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Abstract 

In the pharmaceutical industry size or density based segregation of dry powders can be critical 

with respect to product quality. To be able to determine the segregation tendency of a powder 

(or a powder blend) in a certain industrial application, computer simulations have become 

more and more important. Thus, the development of accurate numerical models is essential 

for the reliable prediction of the segregation tendency of a given particulate system. 

First, we investigate the rheology of dense polydisperse cohesive granular matter using the 

Discrete Element Method (DEM). While the rheology of the cohesive powder can be studied 

in the widely used shear setup utilizing Lees-Edwards boundary conditions [J Phys. C: Solid 

State Phys. 5 (1972), 1921-1929], this setup fails in predicting the macroscopic cohesion of 

the powder. Thus, a new shear setup is proposed and applied to calibrate the cohesion 

parameters in the DEM using experimentally determined yield loci.  

Second, it is shown that the scaling of the cohesion model, based on a granular Bond number, 

yields accurate predictions in a dense flow regime. Specifically, we show that a van der Waals 

cohesion model, in case it is correctly scaled, can be used to perform scaled DEM-based (i.e. 

parcel-based) simulations of cohesive polydisperse powders.  

Third, we have performed CFD-DPM simulations of a polydisperse powder with up to 3 Mio. 

particles, and a maximum size ratio of ten. The results show that the formulation of the drag 

force has – besides cohesion – a huge influence on the flow pattern, and thus also on the 

segregation behavior. While a simple drag model for monodisperse flows indicates a marked 

tendency for segregation, an advanced drag formulation for polydisperse flows fails to predict 

segregation. Finally, we find a certain influence of the computational grid on the simulation 

results. This leads us to the conclusion that grid-size effects should be carefully investigated 

in follow-up studies. 

 

 



 

Kurzfassung 

In der pharmazeutischen Industrie können Größen- und Dichteunterschiede zur Segregation 

von pulverförmigen Medien und damit zu Problemen bei der Produktqualität führen. Um die 

Segregationstendenz eines Pulvers (oder einer Pulvermischung) bei der Verarbeitung 

bestimmen zu können, werden in den letzten Jahren vermehrt Computersimulationen 

eingesetzt. Darum ist die Entwicklung von akkuraten numerischen Modellen essenziell für die 

zuverlässige Vorhersage der Segregationseigenschaften eines vorhandenen Pulvers. 

Zu Beginn untersuchen wir die Rheologie von dichten polydispersen kohäsiven Pulvern mit 

Hilfe der Diskreten Elemente Methode (DEM). Während die Rheologie von kohäsiven 

Pulvern in einer einfachen Scherströmung mit Lees-Edwards Randbedingungen [J Phys. C: 

Solid State Phys. 5 (1972), 1921-1929] untersucht werden kann, versagt dieses Setup bei der 

Vorhersage der makroskopischen Kohäsion des Pulvers. Darum wird hier ein neues Setup 

vorgeschlagen und verwendet, welches die Kalibrierung der Kohäsionsparameter in der DEM 

anhand experimentell gemessener Fließorte zulässt. 

Des Weiteren wird gezeigt, dass die Skalierung des Kohäsionsmodells, basierend auf einer 

granularen Bondzahl, zu exakten Vorhersagen im dichten Strömungsregime führt. Es wird 

gezeigt, dass mit einem Van der Waals Kohäsionsmodell, sofern es richtig skaliert ist, das 

Fließverhalten von kohäsiven Pulvern in einer skalierten DEM korrekt vorhergesagt werden 

kann. 

Weiters werden CFD-DPM Simulationen von kohäsiven Pulvern mit bis zu 3 Mio. Partikeln 

und einem maximalen Größenverhältnis von 1:10 durchgeführt. Die Ergebnisse zeigen, dass 

das verwendete Widerstandskraft-Modell – neben der Kohäsion – großen Einfluss auf die 

Strömung und damit auf das Segregationsverhalten hat. Während Simulationen mit einem 

einfachen Widerstandskraft-Modell für monodisperse Fluid-Partikelsysteme Segregation 

vorhersagen, versagt ein weiterentwickeltes Modell für polydisperse Strömungen bei der 

Prognose von Segregation. Außerdem wird der Einfluss des Rechengitters untersucht. Diese 

Studien zeigen einen Einfluss der Gitterauflösung auf die Ergebnisse, weshalb diese Effekte 

bei weiteren Studien beachtet werden sollten. 
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1 Introduction 

Granular materials are used in a wide field of applications in industry, such as combustion 

plants (e.g. coal, biomass), pharmaceutical industry (e.g. API, excipients), and chemical 

industry. Granular materials often consist of particles of different sizes, shapes, and material 

properties. The particle size distributions (PSDs) of such materials normally span a few orders 

of magnitude, which can be a source of challenges during the processing, the handling, or the 

storage of the materials due to demixing effects, i.e. segregation [1]. Therefore, a large 

number of research activities focused on the main influencing factors for segregation, namely 

difference in the particle size, and/or in particle density [2–6]. Also, cohesion plays an 

important role, because small particles can stick together, and hence cohesion can effectively 

suppress segregation [7]. 

In the pharmaceutical industry, fluidization of dry powders or granules often causes 

segregation, consequently negatively influencing the product quality [7]. Thus, experimental 

devices were developed in the past to quantify the segregation tendency of a powder, or a 

powder blend [3,7–10]. The main disadvantages of these experimental investigations are that 

(i) a limited amount of the materials to be tested is available during product development, (ii) 

issues with the reproducibility of the tests, and (iii) the rather limited information gained from 

the experiments (i.e. typically only integral quantities can be experimentally measured). 

Moreover, the exposure of the operators to hazardous materials is a severe safety risk [7], 

often critically limiting access to experimental data, or resulting in high costs. 

Numerical simulations typically allow a more detailed investigation of particulate systems, 

however, are often limited by restrictions imposed by the underlying physical models. 

Fortunately, the development of realistic physical models has significantly accelerated within 

the last decades, so that nowadays often results of numerical simulations are more accurate 

than data extracted from physical experiments. For example, nowadays the rheology of dense 

particulate systems is typically probed with numerical simulations only, and such studies have 

been published with increasing frequency in the past fifteen years [11–17]. In the same period 

of time, the segregation tendency in fluidized beds using DEM and CFD-DEM simulations 

was investigated [18–20], again highlighting the importance of numerical work in the field. 

These advances in the field of numerical tools and models also motivate the present work, 

which is solely dedicated to DEM, CFD-DEM and CFD-DPM simulations of cohesive 

polydisperse granular matter. Notwithstanding this fact, it is clear that in order to describe 

these complex granular systems, reference experiments are inevitable to identify critical 
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system parameters. Unfortunately, critical system parameters (e.g. to characterize cohesive 

particle-particle interactions) cannot be simply measured in an experiment, due to the delicate 

interactions of particle morphology, cohesion and segregation tendency. Thus, a fruitful 

strategy is the calibration of models by means of a tight integration of experimental data with 

computer simulations. Exactly such a calibration workflow is the ultimate goal of the present 

study. 

1.1 Goals 

This thesis focuses on the establishment of a workflow for the simulation of segregation 

profiles in a lab-scale segregation tester (i.e. the one presented by Hedden et al. [7]). 

Specifically, the segregation behavior of a polydisperse cohesive powder bed shall be 

investigated using a CFD-DPM approach [21,22]. The main tasks of this work are as follows: 

 review of cohesion force models for DEM simulations of dry powders and their 

possibility to be used in coarse-grained, i.e. parcel-based, simulations. 

 investigation of the rheology of polydisperse cohesive powders. 

 investigation of the influence of cohesion on the yield locus in a shear flow. 

 investigation of the segregation tendency of polydisperse cohesive powders in scaled 

CFD-DPM simulations. 

 a workflow for scaled simulations in a lab-scale segregation tester. 

Equation Chapter (Next) Section 1 



State of the Art  3 

 

2 State of the Art 

2.1 DEM Basics 

The discrete element method (DEM) tracks individual particles and calculates their 

translational and rotational motion. It is a so called Lagrangian model, in contrast to Eulerian 

(continuum) models that predict particle motion on a fixed computational grid. Specifically, 

DEM solves Newton’s equation of motion for force and momentum, which read [23]: 

 
 pd m

dt


v
F   (2.1) 

 
 pd I

dt


ω
T   (2.2) 

In other words, all relevant forces and torques acting on each particle are summed up, and 

integrated (the position and orientation of the particles can then be determined in a straight 

forward manner). Depending on the purpose of the simulation, these forces are (i) contact 

forces, (ii) volumetric forces (e.g. gravitational forces), (iii) cohesion forces, or (iv) 

hydrodynamic (e.g. drag) forces originating from a surrounding fluid. 

In general, particles in simulations using the DEM can be modeled as perfectly rigid (i.e. the 

so-called hard-sphere approach), or as slightly elastic (i.e. soft-sphere approach). The hard-

sphere approach is based on instantaneous collisions of rigid spheres, and thus limited to 

dilute or moderately dense systems [1]. The soft-sphere approach models particle collisions 

with an elastic-plastic spring-dashpot model (EPSD), which allows the particles to overlap 

[24]. Various types of EPSD models exist, the simplest one being the linear (or “Hookean”) 

EPSD, in which the spring stiffness k is constant. Thus, the normal force acting on colliding 

particles is linearly proportional to their overlap . In contrast, the (more realistic) Hertzian 

EPSD model models the spring stiffness to be proportional to  , and hence the contact 

force is proportional to 
3  [25]. The tangential force between two colliding particles is 

limited by the Coulomb criterion t nF F  [25]. Note that, for the calculation of the 

tangential force, the cohesion force must not be accounted for when computing Fn in this 

expression. Instead, the tangential force must be calculated based on the normal contact force 

only. 
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2.1.1 The Parcel Approach 

Due to limited computational resources, the maximum number of particles, as well as the 

maximum size ratio (defined as the largest to smallest particle size) in DEM simulations is 

constrained. This makes the simulation of large-scale units with a straight forward application 

of the DEM infeasible. To overcome this obstacle, the discrete parcel method (DPM) was 

introduced [21,22,26].  

For instance, Bierwisch et al. [21] proposed a parcel based model for the Hertzian contact 

model, where the diameter of the particles is artificially enlarged, or “coarse-grained”. 

Similarly, such a coarse graining can be performed for the Hookean EPSD model [22]. Using 

this approach, the number of particles can be significantly reduced, and the simulation time 

step can be increased. In the Hertzian model the particle density, the Young’s modulus, the 

coefficient of restitution, and the coefficient of friction are scale invariant. For the Hookean 

model, the spring stiffness divided by the particle diameter has to be scale invariant. 

Unfortunately, such a coarse graining idea yields scale-invariant stresses only in the quasi-

static regime, and over-predicts stresses in the inertial regime as shown by Radl et al. [22]. 

This over-prediction is often acceptable, since stresses in the inertial regime are, anyhow, 

orders of magnitude lower compared to that in the quasi-static regime.  

2.2 The CFD-DEM Approach 

One possibility to numerically calculate the movement of particles in a surrounding fluid is 

the CFD-DEM approach: Here, the fluid motion is calculated with a computational fluid 

dynamics (CFD) software, and coupled with the particle motion solver (typically based on the 

DEM) via phase-coupling models. CFDEM® is a powerful tool to perform these simulations. 

It combines the open-source software package OpenFOAM® (for simulating the fluid 

motion) with the granular dynamics software LIGGGHTS®. Most important, CFDEM® 

realizes a so-called two-way coupling between the particle and fluid phase, i.e. particles 

experience the presence of the fluid and vice versa. Thus, Newton’s third law of motion 

(action-reaction) can be ensured, allowing the consistent simulation of (theoretically) 

arbitrarily dense suspension flows.  

Unfortunately, the direct numerical simulation of the fluid flow through the interstices of the 

particle bed would be computationally too expensive. As a compromise, the CFD grid size is 

set larger than the particle diameter. This results in a need for additional models for the forces 

exerted by the fluid on the particles: essentially, (i) models accounting for unresolved 
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fluctuations of pressure and fluid velocity near the surface of the particle, as well as (ii) 

models that account for an average fluid stress field need to be considered. Typically, the drag 

force, and the buoyancy force are modeled, and some more delicate effects (e.g. the Basset 

history force, or effects due to the deviatoric fluid stress) are neglected. In this work, the drag 

model of Beetstra et al. [27] for monodisperse dense flows, as well as the model of Holloway 

et al. [28] - which is based on Beetstra et al. [27] - for polydisperse dense flows are used. 

While we focus on models for cohesive forces in the next chapter, a detailed description of 

these two drags models can be found in Appendix A.1.  

Equation Chapter (Next) Section 1 
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3 Theoretical Model 

We next focus on some details of our theoretical model used to simulate the flow of cohesive 

polydisperse powder beds. When dealing with powders (i.e. granular matter involving 

particles with a size of typically less than 1 mm), gravity may not be the dominant force any 

more. Instead, inter-particle forces – such as van der Waals or electrostatic forces – are 

significant, and hence must be considered. As a rule of thumb, van der Waals forces have to 

be considered for particle sizes less than 100 μm [29,30], depending on the particle’s surface 

roughness. Electrostatic forces are of considerable magnitude even for larger particles, and are 

characterized by a comparably long-range potential. Furthermore, electrostatic forces depend 

on the particle charge, which is difficult to predict. Consequently, conclusive numerical 

studies dedicated to the effects of electrostatic forces on particle flow are virtually absent in 

literature. Hence, we have decided to leave out this delicate topic in line with the opinion 

present in the literature. Thus, we purely focus on van der Walls type cohesive interactions 

between particles for the time being.  

The van der Waals force – in a broader sense – includes the dipole/dipole, the dipole/non-

polar, and the non-polar/non-polar (so called dispersion, or London) forces between 

molecules, and macroscopic bodies. Hamaker [31] analyzed the London van der Waals forces 

between spherical particles as a result of fluctuating dipoles on an atomic level. While inter-

molecular forces decay with the separation distance s as s-7, the attractive force between 

macroscopic bodies decreases only with s-2 [30]. Different to other inter-molecular, or inter-

particle forces, vdW forces are omnipresent, and can only be influenced by (i) the interstitial 

fluid or (ii) the surface roughness of the particles [32]. 

In the context of a numerical modeling, significant effort has been devoted to find accurate, 

yet computationally efficient expressions to predict van der Waals cohesion forces. 

Specifically, two basic types of models are frequently used in the literature:  

 The Hamaker model [30] – or further called van der Waals model – calculates the 

attractive force, based on an interaction constant, i.e. the Hamaker constant, and on the 

particles’ surface distance. Most important, this model was modified by Ye et al. [33], 

and this modification is also used in the current work. Rumpf [34] first proposed a 

Hamaker model which takes into account the asperity of the particle surfaces. This 

model was further modified and extended by different groups (e.g. [35,36]). Since, in 

this work, the roughness of the particles is not further investigated, these models are 
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not accounted for here. More recently, Gu et al. [37] proposed a modified Hamaker 

model to take the particle stiffness into account, which is, however, not further 

considered here either.  

 The JKR [38], and the DMT [39] model calculate the force between deformable 

smooth particles, based on their overlap. Unfortunately, for parcel-based models, 

recent research indicates inconsistent results when performing shear test simulations 

involving the JKR model [40,41]. Hence, we have decided not to pursue the idea of a 

JKR model in the present work.  

3.1 The van Der Waals Cohesion Model 

The van der Waals cohesion force model acts – contrary to most of the other cohesion models 

– even in case particles are not in contact. This needs a more complex implementation of the 

vdW cohesion model, compared to other cohesion models, in which the attractive force is 

only accounted for in case of contact (e.g. the simplified JKR models available in 

LIGGGHTS®). In the current work, the vdW model proposed by Ye et al. [33] is used, which 

calculates the magnitude of the attractive force between two particles as follows: 
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F

 (3.1) 

Here Ha is the Hamaker constant, ri and rj are the radii of particles i and j, respectively, and s 

is the particle-particle surface distance. In this model the cohesion force does diverge to 

infinity at particle contact. Thus, a minimum cutoff distance smin has to be defined. Two 

different definitions for this distance can be found in literature: (i) a constant cutoff distance, 

and (ii) a particle size dependent cutoff distance. In literature, a constant surface distance 

between 0.3 and 1 nm is widely used [33,35,42,43]. This lies within the range of the inter-

molecular distance of about 0.4 nm whenever the surfaces of the particles are “touching” each 

other [44]. The latter, i.e. a particle size dependent cutoff, was applied by some authors for 

monodisperse systems [11,14]. In polydisperse systems, however, the van der Waals force 

would increase with decreasing particle size, and thus model a lower asperity for smaller 

particles. Consequently, in the current work a constant minimum cutoff distance of 0.4 nm is 
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used. For smaller distances (or overlap of the particles) the vdW force is constant and taken to 

be the value at the cutoff distance.  

Out of numerical reasons, it is not efficient to compute particle-particle interaction forces for 

large surface separation distances. Hence, a cut-off distance is typically imposed to speed up 

the simulations. Fortunately, the vdW force decreases rapidly with the separation distance, so 

that a maximum cutoff distance of 0.25max ps d  is widely used in literature [11,14,42]. 

Particle interactions beyond this limit are negligible. For the polydisperse particles used in 

this work the maximum cutoff distance is defined as follows: 

  0.25max i js r r    (3.2) 

In the limit of small s (i.e. in case s is much smaller than one of the particle radii, ,i js r r ) 

expression (3.1) is reduced to the simpler Hamaker model [42]: 

   212

i j

vdW

rHa
s

s
F ,  (3.3) 

with 

 
2 i j

i j

i j

r r
r

r r



.  (3.4) 

In Fig. 1 the scaled magnitude of the force between two particles for both the full and the 

simple van der Waals cohesion models are compared for large separation distances. The 

particle radii are 10-3 m and 10-4 m, respectively. The maximum surface distance as defined in 

Eqn. (3.2) was used for the calculations. One can see that – in this case – the simplified and 

the full van der Waals model differ only for relative surface distances larger than 10-2. The 

relative difference between the two models at the maximum cutoff distance is: 

 
( ) ( )
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F F

F
  (3.5) 

This difference seems large, but compared to the maximum cohesion force between the 

particles (i.e. the force a 0.4mins nm ), the force is very small at the cutoff distance: 

 13
( )

2.8 10
( )

full

vdW max

full

vdW min

s

s

 
F

F
  (3.6) 
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Fig. 1: Comparison of the force between two particles for the full and the simple van der Waals cohesion 

model with particle radii 10-3 m and 10-4 m, respectively. 

3.1.1 The Bond Number 

The influence of inter-particle cohesion on particle motion can be quantified via the 

dimensionless van der Waals force, specifically, the cohesive granular Bond number [42]. 

The gravity-based (and classically used) Bond number is defined as the maximum cohesion 

force, compared to the magnitude of the gravitational force acting on a particle [16]: 

 

max

coh

g

Bo 
F

F
  (3.7) 

In case gravity has only a minor effect on a simulation (e.g. in very dense regions), or is not 

even accounted for in a simulation, an alternative definition must be used. For example, Gu et 

al. introduced a modified Bond number, based on a characteristic contact force [14]. 

Depending on the contact model used in the simulation, this “stiffness-based” Bond number 

has different definitions, which read as follows: 

For the Hookean contact model: 

 *

max

coh

n p

Bo
k d


F

, (3.8) 

and for the Hertzian contact model: 
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 2
*

max

coh

p

Bo
Y d


F

. (3.9) 

It must be stressed that these two alternative definitions of the Bond number have a 

fundamentally different meaning: While the gravity-based Bond number quantifies the 

“stickiness” in a gravitationally-driven flow, the stiffness-based Bond number has the 

meaning of a dimensionless overlap between contacting (cohesive) particles. 

3.1.2 Scaling of the Cohesion Model in Coarse-Grained 

Simulations 

When performing DPM simulations, the van der Waals cohesion model can be scaled based 

on the Bond numbers defined in the previous section. The gravity-based Bond number scales 

according to: 

 
2 2

1

4p p min

Ha
Bo

d s 


g
  (3.10) 

The second part of this equation is not affected by coarse graining, and hence remains 

constant upon scaling the particle diameter. Thus, the gravity-based scaling of the Hamaker 

constant must follow: 

 2Ha CG    (3.11) 

The stiffness-based Bond numbers for Hookean and Hertzian contact model leads to: 

 
2

1
*

24n min

Ha
Bo

k s
 ,  (3.12) 

and 

 
2

1
*

24p min

Ha
Bo

d Y s
 , (3.13) 

respectively. Here the spring constant scales linearly with the coarse graining ratio [22]. In 

both cases, the stiffness-based scaling for parcel-based simulations is: 

 Ha CG , (3.14) 

and hence is independent of the EPSD model used. It has to be mentioned, that these scaling 

rules are only valid in case a constant minimum surface distance is applied (see section 3.1). 
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For the polydisperse granular materials considered in the present work, an appropriate 

reference particle size must be used. Specifically, we have based the Bond number on the 

Sauter mean diameter: 

 

3

32 2

p

p

N

ii

N

ii

d
d

d




  (3.15) 

The reference value for the normal spring stiffness kn, used in the Hookean contact model, 

was also calculated with d32 in order to be consistent. 

Equation Chapter (Next) Section 1 
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4 Shear Box Simulations 

The goals of the shear box simulations are (i) to investigate the granular rheology of the 

polydisperse cohesive powder used in this work, and (ii) to find a quick and easy way to 

quantify the effect of cohesion parameters on the powder’s rheology. These simulations 

should be then used to calibrate the Hamaker constant based on the experimentally 

determined yield locus (i.e. the macroscopic cohesion) of the powder. 

Schwedes [45] reviewed the most common experimental devices to measure flow properties 

of bulk solids. Specifically, these are (i) the Jenike shear cell [46], (ii) various torsional shear 

cells (e.g. annular shear cells, with the most prominent example being the Schulze ring shear 

tester defined in ASTM D6773), or (iii) uniaxial testers (e.g. [47]). In addition, the widely 

used Freeman FT4 powder rheometer (Freeman Technology, Malvern, UK) has to be 

mentioned here, which belongs to the group of torsional cells. Many researchers also use 

those devices as a starting point for their numerical studies, e.g. Luding and Alonso-

Marroquín [48], or Singh et al. [16]. For example, Schwarze et al. [12] investigated the effect 

of cohesion (due to liquid bridges) on powder properties in a split bottom annular shear cell. 

Yan et al. [41] numerically investigated powder flowability of cohesive powders in an FT4 

rheometer. 

Nevertheless, the simulation of real experimental devices implies some disadvantages: (i) the 

influence of wall effects on the monitored variables, and (ii) the simulations are often limited 

to monodisperse systems, due to the size of the devices and the limited number of particles 

that can be used in simulations. Thus, this section focuses on the simulation of small – but 

representative – unbounded powder samples. 

4.1 Shear Setup with Lees-Edwards BC 

In a first step the granular rheology of the polydisperse powder is investigated by 

homogeneously shearing a sample in a three-dimensional periodic setup. This is realized by 

applying the widely used Lees-Edwards boundary conditions [49]. Our setup matches that of 

Gu et al. [14]. The chosen simulation parameters are documented in the following. 

4.1.1 Simulation Setup 

The simulations are performed for different mean particle volume fractions in the domain. 

Thus, in a first step the number of particles has to be calculated, based on the PSD and the 
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size of the (cubic) shear box. After randomly inserting the predefined number of particles in a 

somewhat larger domain, the domain is uniaxially compacted in shear direction, i.e. in x-

direction, to reach a homogeneous, more or less densely packed particle sample. 

Subsequently, the particle sample is continuously sheared until the stresses reach constant 

values. To achieve this, a constant dimensionless shear rate is defined as follows: 

 32

32 32

ˆ

/ ( )n p

d

k d


γ
γ   (4.1) 

The principle of the shear flow involving Lees-Edwards boundary conditions can be seen in 

Fig. 2. The applied shear results in a linear velocity profile in the shear gradient direction, i.e. 

in the y-direction. 

Once the monitored normal stress and the shear stress in xy-direction (see Appendix A.2 for 

more information) have approached a statistical steady state, the simulations can be stopped, 

and the mean stresses are calculated by time averaging. 

 

Fig. 2: Setup of the shear tests that apply Lees-Edwards boundary conditions. 
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4.1.2 Simulation Parameters 

In this work, assemblies of spherical particles with a uniform (volume-based) particle size 

distribution1 (PSD) are investigated. The shear tests with Lees-Edwards BC are performed 

with particle diameters between 5 – 1000µm. The continuous PSD is divided into five classes 

with mean particle diameters ranging from 70 – 700µm. Thus, a maximum size ratio of 10 is 

used to save computation time. The volume fraction of each class i for the uniform PSD is 

calculated with: 

 , , , .

3,

, ,5 , ,1

p high i p low i

i

p high p low

d d
Q

d d


 


 (4.2) 

Consequently, the number fraction of particles in class i results to [50]: 
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 (4.3) 

The particle classes used in this section are summarized in Table 1: 

Table 1: Particle size distribution for shear test simulations with Lees-Edwards boundary conditions. 

dp,low [𝝁m] dp,high [𝝁m] pd  [𝝁m] ∆Q3 ∆Q0 

5 135 70 0.130 0.940 

135 200 167.5 0.065 0.034 

200 300 250 0.101 0.016 

300 400 350 0.101 0.006 

400 1000 700 0.603 0.004 

 

Table 1 shows, that for this wide PSD, the number of particles in the smallest group is 94% of 

all particles, but they have only a volume fraction of 13% (compared to the overall particle 

volume). In contrast, more than 60% of the particle volume is held by only 0.4% of all 

particles. This makes the simulations quite challenging, compared to monodisperse systems. 

For the shear tests with Lees-Edwards BC, the Hookean tangential history contact model [25] 

is used, with the particle properties summarized in Table 2. 

                                                 

1 C. Goniva, personal communication, July 21, 2015 
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Table 2: Particle properties for shear tests with Lees-Edwards BCs. 

Parameter Value 

p
2 1000 [kg m-3] 

Y 5∙106 [Pa] 

p   0.45 

  0.1 

p   0.1 

charv
 1 [m s-1] 

Bo* 0, 3.45∙10-5 

DEMt  1.6∙10-7 [s] 

d32 2.63∙10-4 [m] 

kn,32 76.13 [N m-1] 

 

Preliminary results have shown that the vdW cohesion model, in combination with a high 

coefficient of restitution of the particles, yields unrealistic oscillations during particle-particle 

contact. To minimize this behavior, a coefficient of restitution of 0.1 is used for the 

simulations. Such a low coefficient of restitution will not affect the flow behavior in quasi-

static flows, which is of primary interest here, and for which the friction coefficient is the 

main influence parameter. 

The simulations are performed for a cohesive system and compared to simulations without 

cohesion. The particle volume fraction is varied from 0.55 to 0.85, and the final box length is 

five times the maximum particle diameter in the simulation. The resulting number of particles 

is between 18,255 and 28,212, depending on the particle volume fraction. The initial domain 

is compacted by a factor of 0.25 after particle insertion. The simulations are performed for 

constant dimensionless shear rates γ̂  ranging between 1.43∙10-4 and 0.029. The number of 

simulation time steps resolving a particle-particle contact is >50 for all particle collisions. For 

more information on how the time step was calculated, see Luding [24]. 

                                                 

2 C. Goniva, personal communication, July 22, 2015. 
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4.1.3 Results 

In this section, the results of the shear test with Lees-Edwards BC are documented. The 

displayed data consists of the stresses for shear flow at the statistical steady state, and is, of 

course, time-averaged.  

4.1.3.1 Rheology of Polydisperse Particles 

In Fig. 3 and Fig. 4 the normal stresses for different particle volume fractions are plotted vs. 

the applied shear rates for the non-cohesive and the cohesive system, respectively. Without 

cohesion (Fig. 3) three flow regimes exist: (i) a quasistatic regime for very high solid 

concentrations, where the stress is proportional to the spring stiffness, and independent of the 

shear rate, (ii) an inertial regime for dilute systems, where the stress is proportional to the 

shear rate squared, and (iii) an intermediate regime, where both, the shear rate and the spring 

stiffness affect the normal stress. 

For cohesive systems (Fig. 4), a rate-independent regime bifurcates out of the inertial regime 

for low shear rates. In this so called, cohesive regime, the inter-particle contact forces exist 

also for dilute systems (for this wide PSD, a particle volume fraction of 0.75 is already rather 

“dilute” in the sense that a low stress level develops), because of the cohesion force. When 

increasing the shear rate, the kinetic stress becomes dominant and the difference between 

cohesive and non-cohesive systems vanishes. Also, in the quasistatic regime cohesion has no 

influence on the normal stress, because the particles are permanently in contact. Thus, high 

stresses exist even for non-cohesive systems. 

The results qualitatively agree with those reported by Gu et al. [14] for a monodisperse 

system. A reason for this qualitative agreement is most likely the high volume fraction of 

large particles for the PSD used in the present work. Thus, we speculate that the rheology is 

mainly affected by rather larger particles. Although we have not tested this speculation, we 

suggest that the rheology might change for different PSDs, and care has to be taken to 

generalize the above statement. 
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Fig. 3: Scaled pressure vs. scaled shear rate for Hookean contact model without cohesion  

(Bo* = 0) for different particle volume fractions.  

 

  

Fig. 4: Scaled pressure vs. scaled shear rate for Hookean contact model with vdW cohesion  

(Bo* = 3.45∙10-5) for different particle volume fractions.  

4.1.3.2 Determination of the Yield Locus  

In addition to the rheology at the statistical steady state, the shear tests should also provide the 

possibility to calibrate the Hamaker constant to the experimentally-determined yield loci of 

the powder. Thus, we next plot the stresses, i.e. shear and normal stress, against each other. In 
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Fig. 5: Scaled shear stress vs. scaled pressure for Hookean contact model and a dimensionless shear rate of 

1.4∙10.4 (left: logarithmic plot; right: linear plot). 

Fig. 5 the stresses are shown for the non-cohesive, and the cohesive systems at a 

dimensionless shear rate γ̂  of 1.4∙10-4. 

In the quasistatic regime, i.e. for 0.85p  , cohesion does not affect the stresses, but for 

smaller particle volume fractions, the stresses in cohesive systems are markedly higher than in 

non-cohesive ones. In the cohesive regime, the shear stress for small particle volume 

fractions, i.e. for 0.60p  , drops off after a certain time of shearing. The reason is that the 

particles rearrange due to cohesion and shearing, and a “shear plane” is formed. In this shear 

plane, no particles are located, and hence no stress can develop between the particles.  

In this fully periodic setup, the shear stress can only be modified – without changing the 

Hamaker constant – by changing the inserted particle volume, and thus the normal stress. The 

problem is that no consolidation of the particles can be applied in this setup. As a 

consequence, the monitored yield loci for both cohesive, and non-cohesive systems in Fig. 5 

(right panel) cannot be distinguished and no macroscopic cohesion can be detected. Thus, we 

conclude that Lees-Edwards boundary conditions are generally not suitable to measure the 

yield locus via simulations. Hence, we will now consider a different setup that features a 

consolidation step. 
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4.2 Stress Until Shear Setup 

As shown in the previous paragraph, simulations in a fully periodic domain cannot provide 

information about the effect of cohesion on the yield locus. Thus, a new setup was arranged 

and denoted as the “stress until shear” setup, which is closer to the experimental shear 

procedure. Most important, our stress until shear setup features a periodic domain, eliminating 

wall effects completely. 

The principle of the stress until shear setup is shown in Fig. 6: The three-dimensional domain 

is periodic in the shear plane, while this is not the case in the shear gradient direction. In the 

latter direction, a normal stress is applied to the particle bed via a “symmetric gravity” force, 

i.e. a consolidation gravitational force. This means that the particle bed is compacted via a 

gravitational acceleration g , acting on the top half of the particle bed. The bottom half of the 

particles is pushed upwards to reach exactly zero integral momentum in the domain. Once the 

particle bed is consolidated, i.e. the normal stress of the particle bed has approached its 

steady-state value, the desired normal stress is adjusted by setting the gravitational force. 

After the particle bed is at rest again, an additional gravity in shear direction shearg  is acting on 

the top particles. Again, the fixed integral momentum leads to an induced motion of the 

bottom particles in the opposite direction. A more detailed description of the setup will be 

documented in the next section.  

  

Fig. 6: Principle of the stress until shear setup: Compaction of the bed via a “symmetric gravity” force g, 

and increasing shear stress via a “shear gravity” gshear.  
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4.2.1 Test Procedure 

In a first step, the particles are randomly inserted in a periodic domain and tri-axially 

compacted to reach a homogeneous particle sample. Subsequently, the domain size is slightly 

increased in the shear gradient direction, i.e. in the y-direction. Finally, non-periodic 

boundaries are applied in this direction.  

In a next step, the particle sample is consolidated via a “symmetric gravity” force in shear 

gradient direction. To achieve this, the domain is split into a top region and a bottom region, 

and a consolidation gravity is applied on the particles in the top region following: 
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





g   (4.4) 

In this formula, consp  is the consolidation pressure (i.e. an input to the simulation), shearA  is 

the area of the domain in xz-direction, and the denominator is the mass of all particles in the 

domain. By forcing the integral momentum in the domain to zero, the bottom half of the 

particles is pushed upwards and the particle sample is compacted. The consolidation is 

finished once the normal stress of the particles   has approached its steady-state value. 

Next, the normal pressure – via the gravitational constant – is reduced to a final value 
finalp . 

The corresponding gravity 
finalg  is calculated in the same way as above. This brings the huge 

advantage – compared to experimental devices – that, in this setup, the shear tests can also be 

performed at zero normal load (or pressure). 

After the normal stress of the particles is constant again, additional shear gravity is linearly 

increased from zero to a maximum value: 
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This gravity again acts on the top particles, but different to the former ones, it points into x-

direction, i.e. in shear direction. Thus, each particle in the top region experiences a force in x-

direction: 

 ( ) ( )shear p sheart m tF g   (4.6) 

The zero overall momentum induces a force on the bottom particles in the opposite direction. 

In case the acting force on the particles gets larger than the contact force plus – if it exist – the 
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cohesion force, the particles start to move and the sample shears off. This effect can be seen 

by monitoring (i) the normal stresses originating from contacts cont , (ii) the velocity 

fluctuations kin , and (iii) the contact shear stress in xy-direction ,cont xy  (see Appendix A.2 

for more information). A typical chronological sequence of the stresses is shown in Fig. 7. In 

this figure, we have also used a dimensionless time for the stress until shear simulations, 

which is defined as follows: 

 
32

ˆ
ref

cons

t tt
t d

 

g

  (4.7) 

This scaling of the time has the advantage that the reference time is linearly proportional to 

the coarse graining ratio, and thus accounts for the longer contact times in coarse-grained 

systems. The reference time is also proportional to the consolidation pressure and the domain 

height: 

 ref cons boxt CG p h   (4.8) 

 

Fig. 7: Scaled stresses vs. dimensionless time for Bo* = 4.36∙10-7, CG = 1, and pfinal/Y = 10-5.  

Other parameters are displayed in section 4.2.2.  
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4.2.2 Simulation Parameters 

For the stress until shear simulations, the Hertz tangential history contact model [25] is used 

with the following particle properties: 

Table 3: Particle properties for stress until shear simulations. 

Parameter Value 

p
3 1000 [kg m-3] 

Y 5∙106 [Pa] 

p  0.45 

   0.1 

p  0.1 

Bo* 
0, 4.36 10-9, 

 4.36 10-8, 4.36 10-7 

DEMt 4 3.9 10-7 [s] 

d32
5 4.25∙10-4 [m] 

 

The stiffness-based Bond numbers Bo* in Table 3 correspond to gravity-based Bond numbers 

of 0, 10-2, 10-1, and 1 respectively, for a coarse graining ratio of 1 and a gravity of 

29.81m sg . The coefficient of restitution is – again – set to 0.1, to avoid oscillations. The 

simulation time step is <10% of the Rayleigh time of the smallest particles in the simulation, 

for more information see [25]. 

It shall be noted that the uniform volume-based PSD is changed compared to that presented in 

Chapter 4.1, namely to particle diameters between 30 – 1500µm. This is done to reach the 

desired minimum fluidization velocity in the segregation tests (see Section 5 for more 

information). The mean particle diameters of the classes are increased to 100 – 1000µm. 

Thus, the particle fractions in the classes change slightly as summarized in Table 4. 

                                                 

3 C. Goniva, personal communication, July 22, 2015. 

4 For coarse graining 1. The time step is increased linearly with the coarse graining ratio. 

5 For coarse graining 1. The parcel diameter is linearly proportional to the coarse graining ratio. 
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Table 4: Particle size distribution for the stress until shear simulations. 

dp,low [𝝁m] dp,high [𝝁m] pd  [𝝁m] ∆Q3 ∆Q0 

30 170 100 0.095 0.906 

170 300 235 0.088 0.065 

300 400 350 0.068 0.015 

400 500 450 0.068 0.007 

500 1500 1000 0.680 0.006 

 

The simulations are performed with the simulation parameters defined in Table 5. 

Table 5: Simulation parameters for the stress until shear simulations . 

Parameter Value 

Lbox
6 5∙ dp,max 

Hbox
7 5∙ dp,max 

pN  17,557 

/consp Y   10-4 

/finalp Y   0, 2∙10-6, 5∙10-6, 10-5 

/max

shearp Y  10-5 

ĉonst  10 

ˆ
finalt   15 

ŝheart  20 

reft 8 1.72∙10-3 [s] 

 

                                                 

6 Box length after tri-axial compaction (compaction factor: 0.5, in each direction). 

7 Box height after tri-axial compaction (compaction factor: 0.5); the box height is increased by a factor of 1.5 

afterwards. 

8 For coarse graining 1. 
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The number of particles corresponds to a mean particle volume fraction after compaction of 

0.7. The dimensionless times are documented for each subsequent step, so that the whole 

simulation runs for 45 dimensionless times (without initialization and pre-compaction). 

Typically, one simulation requires about one hour of computational time on one processor. 

Thus, these simulations can be done efficiently and without significant limitations on the 

domain size. 

4.2.3 Results 

4.2.3.1 Time Averaging Procedure 

The data shown in this section are time averaged values, recorded in the limits of: 

 
6 55 10 10kin

consp

       (4.9) 

These limits were found to be appropriate to determine the start of “macroscopic shearing” 

(i.e. bulk particle motion) for most of our simulations. Unfortunately, we could not find a 

more effective way to detect the onset of “macroscopic shearing”, and also time averaging 

must be performed over a certain time span to reduce statistical fluctuations. 

For the simulations with 0finalp   and 1CG  , the limits had to be shifted to 

 
5 410 10kin

consp

      (4.10) 

to get more meaningful results (otherwise, the stress ratio was not in the limits, and no 

averaging was performed). While the selection of these limits must be performed based on 

visual inspection, we would like to point out that these limits can be easily adapted in post-

processing for different particle and simulation properties, if required. 

4.2.3.2 Results without Coarse Graining  

The yield locus, i.e. the shear stress vs. the normal stress of the particle sample, is plotted for 

different (stiffness-based) Bond numbers, and final pressures. In a first step, coarse graining is 

set to one, i.e. particles are un-scaled. The corresponding simulation parameters are defined in 

Table 5. Each simulation is repeated for three different initial particle configurations. 
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Fig. 8: Scaled shear stress vs. scaled normal stress for different Bond numbers and final pressures, CG = 1 

for all simulations (consolidation pressure pcons /Y = 10-4; pfinal /Y = 0 (small open symbols), pfinal /Y = 2∙10-6 

(small filled symbols), pfinal /Y = 5∙10-6 (large open symbols), and pfinal /Y = 10-5 (large filled symbols)). 

The results in Fig. 8 indicate only a weak impact of van der Waals cohesion on the yield locus 

for small Bond numbers (Bo* < 4.36∙10-8). However, with increasing Bond number, the yield 

locus is shifted to higher shear stresses. Also, without final normal pressure, the shear stress is 

significantly increased, and thus a clear influence of the Bond number on cohesion, i.e. the 

intersection with the ordinate of a linear regression of the data, can be observed. 

Same as for the fully periodic shear tests in section 4.1, the normal stress increases for large 

Bond numbers. This effect diminishes – again – for large “external” normal pressures, 

following to the minor influence of cohesion – compared to the contact forces – in the 

quasistatic regime.  

In Fig. 9, the results of the simulations with cohesion are plotted on a logarithmic scale, and 

the axes of Fig. 8 are rescaled with the stiffness-based Bond number.  
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Fig. 9: Shear stress vs. normal stress, scaled with Bo*/Y; data for Bo* = 0 excluded, CG = 1 for all 

simulations (consolidation pressure pcons /Y = 10-4; pfinal /Y = 0 (small open symbols), pfinal /Y = 2∙10-6 (small 

filled symbols), pfinal /Y = 5∙10-6 (large open symbols), and pfinal /Y = 10-5 (large filled symbols)). 

In Fig. 9, the results with a finite final normal pressure are clustered for a certain Bond 

number, due to the large difference of the maximum cohesive force. For zero (final) normal 

load, the detection of macroscopic shear is quite challenging, and needs to be adapted for each 

simulation. For Bo* = 4.36∙10-8, for example, two simulations yielded negative results for the 

normal stress. However, for the sake of automation of the post-processing, this was not 

considered in this work. Consequently, a certain scatter of the stresses exists for the 

simulations without normal pressure. 

4.2.3.3 Results for Different Coarse Graining Ratios 

In a next step, the simulations for Bo* = 4.36∙10-7 are repeated for coarse graining ratios of 2, 

5 and 10, respectively. In these simulations, the total number of particles, and the particle 

fraction in each class, remained constant. Thus, also the simulation box was enlarged by a 

fixed factor, i.e. CG, in each direction. The other particle properties used are the same as those 

displayed in Table 3. Preliminary results indicated that the stiffness-based Bond scaling – 

where the Hamaker constant is linearly proportional to CG – yields correct results. The 

simulation properties remained as documented in Table 5. As mentioned before, the reference 

time of the simulations increases linearly with CG. Thus, the dimensionless times remained 

constant for all simulations. 
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Fig. 10: Scaled shear stress vs. scaled normal stress for different coarse graining ratios and final 

pressures; Bo* = 4.36∙10-7; pcons /Y = 10-4; pfinal /Y = 0 (small open symbols ), pfinal /Y = 2∙10-6 (small filled 

symbols), pfinal /Y = 5∙10-6 (large open symbols), and pfinal /Y = 10-5 (large filled symbols). 

In Fig. 10, the results of the simulations for different coarse graining ratios and final normal 

pressures are summarized. It clearly shows that coarse graining does not influence the yield 

locus if a stiffness-based Bond scaling is used. The results prove not only that a stiffness-

based Bond scaling is correct for the van der Waals cohesion model in dense regimes, but also 

that the Hertzian contact model is scale invariant. This conclusion is in agreement with the 

previous work of Bierwisch et al. [21], which considered monodisperse particle ensembles.  

Only for zero normal pressure, the stresses in coarse-grained simulations are somewhat higher 

than for CG = 1, but still located on linear yield locus as shown in Fig. 10. We assume that 

this is due to the adapted limits for the detection of macroscopic shear.  

4.2.4 Outlook 

The current results provide a sound starting point for future simulations using the stress until 

shear setup to calibrate the model parameters for experimentally-determined yield loci. The 

setup presented in this work consists of two regions in which particles are consolidated via a 

“symmetric gravity” force. Thus, a pressure gradient exists in this direction, meaning that the 

particles close to the center experience a higher normal pressure than the others. Only in shear 

direction, the normal stress of the particles is constant. In a next step, this setup could be 

extended with a center region, where no consolidation gravity acts on the particles, and two 

bounding regions in which normal and shear forces are applied. Most important, we have 
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been able to demonstrate that the stress until shear setup is superior (with respect to the 

determination of the yield locus) to the widely-used Lees-Edwards boundary conditions. 

Equation Chapter (Next) Section 1 
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5 Fluidized Bed Simulations 

In this section, the fluidization behavior of the polydisperse cohesive powder is investigated. 

For this, the pressure drop and the segregation profiles are numerically investigated in a lab-

scale segregation tester (i.e. the one presented by Hedden et al. [7]), using the CFD-DPM 

approach [21,22]. Additionally, simulations in a smaller periodic domain are performed to 

reduce the numerical effort. Detailed information about the simulation setup, and the chosen 

simulation parameters are documented in the following chapters. 

5.1 Simulation Setup 

The experimental segregation tester setup essentially consists of (i) a cylindrical fluidization 

column with an expansion chamber on the top, (ii) a fill-chamber assembly to introduce the 

sample, (iii) a sampling disk assembly to recover samples after the test, and (iv) an air flow 

controller. The powder is filled into the fluidization column and afterwards fluidized via a 

defined sawtooth profile. The procedure requires that the air flow rate is systematically 

increased using a sawtooth profile until the sample is fluidized. The time needed for the whole 

procedure depends on the flowability of the powder and takes several minutes. Subsequently, 

the segregated powder is removed from the fluidization column and split into 15-17 equal-

sized samples [7].  

The numerical setup used in this work has the same dimensions of the fluidization chamber as 

the experimental segregation tester. Never the less, some restrictions have to be made due to 

the wide particle size distribution and the large number of particles: (i) the simulation time is 

limited to two seconds for most simulations, (ii) the filling procedure differs compared to the 

experiment (the detailed procedure is described later), and (iii) no expansion chamber has 

been applied for this study. Contrary to the experimental setup, the segregation profiles can be 

measured directly in the fluidization chamber. Thus, also the temporal progress of segregation 

can be investigated in our simulation setup. 

Additionally to the cylindrical segregation tester setup, a periodic setup with a smaller lateral 

width has been applied in this study. Detailed information can be found in the next section. 

The particle insertion takes place directly in the fluidization column. Afterwards, the particles 

are compressed via a “fix deform” command (in LIGGGHTS®) to obtain a certain particle 

volume fraction. An approximately homogeneous powder sample can then be achieved by 

settling under gravity. The deformation of the simulation box yields a better processor 
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decomposition during settling, and hence shorter simulation time. Fortunately, this artificial 

deformation of the simulation box does not markedly influence the initial powder sample. 

Subsequently, the segregation test starts. 

The CFD-DPM simulations are performed with the software package CFDEMcoupling®. The 

coupling between the gas and the particle phase is done via the new 

“cfdemSolverPimpleImExFace” solver, i.e. a semi-implicit finite volume based PIMPLE 

algorithm for incompressible particle-fluid suspensions. This solver has the advantage that it 

uses an algorithm mimicking staggered arrangement of pressure and velocity nodes, which 

results in a more stable simulation procedure. The temporal discretization (of the coupling 

forces) is performed using a Crank-Nicolson method, i.e. a second-order accurate semi-

implicit formulation. Compared to the prior used “cfdemSolverPimpleImEx” solver, 

preliminary studies have shown much smoother pressure drop curves with the new solver. 

Thus, a direct optical detection of the fluidization point is possible in the simulations. The 

particle-fluid interactions are modeled as the sum of (i) the drag force (i.e. Beetstra 

monodisperse drag model [27], or Holloway drag model [28]), (ii) the pressure gradient force, 

and (iii) the viscous force due to the fluid shear stress or deviatoric stress tensor (see 

Appendix A.1 for more information).  

In the numerical setup of the CFD-DPM simulation, a “slip” boundary condition has to be 

used for the fluid velocity at the cylinder wall. Otherwise (i.e. when using a “fixed value” BC 

with value 0), the interpolation of the fluid flow yields a wrong estimation of the drag force at 

the particle position near the wall, and thus, an unrealistic particle behavior. More details 

about the near wall treatment in Euler-Lagrange simulations can be found in the work of 

González [51]. 

5.2 Simulation Parameters 

The segregation tests are performed with the same particle size distribution as in the stress 

until shear simulations in section 4.2.2. The mean particle diameters of the classes are, hence, 

100 – 1000µm. The particle properties and the particle size distribution can be found in Table 

3 and Table 4. The only difference, compared to the shear tests, is the Bond scaling: While in 

the shear tests the stiffness-based Bond number was used, preliminary simulations have 

shown that, for the segregation tests, the gravity-based Bond scaling should be used. Thus the 

Hamaker constant in the vdW cohesion model is scaled with the coarse graining ratio squared.  

The coupling interval between CFD and DEM is 100 for all simulations. 
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In the following tables the fluid properties and the most important simulation properties for 

the segregation tests are documented: 

Table 6: Properties for air at atmospheric pressure and 20°C [52]. 

Parameter Value 

  1.511∙10-5 [m2 s-1] 

f  1.205 [kg m-3] 

 

 

Table 7: Simulation properties for the segregation tests. 

Parameter Value 

boxd  16 [mm] 

boxh  210 [mm] 

bedh  95 [mm] 

CG 1, 1.5, 2 

Bo 0, 0.01, 1 

,box inl  8 [mm] 

,cell inN  4, 2, 2 

,cell outN  2, 1, 1 

,cell zN  105, 70, 52 

 

The simulation domain has a diameter of 16boxd mm  and a height of 210boxh mm . The 

particle bed is located 10 mm above the bottom of the CFD domain and has an initial height 

of approximately 95bedh mm . Due to the rather small column diameter, the simulations are 

only performed for the coarse graining ratios 1 (i.e. no coarse graining), 1.5 and 2.  

In Fig. 11, a top view of the topology of the CFD grid for a coarse graining ratio of 1 is 

shown. 
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Fig. 11: Top view on the CFD grid in the cylindrical setup for coarse graining 1. 

The CFD grid consists of an inner quadratic section with a side length of 
, 8box inl mm  and an 

outer section. The number of cells in radial direction (i.e. ,cell inN  and ,cell outN ) and in vertical 

direction (i.e. ,cell zN , equally distributed over the height) for the different coarse graining 

ratios are documented in Table 7. The minimum cell size is at least two times the maximum 

particle (or parcel) diameter for all simulations. 

The periodic segregation tester setup is made out of the inner quadratic section of the 

cylindrical setup. Thus, the size and the number of CFD cells are also equal to the inner 

section. 

The number of particles in the cylindrical setup is approximately 3 Mio, 900,000 and 380,000 

for the coarse graining ratios 1, 1.5 and 2, respectively. In the periodic setup the number of 

particles is approximately 960,000, 290,000 and 120,000 for the coarse graining ratios 1, 1.5 

and 2, respectively. The simulation domain is decomposed into up to 128 processors. 

As mentioned in the previous section, the fluidization procedure in this work differs from the 

experimental procedure proposed in Hedden et al. [7]. Unless otherwise noted, the superficial 

fluid velocity is linearly increased from zero to a final value of 0 9U mm s  (i.e. 1.5 times the 

desired minimum fluidization velocity of 6mfU mm s 9) within 0.1 s and held constant for 

1.7 s. Subsequently, the fluid velocity is linearly decreased to zero within 0.2 s. Thus, the 

                                                 

9 C. Goniva, personal communication, July 21, 2015. 
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overall runtime of the CFD-DPM simulation is 2 s. The fluid is homogeneously distributed 

over the lateral width at the inlet, i.e. it has a block profile. 

5.3 Results 

All simulations in this section are performed with gravity-based Bond scaling, i.e. the 

Hamaker constant scales with 2Ha CG . 

5.3.1 Pressure Drop and Minimum Fluidization Velocity 

First, the fluidization curves are investigated for the different Bond numbers and coarse 

graining ratios. To achieve this, the pressure drop and the superficial fluid velocity are 

recorded. The pressure drop is scaled with a reference pressure drop defined as 
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  (5.1) 

and is about 611refp Pa  for all simulations. 

The fluidization curves in the periodic setup with the Beetstra monodisperse drag law [27] are 

as follows: 

 

Fig. 12: Fluidization curve for different Bond numbers and CG = 1 in the periodic setup. 
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Fig. 13: Fluidization curve for different Bond numbers and CG = 1.5 in the periodic setup. 

 

 

Fig. 14: Fluidization curve for different Bond numbers and CG = 2 in the periodic setup. 

The fluidization curves in the periodic setup (i.e. Fig. 12 to Fig. 14) indicate, that cohesion 

only marginally influences the shape of the curve and the minimum fluidization velocity. The 

fluctuations of the pressure drop are larger in the coarse-grained simulations. It may be 

assumed that this is due to the relatively large parcel size, compared to the width of the 

domain. The figures show a decrease of the slope of the pressure drop at a fluidization 

velocity of about 0 1U mm s . This decrease is found to be characteristic for most of the 
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simulations in this study. We speculate that the decrease of the pressure drop originates from 

a rearrangement of the small particles. 

 

Fig. 15: Pressure drop vs. time for different Bond numbers and CG = 1 in the periodic setup.  

In Fig. 12 to Fig. 14 no overshoot of the pressure drop can be seen at the fluidization point in 

the periodic setup. However, when plotting the temporal progress of the pressure drop (as 

shown in Fig. 15), a decrease of the pressure drop occurs after the initial fluidization, i.e. the 

rapid increase of the fluidization speed within the first 0.1 s. Consequently, the final value for 

the pressure drop (at t = 1.8 s) is slightly below the reference pressure drop. Qualitatively, this 

behavior can be observed for all investigated coarse graining ratios and Bond numbers. For 

the simulations with coarse graining, the pressure drop fluctuations at the beginning are 

slightly larger (data not shown). 

Next, the fluidization curves in the cylindrical setup, again, with the Beetstra monodisperse 

drag law [27], are investigated. 
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Fig. 16: Fluidization curve for different Bond numbers and CG = 1 in the cylindrical setup. 

 

 

Fig. 17: Fluidization curve for different Bond numbers and CG = 1.5 in the cylindrical setup. 
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Fig. 18: Fluidization curve for different Bond numbers and CG = 2 in the cylindrical setup. 

In the cylindrical setup, the influence of the Bond number on the fluidization curves (cf. Fig. 

16 to Fig. 18) is larger than in the periodic setup. For example, for high Bond numbers no 

decrease of the slope of the fluidization curves exists at fluidization velocities between 

approximately 1.5 and 6 mm/s. The pressure drop overshoots at Umf and decreases slowly to 

the final (reference) value for all simulations. This behavior cannot be observed for the 

periodic setup and becomes more pronounced with increasing coarse graining ratio. Thus, we 

assume that the overshoot is due to wall effects, following the line of thoughts documented in 

Jackson [53]. Same as for the periodic setup, the fluctuations of the pressure drop become 

larger with increasing coarse graining ratio. 

 

Fig. 19: Pressure drop vs. time for different Bond numbers and CG = 1 in the cylindrical setup.  
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Fig. 20: Pressure drop vs. time for different Bond numbers and CG = 1.5 in the cylindrical setup.  

In Fig. 19 and Fig. 20, the temporal progression of the pressure drop is shown for coarse 

graining 1 and 1.5, respectively. With coarse graining, the pressure drop for high Bond 

numbers is higher than the reference value. For CG = 2, the temporal progress is qualitatively 

similar to Fig. 20. These results indicate that the influence of cohesion in the coarse-grained 

systems is too high if gravity based-scaling is used. Again, we assume that this is due to 

(unwanted) wall effects that appear in coarse graining, since the cylinder diameter-to-parcel 

diameter becomes smaller with increasing CG. 

When using the Holloway drag model [28] the minimum fluidization velocity is about 

13mfU mm s  , i.e. significantly larger. The pressure drop at fluidization lies – same as for 

the Beetstra monodisperse drag model [27] in the periodic setup – within the range of the 

reference pressure drop. Due to the huge difference of the minimum fluidization velocity for 

the drag models, and the maximum diameter ratio of 1:2.5 used in Holloway et al. [28], we 

focus on the Beetstra monodisperse drag model in this work. Moreover, in preliminary 

studies, the Holloway drag model [28] was found to be sensitive to numerical parameters as 

long as the grid size was in the range of the maximum particle diameter. We speculate that 

this is due to the additional need for reconstructing the local Sauter mean diameter in the 

Holloway drag model. 
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5.3.2 Segregation Profiles 

Segregation profiles are measured based on the experimental segregation tester (as described 

in Hedden et al. [7]). The experimental device provides about 16 equally sized samples of the 

powder in vertical direction. This corresponds to a height of one sampling bin of about 6 mm 

in the tester. In this section, the Sauter mean diameter of the particles in each bin (i.e. 
32,bind ) 

is compared to the Sauter mean diameter 32d  of the whole particle ensemble. This is contrary 

to the work of Hedden et al. [7], who measured the median diameter of their powder samples.  

5.3.2.1 Segregation Profiles with the Beetstra Monodisperse Drag Law 

In this section, the segregation profiles of the simulations with the Beetstra monodisperse drag 

law [27] are documented. The results indicate that the calculated Sauter mean diameter in the 

bins fluctuates, and no clear trends can be observed. Thus, the averaging was also done over 

two and three bins in the post processing in order to smoothen out these fluctuations. 

In a first step, the influence of the Bond number is investigated for coarse graining ratios in 

the cylindrical setup. The small symbols, connected through dotted lines, indicate the initial – 

not segregated – profile, and the large symbols, connected through solid lines represent the 

final segregation profile after 2 seconds of simulation. 

 

Fig. 21: Segregation profiles for different Bond numbers and CG = 1 in the cylindrical setup  

(averaged over three bins). 
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Fig. 22: Segregation profiles for different Bond numbers and CG = 1.5 in the cylindrical setup  

(averaged over three bins). 

 

 

Fig. 23: Segregation profiles for different Bond numbers and CG = 2 in the cylindrical setup  

(averaged over three bins). 

Fig. 21 to Fig. 23 show the segregation profiles for the simulations in the cylindrical setup. In 

general, the segregation tendency of the powder can be seen. The small particles rise upwards 

through the powder. Thus, the mean particle diameter in the bottom bins increases, and the 

small particles accumulate in the upper bins.  

In Fig. 22 and Fig. 23, the profiles for 1Bo   indicate a steep increase of the mean particle 

size in the top bin. The reason is that an accumulation of a few, mainly larger particles is 
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formed during the simulation, which penetrates into the top bin. Hence, statistically speaking, 

those are weak data points, since the number of particles in the top bin is very low. However, 

for the sake of simplicity, the number of particles in each averaging bin is not accounted for in 

those plots.  

The influence of the Bond number on the segregation tendency of the powder can be seen for 

all coarse graining ratios. While segregation occurs in the simulations without cohesion, and 

with only weak cohesion (i.e. 0.01Bo  ), it is nearly suppressed for the larger Bond numbers 

(i.e. 1Bo  ). Without coarse graining, some segregation occurs even for 1Bo   (see Fig. 

21). This is not the case for the coarse-grained simulations (Fig. 22 and Fig. 23). The reason 

can be either (i) that the gravity-based Bond scaling overestimates the cohesion, or (ii) that 

boundary effects influence the coarse-grained simulations. The latter speculation is supported 

by our results from simulations without cohesion, since the Sauter mean diameter in the top 

bin increases along with a rising coarse graining ratio.  

In a next step, the simulations are repeated in the periodic domain, with a lateral width of 

8boxl mm . The results are shown in Fig. 24 to Fig. 26. 

 

Fig. 24: Segregation profiles for different Bond numbers and CG = 1 in the periodic setup  

(averaged over three bins). 
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Fig. 25: Segregation profiles for different Bond numbers and CG = 1.5 in the periodic setup  

(averaged over three bins). 

 

 

Fig. 26: Segregation profiles for different Bond numbers and CG = 2 in the periodic setup  

(averaged over three bins). 

Same as in the cylindrical setup, the influence of the Bond number on the segregation of the 

powder can be seen in the periodic setup (i.e. in Fig. 24 to Fig. 26). For 1Bo  , segregation is 

suppressed even without coarse graining (Fig. 24). The smaller lateral width of the periodic 

domain leads to more fluctuations of the Sauter mean diameter in the bins for the less 

cohesive powders. The results indicate that the small particles form clusters when they move 
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through the fluidized powder bed. Nevertheless, the simulation time of two seconds is too 

short to allow detailed information about the observed clustering phenomenon. 

In a next step, the temporal progress of segregation is investigated. Therefore, the non-

cohesive simulation of Fig. 26 – in the periodic setup, with 2CG    and 0Bo   – is repeated 

for a longer run time and snapshots are taken in periodic intervals.  

 

Fig. 27: Temporal progress of the segregation profile for Bo = 0 and CG = 2 in the periodic setup  

(averaged over three bins). 
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Fig. 28: Snapshots of the particles at the beginning, and after different times of simulation  

(periodic setup, Bo = 0 and CG = 2). 

Fig. 27 and Fig. 28 show the segregation trend due to fluidization for a non-cohesive powder. 

It can be clearly seen that the initially homogeneously distributed powder forms clusters – or 

layers – of small particles in the early stage of fluidization. These particle clusters 

subsequently move slowly upwards through the bed. The segregation profiles indicate an 

ongoing segregation in the bottom region of the bed, while in the top half of the particle bed, 

the Sauter mean diameter in the bins remains more or less unchanged between 1 and 7 

seconds of simulation.  

Additionally, the bed expansion during fluidization shown in Fig. 28 is about 10% of the 

initial bed height. This value was found to be approximately constant for all the simulations in 

this study. Thus, the domain height of the simulations can be reduced in future simulations to 

improve processor utilization and reduce computational time. 

Subsequently, the influence of the lateral width of the periodic domain is investigated. To do 

this, the box length and the number of CFD cells in x- and y-direction are doubled to 
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16boxl mm  and 
, 4cell xyN  , respectively. The coarse graining ratio is again set to 2 for the 

non-cohesive powders. The fluidization ramp and the other parameters are taken from Section 

5.2.  

 

Fig. 29: Segregation profiles for different lateral widths of the periodic domain for Bo = 0 and CG = 2 

(averaged over two bins). 
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Fig. 30: Snapshots of the particles and the Sauter mean diameter in the CFD cells at the end of the 

simulations for different lateral widths of the periodic domain (Bo = 0 and CG = 2). 

In Fig. 29, the segregation profiles for the two simulations are displayed (averaged over two 

bins). While the initial profiles are almost identical, the segregation profile at the end of the 

simulation in the wider domain fluctuates less than the other. This is in agreement with the 

results displayed in Fig. 30, where the snapshots of the particles and the information of the 

Sauter mean diameter in the CFD cells are shown. In the narrow domain, one can clearly see 

the layers of small particles. In the wider domain, only one distinct layer has formed at the top 

of the particle bed. Within the bed, also some smaller clusters exist, but the overall particle 

distribution is more homogeneous compared to the narrow domain. 

This leads us to the conclusion, that in the narrow periodic domain, the parcel diameter is too 

large compared to the lateral domain width. Thus, segregation is strongly affected, and 

simulations of the narrow domain lead to an amplification of segregation layers in the 

powder. Nevertheless, simulations in the narrow periodic domain can be used to – more or 

less – quickly determine the influence of the Bond number on segregation. 
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As mentioned in Section 5.2, the length of the CFD cells was fixed to be two times the 

maximum particle – or parcel – diameter for all simulations. Thus, we want to investigate the 

influence of the CFD grid size on the segregation of the powder. To do this, the length of the 

CFD cells in vertical direction 
,cell zl  is increased and the simulation in the periodic setup for 

2CG   and 0Bo   is repeated. All other parameters remain as defined in section 5.2. 

 

Fig. 31: Segregation profiles for different numbers of CFD cells in the periodic domain for Bo = 0  

and CG = 2 (averaged over two bins). 
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Fig. 32: Snapshots of the particles and the Sauter mean diameter in the CFD cells at the end of the 

simulations for different numbers of CFD cells in the periodic domain (Bo = 0 and CG = 2). 

In Fig. 31 one can see that these tests are performed with the identical initial particle sample. 

Merely the different CFD grid size (i.e. the grid size in vertical direction was doubled and 

approximately tripled, respectively) yields quite different segregation profiles at the end of the 

simulations. The reason can be seen in Fig. 32: The larger CFD cells lead to larger spaces 

between the layers of small particles. We speculate that this is caused by the more 

homogeneous exchange fields between CFD and DEM (i.e. particle concentration, and 

coupling forces) if larger cells are used. Thus, the fluid-particle drag fluctuates less and the 

smaller particles build larger clusters, compared to the simulation with the finer grid. One 

possibility to overcome these fluctuations would be a so-called smoothing model in 

CFDEM®, but preliminary results showed that the currently implemented model cannot be 

used for such dense systems. The issue with smoothing is that the drag coefficient at 

extremely high particle concentrations is very sensitive to changes in the local particle volume 

fraction. Thus, smoothing near the free surface (i.e. at the very bottom and top of the powder 
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bed) leads to a tremendous change in the drag coefficient, and hence the required fluid speed 

to induce fluidization. 

5.3.2.2 Comparison between the Beetstra monodisperse and Holloway Drag 

Law 

For the sake of completeness, the Beetstra monodisperse drag correlation [27] should be 

compared to the Holloway drag model [28] for polydisperse gas-solid suspensions. 

Additionally, the Beetstra monodisperse drag model [27] is also expanded with the force sub-

model “ImExCorr” in CFDEM®. This force sub model changes the character of the force 

mapping on the fluid side, however, does not change the overall force that is mapped. Details 

about the models can be found in Appendix A.1. The results are shown in Fig. 33 to Fig. 34: 

 

Fig. 33: Segregation profiles for different drag models in the periodic domain for Bo = 0  

and CG = 2 (averaged over two bins). 
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Fig. 34: Snapshots of the particles and the Sauter mean diameter in the CFD cells at the end of the 

simulations for different drag models in the periodic domain (Bo = 0 and CG = 2). 

Due to the higher required minimum fluidization velocity Umf for the Holloway drag model 

[28] (see section 5.3.1), the superficial gas velocity was increased to 0 20U mm s  in this 

case to provide identical fluidization conditions for all simulations. 

The segregation profiles in Fig. 33 indicate only small differences between the simulation 

with the Beetstra monodisperse drag model [27] used in this work, and the one with the force 

sub-model “ImExCorr”. Also, the particle patterns in Fig. 34 do not result in marked 

differences when using the sub model.  

Contrary to the Beetstra monodisperse drag model [27], segregation is almost completely 

suppressed with the Holloway drag model [28]. Surprisingly, small particles seem to 

accumulate to a certain extent in the bottom region when using the Holloway drag model. 

Also the particle pattern stays nearly homogeneous.  
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This is in agreement with other authors who were unable to obtain consistent results with the 

Holloway drag model [28] for bi-disperse [51] and polydisperse dense flows [54], 

respectively. 
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6 Conclusion 

In the present work, a workflow for the simulation of segregation profiles in a lab-scale 

segregation tester [7] was developed and applied to a cohesive polydisperse powder mixture. 

The simulations were performed for spherical particles with a maximum size ratio of 10, and 

a uniform (volumetric) size distribution. To allow efficient simulations, a van der Waals 

cohesion force model [33] was introduced into LIGGGHTS®, a highly parallel granular 

dynamics code. The core tool in the developed workflow is the calibrated CFD-DPM, i.e. a 

parcel-based simulator for dense gas-particle suspensions. While the base model was already 

fit for the parcel-based approach [21,22], the scalability of the van der Waals cohesion model 

was investigated within this study. The scaling is based on two dimensionless Bond numbers: 

(i) a gravity-based Bond number [16], where the van der Waals cohesion model scales with 

the coarse graining ratio squared, and (ii) a stiffness-based Bond number [14], where the 

cohesion model is linearly proportional to coarse graining for both the Hertzian and the 

Hookean contact law available in LIGGGHTS®. It has to be mentioned that, within this work, 

a constant minimum surface distance for the van der Waals cohesion model was used. Other 

groups also used a particle size dependent minimum surface distance (e.g. 
54 10min ps d  , 

[14]). This yields to a stronger dependency of the cohesion force on the particle’s diameter, 

and thus to other scaling rules for parcel-based simulations.  

Simulations were performed in a three-dimensional periodic shear setup with Lees-Edwards 

boundary conditions [49] to investigate the influence of cohesion on the granular rheology of 

dense polydisperse granular materials. While the three classical flow regimes (quasistatic, 

inertial, and intermediate) persist for non-cohesive granular materials, a new rate-independent 

regime bifurcates out of the inertial regime for cohesive particles. These findings are in 

qualitative agreement with those for monodisperse flows [14]. Nevertheless, the influence of 

cohesion on the yield locus cannot be determined when using Lees-Edwards boundary 

conditions. Thus, a novel “stress until shear” setup was developed. In this three-dimensional 

setup, a particle bed is compacted under “symmetric gravity” conditions to reach a certain 

normal (consolidation) stress. Subsequently, the normal stress is reduced to a final value, and 

an additional gravity in shear direction is induced until the particle bed shears off. The stress 

until shear setup brings advantages compared to other simulation methods and common 

experimental devices [11–16,48,55,56]. Namely, (i) direct access to the (cohesive) shear 

stress at zero normal load, (ii) no influence of wall effects, and (iii) no influence of shear 

gradients due to rotation exist in this setup. The presented simulation results indicate a clear 
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influence of cohesion on the yield locus, demonstrating the suitability of our approach. The 

dimensionless stiffness-based Bond number can be interpreted as a characteristic cohesive 

force normalized with a characteristic contact force [14]. Fig. 9 shows that simulation results 

collapse to a single line when the stresses are scaled with the maximum cohesion force and a 

characteristic length. Only the results of simulations without final normal load scatter. 

Furthermore, results indicate no influence of coarse graining on the yield locus for stiffness-

based scaling of the cohesion model. 

Subsequently, fluidization tests in a periodic setup, as well as in a (cylindrical) lab-scale 

segregation tester setup [7] were performed. In a first step, the minimum fluidization velocity 

Umf, and the influence of the Bond number was determined for coarse graining ratios of 1, 1.5, 

and 2. Unfortunately, due to the small cross-sectional area of the simulation setup, larger 

coarse graining ratios could not be investigated. The main reason is the limitation in the 

computation time, which restricts us to typically < 106 particles in a typical simulation. In 

summary, segregation tests with up to 3 Mio. particles were performed with about 1.5 times 

Umf for two seconds real time. Unfortunately, these simulations are extremely demanding, and 

only selected simulations were run for a longer duration of fluidization. Preliminary studies 

showed, that for these simulations the gravity-based Bond scaling must be applied. The 

results for low Bond numbers (Bo ≤ 0.01) indicate no influence of cohesion on the minimum 

fluidization velocity, as well as on the segregation behavior. With increasing Bond number, 

the minimum fluidization velocity decreases slightly. One reason for this behavior is that, for 

less cohesive cases, the small particles rearrange in the flow field, indicated by a characteristic 

decrease of the slope of the pressure drop at U0 ≈ 1 mm/s. The pressure drop in the cylindrical 

setup overshoots at Umf and decreases slowly to the final (reference) value. This behavior 

cannot be seen for the periodic setup and becomes more pronounced with increasing coarse 

graining ratio. This leads to the speculation that the overshoot is due to wall effects, following 

the line of thoughts documented in Jackson [53].  

For high Bond numbers, segregation profiles, as well as dumped data, indicate no segregation 

because the small particles stick to larger ones. For the less cohesive cases, the small particles 

segregate in clusters through the bed. In the periodic setups, this results in layers of small and 

larger particles. Thus, simulations with fewer CFD cells in vertical direction, as well as for a 

longer time were performed to investigate this peculiar arrangement of particles. Results show 

that for bigger CFD cells these particle clusters become larger and move upwards through the 

bed. This indicates that the results of our predictions are affected to some extent by grid 

effects, meaning that one must carefully investigate these effects during calibration. 
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6.1 Workflow 

We propose the following workflow to match experimentally-determined segregation profiles 

in a lab-scale segregation experiments with simulations: 

 Step 1: Calibration of the particle size distribution 

Simulation results showed that cohesion has only a weak impact on the minimum 

fluidization velocity. Thus, in a first step, cohesion can be neglected to calibrate the 

PSD in the segregation tester setup to reach the required minimum fluidization 

velocity. 

 Step 2: Calibration of the Hamaker constant 

Afterwards, calibrate the Hamaker constant of the van der Waals cohesion model in a 

“two-dimensional symmetric gravity” (e.g. stress until shear) setup to match the yield 

locus and internal friction angle observed in shear experiments. 

 Step 3: Run the segregation simulations 

Finally, CFD-DPM simulations must be performed with a proper coarse graining ratio. 

The scaling of the cohesion model has to be done via the gravity-based Bond number. 

If necessary, adapt the Hamaker constant and repeat the segregation simulations. 

6.2 Outlook 

Our simulation results indicate that the scaling of the van der Waals cohesion model depends 

on the local flow regime in the simulations. Future research could focus on a regime-based 

scaling of the Hamaker constant considering the following line of thoughts: In dense regimes 

one could use a linear CG-scaling, and in dilute regimes – where the gravitational force is 

dominating – a quadratic CG-scaling could be used.  

Recent work of Gu et al. [37] found that decreasing the Young’s modulus in cohesive systems 

yields a wrong flow pattern. Thus, they proposed a modified cohesion model to take this into 

account. Unfortunately, this thesis was too far advanced when the publication of Gu et al. [37] 

was accessible. Future work might consider the findings of Gu et al. [37] to compensate the 

effect of the relatively soft particles used in DEM-based simulations. 
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Appendix A - Simulation Details 

A.1 Fluid-Particle Interactions 

In this work the fluid-particle interactions on each particle are modeled with the following 

forces: 

 the pressure gradient force PF , 

 the viscous force τF , and 

 the drag force 
dF . 

While the pressure gradient force and the viscous force remained unchanged all Euler-

Lagrange simulations in this study, two different definition of the drag force are used: (i) the 

Beetstra monodisperse drag model [27], and (ii) the Holloway drag model [28] for 

polydisperse flows. 

The “gradPForce” model in CFDEM® calculates the pressure gradient force, acting on a 

particle as [57]: 

 P pp V   F   (A.1) 

The “viscForce” model in CFDEM® calculates the particle based viscous force due to the 

fluid shear or deviatoric stress tensor as [57]: 

   pV   
τ

F τ   (A.2) 

Here 
pV  is the particle volume. 

A.1.1 The Beetstra Monodisperse Drag Model 

Beetstra et al. [27] proposed a drag force model for dense particulate systems, based on 

lattice-Boltzmann simulations of arrays of monodisperse spheres. They use the Stokes drag 

force to scale the drag force and define a dimensionless drag force  ,pF Re  as: 

  
 

,
3

d
p

f p f p

F Re
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u u
  (A.3) 
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Here the Reynolds number is defined with the superficial velocity between the fluid and the 

particle: 

 
p f p f
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d
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




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u u
  (A.5) 

A.1.2 The Holloway Drag Model 

Beetstra et al. [27] also proposed a modified drag force model for bidisperse systems, which 

takes the presence of other particle species into account. Holloway et al. [28] extended this 

model to apply to polydisperse suspensions with high Stokes numbers and moderate Reynolds 

numbers. This, so-called, advanced drag model requires additional information about the 

system: (i) the local Sauter mean diameter, (ii) the mixture Reynolds number, and (iii) 

individual particle species information. Moreover, this force model also accounts for the 

fluid-mediated particle-particle drag in polydisperse systems. Detailed information about the 

Holloway drag model can be found elsewhere [28,51]. 

The force sub model “ImExCorr” in CFDEM® is an extension of the “ImEx” model that 

additionally corrects the error stemming from the interpolation of the fluid and particle 

velocities. In this work the “ImExCorr” model is only activated for the Holloway drag model 

[28], and one time with the Beetstra drag model [27]. 

A.2 The Stress Tensor 

The macroscopic stress tensor σ  is the sum of contact stress due to particle collisions contσ , 

and the kinetic stress due to velocity fluctuations of the particles kinσ  [23]: 

 ,
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' '
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i

c
c pc

p V p p p

p V ci

w m
V



 

 
    
  

 σ F l u u   (A.6) 

The principal diagonal elements are the normal stresses ii , and the others are called shear 

stresses ij : 
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The shear stresses are symmetric with respect to the principal diagonal: 

 
xy yx xz zx yz zy          (A.8) 

The pressure (or hydrostatic stress) of a granular material is the average of the three normal 

stress components: 
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xx yy zz  
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 
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Appendix B - Simulation Setups  62 

 

Appendix B - Simulation Setups 

Appendix B is only available in the electronic version. This appendix consists of the 

following directories and files: 

octave 

 Octave functions that have been used in the present work 

segregationTester 

 Work directory for segregation tester simulations in the cylindrical domain 

segregationTesterPeriodic 

 Work directory for segregation tester simulations in the periodic domain 

shearFlowLE 

 Work directory for shear flow simulations with Lees-Edwards boundary conditions 

stressUntilShear 

 Work directory for stress until shear simulations 

 


