polynomial

This section briefly introduces a method for solving a depressed quartic polynomial

f(y) = y4 + py2 + qy + r

which can be traced back in history to the mathematician Lodovico Ferrari and his
teacher Gerolamo Cardano in the 16th century [17]. The aim will be to factorize function
f , assuming f(y) and the solutions to be rational numbers Q [15]. Ferrari considered
the equation

y4 + py2 = −qy − r
and aimed a quadratic form

y4 + 2py2 + py2 = py2 − qy − r + py2

(y2 + p)2 = py2 − qy − r + py2

by introducing another variable w inside the square on the left hand side and comple-
menting the right hand side.

(y2 + p+ w)2 = py2 − qy − r + p2 + 2(y2 + p)w + w2

= y2(p+ 2w)− qy + (p2 − r + 2pw + w2)

This form can be accomplished if the discriminant of the right hand side disappears,
hence the problem was reduced to the search of zero points of a 3rd order polynomial,
the cubic resolvent R.

0 = (−q)2 − 4(p+ 2w)(p2 − r + 2pw + w2)

R = w3 +
5

2
pw2 + (2p2 − r)w +

1

2

(
p3 − pr − 1

4
q2

)
As a result, the right hand side of the original problem receives two zero points at q

2(p+2w)

and after taking the square root, one obtains

±1(y2 + p+ w) = ±2

√
p+ 2w

(
y − q

2(p+ 2w)

)
.
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Considering the positive and negative sign of the square root

y2 −
√
p+ 2wy +

q

2
√
p+ 2w

+ p+ w = 0

y2 +
√
p+ 2wy − q

2
√
p+ 2w

+ p+ w = 0

two quadratic equations finally lead to four solutions (cf. equation (4.1.31)).

y1,2 =
1

2

(√
p+ 2w ±

√
−3p− 2w − 2q√

p+ 2w

)

y3,4 =
1

2

(
−
√
p+ 2w ±

√
−3p− 2w +

2q√
p+ 2w

)

Furthermore one has to provide a value for the variable w as a solution of the cubic
resolvent R. In order to gain a depressed cubic polynomial

g(t) = t3 + γt+ δ

to apply the method of Cardano, the Tschirnhaus transformation [17]

w = t− 1

3

(
5

2
p

)
helps to reduce the resolvent R. Considering the new coefficients

γ = − p

12
− r δ = − p3

108
+
pr

3
− q2

8

(cf. equation (4.1.30)), Cardano introduces two auxiliary variables u and v, so that the
conditions [17] δ = v − u

uv =
(γ

3

)3

t = 3
√
u− 3
√
v

in fact solve the depressed cubic resolvent. Consequentially, the first two conditions from
above finally lead to

v2 + vδ −
(γ

3

)3

= 0 v = u+ δ

a quadratic function to be solved. Now one is capable to sum up

t =
3

√√√√−δ
2

+

√(
δ

2

)2

+
(γ

3

)3

+
3

√√√√−δ
2
−

√(
δ

2

)2

+
(γ

3

)3

(cf. equation (4.1.30)), whereas w = t− 5
6
p. This equation provides one real solution and

two complex ones, in case
(
δ
2

)2
+
(
γ
3

)3
> 0, a triple real solution if

(
δ
2

)2
+
(
γ
3

)3
= 0 and

quite fascinating three real solutions if
(
δ
2

)2
+
(
γ
3

)3
< 0, which provokes the involvement

of complex numbers. According to this last case (”casus irreducibilis“), no real solutions
can be obtained using algebraic methods [17].
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4.1.2.4 Approximation of Derivatives

The appearance of derivatives of the sensor signal, respectively the temperature of the
thermocouple, as well as the one of the steel tube demands the application of approxi-
mations. Due to limited time and resources this aspect was paid little attention, so the
use of a simple backward differential quotient

∂y

∂t
≈ y(t)− y(t− ts)

ts
(4.1.33)

applying the Discrete Derivative block in Simulink, delivered sufficiently accurate re-
sults in the first place. ts = 1s characterizes the sample time, corresponding with the
PLC sample time. Since the accuracy of the restored original gas temperature almost
explicitly depends on the quality of the approximation of derivatives, it is highly recom-
mended to look into this issue more precisely. This certainly assumes that the mathe-
matical model is verified and sufficiently represents the actual process. In literature can
be found a large amount of papers and articles, which cover the issue of approximating
derivatives of continuous sensor signals at a high level of detail.

4.1.3 Simulation

For demonstration purposes, one assumes cold initial states Tg(t0) = TSe(t0) = TST(t0) =
20◦C at t0 = 0s (and Tamb = 20◦C ∀t), the mass flow changes its sign every τ =
120s with a transition time of ttrans = 30s (see section 3.5) with an absolute value of
ṁabs = 0.2383kg/s (figure 4.1.4) and all parameters depending on the gas composition
are adapted to air (table 6.1.1 and 6.1.2) at an atmospheric pressure of pin = 101325 Pa.
Since the gas temperature occurs as input parameter, one has to assume its distribution
over time. A polynomial for the increase of the gas temperature from 20◦C to 850◦C
takes charge of the rapid, but smooth increase in the initial phase, whereas a sawtooth
signal (Signal Generator block) with a period of 240s is added to imitate the cooling
of the gas temperature at the location of the inlet points from the ceramic bed to the
combustion chamber (cf. figure 3.3.12 at t > 120 and x = 1.2m). The temperature
sensor only, without the consideration of any other RTO components is part of this
simulation.

4.1.3.1 Configuration with Focus on the Mass Flow

For early considerations, one assumes that the derivative of the sensor signal dTSe
dt

and

the one of the temperature of protective steel tube dTST
dt

are available (figure 4.1.5 and
4.1.6), which certainly is not the case in reality. Furthermore, the simulation does not
include sampling, hence no Zero Order Hold blocks are in use.

In figure 4.1.5 one can see that the restoring of the temperature of the steel tube TST,
as well as the temperature of the original gas temperature Tg is almost perfect, expect-
ing exact approximations of derivatives and that the mathematical model in equation
(4.1.17) reflects reality to a sufficient level of detail.
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Figure 4.1.4: Distribution of the mass flow for the sensor simulation.
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Figure 4.1.5: Distribution of original and restored temperature signals of the sensor
model.
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At the moment RTOs are not equipped with sensors, measuring the mass, respectively
the volume flow through the plant. Under these circumstances one has to apply the heat
transfer coefficient (see section 4.1.2.2) to a specific value of the absolute mass flow, e.g.
ṁ = 0.2383kg/s (cf. figure 4.1.3). As a result, the polynomial approach can be reduced
to (e.g. by using Matlab function polyfit)

phST = a1Tg + a5 (4.1.34)

with coefficients a2 = a3 = a4 = 0 (cf. equation (4.1.24)), as long as the mass flow is
already considered in the coefficients a1 and a5.
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Figure 4.1.6: Distribution of original and restored temperature signals of the sensor
model, whereas the approximation of the heat transfer coefficient hST was adapted to a
single mass flow value of ṁ = 0.2383kg/s.

Figure 4.1.6 illustrates the error in the restoring of Tg at the time of the transition
between RTO half cycles, as a consequence of the decreasing mass flow. Quite interesting
is the fact that the peak, respectively the error at t = 120s in the first half cycle is
obviously more fatal than in the ongoing transition areas. Since the method for restoring
signals is not dynamical, this phenomenon might be attributed to the rapidly changing
values in the initial phase, as this can be seen in the temperature of the thermocouple
TSe and in the one of the steel tube TST.
In the (one might say) steady state of the plant (here t >1000s), where temperatures
oscillate within small borders, corresponding with the cooling of the hot ceramic bed at
xbed = 0, the error of restoring (< 15K in figure 4.1.7) is less fatal.
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Figure 4.1.7: Zoom in figure 4.1.6 at one half cycle in imitated steady state of the RTO.

4.1.3.2 Configuration with Focus on the Approximation of Derivatives
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Figure 4.1.8: Distribution of original and restored signals of the sensor model with
approximated derivatives (equation (4.1.33)), considering the change of the mass flow in
the method of restoring.
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Figure 4.1.9: Distribution of original and restored signals of the sensor model with
approximated derivatives (equation (4.1.33)), whereas the method of restoring (the heat
transfer coefficient hST) was adapted to the mass flow ṁ = 0.2383kg/s.
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equation (4.1.33).
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In figures 4.1.8 and 4.1.9 the derivatives, occurring in the method of restoring (see
section 4.1.2) are being approximated by a simple backward differential quotient (see
section 4.1.2.4), whereas figure 4.1.10 illustrates the little difference between the exact
and approximated derivatives, applying a sample time of ts = 1s and using Zero Order
Hold blocks for producing sampled inputs TSe and ṁ for the part, which is responsible
for restoring.
Referring to figure 4.1.10, there only occurs a slight, almost invisible error between the
red (approximated) and green (exact) distribution of the TST-derivative at the RTO half
cycle switches (especially at t = 120s and t = 240s). This small deviations at t = 120s
are sufficient for causing an error of ∼ 50K (figure 4.1.8) and ∼ 150K (figure 4.1.9),
although one should be aware, that the error between the thermocouple and the real gas
temperature is much more serious.
The reason for this sensitivity lies in the separated treatment of the restoring of TST in the
first and Tg in the second step, whereas the derivative of TSe appears in the calculation of
TST. As the calculation of Tg demands the derivative of TST, the second order derivative
of the thermocouple (of the actually measured quantity)

d2TSe

dt2
→ dTST

dt

somehow occurs in the calculation of the gas temperature Tg. This is again a point where
one has to indicate the need for caution, since the deriving of measured quantities, which
certainly have some sort of high frequency background noise, can be seen to be quite
problematic. This noise will undergo a significant gain, in particular in a second order
derivative.

4.1.4 Résumé

The simulation results demonstrate that the real gas temperature can be restored out of
the model of the temperature sensors somehow, although the knowledge of derivatives
of the measured signals, as well as the knowledge of the mass flow is needed. The results
should underline the effects of little deviations in these signals to the recalculated gas
temperature.
If one should decide that the installation of sensors, which can measure the mass flow in
the combustion chamber is too expensive, it may be sufficient to adapt the method of
restoring (the heat transfer coefficient hST) to a reasonable value of ṁ as shown (cf. figure
4.1.9). Furthermore, the approximation of derivatives occupies an even more significant
position in the quality of the calculated gas temperature. Another important point
remains the effect of radiation to these sensors, which seems to be the most uncertain
in the sensor model (equation (4.1.17)) as the determination of the temperature Tcc,wall,
representative for the distribution of the temperature over the entire inner surface of the
combustion chamber, is quite challenging.
To sum up, the need for measurement data and early test phases on the plant has been
hopefully legitimated, otherwise further theoretical considerations are less advisable in
this matter.
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4.2 Further Sensors and Measurement Data

The temperature sensors in the ceramic bed presumably also feature a non-negligible
response time and therefore a mathematical model could also be useful to determine
more accurate values of the gas temperature near the bottom of the ceramic bed. The
article [14] also presents a model for temperature sensors without the coverage of the
thermocouple by a protective ceramic tube (cf. figure 4.1.1), which probably fits to the
applied sensors in that area. Since this thesis focuses on control at the location of the
combustion chamber, no other sensors are covered due to time and resource constraints.

As one will see in the following chapters dealing with control, it would be profitable to
install sensors for measuring the concentration of the volatile organic compounds with
the aim to be minimized. However, the demand of the knowledge of a decent value of
the mass flow will be intensified by further considerations towards control purposes.
Again the necessity of verifying the mathematical model by measurement data should
be emphasized. All values of the parameters were determined by research and empiric
knowledge so far. I believe that with the optimization of a few parameters like αcc,wall and
kss,loss, adjusted to measurements by e.g. applying an objective function which minimizes
the sum of least square errors, there is high potential in the model of the temperature
sensors in equation (4.1.17). In many cases the use of a simple search algorithm, e.g.
Nelder and Mead (function fminsearch in Matlab), without the need for the Jacobian of
the objective function, leads to very useful parameter values.
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5 Control

This thesis puts focus on the control of the gas temperature in the combustion chamber
by adjusting the amount, more precisely the mass flow of the injected fuel substance,
this means natural gas in case of the pilot plant. In order to take advantage of identified
models for control, some sort of simplification had to be done, since the complexity of
the entire model system hardly guarantees real-time capability.
The reduction to the submodel of the combustion chamber in terms of the simplification
is obvious, whereas the two temperature sensors next to the burner (see section 4)
should provide information of the current distribution of the gas temperature over space
(of the combustion chamber). Simulation results have shown that the average of the
two signals delivers a proper estimate for the real mean gas temperature T g,cc over space
xcc (cf. equation (2.4.9)) due to the fact that the contribution of energy leads to a
strictly monotonically increasing distribution of the gas temperature over subspace B
of the combustion chamber (see section 2.5.2). This certainly implies that these signals
deliver accurate values for the temperature at their location. Furthermore, it has shown
that it might be a good idea to put some distance between these temperature sensors
and the burner flame as radiation presumably most heavily affects the quality of the
measurement data in that area.

5.1 Model Simplification for Control Purposes

The application of a stirring-tank reactor model, almost identical to the one used for the
description of the valve boxes (see section 2.2) will provide a good approximation of the
more sophisticated model using PDEs (2.4.1). Nevertheless, one should not entirely ex-
clude the possibility to use PDEs for control, since modern RTOs feature fuel injections
at various location points in the combustion chamber. This would demand the instal-
lation of additional temperature sensors to measure and to control (in a second step)
the real distribution of the gas temperature over the space of the combustion chamber.
Panagiotis D. Christofides as an example covers the issue of using models consisting of
PDEs for the control of transport-reaction processes [18].

5.1.1 Combustion Chamber as Stirring-Tank Model

The way of representing the continuous stirred-tank model (cf. equation (2.2.1)) should
help to distinguish between variables. There are input parameters, such as ṁ, ṁair, pin,
Tamb, input sources Φin, respectively Tg,in (relation to the state variables), parameters
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treated as constants Mmix, Rid, Vcc, HV , ∆HR, Akin, kloss, a
cc
V,loss, Ea, broken rational

functions cg(Tg), cg,m(Tg,in) and quite important, the manipulated variable ṁfuel for
control of Tg.

dTg
dt

=
1

cg(Tg)

((
|ṁ|+ ṁair

pin

)(
Rid

VccMmix

)(
Tg
[
cg,m(Tg,in)Tg,in − cg,m(Tg)Tg

])
− 1

pin

(
Rid kloss a

cc
V,loss

Mmix

)
Tg(Tg − Tamb)−

∆HRAkin
Mmix

Φ exp

(
−Ea
RidTg

))
+

1

pin

(
HV Rid

VccMfuelMmix

)
Tg

cg(Tg)
ṁfuel (5.1.1a)

dΦ

dt
=
|ṁ|
pin

(
Rid

VccMmix

)
Tg(Φin − Φ)− Akin Φ exp

(
−Ea
RidTg

)
(5.1.1b)

This ordinary differential equation delivers on the one hand a single input single output
(SISO) and very interesting on the other hand an affine input (AI) system, although
the actual goal will be to minimize the volume fraction Φ of a single material of volatile
organic compounds, representative for the entire mixture of VOCs. This is one decisive
disadvantage of all mathematical models in this thesis as actually one specific material
of VOCs is considered as a reason of the Arrhenius law

rg = − pin
RidTg

ΦAkin exp

(
−Ea
RidTg

)
adjusting the reaction rate rg to one material by Akin and Ea (as well as ∆HR). At
this point there already exist implemented models in Matlab, which consider up to ten
different materials for reaction [2]. The high computational effort has to be remembered
(see section 3.6), which will increase at least linearly with the number of coupled partial
differential equations. The extension of this model by further chemical reactions for
control remains open for future developments.
Equation (5.1.1) basically describes the temperature of the leaving gas, as well as the
leaving volume fraction of VOCs from the combustion chamber, whereas the reduction
from PDEs to ODEs comes along with the loss of location awareness. Let one assume
that the mass flow enters the plant in side A and leaves in side B and then connect

points in space of the combustion chamber to these sides, xcc = 0
to→ A and xcc = Lcc

to→
B. Once the RTO switches its (half) cycle this connection still holds, although the mass
flow enters in side B. Whereas the ordinary differential equations (5.1.1) are facing a
problem, since former input values Tg,in and Φin now become values of the state variables
Tg and Φ for the moment in time when switching ṁ→ 0.
According to equations (5.1.1) it is worth mentioning that the rational function of the
heat capacity cg, as well as the one of the mean heat capacity cg,m do not have pole or
zero points in a physically relevant range. The same applies to the absolute incoming
pressure pin, which also appears in the dominator.
For further considerations, constant and input parameters (not input sources) are com-
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bined to coefficients

c1 :=
(|ṁ|+ ṁair)Rid

pinMmixVcc

c2 :=
klossa

cc
V,lossRid

pinMmix

c3 :=
∆HRAkin
Mmix

c4 :=
HV Rid

pinVccMfuelMmix

c5 :=
|ṁ|Rid

pinVccMmix

(5.1.2)

by being well aware that they will change over time (except c3) in the simulation, al-
though they can/will not considered to be explicit time functions. Now the two dimen-
sional model

d

dt

[
Tg
Φ

]
=

=:a(Tg ,Φ)︷ ︸︸ ︷ 1
cg(Tg)

(
c1Tg

[
cg,m(Tg,in)Tg,in − cg,m(Tg)Tg

]
− c2Tg(Tg − Tamb)− c3Φ exp

(
−Ea

RidTg

))
c5Tg(Φin − Φ)− ΦAkin exp

(
−Ea

RidTg

) 
+

[
c4

Tg
cg(Tg)

0

]
︸ ︷︷ ︸

=:b(Tg)

ṁfuel (5.1.3)

which presents the basis for the control design, can be obtained. Thanks to the specific
form of equation (5.1.3), input/output linearization will help to retain nonlinearities in
the control law. One has to keep in mind that the reaction enthalpy ∆HR is negative
and thus the chemical reaction will certainly lead to an increase of the gas temperature.

5.2 Definitions
For ongoing operations one needs to define the Lie derivative of a scalar function h(x),
h : Rn → R along the vector field f(x), f : Rn → Rn

Lf(h) :=
∂h

∂x
f = L1

f (h) (5.2.1)

and to extend this definition by the recursion

L0
f (h) := h

Lif(h) := Lf

(
Li−1
f (h)

) (5.2.2)

introducing the derivative of the scalar function h(x) along the vector x =
[
x1 . . . xn

]T
∂h

∂x
:=
[
∂h
∂x1

∂h
∂x2

. . . ∂h
∂xn

]
(5.2.3)

and the derivative of the vector field f(x) =
[
f1(x) . . . fn(x)

]T
along the vector x

∂f(x)

∂x
:=


∂f1(x)
∂x1

∂f1(x)
∂x2

. . . ∂f1(x)
∂xn

∂f2(x)
∂x1

∂f2(x)
∂x2

. . . ∂f2(x)
∂xn

...
...

...
∂fn(x)
∂x1

∂fn(x)
∂x2

. . . ∂fn(x)
∂xn

 (5.2.4)

70



which results in the Jacobian matrix. One will also take advantage of the Lie bracket of
vector fields g(x), g : Rn → Rn and f(x)

ad1
f (g) :=

∂g

∂x
f− ∂f

∂x
g =:

[
f(x),g(x)

]
(5.2.5)

with the recursion

ad0
f (g) := g

adif(g) := adf

(
adi−1

f (g)
)
.

(5.2.6)

5.3 Analysis on a Full-State Feedback Linearization

The following consideration requires the vector fields a(x) and b(x1) to be smooth, which
is the case (cf. equation (5.1.3)). By introducing the state variable vector

x =

[
Tg
Φ

]
=

[
x1

x2

]
(5.3.1)

and the manipulated variable u = ṁfuel, the aim to transform the AI system dx
dt

=
a(x) + b(x1)u into a chain of integrators

ż =
∂ϕ

∂x

(
a(x) + b(x1)u(x, v)

)
=

[
0 1
0 0

]
z +

[
0
1

]
v (5.3.2)

by means of the transformation z = ϕ(x) and the new input v, the new state variables
z need to satisfy the conditions

z =


ϕ1(x)

La(ϕ1(x))
L2
a(ϕ1(x))

...
Ln−1
a (ϕ1(x))

 =

[
ϕ1(x)

La(ϕ1(x))

]


ϕ1(x)
Lb(ϕ1(x))
LbLa(ϕ1(x))

...
LbL

n−2
a (ϕ1(x))

 =

[
ϕ1(x)

Lb(ϕ1(x))

]
= 0

(5.3.3)
which would result in a system of first order partial differential equations

∂ϕ1

∂x

[
ad0

a(b) ada(b) . . . adn−1
a (b)

]
=
∂ϕ1

∂x

[
b ada(b)

]
!

=
[
0 κ(x) 6= 0

]
(5.3.4)

to solve. (Remark: Function κ(x) can be considered arbitrary.) This would accomplish
a full-state feedback linearization and simultaneously the ability to control not only
the gas temperature, but also the concentration of the VOCs (respectively Φ) in the
gas mixture. Though a different approach is taken in this thesis, controllability was
analyzed.
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5.3.1 Controllability in terms of a Full-State Feedback Lin-
earization

Referring to a full-state feedback linearization the condition for controllability is equiva-
lent with the existence of the transformation ϕ(x) [19], whereas the vectors b and ada(b)
need to be linearly independent, which is equivalent with the request for regularity of
the controllability matrix

Su =
[
ad0

a(b) . . . adn−1
a (b)

]
=
[
b ada(b)

]
. (5.3.5)

The Lie bracket of vector fields a and b

ada(b) =
∂b

∂x
a− ∂a

∂x
b (5.3.6)

can be readily calculated by hand, but the determinant of Su demands quite a lot
computation steps. The computer algebra program Mathematica was used to determine
the determinant

det(Su) =

1

p2
in

(
HV 2RidAkinEa
V 2
ccM

2
fuelM

2
mix

)
Φ

cg(Tg)2
exp

(
−Ea
RidTg

)
− |ṁ|
p3
in

(
HV 2R3

id

V 3
ccM

2
fuelM

3
mix

)
T 2
g (Φin − Φ)

cg(Tg)2
6= 0

(5.3.7)

which leads to the condition

pin
(
VccMmixAkinEa

)
Φ exp

(
−Ea
RidTg

)
− ṁR2

id T
2
g (Φin − Φ) 6= 0 (5.3.8)

to be satisfied. It is quite interesting and intuitive that the concentration, respectively
the volume fraction of VOCs can only be controlled when the incoming quantity Φin

or/and the locally present Φ is greater zero (negative values do not have physical rele-
vance). This result should on the one hand demonstrate the physical reference to control
theory, on the other hand that the portion of harmful substances in the gas mixture could
not only be minimized if there are sufficient high temperatures, but specific concentra-
tions could be potentially targeted during run time. This certainly assumes that the
transformation z = ϕ(x) exists, whereas the system of partial differential equations
needs to be solved analytically.

5.3.2 Existence of the Transformation

With the analysis of the solvability of first order homogenous partial differential equa-
tions, G. Frobenius argues with an integrability condition for differential systems, which
leads to the involution of vector fields [21] [22] [23].

Definition: Distribution of Vector Fields. The set of vector fields

Fd(x) =
[
f0(x), f1(x), . . . , fn−2

]
, rankFd = d, x ∈ Rn
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spans the distribution ∆d(x) of dimension d = dim ∆d(x) = rankFd(x)

∆d(x) = span {f0(x), f1(x), . . . , fn−2}, dim(∆d) = d, x ∈ Rn

which defines a d-dimensional vector space.

Definition: Involution. The set of d linear independent vector fields
fi(x), i = 0, . . . , d−1, respectively the corresponding distribution ∆d(x) is called involutive
if the Lie bracket of two vector fields can be represented as linear combination of vector
fields of the distribution [

fi(x), fj(x)
]

=
n−2∑
k=0

αk(x)fk(x) ∀i, j (5.3.9)

considering linear coefficients αk, which can also be functions of state variables x. The
condition

rank
{
Fd(x),

[
fi(x), fj(x)

]} !
= rankFd(x) ∀i, j (5.3.10)

serves for the verification of the involution property.

The vector fields in matrix Fd can be replaced by the Lie brackets of smooth a(x) and
b(x1)

fk = adka(b) for k = 0, . . . , n− 2 (5.3.11)

in conditions (5.3.9) and (5.3.10), which lead to a trivial condition to check for the model
in equation (5.1.3) as the single vector b(x1) is always involutive. However, this property
guarantees the existence of a solution for the system of first order PDEs, which results
out of equation (5.3.4).

5.3.3 Summary

The analysis on the possibility of applying a full-state feedback linearization shows that
not only the gas temperature can be controlled, but also the volume fraction of at least
one specific material of VOCs, which will be considered in the model for control purposes
(5.1.3) if and only if the controllability condition (5.3.8) is satisfied.
As the currently installed sensors in the RTO completely lack any information about
Φ, the focus is put on the control of Tg, whereas the solving of the PDEs out of equa-
tion (5.3.4) presents a quite demanding issue itself. The use of observers for obtaining
information about Φ will be covered in the following sections, although the (currently)
unknown input source Φin will cause serious problems.

5.4 Input/Output Linearization

In this section one will provide the linearization of the nonlinear system model in equa-
tion (5.1.3) by considering stable zero dynamics of an intern unobservable state (referring
to Φ). This method demands the selection of an explicit output quantity, which certainly
will be

y = Tg = x1 = c(x). (5.4.1)
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5.4.1 Relative Degree

One is searching for the lowest order derivative of y providing influence of the manipu-
lated variable u = ṁfuel, which can be obtained by

ẏ = ẋ1 = a1(x) + b1(x1)u (5.4.2)

whereas the notation

a(x) =

[
a1(x)
a2(x)

]
b(x1) =

[
b1(x1)

0

]
(5.4.3)

in reference to equation (5.1.3) was applied. Since b1 6= 0 for all reasonable x1 the
relative degree

r = 1 (5.4.4)

can be specified, which will lead to an internal dynamic of degree n − r = 1 to be
analyzed.

5.4.2 Diffeomorphism

The desired transformation
[
z w

]T
= ϕ(x) with unobservable states w ∈ Rn−r can be

accomplished by the Diffeomorphism

ϕ(x) =



c(x)
La(c(x))

...
Lr−1
a (c(x))

ϕr+1(x)
...

ϕn(x)


=

[
x1

ϕ2(x)

]
=

[
z1

w1

]
(5.4.5)

whereas the determination of ϕ2(x) comes along with the condition for the Jacobian
matrix

∂ϕ

∂x
=

[
1 0
∂ϕ2

∂x1

∂ϕ2

∂x2

]
y

∂ϕ2

∂x2

!

6= 0 (5.4.6)

to be regular. Furthermore, one will also make sure that the internal dynamic is inde-
pendent from the manipulated variable.

Lb(ϕ2(x))
!

= 0 y
∂ϕ2

∂x
b(x) =

[
∂ϕ2

∂x1

∂ϕ2

∂x2

] [c4
x1

cg(x1)

0

]
y

∂ϕ2

∂x1

c4
x1

cg(x1)
!

= 0

(5.4.7)

One intuitively selects
ϕ2(x) = x2 (5.4.8)
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which facilitates the interpretation of transformed states

ϕ =

[
z
w

]
=

[
x1

x2

]
(5.4.9)

as they are identical to the original states x. If further materials of VOCs for reaction
are considered, the model (5.1.3) needs to be extended by further states, e.g. ΦA and
ΦB. As a result, the transformation leads to transformed states, which presumably will

not equal to the original ones, thus the determination of w =
[
ϕr+1 . . . ϕn

]T
will be

presumably complicated as well.

5.4.3 Internal Dynamics

For controlling the gas temperature by taking advantage of the input/output linearized
model, it is required that the internal dynamics are stable. Considering

ẇ1 =
dΦ

dt
= c5x1(Φin − x2)− x2Akin exp

(
−Ea
Ridx1

)
= c5z1(Φin − w1)− w1Akin exp

(
−Ea
Ridz1

) (5.4.10)

the dynamic of the unobservable (in terms of the linearization) state Φ, the exponential
term of the Arrenhius law with negative sign represents a dominant part in favor of
stability. However, the zero dynamics

ẇ(z = 0,w) = ẇ1(z1 = 0, w1)→ 0 (5.4.11)

give less information on stability. One needs to shift the zero point of the state z1 = x1 =
Tg for more consequent arguments, since the aim to target Tg = 0K is rather absurd. The
usual reference temperatures in the combustion chamber are by about 850◦C = 1123K.
The shifting will be achieved by the substitution of the transformed state z1 with z̃1

considering the initially unspecified temperature T0 > 273.15K

z̃1 = z1 − T0 (5.4.12)

in order to aim z̃1 → 0. Consequentially, one obtains

ẇ1 = c5(z̃1 + T0)(Φin − w1)− w1Akin exp

(
−Ea

Rid(z̃1 + T0)

)
(5.4.13)

which leads to the modified zero dynamic (note: c5 ≥ 0, Akin ≫ 0)

ẇ1(z̃1 = 0, w1) = −
(
c5T0 + Akin exp

(
−Ea
RidT0

))
w1 + c5T0Φin. (5.4.14)

The condition

Φ

(
c5T0 + Akin exp

(
−Ea
RidT0

))
!
> c5T0Φin (5.4.15)
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reveals the good-natured character of the internal dynamic, since for all reasonable
parameter values and T0 the condition (5.4.15) holds and therefore guarantees stability.
The result seems obvious as the portion of reactive substances will certainly decrease
with the growing gas temperature. It might be reasonably assumed that in case of the
consideration of further volume fractions of volatile organic compounds in the model
(5.1.3) (e.g. ΦA,ΦB, . . .), the internal dynamics remain stable, although the relative
degree r will not change.

5.4.4 Linearized Model and State Feedback

By means of the input/output linearization the rth order derivative of the chosen output
y = Tg

dry

dtr
= Lra(c(x)) + LbL

r−1
a (c(x))u = a1(x) + b1(x1)u = v (5.4.16)

is set to be the new input v of the linearized model

ż1 = v (5.4.17)

with the transformed state z1 = Tg and thereby provides the law

u =
v − a1(x)

b1(x1)
(5.4.18)

for transformation of model (5.1.3) to model (5.4.17) by considering the stable internal
dynamic in equation (5.4.10). To establish a control, the reference temperature Ttarget
and the feedback of (one of) the measured gas temperature appear in the new input
variable v

v = −kz1 + VrefTtarget (5.4.19)

considering the eigenvalue −k of the linearized model, which needs to be chosen and
a proportionality factor Vref . This raises the question how to choose Vref so that the
output y = Tg follows the reference Ttarget at least in steady state (t → ∞). Initially
assuming that Ttarget is constant, the demand

lim
t→∞

y(t)
!

= Ttarget (5.4.20)

leads to (notation: L {y(t)} = Y (s))

lim
s→0

sY (s) = lim
s→0

Vref
s+ k

Ttarget
!

= Ttarget y Vref = k (5.4.21)

the solution in the L aplace domain.
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5.5 Control Law

The first approach of the control law (note: x1 = Tg and x2 = Φ)

ṁfuel(x, Ttarget) =
cg(x1)

c4x1

k(x1 − Ttarget) +
c1

c4

(
cg,m(x1)x1 − cg,m(Tg,in)Tg,in

)
+
c2

c4

(x1 − Tamb) +
c3

c4

(
x2

x1

)
exp

(
−Ea
Ridx1

) (5.5.1)

can be finally summarized, but it will undergo further processing in order to gain max-
imal performance. For example the eigenvalue

− k = −1.6 (5.5.2)

has achieved quite good results in the simulation, at least when testing on the model
(5.1.3) in steady state of the plant. The control law (5.5.1) can not only be considered
to be a function of x and Ttarget, but also of all input parameters such as ṁ, pin, Tamb
appearing in the coefficients c1 to c5 and in particular of the input source Tg,in. Besides,
the dependency on the composition of the gas could be considered, as broken rational
functions like cg and cg,m, as well as the molar mass Mmix depend on this composition
(see section 2.1), which would require the knowledge of the exact amount of portions in
the gas mixture. Although there might be an upgrade of existing plants by the equipment
of additional sensors, this information presumably can not be entirely provided. As a
consequence, these parameters are adapted to the main components of air (see table 6.1.1
and 6.1.2) assuming small portions of volatile organic compounds in the contaminated
gas.

5.5.1 Consideration of a Time Variant Mass Flow

Simulation results have shown that the system is very sensitive during the RTO half
cycle switches, causing the mass flow to change its direction through the plant, which
provokes the change of the sign of ṁ. The problem is that the temperature sensors
are such inert, so that they do not notice the rapid increase of Tg when the mass flow
decreases and stops at the moment when switching ṁ → 0, which should lead to the
immediate decrease of the injected fuel substance ṁfuel. At the moment when switching
the entire heat from the side of the combustion chamber, which was effected by the
burner flame in the previous half cycle (subspace B, see section 2.5.2), is transported to
the other side of the combustion chamber causing far too high temperatures.
Although section 4.1.2 clearly describes the determination of the real gas temperature
providing an explicit solution, the sampled approximation of the derivatives also leads to
a significant delay in the restored Tg assuming a sample time of ts = 1s and a transition
time of ttrans = 3s between half cycles.
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Figure 5.5.1: Distribution of Tg in the combustion chamber monitoring a RTO half cycle
switch by applying the maximal amount fuel u = max{ṁfuel}.
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Figure 5.5.2: Different view of figure 5.5.1.
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Figures 5.5.1 and 5.5.2 demonstrate the unpleasant effects in the solution Tg in the
initially cold (at t = 0) combustion chamber while permanently feeding the maximal
amount of fuel max{ṁfuel} to the burner during the transition in between RTO half cy-
cles (switch at t = 120s). These effects have negative impact on the simulation time due
to the significant change of values in a very small time window, which forces the solver
algorithm to tighten step sizes. These overshooting will also occur when the reference
temperature in the combustion chamber is already reached and then triggers unneces-
sary fuel consumption and consequentially causes the exceeding of desired temperatures,
which can not be measured or restored out of sensor data in time. The kind of odd dis-
tribution of Tg at t = 120s displayed in figure 5.5.1 can be attributed to the fact that
some inputs of the system are sampled, which also explains the small step sizes at every
full second in simulation time.
In order to suppress these effects it will not be sufficient to consider only the time variant
decrease of the mass flow during the transition in between RTO half cycles (appearing
in the coefficients c1 and c5) in the control law, therefore a different approach has to be
made. Intuitively, the decrease of the mass flow during switches according to section 3.5

ṁ = ṁabsṁswitch(t)

corresponding with

t̃(t, τ) :=

(
t+

ttrans

2

)
(mod τ) (5.5.3)

s(t, τ) := sign
(

sin
(π
τ
t
))

(5.5.4)

ṁswitch(t, τ) =

{
s
(
t+ ttrans

2
, τ
)
pṁ(t̃) for 0 ≤ t̃ < ttrans

s(t, τ) for ttrans
2
≤ t (mod τ) < τ − ttrans

2

(5.5.5)

the polynomial pṁ for transition (which should be replaced by a function based on
measurements), the transition time ttrans, the period of half cycles τ and the new modified
input ṁabs are considered in the control law. ṁabs should actually be replaced by sensor
information assuming positive values (same applies for ṁair and ṁfuel).

|ṁ| = ṁabs|ṁswitch(t, τ)|

The problem is that the polynomial pṁ is only active in a small time window ttrans ≤ 3s
and consequentially can not be accurately displayed in the manipulated variable with a
sampling time of ts = 1s. Since the fuel injection will be controlled by a valve, which
can only change its position with a naturally continuous motion, it is assumed that pṁ
can be imprinted to the valve in charge of the fuel injection somehow. This presents
again an issue demanding for more attention.
At least in the simulation the simple action (cf. figures 5.5.3 and 5.5.4)

u(x, Ttarget, t, τ) = ṁfuel(x, Ttarget)|ṁswitch(t, τ)| (5.5.6)

successfully suppresses these unpleasant effects.
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Figure 5.5.3: Choice of the manipulated variable to suppress unpleasant effects in the
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fied fuel injection u = ṁfuel|ṁswitch| during RTO half cycle switches (cf. figure 5.5.3).
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Comparing figures 5.5.1 and 5.5.2 with figure 5.5.4 it can be seen that one should take
advantage of the knowledge that unintended high temperatures occur during switches in
the combustion chamber, which can not be measured in time, and use this information
for modifying the control of the valve in charge of the fuel injection in order to save
fuel. Due to time and resource constraints the inner control loop of this valve aiming to
feed the desired fuel mass flow (given by the outer control law in equation 5.5.1) is not
covered in this thesis.

5.5.2 Installation of an Integrator

Due to the simplification of the more accurate combustion chamber model (2.4.1) the
simulation shows that there would remain an error between Ttarget and the measured
(and restored) temperature(s) used as output value y for control when applying the
control law in equation (5.5.1). The extension of x1 by the state

x̃ =

∫
t

(Ttarget − x1) dt (5.5.7)

aiming asymptotic stability
˙̃x = Ttarget − x1 → 0 (5.5.8)

by means of the linear state feedback −kx1 + k̃x̃ (be aware z1 = x1) in equation (5.5.1),
applying another proportionality factor k̃, will help to reduce this error. Since the
linearized system (see section 5.4.4) describes

ż1 = v

ẋ1 = −kx1 + kTtarget + k̃x̃
(5.5.9)

one obtains the following linear differential equation.

d

dt

[
x1

x̃

]
=

[
−k k̃
−1 0

] [
x1

x̃

]
+

[
k
1

]
Ttarget

y = x1

(5.5.10)

k̃

∫
k

Linearized
System

v

k x1

. .
−Ttarget

x̃ y

−

Figure 5.5.5: Block diagram of the linear control part.
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The extended linear system can be written as follows

d

dt

[
x1

x̃

]
=

([
0 0
−1 0

]
︸ ︷︷ ︸

=:A

+

[
1
0

]
︸︷︷︸
=:b

[
−k k̃

]︸ ︷︷ ︸
=:k

T

)[
x1

x̃

]
+

[
k
1

]
Ttarget

y =
[
1 0

] [x1

x̃

] (5.5.11)

whereas the row vector k
T

serves for adjusting the eigenvalues of that system. Applying
the determinant on the dynamic matrix of the closed loop in the L aplace domain, the
characteristic polynomial

det
(
sI− (A + bk

T
)
)

= s(s+ k) + k̃ (5.5.12)

delivers

s1,2 = −k
2
±

√(
k

2

)2

− k̃ (5.5.13)

with the possibility not only to explicitly specify the eigenvalue s1 of the dynamic of x1,
but the eigenvalue s2 (or vice versa) of the error dynamic between the reference value

Ttarget and x1. For example k can be specified using the Matlab command: −k
T

=
acker

(
A,b,

[
s1 s2

])
. Simulation showed that with the chosen values

k
T

=
[
1.6 0.5

]
(5.5.14)

corresponding with the eigenvalues

s1 = −1.1742 s2 = −0.4258 (5.5.15)

quite good results could be accomplished in steady state of the RTO.

5.5.3 Anti Wind-Up Method

The application of the method in section 5.5.2 to the control law (5.5.1) comes along
with the drawback that in case the manipulated variable reaches its saturation u ∈
[umin, umax], the error between reference Ttarget and state x1 keeps being integrated.
After u would have to leave this saturation due to the reduction of e = Ttarget − x1,
or even the change of the sign of Ttarget − x1 (overshooting), the integrated error first
needs to be decreased by integrating towards zero. In particular during the start-up
phase of the plant (thinking of a step response from y = 20◦C to y = 850◦C) this
would cause uncontrollable overshooting of the gas temperature and as a consequence
the complete unnecessary consumption of fuel. Using the values in equation (5.5.14) for
control, it turned out that they lead to a quite aggressive reaction in the manipulated
variable in case y 6= Ttarget. Furthermore, it highlighted that the control would have to
distinguish between the different half cycles, so the integrated error in the first half cycle
should/must not be used for the second one and vice versa!
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It is preferable to completely suppress every form of wind-up by enabling the integrator
of state x̃ only when the manipulated variable is not in saturation u 6= umin = 0 kg/s
or u 6= umax = 7.2 · 10−4 kg/s and to simultaneously reset the integrator at the falling
edge when reaching one of these limitations.
The link of the connection between the saturation of u and the ports of the integrator
would provoke the occurrence of an algebraic loop, which was suppressed by simple
placing a delay element in between. See figure 5.8.1, which properly demonstrates the
applied methods in order to control the gas temperature in the combustion chamber.

5.6 Selection of the Control Variable

Current plants of CTP with two, or more bed configurations are equipped with two
temperature sensors (see chapter 4) next to the burner in the combustion chamber.
The actual aim of the control is to establish a stable average, respectively mean gas
temperature over the space of the combustion chamber to guarantee a certain amount
of decomposition of VOCs. A single burner in the center of the combustion chamber in
reference to the pilot plant is in charge of the desired heating.
There is the problem that only one part (one half) of the combustion chamber can
be heated in the appropriate half cycle as the mass flow ṁ determines the direction
of the burner flame according to its flow (cf. figure 5.5.4), which means that the gas
temperature of the other half of the combustion chamber will be mainly affected by the
ceramic temperature at the top of the bed, which heats the incoming gas of the RTO.
The gas temperature in that half of the combustion chamber will certainly decrease
almost linearly as a consequence of the cooling of the ceramic bed for the half cycle
period.
Furthermore, the consideration of a combustion chamber model consisting of ODEs
(5.1.3) comes along with the loss of location awareness as explained in section 5.1.1,
which would require the compensation of the error in integrator states after switching,
especially in the observer (see section 5.7).

5.6.1 Mean Gas Temperature

In order to overcome the issue concerning integrator states one could aim to control the
real mean gas temperature in the combustion chamber

T g,cc =
1

Lcc

∫ Lcc

xcc=0

Tg(xcc, t)dx (5.6.1)

in both half cycles of the two-bed RTO, which would demand its estimation from the
two processed sensor signals. Simulation results show (see section 6) that the linear
average

y = T g,cc ≈
Tss,0 + Tss,L

2
(5.6.2)

of the two processed temperature sensor signals Tss,0 and Tss,L (in the way that the
original gas temperatures Tg,1 and Tg,2 at the location of the sensors are restored of
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thermocouple temperatures TSe,1 and TSe,2) by taking advantage of the sensor model in
equation (4.1.17) (see section 4.1.2), represent a sufficiently accurate value for the real
integral quantity T g,cc, which was already discussed in the introduction of chapter 5.
As the model applied for control (5.1.3) describes the leaving gas temperature y =
Tg(xcc = Lcc, t) (or y = Tg(xcc = 0, t), depending on the half cycle) of the combustion
chamber and not the mean value T g,cc, the reference quantity Ttarget would have to be
adjusted. So in case one aims to establish e.g. T g,cc = 850◦C by applying

T g,cc =
Tg,in + Ttarget

2
(5.6.3)

to the permanently changing reference

Ttarget = 2T g,cc − Tg,in (5.6.4)

the request on the control concept is very high and consequentially results in a strong
change of the manipulated variable. It is worth mentioning that the incoming gas tem-
perature Tg,in as well as y (as output quantity of the closed control loop) need to be
switched between the processed sensor signals Tss,0 and Tss,L corresponding with the sign
of the mass flow ṁ, respectively with the RTO half cycles. For example, assuming the
sensors with corresponding values Tss,0 at xcc = 0 and Tss,L at xcc = Lcc the definition

ṁ > 0 ṁ < 0

y = Tg,out = Tss,L y = Tg,out = Tss,0
Tg,in = Tss,0 Tg,in = Tss,L

Table 5.6.1: Definition of the input source and the output considered for control.

holds. One should be aware that the cooling of the unaffected half of the combustion
chamber by the burner will cause the related heating of the other half of the combustion
chamber by the increase of Ttarget as an effect of the dropping input source Tg,in (inside
of one half cycle of the RTO).

5.6.2 Output Temperature of the Combustion Chamber

One should also consider being content with the control of the temperature of one half
of the combustion chamber, tolerating the slow cooling of T g,cc inside of one RTO half
cycle as a consequence of the cooling of the ceramic bed. This concept demands less
from the control method and does not provoke such a strong change of the manipulated
variable. This would allow the reference e.g.

Ttarget = 850◦C (5.6.5)

to remain constant (in case of a step response), whereas y and Tg,in need to be switched
according to table 5.6.1. Nevertheless, the issue with wrong integrator states at RTO half
cycle switches (mentioned in the introduction of section 5.6) takes place when applying
this concept.
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5.7 Observer

The plants are currently not equipped with any sensors measuring the portion of VOCs in
the gas mixture, whereas the simulation (see chapter 6) demonstrates that this knowledge
could substantially improve the control of Regenerative Thermal Oxidizers. Although
there might be an upgrade of sensor systems in future developments, it is very unlikely
that such sensors will be placed in the combustion chamber or at the top of the ceramic
beds.
For that reason there is no way to avoid the application of an observer (or estimator),
estimating one or more appropriate concentrations, or volume fractions of VOCs at the
location of the combustion chamber based on the measured temperatures in that area.
By analyzing the model (5.1.3) it can be recognized that the still unknown input source
Φin will cause the major problem in this approach. In this thesis it has to be assumed
that either plants will be equipped with the appropriate sensors or that the dynamic
behavior of the temperatures in the area of the ceramic bed (already available) could give
information of Φin, whereas the combination of both concepts would certainly deliver
the most reliable information. Due to the intensive effort for the other aspects in this
thesis, there was no time left to occupy with this subject.

5.7.1 Observability

The existence of the invertibility of transformation

z = q(x, u) =


y
ẏ
...

y(n−1)

 =

[
x1

a1(x) + b(x1)u

]
=

[
z1

z2

]
(5.7.1)

so that the state variable vector can be expressed by transformed states and the manip-
ulated variable (and its derivatives in case n > 2)

x = q−1(z, u) (5.7.2)

guarantees global observability [20] in the domain x ∈ Dx and u ∈ Du (satisfying the
invertibility), assuming real numbers for x ∈ Rn and u ∈ R. Obtaining

x =

 z1

1
c3

exp
(

Ea

Ridz1

) (
c1z1

[
cg,m(Tg,in)Tg,in − cg,m(z1)z1

]
− c2z1(z1 − Tamb)− cg(z1)z2 + c4z1u

)
(5.7.3)

it becomes evident that the leaving Φ of the combustion chamber can be theoretically
determined in the entire relevant range, despite using initially unspecified functions
cg(Tg) and cg,m(Tg) (see section 2.1) and even if the manipulated variable equals zero
u = 0. This is a remarkable result and can be presumably also accomplished when
using more state variables ΦA,ΦB, . . . as a reason of the linearity in Φ, although the
appearance of derivatives of u in z = q(x, u, u̇, . . . , u(n−1)) would significantly aggravate
the determination of x = q−1(x, u, u̇, . . . , u(n−1)).
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5.7.2 Normal Form of the Nonlinear Observer

The transformation to the normal form for nonlinear observers

ż =

[
z2

ϕ (z, u, u̇)

]
=

[
0 1
0 0

]
︸ ︷︷ ︸

=:Â

z +

[
0
1

]
︸︷︷︸
=:b̂

ϕ (z, u, u̇)

y = z1 =
[
1 0

]︸ ︷︷ ︸
=:ĉT

z

(5.7.4)

aims a system basically consisting of a chain of integrators, whereas the nonlinearities
of the original system are gathered in function

ϕ(x, u, u̇) = ż2 =
∂(a1(x) + b1(x1)u)

∂x
(a(x) + b(x1)u) +

∂b1(x1)

∂x
u̇

ϕ(z, u, u̇) = ϕ
(
q−1(z, u), u, u̇

)
(5.7.5)

appearing at the end of that chain. Thanks to the structure of the normal form in
equation (5.7.4) and the output value y = x1 = z1, this system is always observable [20].
The existence of the invertibility of the transformation in equation (5.7.3) is therefore
sufficient for the proof of global observability. The retransformation of the system in
equation (5.7.4) to the original one makes it possible to avoid the computation of function
ϕ(z, u, u̇).

5.7.3 High-Gain Feedback

In the first step one provides a copy of the transformed system

˙̂z = Âẑ + b̂ϕ (ẑ, u, u̇) (5.7.6)

and ensures that the copy will follow the real (transformed) system by applying the
feedback of the error between the real output y = x1 = z1 and the copy

˙̂z = Âẑ + b̂ϕ (ẑ, u, u̇) + `(ε)(y − ĉT ẑ) (5.7.7)

considering the vector

`(ε) =

[
ε−1 0
0 ε−2

] [
l1
l2

]
= D−1(ε)l (5.7.8)

with the parameter ε, which should be adjusted to the noise of the (restored) sensor
signal. When analyzing the dynamic of the error

ė = ż− ˙̂z (5.7.9)

after applying their system definitions in equation (5.7.4) and (5.7.7)

ė =
(
Â− `(ε)ĉT

)
e + b̂(ϕ (z, u, u̇)− ϕ (ẑ, u, u̇)) (5.7.10)
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one puts focus on the dynamic matrix of the linear part in the first place, which can be
written as follows:

Â−D−1(ε)lĉT =

[
−l1ε−1 1
−l2ε−2 0

]
(5.7.11)

The characteristic polynomial of this matrix

det
(
sI− (Â−D−1(ε)lĉT )

)
= s2 +

l1
ε
s+

l2
ε2

(5.7.12)

leads to the transformed eigenvalues (notation: λ := εs)

λ1,2 = − l1
2
±

√(
l1
2

)2

− l2. (5.7.13)

of the linear part of the dynamic matrix of the observer error. Finally one can see that
this part is asymptotically stable in case the chosen eigenvalues λ1,2 have a negative real
part. It is shown on pages 540 to 542 in [21] that the error made by the nonlinear part

b̂(ϕ (z, u, u̇)− ϕ (ẑ, u, u̇)) (5.7.14)

of the dynamic ė in the observer rapidly decays with growing ε.

5.7.4 Transformation to Original States

The aim in this subsection is to obtain an observer estimating the original states, which
receive the notation x̂. Therefore one recapitulates, the Diffeomorphism (achieved by
the equations (5.7.1) to (5.7.3))

ẑ = q(x̂, u) and x̂ = q−1(ẑ, u) (5.7.15)

provided the system transformation

˙̂z =
dq(ẑ, u)

dt
=
∂q

∂x̂
˙̂x +

∂q

∂u
u̇

!
= Âẑ + b̂ϕ (ẑ, u, u̇) + `(ε)(y − ĉT ẑ) (5.7.16)

into a chain of integrators. When manipulating the second and third expression on the
right hand side of equation (5.7.17) the left part of formulation

˙̂x =

(
∂q

∂x̂

)−1(
Âẑ + b̂ϕ (ẑ, u, u̇)− ∂q

∂u
u̇

)
+

(
∂q

∂x̂

)−1

`(ε)(y − ĉT ẑ) (5.7.17)

leads to the original system.(
∂q

∂x̂

)−1(
Âẑ + b̂ϕ (ẑ, u, u̇)− ∂q

∂u
u̇

)
= a(x) + b(x1)u (5.7.18)

Consequentially, one finally obtains the High-Gain Observer for the original AI system.

˙̂x = a(x̂) + b(x̂1)u+

(
∂q(x̂, u)

∂x̂

)−1

`(ε)(y − ŷ) (5.7.19)
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As shown in equation (5.7.19), the desired estimation of states can be achieved by
providing the following partial derivatives(

∂q(x, u)

∂x

)−1

=

[
1 0
∂q2
∂x1

∂q2
∂x2

]−1

=

[
1 0

− ∂q2
∂x1

(
∂q2
∂x2

)−1 (
∂q2
∂x2

)−1

]
(5.7.20)

in the inverted Jacobian matrix of the transformation directive q(x, u). One obtains the
expressions

∂q2

∂x1

=
1

cg(x1)

(
c1

(
cg,m(Tg,in)Tg,in − 2x1cg,m(x1)− x2

1

dcg,m(x1)

dx1

)
+ c2(Tamb − 2x1)−

c3
Ea
Rid

x2

x2
1

exp

(
−Ea
Ridx1

)
+ c4u−

dcg(x1)

dx1

(a1(x) + b1(x1)u)

)
(5.7.21)

∂q2

∂x2

= − c3

cg(x1)
exp

(
−Ea
Ridx1

)
(5.7.22)

consisting of the derivatives

c′g(x1) =
dcg(x1)

dx1

and c′g,m(x1) =
dcg,m(x1)

dx1

which can be explicitly provided easily (see section 2.1).

5.7.5 Configuration

In the simulation the values

λ1 = −70 λ2 = −70 ε = 0.5 (5.7.23)

delivered quite good results, whereas the parameter ε should be adjusted to the back-
ground noise of the (restored - see chapter 4) sensor signal y = x1. It turned out that
the observer is very sensitive by compensating the error made by wrong initial states of
x̂2 = Φ̂. It may occur that the integrator state of x̂2 becomes tremendously big before
decaying to the real value. This phenomenon might be attributed to the fact that the
exponential term

exp

(
Ea
RidTg

)
appears in the expression x̂ = q−1(z, u) in equation (5.7.3) and in the inversion of ∂q2(x)

∂x2
,

which directly affects the observer in equation (5.7.19). This term literally explodes in
case the gas temperature is too small. Hence, this observer state (respectively the entire
observer) should only be activated if the gas has already reached a certain temperature
range

x1 > 650◦C = Tenable

which was considered in the simulation (see chapter 6). Due to the fact that the compo-
sition of VOCs starts at higher temperatures anyway, the error when setting x̂2 = Φ̂ = 0
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for temperatures smaller than x1 ≤ Tenable in the control law (5.5.1) is negligible as
a result of the weak reaction heat. The interaction of all methods applied for control
should become more comprehensible when analyzing figure 5.8.1.

In addition to these settings, the application of a factor αΦ (see section 3.4) for reduc-
ing and preventing numerical issues, which will occur due to the high range difference
between temperatures and volume gas portions, is highly recommended. It significantly
supports convergence and accuracy of the algorithm solving the dynamic system (in
equation (5.7.19)) of the observer.
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5.8 Structural Overview
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Figure 5.8.1: Block diagram of the loop controlling the gas temperature in the combustion chamber, whereas the potential
measurement of further quantities (e.g. ṁ, p, Tamb, Tg,in . . .), which should also be applied in the control loop, is not displayed.
The processing of the output quantity y for control (cf. table 5.6.1) considering different sensor signals and the recalculation of
original gas temperatures (according to section 4.1.2) are combined in the block Restore y.



5.9 Résumé

As shown in chapter 6, the applied methods deliver promising results in the simula-
tion compared to the former PID controller, whose parameters are not based on the
mathematical modelling of the plant and controls the gas temperature by means of the
real sensor signals TSe (of the thermocouples), which presumably cause serious sustained
deviations from the real reference temperatures in the combustion chamber (cf. section
4.1.3). The concept can be considered to be the first sophisticated model based approach
for a highly accurate temperature control. Due to the lack of time and resources this
thesis does not occupy with measurements and test phases on the plant. However, it
needs to be mentioned that the verification of the models in chapter 2, which presents the
basis for the control design, was already done by Thomas Rieger [1] [2], at least partially.

The valve in charge of the injection of the desired fuel mass flow ṁfuel, which serves as
the manipulated variable in the developed control concept, certainly demands the mod-
elling of an additional system to be installed in the simulation. This system presumably
features some sort of low-pass behavior, which filters the sampled value for the manip-
ulated variable (cf. figure 5.8.1). Section 5.5.1 illustrates that the inner control loop
should be equipped with the appropriate method to prevent that the desired tempera-
tures in the combustion chamber exceed at half cycle switches, which inevitably leads to
unnecessary consumption of fuel. This would require a time variant, considerably faster
control and consequentially much faster sampling.

If it is decided to apply this concept to the plants of CTP, it is advisable to optimize the
eigenvalues of the linearized system in the state feedback by means of a LQR - Linear
Quadratic Regulator and to do further analysis on the parameters, respectively on the
eigenvalues (see equation (5.7.23)) of the observer. There may be a possibility to exploit
the observer for estimating the error between the control variable y and the reference
Ttarget and one could consequentially leave the integrator (see section 5.5.2) and the anti
wind-up method from the concept.

Furthermore, I believe that the concept could be extended by additional materials for
reaction, which would lead to the consideration of further state variables ΦA,ΦB, . . . in
the model for control purposes (5.1.3). This paper includes comments on used methods
with the aim to provide additional information for a potential application in future
developments.
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6 Simulation

The simulation on the simplified model of the combustion chamber in equation (5.1.3)
and on the entire system including all complex models in chapter 2 serves for the eval-
uation of the control methods presented in chapter 5.

6.1 General Configuration

6.1.1 System

The composition of the gas is adapted to the main components of air

Volume
Fraction

Value Component

xO2 0.21 oxygen
xN2 0.78 nitrogen
xAr 0.01 argon

Table 6.1.1: Volume fractions.

Mass
Fraction

Value Component

wO2 0.232 oxygen
wN2 0.7542 nitrogen
wAr 0.0138 argon

Table 6.1.2: Mass fractions.

for the parameters Mmix, ηg, λg, cg, cg,m and consequentially for ρg (see section 2.1)
during simulation. All initial states at t0 = 0s of RTO components, as well as of the
two temperature sensors and the observer

Valve Boxes

Tg(t0) 20◦C
Φ(t0) 0

Ceramic Beds

Ts(t0, xl) 20◦C ∀l
Tg(t0, xl) 20◦C ∀l
Φ(t0, xl) 0 ∀l

Combustion
Chamber

Tg(t0, xl) 20◦C ∀l
Φ(t0, xl) 0 ∀l

Temperature
Sensors

TST(t0) 20◦C
TSe(t0) 20◦C

Observer

T̂g(t0) 20◦C

Φ̂(t0) 0

Tenable 650◦C

Φ̂(T̂g < Tenable) 0

Table 6.1.3: Initial states and configuration of components.
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are adapted to ambient conditions. The input parameters, reference quantities and
design parameters

Parameter Value Description

Ttarget 850◦C reference temperature of the combustion
chamber in the area of the burner

T g,cc 850◦C reference mean gas temperature of the com-
bustion chamber over space

Tamb 20◦C ambient temperature
pin 101325Pa absolute input pressure of the RTO/CC
Tg,in 60◦C temperature of the incoming raw gas of the

RTO/CC
Φin 5 · 10−4 incoming volume fraction of VOCs of the

RTO/CC
τ 120s RTO half cycle period
ṁair 0.0124kg/s portion of air added to the fuel mass flow
ṁabs = ṁmax 0.2383kg/s incoming raw gas flow of the RTO/CC
ttrans 3s transition time between RTO half cycle

switches
ts 1s sample time
umax 7.2 · 10−4kg/s upper limit of the fuel mass flow
umin 0kg/s lower limit of the fuel mass flow

Table 6.1.4: Input, reference and design parameters of the RTO.

are held constant unless otherwise stated. The switching in between RTO half cycles
was simulated by the time variant decrease of the mass flow ṁ = ṁabsṁswitch according
to the method described in section 3.5 (cf. figure 3.5.1).

Furthermore, the location points of the two considered temperature sensors

xcc = 0 and xcc = Lcc

in the combustion chamber were assumed when dealing with the PDEs (2.4.1). When
simulating the combustion chamber by means of the simplified model for control purposes
(equation (5.1.1)) in section 6.2, only one sensor model (according to equation (4.1.17))
for the output gas temperature Tg,out is used in the feedback loop.
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6.1.2 Control

The consideration of a time variant mass flow in the control concept according to section
5.5.1 was a bit modified as the multiplication with |ṁswitch(t, τ)| (see equation (5.5.6))
would demand the complete, sharp turn off of fuel, respectively of the manipulated
variable u at t (mod τ). This causes the burner flame to go out and as a consequence
the ignition of the burner would be required after each half cycle switch. In order to avoid
this effect the decrease of the absolute value of the considered polynomial (according to
the definition in equations (5.5.3) to (5.5.5))

|ṁswitch|
!

≥ 0.25 (6.1.1)

is being held when it reaches 25%. This means that only a quarter of the calculated ṁfuel

in the control law (cf. equation (5.5.1) including the integrator, introduced in section
5.5.2) will be fed to the burner shortly before and after half cycle switches. Compare
figures 6.1.1 and 5.5.3.

0 50 100 150 200 250 300 350 4001

2

3

4

5

6

7

8

9x 10−4

t [s]

u 
[k

g/
s]

Modification of the manipulated variable during cycle switches.

 

 umax
u = mPfuel |mPswitch|

Figure 6.1.1: Modification of ṁswitch.

It is preferable to distinguish between start-up and steady state of the plant, when
dealing with the eigenvalues s1 and s2 of the linearized system, which can be adjusted

by the vector k
T

=
[
k k̃

]
(see section 5.5.2). The values

k
T

=

{[
0.6 0.1

]
for y < 700◦C[

1.6 0.5
]

for y ≥ 700◦C
(6.1.2)

have delivered quite good results when aiming to establish the temperature Ttarget =
850◦C. In reference to the observer (introduced in section 5.7) the following values are
used.

λ1 = −70 λ2 = −70 ε = 0.5 (6.1.3)
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6.2 Simplified Model of the Combustion Chamber

This section presents results of the simulation on the temperature control of the stirring-
tank reactor model (5.1.1), which should reflect the combustion chamber.
As no other components of the plant are part of this simulation, the incoming gas
temperature Tg,in has to be somehow increased over time, when one wants to reach
Ttarget = 850◦C in the combustion chamber model. The ceramic beds actually undertake
the task of gradually increasing the incoming gas temperature to the combustion cham-
ber. In the start-up phase of the plant the reference Ttarget will be increased linearly
with a slope of five degrees per minute 5

60
[K/s], which should prevent the ceramic beds

to be harmed by a too rapid rise of temperatures.
To simplify matters, it is assumed that the incoming gas temperature rises linearly from
Tg,in = 20◦C to Tg,in = 750◦C with the same slope of 5

60
[K/s] and a time delay of

10τ = 1200s to Ttarget. This produces a permanent distance of 100K (for t > 1200s)
between Tg,in and Ttarget to be compensated by the burner.
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Figure 6.2.1: Incoming and reference gas temperature.

Due to time constraints this section exclusively deals with the control of the output gas
temperature Tg,out of the combustion chamber according to section 5.6.2. This tempera-
ture represents a proper estimate for the distribution of the temperature over the space
between subspace B (equation (2.5.3)) and the end of the combustion chamber (xcc = 0
if ṁ < 0 and xcc = Lcc if ṁ > 0) - see figure 6.3.10.
To visualize the effect of the observer estimating Φ (respectively Φout), it will be ac-
tivated earlier when reaching y ≥ 400◦C, although Tenable = 650◦C remains the recom-
mended value (cf. table 6.1.4).
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6.2.1 Constant Input Parameters
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Figure 6.2.2: Distribution of the control variable.
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Figure 6.2.3: Zoom in figure 6.2.2 (steady state phase).
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Figure 6.2.4: Zoom in figure 6.2.2 (start-up phase).
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Figure 6.2.5: Displaying of the restored gas temperature (cyan) used for the control
feedback and the temperature of the thermocouple (magenta).
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Figure 6.2.6: Zoom in figure 6.2.5 (steady state phase), displaying two half cycle switches.
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Figure 6.2.7: Zoom in figure 6.2.5 (start-up state phase), displaying two half cycle
switches.
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Figure 6.2.8: Manipulated variable.
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Figure 6.2.9: Manipulated variable according to figure 6.2.6.
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Figure 6.2.10: Manipulated variable according to figure 6.2.7.
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Figure 6.2.11: Distribution of the state variable Φ (blue) and its estimated value Φ̂
(green) of the observer.
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Figure 6.2.12: Zoom in figure 6.2.11.
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Figure 6.2.13: Integrator state of the error between restored y and Ttarget according to
figure 6.2.7 and 6.2.10.
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The simulation results illustrate that the half cycle switches of the RTO have tremen-
dous effects on state variables and this consequentially leads to a very challenging task
for the control concept. Figure 6.2.5 again demonstrates that the temperature of the
thermocouple TSe of the sensor features a significant response time and delivers far too
low temperatures as a reason of thermal radiation.
The restoring of the original gas temperature (see section 4.1.2) produces a relatively
large error at the time when switching as shown in figures 6.2.6 and 6.2.7. This causes
unpleasant effects in the control, since the applied integrator (see section 5.5.2) acci-
dentally integrates a nonexistent error between y and Ttarget (see figure 6.2.13), which
produces slight oscillations (also shown in figure 6.2.6). This issue could be presumably
fixed when using a better approximation of the derivative of TSe (see section 4.1.2.4).
The change of the eigenvalues for control (see 3rd paragraph in section 5.9) according
to equation (6.1.2) can be clearly recognized in the manipulated variable at t ≈ 7600s
in figure 6.2.8. The decrease of the fuel injection in t ∈ [6000, 8000]s in figure 6.2.8 can
be attributed to the growing reaction heat (cf. figure 6.2.11), which can be accurately
considered in the control thanks to the observer. Referring to figure 6.2.11, the estima-
tion of state Φ by the observer for y > Tenable = 400◦C delivered reliable values, and
therefore facilitates the consideration of the reaction heat in the control law without the
need for compensation by the integrator.
Despite some negative effects, figure 6.2.2 shows that the reference (output) gas temper-
ature can be properly established over the entire time interval.

6.2.2 Fluctuating Input Parameters

Although the application of the integrator in the control concepts might cause troubles
at cycle switches and when the manipulated variable reaches its saturation, it becomes
essential when important parameters such as the mass flow ṁabs (appearing in the coef-
ficients c1 and c2 of the control law (5.5.1)) and the incoming volume fraction of VOCs
Φin (considered in the observer for obtaining information about the state variable Φ)
are uncertain and differ from the real values.
As the current plants of CTP lack sensors measuring the mass flow ṁabs and any por-
tions, or concentration of VOCs, simulation with fluctuating ṁabs and Φin should clarify
the impact when considering wrong values in the control.
For demonstration purposes, it is assumed that the mass flow ṁabs oscillates with a pe-
riod of 250s, an amplitude of 20% of ṁmax = 0.2383kg/s and a mean value of 0.8ṁmax,
whereas the value 0.2383kg/s is considered in the control concept including the observer
and the restoring of the original gas temperature. Φin oscillates with a period of 200s
with an amplitude of 0.4 · 5 · 10−4 and a mean value of 5 · 10−4, whereas this value is also
used in the observer.
This produces a maximal deviation of 40% from the real values in the parameters ṁ and
Φin considered in control, in the method of restoring the original output gas temperature
and in the observer (cf. figure 5.8.1).
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Figure 6.2.14: Deviation in the mass flow.
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Figure 6.2.15: Deviation in the incoming volume fraction of VOCs.
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Figure 6.2.16: Comparing the impact of deviations in ṁ and Φin in the control of
y = Tg,out when applying the integrator in the control concept (cf. figure 5.8.1).
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Figure 6.2.17: Zoom in figure 6.2.16 (steady state phase).
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Figure 6.2.18: Zoom in figure 6.2.16 (start-up phase), displaying the change in eigenval-
ues when reaching y > 973.15K according to equation (6.1.2).
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Figure 6.2.19: Displaying of the restored gas temperature in steady state phase with
(solid lines) and without (dashed lines) the application of the integrator in the control
concept.
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Figure 6.2.20: Distribution of the state variable Φ (blue) and its estimated value Φ̂ of
the observer with (green solid) and without (red dashed) applied integrator.
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Figure 6.2.21: The manipulated variable with (blue) and without (green) applied inte-
grator.
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It is evident that the developed control concept is capable to overcome relatively large
errors in system parameters, even if they rapidly change over time (see figure 6.2.16).

6.2.3 Short Comparison to Applied PID Controllers

Within the scope of this thesis the initial aim was to demonstrate that a model based
approach of the temperature control can significantly outperform the currently applied
PID controller. Beforehand, one must not forget that the model of the combustion
chamber using the ODEs (5.5.1) represents reality substantially simplified.
Results are alarming when testing the actually applied (according to the information
received) PID, respectively the PI controller

C(s) = 0.8

(
1 +

1

180s

)
= Kp

(
1 +

1

Tis

)
(6.2.1)

for the pilot plant, considering the illustrated potential in this simulation. This can not
only be attributed to the fact that the temperature of the thermocouple (sensor) serves
as input of the control, but the relatively aggressive values Kp = 0.8 and Ti = 180 for a
maximal value of umax = 7.2 · 10−4 lead to a toggling manipulated variable, comparable
to the results of a bang-bang control. The thermocouples of the sensors are such inert,
that they will not recognize the jumps in the distribution of the gas temperatures and
consequentially follow the reference quantity, although the real gas temperatures are
very far from target values (see figure 6.2.23).
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Figure 6.2.22: Results of applying the PI controller of the pilot plant.
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Figure 6.2.23: Zoom in figure 6.2.22 (steady state phase).

Except of the chosen input temperature Tg,in (see figure 6.2.22), which produces a per-
manent distance of only 50◦C to be compensated by the burner, the input parameters
are held constant according to table 6.1.4 (compare with the results in section 6.2.1).
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Figure 6.2.24: Manipulated variable according to figure 6.2.23.
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6.3 Simulation including all Components

The simulation results of the entire plant, including two valve boxes (2.2.1), two ceramic
beds (2.3.1), the combustion chamber (2.4.1) and the two temperature sensors (4.1.17)
according to the methods in chapter 3 applying the control concepts of chapter 5 and
the restoring of the original gas temperature (section 4.1.2) are finally presented.

The control of the output gas temperature of the combustion chamber only (analogous
to section 5.6.2) is focused due to time constraints, whereas constant input parameters
regarding table 6.1.4 were used. The reference quantity Ttarget is raised linearly with a
slope of 5

60
[K/s] (see figure 6.2.1) to imitate the real start-up process of the plant. As in

section 6.2, the restored gas temperature serves as input of the control concept (cf. figure
5.8.1). Furthermore, it needs to be mentioned that the control law compensates the error
made in the inlet pressure pin (see equation (5.1.1)) as it is fed with pin,control = 101325Pa.
The input pressure in the combustion chamber will be certainly lower due to the pressure
drop in one of the ceramic beds (section 2.3.2) and in one of the valve boxes (section
2.2.1).
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Figure 6.3.1: Distribution of the control variable Tg,out and comparison to the value when
feeding the same inputs to the simplified model of the combustion chamber according
to equation (5.1.1).

It is remarkable that the simplified model of the combustion chamber delivers almost
identical results as the complex model consisting of PDEs when feeding same inputs
(referring to figure 6.3.1).
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Figure 6.3.2: Zoom in figure 6.3.1 (steady state phase).
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Figure 6.3.3: Zoom in figure 6.3.1 (start-up phase).

110



1.14 1.145 1.15 1.155 1.16 1.165 1.17 1.175 1.18
x 10

4

1060

1080

1100

1120

1140

1160

t [s]

T
g
,c
c
[K

]
Mean gas temperature of the combustion chamber.

 

 
real T g,cc

(Tg,in(restored) + Tg,out(restored))/2 - controller

(TSe,1+ TSe,2)/2 - sensor
Ttarget

Figure 6.3.4: Comparison of the real mean gas temperature (blue) of the combustion
chamber with the average of the restored input Tg,in(restored) and output Tg,out(restored)

temperature, as well as the average of the temperature of the thermocouples TSe,1 and
TSe,2 in steady state of the plant (cf. figure 6.3.2).
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Figure 6.3.5: Start-up phase of figure 6.3.4 (cf. figure 6.3.3).
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Figure 6.3.6: Inlet (green), outlet (red) and estimated outlet (blue) volume fraction of
VOCs of the combustion chamber, displaying deviations to Φout (cyan) in the simplified
model (equation 5.1.1) when feeding same inputs.

0 2000 4000 6000 8000 10000 120000

1

2

3

4

5

6

7

8x 10−4

t [s]

u 
[k

g/
s]

Manipulated variable − Fuel injection.

 

 
u

Figure 6.3.7: Distribution of the fuel mass flow.
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Figure 6.3.8: Manipulated variable according to figure 6.3.2.
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Figure 6.3.9: Manipulated variable according to figure 6.3.3.
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6.3.1 Combustion Chamber

Figure 6.3.10: Distribution of Tg according to figure 6.3.3.

Figure 6.3.11: Distribution of Φ according to figure 6.3.3.
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Figure 6.3.12: Outlet pressure of the combustion chamber and thereby input pressure
of the appropriate ceramic bed per RTO half cycle.

6.3.2 Ceramic Bed A

Figure 6.3.13: Distribution of Ts in ceramic bed A according to figure 6.3.2.
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Figure 6.3.14: Distribution of Tg in ceramic bed A according to figure 6.3.2.

Figure 6.3.15: Distribution of Φ in ceramic bed A according to figure 6.3.2.
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Figure 6.3.16: Outlet pressure of the ceramic bed A and thereby input pressure of the
combustion chamber or valve box A depending on the RTO half cycle.

6.3.3 Valve Box A
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Figure 6.3.17: Distribution of Tg in the valve box A, switching between RTO in- and
outputs.
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Figure 6.3.18: Distribution of Φ in the valve box A, switching between RTO in- and
outputs.
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Figure 6.3.19: Outlet pressure of the valve box A and thereby input pressure of the
ceramic bed A or outlet pressure of the RTO depending on the half cycle.

118



6.3.4 Chimney Outlet
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Figure 6.3.20: Leaving gas temperature of the RTO.
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Figure 6.3.21: Leaving volume fraction of VOCs of the RTO.
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Figure 6.3.22: Outlet pressure of the RTO.
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7 Conclusion and Outlook

Outlook
The design of the control concept was guided by the criteria of reproducing realistic
conditions as far as possible, which motivated the description of plant components by
sophisticated models. In the very first step the verification of these models by measure-
ment data needs to be done, starting with the temperature sensors in the combustion
chamber. After one made sure that real gas temperatures can be reproduced, the com-
parison between measured (then restored) and calculated temperatures will clarify the
quality of applied models.
Before testing on the real plant, the control of the valve responsible for feeding the ap-
propriate amount of fuel to the burner (provided by the developed concept) has to be
(re)designed, whereas a time variant approach (see section 5.5.1) and faster sampling
(� 1s) have to be taken into account.
Unless plants will be equipped with sensors measuring the inlet volume fraction of VOCs
Φin to the combustion chamber, the possibility to exploit the signals of the temperature
sensors in the area of the ceramic bed in order to find a reasonable estimate for Φin will
be worth analyzing, if one wants to consider the reaction heat in the control without the
need for compensation by the integrator.

Summary

(I) Measurements

(i) Temperature sensors in the combustion chamber

(ii) Approximation of derivatives of sensor signals (see section 4.1.2.4)

(iii) Optimization of parameters (also see section 4.2)

(iv) Verification of models

(II) Inner control loop of the valve in charge of the fuel injection

(i) Modelling and integration in simulation

(ii) Consideration of a time variant mass flow (see section 5.5.1 and 6.1.2)

(iii) Sampling

(III) Additional sensors

(i) Mass flow ṁabs

(ii) Inlet volume fraction of VOCs Φin in the combustion chamber

(IV) Accurate consideration of the reaction heat in the control

(i) By measuring Φin

(ii) And/Or estimating Φin by exploiting temperature signals (see section
5.7)

121



Conclusion
The more research and mathematical modelling of effects and components are considered
in the control of the gas temperature in the combustion chamber, the more it becomes
evident that the applied PID controllers waste fossil fuels and that on a large scale.

Within the scope of this thesis it has been mathematically demonstrated that an ap-
propriate model based control can not only save fuel, but even improve purification
performance of contaminated raw gas. In view of the consumption level of natural gas
for industrial purposes there is a huge potential to reduce costs and thereby increase
the attractiveness of manufactured plants by CTP and the business dealing with Regen-
erative Thermal Oxidizers in general. The developed concept is not only restricted to
a two-bed configuration, but it can be applied to all kinds of RTOs with various bed
configurations and other materials than ceramic to buffer the enthalpy stream, leaving
the combustion chamber.

Personally, I have not primarily focused on cost saving potential, but with the perspective
of a more sensitive environmental consciousness I do feel responsible for topics like the
waste of natural resources and the corresponding greenhouse effect, which subsequently
leads to the fight for natural resources and very often legitimizes military operations.
While this statement may be considered excessively dramatic, it should underline the
importance of a conscious handling with all forms of energy.

Since we already have the technical capacities and the required expertise, it is in our
responsibility to support research and development in order to minimize emissions. In
this process we are not only capable to improve efficiency, but also to reduce expenses.
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[14] Bauer R., Gölles M., Brunner T., Dourdoumas N. & Obernberger I. (2007), What
Is Really Measured by Temperature Sensors in a Biomass Furnace ?

[15] Brookfield G. (2007). ”Factoring quartic polynomials: A lost art”. Mathematics
Magazine 80 (1), page 67–70.

[16] D’Errico J. (2012), MATLAB Central File Exchange, accessed 28 October 2015,
http://www.mathworks.com/matlabcentral/fileexchange/34765-polyfitn

[17] Alten H.-W., Naini A.D., Folkerts M., Schlosser H., Schlote K.-H., Wußing H.:
4000 Jahre Algebra. Geschichte, Kulturen, Menschen. Springer-Verlag Berlin Hei-
delberg, 2003.

[18] Christofides P.D., Nonlinear and robust control of PDE systems. Applications to
transport-reaction processes, Springer (2001)

[19] Deutscher J. (2012), Zustandsregelung verteilt-parametrischer Systeme, Springer-
Verlag Berlin Heidelberg

[20] Deutscher J. (2012), Zustandsregelung verteilt-parametrischer Systeme, Springer-
Verlag Berlin Heidelberg, page 511-552

[21] J. Adamy, Nichtlineare Systeme und Regelungen, Springer-Verlag Berlin Heidel-
berg , 2. Auflage (2014)

[22] J.–J. E. Slotine, W. Li: Applied Nonlinear Control. Prentice–Hall 1991, page
230–233

[23] A. Isidori: Nonlinear Control Systems (2nd Edition). Springer–Verlag 1989, page
23–36

124



Nomenclature

Latin Letter Units Description

A m2 cross section area
Akin s−1 pre-exponential, kinetic factor in the Arrhenius law
aeff m2 s−1 dispersion coefficient of the gas phase
aV (x) m2 m−3 specific surface of the ceramic beds, depending on

space x
aV,loss m2 m−3 specific surface considered for ambient loss
C kmol m−3 concentration
c J kg−1 K−1 heat capacity
dh m hydraulic diameter
Dabs m2 s−1 absolute or effective diffusion (ceramic beds)
Dax m2 s−1 axial dispersion (ceramic beds)
Ea J kmol−1 activation energy in the Arrhenius law
H m height
HV J kmol−1 heating or calorific value
h W m−2 K−1 heat transfer coefficient
I − identity matrix
kloss W m−2 K−1 coefficient for ambient loss
L m length
Lflame m length of the burner flame in the combustion chamber
m kg mass
ṁ kg s−1 mass flow
ṁfuel kg s−1 mass flow of pure fuel substance added through the

burner
M kg kmol−1 molar mass
Mmix kg kmol−1 molar mass of the gas mixture in the plant
Niter − number of iterations
Nl − number of ceramic layers in the ceramic beds
Nx − number of grid points of discretized space
Nu − Nusselt number
p Pa absolute pressure
pṁ − polynomial approach for RTO cycle switches
Pr − Prandtl number

Q̇ kg m2 s−3 heat flow
rg kmol s−1 m−3 reaction rate
Re − Reynolds number
Rid J kmol−1 K−1 ideal gas constant
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Rs,k J kmol−1 K−1 specific gas constant of the gas component k
t s time
ts s sampling time
T K temperature
Tamb K ambient temperature
Ttarget K reference temperature in the combustion chamber

T g,cc K mean gas temperature over space xcc
V m3 volume
wk − mass fraction of the gas component k
x m general expression for space
xk − molar volume fraction of the gas component k
y − general expression for solutions

Greek Letter Units Description

αcc,wall − linear parameter for the temperature of the inner sur-
face of the combustion chamber

αΦ − numerical coefficient, appearing at Φ
∆HR J kmol−1 enthalpy of reaction
∆p Pa differential pressure
∆T K differential temperature
ε − emissivity
εR − infinitesimal bound
εB(x) − porosity depending on space x in the ceramic beds

ζ − general coefficient for pressure drop
η Pa s dynamic viscosity
λ W m−1 K−1 heat conductivity
λaf-ratio − air-fuel equivalence ratio
ρ kg m−3 density
σ W m−2 K−4 Stefan-Boltzmann constant
τ s RTO half cycle period
Φ m3 m−3 volume fraction of volatile organic compound(s)
ϕshape − shape coefficient for pressure drop

Superscripted
Index

Units Description

bed − ceramic bed
cc − combustion chamber
in − inlet
out − outlet
vb − valve box
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Subscripted
Index

Units Description

ax − axial
basis − basis of the cross section area in reference to the mass

flow
bed − ceramic bed
cc − combustion chamber
cc,wall − inner surface of the combustion chamber
Ce − ceramic tube in reference to the temperature sensor
eff − effective
fuel − indication of the fuel of the burner
g − gas phase
g,m − gas phase, mean value
i − running index, used for the ceramic layers in the bed
id − ideal
in − indication of incoming parameter
k − running index, used for different gas components
l, j − general running index
loss − parameter in terms of ambient loss
mix − mixture
out − indication of outlet parameter
ref − reference
s − solid phase
Se − thermocouple in reference to the temperature sensor
ss − temperature sensor
ST − protective steel tube in reference to the temperature

sensor
vb − valve box

Abbreviations Units Description

AI − affine input
BED − ceramic bed
CC − combustion chamber
CTP − Chemisch Thermische Prozesstechnik GmbH
ICDQ − interpolated central differential quotient
ODEs − ordinary differential equations
PDDS − physical properties data service
PDEs − partial differential equations
PID − proportional–integral–derivative
PLC − programmable logic controller
PT1 − proportional time (first order)
RTO − Regenerative Thermal Oxidizer
SISO − single output single input
VB − valve box
VOCs − volatile organic compounds
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Appendix

General Parameters

Molar Mass [kg/kmol]

Oxygen Nitrogen Water
Carbon
Dioxide

Argon

32 28.01 18.015 44.01 39.948

Molar masses of materials.

Dynamic Viscosity [Pa s]

Material Aη · 105 Bη · 107 Cη · 1010 Dη · 1012 Eη · 1015

Oxygen −0.10257 0.92625 −0.80657 0.05113 −0.01295

Nitrogen −0.01020 0.74785 −0.59037 0.03230 −0.00673

Water 0.64966 −0.15102 1.15935 −0.10080 0.03100

Carbon
Dioxide

−0.18024 0.65989 −0.37108 0.01586 −0.00300

Argon 0.16196 0.81279 −0.41263 0.01668 −0.00276

Coefficients for the dynamic viscosity of pure gases.

Heat Conductivity [W m−1 K−1]

Material Aλ · 103 Bλ · 103 Cλ · 106 Dλ · 109 Eλ · 1012

Oxygen −1.285 0.10655 −0.052630 0.025680 −0.005040

Nitrogen −0.133 0.10149 −0.060650 0.033610 −0.007100

Water 13.918 −0.04699 0.256066 −0.183149 −0.055092

Carbon
Dioxide

−3.882 0.052839 0.071460 −0.070310 0.018090

Argon 4.303 0.04728 −0.007780 0 0

Coefficients for the heat conductivity of pure gases.
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Heat Capacity Gas Phase [J kg−1 K−1]

Material Acg Bcg Ccg Dcg Ecg Fcg Gcg

Oxygen 2122.2098 3.5302 −7.1076 −1.4541 30.6057 −83.6686 79.4375

Nitrogen 432.2027 3.5160 2.8021 −4.1924 42.0453 −114.250 111.1019

Water 706.3032 5.1703 −6.0865 −6.0611 36.2423 −63.0965 56.2085

Carbon
Dioxide

514.5073 3.4923 −0.9306 −6.0861 54.1586 −97.5157 70.9687

Argon 0 2.5 2.5 0 0 0 0

Coefficients for the heat capacity of pure gases.

Heat Capacity Solid Phase [W m−1 K−1]

Layer i Acs,i Bcs,i Ccs,i · 103 Dcs,i · 107

1 753.76 1.298 −1.5 6.5

2-4 767.57 1.2869 −1.5 7

Coefficients for the heat conductivity of pure gases.

Specific Gas Constant [J kmol−1 K−1]

Oxygen Nitrogen Water Argon
Carbon
Dioxide

259.8270 296.8390 461.4010 208.1321 188.9220

Specific gas constants of materials.

Chemical Reaction and Reaction Enthalpy

Material Akin Ea ∆HR

Ethanol 5.37 · 1011 2.0135 · 108 −1.24 · 109

Parameters considered for reaction.

Valve Boxes

Valve Boxes

Avb Vvb kloss avbV,loss Abasis ζvb

0.1871 0.0918 0.55 9.2467 0.18 213

Parameters of the valve boxes.
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Ceramic Beds

Beds

Abed abed
V,loss kloss ζin ϕshape ζout

0.18 6.6667 0.55 0.67 0.89 1.08

Parameters of the ceramic beds.

Ceramic Layers

Layer i λs,i ρs,i aV,i εB,i dh,i Hi

1 1.9 2100 847.64 0.6315 3 · 10−3 0.3

2 2.1 2700 847.64 0.6315 3 · 10−3 0.6

3 2.1 2700 847.64 0.6315 3 · 10−3 0.9

4 2.1 2700 847.64 0.6315 3 · 10−3 1.2

Parameters of the ceramic layers in the beds.

Combustion Chamber and Burner

Combustion Chamber

Acc Lcc accV,loss kloss Abasis ζcc

0.21 2.056 3.581307803 0.55 0.18 43

Parameters of the combustion chamber.

Burner

Lflame Mfuel HV max{ṁfuel} min{ṁfuel}
0.15 16 8.04·108 7.2 · 10−4 0

Parameters of the burner and the supplied fuel (natural gas).

Temperature Sensors

Sensor Components

Component A m c ε dh h

Steel Tube (ST) 0.0104 0.1407 661 0.25 0.0346 eq. (4.1.6)

Ceramic (Ce) 0.0075 0.0488 1148 0.9 − 70

Parameters of sensor components.

Sensors

αcc,wall kss,loss σ

10 0.93 5.670373 ·10−8

Parameters considered in model of the temperature sensors.
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3.5.2 Discontinuities for small |ṁ| < 10−3 in the Nusselt equation. . . . . . . . . . . 46

4.1.1 Construction of the temperature sensors in the combustion chamber (source:
[14], figure 7). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.1.2 Approximation (phST - white mesh) of the heat transfer coefficient (hST - colored
mesh). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.1.3 Approximation (phST - white mesh) of the heat transfer coefficient (hST - colored
mesh) by np = 10 polynomials. . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.1.4 Distribution of the mass flow for the sensor simulation. . . . . . . . . . . . . . 62
4.1.5 Distribution of original and restored temperature signals of the sensor model. 62
4.1.6 Distribution of original and restored temperature signals of the sensor model,

whereas the approximation of the heat transfer coefficient hST was adapted to
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6.1.1 Modification of ṁswitch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.2.1 Incoming and reference gas temperature. . . . . . . . . . . . . . . . . . . . . . 95
6.2.2 Distribution of the control variable. . . . . . . . . . . . . . . . . . . . . . . . . 96
6.2.3 Zoom in figure 6.2.2 (steady state phase). . . . . . . . . . . . . . . . . . . . . . 96
6.2.4 Zoom in figure 6.2.2 (start-up phase). . . . . . . . . . . . . . . . . . . . . . . . 97
6.2.5 Displaying of the restored gas temperature (cyan) used for the control feedback

and the temperature of the thermocouple (magenta). . . . . . . . . . . . . . . 97

132



6.2.6 Zoom in figure 6.2.5 (steady state phase), displaying two half cycle switches. . 98

6.2.7 Zoom in figure 6.2.5 (start-up state phase), displaying two half cycle switches. 98

6.2.8 Manipulated variable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.2.9 Manipulated variable according to figure 6.2.6. . . . . . . . . . . . . . . . . . . 99

6.2.10 Manipulated variable according to figure 6.2.7. . . . . . . . . . . . . . . . . . . 100

6.2.11 Distribution of the state variable Φ (blue) and its estimated value Φ̂ (green) of
the observer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.2.12 Zoom in figure 6.2.11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.2.13 Integrator state of the error between restored y and Ttarget according to figure
6.2.7 and 6.2.10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.2.14 Deviation in the mass flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.2.15 Deviation in the incoming volume fraction of VOCs. . . . . . . . . . . . . . . . 103

6.2.16 Comparing the impact of deviations in ṁ and Φin in the control of y = Tg,out
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