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Abstract

This master thesis deals with the automatic parameters identification of a speed observer. The
speed observer is part of the control system of an electrical load unit, which is integrated in an
engine or powertrain testbed. Previously, this speed observer parameters have been commonly
tuned by special trained experts. Parameters that are found by less trained people, are often
incorrect, which leads to an unnecessary high commissioning effort and insufficient control be-
haviour.
The commissioning complexity of an engine or powertrain testbed can be reduced on the basis
of the automatic parameter tuning process developed here. Therefore, important time and costs
of commissioning can be saved. Furthermore, ideal speed observer parameters ensure good and
robust operating and guarantee specified control properties of the automotive testbed. For the
developed identification process, corresponding test runs must be performed and recorded on
the testbed. Afterwards, the ideal speed observer parameters are identified through software
analysing of the recorded files.
Additionally, the identified observer parameters can be adapted manually and they are validated
by the identification software via several validation plots. With the help of this standardised
tuning mechanism of the speed observer, the parameterisation errors get reduced and thus the
quality of the corresponding controlling concept increases.





Zusammenfassung

Diese Masterarbeit befasst sich mit der automatisierten Parameteridentifikation eines Drehzahl-
beobachters, der in einem System zur Regelung eines elektrischen Belastungsmotors in einem
Motor- oder Antriebstrangprüfstand integriert ist. Bisher wurden die Parameter händisch von
speziell ausgebildeten Experten ermittelt. Parameter, die von weniger ausgebildeten Personen
gefundenen wurden, waren oft fehlerbehaftet, was zu unnötig hohem Inbetriebnahmeaufwand
und unzureichenden Regelungseigenschaften führte.
Durch den im Rahmen dieser Masterarbeit erstellten Identifikationsautomatismus werden die
Komplexität der Inbetriebnahme eines Motor- oder Antriebstrangprüfstandes reduziert und
somit wertvolle Zeit gespart und Kosten gesenkt. Optimierte Parameter gewährleisten einen
idealen und robusten Betrieb des Prüfstandes und stellen die spezifizierten Regelungseigen-
schaften sicher. Zu diesem Zwecke werden am Prüfstand entsprechende Prüfläufe ausgeführt und
Messergebnisse erzeugt, die anschließend von einer Software zur Bestimmung der Beobachter-
parameter analysiert werden.
Zusätzlich werden die ermittelten Parameter durch Grafiken validiert und können gegebenenfalls
manuell angepasst werden. Anhand dieser standardisierten Einstellungsmethode für die Param-
eter des Drehzahlbeobachters sollen Parametrierfehler vermieden, die Qualität der Parameter
erhöht und somit die Regelungseigenschaften verbessert werden.
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1 Introduction

Technologies as well as their requirements are developing very fast. Therefore, it is important to
keep up with this technical progress. Whereas previously in control engineering the parameters
for a common loop controller would have been set up manually, nowadays, the settings of a whole
control system are automatically calculated by an identification algorithm. This automatic tun-
ing does not only save time, it often reaches better control behaviour of the given system than a
manual parameterisation. For this reason, the industry is interested in the development of such
automatic tuning tools.

This thesis deals with a concept for automatic or rather standardised tuning of a speed observer.
The speed observer in question operates in an automotive testbed manufactured by AVL GmbH
(Anstalt für V erbrennungskraftmaschinen List). The observer provides the revolution speed of
electrical machines and is therefore an essential part of the implemented control system.
At the moment, the total parameterisation of the controlling unit is done in an elaborated
manual process by a testbed engineer. From that situation, the idea for an automatic tuning
concept of the controlling system was born. This automatic tuning mechanism should relieve the
testbed engineer and speed up the tuning process as well as improve the controlling performance.
Finally, the most important thing for a correctly working closed-loop control, is a well matched
configuration of the controlling system unit.

1.1 Automotive Testbeds

As already mentioned above, the speed observer is an important part of the control system of the
automotive testbeds. It observes the speed of an electrical machine and provides the calculated
signal as the feedback for the testbed controllers. The testbeds, which use this observer, are the
engine (see figure 1.1) on the one hand and the powertrain testbeds (see figure 1.2) on the other.
At the engine testbed, an electrical machine simulates the whole environment consisting of car,
street, powertrain, etc. by loading or driving the combustion or electrical engine. This makes it
possible to test and enhance engines and it is easy to simulate different driving scenarios without
any additional resources. Therefore, the automotive testbed enables a simple and efficient way
for engineering power units.
At powertrain testbeds, the units under test (abbr. UUT) are individual transmissions with or
without a driving engine. Depending on the powertrain type, this testbed exists in different
configurations, which will be discussed later in chapter 2.
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Figure 1.1: Engine testbed.

Figure 1.2: Powertrain testbed.

1.2 Outline of the Thesis

Chapter 2 covers a short overview of the testbed configuration, implemented control concept and
the structure of the speed observer. Chapter 3 deals with the identification and tuning concept
as well as the practical tests on individual automotive testbeds. In addition, the evaluations of
the tests are also clearly presented in chapter 3. The subsequent chapter 4 describes a tool for
creating test runs as well as some identification test runs which are necessary for the automatic
tuning mechanism. The software implementation of the elaborated identification algorithm is
described in chapter 5. This chapter also covers the handling of the identification software and
describes the steps, which are necessary for the identification process at an automotive testbed.



2 Control Concept of the Automotive Testbeds

This chapter deals with a compact overview of the automotive testbeds from AVL that are rele-
vant for this master thesis. Furthermore, it will explain the control concept, software architecture
and the developed speed observer of these automotive testbeds.

2.1 Testbed Introduction

Basically, the automotive testbeds from AVL can be divided into two main groups with different
configurations: There is the engine on the one hand and the powertrain testbed on the other
hand. All these testbeds use one or more electrical machines to drive or load the unit under test.
In this thesis and also at AVL, the electrical load machines or electrical driving machines of the
testbeds are called dyno in short. The software package of AVL, which controls and monitors
the dynos and the UUT, is called EMCON. The software name EMCON stands for Engine
Monitoring and Control.
At the testbed, the control software package EMCON needs a generic software which processes
tasks that are not part of the controlling mechanism, but necessary for a control concept, which
is working properly. This generic software is called PUMA (Prüfstands- und Messtechnik-
Automatisierungssystem) and it was also developed by AVL. Figure 2.1 shows a basic system
for a better understanding of how the individual parts of a testbed interact with each other.

Figure 2.1: Testbed environment

The following figures 2.2 and 2.3 illustrate a schematic representation of an AVL engine and
powertrain testbed. The engine testbed configuration has one dyno, which loads the combustion
engine. In contrast, a powertrain testbed can have up to four individual dynos depending on
the powertrain type. A testbed for testing a transmission has one dyno, a front- or back-wheel
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drive testbed needs two dynos and an all-wheel drive testbed, like in figure 2.3, has four dynos.
However, independent of the testbed type, the dynos always have the task of simulating the
environment for the unit under test.

Figure 2.2: Engine testbed from AVL

Figure 2.3: Powertrain testbed from AVL.

Currently, AVL offers a PUMA automation software package with a separated control software
architecture. One part of the control software EMCON runs on the PUMA PC and another
part is sourced out to an external control unit called KIWI-Box.
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Figure 2.4: Distribution of control between PUMA/EMCON and KIWI-Box

The control architecture is illustrated in figure 2.4. The splitting of the control software EMCON
is based on the different controlling speeds. The slower control part for the combustion engine
and vehicle simulation is located in the PUMA/EMCON system. The dyno control (electric
drive unit and load units), which represents the fast controlling part, is located in the KIWI-Box.
A speed observer is assigned to each dyno of the testbed. It provides the speed signal for the
speed controller and enables a correction of the torque set value (see figure 2.5). For this reason,
the observer is responsible for the control behaviour of the entire automotive testbed. If the
speed observer does not work properly, in case of wrong parameterisation, the testbed becomes
instable and accordingly unusable. Therefore, it is important to tune the speed observer properly
in order to get good controlling results and a well-working testbed. Figure 2.5 shows a schematic
representation of the implemented control concept.

Figure 2.5: Schematic figure of the dyno speed control concept
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2.2 Speed Observer

Generally, an observer is used for estimating hardly measurable or non-measurable system states.
These observed system states can be used for controlling the system behaviour via a state con-
troller. According to the definition of [6], an observer is an algorithm that estimates the system
states with the help of the input values and the corresponding output values of the system. In
contrast, the implemented speed observer returns the output value of the observed system. This
output value is measurable and it is also used as an input for correcting the model inaccura-
cies. Thus, it is not implemented for getting a hardly measurable or non-measurable system
state. It is rather deployed for filtering out measurement noise and other signal disturbances,
which will be coupled into the control loop. That injection of occurring disturbances can lead
to an unstable control loop. The dyno speed observer is used for avoiding these effects. It
couples a continuous and noiseless speed signal back to the system controller. In this case, the
implemented speed observer is not an observer in the usual sense, but it is rather used as an
intelligent filter to remove noise and other side-effects from the dyno speed signal. However, the
AVL-specific name of this component is “speed observer“, which is why it is also referred to as
“speed observer“ in this master thesis.

2.2.1 Modelling an Electrical Engine

The dynos at an automotive testbed are three-phase motors with an inverter. The inverter
converts a demand torque value into a corresponding voltage and current, and applies it to the
electrical motor. Thus, a dyno model, like it is shown in figure 2.6, results in the following
differential equation:

Θ
dω

dt
= T − TF (2.1)

The formula symbol T represents the driving torque of the dyno and it is also the input quantity
of the system. TF symbolizes all occurring losses during the operation. These losses are not
only friction losses but also machine-related losses, for example eddy current losses, heat losses
and other unknown losses. The formula symbol Θ involves all occuring moments of inertia.
Acceleration is symbolized by the time derivative of the speed ω in the equation 2.1.

Figure 2.6: Simple mechanical model for electrical units

The equation 2.1 describes the essential behaviour of an electrical unit, but it does not contain
some common basic technical effects. Distributed or networked systems, which are also available
at the automotive testbed (see figure 2.4), always have to communicate between all system
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parts. The transmission of the torque demand value from the speed controller to the frequency
inverter requires some milli or micro seconds considered as communication delay time Td. Neither
communication nor building-up torque can happen in zero time. The speed of building-up torque
(rise time tr) is limited for physical reasons. The inverter needs time to convert the demand
torque value into the corresponding voltage and current, and the inductance of the electrical
machine opposes the change in current (self-inductance). Therefore, it takes time until the full
demand torque is reached. These delay times can be summed up as dead time that must be
considered for modelling the dyno.
Another physical effect are the speed-dependent losses. On higher revolution speed, higher losses
TF occur.
Considering the effects described above, the formula 2.1 for the dyno model s changed to the
following:

Θ
dω

dt
= T (t− Td, tr)− TF (ω) (2.2)

2.2.2 Structure of the Dyno Speed Observer

As already mentioned, every dyno of the automotive testbed has its own speed observer. The
dyno observer delivers a revolution speed signal based on the dyno model. This model describes
the dyno inertia and the torque build-up dynamic, which consists of the delay and rise time of
the dyno. The mathematical description of the dyno model is shown in equation 2.3.

Θ
dω

dt
= T (t− Td, tr)− Tshaft − Tcorr (2.3)

The difference between formula 2.2 and the dyno model equation 2.3 is that the speed-dependent
losses are not considered, but there are two additional torque values included, which have an
influence on the currently active dyno torque: The shaft torque Tshaft on the one hand and
the torque of the correction controller Tcorr on the other hand. The torque Tshaft describes the
measured torsional moment between the connection of the electrical unit and the unit under
test. Depending on the operating state, the unit under test can drive or break the dyno. The
shaft torque has an upper and a lower limit. These limits are always to be checked during the
operation, because an overrun of these limits can lead to irreparable damages of the automotive
testbed.
The other torque value Tcorr represents the output of the correction controller, which should
compensate the inaccuracies of the dyno model. These inaccuracies lead to a difference between
the observed speed and the real revolution speed of the electrical unit. This correction controller
revises the torque of the dyno model depending on the error between real and observed speed.
The output of the correction controller reaches the phase controller, which corrects the set torque
of the real dyno. This additional phase controller corrects the phasing of the dyno shaft. This
is important for powertrain testbeds in order to eliminate tensions in the transmission of the
UUT. As discussed, every dyno has a speed observer, which provides the reference signal for
the controller. The correction controller of an observer eliminates only the difference between
measured and observed dyno speed, but neglects the actual shaft phase. Therefore, it is possible
that two dynos, which are coupled together by a powertrain, have the same speed, but different
shaft phases. Such a phase shift can actually be so strong that irreversible damages occur on the
unit under test. The phase correction controller is used to avoid this scenario. This controller
must generally be much slower than the correction controller of the observer. It works like an
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outer controller of a cascade controlling structure. As a rule of thumb (see [12]), the integral
action part KiPhCorr of the phase correction controller must be set smaller than the integral
action part of the correction controller for the observer Ki by a factor of 10. For this reason,
the parameter KiPhCorr is always one-tenth of the parameter Ki of the correction controller.
The phase correction has no effect on an engine testbed and should not be used there. The
controller can be set inactive, if the parameter KiPhCorr is put to zero. The figure 2.7 shows
the structure of the speed observer.

Figure 2.7: Dyno observer structure

The observer has many parameters, which can be divided in three parameter groups:

� model parameters

� controller parameters

� filter parameters

The following tables of parameter groups give an overview with a short description of all available
as well as adjustable parameters of the speed observer.
The following parameters in table 2.1 are used to model the behaviour of the electrical units at
the automotive testbed.



2 Control Concept of the Automotive Testbeds 19

Parameter name Description

Inertia This parameter represents the total inertia of the elec-
trical unit (formula symbol Θ). It is the sum of the
individual dyno and shaft inertias.

Torque Delay The Torque Delay parameter models the build-up delay
of the current system. It is also known as the reaction
time of a technical system. The delay time commonly
consists of the communication time between actor and
controller and the processing of the data in the arith-
metical unit.

TDynodt This property is used to indicate the torque rise time.
It is physically impossible for the desired torque value
to change infinitely rapidly. In this case the parameter
specifies the time needed for arising the nominal torque
from zero.

Table 2.1: Model parameter table.

Table 2.2 describes the parameters which are used for setting up the correction and the phase
correction controller. The correction controller is a PI controller with additional look-up table
parameters, which modify the proportional and integral value of the controller depending on
actual dyno speed. These look-up tables are used because of the limited dyno speed sensor
resolution. On low dyno speed it may happen that the sensor cannot register a speed variation
during each sample time. Therefore, the sensor returns the same speed value over a period of
time, after it measures the real, actual dyno speed. On slow revolutions, the error between
observed and measured speed can be changed more abruptly than on higher speed values, be-
cause of this sensor characteristic. Thus, the look-up tables are established for a good control
behaviour over the full-speed range. If the dyno speed goes below a defined value, the standard
proportional and integral parameter will be reduced by a curve which is defined by these look-up
table parameters.
The phase correction controller is an I controller. It also uses a look-up table for reducing the
standard parameter on slow dyno speed like the correction controller.

As already mentioned above, a main task of the speed observer is to filter out measurement
noise and other signal disturbances which are induced by the testbed sensors. The two measured
quantities, which are needed for the speed observer, are the shaft torque Tshaft and the dyno
speed Ndyno (see figure 2.7). The shaft torque quantity is directly filtered before the value has
an influence of the calculated dyno model torque. The measured dyno speed value acts as an
input for the correction controller. In this case, the output of the controller is filtered before
it corrects the dyno model torque. The implemented filters have two parameters. These filter
parameters are described in table 2.3.
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Parameter name Description

Kp Proportional action part of the PI correction controller
of the speed observer.

Ki Integral action part of the PI correction controller of
the speed observer. Ki is the reciprocal of the time
constant of a PI controller’s integral action part (unit
1/s).

KiPhCorr Integral action part of the phase correction controller.
It is also the reciprocal of the time constant of the in-
tegral action part (unit 1/s).

KpCurve This parameter is used to reduce the Kp value of the
PI correction controller at low speeds.

KiCurve The property KiCurve is used to reduce the Ki value
of the PI correction controller at low speeds.

KiPhCorrCurve This is used to reduce the Ki value of the phase correc-
tion controller at low-revolution speeds.

Table 2.2: Controller parameter table.

Parameter name Description

Filter Type Determines the type of the filter. Each of the filters can
be operated either as low-pass filter (Filter Type = 1)
or as notch filter (Filter Type = 2).

Filter Frequency This parameter defines the cut-off frequency of a low-
pass filter or the trap frequency of a notch filter.

Table 2.3: Filter parameters table.



3 Parameter Identification

A main requirement of the observer parameter calculation is that the identification algorithm
should operate quickly and as simply as possible. Furthermore, it should be independent from
the automotive testbed configuration and dyno types. The type or rather the specification of a
testbed dyno depends of the UUT. Because of the innumerable units under test, the range of the
dyno types reaches from an asynchronous electrical machine with high torque performance to
a powerful synchronous high-speed unit. Due to this requirement, the identification algorithm
should be kept as general as possible.
Since working on real testbeds was not always possible for this thesis, the identification concept
would be completely elaborated and tested by a simulation model in Simulink®. Only the
finished identification method with the corresponding test runs were carried out on individual
automotive testbeds.

3.1 Model Parameters

The central parameters of the speed observer are the model parameters, which describe the
behaviour of a testbed dyno. The mathematical modelling of the dyno is expressed by the
equation 2.3 in chapter 2. This equation consists of several formula variables that need to be
determined. The method to identify these unknown model parameters is to execute special test
runs without connecting any unit under test. This means that the dyno is decoupled from the
engine or powertrain during the test run. Therefore, it is possible to record the behaviour of
the dyno without any influence of other system components. The calculation of the unknown
parameters is based on the recorded demand torque and output speed signal of these defined
test runs.

3.1.1 Operational Losses Calculation

The operational losses of an electrical machine depend on the current revolution speed. A dyno
records higher losses on a higher speed. The interested reader is referred to [15] for further
details. Because of this, it is important to define the speed and also the torque point for the
parameter identification.
The electrical units of the testbed are selected in such a way that the average operating scenario
is in the range of the nominal speed and nominal torque. Therefore, the whole identification
concept as well as test runs operate at the nominal point of the given electrical unit.

Based on the model equation 2.2, it is obvious that the dyno-based losses are easily measurable
if the acceleration is set to zero

(
dω
dt = 0

)
. To achieve this situation, the electrical machine
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must drive a constant speed value. If a constant speed is reached, the equation changes to the
following structure:

0 = T (t− Td, tr)− TF (ω) (3.1a)

T (t− Td, tr) = TF (ω) (3.1b)

T = TF (ω) (3.2)

In the steady state of the dyno (constant speed), the delay time as well as the torque rise time
have no influence. The model equation simplifies to equation 3.2. At this stationary condition,
the controller needs to set up the torque value, which compensates the losses at the current
revolution speed. Therefore, the controller output T represents the machine-based losses at the
given constant speed value.
Generally, the machine-based losses are depending on the current revolution speed of the testbed
dyno. This phenomenon can be easily demonstrated by a coast down experiment as shown in [8].
In this experiment, the dyno speed has to be controlled to a high speed level first and after that,
the input torque value should be set to zero to start the coast down process. Therefore, the
dyno stops only by the friction torques. This coast down experiment was performed at a testbed
dyno and is illustrated in figure 3.1 (In every diagram of this master thesis, the dyno speed ω
(rad/s) is represented in rotation per minute (rpm) with the formula symbol N .).
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Figure 3.1: Coast down experiment of a testbed dyno.

The resulting speed characteristic has a non-linear progression, because of the speed-dependent
losses. Thus, the following friction model results:

TF (ω) = TC sign(ω) + TV ω (3.3)
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The formula symbol TC specifies a positive parameter for the dry (Coulomb) friction and TV
represents a positive parameter for the viscous friction.
The friction value TF is not a model parameter (see table 2.1) and should be compensated during
the operation by the correction controller of the speed observer. The only reason for identifying
TF is for better determination of the model inertia parameter. In this case, the friction model
(see equation 3.3) is simplified to the following for a simpler identification of TF (ω).

TF (ω) = TC sign(ω) (3.4)

The value TF is calculated by the operation losses around the nominal speed. This means that
the occurring losses near the nominal speed will be averaged to one constant friction value. The
test run for calculating the friction value controls the testbed dynos to their nominal speed and
persists there for a few seconds. The same is carried out for 90 % and 110 % of the nominal
speed. The three received speed dependent losses at these speed values are averaged to one dyno
loss quantity TF .

Figure 3.2: Test run for identification of the dyno based losses.

Figure 3.2 shows the described test run for the identification of the dyno losses. The upper sub
plot represents the measured dyno speed and the sub plot below shows the applied torque from
the speed controller. The figure 3.2 also demonstrates that the measured signals are always
fraught with measurement noise, which leads to a distorted measurement result, if only one
single torque value is selected to represent the losses of the dyno. To compensate this relative
measurement error, the average value of a torque range at the steady state is calculated the
same way as the machine-based operating losses.
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Figure 3.3: Calculation of the dyno’s operational losses.

Figure 3.3 shows a graphical representation of the identification mechanism from the operational
losses of the dyno. The magenta coloured dots are the detected start and end points of the steady
states from each demand speed and the green lines represent the area for calculating the loss
value of the dyno. Therefore, all green TSET values of each demand speed are averaged to one
friction quantity, which represents TF of the corresponding speed value. Afterwards, these three
determined friction values are averaged to one TF value, which represents the operational loss
of the testbed dyno and will be used for identifying the model inertia (see chapter 3.1.2).
This test run was performed on two different automotive testbeds and thus on two different dyno
types. One of these testbeds was a combustion engine testbed with a synchronous machine. This
synchronous three-phase motor has a nominal speed of 3000 rpm and a nominal torque of 500
Nm. The other testbed was a powertrain testbed with two asynchronous dynos. These three-
phase dynos have a nominal speed of 650 rpm and a nominal torque of 3000 Nm. Table 3.1
and 3.2 illustrate the calculated results of the test run at both automotive testbeds.

Speed [rpm] TF [Nm]

2700 4.1310

3000 4.5214

3300 4.7124

Mean Value 4.4549

Table 3.1: Test run results of the
synchronous motor.

Speed [rpm] TF Dyno1 [Nm] TF Dyno2 [Nm]

585 20.0901 14.0880

650 16.0494 10.8272

715 12.5326 8.5482

Mean Value 16.224 11.1545

Table 3.2: Test run results of the asynchronous motor
of the powertrain testbed.
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3.1.2 Inertia Calculation

Moment of inertia is a measure of an object’s resistance to changes in a rotational direction
[3]. The inertia of a body, or in this case of a dyno, depends on the distribution of the dyno
mass with respect to the axis of rotation. Therefore, the inertia represents the main dynamic
behaviour of the dyno model and even small deviations implicate unequal behaviour between
dyno model and a real electrical engine.
By reshaping the dyno model equation 2.2 and the previously calculated friction parameter TF
(see chapter 3.1.1), the inertia of the dyno can be calculated by another identification test run.
During this test run, the input torque must be set to a constant value for a certain period of
time. As a result of this constant demand torque, the delay time and the torque rise time can
be neglected. Thus, the dyno model equation 2.2 for calculating the inertia can be simplified as
follows:

Θ =
T − TF (ω)

dω
dt

(3.5)

Equation 3.5 demonstrates the possibility of calculating the dyno inertia by the previously
measured losses TF (ω), the constant applied input torque T and the gradient of the dyno speed
dω
dt .
There are two ways for setting the input dyno torque T to a constant value. One way, like in
[8], is to set the input value to zero for obtaining the dyno characterisation. This is shown in
equation 3.6 and figure 3.1.

Θ =
−TF (ω)

dω
dt

(3.6)

According to this coast down operation, the inertia is the ratio between the machine-based losses
and the falling gradient of the measured speed value.
The second way to find out the inertia, is the opposite procedure. Initially, the dyno has to
be controlled to a low level speed value, and afterwards a torque jump with a steady value has
to be applied. By determining the rising gradient of the speed, it is also possible to calculate
the inertia of the given dyno by solving the equation 3.5. The advantage of the identification
of the dyno inertia with the coast down test is that this experiment is very simple to perform.
The coast down process could be easily realized with all electrical units and without any major
efforts. However, the disadvantage is the temporal component of this identification mechanism.
The time duration of the coast down process depends on the dyno type. A permanently ex-
cited synchronous machine needs only a few seconds for a coast down, whereas a well-mounted
asynchronous machine with a high inertia might need more than half an hour until it stops. In
contrast, the disadvantage of the torque jump experiment is the realization of the test run. In
order to not run the dyno for too long at maximum speed or even create a speed overshoot, the
duration of the torque jump should be limited. This can easily be achieved by the automation
software PUMA, which provides a comfortable environment to define and execute such test runs.
The duration of this identification mechanism is, on the other hand, an advantage for this prac-
tice. It does not matter, which kind of dyno is used, it always takes only a few seconds.
Another huge advantage is that this inertia identification test run can also be used for deter-
mining the other two model parameters (Torque Delay and TDynodt). This calculation will be
explained in the following chapters.
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Figure 3.4: Test run for determining the dyno inertia.
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Figure 3.5: Simple example for a linear regression.

Figure 3.4 shows the recorded torque jump test run on the combustion engine testbed for the
dyno inertia identification. In the first part of this test run, the dyno is controlled to 1000 rpm
and the nominal torque of 500 Nm is applied until 90 % of the maximum dyno speed is reached.
Because of the signal noise, it is not expedient to calculate the gradient at one point of the speed
signal (see figure 3.4). Therefore, the gradient of the range between ±10 % of the nominal dyno
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speed (here 3000 rpm) is calculated by linear regression. This is the reason why the operating
loss is also calculated in the same speed range (see chapter 3.1.1). This identification section
(nominal speed ±10 %) is considered to be linear for detecting the dyno model parameters.
Linear regression generally attempts to model the relation between two variables by fitting a
linear equation. One variable is considered to be an explanatory variable X and the other as a
so-called dependent variable Y. In this case, it should produce a linear relationship between the
time values X and the speed values Y. The following figure 3.5 illustrates a very simple example
for a linear regression of some randomly selected speed points.
The mathematical derivation of this linear regression example looks as follows:

y1 ≈ k x1 + d

y2 ≈ k x2 + d

...

yn ≈ k xn + d


y1

y2

...
yn


︸ ︷︷ ︸

y

≈


x1 1
x2 1
...

...
xn 1


︸ ︷︷ ︸

M

[
k
d

]
︸ ︷︷ ︸

p

At the representative example above, it is assumed that a linear relation exists between n
measured speed points. An equation of a line is set up for every measurement point. The
values y1 . . . yn illustrate the recorded n speed values, x1 . . . xn the corresponding time stamps,
k represents the slope and d the offset of the requested fitting line, which describes the linear
progress of the measured speed. Because of the given overdetermined system of equations, there
is no vector p which fulfil all equations. Therefore, approximate signs are used instead of equal
signs in those equations above.
According to a proposal by Carl Friedrich Gauß, a German mathematician, a solution for vector
p, which minimizes the sum of squared errors between points and fitting line, should be found.
This solution is obtained if the given overdetermined system of equations is transformed to
equation 3.7.

p = M+y (3.7)

The matrix M+ in equation 3.7 represents the pseudoinverse of matrix M. A pseudoinverse is a
special type of an inverse matrix, which can be used for singular and non-square matrices. It is
commonly used for calculating least square solutions of linear systems of equations, like in the
given example above. The interested reader is referred to [2] and [6] for further details on linear
regression and pseudoinverse.
This described line fitting process is performed for calculation the slop (k = dω

dt ) of the recorded
speed signal between 90 % and 110 % of the nominal dyno speed. On the basis of this slop
calculation, the dyno inertia can be identified through equation 3.5.
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The torque jump test run for calculating the inertia was performed at the engine and power-
train testbed just in the same way as the identification of the operational losses. Tables 3.3
and 3.4 represent the results of the calculated inertia as well as the inertia specified by the
manufacturer.

Specified Inertia [kgm2] Inertia (TJ) [kgm2] Inertia (CD) [kgm2]

Engine Dyno 0.1090 0.1257 0.1184

Table 3.3: Inertia specified by the manufacturer and the calculated inertia of the engine testbed
dyno.

Specified Inertia [kgm2] Inertia (TJ) [kgm2]

Dyno Front Left 4.0 4.0934

Dyno Front Right 4.0 4.0852

Table 3.4: Inertia specified by the manufacturer and the calculated inertia of the powertrain
testbed dynos.
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Figure 3.6: Comparison between real and simulated dyno speed behaviour.

The abbreviation TJ of the tables 3.3 and 3.4 stand for Torque Jump and represents the calcu-
lated dyno inertia by the torque jump test run. The abbreviation CD of the tables 3.3 stands
for Coast Down and illustrates the calculated dyno inertia in the coast down test run.
From both tables above, it can be easily perceived that the identified inertia is always higher
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than the inertia specified by the manufacturer. This was expected, because every testbed dyno
has an additional flange for determining the dyno speed and the appearing torque at the shaft.
Furthermore, the coast down experiment was also performed at the engine testbed for calculat-
ing the inertia. The coast down inertia is a little bit lower than the inertia of the torque jump
test run. Figure 3.6 shows a validation of the identified inertia from the combustion engine
testbed with the aid of a Simulink® model. This compared presentation indicates, that the
dyno model with the torque jump inertia conforms better with the real dyno behaviour than
the model with the inertia which is identified by the coast down experiment. The reason for
that is that the torque jump inertia is derived from an operation process of the dyno, which
represents the dynamic behaviour in a better way. Therefore, it may be assumed that some
physical effects, which have an influence on the dyno inertia, occur during the operation such
as eddy current losses.
In addition, figure 3.6 shows that already a small deviation between real and identified inertia
generates a wrong dyno model speed behaviour.

3.1.3 Delay Time Calculation

Time delays are common in many technical systems. They are often caused by communication
or measurement lags, delayed sensing and other influences. The delay time describes the time
between applying an input signal and the resulting reaction of the system output. On controlled
systems, time delays can cause instabilities and they affect the control behaviour adversely. For
control engineering, it is important to know the exact delay time of the system for the design of
the controller.

Figure 3.7: Delay time illustration by a Simulink® dyno model.

The delay, or so-called dead time, of a system is usually diagnosed by measuring the output
signal during abrupt changes of the input. Such a measuring process is carried out with the
torque jump test run for calculating the dyno inertia (see chapter 3.1.2). Therefore, this test
run can also be used for determining the dyno delay time, which saves identification time, as
no additional test run is required. Figure 3.7 demonstrates the effect and identification of the
system delay time by the torque jump test run with a Simulink® model. The dead time is easily
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recognizable in a simulation, as it is represented above in figure 3.7. Due to the noise, the exact
determination of the delay time by real measurement data from an automotive testbed presents
a more difficult task.
Figure 3.8 represents the recorded speed and set torque signal of a torque jump test run. It
shows that the measured speed always oscillates around the demand-value. The first speed
value change after the torque jump is caused by the noise and is not the reaction of a new input
value. Before the impress of the torque jump occurs, the dyno is controlled at a constant speed
value. This constant section is used for calculating the oscillation zone of the speed signal. The
upper bound of this zone represents the threshold, which must be reached to signalise an output
reaction triggered by the input.
The table 3.5 and 3.6 below illustrate the delay times of the dyno calculated by the torque jump
test run method. As these tables show, the dead time of the dyno controlling system decreases
when the torque jump value is increased. This effect definitely appears at both testbed systems.
Furthermore, the torque jump test run was carried out by two different constant start speed
values at the engine testbed, which also leads to different delay times.
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Figure 3.8: Delay time representation by real measurement data.

The column Delay Time [ms] (100 rpm) of table 3.5 represents the identified delay time with
a start speed of 100 rpm and the other column, Delay Time [ms] (1000 rpm), with 1000 rpm.
The unequal delay times by the same torque jump value are caused by the limited resolution of
the dyno speed sensor. The resolution of the dyno’s build-in sensor for 100 rpm was too low for
determining a variation of the speed value in every sample. Therefore, an arbitrary measurement
error influences the identification and increases the delay time. This measurement error should
be avoided for the identification of the time delay. In this case, it is important that the start
speed of the torque jump test run is high enough to ensure that this technical sensor limitation
does not apply. By the commonly used speed sensors of the AVL dynos, a start speed of about
500 rpm is sufficient for eliminating this measurement error. It should be noted, however, that
the corresponding commissioning engineer is responsible for a correct choice of this start speed
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test run parameter.

Torque [Nm] Delay Time [ms] (100 rpm) Delay Time [ms] (1000 rpm)

50 3.3 1.9

100 2.9 1.2

300 1.2 0.8

500 1.3 0.8

Table 3.5: Identified delay time at the engine testbed

Torque [Nm] Delay Time Dyno 1 [ms] Delay Time Dyno 2 [ms]

500 6.2 6.6

1000 4.1 4.3

2000 3.0 3.0

3000 2.1 2.0

Table 3.6: Identified delay time at the powertrain testbed

The decreasing of the delay time by increasing the torque jump value is caused by a physical
reason and the way of calculating it. As already mentioned, the recorded speed value must be
higher than a defined threshold for detecting an output reaction depending on the applied input.
If the torque jump value is too low, it may happen that the dyno speed exceeds that threshold
after some samples, although the full demand torque is applied. This essential effect is shown
below in figure 3.9. It represents the comparison of the recorded torque jump test run speed
signals from the engine testbed by individual torque values. In this plot, the demand value is
applied at time zero for every speed signal. It can be easily recognized, that the speed of the
red and green curve increases slower than the other plotted speed signals. In this case, the
higher detected delay time value is a result of the slow speed increase, which is caused by the
low demand torque. Figure 3.10 illustrates the same dyno behaviour comparison on the basis
of the dyno Simulink® model. The missing torque rise time parameter value for the simulation
model (see figure 3.10) is taken from chapter 3.1.4, which describes the identification of the last
model parameter. This effect can also be shown by that simulation plot. For this reason, not
only the start speed value is important for a good delay time identification, but also the choice
of the torque jump value is an essential part for a good delay time detection.
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Figure 3.9: Measured torque jump test runs by individual torque values.
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3.1.4 Torque Rise Time Calculation

The last observer parameter of the dyno model is the torque rise time (TDynodt). This model
parameter defines the torque build-up time from zero to the nominal torque of the given dyno
and it is declared in milliseconds. It specifies the maximum available electrical torque change
of the testbed machine. This parameter is therefore realized by a rate limiter block in the
Simulink® model of the testbed dyno.
The rate limitation of the torque disposes that the applying input can only change in a continuous
way on an abrupt input torque step. As a consequence, the waveform of the speed signal becomes
quadratic until the demand value of the torque jump is reached. Therefore, it seems obvious to
calculate the torque rise time from this quadratic path of the speed signal by fitting a polynomial
curve. The gradient of the fitting curve presents the rate limit and thus the rise time parameter.
This part of the speed characteristics is shown in figure 3.11. It appears that the torque jump test
run is also useful for identifying the build-up torque parameter. However, the measured speed
signal, which is shown in figure 3.12, represents, that the quadratic path is difficult to detect.
In this case, the fitting curve identification mechanism works unreliably and is not suitable for
the rise time identification. Instead, the Simulink® dyno model is consulted for calculating this
model parameter.
At this time of the model parameter identification, all parameters except the rise time parameter
are identified and available. Due to this, it is possible to identify this unknown parameter by
a simple optimization process. The aim of the optimization problem is to minimize the error
between the measured and the simulated speed signal(eN = NDyno − NSimu). The Simulink®

model is set up by the determined parameters and a low start torque rise time, e.g 100 ms. The
input signal of the model is the recorded dyno controller torque signal of the torque jump test
run. After the simulation, the error between the measured and received simulated speed signals
is calculated. This process is repeated until the error reaches a minimum due to modifying the
rise time. The figure 3.13 below illustrates the measured dyno as well as two simulated speed
signals with different rise times (green = 20 ms, magenta = 10 ms). On the basis of this figure it
is easily discernible, that the error between measured and simulated signal decreases at a higher
torque build-up time.
MATLAB® already provides many different algorithms for the kind of optimization problem,
as it is described in the following chapter.
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Figure 3.11: Simulated speed signal of the
dyno model.
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Figure 3.12: Measured speed signal of the
engine testbed dyno.
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Figure 3.13: Comparison between real dyno speed and simulated speed signals with rise time
parameter (TDynodt) variation.

3.1.4.1 Optimization with MATLAB®

Generally, optimization deals with the best selection of elements from a set of available alter-
natives [4]. In the most common cases, an optimization problem consists of maximizing or
minimizing a given function by varying one or more function variables. The mathematical ex-
pression of an optimization problem is illustrated with the equations 3.8a and 3.8b. The function
f(x) represents the so-called objective function, Z constitutes the region of the optimization and
x the modifying variable. The usual optimization algorithms are basically designed to find the
minimum of the objective function, because every maximizing problem can easily convert to a
minimizing optimization, which is shown with the equation 3.8b.

min
x∈Z

f(x) (3.8a)

max
x∈Z

f(x) = min
x∈Z
−f(x) (3.8b)

The optimization problems can be divided categorically into two issues: The linear optimization
on the one hand and the non-linear optimization on the other..
Linear optimization strives to find a technique for the optimization of a linear objective function
with potential additional linear equality or inequality constraints. Algorithms exist for linear
optimization problems, which can determine the optimum or the unsolvability of the given
problem in a finite number of steps.
Nonlinear optimization is the process of solving a nonlinear objective function over a defined set
of unknown real variables with potentially linear equality or inequality constraints. In contrast
to the linear optimization problems, no solving algorithms exist for nonlinear problem, which
always returns the global optimum of the given problem. Therefore, it is sometimes only possible
to calculate a local minimum/maximum of the objective function. But often this fact does
not matter, because the common problems can be restricted by specified constraints in such a
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way, that the local minimum/maximum becomes a global minimum/maximum of the defined
region.
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Figure 3.14: Objective function of the torque rise time parameter from the dyno of the engine
testbed.

Figure 3.14 shows the final part of the objective function (f(r) = NDyno − NSimu(r)) from
the torque rise time optimization. The previously identified parameters of the engine testbed
dyno are used for calculating this optimization objective function f(r). The rate limiter value
is manually increased linearly (x-axis) and the received absolute error between measured and
simulated speed is plotted over the y-axis. It becomes clear immediately that the objective func-
tion has non-linear characteristics. In addition, the lower and upper bound of the optimization
section can be found by a simple consideration. They represent the extreme cases of the rise
time parameter.
The lower bound of the rate limiter is zero. This limit value means that the dyno inverter can
not build up the demand torque in finite time.
The upper bound and thus the other extreme case is the torque rate value in which the torque
rises from zero to the nominal value in only one sample time. For example, at a sample time
of 1 ms and a nominal torque of 500 Nm, the upper slew rate limiter value is 500000 Nm

s . The
global minimum of the absolute error has to be between these both bounds. Furthermore, it can
generally be argued that the minimum is always closer to the upper than to the lower bound,
because the aim of the dyno inverter controller is to reach the demand value in a reasonable
time and manner. In that case, only the final part of the objective function will be interesting
and it always looks like the illustrated function which is shown in figure 3.14.
A shift of the minimum to the left signifies that the rate limiter value decreases and a right
shift represents an increasing limiter value. An up and down shift of the minimum point of the
objective function provides information about the identification of the other model parameters.
A high minimum value indicates that the identified inertia and delay time do not match the real
dyno parameters well. Due to this, the objective function minimum also gives feedback on the
parameter identification quality.

Based on this gained knowledge, various non-linear optimization functions from the MATLAB®

optimization toolbox were tested with different settings under the same conditions. The perfor-
mance or rather the runtime was determined for every constellation and it was the deciding
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argument for the algorithm selection. The following sections provide the description of the
tested MATLAB® optimization function as well as the performance evaluation. The optimiza-
tion was executed with the measured data of the engine testbed. The data were recorded with
4kHz and the nominal torque of the dyno was 500 Nm. Therefore, the lower (x1) and upper
(x2) bound for the algorithms are:

x1 = 0 Nm
s

x2 = 500 Nm · 4000 Hz = 2000000 Nm
s

fminsearch

This function belongs to the non-linear optimization algorithm and solves unconstrained min-
imization problems. It uses the Nelder-Mead or downhill simplex algorithm, which finds the
function minimum by comparing the function values. Generally, this algorithm does not con-
verge very fast but it is simple and robust.

SYNTAX: x = fminsearch(fun,x0)

fun · · · Represents the function to be minimized
x0 · · · Starting point point of the optimization algorithm

The parameter fun is a MATLAB® function handle, which returns the error between the mea-
sured and simulated speed signal. The optimizing rate limiter value acts as the unique input
parameter of this function. The parameter x0 defines the start slew rate with which the op-
timization should start. The table 3.7 shows the runtime as well as the optimum rate limiter
value at different starting points x0. The runtime value was identified by the stopwatch timer
(command: tic toc) of MATLAB®.

x0 [Nm/s] Rate Limiter Value [Nm/s] Runtime [s]

x1 1193911 24.3

x2 1193911 13.1

x2/2 1193911 12.1

Table 3.7: Evaluation of the fminsearch function

As table 3.7 above suggests, the fminsearch function always identifies the same rate limiter
optimum value, independent from the starting point. The starting point x0 only has an effect
on the algorithm runtime. The closer the starting point is to the minimum, the shorter the
required runtime becomes.
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lsqnonlin

The optimization function lsqnonlin belongs to the non-linear algorithm as well and was devel-
oped for solving non-linear least-squares problems (see [1]).

SYNTAX: x = lsqnonlin(fun,x0,x1,x2)

fun · · · Represents the function to be minimized
x0 · · · Starting point of the optimization algorithm
x1 · · · Starting lower bound of the searching range
x2 · · · Starting upper bound of the searching range

The lsqnonlin function does not only provide the starting point as an input value, the lower
and upper bound can also be specified by function parameters. This optimization function was
tested with the same starting points as the fminsearch function. The obtained results are shown
in table 3.8.

x0 [Nm/s] Rate Limiter Value [Nm/s] Runtime [s]

x1 82605 19.2

x2 1193911 4.5

x2/2 1193911 3.9

Table 3.8: Evaluation of the lsqnonlin function

It is clear immediately, that the performance of this optimization algorithm is much higher than
the performance of fminsearch. However, it is also evident that a bad choice of the starting
point increases the runtime and it might be responsible for a mismatch of the found optimum.
This effect is given by the the starting point x1 = 0. Thereby the algorithm returns a wrong
value of the function minimum. This means that the success and performance depend on the
choice of the starting point.

fminbnd

The MATLAB® function fminbnd belongs to the non-linear optimization methods and is devel-
oped to find the minimum of a single-variable function on a fixed interval. The algorithm of this
function is based on the so-called golden section search (see [2]). The golden section search is
an algorithm for finding the minimum or maximum of a given function by restricting the range
of values of which it is known that they contain the optimum.
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Figure 3.15: Search technique of the golden section search algorithm

The figure 3.15 illustrates the main principle in the search technique for finding a minimum.
The functional values of the given function f(x) are on the vertical axis and the horizontal axis
represents the x parameter. The three points x1, x2, and x3 of the function f(x) have already
been evaluated. If f3 is smaller than f1 and f2, it is obvious that the minimum is inside the
interval from x1 to x2. In the next step, a new value x4 is evaluated within the current largest
interval. In this example the value x4 is selected in the range of x2 and x3. If the function value
of x4 is larger than f3 (f4a), the new range of the minimum is between x1 and x4. On the other
hand, if the point is smaller than f3 (f4b), the searching area changes between x2 and x3.
These steps will be repeated until the minimum of the function is found.

SYNTAX: x = fminbnd(fun,x1,x2)

fun · · · Represents the function to be minimized
x1 · · · Starting lower bound of the searching range
x2 · · · Starting upper bound of the searching range

This optimization algorithm does not need a starting point, only the start bounds, which au-
tomatically result from the described consideration above. Table 3.9 shows the output and
performance with the start bounds x1 and x2.

Rate Limiter Value [Nm/s] Runtime [s]

1193911 4.9

Table 3.9: Evaluation of the fminbnd function

Table 3.9 shows that the algorithm has a good performance, like the lsqnonlin optimization
function, and works very robustly, as the fminsearch algorithm. In addition to these advantages,
it does not need a starting point, which may have a bad influence on the performance and result
of the algorithm.
In this case, the fminbnd function is used for identifying the rise time parameter of the dyno
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model. Equation 3.9 represents the rise time calculation and table 3.10 shows the identified rise
time parameters of the engine and powertrain testbed.

TDynodt =
Nominal Torque

Rate Limiter V alue
(3.9)

Nominal Torque [Nm] Rate Limiter Value [Nms ] TDynodt [ms]

Engine Dyno 500 1193911 0.42

Powertrain Dyno 1 3000 3061224 0.98

Powertrain Dyno 2 3000 3409090 0.88

Table 3.10: Identified torque rise time of the automotive testbed dynos.

3.2 Controller Parameters

The next parameter group, which needs to be identified, are the controller parameters of the
speed observer. As described in chapter 2.2.2, this parameter group consists of 6 individual
parameters: The parameters KpCurve, KiCurve and KiPhCorrCurve are look-up tables for re-
ducing the control parameters Kp, Ki and KiPhCorr. This means that if the actual dyno speed
goes below a defined threshold, the controller parameters Kp, Ki and KiPhCorr decrease con-
tinually based on a curve progression, which can be defined by these Curve parameters.
This curve reduction of the control parameter is commonly applied on lower dyno speed and
therefore only has an effect in driving up or down, to or from the operating speed. The gradi-
ent of the reducing curve is specified through many practical experiments and has no influence
during an operating condition. In this case, only the main controller parameters Kp, Ki and
KiPhCorr will be tuned and the characteristics of the curve parameters persist.

3.2.1 System Description

Figure 3.16 represents the implemented controlling part through a Simulink® block wiring
diagram.
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Figure 3.16: Simulink® block wiring diagram of the speed observer.

The main goal of the controlling part is to eliminate the error between measured (NDyno) and
observed (NObs) speed as best and as fast as possible. The speed error is denoted by eN
and represented with the equation 3.10a. Because of the linearity of differentiation, the error
equation 3.10a can be translated into the formula 3.10b.

eN = NObs −NDyno (3.10a)

deN
dt

=
dNObs

dt
−
dNDyno

dt
(3.10b)

Furthermore, the time derivative of the error is the difference between the time derivative of the
measured (NDyno) and observed (NObs) speed.

The time derivatives dNObs
dt as well as

dNDyno
dt are described by the differential equations 3.11

and 3.12 below.

dnObs
dt

=
30

π Θ
TE =

30

π Θ
(T̃ − TCorr + TShaft) (3.11)

dnDyno
dt

=
30

π Θ
(T̃ + TShaft) (3.12)

The symbol T̃ , in the equations 3.11 and 3.12, specifies the effective torque after the delay and
rise time.
Correction torque TCorr represents the output value of the implemented correction controller
and can be illustrated by:

TCorr = Kp eN + z (3.13)

The symbol z of equation 3.13 demonstrates the outcome of the correction controller integration
part. Therefore, its time derivative can also be illustrated as:

dz

dt
= Ki eN (3.14)
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The following mathematical relation of the speed error eN results from inserting the equa-
tions 3.11, 3.12 and 3.13 into formula 3.10b:

deN
dt

=
30

π Θ

[
T̃ − (Kp eN + z) + TShaft

]
− 30

π Θ
(T̃ + TShaft)

=
30

π Θ
(T̃ − T̃ −Kp eN − z)

=
30

π Θ
(−Kp eN − z)

(3.15)

Based on equations 3.14 and 3.15 the following state space model with the state vector
x = [en z]

T and the system matrix Ã can be created:

deNdt
dz
dt


︸ ︷︷ ︸

dx
dt

=

[
− 30
π Θ Kp − 30

π Θ

Ki 0

]
︸ ︷︷ ︸

Ã

[
eN

z

]
︸ ︷︷ ︸
dx

(3.16a)

dx

dt
= Ã x (3.16b)

On the basis of the transpose properties, the constructed system description via equation 3.16b
can also be written as:

(dx
dt

)T
= xT ÃT (3.17)

By remodelling the system matrix ÃT ,

ÃT =

[
− 30
π Θ Kp Ki

− 30
π Θ 0

]
=

[
αKp Ki

β 0

]

=

[
0 0

β 0

]
︸ ︷︷ ︸

A

−

[
−1

0

]
︸ ︷︷ ︸

b

[
αKp Ki

]︸ ︷︷ ︸
kT

(3.18)

the obtained state space model can also be illustrated as

(dx
dt

)T
= xT

(
A− b kT

)
(3.19)

or

dx

dt
=
(
A− b kT

)T
x (3.20)

This corresponds to a closed-loop system with a state feedback control of:
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u = −kT x (3.21)

The correction controlling parameters Kp and Ki can be defined by calculating kT , which is
shown with equation 3.22 below.

kT =
[
− 30
π ΘKp Ki

]
(3.22)

There are many different techniques for calculating the feedback vector of a state controller. A
common, widespread tuning technique is the so-called pole placement. Location of closed-loop
poles correspond directly to the eigenvalues of the system, which specify the characteristics of
the system response. One disadvantage of this tuning technique is, that with the choice of the
poles it is hard to keep an overview of the control and state values behaviour (see [9] for further
details).
A design concept, which offers a good influence on the control and state behaviour, is the linear-
quadratic regulator (abbr. LQR). This method calculates the control parameters by minimizing
a quadratic target function and it belongs to the optimal control concepts.

3.2.2 Linear-Quadratic Regulator

This chapter describes the design concept of a linear-quadratic regulator. Primarily, at the
beginning of this chapter, some important control-specific definitions are described for a better
understanding of the LQR problem and its solution conditions.

3.2.2.1 Definite Matrix

According to [7], a symmetric n× n matrix A with only real entries is

� positive definite, if xTAx > 0

� positive semidefinite, if xTAx ≥ 0

� negative definite, if xTAx < 0

� negative semidefinite, if xTAx ≤ 0

for all real non-zero vectors x.
These conditions can be satisfied with an eigenvalue inspection of the matrix A. Positive values
of all eigenvalues of the given matrix mean that it is positive definite. If one or more eigenvalues
are zero, the matrix will be a positive semidefinite matrix. The same applies for negative def-
inite/semidefinite matrices, if the inspection of the eigenvalues is carried out with inverse sign
matrix.
If the matrix is a diagonal matrix, the entries of the main diagonal illustrates its eigenvalues.
Therefore, the definite of the matrix can easily be identified by the diagonal values.
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3.2.2.2 Controllability and Observability

Controllability and observability are important properties of a control system for developing a
desired control concept.
A given system is controllable, if any system input exists to move the internal states x of the
system from any initial state to any other final state in finite time T [9]. At this definition of
controllability, an exact description of the system input is not considered. It is merely important
that any input u is available, which fulfils the condition in finite time (x(0)→ x(T )).

The controllability of a system can be proved by the so-called Kalman criterion (see [9]) . The
controllability matrix Su has to be regular.

Su = ( b Ab A2b . . . An−1b ) (3.23)

det(Su) 6= 0 (3.24)

The observability of a system is given, if the unknown initial state x(0) can be specified with
the input u(t) and output y(t) behaviour in a finite time interval [0,T]. This system property
can also be proved by a criterion of Kalman (see [9]). In this case, the so-called observability
matrix By must be regular.

By =



cT

cTA

cTA2

...

cTAn−1


(3.25)

det(By) 6= 0 (3.26)

3.2.2.3 Solution of the LQ-Problem

As described in [13], the general problem definition is to compute a state controller

u(t) = −kTx(t) (3.27)

where u represents the control and x the state of the given LTI system

dx

dt
= Ax(t) + bu(t), x(0) = x0 (3.28)

The determined controller stabilizes the closed-loop system and minimizes the objective
function J:

J =

∫ ∞
0

(xTQx + uTRu) dt
!

= min (3.29)
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The first step for solving the optimization problem is to set up the equation of the objective
function for the closed-loop system. The function J is defined as

J =

∫ ∞
0

(x(t)T (Q + kTRk)x(t)) dt (3.30)

and the closed-loop system is represented by the following equation:

dx

dt
= (A + bkT )x, x(0) = x0 (3.31)

By a given kT and known initial states, x(t) can be calculated by:

x(t) = e(A+bkT )tx0 (3.32)

By inserting formula 3.32 into the equation 3.30, the following relation results:

J =

∫ ∞
0

xT0 e
(A+bkT )t(Q + kRkT )e(A+bkT )tx0 dt =

= xT0

(∫ ∞
0
e(A+bkT )t(Q + kRkT )e(A+bkT )t dt

)
︸ ︷︷ ︸

P

x0 =

= xT0 Px0

(3.33)

The expression P of formula 3.33 is the solution of the following Lyapunov equation:

(A + bkT )TP + P(A + bkT ) + Q + kRkT = 0 (3.34)

Generally, Lyapunov equation appears in many different subject areas of control theory, like
stability analysis or in optimal control. The theorem states that for the Lyapunov equation

ATP + PA + Q = 0 (3.35)

exists a unique P � 0 by any Q � 0 exists, if the system dx
dt = Ax is globally asymptoti-

cally stable. When these conditions are given the unique solution of P is represented by this
equation:

P =

∫ ∞
0
eA

T tQeAt dt (3.36)

It quickly becomes clear that the equation 3.33 has the same structure as the solution of the
Lyapunov equation (see formula 3.36). Thus, it can be concluded that this equation 3.33 is
the solution of a Lyapunov equation with the structure of equation 3.34. Furthermore, the
equation 3.34 can be rewritten in the following form:

ATP + PA−PbR−1bTP + Q + (PbR−1 + k)R(R−1bTP + kT ) = 0 (3.37)
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The feedback control kT is only confined to the term:

(PbR−1 + k)R(R−1bTP + kT ) = 0 (3.38)

In this case kT results from the expression:

kT = −R−1bTP (3.39)

This reduces the equation 3.37 to:

ATP + PA−PbR−1bTP + Q = 0 (3.40)

In the literature, the obtained equation 3.40 is referred to as Riccati equation. For this rea-
son, the linear-quadratic regulator is often called the Riccati regulator. The Riccati equation
produces the optimal control matrix kT ,

u = −kTx (3.41a)

kT = R−1bTP (3.41b)

if the following control conditions are satisfying (see [13] theorem 7.2, page 298):

� Matrix Q has to be symmetric and positive semidefinite (Q � 0)

� Matrix R has to be symmetric and positive definite (R � 0)

� The system [A,b] must be completely controllable

� The system [A,Q1] must be completely observable (Q = QT
1 Q1)

The first two conditions (Q � 0 & R � 0) refers to the choice of the matrices Q and R. It must
be ensured that the definite conditions of chapter 3.2.2.1 are satisfied.
To check the controllability ([A,b]) of the given system, the criterion of Kalman for the dyno
observer system must be performed as follows:

Su =

[
−1 0

0 −α

]
(3.42a)

det(Su) = (−1) (−α) = α (3.42b)

α 6= 0⇒ − 30

π Θ
6= 0 (3.42c)

From the equations above it can be easily derived, that the given system is controllable, because
the term α can never be zero. In this case the LQR condition, which [A,b] must be controllable,
is satisfied.
The last condition for producing the optimal control matrix kT , by solving the Riccati equation,
is to check the observability of [A,Q1], whereas the matrix Q1 results from the segmentation:

Q = QT
1 Q1 (3.43)
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If the matrix Q is positive definite (Q � 0) instead of positive semidefinite (Q � 0), the last
condition will always be true (see [13]). In this case, the matrix Q will always be set to a positive
definite matrix.

3.2.3 Choosing LQR Weights

As described in [13], the essential part of a LQR-designed regulator is the choice of the matrix
R and Q for solving the target function 3.29. R and Q are symmetric matrices, which define
the proportion between control and state values. The matrix R controls the energy expenditure
of the received optimal controller.

� R → 0: expensive control, i.e high controller manipulation value

� R → ∞: cheap control, i.e low controller manipulation value

Changes of the matrix Q have an influence on the state values, whereas each state behaviour is
individually adjustable by the different diagonal values of the matrix. The other elements do not
influence the state behaviour. Because of the same characteristic, the matrix R is suitable for
the manipulation value of the controller. This is an additional reason why the matrices Q and
R are usually diagonal matrices. A increase of the diagonal values Q in relation to R results a
faster transient oscillation of the system state by higher manipulation values of the controller.
In contrast, a increasing of R in relation to Q leads to a slower but more energy-efficient system.
In principle, it is a iterative process to find the proper values of the matrices R and Q. First, the
matrices entries are set to any individual values. Afterwards, the controller should be calculated
by solving the Riccati equation, and then the behaviour of the closed-loop system needs to be
analysed. This procedure must be repeated until the desired system behaviour is generated.
The described matrices definition procedure was also performed for calculating the control pa-
rameters of the speed observer. If the existing system is a SISO system (single-input single-
output system), like the given system here, the matrix R will be a scalar. In this case, to comply
with the condition, the scalar R has to be a real value which is grater than zero (R > 0|R ∈ R).
From now, the described matrix R is referred to as scalar R, because of the considered speed
observer SISO system.
For the definition procedure of the matrix Q and the scalar R, the recorded quantities of the
speed and torque jump test run (see chapter 3.1.1 and 3.1.2) from the engine testbed were used
as the input values of the dyno observer. The behaviour of the observer was analysed by constant
diagonal values of matrix Q and individual value of R, because the resulting system behaviour
depends on the relation between theses two parameters. Additionally, this approach simplifies
the analysis by tuning only one parameter.
Figures 3.17 and 3.18 illustrate the comparison between real measured dyno speed and observer
speed by different R values and the corresponding correction controller output. The appro-
priate matrix Q was a diagonal matrix with the value 100 for both diagonal entries (Q =
diag([100,100])). It can be realized that the output of the correction controller increase when
the value of R is increased as well. In return, the observed speed characteristic agrees better
with the measured speed by an “expensive“ control produced by a low R value. It can also
be seen that by “low“ control (R = 1), the observed speed characteristic also agrees well with
the measured dyno speed. The reason for this is that the identified model parameters are a
good fit for modelling the real dyno behaviour. Therefore, the correction controller does not
need a significant correction for adapting the observed speed. It follows that by decreasing the
parameter R, the torque correction values grow enormously, but the effective improvement is
not essential.
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Thus, it does not make sense to further decrease the value of R, because there is no additional
benefit. Furthermore, the correction controller will reinforce unwanted system dynamics on high
control parameters at an extreme rate. That might cause unstable control behaviour.
For these reasons, the parameter R is not set extremely low for an “expensive“ control.
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Figure 3.17: Comparing individual values of R using the speed test run.
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By default, the matrix Q is set to a diagonal matrix with the value 100 for both diagonal entries
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(Q = diag([100,100])) and the scalar R is set to one, like in the figures 3.17 and 3.18 above. The
feedback vector kT can be calculated with the help of the MATLAB® function lqr. After that,
the controlling parameter Kp and Ki can be calculated by rewriting the kT vector. On the basis
of the engine testbed, the calculation reads as follows:

kT = lqr(A,b,Q, R)

= lqr(

[
0 0

−11.9366 0

]
,

[
−1

0

]
,

[
100 0

0 100

]
, 0.005)

=
[
−152.8927 141.4214

]
kT =

[
− 30
π ΘKp Ki

]
=⇒ Kp = 12.8087

Ki = 141.4214

The matrix Q and the scalar R are set to the values described above by default and cannot be
changed by the testbed engineer for the identification process. However, the proper identification
software, which is specified in chapter 5, offers a feature for changing the calculated Kp and Ki

parameters with the help of a validation plot after the identification procedure. As already
mentioned, the parameter for the phase correction controller will always be recommended as
one-tenth of the calculated Ki value from the correction controller.

3.3 Filter Parameters

The filters are used to filter out undesired dynamic effects, which should not be coupled back
into the control unit. These undesired effects are usually the resonance frequencies of the given
mechanical system which occur during operation. According to [3], resonance occurs, if a system
oscillates with an increasing amplitude from a periodic stimulation with the natural frequency
of the given system. Every mechanical system has certain natural frequencies that depend on
the physical conditions of the system. In this case, it is essential to analyse the testbed in the
common operation condition. For the identification of the filter parameters, the unit under test
must be coupled to the corresponding dynos.
To identify the natural frequencies of the automotive testbed construction, it is necessary to
stimulate the system with the full frequency range. A so-called chirp signal is ideal for this
request. This signal changes its frequency and stimulates the system with the needed frequency
range.
Afterwards, a frequency research of this stimulation via a fast Fourier transformation needs to
be performed to detect the natural frequencies of the system. Then, the filter parameters can
be defined with the help of this analysis.
The following chapters 3.3.1 and 3.3.2 deal with the theoretical foundations of the chirp signal
and the discrete Fourier transformation via FFT. Furthermore, they provide some information
on the technical implementation of these concepts.
Chapter 3.3.3 treats the analyses of the chirp test runs which are executed on automotive testbeds
for calculating the speed and torque filter parameters. Additionally, it describes the advantages
of this identification method over the previous approach for parameters identification.
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3.3.1 Chirp Signal

A signal which changes its frequency over time is referred to as chirp signal (see [11]). The name
“chirp“ is a reference to the chirping sound of birds. This kind of signal is usually used in sonar
and radar systems for locating objects or rather detecting their velocity.
The general mathematical description of a chirp signal is represented by equation 3.44. In
formula 3.44, f(τ) stands for the time dependent frequency at which the primitive of f(τ) needs
to be inserted in the integral. Symbol Φ0 illustrates the initial phase at time t = 0 and symbol
A represents the amplitude of the chirp signal.

x(t) = A sin

(
2π

∫ t

0
f(τ)dτ + Φ0

)
(3.44)

A frequently used type of chirp signal is the linear chirp. Instantaneous frequency of f(τ)
modifies linearly in progress. Equation 3.45a describes this linear modification, where as f0 is
the start frequency and k represents the chirp rate. The calculation of the linear chirp rate
is shown by formula 3.45b. Here, f1 represents the final frequency and T stands for the time
interval between the start frequency f0 and the end frequency f1. Finally, the linear time
response x(t) (see equation 3.45c) results by inserting equation 3.45a into the general chirp
description formula 3.44.

f(τ) = f0 + kτ (3.45a)

k =
f1 − f0

T
(3.45b)

x(t) = A sin

(
2π

∫ t

0
f(τ)dτ + Φ0

)

= A sin

(
2π

∫ t

0
(f0 + kτ)dτ + Φ0

)

= A sin

(
2π (f0t+

k

2
t2) + Φ0

)
(3.45c)

Chirp signals with exponential variation of the frequency are commonly used for sonar and radar
systems. The variation function is shown by equation 3.46a. Like before, f0 stands for the start
frequency and k illustrates the chirp rate (see equation 3.45b). The resulting exponential time
response x(t) is represented below, by formula 3.46b.

f(τ) = f0k
τ (3.46a)

x(t) = A sin

(
2π

∫ t

0
f(τ)dτ + Φ0

)

= A sin

(
2π f0

∫ t

0
kτdτ + Φ0

)

= A sin

(
2π

f0(kt − 1)

ln(k) + Φ0

)
(3.46b)
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The figures below represent a comparison of the described linear and exponential chirp signals.
Figure 3.19 shows the linear, and figure 3.20 the exponential chirp. Both chirp signals are
executed with the same parameters. The chirps start with the frequency f0 = 1Hz and finish
with f1 = 20Hz. The time interval T is 1 second.
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Figure 3.19: Linear chirp signal.
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Figure 3.20: Exponential chirp signal

3.3.2 Fast Fourier Transformation

The Fourier theorem, developed by Jean Baptiste Joseph Fourier, states that any periodic
function can be expressed as the sum of series with sine or cosine terms, which are called the
Fourier series (see [5]). This theorem is the basis for the Fourier analysis which includes different
variants of signal transformation. Generally, Fourier transformation deconstructs a time domain
representation of a signal into the frequency domain representation.
Equation 3.47, taken from [14], chapter 3.1.1, shows the common calculation of a discrete Fourier
transformation (abbr. DFT). This kind of Fourier transformation converts a discrete time signal
xn from its time domain into the frequency domain. This transformation is used, because the
recorded testbed quantities are only available as discrete time sequence values.

Xk =

N−1∑
n=0

xne
− j2πnk

N k = 0, 1, 2, . . . , N − 1 (3.47)

Closer observation of this formula 3.47 shows, that the DFT computation of N data samples
needs N2 complex multiplications and N(N − 1) complex summations. In this case, the time
and data storage required for computing increase as a quadratic function depending on the
number of recorded values. This computing problem of the DFT was solved by James Cooley
and John Turkey. In 1965, they released their calculation algorithm of a DFT named fast
Fourier transformation (FFT). This algorithm exploits the symmetries of the discrete Fourier
transformation. The calculation of the value XN+k looks as follows:
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XN+k =
N−1∑
n=0

xn e
− j2πn(N+k)

N

=

N−1∑
n=0

xn e−j2πn︸ ︷︷ ︸
1

e−
j2πnk
N

=

N−1∑
n=0

xn e
− j2πnk

N

(3.48)

As shown by equation 3.47 and 3.48, the calculations of Xk and XN+k are the same. Therefore,
the following can be concluded:

XαN+k = Xk (3.49)

This symmetry of the DFT calculation provides the basis for the FFT algorithm of James
Cooley and John Turkey (see [14], chapter 6). They divide the DFT computation into two
smaller subpartitions:

Xk =

N−1∑
n=0

xn e
− j2πn(N+k)

N

=

N
2
−1∑

m=0

x2m e−
j2πk(2m)

N +

N
2
−1∑

m=0

x2m+1 e−
j2πk(2m+1)

N

=

N
2
−1∑

m=0

x2m e
− j2πkm

N/2

︸ ︷︷ ︸
even-numbered values

+e−
j2πk
N

N
2
−1∑

m=0

x2m+1 e
− j2πkm

N/2

︸ ︷︷ ︸
odd-numbered values

= Ek + e−
j2πk
N Ok

(3.50)

That separation in odd- and even-numbered values does not reduce any computational cycles,
but the knowledge of the existing DFT symmetry (see equation 3.49) shows that only half of
the computations for each subproblem need to be performed.

Ek = Ek+N
2

(3.51a)

Ok = Ok+N
2

(3.51b)

Each subproblem can be divided in further subproblems of even- and odd-numbered values and
so on. This divide-and-conquer approach can be implemented as an efficient recursive compu-
tational algorithm. The FFT algorithm of James Cooley and John Turkey is also implemented
in MATLAB® and it is used for the frequency analyses of the chirp test run on the automotive
testbed.
The result of the FFT has a complex format with real and imaginary parts. Therefore, it is
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possible to visualise the magnitude and the associated phase of each frequency component. The
magnitude of the frequency component is an important piece of information for the determina-
tion of the filter parameters. Therefore, considerations of individual signals taken in this section
focus on the magnitude of the FFT.

The fast Fourier transformation is an efficient algorithm for calculating a discrete Fourier trans-
formation. It converts a finite periodic discrete signal from its time or space domain into a
frequency domain. In this manner, the FFT is used for a number of different applications, such
as compression of digital images, mobile technologies and noise detection. Figure 3.21 represents
a simple sinusoidal signal and the corresponding FFT. The frequency domain shows one peak
at 10 Hz with a magnitude of 1. This illustrates that the analysed signal consists only of one
component with a frequency of 10 Hz and an amplitude of 1. Thus, it is a perfect sinusoidal
signal without additional frequencies. In this example, further peaks at other frequencies would
indicate a noise-containing signal. Therefore, the FFT provides a comfortable way for analysing
the frequency spectrum of a discrete signal and for the development of filters, which are used
for the elimination of noise or other undesirable frequency components.

0 0.05 0.1 0.15 0.2 0.25 0.3
−1

−0.5

0

0.5

1

Time

A
m

pl
itu

de

 

 

Sinus 10Hz

0 5 10 15 20 25
0

0.5

1

1.5

Frequency

A
m

pl
itu

de

 

 

FFT

Figure 3.21: Ideal FFT representation of a si-
nus wave.
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Figure 3.22: Spectral leakage due to nonin-
teger number of periods.

Due to the limitations of the FFT, using its algorithm for causally recorded signals can yield
wrong results. The FFT algorithm assumes that the existing finite discrete signal points describe
one period of a periodic signal. This is like the start and end point of the time domain signal
are connected for creating an endless circle signal topology. Therefore, it is a non-negligible
problem, if the signal contains discontinuity at the start or end point. The discontinuity will
be leading to additional frequency components in the frequency domain. These supplemental
frequencies are much higher than the Nyquist frequency and they are aliased in the range of zero
to the half sampling rate. This unwanted effect, caused by a finite viewing window, is known
as spectral leakage. The consequence of a spectral leakage is illustrated in figure 3.22. An FFT
of the same signal as before was performed with the only difference, that the observed section
does not end in a cycle period. It can be recognized immediately that additional frequencies
are detected by the FFT, the magnitude of the main frequency coasts out into other frequencies
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and the whole signal magnitude increases as well.
With the so-called windowing technique, spectral leakage of an FFT over aperiodic signals can
be reduced. The idea of windowing is to reduce the amplitude of the discontinuous parts of the
signal. By windowing, the time domain signal is multiplied by a window containing a varying
amplitude which goes towards zero at the boundaries. The multiplication results in a signal
with a continuous form at the endpoints. Therefore, the discontinuous parts do not have that
much influence on the transformation.

Figure 3.23: Hanning window.
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Figure 3.24: FFT with Hanning window.

There are different window functions. The type of window function to be used depends on the
current signal. Generally, a window function consists of a centred main lobe and side lobes
around it, which approach zero. Side lobes characteristics define the elimination of the spectral
leakage and manipulate the bandwidth of the main lobe. Lower side lobes imply a reduction of
the spectral leakage, but increase the bandwidth and vice versa. Therefore, the choice of the
window function has a significant impact on the result. Selecting the ideal window function for
a given signal requires detailed analysing, which requires a lot of time.
A corresponding elaborate analysis cannot be executed during the identification process. For
the filter parameter identification an approved window function according to [10] is deployed.
This function is shown in figure 3.23: The so-called Hanning window. The Hanning window
main lobe is centred by the time signal and the side lobes go down to zero. It reduces spectral
leakage excellently. This window function is well-known for good results while the nature of the
signal is unknown, so it is also ideal for analysing the chirp test speed and shaft torque signal
for calculating the corresponding filter parameters.
The figure 3.24 represents the Hanning windowed FFT of the same aperiodic signal as before
in figure 3.22. It is clear that the effect of the spectral leakage is reduced significantly, the
correct main frequency becomes an advantage and the magnitude coasts out only around the
main frequency.
However, this windowing technique reduces spectral leakage but it also provides individual am-
plitude weighting of the different signal parts as a side effect. This side effect is not a significant
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problem for a simple signal, like in figure 3.24, but it must be considered for more complex
signals. Especially, when analysing variable signals to find out the most vigorous resonance
frequency, it is important to have the same weighting for every frequency component to achieve
a meaningful and informative comparison. To correct this undesired side effect, the signal to
be examined needs to be split in smaller overlapping subviewing parts for which the window-
ing function is used. The overlapping of the windowing function reduces the time-depending
weighting of the signal that is produced by the windowing. The Hanning window needs an
overlapping of exactly 50 % to eliminate the amplitude reduction. An overlapping of several
Hanning windows and their resulting window is represented below in figure 3.25.
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Figure 3.25: Hanning window overlapping of 50%

Another important aspect when operating a DFT is the time density of the given signal and
the frequency density of the corresponding transformation. The continuous time-based signal is
recorded by N samples, which are also used for the frequency domain representation. A sample
frequency of fs results in a time density of ∆t between each recording point:

∆t =
1

fs
(3.52)

The sampling rate is specified by the control system. Therefore, the time density ∆t cannot be
changed. The DFT of the recorded samples can be calculated with 3.47. In this equation, xi
(0 ≤ i ≤ N−1) represents the N samples. The resultXk (0 ≤ k ≤ N−1) stands for the frequency
domain representation of xi. Similarly to the time density ∆t, there is a corresponding frequency
density ∆f in the frequency domain representation. The frequency density ∆f describes the
frequency separation between the components of X and can be calculated by:

∆f =
fs
N

=
1

N∆t
(3.53)

Equation 3.53 illustrates, that the frequency density can be modified by varying the sampling
rate fs or by varying the number of samples N . The time and frequency density are linked
by the sampling rate fs and are influenced by each other. Especially for audio analysis and
technology, a compromise between time and frequency resolution needs to be found. As already
mentioned before, the sampling rate is defined by the control system. Therefore, time density
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∆t is not changeable. This is why the the frequency density can only be changed through the
number of record values N. In this case, the size of the Hanning window specifies the frequency
density. Splitting the recorded signal in smaller overlapping viewing windows, like in figure 3.25,
provides not only a correct amplitude over the main area, but it also allows for the frequency
density to be adjusted.
These received signal parts are averaged to one frequency spectrum by the so-called Averaging.
The implemented Averaging process for analysing the chirp test run, is based on the described
mechanism of [1] in chapter 6.2.2. DuringAveraging, the signal is fragmented into individual
parts with the length of the corresponding window size. After that, the FFT is performed for
every individual signal fragment and the results are summed up to one sequence with the length
of the viewing window. This Averaging technique is used to reduce spectral leakage and for
averaging the signal noise over the viewing window to reduce its undesirable influence. The only
custom adaptations of that described algorithm in [1] are that the individual signal parts are
windowed by the Hanning window for an additional reducing of the spectral leakage and the
signal fragments are overlapped by 50 % for correcting the amplitude.

3.3.3 Filter Parameter Identification

The testbed controlling software EMCON contains a configurable signal generator which pro-
vides different signal waveforms. The generator also includes a chirp signal, which can be adapted
by eight parameters for changing the signal characteristics. These parameters are described in
table 3.11. The implemented chirp signal is shown in figure 3.26. Its frequency increases expo-
nentially in the first half and decreases with the same rate in the second half. It is therefore an
exponential chirp signal, which passes through the frequency range in an up and down chirp.
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Figure 3.26: Implemented chirp signal for filter parameters identification.

As opposed to the speed and torque jump test run, the unit under test is connected to the dynos
during the chirp test run. The speed and torque limitations of the coupled engine or powertrain
need to be considered.
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There are many different units under test with individual configurations. Therefore, a general
statement of the exact test run parameters cannot be made. The commissioning engineer is
invited to bring the testbed to a commonly used and stable state, in which the testbed will be
further operated. An important aspect is that the dynos must be controlled to a constant speed
value.
If the testbed runs in this stable state, the chirp signal will be executed. It has a length of
approximately two seconds and an amplitude of about 10 % of the maximum dyno torque
with an offset of 50 %. The output mode (see table 3.11) is set to 1, which defines that the
signal generator overwrites the output of the dyno controller. Otherwise (output mode = 0) the
generator output would be added to the controller output and, therefore, the controller would
operate against this chirp signal to keep the dynos at a constant speed. As a result of that
control signal overwriting, the speed value would fall down rapidly at the beginning of chirp
signal, caused by the unit under test and reversed torque values. The chirp signal amplitude
offset is necessary to counter this speed drop a bit. It is important that the speed does not go
down to zero to get an unusual effect instead of the resonance frequencies of the testbed.
If the further chirp test run analysis provides a non-satisfying result, the test run should be
repeated with a higher amplitude for a stronger system stimulation.
Equation 3.54 describes the output of the function generator for the chirp signal mathematically.
The function generator parameters StartFrequency, MaxFrequency and Duration are needed
to calculate the chirp rate k by the formula 3.45b. Parameter StartFrequency represents f0,
parameter MaxFrequency illustrates f1 and formula symbol T of equation 3.45b is defined by
the function generator parameter Duration. Sign A of equation 3.54 symbolizes the Amplitude
parameter of the function generator, TOffset represents the parameter Offset and Φ0 is the
initial phase shift, which is illustrated via parameter InitialPhaseShift. The function generator
parameter NumberOfExecutions is a loop parameter for repeating the chirp signal output.

Parameter Description

OutputMode Defines the output mode of the signal generator.
0 ... Generator output is added to the controller output
1 ... Generator output replaces the controller output.

StartFrequency Defines the start frequency of the chirp signal.

MaxFrequency Sets the end frequency of the chirp signal.

Amplitude Determines the amplitude of the chirp signal.

Offset Describes the amplitude offset from zero.

Duration Defines the length of the chirp signal parameter.

NumberOfExecutions Defines the numbers of chirp test executions.

InitialPhaseShift Defines the initial phase shift of the outgoing chirp sig-
nal.

Table 3.11: Chirp signal parameters of the signal generator.
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TFcnGen = (A+ TOffset) sin

(
2π

f0(kt − 1)

ln(k)
+ Φ0

)
(3.54)
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Figure 3.27: FFT of the speed signal.
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Figure 3.28: FFT of the shaft torque signal.
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Figure 3.29: FFT of the fildered speed sig-
nal.
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Figure 3.30: FFT of the filtered shaft
torque signal.

Figures 3.27 and 3.28 illustrate the recorded speed and shaft torque signals of an engine testbed
by executing the chirp test run with the corresponding FFT plot. As described previously, the
speed drops at the beginning of the chirp signal and shows strong variation in spite of a chirp
torque offset. For the test run, it is important to choose a proper speed value. Furthermore,
both signals show a resonance frequency of about 610 Hz.
Generally, the observer filters are implemented as a second order digital IIR filter. These filters
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can be operated either as low-pass filters or as notch filters depending on the corresponding filter
configuration. The low-pass filter can be used for minor dynamic requirements. In this case,
frequencies that exceed the determined resonance frequency are also filtered out. The cut-off
frequency of the low-pass filter should be slightly below the resonance frequency in order to filter
it out it effectively. For requirements that are more dynamic, like the requirements of the speed
observer, the notch filter should be used. The trap frequency of the notch filter must be set to
the exact resonance frequency. A notch filter with the highest resonance frequency is always
selected for the parameterisation of the observer filters. If different resonance frequencies are
dominant at the measured shaft torque and speed, each filter can be set differently.
In this case, both filters are notch filters with a trap frequency of 610 Hz. The recorded signals
filtered by the notch filters are shown above. It is visible that the filters have damped the
resonance frequency successfully and the desired effect occurs.
A Hanning window with the size of N = 4096 was used for the FFT in the figures 3.27 and 3.28
above. Because the sampling rate was 5 kHz, the following frequency density is given:

∆f =
1

N∆t
=

1

4096 · 0.0002
≈ 1.22Hz (3.55)

Figure 3.31: Slow speed ramp for resonance frequency detection.

Currently, testbed engineers use a slow speed ramp for determining the filter parameters. If
a resonance frequency is stimulated by the control signal during the ramp test run, the speed
signal shows a higher variation. This phenomenon is illustrated in figure 3.31. The frequency
of the resonance is reflected by the higher speed variation and conforms with that variation
frequency. Therefore, the engineers set the notch filter trap frequency to the identifying speed
variation frequency at this point.
The occurrence of more than one speed variation during the speed ramp indicates the existence
of more natural frequencies of the mechanical system. This is a great problem for the mentioned
identification method. Since there is only one filter for filtering out undesired effects, it cannot
be decided objectively, which resonance frequency has a greater interference effect.
The uncertainty that all frequencies have been excited and stimulated with the same strength
evokes another identification problem. Therefore, the individual natural frequencies cannot be
compared effectively and it is not sure, whether each frequency is visible during the speed ramp.
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Compared to this identification technique, the chirp test run with an FFT provides several
advantages. Each ascertainable frequency is excited with approximately the same strength.
Thus, all existing resonance frequencies are visible in the speed and shaft torque signal. With
the help of the FFT, the resonance frequencies can be detected easily and their strengths are
comparable. Furthermore, the chirp signal represents a short and compact identification test
run which can be performed within a few seconds, whereas the identification on basis of the
speed ramp takes several minutes.



4 PUMA Test Run Environment

The automation software PUMA Open already provides a comfortable editor for the generation
of automotive testbed test runs. This chapter gives a short introduction of this editor and
describes the created identification test runs in detail.

4.1 Test Run Editor

The PUMA Open software suite includes many interaction and management tools for creating
and manipulating testbed projects. One of these tools is the AVL Explorer, which is shown
below in figure 4.1. This application combs through the PUMA Open workspace and displays
all AVL-specific files in a clear and ordered structure. The files which specify automatic test
runs are among these files and they are highlighted with the red rectangle in figure 4.1. The test
run editor can be started by double clicking on one of the predefined test run files. The AVL
Explorer offers an export and import feature for all AVL file types. It is therefore possible to
create a custom test run which can be shared and used at other automotive testbeds.

Figure 4.1: AVL Explorer.

If the test run editor is started, a window, as shown in figure 4.2, opens. This test run window
contains two subwindows. The subwindow on the left side of the test run editor is the Toolbox.
The Toolbox contains predefined components, which can be used in a custom test run. These
components are combined into groups and can be added to the right subwindow per drag and
drop. The right subwindow is called BSQ Editor, whereas “BSQ“ is an acronym for Block
SeQuence. The BSQ Editor represents the window, where the testbed test run can be built and
configured.
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Figure 4.2: User interface of the test run editor.

The Toolbox contains several predefined components, but only the ones which are used in the
identification test run will be discussed in more detail in the following section.

4.1.1 Toolbox Tab

For a better overview, the components of the Toolbox are structured into several tabs.
The Toolbox tab Program Flow contains blocks, which control the flow of the test run. The
following table describes the used Program Flow components of the identification test run.

Test run block Description

Junction Depending on the junction condition, the test run
branches to the left path (condition is true) or right
path (condition is false). Via right click, more junc-
tions (conditions) can be defined. The condition can
be changed by double-clicking the junction symbol.

Loop Components in a loop can be executed multiple times,
either by running a fixed number of iterations or a num-
ber of iterations that depend on a condition. For select-
ing a loop variation, an editing window (see figure 4.4)
will open by double-clicking the loop symbol.

End Test Run If the test run reaches this block, it will be interrupted
and the automotive testbed persists in the current state.

Table 4.1: Used Program Flow test run blocks.
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Figure 4.3: Editing window for junction
condition.

Figure 4.4: Editing window for loop block.

The Toolbox tab Operator Interface contains some test run blocks for interaction with the testbed
operator. These components allow for manipulation of testbed settings during the automatic
test run and offer to control the test run. The table below shows the used Operator Interface
components.

Test run block Description

Inquire This component opens a simple standardised dialogue
window with a prompt text (see figure 4.5) and a sin-
gle input box. Further, it is possible to define a time
out and a range for the input value, which is shown in
figure 4.6.

Managed Dialogs This predened component opens a defined PUMA dia-
logue window during the test run. The PUMA automa-
tion software provides a design function mode in which
the user can design custom PUMA windows and dia-
logues. Thus, every input or information window can
be built and opened during a test run for interaction.

Table 4.2: Used Operator Interface components.
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Figure 4.5: Inquire General settings win-
dow.

Figure 4.6: Inquire Details settings win-
dow.

An essential task is the measurement and record function of the UUT and testbed values. In
this case, the Toolbox provides many measure and record components which are grouped in
the Measurement tab. The test run blocks for controlling the UUT and testbed dynos are also
important components. These blocks can be found under the UUT Control tab.

Test run block Description

Recorder This test run component enables to record all avail-
able quantities of the testbed. The record object and
proper function command can be defined via the record
settings window, which is illustrated in figure 4.7.

Table 4.3: Used Measurement components.

Figure 4.7: Recorder settings
window.

Figure 4.8: Step sequence settings win-
dow.
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Test run block Description

Step Sequence A Step Sequence defines a testbed activity, which con-
sists of one or more individual steps. The performed
activity depends on the Step Sequence object.

Table 4.4: Used Measurement components.

The record and the step sequence Toolbox component (see table 4.3 and 4.4) needs a block
object, which must be defined in the Library tab of the Toolbox subwindow. These objects will
be described in the following chapter 4.1.2.

4.1.2 Library Tab

Some test run components need a runtime object for executing. Such objects can be defined
in the Library tab of the Toolbox (see figure 4.2). Right-clicking in the Library tab opens the
context menu for creating a new component object.
A Record object defines the necessary information for the tracing function of the Record test run
component. The quantities, which need to be recorded, the recording mode and a lot of other
recording settings can be defined in the settings window (see figure 4.9) of the Toolbox object.
For using the recording object, the defined object name must be inserted in the Name field of
the Record test run component (see figure 4.7).

Figure 4.9: Recording object settings.

As already mentioned, the Step Sequence block also needs a defined library object. There are
several different Step Sequence objects, which can be chosen at context menu. Depending on the
testbed type and desired request the corresponding Step Sequence objects have to be chosen.
Figure 4.10 represents the settings dialogue of a Step Sequence object for an engine testbed.
Generally, the settings window is divided into four sections from top to bottom. First, the
function toolbar is located at the top of the settings window. The component beneath the
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toolbar is called Action Control, which is used to create action tracks. In each of the action
tracks, specific step actions or sequence actions can be defined. Step actions are actions, which
are valid for an individual step only. Sequence actions are defined for an entire range of steps.
Therefore, with this Action Control, it is possible to execute some individual activities during a
step.
Under the Action Control there is a graphical visualization of the different step actions. This
figure example represents an engine testbed Step Sequence object, so in this case the course of
the dyno speed and the alpha position of the engine throttle are shown in this visualization
part.
The fourth and last section is called Grid Control. The Grid Control displays and contains
all steps and their data in table form, clearly arranged in groups. It provides functions for
convenient input of demand values, for example the demand speed value of the dyno or the
alpha position of the engine throttle. The Grid Control part also provides the possibility to add
or remove sequence steps.

Figure 4.10: Step sequence object.

4.2 Identification Test Run

The first step of the observer parameter identification process is to import the predefined iden-
tification test run in the AVL Explorer. A test run is only executable with PUMA Open if it is
available at the AVL Explorer. After the import procedure, the PUMA Open software should
be started up for operating the identification test run.
The test run starts with an inquiry about which observer parameters should be identified. The
user has the option to stop the identification, to execute speed and torque jump test run for the
model and control parameter identification or the chirp test run to identify the filter parameter
(see figure 5.11). By choosing to identify the model and control parameter group, an extra
warning dialogue will open. The window, as shown in figure 4.12, points out that all dynos have
to be decoupled from the unit under test, otherwise it will get damaged. This measure ensures
that the testbed user is definitely informed about the consequences.
After confirming via OK button, the test run scaling parameters need to be entered in a graph-
ical user interface window, which is shown in figure 4.13. The values of the different parameters
are suggested by the appropriate identification software. The handling and interaction with this
identification software is described in the following chapter 5. As soon as the test run parameter
mask is filled out and confirmed, the speed and torque jump test run will be performed.
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Figure 4.11: Test run selection window.
Figure 4.12: Dyno decouple warning.

After the execution, one record file for the speed and one for the torque jump test run will be
produced. These record files can be analysed by the identification software for calculating the
individual observer parameter. Finally, the test run repeats and the inquiry window will be
shown again.
If the user enters number 2 for identifying the filter parameter, the dialogue mask, which is shown
in figure 4.14, will appear afterwards. The user is responsible for ensuring that the testbed is in
a common stationary state before the filter parameters identification test run is selected. This
must be done before, because the user is not able to control the testbed manually during an
automatic test run.
As before, the test run parameter for the chirp test run will be specified by the identification
software. Then, the chirp test will be performed and a record file for the identification software
will also be created for detecting the filter parameters.
As previously described, the test run will start again and the user can stop the identification
test run by entering the default number zero.

Figure 4.13: Dialogue window for
speed and torque
jump test run.

Figure 4.14: Dialogue window for chirp
test run.
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The analysis mechanism of the test runs for the observer parameters identification is implemented
via MATLAB® scripts and Simulink® models. On this account, the whole identification soft-
ware, logic and GUI, is created via MATLAB®. The developed Matlab files are compiled to a
standalone executable by the MATLAB® Compiler package, which can be used on the PUMA
computer in a simple way.
This chapter deals with the description of the identification scripts implementation and with
the build and usage of the identification software named ObTune.

5.1 Identification Scripts

An identification MATLAB® script was implemented for each observer parameter. These scripts
do not have any dependencies among each other, which leads to the fact that every script can
be used alone to calculate the corresponding observer parameter. This has the advantage that
the whole identification process does not stop if a problem occurs while calculating one of the
observer parameters.
The calculation of the inertia and the optimization of the control parameters are the only ex-
ceptions. Before the inertia can be calculated, the speed-dependent operating loss is needed
(see chapter 3.1.2). The operating loss value will be assumed to be zero, if this parameter is
missing during the inertia identification. Therefore, the dyno inertia is needed for the determi-
nation of the controller parameters. If this parameter is missing because of some identification
error, the inertia will be defined as 1 kgm2 for the optimization. If such exceptions happen, the
MATLAB® scripts will return a corresponding error message for indicating the identification
adoptions.
The identification observer parameters and other important results are stored in a .mat-file. This
file acts as the data storage of the identification software and contains all necessary information
for the software handling.

5.1.1 Operational Losses Function

The function header of the dyno losses identification MATLAB® function looks as follows:

SYNTAX: [Operational Loss,T F ARRAY, Error, Error Str] =
getOperationalLosses(T SET,N SET,N DYNO,N ARRAY,TIME VECTOR,i)

The function parameter T SET,N SET and N DYNO represent the recorded quantities of the
speed test run (see chapter 3.1.1). The quantity T SET corresponds to the output of the speed
controller, N SET to the demand speed value and N DYNO to the measured dyno speed. The
proper time sequence of these recorded signals has to be handed over by the TIME VECTOR
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parameter. The N ARRAY parameter is an array with the three demand speed values for cal-
culating the operation losses, and parameter i represents the number of the dyno for which the
identification is carried out. This is necessary for mapping the plots to the identified parameters
for the visualisation by the graphical user interface.
This identification function offers four return parameters: The Operational Loss parameter spec-
ifies the identified operation loss and the T F ARRAY contains the individual operating loss of
every demand speed. The Error parameter signalises a defect of the identification mechanism.
The reason for the identification error will be transmitted by the Error Str return value of the
getOperationalLosses MATLAB® function.
First of all, the identification script searches the start and end point of the first speed value from
the T F ARRAY in the demand speed signal. After that, the starting point is postponed half
of the determined time section. Then, the value of the measured speed signal at this new start
point is checked in order to find out if it is in a defined range around the demand speed. If it is
not in this range, the start point will be postponed until the speed value is in the range.
If a valid starting point is found, the T SET values will be averaged in this time section, which
specifies the operation loss by this speed value. This process is repeated for the other demand
speed values. After that, these three calculated operation loss values of the individual demand
speeds are averaged to one operational loss value, which represents the Operational Loss param-
eter. If an error occurs during this mechanism, the script stops with a proper error message.
The complete identification information will be saved in a data structure and shown in a
MATLAB® plot (see figure 3.2) of the identification software.

5.1.2 Dyno Inertia Function

The following function is used for calculating the dyno inertia:

SYNTAX: [THETA,SLOPE, Error, Error Str] =
getInertia(N DYNO,T SET,T JUMP,N ARRAY,FRICTION,TIME VECTOR,i)

The function parameters N DYNO and T SET represent the recorded quantities of the torque
jump test run (see chapter 3.1.2). The function parameter T JUMP defines the torque step
value, T F ARRAY already contains the individual demand speeds, the parameter FRICTION
specifies the preassigned operational loss and the TIME VECTOR represents the time sequence
of the testbed test run. As in the getOperationalLosses function, the function parameter i is
used for mapping the plots to the identified parameters in the data structure.
The getInertia MATLAB® function returns to the identified dyno inertia with the parameter
THETA, if no error occurs during the calculation method. Otherwise, the Error return parame-
ter is set to a non-zero value, the inertia THETA is defined as zero and the Error Str parameter
contains an information of the error reason. The SLOPE return parameter represents the slope
of the speed signal during the torque step in the range of ±20% around the nominal speed.
This parameter is also set to zero, if an error occurs. It is only used for a plausibility check and
debugging purposes.
The first action of the getInertia function is to find the points where the speed value is higher
than 80 % and 120 % of the nominal speed for the first time. The slope of the measured speed
signal is calculated between this point via linear regression (see chapter 3.1.2). After this has
been successfully performed, the dyno inertia can be calculated by the equation 3.5.
This inertia detection will be illustrated in figure 3.4 for the user in the identification software.
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5.1.3 Delay Time Function

The system time delay can be determined if the following function call is executed:

SYNTAX: [DELAY TIME,DELTA N,Error, Error Str] =
getDelayTime(N DYNO,T SET,TIME VECTOR,i)

As in the other identification function, the N DYNO parameter represents the measured speed
signal and the function parameter T SET defines the dyno input torque value of the recorded
test run. As already mentioned, this identification uses the quantities of the torque jump test
run. The TIME VECTOR parameter provides the time information and i illustrates the dyno
number for which the identification is performed.
The return function parameter DELAY TIME contains the detected reaction time of the elec-
trical machine, the Error parameter signalises identification problems and Error Str shows the
corresponding error message. The return value DELTA N displays the increasing speed between
the torque jump start point and the first noticed speed change. This additional parameter is
used for debugging purposes.
At first, the function identifies the start point of the torque step. After that, the mechanism
calculates the average variance of the measured speed from the demand value of the constant
speed part before the torque jump point. This variance, increased by a certain percentage,
indicates the threshold for the output change detection. If this speed threshold is passed, the
function defines this measurement point as the end of the delay time. The time interval between
these points represents the delay time and the speed difference is the DELTA N parameter of
the getDelayTime function.
The whole identification information is saved in a data structure and it is displayed in the
identification software in a MATLAB® plot, which is shown in figure 5.1. The delay time mea-
surement points (start and end point) are illustrated with magenta coloured dots for a visual
feedback.
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Figure 5.1: Illustration of the calculated delay time.
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5.1.4 Torque Rise Time Function

The function for the identification of the torque rise time has a different structure than the other
identification functions, because this parameter is calculated via an optimization algorithm (see
chapter 3.1.4). The function header of this identification MATLAB® function looks as follows:

SYNTAX: [TORQUE RATE,Error, Error Str] = getTorqueRate(i)

The getTorqueRate uses only one function parameter i, which represents the dyno identifier for
the mapping in the data structure. In this function the optimization algorithm
fminbnd(@ratefunction,x1,x2) is called with the additional MATLAB® function ratefunction.
Ratefunction returns the error between the measured and simulated speed signal. The simulated
speed signal is generated by the Simulink® dyno model. The parameters of the dyno model
are taken from the data structure, which contains the identified model parameters as well as
the recorded test run quantities. The torque signal from the torque jump test run is used as
the input for the dyno model and the identified parameters are deployed for the Simulink®

model parameters. The torque rise time parameter is first specified on the lower limit by the
optimization function.
After the simulation, the speed error is calculated and the rise time parameter will be changed as
long as the error becomes a minimum. The optimization algorithm stops and the getTorqueRate
returns the calculated rise time by the TORQUE RATE return parameter. If an unexpected
error occurs, the Error parameter will become a non-zero value, the error reason will be trans-
mitted by the Error Str parameter and the TORQUE RATE will be set to zero.

5.1.5 Control Parameter Function

As already discussed in chapter 3.2, the observer parameters of the correction controller are
specified through the LQR method. This controller design method is already implemented in
MATLAB® and it is a function of the Control System Toolbox. The function header of the
control parameter calculation and the implemented lqr MATLAB® function is shown below.

SYNTAX: [Error, Error Str] = CalculateControlParameter

[K,P, e] = lqr(A,b,Q, R)

By calling the CalculateControlParameter function, the control parameters of all dynos, which
are available in the data storage, will be calculated. At the beginning of this function the
matrices A and b (see equation 3.18) are created, as well as the matrix Q and the scalar R.
Afterwards, the lqr MATLAB® function will be called and the correction control parameters
Kp and Ki can be calculated by transforming the return parameter vector K (see equation 3.22).
Then the parameter for the phase correction controller is defined by a tenth of Ki. Like the other
observer parameters, the identified controller parameters are also saved in the data structure.
For this reason, the CalculateControlParameter function only has the return parameters Error
and Error Str for the error handling.
The return parameter P of the lqr -function represents the P matrix, which solves the Riccati
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equation (see formula 3.40). The return vector e includes the eigenvalues of the closed-loop
system. However, these additional return parameters are not used anywhere.

5.1.6 Filter Parameter Function

The CalculateFilterParameter function is developed for determining the filter parameters of the
dyno speed observer. As already explained in chapter 3.3, these parameters are calculated by
the chirp test run. The quantities of the test run are saved in the program data structure, which
is why the identification function only has the input parameter WINDOW SIZE. The parameter
WINDOW SIZE defines the size of the window, which is used for calculating the FFT of the
given speed and shaft torque signal. This parameter is specified in a power of two, by reason
of the fast Fourier transformation algorithm construction, and it is set to 12 by default. This
default value defines a window size of N = 212 = 4096, which sets the frequency density around
1 Hz depending on the sampling rate of the controlling unit. The function call looks as follows:

SYNTAX: [Error, Error Str] = CalculateFilterParameter(WINDOW SIZE)

A frequency analysis of the measured speed and shaft torque signal is performed at the start of
this identification function by the windowed fast Fourier transform algorithm (see chapter 3.3).
The results are saved in the program’s data storage for the visualisation plot in the identification
software. Furthermore, these results are used to define the recommended filter parameters, which
are also saved for the representation on the user interface. The return parameters Error and
Error Str are used to display some identification errors, which signalise that no filter parameter
could be calculated.

5.2 Identification Program

For a comfortable operation of the identification program ObTune, it is necessary to create a
user-friendly graphical user interface. This enables easy handling of the deployed identification
functions and the interaction with the program user. MATLAB® offers a tool for designing
user interfaces for custom applications with the name GUIDE (graphical user interface design
environment).

5.2.1 MATLAB® GUIDE

The GUIDE tool can be started by typing the command guide at the MATLAB® prompt.
After that, a Quick Start dialogue box, as shown in figure 5.2, opens. In this window the user
can create a new GUI figure or open an existing GUI figure file. Furthermore, it is possible to
open some prefabricated graphical user interface examples by choosing another template than
the default one. If the default template is selected, the GUI designer environment will open with
a blank background, which is illustrated by figure 5.3.
The predefined UI elements on the left side of the designer window can be added to the figure
per drag and drop. The properties of the UI elements can be changed with an Inspector window,
which opens by double-clicking on the UI element. During this designing process, the GUIDE
tool automatically generates the MATLAB® code for constructing and using the UI in the
background. The GUIDE tool therefore creates two different files. One .fig file, which stores



72 5.2 Identification Program

the layout and properties of the UI elements and one .m file that contains the program logic.
In order to interact, it is important that these files have the same name.

Figure 5.2: Start window of GUIDE.
Figure 5.3: Graphical user interface

design environment tool.

It is also possible to create GUI elements such as user interface controls (buttons, sliders, etc.)
or containers (panels, button groups, etc.) programmatically via MATLAB® commands. The
advantage of creating the user interface by commands is that it offers more control over the design
and it provides more flexibility regarding the software logic. For this reason, the main application
of the identification software ObTune is developed via MATLAB® scripts and functions with
UI commands. In contrast, simple subwindows, that are used from the main application, are
designed by the GUIDE tool.

5.2.2 MATLAB® Compiler

With the MATLAB® Compiler, MATLAB® provides an opportunity to compile the cre-
ated MATLAB® files into an executable application. Due to this, it is possible to share
MATLAB® functions, scripts, etc. with someone who does not have a MATLAB® software
from MathWorks®. The only thing which is necessary for the usage of the compiled executable
is the MATLAB® Runtime environment on the workstation. This environment can be added
to the executable or it can be downloaded during the installation process.
On all PUMA PC, the MATLAB® Runtime environment has already been installed, because
the environment is also required for the automation and controlling software PUMA. The com-
mand below represents the usage of the MATLAB Compiler.

SYNTAX: mcc [-options] .m-file [.m-file1 ... .m-fileN]
[additional file1 ... fileN]

Building options as well as all needed application files are required by this mcc command func-
tion. The extent and meaning of the mcc options depend on the MATLAB® version and can
be gathered from the proper MATLAB® help. In newer versions of MATLAB®, there is also
a comfortable graphical user tool for creating an executable application. The prompt command
deploytool triggers to start this graphical tool.
The identification method or rather the associated MATLAB® functions also use Simulink®
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models (.mdl-files), but MATLAB® Compiler is not capable to compile Simulink® models for
linking them to the resulting application. In this case, the Simulink® models need to be com-
piled to a usable executable first. This building process can be performed with the Simulink®

Coder, which is also delivered by MATLAB®, and a common C/C++ Compiler.

5.2.3 Rapid Simulation Target

Simulink® provides the possibility to generate C/C++ code from the block diagram (.mdl-files).
The code generation process can be triggered by the Build Model icon in the right corner of the
Simulink® window. The process creates source code files in a subfolder of the current working
directory. The settings for this generation process can be adjusted in the Code Generation tab
of the Model Configuration Parameters window, which is shown in figure 5.4.
The first parameter of the Code Generation tab is for defining the System target file (see fig-
ure 5.4). The coder needs a system target files to translate the .mdl -files into source code and
an executable. These target files define the system environment on which the source code will
run. The Simulink® Coder already contains some predefined target files and it is possible to
use third-party and custom target files as well.
Another important available setting of the Code Generation tab is the Generate code only check-
box. The building process will create code files only, if this checkable is selected. Otherwise, an
executable application will also be produced by the preset C/C++ Compiler during the model
building process. To set up the C/C++ Compiler, the following command need to be entered
in the MATLAB® prompt:

SYNTAX: mex -setup

The generated code can be executed either with the command !modelname or dos(’modelname’).
The execution with one of these commands creates a .mat-file. This file contains all quantities
which will also be generated by the simulation process of the Simulink® model. Therefore, it is
possible to run and plot the results of the Simulink® model without a .mdl -file.
For the constructed identification mechanism, it is essential that the parameters of the Simulink®

model can be changed before the execution, because of the different dyno types and the opti-
mization algorithm for the rise time parameter identification. This requirement can be satisfied
by the Rapid Simulation Target (short rsim), which is already set up in figure 5.4. This rsim
allows to change parameter values or input signals at the start of a simulation without a recom-
pilation of the Simulink® model.
Such changeable parameters have to be declared as tunable parameters before compiling the
Simulink® connection diagram. After performing the building process, the tunable parameters
are accessible via a MATLAB® structure. This structure can be saved as a changeable .mat
file, if everything has been configured correctly before. To ensure an automatic compilation of
the whole identification application, the building process of Simulink® models is executed by a
MATLAB® script.
Source listing 5.1 illustrates the section which ensures that the System target file of the current
model is set to Rapid Simulation Target. The command getActiveConfigSet at line 3 returns an
object, which enables the access to the Model Configuration Parameters for changing the target
system.
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Figure 5.4: Code generation window of a Simulink® model.

1 mdlName = 'modelname';
2 load\ system(mdlName);
3 cs = getActiveConfigSet(mdlName);
4 cs.switchTarget('rsim.tlc',[]);
5 save\ system(mdlName);

Listing 5.1: Set system target file.

As already mentioned, the tunable parameters must be defined before the building process. This
definition operation is represented in source listing 5.2. Before the tunable parameters can be
defined, the RTWInlineParameters checkbox needs to be must. Then the tunable parameters are
able to be set via the command which is shown in line 2. The instructions below are necessary
to specify the properties of the tunable parameters. The TunableVarsStorageClass property
defines the storage class and thus the allocated memory for this parameter in the generated
code. TunableVarsTypeQualifier represents the qualifier of the tunable parameters which can be
defined as const for a non-modifiable or empty for a modifiable parameter.

1 set param(mdlName,'RTWInlineParameters','on');
2 set param(mdlName,'TunableVars',['J,x0,RisingTorqueRate,FallingTorqueRate,'...
3 'DelayTime,nNom,TNom,Kp,Ki,KiPhCorr']);
4 set param(mdlName,'TunableVarsStorageClass',['Auto,Auto,Auto,Auto,Auto,Auto,'...
5 'Auto,Auto,Auto,Auto']);
6 set param(mdlName,'TunableVarsTypeQualifier',',,,,,,,,,');

Listing 5.2: Define parameters as tunable.

If all these settings have been adjusted, the model can be built using the rtwbuild command. This
coded instruction generates source files and builds them to an executable application. At the end
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of the building mechanism, the tunable parameter structure has been saved for the possibility
of modification. This tunable parameter structure can be got by using the MATLAB® function
rsimgetrtp. This procedure is shown in the code listing 5.3.

1 rtwbuild(mdlName);
2 rtp = rsimgetrtp(mdlName,'AddTunableParamInfo','on');
3 save('ParameterMatFile.mat','rtp');

Listing 5.3: Get and save tunable parameter structure

Listing 5.4 represents the modification of the tuning parameter and execution of the complied
Simulink® model. The rsimsetrtpparam command takes the structure with tunable parameter
information and sets the corresponding values. This parameter structure has to be saved before
it can be used for the model executable. The execution instruction is shown in line 5 of listing 5.4.
The additional parameter -tf defines the simulation time, -p specifies the structure of the tunable
parameters and the input parameter -o sets the name of the output file, which contains the
simulation results.
Thus, Rapid Simulation Target provides a comfortable way for modifying parameter values of a
compiled Simulink® model without a recompilation, which is ideal for the identification software
application.

1 rtp = rsimsetrtpparam(rtp,1,'J',J,'x0',x0,'RisingTorqueRate',RisingTorqueRate,...
2 'FallingTorqueRate',FallingTorqueRate,...
3 'DelayTime',DelayTime,'nNom',nNom,'TNom',TNom,'Kp',Kp,'Ki',Ki);
4

5 save('ParameterMatFile.mat','rtp');
6 dos('modelname.exe -tf 10 -p ParameterMatFile.mat@1 -o Result.mat')

Listing 5.4: Set tunable parameters and execute compiled model

5.2.4 Program Handling

If the user starts the identification software ObTune, the graphical interface, which is illustrated
in figure 5.5, will appear. This operation window is clearly separated in three parts. The first
part is named Test Bed Info (see figure 5.6) and it represents the important specifications for
the identification mechanism of the automotive testbed. Before the identification can be started,
the user need to enter the testbed configuration in this section like in figure 5.6.
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Figure 5.5: Main menu window of the identification software.

The next part is the Identification section that includes the selection buttons for the different
identification operations. Clicking on the Model-/Control-Parameters button opens the graphi-
cal user interface for the identification of the observer model and controller parameters. Clicking
on the Filter-Parameters button opens the window for the identification mechanism of the filter
parameters. If one of these buttons is pressed and something is not entered correctly in the
Test Bed Info section, for example the maximum speed is lower than the nominal dyno speed,
an error message will be appear in the message box, which presents the third part of the main
window.

Figure 5.6: Start window of GUIDE.

Figure 5.7: Graphical user interface
design environment tool.

This message box is available in every interaction window of the application and shows all
occurring messages. Error messages are coloured in red, successful events are represented in
green and warnings or standard information messages are black. Only if everything has been
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entered correctly in the Test Bed Info section, the identification process can be started by clicking
on one of the identification buttons.

5.2.4.1 Identification of Model and Control Parameters

When the identification of the model and control parameters is started with the attendant
button, the user interface in figure 5.8 will appear for the software user. Like the main software
window, the user interface is separated into several sections.

Figure 5.8: User interface for identification of the model and control parameters.

At the beginning of the identification procedure, the Test Run Parameters section, which is
shown in figure 5.9, is the most interesting part. In this panel, the test run parameters for the
dialogue window of the BSQ testbed test run (see figure 4.13) is presented to the user. These
parameter values are calculated on the basis of the Test Bed Info data. However, the user
already has the option of changing the recommended Test Run Parameters according to their
discretion. The only important thing is that these parameter values correlate with the entered
values in the test run dialogue window.
As already described in chapter 4.2 the model and control test run creates two recording files for
the identification process. These two files are now required in the identification software. The
identification sequence starts by pressing the Start Identification button in the Action Button
panel. Thus a dialogue window pops up (see figure 5.11), in which the test run recording files
have to be selected for the identification process. If the recording files are selected, the process
will start after confirming with the OK button in the same window.
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Figure 5.9: Recommended
test run parame-
ters.

Figure 5.10: Calculated ob-
server parame-
ters.

During the identification, a process bar is displayed for visualising the remaining process time.
After the identification procedure, the process bar closes, a message in the message box appears
and the calculated observer parameters are shown in the Identified Observer Parameters panel,
which is presented in figure 5.10. Furthermore, test run and validation plots, which are shown
in figures 5.12 and 5.13, are displayed in the graphical user interface.

Figure 5.11: Dialogue window for selecting the test run recording files.

The user has the opportunity of switching between test run and validation plots by pressing
the corresponding buttons. Executed test runs as well as the detected calculation points for the
identified model parameters are plotted in the test run section. Essentially, the plot in figure 3.3
is shown in the Friction tab, figure 3.4 is displayed in the Inertia tab and the plot 5.1 is repre-
sented in the Torque Delay figure tab. These plots give the software user the ability to control
the identification mechanism and therefore the accuracy of the detected model parameters.
As the name already suggests, the validation plots contain figures which give a visual represen-
tation of the identified parameter’s quality and the behaviour of the correction controller as well
as the whole speed observer.



5 Identification Software 79

Figure 5.12: Plots of the identification test runs

Figure 5.13: Plots of the parameters validations.

The first plot in the Open-Loop tab represents the speed behaviour of the testbed dyno and the
observer model with the identified parameters. A good match between these two signals verifies
a good determination of the model parameters. This verification is performed with the aid of a
Rapid Simulation Target compiled Simulink® block diagram of the observer dyno model. This
Simulink® model is shown in figure 5.14. The simulation model parameters (Inertia, Torque
Delay, Rise Time) and the integrator initial value x0 are declared as tunable parameters, because
they depend on the given dyno and performed test run. The initial condition of the integrator
describes the dyno start speed at the beginning of the test run.
The input value of the simulation model is applied by a .mat file, which contains the recorded
torque set signal of the torque jump test run. The simulation output, which represents the
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simulated speed signal of the dyno model, will be saved in the data storage of the identification
program for plotting the Open-Loop validation figure.
Figure 5.13 shows the Open-Loop validation of the engine testbed identification. The blue line
represents the recorded, and the green the simulated speed signal with the model parameters of
figure 5.10. The fact that the two lines match, illustrates excellently that the identified model
parameters simulate the real dyno behaviour very well. Therefore, it can be assumed that the
identification procedure of the model parameters was successful.

Figure 5.14: Simulink® dyno model for Open-Loop validation.

The other two validation plot tabs Closed-Loop and Corr-Controller are created by the compiled
Simulink® model which is shown in figure 5.15. This simulation model represents the behaviour
of the speed observer with the implemented correction controller. The controller parameters from
the Control panel of the user interface (see figure 5.10) are used for this validation procedure.
The Closed-Loop tab shows the measured and simulated speed signal just as the Open-Loop tab,
but with an active correction controller. This illustrates how the observer model works with the
identified correction controller parameters. The last plot tab gives the user a feedback of the
controller output. The Corr-Controller tab represents the output of the correction controller.
The output of the phase correction controller is not illustrated, because there is no additional
benefit. As illustrated by figure 5.15, the output of the phase correction controller has no
influence of the controlling behaviour. This is why the control parameter in the Identified
Observer Parameters panel (see figure 5.10) is not editable. This KiPhCorr parameter is always
set to one-tenth of the Ki parameter of the correction controller. Generally, it must be noted
that the correction controller output will not match with the real correction controller output
of the automotive testbed. There are some additional controllers at the testbed which have
an influence in the controlling behaviour and therefore also have an influence on the correction
controller of the speed observer.
As for the model parameter validation, all observer parameters are declared as tunable and the
recorded torque and speed signal of the torque jump test is used for the simulation input .mat-
file. The outputs n OBSERVER and CorrController OUT are stored in the data structure for
plotting the described validation plots.
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Figure 5.15: Simulink® dyno model for Closed-Loop and controller validation.

However, it is still possible that an error occurs during the identification procedure and the
observer parameter calculation cannot be finished successfully. Another possibility is that the
detected dyno speed observer parameters misfit for some reason and the validation plots sig-
nalise that the real and simulated dyno speed signals do not accord well.
For these undesirable but possible identification scenarios, a very helpful software functionality
is implemented, which can be operated by pressing the Validation button of the Action Button
panel. This software button induces a selective execution of the validation process. Due to the
fact that the observer parameters of the Identified Observer Parameters panel are editable, the
software user has the option of approximating the ideal observer parameters in an iterative way
by changing the parameters in the Identified Observer Parameters panel.
Firstly, the model parameters should be changed as long as the signals of the Open-Loop valida-
tion plot correspond well. After that, the control parameters should be adapted as desired. The
validation process can be operated only if an identification was performed before, because the
test run data are necessary for the Simulink® models that are used for the validation procedure.
If the Validation button is pressed before test run records for the ObTune software are available,
the validation aborts with an error message.
At the end, the calculated model and control parameters, which are found by the automatic
tuning algorithm or with manual tuning, should be entered in the corresponding settings file of
the PUMA Open automation software for using it at the automotive testbed. For continuing
the observer parameter identification, the last button Back To Mainmenu returns the user to
the main function window.

5.2.4.2 Identification of Filter Parameters

By starting the filter parameters identification, the graphical user interface, which is shown in
figure 5.16 is presented for the user. Like the interface for the model and control parameters
identification, the filter parameter calculation window is also separated in individual sections
and generally works according to the same principle.
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Figure 5.16: Graphical user interface for filter parameter identification.

As discussed in chapter 4.2, the chirp test run also needs some scaling execution parameters.
A recommendation for these test run parameters is given in the parameter panel, which is
is shown in figure 5.18. These parameters are editable and can be adapted by the user as
necessary. The parameter panel also contains two further sections that are filled after the
identification process. First, the panel Highest Resonance Frequency displays the frequencies
with the maximum amplitude of the speed and shaft torque signal of the chirp test run. This
panel only represents the measurement of the largest disturbance frequencies and, therefore,
the parameters are not editable in this part. The third section illustrates the identified filter
parameters for the speed and shaft torque filter.

Figure 5.17: Dialogue window for chirp test selection.

If the identification mechanism is started by pressing the Start Identification button, a dialogue
window, just as for the model and control parameters before, opens for selecting the chirp test
run recording file (see figure 5.17). After selecting the file by using the Browse button, the
identification process can be started by confirming with the OK button. In contrast, if the user
wishes to abort the identification mechanism, they have the option to close the dialogue section
window by pressing the ESC key or the Cancel button. During the identification, a waiting bar
is represented for illustrating the actual progress.
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Figure 5.18: Parameter panel of the filter identification window.

After identification, the determined filter parameters, the highest resonance frequencies with
their amplitude as well as the test run and validation plots are shown in the appropriate illus-
tration blocks (see figure 5.18). If an error occurs during the identification, a corresponding
message will be written in the message box. In this case, those sections, which are affected by
the identification error, stay unchanged. If for example no filter frequency parameter can be
calculated, the appropriate text box will still contain the value NaN. The Test Run Plot section
(see figure 5.19) illustrates the recorded speed and shaft torque signal during the chirp test and
their fast Fourier transformation. At the Validation plot part (see figure 5.20), the filtered speed
and shaft torque signal and the corresponding fast Fourier transformation is represented.
To still perform a successful identification despite of an error, the validation functionality is also
given in the filter parameter identification window. The same validation principle as described
before in the model and control identification window is used. By clicking on the Validation
button, the editable parameters of the Identified Filter Parameters panel are consulted for fitting
the Simulink® validation model, which is shown in figure 5.21.
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Figure 5.19: Plots of the chirp test runs

Figure 5.20: Plots of the filter parameters validations.

The validation model at figure 5.20 represents the implemented speed and shaft torque filter of
the dyno speed observer. At the validation, the filter will be configured and then the measured
testbed signal is passed through. The received filtered signals and their FFT constitute the
validation plots at the graphical user interface.
Figure 5.19 shows the recorded speed signal of the chirp test run on the engine testbed. The
corresponding validation plot is represented below in Figure 5.20. It shows that the identified
filter parameters, which are visible in figure 5.18, eliminate the resonance frequency peak suc-
cessfully. The improvement of the speed signal caused by the filter can also be recognized in
figure 5.20.
As described in chapter 3.3 the implemented filter is a second order digital IIR filter. Simulink®
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already provides an implemented filter block with adjustable numerator and denominator for
defining the filter characteristic, but that block is not used for the dyno observer of the EMCON
software. The reason for this is that after the model compilation it is not possible to change the
filter parameters in a correct way. Due to this, the IIR filter is realized with tunable gain blocks
for changing the characteristic. The gain coefficients can be declared as tunable parameters.
The values of the gain blocks are calculated by an AVL MATLAB® script. This script needs
the filter type (low-pass or notch filter) and the filter frequency (cut-off or trap frequency) as
input parameters. The return parameters are the gain values a1, a2, b1, b2 and b3 of the
implemented filter (see figure 5.21). Therefore, this implementation also has the advantage that
it can easily be used for the validation mechanism of the ObTune software.

Figure 5.21: Simulink® dyno model for filter parameter validation.
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