
Rene Obendrauf, BSc

Semi-Automated Safety Management and

Safety Case Generation

to achieve the university degree of

MASTER'S THESIS

 Master's degree programme: Software Development and Business Management

submitted to

Graz University of Technology

Dipl.-Ing. Dr.techn. Christian Kreiner

Dipl.-Ing. Dr.techn. Gerhard Griessnig

Institute of Technical Informatics

Head: Univ.-Prof. Dipl.-Inform. Dr.sc.ETH Kay Römer

 Diplom-Ingenieur

Supervisor

Graz, March 2016

AFFIDAVIT

I declare that I have authored this thesis independently, that I have not used other

than the declared sources/resources, and that I have explicitly indicated all ma-

terial which has been quoted either literally or by content from the sources used.

The text document uploaded to TUGRAZonline is identical to the present master‘s

thesis dissertation.

Date Signature

Abstract

Developing automotive safety-critical systems is nowadays a very complex and challen-
ging task due to the high number of integrated control units and the intricate interaction
of these systems. In order to cope with this complexity, it is necessary to define and set
up an efficient and effective safety management that defines a consistent and continuous
development process throughout the entire lifecycle and across different organizations.

The safety management process is not an independent process, it is directly connected to
the quality and product development processes of the involved companies. ISO26262 (the
standard for functional safety in the automotive industry) covers this safety management
process with more than 100 workproducts and over 1,000 requirements. Therefore, the
conversion of this complex safety management process into an existing quality process
landscape and its maintenance is a time-consuming and costly task. If integrated properly
in an organization, the benefits of an effective safety management are huge. It can raise
the efficiency of further product developments and can therefore result in lower costs. In
today’s business, cost is one of the most important key factors.

Managing established safety processes is another challenge for the companies because the
manual creation and maintenance of different safety-related projects and their according
safety activities in context of ISO26262 is a laborious and error-prone task. To support
these tasks, a tool-dependent and tool-supported environment is needed.

As a consequence, this thesis describes the design and implementation of a novel collab-
orative tool architecture for creating and maintaining the safety management activities of
different standards throughout the entire safety lifecycle. This tool architecture is based
on a common client-server architecture that allows multiple users to concurrently work on
different projects within the tool.

An integrated report generator supports users by providing semi-automated documents
which serve as basis for customer release documentations. The development interface
agreement is a report that can automatically be generated from the tool. Additionally,
the tool allows the generation of a process-based safety case which provides evidence for
the fulfillment of workproducts and requirements by the integrated safety process. Thus,
the provided tool environment can further help reduce time and costs.

Keywords

ISO26262; Functional Safety Management; Safety Lifecycle; Process-Based Safety Case;
Development Interface Agreement; Collaborative Tool Environment

i

Kurzfassung

Die Entwicklung sicherheitskritischer Systeme ist heutzutage eine sehr aufwendige und
komplexe Aufgabe aufgrund der hohen Anzahl an integrierten und interagierenden Steuere-
inheiten. Um dieser Komplexität gerecht zu werden, ist es notwendig ein effektives und
effizientes funktionales Sicherheitsmanagement aufzubauen und einzuführen. Dieses funk-
tionale Sicherheitsmanagement soll einen konsistenten und durchgehenden Entwicklungs-
prozess über den gesamten Lebenszyklus definieren.

Dieser funktionale Sicherheitsmanagementprozess ist kein eigenständiger Prozess, da er
direkt mit dem Qualitäts- und Produktentwicklungsprozess verbunden ist. Die ISO26262
ist der Standard für funktionale Sicherheit in der Automobilindustrie und definiert einen
Sicherheitsmanagementprozess mit mehr als 100 verschiedenen Arbeitspaketen, welche
aus über 1.000 verschiedenen Anforderungen bestehen. Aus diesem Grund ist die In-
tegrierung und Wartung dieses komplexen funktionalen Sicherheitsmanagementprozesses
in eine bestehende Prozesslandschaft eine sehr zeitaufwendige und fehleranfällige Arbeit.
Die Vorteile aus einer ordnungsgemäßen Integration sind enorm. Es kann die Leistungs-
fähigkeit für weitere Produktentwicklungen steigern und Kosten einsparen. Im heutigen
Geschäftsumfeld ist die Einsparung von Kosten einer der wichtigsten und entscheidendsten
Komponenten. Eine weitere Herausforderung stellt die Wartung eines integrierten funk-
tionalen Sicherheitsmanagements dar. Durch die manuelle Erstellung und Aufrechterhal-
tung der verschiedenen sicherheitsbezogenen Projekte und die damit verbundenen Sicher-
heitsaktivitäten, welche in der ISO26262 definiert sind, ergeben sich viele aufwendige und
fehleranfällige Arbeitsschritte. Um diese Arbeitsschritte unterstützen zu können, wird ein
toolabhängiges und toolunterstützendes Umfeld benötigt.

Folglich wird in dieser Arbeit der Entwurf und die Implementierung eines neuartigen,
kollaborativen Tool Frameworks vorgestellt. Dieses Tool Framework soll die Erstellung
und Wartung von funktionalen Sicherheitsmanagementaktivitäten ermöglichen, welche
von verschiedenen Standards vorgegeben werden. Die Architektur dieses Tools basiert auf
einem Client-Server Modell, welches das gleichzeitige Arbeiten an verschiedenen Projekten
ermöglicht. Ein zusätzlich integrierter Dokumentengenerator unterstützt den Anwender
beim automatischen Erstellen von Dokumenten, welche beispielsweise als Basis für Berichte
an Kunden verwendet werden können. Das Development Interface Agreement Dokument
kann automatisch aus dem Tool generiert werden. Zusätzlich kann auch noch ein prozess-
basierter Sicherheitsnachweis erzeugt werden. Dieser zeigt den Nachweis für die Erfüllung
der Arbeitspakete und Anforderungen, welche im funktionalen Sicherheitsmanagement-
prozess eingebettet sind. Demzufolge können durch den Einsatz des bereitgestellten Tools
Zeit und Kosten gespart werden.

Schlüsselwörter

ISO26262; Sicherheitslebenszyklus; Funktionales Sicherheitsmanagement; prozessbasierter
Sicherheitsnachweis; Development Interface Agreement; kollaboratives Tool Framework

ii

Acknowledgments

The contributions presented in this thesis were conducted in cooperation with the ITI
- Institute for Technical Informatics, Graz University of Technology and the AVL List
GmbH Graz. Foremost, I want to thank Dr. Christian Kreiner from the ITI, Dr. Gerhard
Griessnig and Dr. Roland Mader from AVL for advising me how to compose and complete
this thesis and for a good and fruitful collaboration.

In particular, I would like to thank my colleagues Philipp Prinz, Dominik Mößlang and
Labinot Xhafa at AVL List GmbH for excellent discussions providing qualified comments,
supporting the evaluation of the tool and enabling an atmosphere of friendship. Additional
thanks to all people from the AVL safety team which always supports me during the per-
formance of the thesis by providing helpful information and making good discussions.

I would like to express my greatest gratitude to my parents, Paul Obendrauf and An-
nemarie Obendrauf, and to my girlfriend, Melanie Harb, for their life-long support and
their understanding during the completion of this thesis. Without the help of these people,
the thesis would not have been possible. Thank you!

Graz/Austria
March, 2016 Rene Obendrauf, BSc

iii

Contents

1. Introduction 1
1.1. Motivation . 1
1.2. Background and relation to AVL . 2
1.3. Objectives . 3
1.4. Outline of the thesis . 4

2. Related Work and Context 5
2.1. ISO26262 – the Automotive Functional Safety Standard 5

2.1.1. V-Model . 6
2.1.2. Terms and Definitions . 7
2.1.3. ISO26262 Structure . 15

2.2. Related Work . 20
2.2.1. Safety Management . 20
2.2.2. Process-based Safety Case . 23

2.3. Existing Functional Safety Management Tools 25
2.3.1. ENCO Safety Office . 25
2.3.2. Vector PREEVisison . 26

3. Design of the Functional Safety Management Tool 27
3.1. Requirements . 27

3.1.1. User Requirements . 28
3.1.2. Database Requirements . 30
3.1.3. Tool-specific Requirements . 30
3.1.4. Conceptual Formulation . 31

3.2. Common Technical Concepts . 32
3.2.1. WPF – Windows Presentation Foundation 32
3.2.2. WCF – Windows Communication Foundation 34
3.2.3. RDBMS – Relational Database Management System 35
3.2.4. Infragistics . 36
3.2.5. ORM – Object Relational Mapping 38

3.3. Tool-specific Concepts and Design . 39
3.3.1. Client-Server Concepts . 39
3.3.2. Client Concepts . 44
3.3.3. Server Concepts . 45

3.4. Collaborative Safety Management Tool Architecture 51
3.4.1. Safety Management Tool Parts . 52
3.4.2. Safety Management Tool Processes 53
3.4.3. Safety Management Tool – Report Generator 56
3.4.4. Process-based Safety Case Design . 56

iv

3.5. Software Architecture . 58
3.5.1. Client Software Architecture . 58
3.5.2. Server Software Architecture . 60

4. Implementation of the Functional Safety Management Tool 64
4.1. External Tools and Libraries . 64

4.1.1. Tool-Chain . 64
4.2. Implementation of the collaborative Safety Management Tool Environment 65

4.2.1. Standard-Specific Part . 68
4.2.2. Project-Specific Part . 73
4.2.3. Report Generator . 82

4.3. Unit Testing Framework . 83

5. Conclusion and Future Work 87
5.1. Conclusion . 87
5.2. Future Work . 88

Appendix A. AVL defined User Requirements 89
A.1. Defined AVL User Requirements . 90

Appendix B. WPF – XAML Example 95

Appendix C. EER Diagram 96

Appendix D. Example NHibernate Entity Configuration 98

Appendix E. Infragistics Controls and Components 102

Bibliography 106

v

List of Figures

1.1. Overview of the high number of control units and their connections in
today’s cars (Source: VDI1) . 2

1.2. Mapping of AVL and the Safety Culture Process 4

2.1. ISO26262: composition of the different parts 5
2.2. ISO26262-integrated V-Model (Source: [1]) 6
2.3. ISO26262-defined Safety Lifecycle from [2] 8
2.4. ISO26262 Safety Case Key Elements (Source: [3]) 11
2.5. Safety Case structure with process-based and product-based safety case

division . 12
2.6. GSN core elements defined in the GSN standard (Source: [4]) 13
2.7. GSN relations for connecting the GSN elements (Source: [4]) 14
2.8. An example of a goal structure (Source: [5]) 14
2.9. ISO26262-defined ASIL classification table corresponding to [6] 16
2.10. Overview of the Functional Safety Concept process corresponding to [6] . . 16
2.11. The different rules for the ASIL decomposition (Source: [7]) 19

3.1. The different requirement sets of the Functional Safety Management Tool
concept . 28

3.2. Overview of a WPF Data Binding (Source: [8]) 33
3.3. Overview of a simple client-server based architecture 39
3.4. Example broadcasting architecture with three associated clients 43
3.5. Overview of the NHibernate Architecture 47
3.6. The overall system architecture of the developed tool environment 51
3.7. Process for fetching an item from the database 54
3.8. Process for storing new data in the database 55
3.9. Overview of the Model-View-View-Model pattern and its connections 58
3.10. Integrated project creation workflow . 59
3.11. Dependency graph of the existing software libraries within the server archi-

tecture . 60
3.12. Cutout of the standard-specific database architecture 63

4.1. Login window of the Functional Safety Management Tool 66
4.2. Overview of all accessible projects within the FSM Tool 66
4.3. The FSM Tool provides different views for displaying existing projects . . . 67
4.4. Overview of the generic standard part . 68
4.5. Overview of the standard-specific methods module 69
4.6. Overview of the standard-specific workproducts module 69
4.7. Overview of the standard-specific requirements module 70

vi

4.8. Overview of the standard-specific task input module 71
4.9. Overview of the safety lifecycle provided by a standard 72
4.10. Detailed overview of a specific project . 74
4.11. Overview of the project-specific deliverable module 75
4.12. Overview of the project milestone module 75
4.13. Overview of the deliverable responsibility module 76
4.14. Overview of the project task input module 77
4.15. Overview of the project role module . 78
4.16. Overview of the project task tailoring module 79
4.17. Overview of the development interface agreement module 80
4.18. Overview of the review module . 81
4.19. Cutout of existing unit tests for the activity entity 83
4.20. Cutout of the existing testing framework class diagram 84

B.1. An example graphical user interface created with the WPF library 95
B.2. Associated XAML file of the above illustrated graphical user interface . . . 95

C.1. An example one-to-one mapping inside an EER Diagram 96
C.2. An example one-to-many mapping inside an EER Diagram 97
C.3. An example many-to-many mapping inside an EER Diagram 97

vii

Listings

3.1. Overview of the save method provided by the data exchange service 41
3.2. Overview of the get item by ID method provided by the data exchange service 41
3.3. Overview of the different NHibernate data retrieve approaches 48

4.1. Negative unit test for creating a new activity 84
4.2. Creating a new activity with a standard mapping test 85

D.1. NHibernate task entity configuration . 98
D.2. NHibernate task class that is used for the associated database table 99

List of Tables

3.1. Advantages and disadvantages of an MySQL database system 35

viii

Abbreviations

API Application Programming Interface

AVL Anstalt für Verbrennungskraftmaschinen List GmbH

AVL-PTE AVL Key Area - Power Train Engineering

DIA Development Interface Agreement

E/E Electrical/Electronic

E/E/PE Electrical/Electronic/Programmable Electronic

EER Enhanced Entity-Relationship

FIT Failure in Time

FMEA Failure Mode and Effects Analysis

FSC Functional Safety Concept

FSM Functional Safety Manager

FSM-P Functional Safety Manager in Project

FSPO Functional Safety Project Overview

FTA Fault Tree Analysis

GSN Goal Structuring Notation

GUI Graphical User Interface

HARA Hazard Analysis and Risk Assessment

HQL Hibernate Query Language

HSI Hardware-Software Interface

HTTP Hypertext Transfer Protocol

IIS Internet Information Services

ISO International Organization for Standardization

LDAP Lightweight Directory Access Protocol

MVVM Model-View-View-Model

OEM Original Equipment Manufacturer

ORM Object Relational Mapping

QMS Quality Management System

RDBMS Relational Database Management System

ix

SQL Structured Query Language

TSC Technical Safety Concept

TSD Technical Safety Developer

UML Unified Modeling Language

URI Uniform Resource Identifier

VDI Verein Deutscher Ingenieure

VDP Virtual Private Network

V&V Verification & Validation

WCF Windows Communication Foundation

WPF Windows Presentation Foundation

XAML Extensible Application Markup Language

XML Extensible Markup Language

x

1. Introduction

1.1. Motivation

According to the increasing complexity of automotive embedded systems (Figure 1.1),
functional safety is nowadays a more and more important issue. The development of
safety-critical systems require structured and well-defined workflow steps described by
ISO26262, the standard for functional safety of the automotive domain. ISO26262 [9] is
an adaption of IEC61508 [10] (Functional Safety of Electrical/Electronic/Programmable
Electronic Safety-Related Systems (E/E/PE, or E/E/PES)), which is the main functional
safety standard of all different domains and describes functional safety as “absence of un-
reasonable risk due to hazards caused by malfunctioning behavior of Electrical/Electronic
systems.”

The work in [11] provides an overview of ISO26262 and the according lifecycle with the
associated parts. The ISO26262 standard consists of ten parts that are further described
in Section 2.1.3. These ten parts consist of nine normative parts and one informative part
that can be used as a guideline.

ISO26262 contains a subsection entitled “Management of functional safety”, which
defines the automotive safety lifecycle which starts with the safety management, goes
on with the development, operation, service and ends with the decommissioning of the
system. It furthermore provides support for tailoring the different safety activities during
a project and the according lifecycle. Part 8 [12] additionally contains processes and gives
an informative example for a “Development Interface Agreement (DIA)” (Section 2.1.2),
which is a document describing who (customer, supplier) is responsible for the different
safety activities during the safety lifecycle.

Because of the complex development behavior of the automotive area, structured de-
velopment processes and workflows are needed in order to establish an effective safety
management within the whole organization. Implementing functional safety within the
organization is a complex and time-consuming task because the safety management pro-
cess contains over 100 workproducts [13] that consist of over 1,000 single requirements.
Furthermore, it is not a particular process and coincides the quality and product develop-
ment processes of a well-defined organization culture.

To cope with such a complexity, tool support for automatic generation of artifacts is
needed in order to avoid faults and failures by the manual creation and maintenance of
artifacts and their relations. Moreover, tool support saves time and reduces therefore
the costs of a product development. Manual creation of workproducts such as an item
definition or a safety plan are very time-consuming and error-prone tasks because a safety
plan contains numerous safety activities that are linked to each other either as inputs
or outputs. Therefore, workproducts entail a lot of dependencies and such dependencies
make things unclear and complex.

1

1. Introduction 2

Figure 1.1.: Overview of the high number of control units and their connections in today’s
cars (Source: VDI1)

The implementation of an efficient and effective safety management results in a well-
defined workflow structure and provides many advantages. As the work in [14] describes,
the adoption of a safety process helps reduce costs and enhances the measurement of
quality as well as the communication between employees. Furthermore, it improves the
performance and the predictability of processes.

1.2. Background and relation to AVL

This thesis is conducted in cooperation with the AVL List GmbH2, which is the world’s
largest privately-owned company for development, simulation and testing technology of
powertrains (hybrid, combustion engines, transmission, electric drive, batteries and soft-
ware) for passenger cars, trucks and large engines. In the AVL safety department, a tool
environment for creating and maintaining safety management with the associated different
safety activities already exists and is based on a spreadsheet application.

According to the huge number of relations between these different safety activities,
workproducts and requirements that can be found in the standard, the defined spread-
sheet application is already unmanageable. Currently, the existing application contains
formulas that have more than 1,000 characters. Therefore, nobody could further maintain
and handle this sheet and, thus, a new approach is needed. One other huge problem that
occurred by using the spreadsheet application approach is that there is no possibility to
store and manage artifact changes within the tool environment. This means there is no

1https://www.vdi-wissensforum.de/de/nc/presse/details/article/komplexe-bordnetze-entwickeln/
2www.avl.com

https://www.vdi-wissensforum.de/de/nc/presse/details/article/komplexe-bordnetze-entwickeln/
www.avl.com

1. Introduction 3

database in the background that is responsible for the data storage. By storing a database
in the background it is possible to track and audit changes and to open and view old ver-
sions of the project. Additionally, the manual generation of customer release documents
is a very time-consuming and expensive task because there is currently no automatic con-
version from big spreadsheet tables into a report format.

In order to set up a new powerful and effective safety management tool environment,
AVL wants to start with a novel tool environment to cope with such time-consuming and
error-prone tasks. The aim of this thesis is to better support the development process and
to therefore reduce the development time and costs.

In this thesis, a newly developed “Functional Safety Management“ tool will be de-
scribed that allows the creation of different standard-specific and project-specific artifacts.
Whereas the standard-specific artifacts describe a generic lifecycle which is described by a
standard, the project-specific artifacts describe the independent project-specific lifecycle
that inherits from a standard lifecycle.

Hence, a new safety management meta-model shall be created and defined for the tool
within a database architecture. This meta-model shall be integrated into this new tool
environment and the tool shall be able to plan and maintain the safety management tasks
throughout the entire lifecycle. Furthermore, it shall provide features for the automatic
creation of different reports as described in 3.4.3.

The main focus within this newly developed tool is on the following parts:

• Safety Management

• Process-Based Safety Case

1.3. Objectives

In this section, the main objectives of this thesis will be depicted. First, the AVL process
shall be mapped onto the safety culture process as shown in Figure 1.2. This safety culture
process defines the needed activities that shall be performed within a safety management
process. Therefore, an AVL functional safety management meta-model shall be created in
order to comply with the process. With this meta-model, a novel tool architecture shall
be developed that transfers the existing functional safety management spreadsheet applic-
ation into a database-driven tool environment. By using a database in the back-end, it is
possible to store artifacts and their changes during the entire lifecycle. This allows users to
save different baselines and to extract and view old versions of artifacts from the database.

An other main objective is that the tool shall allow the creation and maintenance of
different projects within an integrated multi-user environment where several people can
work on projects concurrently. Furthermore, it shall be possible to store different standards
in the database. New projects can be created from these standards and automatically
inherit the according defined standard lifecycle. Additionally, it shall be possible to create
new projects from other projects and to create sub-projects for existing projects. At last,
the tool shall allow the automatic generation of reports using a report generator.

1. Introduction 4

Figure 1.2.: Mapping of AVL and the Safety Culture Process

These reports shall be generated in a semi-automated way, which means that they shall
serve as a basis for customer releases or for own reviews and usages. During the concept
phase of the tool, the creation of an easy and powerful user interface that has a database
in the back-end will be considered.

Additionally to the two defined objectives above, the tool environment shall be based on
a client-server architecture which allows the integration of a multi-user approach. There-
fore, the tool shall comprise a user management that permits to define different categories
of permissions for users.

1.4. Outline of the thesis

The rest of this thesis is organized as follows: Chapter 2 summarizes the results of the lit-
erature research regarding collaborative safety management and the process-based safety
case generation. Additionally, the ISO26262 standard and the according terms and defin-
itions will be described in more detail. Chapter 3 depicts the defined requirements, the
software architecture of the newly developed tool environment and the associated features.
Chapter 4 provides an overview of the implementation of the different concepts within the
tool environment. Furthermore, the tool usage will be illustrated in more detail. Chapter
5 concludes the thesis and suggests further work.

2. Related Work and Context

2.1. ISO26262 – the Automotive Functional Safety Standard

ISO26262 [9], entitled “Road vehicles – Functional safety”, is the official standard of func-
tional safety for the automotive industry. It was created for the development of safety-
critical automotive E/E systems and it applies to passenger cars up to 3,500kg [1]. The
standard is an adaption of IEC61508 [10], the generic standard for functional safety across
all domains, and provides structured workflows during the entire product development
cycle, starting with the specification, then continuing with the design of the product, the
implementation and integration, the testing, verification and validation and at last ending
with the operation after the product release [1]. As shown in Figure 2.1, ISO26262 con-
sists of process-based requirements, product-based requirements and further safety-related
workproducts. The work in [15] compares and describes the differences between the two
standards. The following key concepts are defined in the ISO26262 standard:

• provides an automotive safety lifecycle during the entire process

• supports the tailoring of safety activities during the safety lifecycle

• provides Automotive Safety Integrity Levels (ASIL A – D) for risk classification

• uses these risk levels for deriving requirements to reduce the risks to an acceptable
level

• provides requirements for validation and confirmation measures to achieve an ac-
ceptable level of safety

Figure 2.1.: ISO26262: composition of the different parts

5

2. Related Work and Context 6

This chapter concentrates more on Part 2, “Management of functional safety”, on Part 8,
“Supporting Processes”, and on Part 10, “Guideline on ISO26262”, of the standard because
these parts contain the main information that is needed for this thesis. In the following,
the challenges and implementation of these parts will be discussed in more detail. First,
the process model of ISO26262 will be presented and explained. The subsequent section
illustrates the important and relevant terms of the standard and gives a short overview of
all ten parts of ISO26262.

2.1.1. V-Model

The V-Model describes the overall process model of the functional safety standard and
presents the different phases of the standard. Figure 2.2 illustrates the V-Model over all
existing parts of ISO26262. As it can be seen, only Part 3 to Part 7 are part of the V-model
process. The reason for that is that only these parts describe the design, development and
production processes while the other parts cover different things which will further be
described in 2.1.3. The left side of the V-Model illustrates the development process and
the right side describes the associated verification and validation processes.

Figure 2.2.: ISO26262-integrated V-Model (Source: [1])

2. Related Work and Context 7

2.1.2. Terms and Definitions

The following parts describe the relevant and necessary terms and definitions of ISO26262
and additional literature. The first part [1] of ISO26262 provides definitions and explana-
tions.

Safety Management

ISO2626 contains a normative Part 2 [2] concerning safety management which defines the
overall safety management through the organization. The objective is to define and im-
plement the workproducts and requirements of the safety lifecycle defined by ISO26262.
Furthermore, the standard distinguishes between process-based and product-based re-
quirements. Whereas the process-based requirements define the activities which shall be
performed in order to fit the safety lifecycle. the product-based requirements define the
technical aspects for creating a safe product within the safety lifecycle. Furthermore, the
standard defines different roles for safety, like the “Functional Safety Manager (FSM)” or
the “Technical Safety Developer (TSD).”

Functional Safety Manager

In Part 2 of the standard, a new role named “Safety Manager” will be introduced. A safety
manager is responsible for the planning and coordination of the activities that are part
of the entire safety lifecycle. A safety manager is coupled very closely to a project and
quality manager. In the following, some main tasks of a safety manager [16] are listed:

• responsible for functional safety within the company/project

• plans and coordinates tasks

• maintains the safety plan and monitor the safety process

• checks safety activities against the safety lifecycle

• delegates tasks to persons

• trains and educates persons

• define reviewers, auditors and assessors

• plans reviews, audits and assessments

• does technical leadership

• checks organization safety process against standard safety process

Safety Culture

The term “Safety Culture” implies the implementation of all needed organization-specific
tasks, processes and roles in order to achieve functional safety within the organization.
Every organization that performs safety activities for the development of E/E systems
should establish a safety culture. For achieving a well-defined safety culture, all team

2. Related Work and Context 8

members should be aware of the defined safety culture while the organization should
provide all needed resources in order to establish this safety culture. Furthermore, these
tasks and processes (safety lifecycle) should be executed in accordance with ISO26262
and the defined requirements in order to comply with the standard. The definition of
safety culture within ISO26262 Part 1 (1.107) [1] is “policy and strategy used within
an organization to support the development, production and operation of safety-related
systems.” The objective of a well-defined safety culture is the achievement of functional
safety throughout different projects.

Safety Lifecycle

The safety lifecycle defines all requirements in all different phases that shall be performed
in order to complete the safety activities. As shown in Figure 2.3, the lifecycle accounts for
the management of functional safety through the concept phase, the product development
and the release of production. The main goal is to plan, coordinate and perform the safety
activities within this safety lifecycle in order to achieve functional safety.

Figure 2.3.: ISO26262-defined Safety Lifecycle from [2]

2. Related Work and Context 9

As described in [2], the tailoring of a safety lifecycle should be performed at the beginning
of each project, at the same time as the project plan will be generated. During the tailoring
of the safety activities, all tasks that are not necessary for this project are disabled and
must be linked with an rationale explaining why it is not needed in this project. As soon
as the tailoring process is completed, the safety lifecycle is now ready for a specific project.

Development Interface Agreement

After tailoring of the different safety activities, the “Development Interface Agreement
(DIA)” shall be performed. Input of the DIA are the tailored process activities that
describe the relevant tasks to be performed within a specific project. Additionally, it
determines the responsibilities of customer and suppliers for the different tasks. For this
information, a defined “Responsibility Assignment Matrix”1 is used. In general, there are
a lot of different RASI matrices. At AVL, a cooperation partner of this thesis, the below
RASI matrix is used.

• (R) Responsible:

This role describes the person that is responsible for executing the safety activity.

• (A) Approval:

This role defines the person that shall approve the implemented safety activity.

• (S) Support:

This role specifies the person that shall support the responsible person during the
execution of the safety activity.

• (I) Information:

This role determines who will give only information.

Additionally to the RASI matrix, the development interface agreement contains the
according workproducts which are results of the different safety activities, and it further
contains and describes all different interfaces (processes, tools, etc.) between the customer
and the suppliers. Annex B of Part 8 [12] of ISO26262 depicts an example of such a devel-
opment interface agreement. The provided example is only for the purpose of illustration
and therefore only informative and not normative! Hence, it may be used as a guideline.
The description of the development interface agreement in ISO26262 (Part 1 – 1.24) [1]
is “agreement between customer and supplier in which the responsibilities for activities,
evidence or workproducts to be exchanged by each party are specified.”

1http://project-management.com/understanding-responsibility-assignment-matrix-raci-matrix/

2. Related Work and Context 10

Safety Plan

Within the safety plan, the performance of the different safety activities of the safety
lifecycle are planned and managed in detail. It is a further refinement of the develop-
ment interface agreement and additionally contains the project milestones until when each
activity shall be executed. Furthermore, it shows who is responsible for the different safety
activities, what the according tasks for performing these activities and what the resulting
deliverables are. At last, also resources for the execution of the safety activities can be
defined inside the safety plan. The functional safety manager is responsible for creating
and maintaining the safety plan and for checking the status of the safety activities against
the safety plan. Another important thing is that the safety plan shall either be integrated
into the project plan or shall be referenced in order to align the project plan and safety
plan.

Confirmation Measures

A confirmation measure can be confirmation reviews, functional safety audits or functional
safety assessments. Each task must be reviewed and evaluated according to the ISO26262
standard. For achieving an acceptable level of safety, the confirmation measures shall be
performed. This step is also defined in Part 2 [2] of ISO26262. Furthermore, the execution
of verification reviews are needed because they are required by ISO26262. In the following,
the three kinds of confirmation measures will further be described.

Confirmation Review

This review checks the compliance of workproducts against the standard and shall be per-
formed at all ASIL levels.

Functional Safety Audit

The functional safety audit is the inspection of all implemented processes with the work-
products and requirements for the achievement of functional safety. This audit shall be
done by one or more persons and is only needed for items with an ASIL higher than
ASIL (B).

Functional Safety Assessment

A functional safety assessment is the checking of the workproducts defined by the safety
plan and furthermore the monitoring of the processes that are necessary for achieving
functional safety. Such an assessment plan shall be included in the safety plan and as
a result, a report of the assessment shall be generated. This report shall include, as
described in [2], a recommendation for acceptance, a conditional acceptance or a rejection
of the functional safety of the item. This safety assessment shall only be conducted for
items with an ASIL greater than ASIL (B).

2. Related Work and Context 11

Safety Case

The definition of a safety case according to ISO26262 Part 1 [1] is an “argument that
the safety requirements for an item are complete and satisfied by evidence compiled from
workproducts of the safety activities during development”. Basically, in the industry, there
are different definitions of a safety case available.

In general the purpose of a safety case is to demonstrate that functional safety was
achieved and that the system under development is free from unreasonable risk. Therefore,
a safety case is based on an understandable and well-defined argument which is supported
by evidence. The evidence can comprise the confirmation that all the workproducts of
the safety lifecycle were created and the requirements defined by the applicable safety
standard were fulfilled.

Figure 2.4 shows the relationship between the three important artifacts of a safety case.
Requirements are the first artifact which are defined by ISO26262. With the artifact
number two, the safety argument, a clear and understandable reason shall be given in
order to show that the system is free from unreasonable risk. In order to verify these
safety arguments, the third artifact, evidence, is needed. For example, a workproduct
from ISO26262 can give such an evidence. This entire information should be compiled in
a safety case report.

Figure 2.4.: ISO26262 Safety Case Key Elements (Source: [3])

The links between the artifacts like requirements and workproducts should always be
provided, either top-down or bottom-up. Additionally, these links should be structured in
a clear way and there should be no gaps which could lead to a safety goal violation.

In Figure 2.5, the relations between the different kinds of a safety case are depicted.
Whereas the process-based safety case focuses on the safety lifecycle and the associated
workproducts the product-based safety case focus on the system architecture and system
behavior and is therefore related to the attributes of the system which was developed
according to a derived ASIL. ISO26262 provides no normative part for the safety case
generation. Moreover, it only gives a simple information guideline defined in Part 10 [17]
of the standard.

2. Related Work and Context 12

Figure 2.5.: This figure illustrates the possibility to divide a safety case into a process-
based and product-based safety case. Furthermore, some example artifacts
for each safety case are given

A safety case should be conducted for items that have an ASIL greater than ASIL (A),
ASIL B, ASIL C or ASIL D. The brackets in ASIL (A) mean that for this ASIL it is only
a recommendation to create a safety case and it is therefore not mandatory. This thesis
focuses more an the process-based safety case generation and offers therefore only a short
overview of product-based safety cases.

Traditionally, a safety case is mostly only a collection of simple text and therefore really
difficult to read and understand. Furthermore, it is not as easy to see how the three afore-
mentioned artifacts are coupled together. The author of [18] has developed an alternative
way for demonstrating a clearly arranged way for showing a safety case by providing a
specific graphical notation language. Today, this language, named“Goal Structuring Nota-
tion (GSN),” is very popular and widely used in different industries. It provides different
graphical elements for requirements, claims, evidences, context and many other artifacts.
In Section 2.1.2, more information about this goal structuring notation will be given.

2. Related Work and Context 13

GSN – Goal Structuring Notation

According to the huge amount of information that is elaborated within a safety case, the
textual representation of such a safety case is very unclear and unmanageable by an indi-
vidual person. Therefore, a better approach for managing the argumentation in a compact
way is needed. For this reason, the “Goals Structuring Notation (GSN)” has been intro-
duced. It is a powerful graphical notation language which contains a set of predefined
graphical elements that can be used for conducting safety argument in a clear and man-
ageable way. Today, the GSN is already recognized as a certain standard [19] and widely
used in different industries. This section gives a short overview of the GSN standard and
associated elements.

According to the work in [20], the goal structuring notation is widely embedded in the
industry for creating safety cases. According to the simple graphical elements and their
correlation, it is possible to define a safety argumentation less complex and better and
easier to understand. The standard provides a set of core elements and modules. The
elements are depicted in Figure 2.6 and their associated relations are illustrated in Figure
2.7. An example of a goal structure is given in 2.8.

Figure 2.6.: GSN core elements defined in the GSN standard (Source: [4])

2. Related Work and Context 14

Figure 2.7.: GSN relations for connecting the GSN elements (Source: [4])

Figure 2.8.: An example of a goal structure (Source: [5])

2. Related Work and Context 15

2.1.3. ISO26262 Structure

The functional safety standard consists of ten parts which will be taken into consideration
beneath. Whereas Part 1 through 9 are normative parts, Part 10 is only an informative
part and can be used like a guidebook.

Part 1: Vocabulary

Part 1 [1] of the standard defines the important terms and definitions of functional safety.
These terms and definitions are valid within all different parts of the standard and are
very important because terms usually have different meanings in different standards.

Part 2: Management of functional safety

Part 2 [2] covers the process for the management part of the functional safety standard.
On the one hand, this part defines process-related requirements, which involves the organ-
ization part, and one the other hand, it defines product-related requirements which are
related to the execution of safety activities of the safety lifecycle (2.3).

This safety lifecycle starts with the safety management, covers the concept phase, de-
velopment phases in system, hardware and software level and concludes with the release of
the production phase. Furthermore, this part describes the necessary requirements to set
up a safety culture for developing safety-critical systems according to “Automotive Safety
Integrity Levels (ASIL)” and to develop a system that is sufficiently safe. Therefore, the
objective of this part is to achieve functional safety throughout the organization and the
entire product lifecycle.

Part 3: Concept phase

The third part [6] of the standard deals with the concept phase of ISO26262 and starts
with the item definition. The item definition is the first task of the safety lifecycle which
will be defined in Part 2, and the objective is to define and describe the item as well as the
interfaces to other items or the environment. Therefore, a set of non-functional require-
ments which describe the item with its dependencies and interfaces and the boundary of
the item, shall be the output of the item definition. It is important to entirely understand
the item in order to perform the subsequent tasks. One important thing to mention is
that this part only considers the functional aspect of the system.

The next step after the item definition is the hazard analysis and risk assessment
(HARA). In this task, all possible malfunctions will be determined and the according
hazards will be defined. In a further step, these hazards will be combined with opera-
tional situations (e.g city driving - rolling towards a red traffic light with a pedestrian
crossing). Operational situations include the driving situation, environmental conditions
and involved parties. Combining hazards with different situations results in the creation
of hazardous events. After the definition of all possible hazardous events, they can be
categorized according to severity (0-3), exposure (0-4) and controllability (0-3). With this
safety categorization, it is possible to determine the ASIL from the ASIL table displayed
in Figure 2.9.

2. Related Work and Context 16

After the determination of the ASIL, safety goals shall be derived for hazardous events
with an ASIL A, ASIL B, ASIL C or ASIL D. A safety goal is a top-level requirement that
must be achieved in order to avoid unreasonable risk. If the result contains a high number
of safety goals, similar safety goals have to be combined as one safety goal. Additionally,
more than one hazardous event can be linked to a safety goal and one safety goal can be
linked to several hazardous events. If several hazardous events are linked to a safety goal,
the safety goal always inherits the highest ASIL of all linked hazardous events.

Figure 2.9.: ISO26262-defined ASIL classification table corresponding to [6]

When the safety goals are determined, the next task, the “Functional Safety Concept
(FSC),” can be performed. This task contains the derivation of functional requirements
for each safety goal and the allocation to the respective components or elements. The
process of the aforementioned task is illustrated in Figure 2.10. The functional safety
requirements contain the safety measures which shall be implemented for preventing safety
goal violations.

Figure 2.10.: Overview of the Functional Safety Concept process corresponding to [6]

2. Related Work and Context 17

Part 4: Product development at the system level

The next part of ISO26262 is the product development at system level. This part, Part 4
[21], contains the following activities:

• identifiying requirements for the initiation of product development at system level

• specification of the technical safety requirements

• creation of the technical safety concept

• system design with Hardware-Software-Interface (HSI) integration

• item integration and testing

• functional safety assessment

• product release

At the beginning of this part, the different safety activities of the safety plan shall
be identified and planned according to the provided safety lifecycle. Additionally, the
validation and integration plan shall be added to the defined safety plan. Hence, the next
step is to derive technical safety requirements from the functional safety requirements.
These technical safety requirements contain for example information about how a safe
sate can be achieved during the occurrence of a fault or how such a fault can be detected
and mitigated inside a specific system. The set of these technical safety requirements is
contained in the “Technical Safety Concept (TSC).”

After the creation of the TSC, the system architecture shall be designed and the ac-
cording technical safety requirements shall be allocated to these hardware and software
systems. For further development, the “Hardware-Software-Interface (HSI)” is created in
order to specify the interaction between the different hardware and software components.
After the product development of the hardware and software level, the item can be integ-
rated into the system and shall be validated in order to show that the safety goals from
the hazard analysis and risk assessment have been fulfilled. The product development
on hardware level and product development on software level will further be described
in Part 5 (2.1.3) and Part 6 (2.1.3) of ISO26262. The functional safety assessment is an
additional task to perform the check whether the system is free from unreasonable risk.
The final task after the functional safety assessment is the product release and further
decommissioning.

Part 5: Product development at the hardware level

The main focus in this part [22] is on the hardware level. Therefore, hardware safety
requirements shall be identified and the according hardware architecture shall be designed.
Different methods for the verification of the hardware system with the according ASIL
levels are listed within this standard part. For the verification process, different metrics
for the evaluation of the hardware architecture are provided in order to show that a specific
ASIL can be achieved. These metrics contain the single-point fault metric, latent fault
metric, the diagnostic coverage and some others. As, they are very technical metrics, they

2. Related Work and Context 18

will not further be covered in this thesis. More information on these metrics can be found
in Part 5 section 8.4 ([22]) of ISO26262. The other chapters of this Part 5 contain the
integration of the hardware system and the according validation and verification.

Part 6: Product development at the software level

Part 6 [23] describes the software level of the product lifecycle. Similar to Part 5, the
software safety requirements will be specified and the according software architecture will
be designed. Just like the hardware safety requirements, the software safety requirements
will be derived from the technical safety requirements. The remaining sections of this part
covers the software implementation, provides information about the different software unit
testing methods and describes the integration of the software components into the system
with the associated software verification.

Part 7: Production and operation

Part 7 [24] covers the production task for safety-critical items that shall be integrated into
road vehicles. Furthermore, it also covers the operation, the service, which contains the
maintenance and repair work, and at last the decommissioning. First, the safety plan shall
be adapted with the according production plan that contains the related safety activities
for this part. A further goal is to achieve functional safety during the entire process as
mentioned above.

Part 8: Supporting processes

The supporting processes part [12] of ISO26262 contains the process description for the
interfaces between customer and suppliers. A workproduct of the first safety activity
is for example the development interface agreement which is further described in 2.1.2.
This safety activity defines the different task responsibilities and processes between the
customer and the supplier during the development process.

The objective of the safety management activities is to create consistency and efficiency
throughout the entire safety lifecycle defined by ISO26262. Therefore, Part 8 defines
the management of safety requirements as a process of managing requirements, obtaining
agreements on these requirements, obtaining commitments from those implementing these
requirements and maintaining traceability.

Furthermore, this part contains processes for the configuration and change management.
Therefore it deals with the question how to ensure workproducts and with the changes
of the safety-related workproducts throughout the entire safety-lifecycle. Moreover, the
standard part contains the process description for the verification and the documentation
and the process description for tool qualification in order to gain people’s confidence in
the usage of such tools.

2. Related Work and Context 19

Part 9: Automotive Safety Integrity Level (ASIL)-oriented and safety-oriented
analyses

The goal of Part 9 [7] is to reduce the derived ASIL by the usage of ASIL decomposition
and therefore by integrating redundancy into the system. This part further contains
requirements and rules for this decomposition process with the according descriptions and
methods. The ASIL decomposition process is illustrated in Figure 2.11. Additionally,
Part 9 also covers the different safety analyses methods in order to detect and investigate
possible faults/failures.

Figure 2.11.: The different rules for the ASIL decomposition (Source: [7])

Part 10: Guideline on ISO 26262

The last part [17] of the standard is an informative part and not a normative part. It covers
some examples according to the standard and shows further instructions. Therefore, this
part can be used as a guidebook for usage of ISO26262-related processes. Moreover, it
covers the relation between ISO26262 and IEC61508 and provides information about safety
management and safety case generation. The organization and interaction between the
different parts is illustrated in Figure 2.2.

2. Related Work and Context 20

2.2. Related Work

In the following section, approaches for integrating and establishing effective safety man-
agement within the organization and possibilities of how to argument these processes in
a structured and acceptable way will be reviewed. The first subsection shows attempts
for implementing safety management throughout the entire safety lifecycle defined by
ISO26262. Additionally, frameworks for these implementations will be depicted. The
second subsection gives an overview of approaches which will be part of a process-based
safety case generation.

2.2.1. Safety Management

The work analyzed in [13] explains that the ISO26262 standard provides a shift from a
“Quality Management System (QMS)” to a new safety-oriented working culture. QMS
describes production control-oriented development processes which only address if the
product is right. Whereas QMS focuses more on the right product, the ISO26262 process
focuses on developing the right product. For this shift, ISO26262 determines develop-
ment process requirements that shall support the implementation of an effective safety
management throughout the different departments within the company.

In order to accomplish this shift, the defined work mentions four barriers for implement-
ing ISO26262. The first one is that business decisions are based on costs, which means
that on the one hand, companies shall save costs, and on the other hand, they shall main-
tain the same product quality during the development cycle. Therefore, by implementing
functional safety, the management will be disputed, because safety management brings a
lot of benefits but needs more money and time for its implementation.

Moreover, a badly established safety culture takes a lot of time and leads to a high
number of failures during the development lifecycle. To deal with this problem, ISO26262
provides workproducts that can be classified according to (1) project-dependent and (2)
process-dependent workproducts. To overcome this first barrier, these workproducts must
be implemented effectively and must be understood by all developers.

The next issue is that in a normal working culture the end product can be retrieved
without defining any requirements. That means that QMS does not cover the left side of
the V-model, which describes the requirement definitions. The V-Model can simply be
described as a product assurance plan that provides a guideline for the product develop-
ment lifecycle. Furthermore, ISO26262 defines coordinated workproducts which are linked
in a consecutive way. The result of a workproduct serves in most cases as an input for the
next workproduct.

The third problem is the gap between qualitative and quantitative product reliabil-
ity assessment. Whereas QMS can only improve the quality of a product by conducting
a qualitative FMEA (Failure Mode and Effects Analysis), ISO26262 has also defined a
quantitative FMEA method for the evaluation of the different FIT (Failure in Time) rates
of the components. These FIT rates are part of the safety metrics which are defined in
Part 5 [22] of the standard.

The last issue is to establish and manage the safety confirmation measures. ISO26262
introduces a new role named safety manager which is responsible for planning, delegating

2. Related Work and Context 21

and tailoring different safety activities, creating and monitoring the safety plan, maintain-
ing the safety lifecycle, verifying the safety assessment plan and writing the safety case for
the process and product confirmation.

The goal of the automotive industry is to overcome these obstacles and to shift the
development process from a qualitative way to a quantitative working culture. While
ISO26262 has already taken the first three steps, it does not define the way how distributed
developers shall work together. This means that there is a gap between the different
developers and their particular working culture.

At last, the paper proposes “Safety Management Review” network for ISO26262. This
network already exists in the aerospace and aviation industry and shall (1) close the gap
between different departments, (2) shall find safety anomalies early in the product lifecycle
and (3) shall establish an effective safety management based on field data.

[25] presents an enhancement of the CESAR safety framework [26] for supporting the
different phases during the development of customer projects according to ISO26262 and
a new methodology for the documentation of this development process. The different
phases are (1) definition, (2) management, (3) monitoring and (4) the validation of the
project according to the development process described by the standard. One of the main
problems during the development of automotive embedded systems is that this process is
mostly distributed over different organizations. Although ISO26262 provides a detailed
development process and supports these different methods, it is a challenge, because us-
ing these methods creates up to 100 workproducts that have to comply with over 1,000
requirements in order to fit the standard.

Additionally, the paper describes three different challenges for the management of func-
tional safety according to ISO26262. The first challenge is the planning of the different
safety activities during the project planning which shall be conducted in parallel to the
project plan. Identifying and well-considered planning of all safety activities establishes a
good working culture amongst different organizations and groups. The planned activities
result in the safety plan.

The second challenge concerns the provision of guidance of safety experts throughout the
project development phase. Efficient exchange of information is necessary for retrieving
all relevant requirements for defining the activities.

The last challenge is providing confirmation of the processed safety activities according
to ISO26262. An important step in this challenge is the mapping between the work-
products defined by ISO26262 and the company specific deliverables. At the end, an
evidence for each implemented requirement shall be provided.

In addition, the work presents a tool enhancement for Microsoft Office Excel. This
enhancement contains the development interface agreement (DIA), the safety plan and
the allocation of recommendations for one or more workproducts. DIA is the first doc-
ument created during project planning and contains all tailored safety activities and the
according responsibilities of the customer and the suppliers. A detailed planning of each
safety activity is included in the safety plan. The allocation of the recommendations com-
bine the requirements with the different workproducts and provide information about the
creation of these specific workproducts. As depicted in the work above the recommenda-
tions can be “Input”, “Output”, “Refined” or “Link”. With this information, the developer
gains an overview of the methods that shall be used. Additionally, this information can

2. Related Work and Context 22

be used as a checklist for the correct execution of the safety activities defined by ISO26262.

In [27], an approach for integrating a graphical approach for functional safety manage-
ment (FSM) is given. Although the work describes a different standard than ISO26262,
namely IEC61511 [28], which is the functional safety standard for safety instrumented
systems for the process industry sector, the safety management approach is very similar
to the ISO26262 approach. Both standards inherit from IEC61508, the main standard for
functional safety over all different domains. IEC61511 also contains a safety lifecycle that
covers workproducts and requirements.

The authors explain the usage of a graphical tool that can be used right from the be-
ginning of a project in order to gain benefits like multi level access, automatic report
generation and remote review and control. The integration of functional safety manage-
ment into a company is a very time-consuming and challenging task. If it is not integrated
into the overall process landscape, which is very costly, the company faces just additional
costs but no benefits. As a matter of fact, the paper points out that three of the top five
main oil and gas companies do not have a functional safety management strategy.

First, the authors describe an approach with which an organization chart shall be created
within the proposed tool in order to have a general overview of all involved employees and
their skills and roles. This can be done by simple dragging and dropping boxes from the
toolbox into the graphical view. In addition, it is possible to add some resources, like files,
pictures and other artifacts. Furthermore, the authors also mention that a software tool
shall be very intuitive in order to have the focus on the definition and creation process of
functional safety management.

The used tool allows the definition of standard-specific and company-specific activit-
ies and the linkage of those artifacts. By using the approach of combining boxes that
represent safety activities, a safety plan and a verification plan can be created. For this
verification, the tool provides bullet points which are connected to defined reviewers and
can automatically be reported by the tool. This integrated notification mechanism shall
ensure a fault-free execution of the different process-specific tasks. As every person has
access to the tool, they always get to know the current state and gain an overview of the
project status.

Although the tool shows a lot of drawbacks, like the not user-friendly graphical user
interface and the poor visualization of the boxes and connections, it is a way towards an
electronic and collaborative way of working and provides more benefits than the usage of
natural based paper environments. The conclusion of the authors is that the usage of such
a graphical tool is an innovative way for collaborative safety management and saves time
and extra costs.

A modeling approach for the definition and formalization of development process is
depicted in [14]. The authors of the proposed work describe a process modeling approach
which is based on SPEM (Software and Systems Process Engineering Meta-model) that is
created by OMG [29]. For the appliance of the SPEM approach, an Eclipse-based library
named EPF (Eclipse Process Framework Composer) is used. This library is grounded on
the CESAR [26] project and provides a modeling framework for the planning and definition
of workproducts, roles and tasks defined by ISO26262.

The work in [27] additionally highlights that the workproducts are strongly coupled.

2. Related Work and Context 23

This input/output relation can be modeled within the provided library. The users get
always a consistent and complete overview of the project and the associated workproducts.
The proposed library has a powerful plugin mechanism where new plugins can be integrated
easily.

The authors have already developed plugins for the different method and task configur-
ations. Hence, it is possible to integrate only the needed plugins according to the project
type. If the project focuses on a hardware system, only the necessary plugins may be
included. Thereby, all needed task and process elements will automatically be integrated
into the project. In the aforementioned example, the software plugin can now be excluded.

Moreover, the work describes an associated methodology that contains a tailoring ap-
proach for the different tasks. The authors describe the term tailoring as an adaption
of the development process to the project-specific process. The plugin mechanism men-
tioned above can be used as first tailoring process during the project set up. The tool
already includes ASIL packages that contain the associated methods and the linked re-
commendations. Finally, the library contains a view mechanism that allows a graphical
representation of the workflows and all available methods. The contribution of the work
is on the one hand the modeling approach for the tasks, roles and workproducts and on
the other hand the detailed description of the workflows and integrated safety activities.

In contrast to the works in [13], [25], [27] and [14], the work described in this thesis focuses
on the development of a collaborative software tool that provides support for establishing
consistent and complete safety management throughout the entire safety lifecycle by al-
lowing users to create and store different standards within a software tool. Furthermore, it
is possible to create projects from standards that inherits the associated standard lifecycle
and store the data in a provided database. The inherited standard safety lifecycle contains
the safety activities, workproducts, methods and requirements.

2.2.2. Process-based Safety Case

Within this section, papers about processed-based safety case generation according to
ISO26262 are presented. In general two different safety cases can be distinguished. The
first one is the process-based approach and the second one is the product-based safety
case approach. In this thesis, the focus is only on the process-based safety case genera-
tion, which is why some existing approaches will be described.

The author in [30] focuses on a process-based argument safety case and on the question of
how to generate such process-based arguments directly from process structures. A process-
based argument verifies that a process has been applied correctly to fit the standard.
The second major contribution is that the work concentrates on a reuse approach of such
process-based arguments in order to compile the information in an understandable manner.

The work presents a model-driven method where process-based arguments can (semi-
automatically) be derived from process models. Hence, this approach minimizes the work
and thus saves time. Additionally, for modeling static processes the authors use the
language SPEM. They also use a model-driven approach and a goal structuring notation
(GSN). A safety case as described in this work consists of two main parts.

The first one is the process part that describes the safety lifecycle and the associated

2. Related Work and Context 24

workproducts. The product part describes the safety mechanisms implemented in the
product.

The second one is the product part which describes the product development according
to a derived ASIL level. Both parts shall be developed at the same time because they
have interferences. Basically, the system is only safe if the process and the product are
appropriate.

In ISO26262, the process-based arguments shall be provided within the functional safety
audit. The provided approach for model-driven safety certification starts with the process
modeling. After the definition of the process, the process-based arguments are generated
with an transformation engine according to the standard. Now, this generated process-
based argument will be checked by an expert, and if there remain problems, a new iteration
will be started. The work also points out that human knowledge of safety argumentation
is always needed. The framework shall only provide support for the creation and formal-
ization of the arguments and cannot conduct the thing autonomously.

Within the approach, the author convert the process artifacts like the tasks, roles and
workproducts into a subset of goal structuring elements that can be linked to each other.
The author additionally provides a model-driven solution for semi-automated process-
based safety argumentation according to a defined set of rules and the appropriate trans-
formation engine.

In [31], an overview of functional safety compliance and assurance with safety cases
is presented. Within the functional safety standard of the automotive industry, there is
an explicit requirement (6.4.6.2) defined in Part 2, “Management of functional safety” for
creating a safety case.

A safety case is a way to show that all workproducts and associated requirements
have been fulfilled by linking requirements and evidences with so-called safety arguments.
Whereas ISO26262 provides no requirements for the way how to conduct a safety case, it
provides only further explanations and recommendations in the informative Part 10 of the
standard. This was further described in Section 2.1.2.

A product-based safety case is required for an item which has a safety goal with an
assigned ASIL (Automotive Safety Integrity Level) higher than ASIL A. As mentioned
above, the requirement 6.4.6.2 of ISO26262 is basically a requirement for the process-
based safety case that shall ensure that all processes are performed and fulfilled correctly.

The main elements of such a safety case are requirement, evidence, argument and as-
sociated context. The requirement defines the needed safety functionality and objectives
to ensure safety. The second main element provides information from studies or different
analyses. To be compliant with the requirements, the argument addresses the underlying
evidences, and the last element provides information on the argument basis. For con-
ducting a safety case in the automotive industry, the work presents an approach with
the goal structuring notation language. It is a graphical notation language for presenting
safety arguments. More information on the goal structuring notation can be found in
2.1.2. Within the goal structuring notation, several basic elements exist that contain the
aforementioned main elements. The basic elements of the goal structuring notation can
be linked by two different relations. The first one is the “supported by” relation and the
second one is the “in context of” relation. Both relations were shown in Figure 2.7. More
detailed information can be found in the standard [32].

Furthermore, the paper uses this graphical approach in an architectural framework that

2. Related Work and Context 25

provides a safety case for an automotive product. In this framework, product-based and
process-based safety cases are closely coupled together. For the product argument, an
evidence is needed and because also the evidence must be trusted, a process argument is
needed as well in order to provide a trustworthy evidence.

As an example, the paper illustrates the scope of a safety management argument which
contains the workproducts (1) safety plan, (2) project plan, (3) safety case and (4) con-
firmation measures. Therefore, these workproducts are process-related and not directly
related to the product safety.

Within this thesis, the developed tool provides a mechanism where the entire safety li-
fecycle can be defined and maintained within the tool. Therefore, the relations between
the different artifacts are defined and stored using the tool. The tool allows the basic
generation of a process-based safety case. In this approach, the safety case contains the
different arguments and shows the traceability of these elements. The result is a clear
overview which shows which of the required safety workproducts are already available and
which are not.

2.3. Existing Functional Safety Management Tools

There are already tools available which enable performing safety management and all
modules needed by ISO26262. In the following, two of those tools will be listed and
described in short.

2.3.1. ENCO Safety Office

The ENCO Safety Office2 tool is one of the already existing safety management tools. It
is a collaborative safety tool that provides a lot of different technologies for different sys-
tem analyses (FMEA, FTA), requirements engineering, safety plan generation and review
handling. All provided features can also be used as a standalone tool and are therefore
independent. They provide interfaces for a popular requirements management system,
namely the PTC Integrity tool3. Regarding safety management, they offer the creation of
a safety plan with associated milestones. Furthermore, they provide interfaces for different
external task management tools. A report generator is also integrated into the tool.

2http://www.enco-software.com/
3http://de.ptc.com/product/integrity

http://www.enco-software.com/
http://de.ptc.com/product/integrity

2. Related Work and Context 26

2.3.2. Vector PREEVisison

One of the existing major tools for safety management and ISO26262-related issues is
the Vector PREEVisison4 tool. This tool provides support for requirements engineering,
designing of architectures, integration of software development processes and many other
safety-related workflows. The Vector company has integrated all major key workproducts
that are required by ISO26262. The key workproducts are listed beneath.

1. Item Definition

2. Hazard Analysis and Risk Assessment

3. Functional Safety Concept

4. Technical Safety Concept

5. Hardware-Software Interface

6. Qualitative and Quantitative Safety Analysis

7. Verification and Validation

8. Safety Case

All these different areas are integrated into the tool. The tool has additional interfaces
to a lot of external tools, like Microsoft Office Excel. Because the company does not
provide an evaluation license, the tool could not be evaluated. Vector only provides trial
licenses which are quite costly. Therefore, only a short overview and no evaluation of this
tool is available.

4http://vector.com/vi_preevision_de.html

http://vector.com/vi_preevision_de.html

3. Design of the Functional Safety
Management Tool

This chapter provides a detailed overview of the defined tool requirements and the con-
ceptual formulation of the newly developed safety management tool. The goal of this
tool is to offer a simple and powerful graphical user interface for creating and maintain-
ing standards and projects with their associated safety lifecycles at the AVL1 company.
Therefore, the tool shall support consistency and completeness in spite of the huge number
of different artifacts provided within a specific lifecycle. Furthermore, it shall be possible
to extract these artifacts by an available report generator (3.4.3). In addition, a database
for storing the different artifacts shall be introduced. At the beginning of this chapter, the
main requirements and the overview of the defined tasks for completing this thesis will be
listed and explained. The subsequent sections will give an overview of the commonly used
technical concepts. Furthermore, the tool-specific features and integrated concepts will be
demonstrated in detail. Finally, the chapter concludes by showing the tool and software
architecture of the collaborative safety management tool and the consisting libraries. The
work in [33] describes the detailed software architecture of the developed functional safety
management tool.

3.1. Requirements

In cooperation with the AVL List GmbH, a set of main requirements are prepared during
the tool design phase. These main requirements define the features and concept that shall
be integrated into the newly developed tool. For a better overview of these requirements,
in this thesis, they will be subdivided into user requirements, database requirements and
further tool-specific requirements. Figure 3.1 shows this partition.

The user requirements define the features that shall be implemented for the tool us-
age. Database requirements inherit from these defined user requirements and define a set
of database-specific requirements and the associated database architecture. This data-
base architecture represents the meta-model of the developed tool environment. Further
requirements that are needed for the concept of the tool architecture are grouped as tool-
specific requirements.

The goal of this tool is to integrate a newly developed safety management tool archi-
tecture into the AVL infrastructure for supporting safety engineers and safety managers
with consistence and complete workflows during their daily work. Additionally, a semi-
automatic generation of reports shall support engineers by avoiding the manual creation of
specific release documents. Creating release documents is always a very time-consuming

1www.avl.com

27

3. Design of the Functional Safety Management Tool 28

and laborious task by bringing the data from different sources together. All further tool
objectives were listed above in Section 1.3.

Figure 3.1.: The different requirement sets of the Functional Safety Management Tool
concept

The created company specific user requirements document by AVL can be found in Ap-
pendix A.1.

3.1.1. User Requirements

• RQ: A simple login mechanism shall be provided.

• RQ: The tool shall provide a simple user management. For the tool usage and the
appropriate features, the following three different roles shall be defined.

1. Global Admin - Is responsible for creating and maintaining the generic artifacts
and for attaching access rights to new users.

2. Project Admin - Is responsible for creating and maintaining projects and can
delegate the different tasks to users.

3. Regular User - Is able to open/change projects depending on their access priv-
ileges (read, write).

• RQ: The tool shall allow to describe and maintain the safety lifecycle defined by
specific standards. The safety lifecycle can be defined by the following structure:

1. Cluster (e.g. Part 2: Management of functional safety) - Group of Activities in
order to create a simpler structure

2. Activity (e.g. Overall Safety Management) - Group of mate Tasks

3. Design of the Functional Safety Management Tool 29

3. Task (e.g. Establish Safety Culture) - A basic unit that can be performed within
a process

• RQ: The tool shall allow the creation and storage of different standards with their
associated generic artifacts. Only the global admin shall be able to maintain the
generic standard part and the associated artifacts. All artifacts of a standard are
listed beneath:

1. Methods

2. Safety Lifecycle (Clusters, Activities, Tasks)

3. Workproducts

4. Requirement

• RQ: The tool shall allow the creation and storage of different projects. Each project is
based on a defined standard and inherits the standard specific lifecycle. Furthermore,
a project is described by the following artifacts.

1. Project-specific tasks

2. Deliverables

3. Project milestones

4. Project-specific roles

5. Project methods

6. Reviews

• RQ: Additionally, it shall be possible to create and maintain different sub-projects
of projects. Sub-projects can have the same artifacts as main projects, which is why
redundant information shall be avoided.

• RQ: A project branching mechanism shall be integrated into the tool environment.
Branching a project means the creation of a new project based on an existing one.
More information regarding branching will be shown in 3.3.2.

• RQ: It shall be possible to create project baselines. Baselines can be created at any
time and store the current state of a project in the database. Furthermore, in the
future, it shall be possible to open baselines and compare them with other baselines
or with the current project version. An overview of the term baselining can be found
in 3.3.2.

• RQ: The tool shall provide a report generator (3.4.3) that allows the semi-automated
generation of the following documents:

– Development Interface Agreement (DIA)

– Process-based Safety Case

Additionally, the report generator shall allow opening existing template documents.
It shall be possible to create particular templates with project-specific static content
and it shall furthermore be possible to extend these templates with project-specific
data. The templates shall be stored on the server and can be selected within the
client-side report generator.

3. Design of the Functional Safety Management Tool 30

• RQ: The tool architecture shall be based on a collaborative client-server architecture.
Therefore, the tool shall allow multi-users to concurrently work on same projects.
The design of this feature will further be illustrated in Section 3.3.1 and 3.3.1.

• RQ: For storing artifacts, the tool architecture shall comprise a database manage-
ment system. The created database architecture will be described in 3.5.2 and the
associated database requirements will be listed in 3.1.2.

• RQ: The tool shall provide wizards for the creation of new standards and projects.

3.1.2. Database Requirements

• RQ: The database shall be an open source database. Therefore, the evaluation
according to the defined requirements concludes with the usage of the MySQL (3.2.3)
database.

• RQ: The database shall be a relational database where data can be selected, inserted,
updated and deleted.

• RQ: The database shall be able to audit changes. For each table in the database
schema, an audit table shall be generated in order to track these changes with an
associated revision and time stamp.

• RQ: The database shall be able to create users and delegate rights.

• RQ: For creating database backups, it shall be possible to automatically create data-
base dumps every night. Furthermore, the database shall allow the import of data
for updating an existing database schema.

• RQ: The database shall be multi-user applicable. It shall be possible that more users
can concurrently read data from tables while only one user writes on a database table.

• RQ: For the interaction between the tool and the database, an “Object Relational
Mapping (ORM)” (3.2.5) shall be used. Therefore, the database shall provide a
library that can be integrated into the ORM and furthermore, the ORM shall provide
a library that supports the selected database.

• RQ: It shall be possible to integrate the database into the company existing IT
infrastructure.

• RQ: The database shall provide an easy handling and a good support.

• RQ: The database shall consume low memory and shall be high-available and easily
scalable.

3.1.3. Tool-specific Requirements

• RQ: The tool shall provide a notification mechanism. If one user changes a project,
then all other users working on the same project shall be notified. Therefore, a
broadcasting (3.3.1) concept shall be integrated into the tool environment.

3. Design of the Functional Safety Management Tool 31

• RQ: Wizards shall be created in order to support users during the creation of new
projects, either from a standard defined template project or from any other existing
project.

• RQ: A locking mechanism shall be integrated into the tool. This locking mechanism
shall be supported by the ORM and shall allow the concurrent work on the same
projects.

• RQ: The report generator shall allow the sending and fetching of templates from and
to the server. Only the global admin is able to store a template on the server while
all other users are able to fetch these templates. Nevertheless every user can fetch a
template from the server and can create his own.

• RQ: The tool login mechanism shall be combined with the AVL LDAP “Lightweight
Directory Access Protocol” server for user authenticating. Therefore, no password
storage is needed in the provided tool database.

• RQ: It shall be possible to reuse text modules in the tool. Therefore, an automatic
recommendation mechanism shall be integrated which allows an auto-completion of
text inputs.

• RQ: A test-framework shall be integrated into the tool environment.

• RQ: The client-server architecture (3.3.1) shall contain two different WCF“Windows
Communication Foundation” 3.2.2 services. The first one shall be responsible for the
authentication and authorization and the second one shall be responsible for the
data exchange between the client and the server.

The above listed requirements are only the overall main requirements of the newly de-
veloped tool and will further be processed in the following sections.

3.1.4. Conceptual Formulation

The goal of this thesis is to provide a proof of concept tool for safety management and
safety case generation. Therefore, a new tool environment will be designed and integrated
into the AVL IT infrastructure. This new tool shall allow the creation and maintenance
of process-based artifacts and shall ensure consistency and completeness of the existing
artifacts. Furthermore, it shall provide a robust framework for planning and performing
an effective and efficient safety management despite the huge number of information. With
an integrated database architecture, the tool shall avoid redundant information by storing
artifacts in a clear and well-defined way. Therefore, the database shall provide the meta-
model for the safety management tool. With an automatic data tracking, all changes
during the lifecycle of a project will be stored in the database and can be retrieved in the
future. At least, by providing a report generator, the tool environment shall be able to
directly export reports from the tool.

3. Design of the Functional Safety Management Tool 32

3.2. Common Technical Concepts

This section gives a short overview of the commonly used technical techniques and their
appropriate concepts. These techniques are used in order to develop a tool architecture
that allows a client-server based communication, the storage of artifacts in a database and
the graphical representation of these artifacts.

3.2.1. WPF – Windows Presentation Foundation

For the graphical user interface, the WPF2 library is used. This library is part of the
Microsoft Visual Studio tool and allows the modern development of business desktop
applications. There are two main reasons [8] why this library is used instead of the default
“Windows Forms3” library.

The first reason is that WPF strictly distinguishes the creation of the user interface layer
and the associated source code layer. Therefore, it is possible that a specific graphical
designer can create the graphical user interface with a different program and without any
knowledge of a programming language. The graphical user interface can be created with
an editor that allows the extraction of an XAML (3.2.1) file which is based on XML4

(Extensible Markup Language).
The second reason is that there the is possibility to bind data between the graphical

interface and the source code. Within an XAML file it is possible to define variables in
tags that will automatically be bound to a variable in the source code. Therefore, it is not
necessary to test the graphical elements in WPF and a better software architecture can
also be created. More advantages of [8] will be listed beneath.

• Description of graphical elements is clearly arranged and compact

• Graphical elements are independent and can be integrated into all other elements
(e.g. a button can contain another button)

• Styles can be defined for all elements

• WPF allows the usage of triggers. With triggers it is possible that graphical elements
react on events and change therefore any properties

• It is possible to draw 2D and 3D graphics with the WPF library

• Animation, audio and video elements can be integrated into the view

• Provides powerful library for document editing

As mentioned before, WPF is based on an XML file that connects the graphical elements
with source code properties. These files are called XAML (Extensible Application Markup
Language) files and will further be described in the next section.

2https://msdn.microsoft.com/de-de/library/aa970268(v=vs.110).aspx
3https://msdn.microsoft.com/de-de/library/dd30h2yb(v=vs.110).aspx
4https://www.w3.org/XML/

https://msdn.microsoft.com/de-de/library/aa970268(v=vs.110).aspx
https://msdn.microsoft.com/de-de/library/dd30h2yb(v=vs.110).aspx
https://www.w3.org/XML/

3. Design of the Functional Safety Management Tool 33

XAML

The graphical design in WPF is based on simple XAML files. This file is similar to a
standard XML file and therefore contains tags with appropriate properties. These tags
represent the object tree of the graphical user interface. On the one hand, XAML can
be used for building desktop applications and on the other hand, it can also be used for
building web applications. Therefore, it is very flexible and can easily be exchanged within
different kinds of applications. As an example, a WPF graphical user interface and the
associated XAML code can be found in Appendix B.

Data Bindings

A further powerful concept in WPF are dependency properties. This feature allows the
linkage between different items without writing additional codes. Will such an item be
changed, all connected items will automatically be updated too. It is a very powerful
feature for element styles and data bindings in the WPF concept. A dependency property
is constructed like an observer pattern and contains a notification mechanism where all
listing items will be notified whether the dependency property recognizes a modification.
If they will be notified, they will automatically update their values.

Data Binding is the mechanism that uses dependency properties for connecting two differ-
ent properties. Figure 3.2 illustrates this connection where the target side and the source
side are connected by a binding path. Furthermore, the connection can also be established
by a dependency property and a normal property.

Figure 3.2.: Overview of a WPF Data Binding (Source: [8])

With this simple mechanism it is possible to create powerful and complex bindings through
the different XAML and source code concepts. It is also possible to bind complex data
types like lists or classes.

3. Design of the Functional Safety Management Tool 34

3.2.2. WCF – Windows Communication Foundation

With WCF it is possible to create service-oriented applications, which means that WCF
can be used for communication purposes between a client and a server. Therefore, WCF
in our tool environment, is the foundation for the communication-based services and the
according data exchange between two different end points. Amongst the important and
powerful features5 of WCF are the following:

• Service Orientation

• Interoperability

• Multiple Message Patterns

• Data Contracts, Security

• Multiple Transports and Encodings

• Transactions

• Extensibility

WCF consists of three key concepts 5 as described in the following:

Address:
Each WCF service provides a “Uniform Resource Identifier (URI)”, which can be

accessed by clients.

Binding:
A Binding defines the different communication parameters for the WCF communication.

Contract:
A Contract provides all methods that can be accessed within a WCF service.

The developed tool environment provides two separate WCF services. The first service is
responsible for the authentication and authorization of a user and the second one provides
all methods that are needed for the data exchange between client and server. Both ser-
vices have their own addresses and different bindings. Whereas the authentication service
is based on a general “Hypertext Transfer Protocol (HTTP)”, the data exchange service
is premised on a “wsdualhttp” binding. This binding creates a duplex HTTP channel that
allows the server to send notification messages back to the client. This feature is necessary
for integrating the broadcasting (3.3.1) mechanism.

The authentication service authenticates a user over the company’s internal LDAP “Light-
weight Directory Access Protocol” server (3.3.1). Therefore, only a user with a valid AVL
account is able to log on to the safety management tool.

5https://msdn.microsoft.com/en-us/library/ms731082(v=vs.110).aspx

https://msdn.microsoft.com/en-us/library/ms731082(v=vs.110).aspx

3. Design of the Functional Safety Management Tool 35

3.2.3. RDBMS – Relational Database Management System

This section provides fundamental information about the applied “Relational Database
Management System (RDBMS)”. One of the main requirements that was established dur-
ing the concept phase of the tool development was that the used database management
system must be an open source database and able to integrate the database into the AVL
infrastructure. Therefore, there were not many RDBMS options available. A very pop-
ular open source database is the MySQL6 database, which is selected for the developed
tool environment. MySQL provides a “Community Edition” which is free for open source
developers. This version contains a graphical user environment for the creation and inter-
action with the database schema, is called “MySQL Workbench” and will be described in
short in 4.1.1.

In our tool environment, a database management system for storing and manipulating
the different artifacts and their relations. Additionally, data changes during data manip-
ulations are stored inside the database. As explained in [34], MySQL has a very simple
service layer but nevertheless provides a lot of very powerful features. Table 3.1 offers
some advantages and disadvantages [34] of the MySQL database architecture. Further-
more, MySQL provides a lot of interfaces to all current existing programming languages,
like C, C++ or C#. The database system is based on a client-server architecture and
allows the definition of different users for accessing different databases in the workbench.

For the tool environment two different databases are created. The first database, named
“fsmtrain”, is the training database of the tool environment and is only used for develop-
ment purposes. The second database is called “fsmprod” and is the productive database
in the tool environment. An example cutout of this database schema will be provided in
Figure 3.12. Both database are created directly out of an “EER (Enhanced Entity Rela-
tionship)” diagram and contain the same database tables. A short overview of the EER
diagram can be found in Appendix C.

Advantages Disadvantages

simple and compact handling

versatile and flexible

less memory consumption

highly available and scalability

open source and good support

a lot of documentation and online tutori-
als

sometimes MySQL has some stability
problems

contains a lot of add-ons and is therefore
confusing for beginners

it has some limitations concerning per-
formance and fault tolerance and some
very profound issues

security drawbacks

Table 3.1.: Advantages and disadvantages of an MySQL database system

6https://www.mysql.de

https://www.mysql.de

3. Design of the Functional Safety Management Tool 36

3.2.4. Infragistics

For improving the creation of a powerful novel application, an external library named
Infragistics7 with the WPF developer toolkit will be integrated. This library contains a
lot of helpful features that already provide filtering, sorting, multi-column trees and many
other enhanced features. In the following, the features which will be integrated into the
safety management tool will be depicted in more detail and in Appendix E, a list of all
existing features is included.

• XamBusyIndicator

Provides visual notification that a control or an item is currently loading or pro-
cessing data. This extension is useful because our application always sends requests
to the server before, the server fetches data from the database and sends back an ap-
propriate response. To make the user attentive that something is happening within
the tool, this feature is very helpful. Furthermore, it can be used to give the users
an overview of the current progress state of a work (e.g. during document export).

• Drag and Drop Framework

This extension offers a powerful drag and drop feature that can be applied to any
existing element (e.g. Images, Controls, etc). Furthermore, it provides channels for
the drag elements (source) and channels for the drop elements (target) which specify
where the elements can be dragged. Therefore, it is really simple to apply different
targets for different source elements. Elements can additionally be animated during
the dragging.

• XamCarouselPanel

The XamCarouselPanel allows the graphical visualization of elements according to
a defined path. With a navigation bar or with the mouse wheel it is then possible to
scroll through these elements defined on the path. In our tool, this feature is used for
providing predefined workflows. The path defines the order of the different workflow
steps and contains buttons with which the different modules can be accessed.

• XamComboEditor

Inside grids, the XamComboEditor can be used for viewing a more powerful drop-
down list. This feature is more flexible than the standard combo editor and addition-
ally provides a multi-select feature or the possibility to add checkboxes to the drop-
down items. The XamComboEditor can also defined templates for the contained
element. These templates determine the visual representation of the drop-down list
and can for example select text with images or any other graphical elements and
colors.

7http://www.infragistics.com/

3. Design of the Functional Safety Management Tool 37

• XamContextMenu

The XamContextMenu provides pop-up menus by clicking on graphical elements.
It allows adding icons to the different context menu items and provides a simple
mechanism where the clicked elements can be retrieved in order to manipulate them.
Additionally, the context menu items can be cascaded into a deeper level of menu
items. It is also possible to define only single elements where the context menu can
be opened.

• XamDataCards

The XamDataCards are a graphical representation of objects like cards. These cards
can show additional properties and are selectable. In our tool, this view is used for
providing an overview of all existing projects. Furthermore, by double-clicking on
such a card, the detailed project overview can be opened.

• XamDialogWindow

For providing pop-up windows, the XamDialogWindow is used. It allows the creation
of modal and non-modal dialogs with additional blur effects. The window can be
minimized, maximized and closed by the users and allows a simple interaction with
the view arranged behind.

• XamDockManager

With this extension, it is possible to manually place the different elements on any
specific part in the view. Furthermore, these elements can be pinned and unpinned
in the view. Therefore, each user can hide and show only the graphical elements
which are needed in order to simplify complex graphical user interfaces.

• XamGrid

All views that contain a table are built up with this extension. It provides a powerful
datagrid with a lot of extensions like filtering, sorting, grouping, merging and many
others. Additionally, every graphical element can be used as column inside this grid.
Another powerful extension is that the grid allows real-time checking and real-time
updating of embedded data.

• XamMultiColumnComboEditor

This is an extension of the aforementioned XamComboEditor and allows drop-down
lists with several columns. In our tool environment, it is used for selecting a specific
standard. Therefore, it is needed to show the standard name and the associated
version in the drop-down list. In principle, the drop-down list is a grid view that can
be built up individually.

3. Design of the Functional Safety Management Tool 38

• XamRichTextEditor

The XamRichTextEditor is used in order to provide users with a feature where
images, tables, hyperlinks and formatted text can be inserted. It is really useful for
description fields inside the developed tool. Furthermore, it offers the possibility to
open and show content from Microsoft Office Word or HTML documents and allows
the export to these formats. An automatic undo-redo functionality and zooming
mechanism is also comprised in this feature.

• XamTreeGrid

With this view, it is possible to show hierarchical data in a tree. In addition to the
general tree, this extension is able to show more than one column within the tree view
and allows the dynamical switching of the tree between the different columns. Within
the developed tool, this feature is used very often, for example for the creation of the
safety lifecycle. By an integrated drag and drop mechanism, the different elements
can be dragged from or to the tree. As within all trees it is also possible to expand
and collapse the child nodes and to filter them.

• XamThemeManager

All aforementioned extensions have the same style that is defined by the XamThe-
meManager. It is a powerful feature that allows the dynamical changing of different
predefined themes. In the tool settings of the newly developed tool, there is the
possibility to individually change the appearance of the tool. Furthermore, it is also
possible to create new themes based on individual taste.

3.2.5. ORM – Object Relational Mapping

An object relational mapping will be introduced in our tool architecture in order to con-
nect the server and the database. Therefore, an ORM allows the linkage between different
systems by simple additional configuration. Because interacting with a database is a very
complex and challenging task, the manual creation of database statements is very time-
consuming and error-prone. By connecting the server logic with the database logic through
an ORM, only a configuration between the system must be created while the library is
responsible for all database interactions. The configuration maps instances of classes dir-
ectly to database tables and vice versa.

In the provided tool environment, “NHibernate8” (3.3.3) will be used as ORM. It is an
open source library that was developed for the .Net framework. NHibernate additionally
provides an extension called NHibernate Envers9 (3.3.3). This extension is also an open
source library and allows the automatic tracking of data changes during the entire project
lifecycle. It is responsible for all insertions, updates and deletes and creates the appropriate
revision entries with the time stamp in additionally created audit tables.

8http://nhibernate.info/
9https://bitbucket.org/RogerKratz/nhibernate.envers

http://nhibernate.info/
https://bitbucket.org/RogerKratz/nhibernate.envers

3. Design of the Functional Safety Management Tool 39

3.3. Tool-specific Concepts and Design

This section provides fundamental information about the design of the different tool-
dependent concepts and their appropriate features. First, the client-server architecture will
be designed which includes the design of the communication services, the multi-user feature
and the broadcasting mechanism. Then, the client concepts branching and baselining will
be defined in detail. Finally, the integration of the object relational mapping library will
be illustrated.

3.3.1. Client-Server Concepts

By providing a client-server architecture as displayed in Figure 3.3, it is possible that more
people can work in a concurrent and collaborative way on the same projects. For designing
such an architecture, some things must be kept in mind. The connection between the client
and the server must be encrypted in order to provide a confidential data exchange. Another
issue, is that a client which will access the server must be authorized and registered on
the server. The server needs this information because if one user changes some artifacts
on a project while another client also works on the same project, the tool shall inform
the other client that something has changed within the project. Therefore, a broadcasting
mechanism as described in 3.3.1, which notifies all registered clients with a defined message
is integrated. For the authentication and authorization of a client, a particular WCF
service is created that handles the user authentication and authorization on the server.
Both concepts will further be described in Section 3.3.1.

Figure 3.3.: This figure shows an example client-server architecture with an integrated
database management system. An arbitrary number of clients can access the
database by the provided service.

3. Design of the Functional Safety Management Tool 40

The client side is developed as a WPF desktop application (3.2.1) and the client-server
connection is based on the WCF (3.2.2) communication. WCF is mostly used for the devel-
opment of distributed systems within service-oriented architectures. The communication
via this service is based on SOAP/XML messages.

On the server side, a database will be integrated into the back-end which is able to
store the different artifacts that are sent from the client. Additionally, the changes will be
tracked on the server by the integrated ORM. The ORM automatically stores the revisions
in the database.

One powerful feature that is included in the tool architecture is the baselining concept
(3.3.2). With baselining it is possible to make a snapshot of the current state of a project.
Furthermore, in the future, it shall be possible to open such baselines and compare them
to other baselines or to the current project state.

Authentication Service

The provided authentication service is responsible for the user authentication and author-
ization. The service has a connection to the company-specific LDAP server. By using
the LDAP authentication of the company, it is not possible to store the password in the
provided database. Therefore, password hashing and password storage in a safe manner
is not needed while integrating these security issues are very costly tasks.

If the user is authenticated, the service automatically checks whether the user exists in the
database and extracts the associated user permission which is stored inside the database.
Only the global admin has the permission to create new users with associated rights in
the database. Therefore, if the user does not exist in the database, the authorization fails
and the application shows an according error message. Otherwise, if the user exists in the
database, the authentication service creates a response that contains an encrypted cookie
with the associated user permission. With this cookie, the user is now able to exchange
data between the client and the server via the data exchange service. The data exchange
services needs a valid cookie in order to allow the user the execution of the called method
on the server.

Data Exchange Service

Whereas the first provided service is only responsible for the authentication and author-
ization, this service is in charge of the data exchange between the client and the server.
Once a user is successfully authenticated and authorized, the user is able to access data
in the database. If the global admin also provides the user with write access, he or she is
additionally able to manipulate data within projects.

The service provides different methods for inserting, updating and deleting data in the
database. An example service method is illustrated in Listing 3.1. This method auto-
matically checks the user permission of the current user with the “PrincipalPermission”
attribute. This attribute will automatically be set by the request which contains the cookie
and therefore the appropriate user permission. If he or she is not allowed to execute the
called method, an exception will be sent back to the user. If he or she is allowed to execute

3. Design of the Functional Safety Management Tool 41

the method, the called method returns the ID of the newly created item.

Inside the called method, a “dataSessionContext” object is created. This context object
is the interface to the integrated ORM and contains the interacting database methods.
Therefore, the service has no knowledge of the database connection. It only provides the
user with a simple interface and the complex business logic lays in the data access layer
which is stored in the background. A second example method for fetching an item with
an existing item ID is depicted in Listing 3.2.

[P r inc ipa lPe rmi s s i on (Secur i tyAct ion . Demand , Right = ”GlobalAdmin ,
ProjectAdmin , WriteUser ”)]

int FSMServiceContracts . IFSMService . SaveItem (Item item)
{

IDataContextManager dataSessContext = dcFactory . CreateNewContext () ;
t ry
{

return dataSessContext . SaveItem (item) ;
}
catch (Exception ex)
{

throw new FaultException<FSMServer . Faul ts . ProcessFault >(
new FSMServer . Faults . ProcessFaul t (”Could not save item !) ;

}
}

Listing 3.1: Overview of the save method provided by the data exchange service

[P r inc ipa lPe rmi s s i on (Secur i tyAct ion . Demand , Right = ”GlobalAdmin ,
ProjectAdmin , WriteUser ”)]

Item FSMServiceContracts . IFSMService . GetItemById (E n t i t i e s ent i ty , int
id)

{
IDataContextManager dataSessContext = dcFactory . CreateNewContext () ;
t ry
{

return dataSessContext . GetItemById (ent i ty , id) ;
}
catch (Exception ex)
{

throw new FaultException<FSMServer . Faul ts . ProcessFault >(
new FSMServer . Faults . ProcessFaul t (”Could not f e t c h item !) ;

}
}

Listing 3.2: Overview of the get item by ID method provided by the data exchange service

3. Design of the Functional Safety Management Tool 42

Multi-User Integration

As mentioned at the beginning of this chapter, the tool shall allow different users to in-
teract with it on the same projects. Because the client application will be distributed
to all users, they can work with the individual applications on the same database and
therefore on the same projects. For integrating this feature, some points however have to
be considered.

For introducing a multi-user approach, the tool has to deal with some concurrency prob-
lems. It may be the case that two users update the same project artifact at the same time.
What happens if the first user updates a field and the second user updates the same field
as well? The first value will, thus, be overridden and the first user has no knowledge of
this update. To avoid such a situation, the tool needs a multi-user approach.

The database interaction in the provided tool architecture is done by the introduced object
relational mapping (3.2.5) library. This library already provides features for avoiding such
situations by introducing specific concurrency controls. The library allows two different
approaches. The first is based on the principle of the quickest wins. In this case, the
user who calls the method first updates the value and the second one gets an exception.
In the second approach, the object relational mapping library locks the current database
table with a specific table entry and no other transaction can access this table during the
update. For this approach, the database schema has to be updated with the necessary
lock flags.

In our tool architecture, the first approach is used because it needs no database updates
and the locking can directly be done in the code. Additionally, because a broadcasting
mechanism is integrated into the tool architecture the error message can be sent back to
the client. Thereby the user is informed that he or she cannot update the artifact because
another user was quicker. This user must now refresh the data and then he or she is
allowed to update the artifact in the database. Therefore, no direct locking of database
tables is necessary.

As mentioned before, for integrating a multi-user feature, a notification mechanism for data
changes is needed. This mechanism is named broadcasting and will further be explained in
3.3.1. Summarized, it can be said that the broadcasting mechanism checks changes within
project artifacts and sends notification messages to all users which are currently logged in.
These users get a message saying that they should refresh their content in order to fetch
the latest changes. Hence, it is important that all users are registered on the server so
that the latter is able to send a message to the clients through the provided duplex HTTP
channel.

3. Design of the Functional Safety Management Tool 43

Broadcasting

Because the tool environment allows several users to work on the same projects, a broad-
casting mechanism is needed. This feature notifies all users whether some changes have
occurred in the database. If two users work on the same project and one user updates a
field in the database, the broadcasting mechanism automatically sends a message to the
other registered users. With this feature, the tool shall guarantee that the users always
work on the newest data and therefore, the problem of interferences between user changes
shall be avoided.

Currently, only a simple version of broadcasting is implemented where all registered users
are informed that they should refresh their data. In the future, this feature shall be further
improved so that only the persons who work on the same projects receive the message. To
illustrate the feature, Figure 3.4 shows the integrated broadcasting architecture. There are
three different clients registered (black dotted arrow) on the server. Client one sends an
update request (green arrow) to the server and the ORM changes the specified table entry
in the database. If the update was executed successfully, all other clients will automatically
be notified by the server (red arrow). For each notified client, a message will pop up saying
that he or she shall refresh the values because another client has changed something in
the database.

Figure 3.4.: Example broadcasting architecture with three associated clients

3. Design of the Functional Safety Management Tool 44

3.3.2. Client Concepts

This section explains the design of the client specific features. These features contain a
report generator that allows the automatic generation of reports directly from the tool
and furthermore the baselining and branching feature.

Report Generator

A report generator shall be integrated into the tool architecture. This report generator
shall be able to fetch templates which are stored on the server. Additionally, a global admin
is able to send a template from the client to the server in order to add new templates and
hence, for each project, a particular template can be created by a user. The user needs to
send the template to the global admin, and once he or she confirms the template, he or
she is able to upload it.

Furthermore, it shall be possible to attach project-specific data to these templates. A
template shall contain a cover sheet and some project-specific static contents like the
introduction or the abbreviations. The report generator shall be able to add project-
specific data from the tool to these templates in order to create a preliminary release
document.

Baselining

The term baselining is defined as a snapshot of the current state of a project at an point
of time. Therefore, with the baselining feature, it shall be possible to save an arbitrary
project state in the database. Such a framework is needed because it shall be possible to
open and export such baselines from the database in the future. Thereafter, it shall be
possible to compare these baselines to an arbitrary project state or to another baseline
and extract the differences to see what data have changed in the different versions. This
is a very powerful feature because the manual checking of these differences is very time-
consuming. Automatically receiving this information brings hence a lot of benefits. The
differences can for example additionally be sent to the customer for quickly showing which
data have changed since the last release.

Branching

Branching is another important approach where new projects can be created from template
projects. At the beginning, if no project exists, a new project can be created only from an
existing standard. If one project already exists, it shall be possible to branch a new project
from the existing one. By introducing a wizard, the tool provides a simple mechanism to
branch projects or standards. Additionally, it is possible to create links between the
branched project and the new project. Therefore, they can for example share the same
deliverables within different projects. This is a very powerful feature for creating sub-
projects. Sub-projects mostly have some equal deliverables and therefore it is not necessary
to create redundant information within the database. One thing that is very important
is that a branched project always inherits the same standard as the original project. In
addition, branching is also possible for standards and new standards can be created from
an existing standard.

3. Design of the Functional Safety Management Tool 45

3.3.3. Server Concepts

In the following, the features for the server architecture will be explained in more detail.
The server contains the object relational mapping library which further interacts with
the database behind. Furthermore, the server contains the data tracking library which is
needed in order to track and save data changes.

ORM - NHibernate

As mentioned in 3.2.5, NHibernate is an open source library and is responsible for the
database mapping and the associated data exchange. The book [35] describes NHibern-
ate as an “adaption of the powerful Hibernate that was originally developed for JAVA”.
Furthermore, the book depicts that “this feature is already used within over thousands
of productive applications.” It provides a simple access layer for the database while a
developer does not need to have knowledge of the database logic behind. The main archi-
tecture of NHibernate can be found in Figure 3.5.

For using NHibernate, the library must be configured according to the used RDBMS.
This configuration contains a lot of different properties like the connection string and the
mappings for all existing entity tables. Each table that shall be mapped to an entity must
also be configured in a special way. In the proposed tool environment, for each table a
particular entity class and a particular entity configuration file is created. An example of
such a configuration can be found in Appendix D.

Therefore, one table from the database is exactly mapped on one entity class in the source
code layer. NHibernate contains different strategies for the configuration of entities. In
this work, the general and powerful XML configuration is used because it is very simple to
read and everyone should understand XML files. This approach supports all existing con-
figuration properties and is therefore widely used. The only drawback of this approach is
that it is very easy to include some typing errors in an XML notation as this configuration
provides all necessary features and is used in most applications. After the configuration is
specified, a session factory element can be created. This factory element only exists once
per database connection and is therefore thread-safe.

In our defined software architecture the“Session-Per-Request”pattern is used. This pat-
tern determines that exactly one WCF service call contains one session object which will
automatically be created by the service call. This session can be created from the provided
session factory element, thus, contains therefore all configurations and is only valid un-
til the service call is completed. By using this pattern, we avoid the case that sessions
will be created through different WCF calls and define a clear way of processing a client
request. Sessions are not thread-safe, which is why only one session per request shall exist.

3. Design of the Functional Safety Management Tool 46

As a consequence, a particular session element is created for each WCF service call which
provides the methods for accessing the database artifacts. For this purpose, a session
contains the following database manipulation methods (insert, update, delete) for the
entities:

• Save
For storing a new entity in the database, the save method is used.

• Update
For updating an already existing database entity, this method is used.

• SaveOrUpdate
If the user does not know whether the entity already exists in the database, this
method is useful. It automatically checks whether the entity exists and calls the
associated save or update method.

• Delete
This method can be used for deleting already existing entities from the database.

• Refresh
With the refresh method it is possible to bring changes from the database to the
memory. For example, if another user has updated an entity, the refresh method is
really helpful in order to fetch the changes from the database.

• Merge
Merge is very similar to the update method and is used if an entity is already present
in a session element. This method is not used within our session-per-request pattern
and will not be further investigated.

• Persist
The persist method is very similar to the save method. The only difference is that
with this method, an entity can only be saved within existing database transactions.

All these existing methods can be called within each session element and are embedded in a
database transaction to ensure consistent and concurrent database accesses. A transaction
allows the procession of multiple statements within one unit and can automatically roll-
back all statements if an error occurs during this execution. Additionally, it is possible to
lock database calls inside these transactions, which is why a more smooth multi-threaded
environment could be provided.

For the relationships between entities, NHibernate supports the one-to-many, many-to-one
and many-to-many relationships and provides cascades that automatically process connec-
ted entities in order to offer a consistent and complete database schema.

3. Design of the Functional Safety Management Tool 47

Figure 3.5.: The NHibernate architecture with the SessionFactory and the associated ses-
sions over the different layers (Source: [35]). The figure additionally shows
the connection between the different NHibernate artifacts.

Retrieving data from the database with NHibernate

For retrieving data from the database, NHibernate provides different possibilities. In
the following, some famous possibilities will be described in more detail. A first approach
is named “Hibernate Query Language (HQL)”. This approach is very similar to the general
database statement syntax. Therefore, the only difference is that the HQL approach does
not use the database table names inside the statement. Instead, it uses the entity class
names that are defined within the mapping files. This approach is not very recommend-
able because it is also necessary to write complex database queries. By introducing an
ORM, this complex query creation shall be avoided. If only simple database statements
are needed, this approach, however, is helpful.

“Criteria API” is another approach that is provided by the NHibernate framework. It
is a simpler approach that only requires little knowledge of the database query language.

3. Design of the Functional Safety Management Tool 48

It allows the fetching of entities by using the provided “ICriteria” software interface. This
interface only needs the entity type or name that shall be fetched from the database. Ad-
ditionally, it is possible to add some restrictions (e.g. search criteria on table properties)
to this interface in order to filter the result. The main problem with this approach is
that the restrictions have to be written in common strings, and hence, it is really easy to
include errors in the search query.

A more powerful approach is the “QueryOver API”, which allows the building of dy-
namic queries during runtime. It is generally not based on a common string approach like
the approach before. Nevertheless, it cannot be avoided to write common text into the
queries, particularly if complex queries are needed.

The final approach is the “Linq” approach. It is a common querying method in .Net
applications and is therefore also compatible with the NHibernate framework. However,
this approach only works with generic types and has a similarity to a general SQL syntax.

In our tool environment, a combination of approach number two and three is used. The
first approach is too complex and does not improve our work. Because the “Linq” ap-
proach only works with generic data types, it cannot be used within the provided tool
environment because generic types are not supported by WCF services. Instead, we use a
combination of the “Criteria API” and the “Query Over API”. Listing 3.3 shows a defined
SQL query in all different approaches. All of the above mentioned approaches allow the
usage of powerful joins.

SQL: s e l e c t ∗ from User where Name = ”Max” ;

HQL: var user = database . Se s s i on . CreateQuery (” s e l e c t e from User as e
where e .Name = ’Max ’ ”) ;

I C r i t e r i a API : var userQuery = database . Se s s i on . Crea teCr i t e r i a<User >() ;
userQuery . Add(R e s t r i c t i o n . Eq(”Name” , ”Max”)) ;
var user = userQuery . L i s t<User >() . UniqueResult<Item>() ;

Query Over API : var user = database . Se s s i on . QueryOver<User >()
. Where (u => u .Name == ”Max”)
. L i s t<User >() . F i r s tOrDefau l t () ;

Linq : var user = (from e in database . Se s s i on . Query<User >()
where e .Name == ”Max”
s e l e c t e) . F i r s tOrDefau l t () ;

Listing 3.3: Overview of the different NHibernate data retrieve approaches

3. Design of the Functional Safety Management Tool 49

Lazy Loading

NHibernate provides a powerful feature named lazy loading. This feature is responsible
for loading only the information from the database that is currently needed. This feature
is activated by default and can be dropped individually for each entity by setting the
specific property in the entity configuration file. A great benefit by using this feature is
that it decreases the amount of data exchange and therefore increases the performance of
the tool.

This feature can also be activated for collection entries. Hence, only the needed elements
of a list will be retrieved from the database.

One problem that occurred during the integration of NHibernate into the developed tool
environment is that it does not support the lazy loading feature in combination with a WCF
service. The reason is that the lazy loading only works if a one session-per-application
pattern is used.

Lazy loading always needs an open NHibernate session in order to fetch the specific data
that is currently needed. For example, if an user entity which contains a list of projects
is fetched from the database the detailed information of the projects will not be fetched
at this point as well. But if the list will be accessed later on, NHibernate automatically
loads the needed projects from the database with the before created session.

In our tool, this is not possible because our tool architecture is based on a session-per-
request pattern and therefore the session is always closed after the completion of a request.
This means that, if the session is already closed, the lazy loading feature does not work
properly. In order to fix this problem in our tool environment, a specific lazy loading
implementation is integrated.

This new layer is hence integrated between the NHibernate layer and the database layer
and is responsible for the correct loading of data from the database. During the first call,
it loads all needed data from the database and stores them in this additional layer. The
response then contains all needed data.

Now, if data must be re-fetched, the new layer will automatically check whether it has
already been fetched from the database and returns the values if they exist in the layer.
The integrated layer is constructed similarly to a cache layer and speeds up the applica-
tion. With this layer, it is possible to enable lazy loading within a WCF service.

If such a layer does not exist, each database call must eagerly fetch all connected data
from the database. Because there are a lot of relations between the existing tables in the
database, the database is a large cyclic graph. Therefore, fetching such a huge amount of
data every time decelerates the tool a lot.

3. Design of the Functional Safety Management Tool 50

NHibernate Envers

For tracking data changes, NHibernate provides a powerful open source add-in named
NHibernate Envers10. This extension is responsible for all database changes and auto-
matically saves the changes and the associated revisions in predefined database tables.
Furthermore, it provides a powerful querying mechanism for fetching old revisions. As a
consequence, it is possible to retrieve old history data either by revision numbers, by a
user who has changed the data or directly by an entity type. So it is really easy to get the
changes out of the database.

Integrating this extension is just as well really simple because it only needs some addi-
tional configurations within the NHibernate configuration. With a few lines of code, it is
possible to integrate the powerful add-in. Nevertheless, it provides a lot of different config-
uration properties that allow the refinement of saving strategies or the integration of other
database-specific configurations. All existing properties can be found in the NHibernate
Envers documentation11.

In the provided tool environment, a simple strategy is used that creates a new revision entry
for each database change. To do so, NHibernate Envers needs two things. First, it needs a
specific revision table in the database which contains the revision ID, the time stamp and
the user who changed the property. Furthermore, for each revisioned entity, a particular
audit table is needed. An integrated tool extension that is provided by NHibernate Envers
is able to automatically create these additional tables with the defined configuration.

No manual database configuration is needed to get this library working. After creating
the additional tables, all entities that shall be audited must be configured once in the basic
NHibernate configuration. That is it! Now, the extension automatically creates and stores
data changes that will be made on the different entities. It is also very easy to extend the
library in order to save additional information in the provided revision table. With little
effort it is possible to create a powerful auditing environment that allows on the one hand
the automated data tracking and on the other hand a simple data retrieving of historical
data. For retrieving historical data, the extension provides a special data retriever class
that allows the querying of historical data.

There are some drawbacks within this extension. It does not work with legacy database
and has currently some problems with one-to-one relations. Because these things are not
used within our tool environment, the library can be integrated without problems.

10https://bitbucket.org/RogerKratz/nhibernate.envers
11http://envers.bitbucket.org/

https://bitbucket.org/RogerKratz/nhibernate.envers
http://envers.bitbucket.org/

3. Design of the Functional Safety Management Tool 51

3.4. Collaborative Safety Management Tool Architecture

This section describes in detail how the aforementioned features and concepts are integ-
rated in the newly developed safety management tool and the associated environment.
Figure 3.6 illustrates the entire tool architecture with the different key concepts. The
client side application is a standalone desktop application and is connected to the server
with two different WCF services. The first service interacts with the AVL LDAP server
and is responsible for the authentication and authorization of the users. The other WCF
service is responsible for the data exchange between client and server and additionally
provides a broadcasting mechanism. The server and the database are connected via an
object relational mapping library. This ORM is responsible for the data access on the
database layer by providing a server side business logic. For the secure data exchange
connection between client and server, an HTTP cookie is used.

Figure 3.6.: This figure shows the overall system architecture of the developed Functional
Safety Management Tool. Additionally all existing features and their interac-
tions are displayed above.

3. Design of the Functional Safety Management Tool 52

After the user has successfully been authenticated and authorized, a cookie will be created
by the server and will be sent to the client. This cookie comes as encrypted ticket within
the HTTP message header from the service and will be stored in the client’s memory. Ad-
ditionally, this cookie contains a time stamp and a period of validity in order to guarantee
a valid time range. Now, if the client sends a request via the data exchange service to
the server, this cookie will be attached to the message header. On the server, the cookie
will automatically be decrypted and the information will be stored in the current “Prin-
cipal Permissions”. This attribute is a C# specific attribute and can be defined above a
method body signature. By using this attribute, it will automatically be checked whether
the cookie is valid and the user has the necessary rights in order to execute the called
method. If the latter is not the case, an exception will be sent back to the client. One
important thing to mention is that the user only authenticates his identity once and then
the received cookie will be saved until the client closes the connection to the services by
closing the tool or when the valid time expires.

This section gives an overview of all existing safety management parts that will be
integrated into the safety management tool. These parts are responsible for the creation
and maintenance of standards and projects. Furthermore, in this section, two processes
illustrate how an interaction between the client and the server can look like are illustrated.
These two sequences are depicted in Figure 3.7 and Figure 3.8. Both sequences show a
typical interaction of the single features within the tool architecture. Moreover, the design
of the report generator and the appropriate reports will be shown.

3.4.1. Safety Management Tool Parts

To provide a safety management application in the tool, the client architecture is sub-
divided into two different main parts. The first part is the standard-specific part and con-
tains all generic artifacts and relations provided by a standard. For the standard-specific
part, different modules are created. The different modules will further be explained in
4.2.1. The second part is the project-specific part and contains only the artifacts that are
needed for creating the different projects and the appropriate artifacts. Furthermore, this
part contains the relations to the inherited standard-specific artifacts. All modules are
listed beneath, while detailed information of all project-specific modules will be provided
in 4.2.2.

The enumeration shows the different modules for both existing parts

• Standard-Specific Part

– Methods module

– Workproduct module

– Requirement module

– Task module

– Lifecycle module

• Project-Specific Part

– Deliverable module

– Deliverable responsibility module

– Milestone module

– Project role module

– Tailoring module

– Project-specific lifecycle module

– Project task module

– Review module

3. Design of the Functional Safety Management Tool 53

3.4.2. Safety Management Tool Processes

Process 1: Get item from database

In Figure 3.7, the process of fetching an item from the database is shown. The first step
in this process is to start the tool by double-clicking on the provided executable. Now a
login screen appears and the user must enter his or her company specific username and
password. By confirming the data, the authentication service will be invoked and checks
whether the user can be authenticated within the AVL infrastructure. What is more is if
the user is authenticated by the AVL LDAP server, the authorization of the user will be
invoked. The service sends a request to the server and the latter checks whether the user
is defined in the database and may rightfully access the tool. If one valid right is found,
the service creates a cookie and stores the username with some additional data inside this
cookie. Now the cookie is encrypted and will be sent back to the client. In the next step,
the tool is able to create the request for fetching data from the database.

After the user opens a specific module, data can be fetched from the server. Therefore,
the cookie will be stored in the message header and attached to the server request. If the
user has the permission to execute the called method with his or her special right, the
ORM creates a new database session on the server. This session will be used to access
the database and to fetch the needed data. If no error occurs during the database calls,
the data exchange service will send back a response with the fetched data. Before sending
this response back to the client, the database session will be closed in order to provide no
memory leaks and no multi-threaded issues. The user receives the data and can proceed
further with the data.

Process 2: Save item in the database

The provided graphical user interface of the safety management tool also allows the
creation of new entities and to store them in the database. Therefore, this process (Figure
3.8) describes the according steps. The beginning of the process is exactly the same as
in the process mentioned before. If the user is authenticated and authorized correctly, a
new entity that was created within the safety management tool can be sent through the
data exchange service server. Therefore, the user calls the provided save method from
the data exchange service and delivers the item as method argument. Now the service
checks again whether the request has a valid cookie and the user is allowed to perform the
save method on the server side. Because of differently provided user permissions within
the tool, not every user is allowed to save data in the database. If the user is allowed to
execute the method, the object relational mapping is invoked and is responsible for the
relevant further steps for saving the entity in the database.

If everything was executed without an error, the ORM returns the ID of the newly
created database entry to the server. The server attaches this ID to the response and
sends it back to the client. Now, the user is able to manipulate this entity. The ID of an
item is very important because without an ID the item cannot be linked to other items
and processed further by the ORM.

3. Design of the Functional Safety Management Tool 54

Figure 3.7.: The figure shows the way how data can be fetched from the database through
the provided tool environment. Furthermore, all detailed steps and the ac-
cording actions are displayed.

3. Design of the Functional Safety Management Tool 55

Figure 3.8.: The figure shows the way how a new item can be stored in the database
through the provided tool environment with all detailed steps and according
actions

3. Design of the Functional Safety Management Tool 56

3.4.3. Safety Management Tool – Report Generator

For extracting the provided information from the tool and putting it into predefined tem-
plates, a report generator is integrated into the tool environment. This report generator
shall provide a simple API that allows the quick enhancement of already existing reports
and the smooth integration of new ones. Therefore, the report generator shall be able to
interact with Microsoft Office Word files. Additionally, it shall provide methods which can
be used to insert and update Microsoft Office Word specific artifacts like headers, tables
and others.

In this thesis, the focus is on two different reports. The first one is the development
interface agreement report and the second one is a report for a preliminary process-based
safety case generation. For both reports templates exist which already contain some static
content. This static content consists of the cover sheet and provides some introductions
and general chapters. Now, the report generator shall be able to open these predefined
templates with the associated static content and shall be further able to add dynamic
content afterwards. The dynamic content shall therefore contain the project-specific in-
formation from the database.

The report generator shall be integrated into the tool environment and shall allow users
to select existing templates for the different reports. These templates shall be stored on
the server and the provided tool environment shall allow users to fetch specific templates
from the server. Furthermore, these templates shall be storable and extendable on the
client side. The implementation of the report generator can be found in 4.2.3.

3.4.4. Process-based Safety Case Design

Within this section, the safety case design within the tool environment will be investigated
in more detail. As described in 2.1.2, a safety case is a way to show that a system is free
from unreasonable risk and therefore implemented according to a defined standard. A
safety case can be subdivided into two different safety case types.

On the one hand, a process-based safety case exists and on the other hand a product-
based safety case exist. Product-based safety cases shall show that the product is safe. In
this thesis, the focus is on process-based safety case generations which shall ensure that
the process is safe fits the standard.

Therefore, within the tool, it shall be ensured that all necessary artifacts for the process are
linked in a clear and understandable way. It is very important to show that the traceability
of the artifacts is given. Additionally, the report generator (3.4.3) shall be able to export
these artifacts and the traces and put them into a preliminary process-based safety case
template.

3. Design of the Functional Safety Management Tool 57

This safety case shall show the traces between the following artifacts:

• Project-Specific tasks

• Deliverables

– Safety-Relevant flag

– Customer Input flag

– Customer Output flag

– AVL intern flag

– Name

• Project milestones

– Alias

– Name

– Deadline

– Main milestone flag

• Reviews

– Person

– Path to review

– Review-completed flag

The above artifacts are necessary for creating the process-based safety case in our tool
environment. The project-specific tasks are all basic units which can be performed in
order to fit the standard. Furthermore, each of these tasks contains an arbitrary number of
deliverables that shall be created during the execution of the task. Deliverables are further
linked to different project milestones. These traces are the preconditions for creating
reviews. For a review, an arbitrary number of persons can be linked to a combination of
deliverables and project milestones.

These persons shall perform a review up to the time defined by the project milestone
with an externally provided tool. After the creation of a review, the tool allows the storage
of the path to this review and furthermore the adding of a description. Furthermore, for
each reviewed deliverable, a version and deliverable type can be inserted. After the review
is completed, it can be marked as completed within the safety management tool. Therefore,
it can be ensured that the necessary steps in the safety lifecycle have been performed.

After the reviews have been integrated in the tool, the report generator can be used to
extract the process-based safety case. It contains tables that show the above listed arti-
facts and their traces between them to ensure that all necessary tasks have been performed
in order to fit the standard.

For creating a process-based safety case, all the above artifacts and their connections are
needed which can be created and maintained within the provided safety management tool.

3. Design of the Functional Safety Management Tool 58

3.5. Software Architecture

The software architecture of the developed tool consists of the different features (Figure
3.6) which are described in the aforementioned sections. In this section, the associated
software architectures of the integrated features will be depicted. The section starts with
a short overview of the client software architecture. Then, the software architecture of the
server with the integrated ORM and the database architecture will be considered.

3.5.1. Client Software Architecture

The provided desktop application is developed with WPF (3.2.1) and is based on a“Model-
View-View-Model (MVVM)” pattern. The concept of this pattern is shown in Figure 3.9
and contains three areas. It strictly disconnects the views from their associated business
logic defined in the source code. Therefore, the view has knowledge of the view-model and,
furthermore, this view-model contains an instance of the business logic model. Whereas
the view-model and the view are connected via data bindings (binding, commands, or
events), the view and the model are not connected.

The main benefit by using this pattern is that the view does not additionally need to be
tested because of the decoupling. Therefore, the model that contains the business logic
can be tested alone with different testing methods like unit testing.

Figure 3.9.: Overview of the Model-View-View-Model pattern and its connections

3. Design of the Functional Safety Management Tool 59

The client provides the full graphical user interface and integrates the two different WCF
services. As described in 3.4.1, the architecture of the client application is based on two
different parts. Whereas the first part is responsible for the standard-specific artifacts,
the second one is responsible for the project-specific artifacts. For each part, a specific
graphical user interface is created (4.2). Within these views, a user is able to access
the associated modules. Therefore, for each defined part, a particular view landscape
consisting of different modules is created.

Furthermore, the client application is based on a project workflow mechanism. For each
defined standard one template project has to be created at the beginning. This template
project can then be used to establish new projects (3.3.2). The benefits of this approach
are that the reusability and the consistency can be improved and the generation of addi-
tional artifacts can be avoided. The provided project workflow framework is illustrated
in Figure 3.10. It can be seen that for each defined standard a template project shall
be created at the beginning. From this template project, new projects can be developed.
Furthermore, for the created projects it is possible to create associated sub-projects as well
as baselines of an arbitrary state of the project. Now, a powerful mechanism inside the
architecture effects that each created project can be treated as template project, which
allows the creation of similar projects in a short time and it helps promote the consistency
and completeness of projects. Because sub-projects can have the same deliverables and
project milestones as the main project, the database does not contain redundant inform-
ation.

Figure 3.10.: The project workflow starts with creating a generic standard and continues
by creating template projects. These projects can be used for creating further
(sub-)projects or project baselines.

3. Design of the Functional Safety Management Tool 60

3.5.2. Server Software Architecture

The server consists of five collaborating libraries which are displayed in Figure 3.11. The
main library is the “FSMServer” library. It contains both WCF service configurations and
the associated authentication and authorization classes.

The “FSMServiceContracts” library defines an interface for the existing WCF service
methods. The according implementation of these methods takes place in the “FSMSer-
viceImplementations”library. In addition, this library contains the object relational session
manager which is responsible for creating and closing the different sessions.

The fourth provided library is the “NHibernateHelper” library. It contains the ORM
library and stores all needed database and entity configurations and provides it provides
the functionality for accessing and retrieving data from the database. Furthermore, it
includes the library for the data tracking and is therefore also responsible for checking data
changes and storing them in the defined database tables. This library and an overview of
the associated architecture is provided in 3.5.2.

The last library is the unit test library which contains the testing framework. This
library is not included in Figure 3.11 because it is connected to all other libraries. A more
detailed overview of the testing framework can be found in 4.3.

The aforementioned libraries are connected with each other and represent the entire server
architecture. For achieving a working architecture, an additional database system and
database architecture is needed, which will further be explained in 3.5.2.

Figure 3.11.: Dependency graph of the existing software libraries within the server
architecture

3. Design of the Functional Safety Management Tool 61

ORM Software Architecture

The object relational mapping library is the heart of the provided server architecture and
is responsible for the entire database interaction. It consists of all table entities and the
associated entity configuration files. Furthermore, it contains the database configuration
and the configuration for the data tracking library. The entity configurations are needed
in order to establish a valid connection between the database tables and the associated
source code objects. An example configuration is displayed in Appendix D. The database
table fields and the class properties must also be mapped and configured in detail to have
a working connection.

Figure 3.12 shows a cutout of the integrated database architecture as well as the structure
of the generic part and consists of 16 different database tables. These tables also exist
in the object relational mapping architecture as separate classes. All of these classes are
derived from one base class that contains the ID of the entity. ID is the only database
field that exists through all different entities and can therefore be stored in a base class.
The following list illustrates the 16 existing tables. For each table a consistent entity class
is created which stores all table properties as public class properties.

• Cluster

• Activity Cluster Mapping

• Activity

• Task Activity Mapping

• Task

• Task Input Task Mapping

• Method

• Method Task Mapping

• Workproduct

• Workproduct Task Mapping

• Requirement

• Requirement Task Mapping

• Requirement Safety Level

• Deliverable Workproduct Mapping

• Degree of Recommendation

• Method Attributes

The tables above consist of entity tables and mapping tables. The mapping tables are
responsible for mapping two different entities. In the tool architecture, specific classes for
these mappings are created. One mapping class instance therefore contains one source
entity and one target entity. This mechanism is used for many-to-many mappings and
provides benefits. One benefit is that the source and target entity contains a list of these
mapping classes and it is really easy to check whether an entity is connected to another
entity. On the source code layer, this mechanism facilitates the control of the relations.
Additionally, it is also possible to track changes on the mapping tables. Therefore, all
relations will be saved and historical relations can be retrieved from the database.

3. Design of the Functional Safety Management Tool 62

Database Architecture

The last section of the design chapter describes the developed database architecture. A
cutout of the provided database schema is depicted in Figure 3.12. The diagram is de-
veloped within an EER diagram (Appendix C) and contains all necessary entity tables and
mapping tables. For each entity, a specific table is created and the appropriate properties
are added. What is more, for each many-to-many relation an individual table is created
which maps two entities. Furthermore, the database architecture is integrated into two
different databases as described in 3.2.3. The main database architecture contains of four
different parts which will briefly be described in the following.

Standard Part

This part contains a standard table for defining different standards with their appropriate
attributes. Additionally, mapping tables between the standard and the standard-specific
artifacts exist in this part. For the requirement, method, workproduct, cluster, activity,
task and requirement safety level artifacts own mapping tables are created. These tables
are only responsible for storing detailed information of specific standards and of their re-
lations to the standard-specific artifacts which are listed in 3.5.2.

Generic Standard-Specific Part

The generic part of the database architecture consists of the standard-specific artifacts
and their attributes. Therefore, it contains all tables that describe a specific standard and
consists of methods, requirements, tasks, workproducts and the associated safety lifecycle
artifacts. This part is illustrated further in Figure 3.12.

Project-Specific Part

The last part contains all relevant artifacts that are needed for creating and maintaining
different projects in the tool as well as the mapping tables that link a project to a specific
standard. Furthermore, it contains all project-specific tables and their appropriate attrib-
utes. These tables store artifacts that allow the creation and storage of project-specific
data and their relations. The project-specific part contains tables for project-specific tasks,
project milestones, deliverables, project roles, project methods and reviews.

General Part

The general part contains all other tables that are needed for the user management, for
baselining and for providing automated text modules like rationales. These text modules
are used for providing an auto-completion of input text fields. The user management
tables define the person who is able to access the tool with his or her AVL credentials.
In addition, the mapped user permission will be saved and the tables save all necessary
values for restoring historical data.

3. Design of the Functional Safety Management Tool 63

Figure 3.12.: Cutout of the database architecture that shows the generic standard-specific
part. This part contains all necessary artifacts for defining a specific standard
within the tool.

4. Implementation of the Functional Safety
Management Tool

This chapter describes detailed information about the used tool-chain and the implement-
ation of the different safety management features of the design phase. Additionally, it
displays the graphical user interfaces that were created within the tool environment and
the appropriate application. At the end of the chapter, the established testing framework
will be depicted in detail.

4.1. External Tools and Libraries

4.1.1. Tool-Chain

For establishing a working environment between a huge number of modules, a tool-chain
is needed. The used tool-chain consists of two external tools. The first one is the “Visual
Studio” (4.1.1) tool, which is a powerful development framework provided by Microsoft.
For the development of this safety management tool architecture, the Visual Studio 2013
professional version is used. The second tool is the “MySQL Workbench”. It is a graphical
database management tool that allows the creation and handling of database tables and
their according relations. These two external tools are necessary for the development of
the tool environment.

Furthermore, the tool-chain contains of two external libraries. These libraries are in-
tegrated into the visual studio tool and are necessary for the development of powerful
graphical user interfaces and for the data exchange between client and server. Infragistics
(3.2.4) is the first used external library and provides a lot of different powerful graphical
elements. These elements already offer all needed and helpful features like filtering, sorting,
grouping and many other. The second library is an “Object Relational Mapping (ORM)”
library. This library is responsible for creating and configuring the database interaction
as well as the data exchange between server and database and automatically establishes
the needed database statements.

Visual Studio

This external tool1 is developed by Microsoft and provides a development environment
framework for creating different applications like WPF or WCF. It allows the creation
of graphical user interfaces with simple drag and drop elements from a provided toolbox.
By dropping the graphical element into the view, the associated source code is created
automatically. Therefore, the tool is on the one hand a designer tool and allows on the
other hand the direct implementation of the appropriate business logic.

1https://www.visualstudio.com/

64

https://www.visualstudio.com/

4. Implementation of the Functional Safety Management Tool 65

MySQL Workbench

The MySQL workbench tool is the second external tool. It provides a graphical user
interface for the database creation and database handling. Additionally, it allows an
external interaction with the database and contains different views on the database as
well as a graphical extension named EER diagram (Appendix C). This extension allows
the graphical interaction with a database schema and the appropriate database table
generation. Inside this diagram, it is also possible to create and maintain the different
table relations as it is also possible to query the database within this extension.

4.2. Implementation of the collaborative Safety Management
Tool Environment

This section describes the implemented safety management tool and the entailed features.
In the following, the different parts and the associated modules will be depicted in detail.
First, the standard-specific part will be examined by illustrating the appropriate modules
and explaining the included features.

The goal is to show how a standard can be integrated and how the associated safety li-
fecycle can be created. After the standard has been integrated into the database, the
project-specific part will be depicted in more detail. It will be illustrated how a new pro-
ject can be created and how the project-specific modules can be accessed. Furthermore
the creation of project-specific artifacts will be shown as well as how the two provided
reports (4.2.3) can be generated within the provided tool.

The developed tool exists as simple standalone application, which is why it is not neces-
sary to install the tool. The tool can simply be started by double-clicking on the provided
executable. One very important thing in this context is that the tool only works with
a valid internet connection and with a valid connection to the AVL infrastructure. This
means it can only be used within the AVL company or with a connected “Virtual Private
Network (VPN)” tunnel.

After the tool start-up, the logon window appears which is shown in Figure 4.1. By enter-
ing the AVL username and AVL password, a user can be logged in within the functional
safety management tool. After the user has been authenticated and authorized by the
tool environment, the main screen (Figure 4.2) appears. This screen contains all existing
projects and sub-projects that are accessible by the user and his or her associated right.
Is the user authorized as global admin, he or she is now also able to open the standard-
specific part of the tool by clicking on “Standard|Standard View” in the menu bar. If he
or she is not authorized as global admin, he or she is not able to see this menu bar.

4. Implementation of the Functional Safety Management Tool 66

Figure 4.1.: Login window of the Functional Safety Management Tool

The main screen may display the list of projects in different ways as illustrated in Figure
4.3. Optionally, each user can choose based on his or her fondness a particular view of the
representation of the projects. Furthermore, the screen shows the main properties of each
project and sub-project. It is an interactive view and, therefore, a project can be opened
by double-clicking on a specific project. In the following, the standard-specific part will
be depicted first and then the project-specific part. As mentioned before, this part is only
accessible by a global admin.

Figure 4.2.: After the start of the tool this view appears and lists all accessible projects.
Additionally, the project details are shown on the right side.

4. Implementation of the Functional Safety Management Tool 67

Figure 4.3.: A user can choose between four different views for listing all projects. The
figure shows all four views which are a tree view, a carousel view, a card view
and a grid view.

4. Implementation of the Functional Safety Management Tool 68

4.2.1. Standard-Specific Part

By opening the standard view, the standard-specific part with the generic artifacts of the
tool can be accessed. This view is illustrated in Figure 4.4 and contains a list of all stand-
ards which exist in the database. Each standard can be selected and shows the associated
information on the right side of the view. This information contains the name, the version,
the associated requirement safety levels and the description of the selected standard. At
the bottom right corner, a carousel view that shows the provided generic workflow for a
standard is displayed. It can be used to access the different modules that are integrated
into the standard-specific part. These modules are relevant for creating and maintaining
the generic parts of the standard. The carousel view contains five buttons that can be
selected in order to access the different modules (3.5.1). The carousel view additionally
provides a navigation bar that allows scrolling within the different workflow steps. In the
following, these different modules with their associated views will be explained.

Figure 4.4.: The provided standard view lists all existing standards with their appropriate
artifacts and the associated generic workflow. The workflow contains buttons
which can be clicked for accessing the different standard modules.

Methods Module

The methods view is the first module that can be accessed within the carousel view from the
standard view. This view allows the creation of different methods that exist in a standard.
The tool provides an input field for the method name, the method description, the ISO
reference which points to the location where the method can be found in the standard and
the AVL links field. The AVL links field contains the path to the specific AVL method
description. Each standard method comprises a defined degree of recommendation which
specify at which safety integrity level the method shall be applied. The tool therefore
enables entering that degree of recommendations for the different methods. The method
view is illustrated in Figure 4.5 and consists of a table which lists all existing methods.

4. Implementation of the Functional Safety Management Tool 69

The view allows the entering of new methods by clicking on the provided button. As a
consequence, a new context menu appears where the information can be fed in.

Figure 4.5.: The methods part contains all existing methods and corresponding informa-
tion. Additionally, the degree of recommendations are displayed.

Workproducts Module

Figure 4.6.: The workproducts module lists all existing workproducts.

4. Implementation of the Functional Safety Management Tool 70

This view allows the creation of standard-specific workproducts with the appropriate in-
formation. These workproducts contain a specific name and an additional description.
Figure 4.6 shows an overview of the workproducts view. In this view, it is possible to
create new workproducts by clicking on the new workproduct button. The context menu
that appears after clicking the button contains a text field for the name and a text field
for entering a description.

Requirements Module

In the provided requirements module view, it is possible to create requirements that are
defined in a standard. These requirements contain a name, description and an additional
field where an external ID can be stored. This external ID can for example be the ID of
the requirement from an external requirements management tool. Furthermore, the view
allows the connection between requirements and tasks. Therefore, a tree with all generic
tasks is shown on the right side. By dragging and dropping a requirement from the left
requirements table to the right task tree a new mapping between these two items can be
created.

The requirements view is depicted in Figure 4.7, which additionally shows the dependency
feature. Furthermore, this view allows the creation of new requirements by clicking on the
new requirement button. By doing so a predefined context menu that allows the insertion
of requirement-specific information appears. As an additional feature, it is also possible
to show all requirement mappings within the task tree. These mappings are highlighted
in the tree as illustrated in Figure 4.7.

Figure 4.7.: The requirements module lists all existing requirements with their descriptions
and links to external requirements. Furthermore, the mappings to the different
standard-specific tasks are shown on the right side.

4. Implementation of the Functional Safety Management Tool 71

Task Input Module

Within the task input view, it is possible to connect the existing workproducts to specific
tasks. These workproducts can be defined either as input or output workproducts by
dragging and dropping a workproduct from the right side into the boxes in the middle of
the view. The input workproducts of a specific task are listed in the upper center of the
view. If the input workproducts are shown because of connected input tasks they have a
different background color. Output tasks are listed in the lower center of the view and the
box is marked with a different color.

Additionally, it is possible to define input tasks for all existing tasks. These tasks are listed
in the middle of the view. For defining an input task, the target task should be selected
and the input task can be dragged into the box in the middle of the view. By defining an
input task for a specific task, all associated output workproducts are automatically copied
to the target task as input workproducts. Therefore, complex dependency graphs can be
created. The view is illustrated in Figure 4.8.

Figure 4.8.: The task input module shows all existing standard-specific tasks with the
connected input and output workproducts. Furthermore, it also displays the
connected input tasks. If a task has a linked output workproduct a green tick
appears.

4. Implementation of the Functional Safety Management Tool 72

Safety Lifecycle Module

The last provided module allows the creation of the standard-specific lifecycle. The li-
fecycle can be built up with three different elements which can be linked together. The
first element is a task. A task is a basic unit that can be performed by a person or an
organization. Similar tasks can be grouped as activities. An activity is the second element
that can be created within the lifecycle. Furthermore, it is also possible to group activities
as clusters. The third element in the safety lifecycle is a cluster. These elements can be
built up as a tree; an example lifecycle can be found in Figure 4.9. For providing a better
overview, three different trees exist in the view. The first tree contains the entire safety
lifecycle tree which comprises all clusters with their connected activities and all activities
with their connected tasks. The second tree only contains all activities with their con-
nected tasks while the last tree contains only the list of all existing tasks. Each tree is
interactive, and therefore, the trees are synchronized. Updating an element within one
tree automatically updates the according element within the other trees.

Figure 4.9.: This module represents the entire safety lifecycle and allows the viewing of
the dependencies between the different artifacts.

An additional feature in this view is that it is possible to map methods to different tasks
because it is a complex view it is possible to hide own trees within the view. Furthermore,
to see which elements are connected, the “show dependency” checkbox can be selected. If
the checkbox is selected and an element in any of the trees is selected, all equal elements in
the other trees will be selected automatically and the dependencies between all elements
can be seen. Additionally, it is possible to view all method task mappings in the task tree.

4. Implementation of the Functional Safety Management Tool 73

The aforementioned views are responsible for the creation of the generic standard-specific
artifacts and are only accessible by a global admin. The second implemented part contains
the project-specific modules. By double-clicking on a project in the main view (4.2), the
project-specific part can be opened.

Figure 4.2 shows the main view of the project-specific part. It contains all project
properties like the tile of the project, the type of the project, which standard the project
belongs to, a project-dependent ASIL, the customer for the project and the project de-
scription. Furthermore, all sub-projects are listed in the right upper corner of the view.
On the right lower corner, the carousel view which contains all project-specific modules is
shown.

4.2.2. Project-Specific Part

By creating a new project it is mandatory to select an existing standard and enter some
project-specific information or an existing project. During the creation of a new project,
a lot of artifacts will be generated automatically. First, for all existing standard-specific
tasks, project-specific tasks will be created and linked to the generic tasks. These links are
very important in order to see which project-specific tasks belong to which standard tasks.
It is possible to create a new project-specific task which then can be linked to a standard-
specific task. Now, both project-specific tasks are linked to the same standard-specific
task.

Furthermore, all existing workproducts will be instantiated as project-specific deliver-
ables. Also for these artifacts the traces remain. Because the workproducts are already
linked to the standard tasks, the deliverables are automatically linked to the project-
specific tasks too. After creating a new project deliverable, it can be linked to a standard-
specific workproduct. Therefore, the deliverable will automatically be linked to the project-
specific task.

At last the same mechanism is integrated for the methods. Therefore, all standard
methods are instantiated and appropriate project-specific methods will be created. Addi-
tionally, the links between the tasks and the methods will automatically be created in the
project.

Through the creation of a new project, numerous links between the different artifacts will
automatically be created and, hence, no user needs to be worry about them. By the auto-
matic creation of such a huge number of complex relations, a lot of time can be saved.

Figure 4.10 illustrates a list of all existing sub-projects in the right upper corner of the
view. A sub-project can be accessed and opened by double-clicking on it. In the right
bottom corner of the project view, a carousel view displaying the project-specific work-
flow is shown. Similar to the generic workflow in the standard view, the project workflow
contains different buttons for accessing the project-specific modules. The modules are
listed in 3.4.1 and described further in the following. Additionally, on the left side, all
project-relevant information is given and the two reports can directly be created within
this view.

4. Implementation of the Functional Safety Management Tool 74

Figure 4.10.: Project view that shows all project-relevant information and provides the
project-specific workflow. Additionally, it shows the list of existing sub-
projects.

Deliverable Module

The deliverable view contains all existing deliverables that are necessary within a project.
As mentioned before, they will automatically be established during the project creation. It
is not necessary to manually connect the created deliverables to the project-specific tasks
because these links will also be created automatically. The view is depicted in Figure
4.11 showing on the left side a tree which lists all existing generic workproducts with the
connected project-specific deliverables. On the right side, the deliverable table is shown.
This table contains all existing project deliverables and their associated information like
a name or whether the deliverable is either an AVL input deliverable or an external de-
liverable. An external deliverable can either be sent to the customer or received from the
customer. An AVL input deliverable means that the deliverable will not be sent to the
customer and is therefore only for internal usage. Additionally, a deliverable can be set
as safety-relevant deliverable but does not have to. Furthermore, a deliverable contains
a description field and a field where the path to the deliverable can be inserted. For the
deliverables, also a completed flag exists which indicates whether the deliverable is already
available and reviewed. Besides the linkage feature, this view allows the creation of new
deliverables. If two technical safety concepts are needed in a specific project, only one
will automatically be created during the project creation. Now, a new deliverable shall
be created with the appropriate name. The new deliverable shall then be linked to the
according workproduct by dragging and dropping the deliverable from the right table into
the left tree. After that, two deliverables are linked to one generic workproduct. It is also
possible to create a deliverable that is not linked to any workproduct. In this case, the

4. Implementation of the Functional Safety Management Tool 75

deliverable must manually be linked to an associated project task (Figure 4.14).

Figure 4.11.: The deliverable module allows the creation of project-specific deliverables
with their appropriate information and the linkage to workproducts.

Project Milestone Module

Figure 4.12.: The project milestone module shows all existing milestones with their cor-
responding information.

4. Implementation of the Functional Safety Management Tool 76

For defining project-specific milestones, this view can be used. It contains a table that
lists all existing project milestones with the appropriate properties. These properties are
the name of the milestone, the alias, an arbitrary label, the description and the deadline
of the milestone. It is also possible to define each project milestone as main milestone.
In this case this milestone is processed as master milestone and displayed in the diagram
interface agreement. These main milestones can be linked to project-specific tasks and
then defined for each mapping responsibilities between the AVL and the customer.

The project milestone table is depicted in Figure 4.12. The functionality for adding and
removing milestones is also integrated into this view. A new milestone can be created by
clicking on the defined new milestone button.

Deliverable Responsibility Module

The deliverable responsibility view is suitable for linking the existing project milestones
to different deliverables. The view is illustrated in 4.13 and shows on the left side the
deliverable tree with the connected project milestones and on the right side the existing
project milestone list. By dragging and dropping a milestone from the right tree into the
left tree, a specific project milestone can be linked to the target deliverable.

After the creation of the mapping, it is also possible to enter mapping specific values.
Hence, for each mapping between a deliverable and a project milestone an AVL responsib-
ility and customer responsibility can be selected. Furthermore, another field for entering
information for deliverables which is sent to the customer exists.

Figure 4.13.: In this module project milestones can be linked to deliverables and further-
more for these mappings responsibilities can be defined.

4. Implementation of the Functional Safety Management Tool 77

In addition, a field for entering information for deliverables which are retrieved from cus-
tomers exist too. It is also possible to add a description for each single mapping. Finally,
a mapping contains additional fields in which the version, the type and the path of the
deliverable for the linked project milestone can be stored.

Project Task Input Module

This view is very similar to the task input view (Figure 4.8) of the generic standard-specific
part. The difference is that within this view only project-specific artifacts are handled.
As it can be seen in Figure 4.14, the left list contains all project-specific tasks and at the
right side, all existing project deliverables are listed. Both lists are read-only lists, and in
this view, it is only possible to create traces between the artifacts. In contrast, the view
of the standard part contains the generic tasks and generic workproducts.

Figure 4.14.: This module allows the linkage of project-specific tasks and input or output
deliverables to project-specific tasks.

As mentioned above, if a deliverable has no connected generic workproduct, it must manu-
ally be linked to a project-specific task, which can be done in this view. The view moreover
shows the already connected deliverables which are developed during the project creation.

A deliverable can be linked either as input or output deliverable to any existing project-
specific task. Additionally, it is also possible to define input tasks for project-specific tasks.
This is only possible for tasks which are not linked to a standard-specific task because the
standard-specific task already contains this connection within the standard. The generic
connections between tasks cannot be updated in the project context.

4. Implementation of the Functional Safety Management Tool 78

Project Role Module

In the project role view (Figure 4.15) it is possible to create project-specific person role
mappings. Only the global admin or the project admin is able to create these artifacts.
First, the different organizations can be created in this view. These organizations are
global organizations and therefore visible throughout all projects. Within the view it
is also possible to create persons. Additionally, these persons are visible throughout all
projects and therefore global. Such a person has a name field, an organization field and
a description field. The organization can be selected from the above defined list and is
hence linked to the person.

Additionally, it is possible to create project-specific roles like a Functional Safety Man-
ager or a Technical Safety Developer. These roles can also have a description. These roles
are global as well and exist thus for all projects. Now, if all persons and roles of the current
project exist, they can be linked.

In the left table of the view, the project-specific mappings between the persons and
roles can be created. A new mapping can be created by selecting a specific person in the
provided drop-down list. In addition, a role must be selected from the other provided
drop-down list. By clicking the “Add Mapping” button the new project-specific mapping
is created. One important thing to mention is that one person can also have different
roles in the project. Therefore, for each mapping, a new table entry shall be created.
As mentioned before, the list of organizations, persons and roles is visible throughout all
different projects and just the mapping of them is project-specific and only visible within
one project.

Figure 4.15.: In this module global organizations, persons and project roles can be created.
Furthermore, it is possible to create a project-specific mapping of persons and
roles.

4. Implementation of the Functional Safety Management Tool 79

Tailoring Module

Tailoring the different project-specific tasks is an important step in the safety management
process. It allows the selection and deselection of different project-specific tasks for the
current project. The according view is illustrated in Figure 4.16. If a task is disabled for
the current project, a well-argued rationale shall be inserted. Furthermore, it is possible to
also disable entire groups of tasks by disabling the associated activity and to disable whole
clusters. The rationale that must be inserted by disabling an element can be reused by
all existing rationales. Disabling an element opens a pop-up window that allows entering
a rationale which is automatically recommended based on already existing rationales.
Furthermore, it is also possible to select existing rationales from the list that is shown in
the pop-up window. By disabling an activity or a cluster, the rationale will be linked to
the selected activity or cluster and not to the single project-specific tasks. The view is
constructed as a tree which contains the structure defined by the safety lifecycle. The first
step in this view is now to tailor the specific project tasks before additional properties can
be inserted for these tasks. If an item is disabled, a red cross is shown on the left side.
Additionally, the foreground of the font will turn gray. If the item is enabled, a green tick
appears and the existing properties can be updated.

Figure 4.16.: This module allows the tailoring of the existing project-specific tasks and the
insertion of additional task specific information.

The view additionally allows the creation of new project-specific tasks. These tasks are
all together grouped in a particularly defined activity container which is also grouped
within a separately defined cluster container. If a new project-specific task is created, the
provided second name field can be used to enter a specific name. The standard name field
is read-only and the name is inherited from the generic standard-specific tasks.

4. Implementation of the Functional Safety Management Tool 80

DIA Module

After the tailoring of the project-specific tasks, the development interface agreement can
be created. This view is depicted in 4.17 and contains a table that represents the safety
lifecycle which consists of all relevant project-specific tasks. Furthermore, the table shows
all connected clusters and activities at the beginning of each row. Additionally, connected
input and output deliverables are stored in separate columns in the table.

In this view it is possible to select the responsibilities for a project-specific task and
project main milestone mapping. For each existing main milestone, a group column which
contains two child columns exists. Each of these group columns contain one column for the
AVL responsibility and one column for the customer responsibility. The responsibilities
are provided as drop-down lists and are based on the AVL RASI matrix (2.1.2).

For each project main milestone a different RASI can be selected. There are also three
additional columns in this table. The first one is the “Customer to AVL” column. For all
existing main milestones, this column contains an individual row where additional inform-
ation is provided. The same exists for the “AVL to Customer” column. Finally, a specific
column for adding a description exists. All these columns are created dynamically.

The view cannot be updated directly. For updating the information for a specific mapping,
an update window can be opened by right-clicking on a specific project task and selecting
edit. If the development interface agreement is completed, it is possible to export the
entire information with the provided report generator.

Figure 4.17.: This module allows the generation of a development interface agreement.
This DIA shows the project-specific tasks with corresponding information.
Furthermore, the linkage to the project main milestones exists and for these
mappings responsibilities can be defined.

4. Implementation of the Functional Safety Management Tool 81

Review Module

The last provided module is responsible for creating and planning reviews. Reviews
can be done on deliverables for all specific milestones. Figure 4.18 illustrated the existing
view. It contains a table which lists all existing project deliverables. Furthermore, the
table shows all connected project milestones. For each of these connected project mile-
stones, an arbitrary number of reviews can be created.

By right-clicking on a specific milestone, a new review can be created. A new window pops
up the information for creating a new review can be fed to this window. First, a specific
person must be selected. Furthermore, a description and a date can be added. This date
field can for example be used to add a specific date when the review shall be finished. It
is very important to know that the review automatically inherits the deadline from the
project milestone. Therefore, the date in the review can be used as optional field. It is
also possible to enter the date after the review was performed.

If the review is completed, the path to the created review must be inserted into the
predefined path field and the completed flag can be selected by a project admin. This in-
formation is very important for the safety case and only a project admin or global admin
is allowed to select this flag. If all reviews are finished, the report generator can be used
for extracting the preliminary process-based safety case.

Figure 4.18.: The review module allows the creation of reviews for each deliverable within a
connected milestone. A review consists of a reviewer, the path to the review,
a specific date, a description and a is completed flag.

4. Implementation of the Functional Safety Management Tool 82

4.2.3. Report Generator

For getting the important information out of the tool, a report generator is developed and
integrated. The report-generated framework is based on the “Open XML2” library which
allows the manipulation of office-based documents like Microsoft Office Word files.

Existing Reports:

• Development Interface Agreement Report

• Preliminary Process-Based Safety Case Report

The developed report generator provides a framework for taking existing templates and
adding dynamic information to these files. Template documents are stored on the server
and can within the tool directly be brought to the client. Therefore, a window is created
which lists all existing templates of the server. By selecting a specific template, a report
can be generated. It is also possible to create separate templates by downloading an ex-
isting template from the server and updating this template with project-specific content.
Thereafter, a global admin or project admin can upload the new template to the server.
The round-trip can be conducted with the existing tool environment and needs no manual
copying of files between the client and the server.

For exporting a report, two different possibilities exist. The first one is to open the Report
generator by clicking “Report|Generate DIA” or “Report|Generate Safety Case” in the
menu bar. A new window appears where a specific project template can be selected and
thereafter the specific report is generated.

Another possibility is to open the project-specific view directly by double-clicking on
a specific project in the main screen (Figure 4.2). In this project overview, two buttons
for creating the development interface agreement and the process-based safety case exist.
Both buttons are listed in the left bottom corner of the view.

The reports will automatically be opened after the successful creation and the report
is saved in an arbitrary location. The created report is a Microsoft Office Word file and
contains one the one side the predefined static content and on the other side the project-
specific information that is needed for the specific report.

The report generator is build up with a powerful API that allows the simple creation of
new reports.

2https://msdn.microsoft.com/de-de/library/office/bb448854.aspx

https://msdn.microsoft.com/de-de/library/office/bb448854.aspx

4. Implementation of the Functional Safety Management Tool 83

4.3. Unit Testing Framework

Testing is an important step during the development of a new tool. This section describes
the created testing framework which is based on unit tests and contains unit tests for the
different database manipulation and database fetching scenarios. To illustrate the created
test framework, the tests of the activity entity are depicted in more detail.

The Visual Studio tool already provides a testing framework3 named “Test Explorer” (Fig-
ure 4.19) for directly creating and running unit tests in the Visual Studio tool. Therefore,
as a first step, an individual unit test project that is responsible for unit tests is created.
This project needs all other created tool assemblies as inputs for testing them.

Furthermore, for testing database scenarios, a specific empty database for executing
the test cases is created. This database contains the same structure as the database that
is used within the tool environment. A particular database is needed because otherwise
it is very difficult to test the expected results. If the database is always empty before
running a test, the expected results can be defined more easily. Because the test framework
contains an individual database, it also contains an individual database configuration for
the object relational mapping that is responsible for the data exchange whit the database.
This configuration contains further properties for evaluating and inspecting the created
database statements during the data exchange. Therefore, it is really simple to see which
database statements are created within the ORM. Such a property cannot be enabled in
a productive environment because by activating this property, the tool needs much more
time for displaying this database statement. Therefore, this feature is very time-consuming
and slows down the system.

Figure 4.19.: Cutout of existing unit tests for the activity entity

3https://www.visualstudio.com/en-us/get-started/code/create-and-run-unit-tests-vs

https://www.visualstudio.com/en-us/get-started/code/create-and-run-unit-tests-vs

4. Implementation of the Functional Safety Management Tool 84

For each existing database entity, the provided testing architecture contains an indi-
vidual test class that is derived from a test factory base class. A cutout of the class
diagram for the unit testing architecture is illustrated in Figure 4.20. The base class con-
tains two main methods. One method is called each time before entering a single test case
and the other one is called after the completion of each single test case. The base class
also contains some helper classes that allow a simple creation of all existing entities. This
is very helpful because in most cases, each test contains more than three entities.

Figure 4.20.: Cutout of the existing testing framework class diagram

The first provided base class method creates the data factory which is responsible for
creating the sessions that are needed for accessing the data manipulation methods provided
by the ORM. Additionally, it creates a valid user with a correspondent role in order to
access the defined WCF service methods.

The second method that is called after each single test case is completed, closes the
before created session and deletes all data from the test database. It is very important to
clear the entire database after each unit test in order to guarantee a valid testing frame-
work that can be checked with assertions.

Listing 4.2 shows a simple existing unit test where a new activity is created for a specific
standard. After the creation of the activity and standard they are mapped with the ‘stand-
ardactivitymapping’ entity. At the end, the necessary checks (“Asserts”) are introduced in
order to guarantee that the unit test passes. A second unit test is depicted in Listing 4.1.
This test case illustrates a negative test case and checks whether an exception is thrown
by creating an activity without defining a specific activity name.

[Test]
public void Inval idActivityWithoutNameTest ()
{

var a c t i v i t y = new Act iv i ty ()
{

OrderNumber = 1
} ;

// we e x p e c t an e x c e p t i o n
Assert . Throws<FaultException<ProcessFault >>(() => f smServ i c e .

SaveItem (a c t i v i t y)) ;
}

Listing 4.1: Negative unit test for creating a new activity

4. Implementation of the Functional Safety Management Tool 85

[Test]
public void ValidActivityWithStandardMappingTest ()
{

var a c t i v i t y = GetTestAct iv i ty () ; // method i s l o c a t e d in base c l a s s
var a c t i v i t y I d = f smServ i c e . SaveItem (a c t i v i t y) ;

var standard = GetTestStandard () ;
var standardId = f smServ i c e . SaveItem (standard) ;

var standardActivityMapping = new Standardact iv itymapping ()
{

Act iv i ty = ac t i v i t y ,
Standard = standard

} ;

var standardActivityMappingId = 0 ;
i f (a c t i v i t y . AddStandardActivityMapping (standardActivityMapping))

standardActivityMappingId = f smServ i c e . SaveItem (standardActivityMapping) ;

Assert . AreEqual (1 , f smSe rv i c e . GetAllItems (En t i t i e s . Ac t iv i ty) . Count) ;
Assert . AreEqual (1 , f smSe rv i c e . GetAllItems (En t i t i e s . Standard) . Count) ;
Assert . AreEqual (1 , f smSe rv i c e . GetAllItems (En t i t i e s . Standardact iv itymapping) . Count) ;

Assert . AreEqual (a c t i v i t y , f smSe rv i c e . GetItemById (En t i t i e s . Act iv i ty , a c t i v i t y I d)) ;
Assert . AreEqual (standard , f smSe rv i c e . GetItemById (En t i t i e s . Standard , standardId)) ;
Assert . AreEqual (standardActivityMapping , f smSe rv i c e . GetItemById (En t i t i e s .

Standardactivitymapping , standardActivityMappingId)) ;

Assert . AreEqual (standardActivityMapping , ((Act iv i ty) f smSe rv i c e . GetItemByName(En t i t i e s . Act iv i ty
, ”Act iv i ty ”)) . Standardact iv i tymappings [0]) ;

Assert . AreEqual (a c t i v i t y , ((Act iv i ty) f smSe rv i c e . GetItemByName(En t i t i e s . Act iv i ty , ”Act iv i ty ”)) .
Act iv i tyc lu s t e rmapp ings [0] . Ac t iv i ty) ;

}

Listing 4.2: Creating a new activity with a standard mapping test

Unit testing is a very time-consuming task, but a well-defined testing framework is very
helpful and essential for developing a tool environment with a huge number of modules.
Only creating valid unit test cases is insufficient and therefore also negative unit test cases
should be created. Once a stable testing framework is established, it is very helpful for
integrating new features or for updating already existing modules. In summary, it can be
said that a system without a well-defined and working testing framework cannot and shall
not be used within a productive environment.

The created testing framework in this thesis already contains 34 unit tests only for the
activity entity. Because 51 different entities exist within the tool environment, the number
of existing test cases is very high. In the following, some example activity test cases are
listed.

• Valid activity test

• Valid activity with cluster mapping test

• Valid activity with task mapping test

• Valid activity with rationale mapping test

• Invalid activity with too-long name test

• Invalid activity without name test

• Invalid activity without order number test

• Valid activity with connected clusters remove cluster test

• ...

4. Implementation of the Functional Safety Management Tool 86

The conclusion is that testing is a mature task during the development of every applic-
ation or system. With a well-defined testing framework, it is possible to reduce the errors
and to avoid problems. Furthermore, if a new developer joins the team and starts working
on a well-tested project, it will help him or her to get an overview of the tool more easily.
In addition, the period of vocational adjustment will significantly be shorter.

5. Conclusion and Future Work

5.1. Conclusion

An important challenge for the implementation of functional safety in an organizational
structure is to ensure consistency and completeness of the safety lifecycle and the asso-
ciated workproducts and tasks. Consistency is an essential factor for implementing an
efficient and effective safety management within an organization and projects.

This thesis described the design and implementation of a novel collaborative safety man-
agement tool that was developed in cooperation with the AVL List GmbH. The provided
tool allows the creation of standard-specific lifecycles and the creation of derived projects.
Such projects inherit a safety lifecycle defined by the relevant standard. Furthermore, the
projects automatically receive all necessary links to the standard-specific artifacts. Ad-
ditionally, a report generator allows users to automatically generate reports such as the
development interface agreement or the process-based safety case generation.

The provided tool environment consists of a client-server based architecture which com-
municates via defined WCF services. Furthermore, the server contains a MySQL database
in the back-end and an object relational mapping library that is responsible for the entire
data exchange with the database. The tool environment also allows multiple users to work
concurrently on the same projects. With an integrated broadcasting mechanism, the users
can automatically be notified if some changes within projects occur. Therefore, the tool
environment always shows consistent and current data.

In addition, the tool environment automatically tracks data changes by an integrated
auditing mechanism. This mechanism further allows the access of historical data and
all changes which may occur during a project lifecycle. Furthermore, an integrated user
management allows the definition of different user permissions and therefore the precise
definition of the tool user’s responsibilities.

The main benefits of the provided tool architecture are its responsibility for the traceab-
ility between the different artifacts and supporting consistency and completeness of the
provided artifacts. Additionally, by providing a well-defined database architecture with
adequate regulations, the tool avoids redundant information and provides a robust collab-
orative working framework. The integrated report generator allows the quick creation of
large documents and, hence, the tool environment helps reduce time and costs by avoiding
of manual report creations.

87

5. Conclusion and Future Work 88

5.2. Future Work

The provided tool implementation in this thesis serves as a proof of concept for a novel
collaborative safety management tool. The tool already allows the generation of a generic
standard-specific and a project-specific part. Furthermore, it contains a framework for
saving data changes throughout the entire project lifecycle. A first improvement of the
existing tool implementation could be the enhancement of the already existing architecture
with the ability to directly extract historical data from the tool and to further compare
these data with the other versions. In addition, the existing report generator could be
used to export these historical data and include them in specific provided reports.

Another enhancement could be the extension of the already existing wizards which allow
the creation of new projects and standards based on existing information contained in the
database. These wizards could be further improved by integrating a mechanism where it is
possible to step by step go through an existing project or standard and select all artifacts
which should be taken over into the new project or standard. Hence, in the future, it
could be possible to derive a new project from an already existing one with only selecting
the artifacts which are needed for the new project. The same mechanism could also be
integrated into the standard part.

The developed safety management tool already contains a report generator which allows
the creation of two different project-specific reports. These reports are the development
interface agreement report and the process-based safety case report. The report generator
contains a powerful API which allows the simple implementation of new report generators.
Therefore, another improvement can be the direct generation of new reports from the
provided tool. A new report could be for example the safety plan, the functional safety
status report, the review report or a deliverable overview. It would also be possible to
extract standard-specific artifacts for particular reports.

The term safety case was discussed in this thesis and an according report for a process-
based safety case can be directly generated from the tool. The safety case generation
could be further improved by integrating the possibility to directly create a graphical goal
structure within the provided tool using GSN. Therefore, a graphical user interface could
be developed which allows the generation of graphical safety cases by providing graphical
elements and their relations.

As AVL List GmbH wants to start using the developed tool a tool qualification is needed.
The goal of this tool qualification is to show that the tool does not produce any errors
which can directly spread out to the system or product. Therefore, the confidentiality
of the entire tool architecture shall be given by providing a tool qualification throughout
the entire process. Currently, this is done by dumping the database state and checking
the exported artifacts against conditioned historical artifacts to ensure consistency. In
the future, a mechanism for showing tool qualification throughout the entire process of
using the tool directly shall be introduced. By providing a use case in the tool, this tool
qualification shall be completed by directly generating a report of the tool qualification
from the tool. This report could show the required tool confidence level [12].

As can be seen, there are some helpful enhancements and improvements of the provided
safety management tool. Therefore, this work could be the baseline of new topics for
theses which can contribute to future work on an even better safety management tool.

A. AVL defined User Requirements

The following document shows the AVL defined user requirements for the novel Safety
Management Tool that was developed during this thesis.

89

Author: Obendrauf, Rene Paul AVL/AT Filename: avl_user_requirements.docx
Created:06.03.2016 confidential

Maintenance of Standard Safety Lifecycles

It shall be possible to define and maintain safety lifecycles of standards in terms of

 name

 version

 clusters

 activities

 tasks

 methods

 workproducts (prescribed by the safety standard)

 normative requirements

 safety levels (e.g. ASIL, SIL, AgPL)

For each safety lifecycle of a standard it shall be possible to map

 activities to clusters

 tasks to activities

 methods to tasks

 tasks to (predecessor) tasks

 (input or output) workproducts to tasks

 normative requirements to tasks

A task shall inherit all the output workproducts of its predecessor tasks as input workproducts.

It shall be possible to define the sequence of

 clusters

 activities

 tasks

Maintenance of Project-Specific Safety Lifecycles

It shall be possible to define and maintain projects

If shall be possible to define for projects

 sub projects

 project milestones

 project-specific roles

Project milestones shall be denotable by

 name

 alias name

 date

 main milestone flag (see also DIA)

It shall be possible to define the project-specific safety lifecycle in terms of

 project-specific tasks

 deliverables

90

Author: Obendrauf, Rene Paul AVL/AT Filename: avl_user_requirements.docx
Created:06.03.2016 confidential

Deliverables shall be assignable to

 (sub) projects

 project milestones

 workproducts

It shall be possible to exclusively declare deliverables as

 AVL internal

 from customer

 to customer

It shall be possible to declare deliverables as

 not safety related

If a deliverable is not assigned to a workproduct then it shall be assignable to a project-specific

task

Project-specific tasks shall be definable in terms of

 task

 (sub) project

 methods

 deliverables

It shall be possible to define organizations in terms of

 organization name

 description

It shall be possible to define roles in terms of

 role name

 description

It shall be possible to define persons in terms of

 name

 organization

 description

It shall be possible to create project-specific roles in terms of

 role

 person

It shall be possible to define reviews in terms of

 project-specific roles (reviewers)

 deliverable

 project milestone

 link to protocol

 completed flag

It shall be mandatory to map textual rationales on the deselection (tailoring) of

 clusters

 activities

 project-specific tasks

91

Author: Obendrauf, Rene Paul AVL/AT Filename: avl_user_requirements.docx
Created:06.03.2016 confidential

Potentially selectable textual rationales shall be automatically recommended based on previous

rationales.

It shall be possible to define the development interface between customer and AVL in terms of

 main milestones

 project-specific tasks

 responsibility (R/A/S/I,-)

It shall be possible to define the deliverable responsibilities of AVL and customer in terms of

 project milestones

 responsibility (R/A/S/I,-)

 link to protocol

 completed flag

Baselining and Branching

It shall be possible to baseline standard safety lifecycles

It shall be possible to baseline projects

Systematic Reuse

Wizards shall be available which support the creation of a new projects

Wizards shall be available which support the creation of a new standards

Document Export

It shall be possible to export a DIA document for the sub projects listing

 project-specific tasks

 responsibility (R/A/S/I,-)

 deliverables

 main milestones

 review status (completed/not completed)

It shall be possible to export a Safety Case document for the sub projects listing

 project

 project-specific roles

 project-specific tasks

 methods

 deliverables

 deliverable status (completed/not completed)

 reviews

 review status (completed/not completed)

The export of documents shall be based on templates which contain a dedicated space for

project-specific information (chapters, text, figures, tables etc.).

92

Author: Obendrauf, Rene Paul AVL/AT Filename: avl_user_requirements.docx
Created:06.03.2016 confidential

User Management

Users shall not be able to view or change any contents unless login credentials are provided.

It shall be possible to manage the users of the tool in terms of

 user Ids

 user name

 user rights (global admin, project admin, regular user)

 project assignments

 access rights on project level (view, modify)

The global admin shall be able to

 create/modify projects

 create/modify users

 assign user rights (project admin, regular user) to projects

 create/modify safety lifecycles

 define subprojects and milestones

 assign access privileges to regular users

 change all other data on project level

The project admin shall be able to

 define subprojects and milestones

 assign access privileges to regular users

 change all other data on project level

The regular user shall be able to

 change all other data on project level (depending on access privileges)

Multi User Management

It shall be possible for users with ‘modify’ access rights to lock/unlock projects.

If a project is locked and the project is modified then the user interfaces all active tool users shall

be updated.

User Interface

There shall be the following separate administration UIs (user interfaces)

 workproducts UI

o (for defining workproducts)

 methods UI

o (for defining methods)

 requirements UI

o (for defining requirements and assigning requirements to tasks)

 standard safety lifecycle UI

o (for defining the clusters, activities, tasks and assigning workproducts)

 project role UI

o (for defining organizations, persons, roles and project-specific roles)

 project UI

93

Author: Obendrauf, Rene Paul AVL/AT Filename: avl_user_requirements.docx
Created:06.03.2016 confidential

o (for project, project milestones, sub projects)

 tailoring UI

o (for defining and tailoring project-specific tasks)

 deliverable UI

o (for defining deliverables and assigning deliverables to workproducts)

 DIA UI

o (for defining responsibilities (R/A/S/I/-) for project-specific tasks)

 deliverable responsibilities UI

o (for assigning project milestones to deliverables and defining responsibilities

(R/A/S/I/-) for deliverables)

 task inputs/outputs UI

o (for defining input tasks and assigning workproducts to tasks)

 project-specific task UI

o (for project-specific input tasks and assigning deliverables)

 review UI

o (for defining and assigning reviews)

 user management UI

o (to manage users, user rights and access privileges)

There shall be the following separate read-only UIs (user interfaces)

 standard safety lifecycle read-only UI

 project-specific safety lifecycle read-only UI

The UI shall support information consistency by avoiding redundant inputs of identical information.

94

B. WPF – XAML Example

Figure B.1 shows a simple graphical user interface created with the WPF library and
furthermore Figure B.2 depicts the appropriate XAML file.

Figure B.1.: An example graphical user interface created with the WPF library

Figure B.2.: Associated XAML file of the above illustrated graphical user interface

95

C. EER Diagram

The EER diagram is an advanced database modeling tool which allows the graphical
creation and adaption of database related information. This extension is already integ-
rated into the MySQL workbench tool. Within this tool, tables can be simple created by
dragging and dropping the elements from the toolbox onto the specific database diagram.
Furthermore, attributes can be added to these tables in order to specify the detailed table
properties. If the properties are defined, the tables can be linked together with different
kinds of relationships as defined in the following.

• 1:1 Relationship - In a one-to-one relationship one entity is connected to exactly
one other entity in the database (C.1).

• 1:n Relationship - In a one-to-many or many-to-one relationship one entity is
connected to more than one other entities (C.2). This relation is additional named
collection mapping or child parent mapping because the first entity holds a list of
second entities.

• m:n Relationship - In a many-to-many relationship two entity tables are connected
within an own mapping table. In such a case each entity can hold a list of other
entities (C.3).

Figure C.1.: An example one-to-one mapping inside an EER Diagram

96

C. EER Diagram 97

Figure C.2.: An example one-to-many mapping inside an EER Diagram

Figure C.3.: An example many-to-many mapping inside an EER Diagram

D. Example NHibernate Entity
Configuration

Listing D.1: NHibernate task entity configuration

1 <?xml version=”1 .0 ” encoding=”utf−8”?>
2 <hibernate−mapping namespace=”NHibernateHelper ” assembly=”

NHibernateHelper ” xmlns=”urn :nh ibernate−mapping−2.2 ”>
3 <c l a s s name=”Task ” ta b l e=” ‘ task ‘ ” >
4 <id name=”Id ” a c c e s s=”property ” column=” ‘ ID ‘ ”>
5 <genera to r c l a s s=”nat ive ” />
6 </ id>
7 <property name=”Name” type=”St r ing ” column=” ‘Name‘ ” l ength=”255

” not−n u l l=”true ”/>
8 <property name=”OrderNumber ” type=”Int32 ” column=” ‘ OrderNumber ‘

” />
9

10 <bag name=”Taskact iv itymappings ” i n v e r s e=”true ” cascade=”a l l−
de l e t e−orphan ” lazy=”true ”>

11 <key column=” ‘ TaskID ‘ ” />
12 <one−to−many c l a s s=”Taskact ivitymapping ” />
13 </bag>
14

15 <bag name=”P r o j e c t t a s k s ” cascade=”none ” i n v e r s e=”true ” lazy=”true
”>

16 <key column=” ‘ TaskID ‘ ” />
17 <one−to−many c l a s s=”Pro j e c t ta sk ” />
18 </bag>
19

20 <bag name=”Standardtaskmappings ” i n v e r s e=”true ” cascade=”a l l−
de l e t e−orphan ” lazy=”true ”>

21 <key column=” ‘ TaskID ‘ ” />
22 <one−to−many c l a s s=”Standardtaskmapping ” />
23 </bag>
24 </ c l a s s>
25 </ hibernate−mapping>

98

D. Example NHibernate Entity Configuration 99

Listing D.2: NHibernate task class that is used for the associated database table

1 using System ;
2 using System . C o l l e c t i o n s . Generic ;
3 using System . Runtime . S e r i a l i z a t i o n ;
4

5 namespace NHibernateHelper
6 {
7 [S e r i a l i z a b l e]
8 [DataContract (I sRe f e r ence = true)]
9 public p a r t i a l class Task : Mappings . Contract . Item

10 {
11 public Task ()
12 {
13 Taskact iv itymappings = new List<Taskactivitymapping >() ;
14 P r o j e c t t a s k s = new List<Pro jec t task >() ;
15 Standardtaskmappings = new List<Standardtaskmapping >() ;
16 }
17

18 [DataMember]
19 public virtual string Name { get ; s e t ; }
20

21 [DataMember]
22 public virtual int ? OrderNumber { get ; s e t ; }
23

24 [DataMember]
25 public virtual IL i s t<Taskactivitymapping>

Taskact iv itymappings { get ; s e t ; }
26

27 [DataMember]
28 public virtual IL i s t<Pro jec t task> P r o j e c t t a s k s { get ; s e t ;

}
29

30

31 [DataMember]
32 public virtual IL i s t<Standardtaskmapping>

Standardtaskmappings { get ; s e t ; }
33

34 // orm he lpe r methods
35 public virtual bool AddTaskactivitymapping (

Taskact ivitymapping taskact iv i tymapping)
36 {
37 i f (! this . Taskact iv itymappings . Contains (

taskact iv i tymapping))
38 {
39 taskact iv i tymapping . Task = this ;
40 this . Taskact iv itymappings . Add(taskact iv i tymapping) ;
41 return true ;
42 }
43 return fa l se ;
44 }
45

D. Example NHibernate Entity Configuration 100

46 public virtual bool RemoveTaskactivitymapping (
Taskact ivitymapping taskact iv i tymapping)

47 {
48 i f (this . Taskact iv itymappings . Contains (

taskact iv i tymapping))
49 {
50 this . Taskact iv itymappings . Remove(

taskact iv i tymapping) ;
51 return true ;
52 }
53 return fa l se ;
54 }
55

56 public virtual bool AddStandardtaskmappings (
Standardtaskmapping standardtaskmapping)

57 {
58 i f (! this . Standardtaskmappings . Contains (

standardtaskmapping))
59 {
60 standardtaskmapping . Task = this ;
61 this . Standardtaskmappings . Add(standardtaskmapping) ;
62 return true ;
63 }
64 return fa l se ;
65 }
66

67 // e q u a l i t y and hash code overr idden methods
68 private int ? hashCode ;
69

70 public override int GetHashCode ()
71 {
72 i f (hashCode . HasValue)
73 return hashCode . Value ;
74

75 var t r a n s i e n t E n t i t y = Id == 0 ;
76 i f (t r a n s i e n t E n t i t y)
77 {
78 hashCode = base . GetHashCode () ;
79 return hashCode . Value ;
80 }
81 return Id . GetHashCode () ;
82 }
83

84 public override bool Equals (object obj)
85 {
86 var other = obj as Task ;
87 i f (other == null)
88 return fa l se ;
89

90 var t h i s I s T r a n s i e n t = Id == 0 ;
91 var o the r I sTrans i en t = other . Id == 0 ;
92

D. Example NHibernate Entity Configuration 101

93 i f (t h i s I s T r a n s i e n t && othe r I sTrans i en t)
94 i f (ReferenceEquals (this , o ther))
95 return true ;
96

97 i f (Id == 0 | | other . Id == 0)
98 return Name == other .Name && OrderNumber == other .

OrderNumber ;
99

100 return Id == other . Id && Name == other .Name &&
OrderNumber == other . OrderNumber ;

101 }
102

103 public stat ic bool operator ==(Task lhs , Task rhs)
104 {
105 return Equals (lhs , rhs) ;
106 }
107

108 public stat ic bool operator !=(Task lhs , Task rhs)
109 {
110 return ! Equals (lhs , rhs) ;
111 }
112 }
113 }

E. Infragistics Controls and Components

• XamBusyIndicator

• Drag and Drop Framework

• Excel Engine

• Math Library

• Persistence Framework

• Reporting

• Resource Washer

• Syntax Parsing Engine

• Theme Manager

• Undo Redo Framework

• Word Engine

• XamBarcode

• XamBarcodeReader

• XamBulletGraph

• XamCalculationManager

• XamCalender

• XamCarousel

• XamCarouselListBox

• XamCarouselPanel

• XamColorPicker

• XamComboEditor

• XamContextMenu

• XamDataCards

• XamDataChart

• XamDataGrid

• XamDataPresenter

• XamDataTree

• XamDiagram

• XamDialogWindow

• XamDockManager

• XamDoughnutChart

• XamFormulaEditor

• XamFunnelChart

• XamGantt

• XamGeographicMap

• XamGrid

• XamInputs

• XamLinearGauge

• XamMap

• XamMenu

• XamMonthCalender

• XamMultiColumnComboEditor

• XamNetworkNode

• XamOrgChart

• XamOutlookBar

• XamPieChart

• XamPivotGrid

• XamPropertyGrid

102

E. Infragistics Controls and Components 103

• XamRadialGauge

• XamRadialMenu

• XamRibbon

• XamRichTextEditor

• XamSchedule

• XamSegmentedDisplay

• XamSlider

• XamSparkline

• XamSpellChecker

• XamSpreadsheet

• XamSyntaxEditor

• XamTabControl

• XamTagCloud

• XamTileManager

• XamTimeline

• XamTreeGrid

• XamTreemap

• XamZoombar

Bibliography

[1] ISO - International Organization for Standardization. ISO 26262 Road vehicles Func-
tional Safety Part 1 - Vocabulary, 2011.

[2] ISO - International Organization for Standardization. ISO 26262 Road vehicles Func-
tional Safety Part 2 - Management of functional safety, 2011.

[3] TP Kelly. Arguing safety-a systematic approach to safety case management. 1998.
Department of computer science, University of York.

[4] Habli Ibrahim and Kelly Tim. Process and Product Certification Arguments - Getting
the Balance Right. ACM, 2006.

[5] Tim Kelly. A Systematic Approach to Safety Case Management. 2004.

[6] ISO - International Organization for Standardization. ISO 26262 Road vehicles Func-
tional Safety Part 3 - Concept phase, 2011.

[7] ISO - International Organization for Standardization. ISO 26262 Road vehicles Func-
tional Safety Part 9 - ASIL-oriented and safety-oriented analyses, 2011.

[8] Thomas Claudius Huber. Windows Presentation Foundation 4.5, volume 3.0. Galileo
Press, 2013.

[9] ISO International Organization for Standardization. Iso 26262 road vehicles functional
safety part 1-10, 2011.

[10] ISO International Organization for Standardization. Iec 61508 functional safety of
electrical/ electronic / programmable electronic safety-related systems.

[11] Peter KAFKA. The Automotive Standard ISO 26262, the innovative driver for en-
hanced safety assessment & technology for motor cars. Elsevier Ltd, 2012.

[12] ISO - International Organization for Standardization. ISO 26262 Road vehicles Func-
tional Safety Part 8 - Supporting processes, 2011.

[13] Philip Stirgwolt. Effective management of functional safety for iso 26262 standard.
IEEE, 2013.

[14] Krammer Martin, Armengaud Eric, and Bourrouilh Quentin. Method Library Frame-
work for Safety Standard Compliant Process Tailoring. 37th EUROMICRO Confer-
ence on Software Engineering and Advanced Applications, IEEE, 2011.

104

Bibliography 105

[15] Ulf Wilhelm, Susanne Ebel, and Alexander Weitzel. Handbuch Fahrerassistenz-
systeme: Grundlagen, Komponenten und Systeme für aktive Sicherheit und Komfort,
chapter Funktionale Sicherheit und ISO 26262, pages 85–103. Springer Fachmedien
Wiesbaden, Wiesbaden, 2015.

[16] Löw Peter, Pabst Roland, and Petry Erwin. Funktionale Sicherheit in der Praxis,
volume 1.0. dpunkt.verlag, 2010.

[17] ISO - International Organization for Standardization. ISO 26262 Road vehicles Func-
tional Safety Part 10 - Guideline on ISO26262, 2011.

[18] Timothy Patrick Kelly. Arguing Safety - a Systematic Approach to Managing Safety
Cases. PhD thesis, University of York, 1998.

[19] Gsn community standard version 1, 2011.

[20] Matsuno Yutaka and Yamamoto Shuichiro. An implementation of gsn community
standard. San Francisco, CA, USA, 2013. ASSURE 2013, IEEE.

[21] ISO - International Organization for Standardization. ISO 26262 Road vehicles Func-
tional Safety Part 4 - Product development at the system level, 2011.

[22] ISO - International Organization for Standardization. ISO 26262 Road vehicles Func-
tional Safety Part 5 - Product development at the hardware level, 2011.

[23] ISO - International Organization for Standardization. ISO 26262 Road vehicles Func-
tional Safety Part 6 - Product development at the system software level, 2011.

[24] ISO - International Organization for Standardization. ISO 26262 Road vehicles Func-
tional Safety Part 7 - Production and operation, 2011.

[25] Armengaud Eric, Bourrouilh Quentin, Griessing Gerhard, Helmut Martin, and
Reichenpfader Peter. Using the CESAR Safety Framework for Functional Safety
Management in the Context of ISO 26262. EMBEDDED REAL TIME SOFTWARE
AND SYSTEMS, 2012.

[26] Thomas Wahl Ajitha Rajan, editor. CESAR - Cost-efficient Methods and Processes
for Safety-relevant Embedded Systems, volume 1. Springer Vienna, 2013.

[27] I.J. Popplewell N. Crompton. Integrated Functional Safety Management for Software
to achieve Functional Safety throughout the Lifecyce Phases. System Safety. IEEE,
2010.

[28] IEC61511 FUNCTIONAL SAFETY - SAFETY INSTRUMENTED SYSTEMS FOR
THE PROCESS INDUSTRY SECTOR, 2004.

[29] Software and Systems Process Engineering Meta-Model, 2008.

[30] Barbara Gallina. A Model-driven Safety Certification Method for Process Com-
pliance. International Symposium on Software Reliability Engineering Workshops,
IEEE, 2014.

Bibliography 106

[31] Palin Rob, Ward David, Habli Ibrahim, and Rivett Roger. Iso 26262 safety cases:
Compliance and assurance. IEEE, 2011.

[32] Origin Consulting York Limited. GSN Community Standard Version 1. online, 2011.

[33] Rene Obendrauf. Software architecture of a collaborative functional safety manage-
ment tool environment, February 2016.

[34] Pröll Stefan, Zangerle Eva, and Gassler Wolfgang. MYSQL - Das umfassende Hand-
buch, volume 3. Rheinwerk Verlag, 2015.

[35] Suhas Chatekar. Learning NHibernate 4. ht-
tps://bitbucket.org/RogerKratz/nhibernate.envers, 2015.

	Introduction
	Motivation
	Background and relation to AVL
	Objectives
	Outline of the thesis

	Related Work and Context
	ISO26262 – the Automotive Functional Safety Standard
	V-Model
	Terms and Definitions
	ISO26262 Structure

	Related Work
	Safety Management
	Process-based Safety Case

	Existing Functional Safety Management Tools
	ENCO Safety Office
	Vector PREEVisison

	Design of the Functional Safety Management Tool
	Requirements
	User Requirements
	Database Requirements
	Tool-specific Requirements
	Conceptual Formulation

	Common Technical Concepts
	WPF – Windows Presentation Foundation
	WCF – Windows Communication Foundation
	RDBMS – Relational Database Management System
	Infragistics
	ORM – Object Relational Mapping

	Tool-specific Concepts and Design
	Client-Server Concepts
	Client Concepts
	Server Concepts

	Collaborative Safety Management Tool Architecture
	Safety Management Tool Parts
	Safety Management Tool Processes
	Safety Management Tool – Report Generator
	Process-based Safety Case Design

	Software Architecture
	Client Software Architecture
	Server Software Architecture

	Implementation of the Functional Safety Management Tool
	External Tools and Libraries
	Tool-Chain

	Implementation of the collaborative Safety Management Tool Environment
	Standard-Specific Part
	Project-Specific Part
	Report Generator

	Unit Testing Framework

	Conclusion and Future Work
	Conclusion
	Future Work

	Appendix AVL defined User Requirements
	Defined AVL User Requirements

	Appendix WPF – XAML Example
	Appendix EER Diagram
	Appendix Example NHibernate Entity Configuration
	Appendix Infragistics Controls and Components
	Bibliography

