
Christoph Ehrenhöfer BSc

Design and Implementation of an

FPGA-based Time-of-Flight Processing System

to achieve the university degree of

MASTER'S THESIS

Master's degree programme: Telematics

submitted to

Graz University of Technology

Ass.Prof. Dipl.-Ing. Dr.techn. Christian Steger

Institute for Technical Informatics

Diplom-Ingenieur

Supervisor

Advisor: Ass.Prof. Dipl.-Ing. Dr.techn. Christian Steger

Dipl.-Ing. Dr.techn. Norbert Druml (Infineon Technologies Austria AG)

Graz, May 2016





3

Affidavit

I declare that I have authored this thesis independently, that I have not used other than
the declared sources/resources, and that I have explicitly indicated all material which
has been quoted either literally or by content from the sources used. The text document
uploaded to TUGRAZonline is identical to the present masters thesis dissertation.

.............................. ...........................................

Date Signature





5

Kurzfassung

Der Einsatz von dreidimensionalen Bildverarbeitungstechnologien in Unterhaltungs- und
Industrieelektronik wurde in den letzten Jahren sehr populär, wobei die Time-of-Flight-
Technologie insbesondere das Interesse auf sich gezogen hat. Aufgrund der kompakten
Baugröße von Time-of-Flight-Kameras, können solche Systeme leicht in verschiedene ein-
gebettete Systeme, z.B. Smartphones, integriert werden. Daher können die Anforderungen
an implementierte Anwendungsfälle sehr unterschiedlich sein. Deshalb ist es nicht so ein-
fach ein Time-of-Flight-System zu entwerfen, welches einen guten Kompromiss zwischen
Hardwarebeschleunigung und Flexibilität erzielt.

Diese Masterarbeit stellt eine neuartige Plattform zur Verarbeitung von Time-of-
Flight-Daten auf einem flexiblen und schnellen Hardware-/Software-System dar. Das wird
unter Verwendung der Xilinx Zynq-Plattform erreicht, die bereits erfolgreich für die zwei-
dimensionale Bildverarbeitung in verschiedenen Anwendungsfällen, z.B. Falldetektion, ein-
gesetzt wurde. Der Zynq-System-on-Chip ermöglicht die hardwarebeschleunigte Berech-
nung von Time-of-Flight-Daten auf einem FPGA. Zusätzlich können die hardwareinte-
grierten Komponenten in Software, auf einem ARM-Prozessor, gesteuert werden. Dieses
leistungsstarke Hardware-/Software-System bietet hohe Flexibilität und eine wesentliche
Beschleunigung in Hardware.

Darüber hinaus wird die Durchführbarkeit des vorgestellten Systems demonstriert. Das
komplette System besteht aus der Automobilplattform AURIX von Infineon Technologies,
einer Time-of-Flight-Kamera, entwickelt von Infineon Technologies in Kooperation mit
PMDTechnologies, und einem Zynq-Entwicklungsboard. Zwei Time-of-Flight-Algorithmen
für die Vorverarbeitung der Tiefeninformation für typische Anwendungsfälle (z.B. Geste-
nerkennung, Indoor-Navigation) werden implementiert. Diese Tiefen- und 3D-Daten wer-
den dann dem AURIX zur Verfügung gestellt. Die erhaltenen Ergebnisse zeigen, dass
nahezu 100 FPS bei einem durchschnittlichen Rechenfehler von 0.08 mm erreicht werden
können.

Außerdem wird ein praktischer Ansatz von Rapid-Prototyping für Algorithmen vor-
gestellt. High-Level-Synthesis wird für die Erstellung von Hardwarekomponenten für zwei
Testfälle verwendet, welche dann mit dem FPGA-basierten Time-of-Flight-Koprozessor
verglichen werden. Die Ergebnisse zeigen, dass die implementierten Hardwaremodule die
gleiche Größenordnung in Bezug auf Leistung und Größe haben. Dies zeigt, dass die ent-
wickelte Time-of-Flight-Plattform hinsichtlich verschiedener Anwendungsfälle und deren
Anforderungen sehr flexibel ist.





7

Abstract

Three-dimensional imaging technologies have become very popular during the last years in
consumer and industrial electronics. The Time-of-Flight (ToF) technology has especially
attracted lots of interest. Due to the small form factor of Time-of-Flight cameras, such
systems can be easily integrated in a variety of different embedded devices, for example,
in smart phones. The requirements of implemented use-case applications can therefore
differ widely. Thus, it is not easy to create a Time-of-Flight framework that can achieve
a good trade-off between hardware-acceleration and flexibility.

This thesis presents a novel platform to process Time-of-Flight data on a flexible and
fast hardware/software system. This is accomplished by using the Xilinx Zynq platform,
which is already successfully used in evaluating two-dimensional image processing in var-
ious kinds of applications, for example, fall detection. The Zynq System-on-Chip (SoC)
allows the hardware-accelerated computation of Time-of-Flight data on an FPGA. In ad-
dition, the hardware-integrated components are controlled in software on an ARM CPU.
This powerful hardware/software system provides high flexibility while achieving an es-
sential speed-up in hardware.

The work also demonstrates the feasibility of the proposed system. The complete
system consists of the automotive platform AURIX from Infineon Technologies and a
Time-Flight camera system, developed from Infineon Technologies in cooperation with
PMDTechnologies, and the Zynq development board. Two Time-of-Flight pre-processing
algorithms for typical use-case applications (e.g., gesture recognition, indoor navigation)
are implemented to provide distance and 3D data to the AURIX. The results show that
almost 100 FPS are possible with an average calculation error of 0.08 mm.

Furthermore, a practical approach of rapid algorithm prototyping is introduced. High
Level Synthesis is used to create hardware components for two test cases, which are com-
pared to the FPGA-based Time-of-Flight co-processor. The results show that the imple-
mented hardware modules have the same dimension regarding performance and utiliza-
tion. This shows that the developed Time-of-Flight processing platform is highly flexible
regarding different use-case applications and requirements.





9

Acknowledgments

This master’s thesis was carried out at the Institute for Technical Informatics at the
Technical University Graz. The practical part of this work was developed at Infineon
Technologies in Graz. First of all, I want to express my thanks to all people who were
involved in the creation process of this thesis.

I would like to appreciate the efforts and assistance of my thesis advisor Ass.Prof. Dipl.-
Ing. Dr.techn. Christian Steger. With his participation and valuable comments, the qual-
ity of this work was considerably improved. In addition, it gives me great pleasure in
acknowledging the support of my advisor Dipl.-Ing. Dr. techn. Norbert Druml at Infi-
neon Technologies Austria AG. He attracted me to the interesting topic of this thesis and
steered me in the right direction to successfully complete my work.

I also would like to acknowledge my fellow students throughout my years of study
in Graz. In particular I consider it an honor to work with Josef and Lukas on a vast
number of projects during my bachelor and master studies. Furthermore, I would like to
underscore the harmonic and effective teamwork before deadlines and exams with them.

Finally, I would like to extend my thanks to my whole family, especially my parents,
for their emotional and financial support during my academic studies. Without their
unfailing help, the accomplishment of my master’s degree would have been significantly
more difficult. Thank you.

Graz, May 2016 Christoph Ehrenhöfer





Contents

1 Introduction 19

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2 Related Work 23

2.1 Time-of-Flight Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1.1 Modulation Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.1.2 Other 3D Measurement Systems . . . . . . . . . . . . . . . . . . . . 25

2.1.3 Photonic Mixer Device . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.1.4 4-Phases Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.1.5 Unambiguous Range Extension . . . . . . . . . . . . . . . . . . . . . 28

2.1.6 Systematic Measurement Errors and Compensation . . . . . . . . . . 29

2.2 State-of-the-Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.2.1 FPGA-based Time-of-Flight Processing . . . . . . . . . . . . . . . . 32

2.2.2 Image Processing on the Xilinx Zynq Platform . . . . . . . . . . . . 36

2.3 Existing Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.3.1 System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.3.2 Image Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.3.4 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3 Design 45

3.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2 System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2.1 Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2.2 Selection of the FPGA Platform . . . . . . . . . . . . . . . . . . . . 47

3.2.3 Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3 Architecture on the Zynq Platform . . . . . . . . . . . . . . . . . . . . . . . 49

3.3.1 Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3.2 Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.4 Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.4.1 Parallel Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.4.2 Control Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.5 Time-of-Flight Processing Pipeline . . . . . . . . . . . . . . . . . . . . . . . 54

11



12 CONTENTS

3.5.1 4-Phases Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.5.2 8-Phases Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.5.3 Calibration Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.6 High Level Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4 Implementation 61
4.1 Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.1.1 Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.1.2 Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2 Time-of-Flight Processing Platform . . . . . . . . . . . . . . . . . . . . . . . 64
4.2.1 System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.2.2 Hardware Specifics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.2.3 Time-of-Flight Processing Library . . . . . . . . . . . . . . . . . . . 71

4.3 Time-of-Flight Processing Algorithm . . . . . . . . . . . . . . . . . . . . . . 73
4.3.1 Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.3.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.4 High Level Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.4.1 Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.4.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.5 Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5 Results 81
5.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.1.1 Utilization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.1.2 Throughput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.2 Time-of-Flight Processing Measurements . . . . . . . . . . . . . . . . . . . . 85
5.2.1 4-Phases Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.2.2 8-Phases Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.3 Demonstrator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.4 High Level Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6 Conclusion and Future Work 101
6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

A Hardware System 105

Bibliography 107



List of Abbreviations

ARM Advanced RISC Machine

AXI Advanced eXtensible Interface

BRAM Block Random Access Memory

CPU Central Processing Unit

DDR Double Data Rate

DMA Direct Memory Access

DRAM Dynamic Random Access Memory

DSP Digital Signal Processor

FF Flip-Flop

FPGA Field Programmable Gate Array

FPN Fixed Pattern Noise

FPPN Fixed Pattern Phase Noise

FPS Frames per second

HLS High Level Synthesis

I2C Inter-Integrated Circuit

IDE Integrated Development Environment

IO Input/Output

IP Intellectual Property

LUT Look-up Table

PCB Printed Circuit Board

PIF Parallel Interface

PMD Photonic Mixer Device

PL Programmable Logic

PS Processing System

SDK Software Development Kit

SDRAM Synchronous Dynamic Random Access Memory

SoC System-on-Chip

ToF Time-of-Flight

TPG Test Pattern Generator

UDP User Datagram Protocol

URE Unambiguous Range Extension

VDMA Video Direct Memory Access

VTC Video Timing Controller

13





List of Figures

1.1 Basic Time-of-Flight working principle [DFH+15] (with changes). . . . . . . 19

2.1 Basic principle of a Time-of-Flight ranging system [Lan00]. . . . . . . . . . 23

2.2 Indirect Time-of-Flight principle [HLCH12]. . . . . . . . . . . . . . . . . . . 24

2.3 Contactless 3D measurement systems [SHB+99]. . . . . . . . . . . . . . . . 25

2.4 Schematic structure of a PMD pixel [Alb07]. . . . . . . . . . . . . . . . . . 27

2.5 Example of a 4-Phases measurement [HLCH12]. . . . . . . . . . . . . . . . . 28

2.6 Example of a measurement combining two modulation frequencies [JBP+10]. 29

2.7 Wiggling effect at multiple integration times [FAT11]. . . . . . . . . . . . . 30

2.8 Fixed pattern noise offset per pixel [KIR06]. . . . . . . . . . . . . . . . . . . 31

2.9 Temperature-related error over an observed time [KIR06]. . . . . . . . . . . 31

2.10 Block diagram of the measurement setup [SHDZ13]. . . . . . . . . . . . . . 33

2.11 Interaction between the different sub-components. Obtained from [CCJD11]. 33

2.12 System architecture of mobile image ranger system [CCJD11]. . . . . . . . . 34

2.13 Development board and interconnections [JCDP08]. . . . . . . . . . . . . . 35

2.14 Basic system architecture for road sign recognition [RF13]. . . . . . . . . . 36

2.15 Hardware architecture including HLS-generated IP [SCH+14]. . . . . . . . . 38

2.16 System prototyping flow of the fall detection system [SCH+14]. . . . . . . . 39

2.17 Architecture of the ToF 3D imaging system [DFH+15]. . . . . . . . . . . . 40

2.18 Sequence diagram of the current system [DFH+15] (with changes). . . . . . 42

3.1 Basic system architecture of the proposed platform. . . . . . . . . . . . . . 47

3.2 Basic architecture of the Xilinx Zynq platform [Xil11a]. . . . . . . . . . . . 48

3.3 Sequence diagram of the new system. . . . . . . . . . . . . . . . . . . . . . . 49

3.4 Architecture on the FPGA of the new system. . . . . . . . . . . . . . . . . . 50

3.5 Sequence diagram of the architecture on the Zynq. . . . . . . . . . . . . . . 52

3.6 Parallel interface timing [Inf15b]. . . . . . . . . . . . . . . . . . . . . . . . . 53

3.7 Structure of one frame [Inf15b]. . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.8 Frame sequence of the 4-Phases algorithm [Inf15b]. . . . . . . . . . . . . . . 54

3.9 Calculation steps of the 4-Phases algorithm [PMD13a]. . . . . . . . . . . . . 55

3.10 Frame sequence of the 8-Phases algorithm [Inf15b]. . . . . . . . . . . . . . . 58

3.11 Calculation steps of the 8-Phases algorithm [PMD13a]. . . . . . . . . . . . . 58

3.12 Basic concept of High Level Synthesis [Cad13]. . . . . . . . . . . . . . . . . 60

4.1 Development flow based on the Xilinx Zynq platform [Cig15] (with changes). 62

4.2 The used hardware from Trenz Electronics. . . . . . . . . . . . . . . . . . . 65

15



16 LIST OF FIGURES

4.3 Implementation of the new system. . . . . . . . . . . . . . . . . . . . . . . . 66
4.4 Basic architecture of the video input stage. . . . . . . . . . . . . . . . . . . 68
4.5 Baisc architecture of the image processor [Enc14]. . . . . . . . . . . . . . . . 69
4.6 Basic architecture of the video output stage. . . . . . . . . . . . . . . . . . . 70
4.7 Class diagram of the ToF processing library. . . . . . . . . . . . . . . . . . 72
4.8 Development flow for the implemented ToF algorithm. . . . . . . . . . . . . 74
4.9 Basic concept of High Level Synthesis [CEES14] (based on [Xil11b]). . . . . 78
4.10 Architecture of the multi-burst approach. . . . . . . . . . . . . . . . . . . . 79
4.11 Architecture of the pipeline approach. . . . . . . . . . . . . . . . . . . . . . 80

5.1 Percentage utilization of the resources. . . . . . . . . . . . . . . . . . . . . . 82
5.2 Percentage distribution of the used look-up tables. . . . . . . . . . . . . . . 84
5.3 Raw frames of 4-Phases measurement (fMod: 60 MHz). . . . . . . . . . . . . 86
5.4 Calculated depth data of 4-Phases measurement (fMod: 60 MHz). . . . . . . 87
5.5 Unambiguous range extension using dual modulation frequencies. . . . . . . 91
5.6 Developed demonstrator of the overall system. . . . . . . . . . . . . . . . . 95
5.7 Transmission errors at the video input stage using a 10 cm long flat cable. . 96
5.8 Adapter PCB [Inf15a]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.9 Transmission errors at the adapter PCB using a 2 cm long flat cable. . . . . 98

A.1 Block diagram of the hardware system on the FPGA. . . . . . . . . . . . . 106



List of Tables

2.1 Timing results of the ToF framework [DFH+15]. . . . . . . . . . . . . . . . 43
2.2 Memory results of the ToF framework [DFH+15]. . . . . . . . . . . . . . . . 44

4.1 Configured clock frequencies of the system. . . . . . . . . . . . . . . . . . . 67

5.1 FPFA utilization of used resources. . . . . . . . . . . . . . . . . . . . . . . . 82
5.2 FPFA utilization of all components. . . . . . . . . . . . . . . . . . . . . . . 83
5.3 Theoretical bandwidths of the memory interfaces, which are calculated from

the configured hardware parameters. . . . . . . . . . . . . . . . . . . . . . . 85
5.4 Timing results of the 4-Phases algorithm. . . . . . . . . . . . . . . . . . . . 88
5.5 Mean/max errors of the 4-Phases algorithm. . . . . . . . . . . . . . . . . . . 88
5.6 Mean/max errors after each image processor operation of the 4-Phases al-

gorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.7 Timing results of the 8-Phases algorithm. . . . . . . . . . . . . . . . . . . . 92
5.8 Mean/max errors of the 8-Phases algorithm. . . . . . . . . . . . . . . . . . . 93
5.9 Mean/max error after each image processor operation of the 8-Phases algo-

rithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.10 HLS results: addition of two images. . . . . . . . . . . . . . . . . . . . . . . 99
5.11 HLS results: ToF amplitude calculation. . . . . . . . . . . . . . . . . . . . . 100

17





Chapter 1

Introduction

In application domains such as consumer electronics, machine vision and automotive tech-
nology, three-dimensional imaging has grown in popularity in the last years due to im-
provements in such systems. In a 3D image, each pixel corresponds to the range of scenery.
Thus, scanning the environment with an additional dimension in comparison to 2D is pos-
sible.

The Time-of-Flight range imaging technology has especially raised the interest. The
principle is 3D imaging technology that measures the travel time of emitted light and
provides distance information, by sending a laser pulse from an emitter. The reflection
of the signal at the object is then detected and processed to a range image. The time
consumed in-between corresponds to the distance. One implemented approach of this
concept is shown in Figure 1.1. With photonic mixer devices (PMD), the phase difference
of the transmitted and received modulated optical signal is measured. This phase shift
is converted into a voltage that is proportional to the distance. After post-processing,
typically done in software, the results are a depth image and an amplitude image.

3D 
Scene

LED / Laser Illumination

Electrical SignalOptical Signal

Relflected 
Optical Signal

Electrical Signal

Reflected 
Electrical Signal

Phase Shift

Time-of-Flight Sensor

Raw 
Data

Post 
Processing

Depth 
Data

Modulation 
Block

Amplitude
Data

Figure 1.1: Basic Time-of-Flight working principle [DFH+15] (with changes).

19



20 CHAPTER 1. INTRODUCTION

ToF-based cameras can gather a whole scene with one shot. Thus, such systems can
achieve very high frame rates up to 100 FPS, which is perfect for real-time applications.
Compared to other 3D imaging technologies, no moving parts are necessary, allowing
cost-efficiency cameras with very small form factors to be built. The resulting distance
images can be efficiently computed by a post-processing algorithm. Therefore, such robust
systems are perfectly suitable to be integrated into consumer electronic or safety-critical
applications.

With the growing distribution of this technology in lots of domains, various kinds of
different use-cases occur. The requirements of applications vary a lot regarding the use-
case. For instance, for gesture recognition high frame rates and a short measurement range
is required, whereas for indoor navigation a long measurement range is needed and lower
frame rates are sufficient. By keeping these characteristics in mind, it is difficult to design
a cost-efficient ToF-based framework for completely different and yet, unknown use-case
applications. In addition, the processing algorithm has to be fast, accurate and flexible.

1.1 Motivation

Today Time-of-Flight cameras can be embedded in all sorts of smart devices such as,
smart phones and tablets, based on the small form factor of indirect ToF cameras, and
the compact design of integrated circuits in the semiconductor industry. Due to the large
range of devices, a variety of use-case applications with particular requirements, such
as gesture recognition and indoor navigation, are needed. Parameters include the image
resolution, frame rate, range and computation specific details. Therefore, commercial ToF
solutions are normally focused on one specific use-case only.

Furthermore, some use-cases, such as gesture recognition, require high frame rates of
around 40 frames per second (FPS). For a depth image, several raw images provided by
the ToF camera are required. It is challenging to deliver a high number of images in a
short time if the processing system performs time-consuming computation in software. In
addition, the interface needs to transmit large loads of data, which also takes up time and
resources.

This raises interest in showing the feasibility of a hardware/software platform that
tackles these issues. This work will focus on a hardware-accelerated and flexible ToF
co-processing framework. This system should efficiently implement a basic ToF post-
processing flow on a Field-Programmable Gate Array (FPGA). Additionally, it will fea-
ture a flexible realization for different use-case applications. A demonstrator should be
developed using the FPGA-based system as an interface between a ToF camera and an
automotive processing platform.

1.2 Objectives

The goal of this thesis is to design and implement a hardware-accelerated ToF imaging
processing system, which is highly flexible in terms of different use-case applications. The



1.3. OUTLINE 21

hardware/software platform enables the possibility to have a framework which is highly
customizable regarding unknown applications in future. Two different use-cases should be
efficiently implemented on an FPGA and evaluated regarding their performance. To reach
this goal, the structure of the work represents the process of the performed activities:

• Research of basic principles and related state-of-the-art publications

• Design of a flexible hardware-accelerated ToF imaging framework

• Implementation of the FPGA-based ToF processing system

• Realization of the concept in terms of a demonstrator

• Evaluation of the implementation results regarding different performance parameters

1.3 Outline

The work is organized as follows: in Chapter 2, an overview of the literature research in
the areas of Time-of-Flight and hardware-accelerated 2D and 3D image processing systems
is given. The important topics of this work are discussed and the state-of-the-art work
regarding related solutions is presented. In addition, the current system and its limitations
are described. Then in Chapter 3, the requirements of the new system are summarized.
Furthermore, the design of the FPGA-based Time-of-Flight processing system is shown
in detail. This is followed by Chapter 4, which presents the implementation of the hard-
ware/software system. Details about the development environment and the workflow are
explained. Chapter 5 contains the results of the implementation regarding area, perfor-
mance and other parameters of the processing system. Further on, details about the final
demonstrator of the implemented system are shown. Finally, in Chapter 6, the work is
concluded and an outlook of possible future prospects is given.





Chapter 2

Related Work

The goal of this chapter is to provide a good overview of the literature research. At first, the
basic Time-of-Flight principle and its applications, as well as the common systematic errors
are outlined. Next, state-of-the-art projects regarding related solutions are represented.
An outline therefore about current hardware-accelerated 2D and 3D image processing
systems is provided. Finally, the publication of the existing framework is described in
detail.

2.1 Time-of-Flight Principle

By knowing the precise value of the speed of light, it is possible to determine distances.
This is calculated by measuring the time that light travels from a transmitter to a target
and back to a receiver [Lan00].

4 CHAPTER 1 

 

transmitter

3D object

"ns stop watch"

100

80

90

70

60
50

40

30
20

10

n sn sn sn s

STARTSTOP

detector

DISTANCE

receiver

1m = 6.67ns

 

Figure 1.3 Basic principle of an (optical) TOF ranging system. 

The basic principle can be summarized as follows: A source emits a light pulse and 

starts a highly accurate stopwatch. The light pulse travels to the target and back. 

Reception of the light pulse by the detector mechanism stops the stopwatch, which 

now shows the time of flight of the light pulse. Considering the fact that the light 

pulse travels the distance twice (forth and back), a measured time of 6.67 ns 

corresponds to a distance of one meter. An essential property of this setup is the 

fact that emitter and detector are synchronous. At this point one can recognize a 

significant advantage of time-of-flight over a triangulation based ranging system: 

The TOF ranging technique does not produce incomplete range data (no shadow 

effects) because illumination and observation directions are collinear. It is obvious 

that the basic problem of establishing a TOF-ranging system is the realization of a 

high accuracy time-measurement mechanism. For a resolution of 1cm, an accuracy 

of better than 70 picoseconds is required. The stringent requirements for the 

receiver are one reason that, although already in 1903 Hulsmeyer carried out some 

experiments with electromagnetic radar, only in 1968 was Koechner one of the first 

to introduce an optical TOF ranging system [KOE]. Another problem was the lack of 

high power (laser-) light sources. All these TOF ranging systems actually only 

measure the distance to a point (1D). In order to gain 3D information, the laser 

beam has to be scanned over the scene in two directions. This requires high 

accuracy laser scanners, which are mostly bulky and sensitive to vibrations.  

 

Figure 2.1: Basic principle of a Time-of-Flight ranging system [Lan00].

The basic principle of a Time-of-Flight ranging system, as outlined in [Lan00], is de-
picted in Figure 2.1. A light pulse is emitted by an active light source and the measurement

23



24 CHAPTER 2. RELATED WORK

system is simultaneously initiated. The light pulse is then reflected back by the target
and received by a detector, which stops the measurement system. By considering that the
light travels to and from the reference point, a distance of 1 m corresponds to a measured
time of 6.67 ns. This relation is illustrated in Equation 2.1 where τ is the echo time and c
represents the speed of light. In order to avoid shadowing effects due to different camera
angles, the emitter and detector are closely located. Another important property of the
system is the synchronous operation of the active light source and the detector.

d =
c · τ

2
(2.1)

2.1.1 Modulation Signals

In order to implement this approach, different modulation types of the emitted signal
exist, as described in [Lan00]. In general, pulsed modulation or continuous wave (CW)
modulation is used. The most obvious technique is the pulsed light operation. By directly
measuring the turn-round time of an emitted light pulse, the distance can be determined.
The basic problem of such a system is the high accuracy that is required for the measure-
ment mechanism.

2 1 Characterization of Time-of-Flight Data

tion variations. For example, measurement accuracy is limited by the power of the
emitted IR signal, which is usually rather low compared to daylight, such that the
latter contaminates the reflected signal. The amplitude of the reflected IR also varies
according to the material and color of the object surface.

Another critical problem with ToF depth images is motion blur, caused by either
camera or object motion. The motion blur of ToF data shows unique characteristics,
compared to that of conventional color cameras. Both the depth accuracy and the
frame rate are limited by the required integration time of the depth camera. Longer
integration time usually allows higher accuracy of depth measurement. For static
objects, we may therefore want to decrease the frame rate in order to obtain higher
measurement accuracies from longer integration times. On the other hand, capturing
a moving object at fixed frame rate imposes a limit on the integration time.

In this chapter, we discuss depth-image noise and error sources, and perform a
comparative analysis of ToF and structured-light systems. Firstly, the ToF depth-
measurement principle will be reviewed.

1.2 Principles of Depth Measurement

Figure 1.1 illustrates the principle of ToF depth sensing. An IR wave indicated in red
is directed to the target object, and the sensor detects the reflected IR component.
By measuring the phase difference between the radiated and reflected IR waves, we
can calculate the distance to the object. The phase difference is calculated from the
relation between four different electric charge values as shown in fig. 1.2. The four

Fig. 1.1 The principle of ToF depth camera [37, 71, 67]: The phase delay between emitted and
reflected IR signals are measured to calculate the distance from each sensor pixel to target objects.

phase control signals have 90 degree phase delays from each other. They determine
the collection of electrons from the accepted IR. The four resulting electric charge

Figure 2.2: Indirect Time-of-Flight principle [HLCH12].

With the use of continuous wave modulation [Lan00], it is possible to indirectly measure
the echo time by determining the phase difference between the modulated emitted and
detected signal, as depicted in Figure 2.2. For such systems, lots of different light sources
are available and the shape of the signal can be chosen, for example, sine wave, square
wave. With the knowledge of the modulation frequency fM and the measured phase ϕ, the
echo time τ can be calculated, as shown in Equation 2.2. With the help of this formula,
the final distance d can then be computed, as represented in Equation 2.3. Because of the
periodicity of the measured phase, the unambiguous range is restricted to c/(2fM ).

τ =
ϕ

2πfM
(2.2)

d =
c · ϕ

4πfM
(2.3)



2.1. TIME-OF-FLIGHT PRINCIPLE 25

2.1.2 Other 3D Measurement Systems

A hierarchical characterization of contactless 3D measurement techniques is given in Fig-
ure 2.3, as summarized from the author in [Lan00]. Such systems use microwave, light
wave or ultrasonic wave techniques to measure the range to a target. Microwave- and
ultrasonic wave-based systems are typically used in GPS or radar use-case applications.
However, these two methods are not further discussed because they are not suitable for 3D
measurements with high angular resolution, due to diffraction limitations. In this work,
the focus is to provide an overview of optical range measurements techniques with a wave
length between 0.5 - 1 µm. The most important optical 3D measurements techniques are
triangulation, interferometry and Time-of-Flight.

OPTICAL TOF RANGE MEASUREMENT 9 
 

2. Optical TOF range measurement 

The basic principles of optical range measurement techniques (1) triangulation, (2) 

interferometry and (3) time-of-flight are introduced in this chapter. All these 

techniques mostly work with light, i.e. electromagnetic radiation fields in the 

wavelength range of 400-1000 nanometers (visible and NIR spectrum). We present 

a rough description of the basic working principles. The advantages and 

disadvantages of each principle are discussed and some examples are also given. 

More detailed and broader overviews over optical ranging principles can be found 

in the references [KAP], [BES], [ENG], [EN2], [SC1]. Figure 2.1 shows the family 

tree of contactless 3D shape measurement techniques.  

Contactless 3D shape measurements

Microwave
λ = 3 - 30 mm
(10 - 100 GHz)

Light wave
λ = 0.5 - 1 µm

(300 - 600 THz)

Ultrasonic wave
λ = 0.1 - 1 mm
(0.3 - 3 MHz)

Triangulation

depth detection by 
means of geometrical 
angle measurement

Interferometry

depth detection by 
means of optical coherent 
time-of-flight measurement

Time-of-flight (TOF)

depth detection by 
means of optical modulation 
time-of-flight measurement

 

Figure 2.1 Family tree of contactless 3D shape measurement [SC1]. 

Since TOF measurement is the underlying principle of this work, it is discussed in 

more detail. The first part of this chapter is closed by a discussion and a 

comparison of the different ranging techniques. It should be mentioned that also 

microwave (λ=3–30 mm) and ultrasound (λ=0.1-1 mm) techniques have their 

application-specific advantages. However, they are not included in this comparison. 

Due to diffraction limitations, both techniques are not suited for range 

measurements with high angular resolution, at an acceptable size of the 

Figure 2.3: Contactless 3D measurement systems [SHB+99].

Triangulation

The triangulation measurement method, as outlined in [Lan00], is based on geometrical
analysis of a triangle. The distance of a reference point is one unknown point of the
triangle, whereas the other two known points belong to the system. By measuring the
angles or the base line of the triangle, the unknown distance can be determined. Two
different techniques exist: passive and active triangulation.

For passive triangulation [Lan00], two cameras are placed apart with a known distance
and observe the same point. By measuring the viewing angles, the distance can then be
determined. One common realization of this principle is stereo vision. 2D-correlation is
used to find typical object features in both images. Due to this identification of the same
point, high contrast images are necessary. This method works quite well for rich contrast
scenes that need no active light source. The disadvantages however are the shadowing
effect, the high computation effort and the system’s size.



26 CHAPTER 2. RELATED WORK

In the active triangulation approach [Lan00], a positive sensitive detector observers
a point on the scene projected from a light source. There is no need of measuring the
viewing angles. Instead, the distance can be determined by knowing the focal length of the
system and the point projection on the detector. In order to measure the whole scene, the
laser point needs to scan the whole object surface. Using laser scanning on a complete
line provides a faster measurement. Drawbacks are the time-consuming scanning and the
need of mechanical parts in the system. An advanced technique that does not require
moving parts, is based on two-dimensional structured light. This system projects a 2D
striped pattern on the whole surface, a 2D camera then captures the scene. The range
can then be determined by analyzing the displacement of the stripes.

Interferometry

This technique [Lua01] is based on the superposition of two monochromatic waves with
the same frequency. A beam splitter is used to split a laser beam. One beam is projected
to a mirror and the other to the target. An integrated detector captures both rays as
they are reflected back. After integration, an interferogram provides phase information,
related to the distance. Interferometry is suited for applications where high accuracy over
small distances is required. The main disadvantages are that only relative distances can
be measured and that the unambiguous range is very low.

Time-of-Flight

The basic principle of Time-of-Flight has already been described in the beginning of this
chapter. An advantage of indirect ToF cameras is the small form factor because no moving
parts are used and the sensor can be built in CMOS technology [Lan00]. Therefore,
the camera system is robust and inexpensive. High frame rates are possible because
information for all pixels is gathered in parallel whereby the phase information can be
determined without much computation effort. The main drawbacks are the low resolution,
the maximum unambiguous range and measurement errors, which need to be compensated
by calibration.

2.1.3 Photonic Mixer Device

This work will focus on Time-of-Flight imaging based on continuous wave modulation.
The main feature of this method is the realization of the sensor with the photonic mixer
device (PMD) technology, which implements the process of mixing and correlation of the
detected optical signal and the reference signal in one semiconductor circuit, as shown
in [Lua01]. The correlation between the received signal and the original signal is known as
cross-correlation. Such an independent PMD pixel can be easily integrated into a matrix
in 3D, which provides parallel determination of the phase.

The schematic structure of a PMD pixel, as depicted in Figure 2.4, is described in detail
in [Alb07]. Because of the inner photoelectric effect, incoming photons in the poly-silicon-
layer are split-up into electron-hole pairs. The electrons are then separated into bucket A



2.1. TIME-OF-FLIGHT PRINCIPLE 27

or B. This depends on the modulation of the reference signal, which generates an electrical
field. After a certain integration time, the buckets are read out. The difference between
the voltages of both buckets corresponds to the overlapping of the emitted and detected
signal. With a longer integration time, the signal-to-noise ratio can be improved. An
issue of this approach is that one measurement cannot unambiguously determine the phase
delay. Hence, a further measurement is performed with the phase-shifted emitted signal.
With the results of these two measurements, the phase delay can then be unambiguously
calculated. Therefore, at least two illuminations are necessary to determine the phase
delay.

1. GRUNDLAGEN 9

p-Substrate
n+ n+

M
o
d
u
la

ti
o
n

G
a
te

A

M
o
d
u
la

ti
o
n

G
a
te

 B

S
e
p
a
ra

ti
o
n
 G

a
te

A

S
e
p
a
ra

ti
o
n
 G

a
te

 B

R
e
a
d
o
u
t 
D

io
d
e

A

R
e
a
d
o
u
t 
D

io
d
e
 B

u
out,A

u
Mod,A

u
Mod,B

u
out,B

u
Sep

e
-

Silizium Oxid

Modulation

Readout Circuitry

x

y( )x

e
-

e
-

e
-

e
-

e
-

e
-

e
-

e
-

e
- e

-

e
-

e
-

e
-

j
u (t),P (t)

m opt
=90°

u
int

0° 90° 180° 270°

= +

= -

j
u (t),P (t)

m opt
=0° j

u (t),P (t)
m opt

=180°

j
u (t),P (t)

m opt

(a) PMD-Struktur (b) PMD-Korrelationseigenschaft

Abbildung 1.3: Das PMD-Funktionsprinzip

Tmod =
1

fmod

(1.17)

Popt(t− τToF) = P0 ·

Tint
Tmod∑

n=0

rect

(
t− Tmod

4
− nTmod − τToF

Tmod

2

)
(1.18)

umod,A(t) = umod,offset + umod,peakpeak ·

Tint
Tmod∑

n=0

rect

(
t− Tmod

4
− nTmod

Tmod

2

)
(1.19)

umod,B(t) = umod,offset − umod,peakpeak ·

Tint
Tmod∑

n=0

rect

(
t− Tmod

4
− nTmod

Tmod

2

)
(1.20)

Liegt das optische und elektrische Gegentaktsignal in Phase ϕToF = 0◦ bzw. um ϕToF =

180◦ versetzt, werden maximal viele Ladungsträger zu einer bevorzugten Seite gelenkt

da immer nur dann Ladungsträger generiert werden, wenn der Potentialgradient in eine

Richtung ausgerichtet ist. Treffen die Signale hingegen mit einer Phasenverschiebung von

ϕToF = 90◦ bzw. ϕToF = 270◦ aufeinander, werden die Elektronen gleichmäßig auf beide

Auslesezweige verteilt. Die übrigen Phasenlagen resultieren in entsprechenden Auftei-

lungsverhältnissen. Das direkte Mischen des optischen Signals mit einem elektrischen

Gegentaktreferenzsignal im photosensitiven Bereich mit anschließender Integration ent-

spricht definitionsgemäß einer Korrelation, vergleiche Korrelationsverlauf zweier Recht-

ecksignale in Abschnitt 1.2. Bei PMD-Sensoren ist der optoelektrische Gegentaktmisch-

und Korrelationsprozess jedoch bereits im Detektor integriert und ermöglicht hoch-

auflösende Matrixanordnungen, ohne dass weitere externe breitbandige Mischerkompo-

Figure 2.4: Schematic structure of a PMD pixel [Alb07].

2.1.4 4-Phases Measurement

The indirect TOF measurement method using the PMD technology is within the focus of
this thesis. Therefore, at least two measurements with different phase-shifts are necessary,
as mentioned in the previous paragraph. Most of the state-of-the-art solutions, which
use the same method and technology, perform four measurements with different shifted
phases, as presented in [LS01]. Advantages of this approach include a simplified formula
in calculating the final phase delay and the reduced impact of some systematic errors. In
general, an equivalent phase-shift of 90◦ is used, which results in measurements with the
following phase-shifts: 0◦, 90◦, 180◦ and 270◦.

An example measurement [HLCH12] is depicted in Figure 2.5. The amount of electric
charge for the measurements C1 to C4 is respectively represented with the quantities Q1

to Q4. The PMD pixel efficiency determines the overlapping in one semiconductor based
circuit.



28 CHAPTER 2. RELATED WORK

1.3 Depth Image Enhancement 3

values are used to estimate the phase-difference td as

td = arctan
(

Q3−Q4

Q1−Q2

)
(1.1)

where Q1 to Q4 represent the amount of electric charge for the control signals C1 to
C4 respectively [37, 71, 67]. The corresponding distance d can then be calculated,
using c the speed of light and f the signal frequency:

d =
c

2 f
td
2π

. (1.2)

Here the quantity c/(2 f ) is the maximum distance that can be measured without
ambiguity, as will be explained in chapter 2.

Fig. 1.2 Depth can be calculated by measuring the phase delay between radiated and reflected IR
signals. The quantities Q1 to Q4 represent the amount of electric charge for control signals C1 to
C4 respectively.

1.3 Depth Image Enhancement

This section describes the characteristic sources of error in ToF imaging. Some
methods for reducing these errors are discussed. The case of motion blur, which
is particularly problematic, is considered in detail.

Figure 2.5: Example of a 4-Phases measurement [HLCH12].

The phase and the amplitude can be unambiguously computed [HLCH12]. The phase ϕ
can be calculated with the arcus tangent function, as illustrated in Equation 2.4. The
values from the four measurements (Q0◦ , Q90◦ , Q180◦ , Q270◦) provided from the PMD pixel
array, are used to calculate two intermediate differences, which are divided. With the same
differences the amplitude A can be computed, as shown in Equation 2.5. The amplitude,
which represents the strength of the received signal [FAT11], is used for prediction of the
measurement quality.

ϕ = arctan

(
Q270◦ −Q90◦

Q0◦ −Q180◦

)
(2.4)

A =

√
(Q270◦ −Q90◦)2 + (Q0◦ −Q180◦)2

2
(2.5)

2.1.5 Unambiguous Range Extension

As already mentioned, the measured phase exhibits a 2pi-periodicity. Hence, the distance
is restricted to an unambiguous range of c/(2fM ). In this section, a method is presented to
extend the unambiguous range. The most obvious approach is to decrease the modulation
frequency [JCPD10]. The drawback of this technique is that the measurement precision
is also decreased. Another method is presented in [DCP+07]. By performing two mea-
surements with different modulation frequencies of the scene, it is possible to extend the
unambiguous range, as shown in Equation 2.6. The precision of the measurement does
not significantly worsened.

du =
c

2 |fM1 − fM2|
(2.6)

The basic idea behind dual frequency modulation is depicted in Figure 2.6. The result
of each measurement is a possible set of object locations. The true location of the object is
where both measurements are most in agreement. Algorithms that perform this selection
step using two modulation frequencies are presented in [JCPD10] and [JBP+10].



2.1. TIME-OF-FLIGHT PRINCIPLE 29

where the measurements are most in agreement. Figure 7

illustrates an example locating an object 9.0 m distant

using modulation frequencies of 40 and 30 MHz, giving

duA and duB of 3.75 and 5.0 m respectively.

The returned integer result for each, uA and uB, repre-

sent the fractional remainder after the phase has wrapped

around nA or nB times, where nA and nB are integers greater

than or equal to 0. In the absence of noise, the object

distance can be calculated as

d ¼ c

2fA
nA þ

uA

s

� �
¼ c

2fB
nB þ

uB

s

� �
; ð13Þ

where fA and fB are the modulation frequencies used and

s is the maximum range of the integer output (s = 2Br).

The frequencies fA and fB should be selected such that their

ratio MA:MB can be expressed as a pair of co-prime inte-

gers. This extends the choices of nA and nB to MA - 1 and

MB – 1, respectively.

The difficulty here is to establish nA and nB such that the

two distances are approximately equal. Due to errors in

each of the measurements hA and hB, it is unlikely they will

ever be exactly equal, so the challenge is to minimise the

difference. This function can be expressed as

yðnA; nBÞ ¼ MBðsnA þ uAÞ �MAðsnB þ uBÞj j
¼ ðMBuA �MAuBÞ þ sðMBnA �MAnBÞj j: ð14Þ

A naı̈ve approach is to evaluate all possible

combinations for the integers nA and nB and select the

pair which gives the smallest value for y. A direct hardware

implementation of this function would require MBMA ? 2

multiplications, although due to the relatively small values

of MA and MB these can be implemented fairly efficiently

using only shift and addition operations.

Using the example given in Fig. 7, the ratio MA:MB is

4:3. Selecting an arbitrary output integer range of s = 256

and assuming no noise, the expected integer results from

each frequency are

uA ¼
1:5s

duA

� 	
¼ 102;

uB ¼
4s

duB

� 	
¼ 204:

ð15Þ

The function y(nA,nB) is at a minimum when nA = 2 and

nB = 1, and consequently the distance can be evaluated by

(13) as 8.994, with the small discrepancy due to the integer

rounding of uA.

4.1 Calculation based on new Chinese remainder

theorem

The problem posed here is similar to that of converting

from a residue number system (RNS) to binary. In [21] the

authors propose an efficient hardware implementation for

converting from RNS to binary using a modification of the

Chinese remainder theorem (CRT). In particular, their CRT

II method for a residue system of two values can be

implemented using two multipliers of size MA and MB

and two additions. Given two RNS integers xA and xB

with bases PA and PB, the converted binary value can be

found by

X ¼ xB þ ½k0ðxA � xBÞ�mod PAð ÞPB; ð16Þ

where k0 is an integer such that k0PBmodPA = 1.

This formula assumes PA and PB are co-prime, and the

integers xA and xB are expressed as an integer remainder

within those bases.

To apply to this range disambiguation application, the

formula can be modified as

X ¼ MAuB þ ½k0ðMBuA �MAuBÞ�mod sMBð ÞMA; ð17Þ

where each of the integer phase results uA and uB are first

adjusted to fit a common scale by multiplying by MB and

MA, respectively. The apparent substitution of PB in (16) to

MA in (17) arises from the fact that if the ratio of the

frequencies is MA:MB, the relative bases of their phase

results when converted to the common scale are MB:MA.

This calculation requires three small multiplications and

two additions/subtractions, which is substantially more

efficient than the naı̈ve approach. Additionally, the ratio of

MA:MB can be selected such that k0 is a power of two,

reducing one of the multiplications to a bit shift, which is

free if fixed in hardware. The two remaining multiplica-

tions can also be implemented with no additional resources

by modifying the scale factor associated with the angle

calculated by each CORDIC function.

The final distance measurement in metres can then be

calculated as

d ¼ c

2 fA � fBj j �
X

sMAMB
¼ CX: ð18Þ

This simplifies to a straight forward multiplication by a

constant, although this conversion is perhaps best left to the

user application rather than the hardware.

For the example given in Fig. 7, k0 equates to 3.

Equation (17) becomes

Fig. 7 Example of imaging an object 9.0 m distant with two different

modulation frequencies of fA = 40 MHz and fB = 30 MHz. Because

the object lies beyond the maximum unambiguous range, the

individual returned measurements are incorrectly given as 1.5 and

4.0 m, respectively

J Real-Time Image Proc

123

Figure 2.6: Example of a measurement combining two modulation frequencies [JBP+10].
The correct location of the object is at 9 m.

2.1.6 Systematic Measurement Errors and Compensation

Like almost all sensing devices, Time-of-Flight cameras also show different measurement
error sources. Lots of research is done in this field to identify and minimize the common
errors. A good overview of literature regarding systematic errors is given in [FAT11]. In
general, the ToF measurement exhibits systematic, which are compensated using calibra-
tion, and non-systematic errors, which are reduced using filters. This section will focus on
the main system-errors and their countermeasures.

Wiggling Error

The wiggling error, also referred to as circular distance error, is based on imperfect si-
nusoidal waves used as emitted and reference signal, as shown in [FAT11]. It is difficult
to generate in practice a plain sinusoidal signal. Therefore, an offset, which is distance-
depended, is added to every pixel. The shape of the error, which can look like a sine wave,
is depicted in Figure 2.7.

The error can be compensated, by measuring the distance with the camera to a known
reference point [FAT11]. This is repeated for every distance value within the unambiguous
range. Measured and reference distances are then compared. The result is an offset for
every distance value over the complete unambiguous range. This method comes with
the drawback that a high accuracy sensor is needed to determine the reference distance,
e.g., track line, color camera. Another approach is to generate a model of the error by
evaluating multiple relative measurements, but has the disadvantage that the processed
compensation values are only suited for a limited range.

With the processed offsets, calibration data is generated to compensate the wiggling
error [FAT11]. Several solutions exist to encode the data. It can be stored in a look-up
table (LUT), which represents the offset, depending on the distance. It is also possible, to
express the depth error by a mathematical function. A B-spline or a polynomial function
higher degree can be used to store the values in a compact form.



30 CHAPTER 2. RELATED WORK
IEEE SENSORS JOURNAL, VOL. 11, NO. 3, MARCH 2011 3

TABLE I
TOF CAMERA VS. TRIANGULATION METHODS.

Differences ToF cameras Stereo vision Structured light
Correspondence

No Yes Yesproblem
Extrinsic No, Yes Yes

calibration when used alone
Auto Yes No Yes

illumination
Untextured Good Bad Good

surfaces performance performance performance

Depth range 0.3 ÷ 7.5 m.
Base-line Light-power
dependent dependent

Image resolution Up to 204x204 High resolution.
Camera dependent

Frame rate Up to 25 fps. Typically 25 fps.
Camera dependent

2) Active triangulation methods:
Contrarily to the preceding methods, active triangulation

ones require only one camera together with a structured light
emitter that projects one line or a complete set of patterns.
Disadvantages here, in comparison with ToF cameras, include
partial occlusions that involve missing depth measurements, a
need of highly powered and focused light, occasional scanning
of the light through the scene which results in low frame
rates, and a very controlled light environment that leads to
a big restriction in domestic or outdoor robotics applications.
Recent approaches [18] solve the partial occlusions problem
and the low frame rate by projecting the structured light along
the optical path of the camera, and using pattern defocus as a
depth estimation technique.

B. Laser-based Systems

Laser-based systems provide very precise sliced 3D mea-
surements. Albeit they have been successfully applied to
solve Simultaneous Localization and Mapping (SLAM) prob-
lems [19], difficulties in collision avoidance have been re-
ported due to their 3D reduced field of view [11]. The common
solution has been mounting the sensor on a pan-and-tilt unit.
This implies row by row sampling, and makes this solution
inappropriate for real-time, dynamic scenes, as opposed toToF
cameras. Although high depth range, accuracy and reliability
are advantageous in these systems, they are voluminous, heavy,
increase the power consumption, and add additional moving
parts. ToF cameras, on the contrary, are compact and portable,
they do not require the control of mechanical moving parts,
thus reducing power consumption, and they do not need row
by row sampling, thus reducing image acquisition time.

In sum, ToF cameras have evolved rapidly during the
last two decades and, despite their low resolution and low
ambiguity-free range, they are already showing great potential
in many applications where not very precise but fast 3D
image range data acquisition is needed, such as obstacle
avoidance [11], [20] , pose estimation [21], [22] , coarse 3D
object reconstruction [23], [24] , human body parts recognition
and tracking [25]–[27] among others (see [2] for a detailed

1 2 3 4 5

−0.1

−0.05

0

0.05

0.1

0.15
Wiggling effect at multiple ITs

Real distance in meters

O
ffs

et
 d

is
ta

nc
e 

in
 m

et
er

s

Fig. 3. Depth distortion offset (Wiggling effect). (Blue dots) Measurements
captured with a SR3100 ToF camera at multiple integration times (2ms - 32
ms). (Red line) 6 degrees polynomial approximated function.

application review). Although ToF cameras can not be con-
sidered yet as a mature sensor compared to other camera-
based measuring techniques and other depth sensors, a very
promising future can be foreseen.

IV. D EPTH MEASUREMENTERRORS ANDCOMPENSATION

ToF cameras are evolving and a lot of work is devoted
to understanding the sources of errors and to minimizing
them [28]–[30], as well as to model their effect for camera
simulation [31]. In this section we will present a classification
and characterisation of the different errors as well as the
currently available compensation methods and the quantitative
error reduction attained.

Depth measurements with ToF cameras face the appear-
ance of both systematic and non-systematic errors. Generally,
systematic errors can be managed by calibration and non-
systematic ones by filtering.

A. Systematic Errors

Five types of systematic errors have been identified:
Depth distortion appears as a consequence of the fact that

the emitted infrared light can not be generated in practice as
theoretically planned (generally sinusoidal) due to irregular-
ities in the modulation process. This type of error produces
an offset that depends only on the measured depth for each
pixel. Usually, the error plotted against the distance follows a
sinusoidal shape2 (see Fig. 3). This error is sometimes referred
to aswiggling or circular error.

This type of error depends on the measured depth dis-
tance, and it can be addressed by comparing camera depth
measurements with a reference ground truth distance, or by
means of an optimisation process that models the error from
multiple relative measurements. While the first approach has
the disadvantage of needing an additional sensor in order to
acquire the reference distance, i.e. high accuracy track line as

2This has been explained by means of perturbations on the measured signal
phase caused by wrapping of odd harmonics contained in the emitted reference
signal [32].

Figure 2.7: Wiggling effect, approximated with a 6-degree polynomial, at multiple inte-
gration times [FAT11].

Pixel-Related Error

Pixel-related errors vary for every pixel and are independent of the modulation frequency,
as outlined in [FAT11]. One error source is diversity of produced pixels regarding manu-
facturing tolerances and different material characteristics. Neighboring pixels determine
different results for the same distance. Another reason for occurrence of this error is the lo-
cation of the pixel on the sensor. Because of different signal path lengths, a latency-related
offset is generated.

Literature distinguishes between following pixel-related errors: fixed-pattern noise
(FPN) and fixed-pattern phase noise (FPPN). In [Alb07], pixel-characteristic-related
errors are referred to as FPN, whereas FPPN is known as pixel-location-related errors. In
general, the calibration is performed by measuring the distance to a reference plain, and
determining the offsets between both results, as depicted in Figure 2.8. The compensation
results are then saved in a LUT. In [LSKK10], an approach to compensate FPN is described
by averaging a high amount of images that are taken with shut optics (black images).

Temperature-Related Error

Like almost all electronic devises, the temperature of the ToF camera has an impact on
the measurement, as illustrated in [FAT11]. The measured distances of the whole image
drift with the temperature. Internal and external temperature changes can cause this error
because the sensor shows a temperature-dependent behavior. Until the working temper-
ature is reached, the internal temperature rises and causes an offset error, as depicted in
Figure 2.9.



2.1. TIME-OF-FLIGHT PRINCIPLE 31

 

measurement is around a few microns. The absolute accuracy of 
0.1 mm is not reached due to the not standardized mounting of 
the SR-2. Therefore the absolute accuracy is about 1mm. 

 
Figure 13: Filtered distance calibration data. The circular differences 
to the expected linearity can be clearly seen. 
 

Two different parameters were varied for the calibration 
measurements. First all measurements were done with different 
integration times. Second, five targets with a different 
reflectivity were used (white, light grey, middle grey, dark grey 
and black). 
The SR-2 has been placed along the track line. The targets were 
placed from 1.25 m to 7.5 m with steps of 0.05 m. At each 
position 10 distance measurement of one pixel (row:80, col:62) 
were made. These measurements were then median filtered. 
The trolley ran forth and back three times. The measurements 
were averaged to eliminate linear drift terms. At last the 
measurements were filtered over the distance range by means of 
an ideal low-pass-filter with a Hamming window. 

 
Figure 14: Final Look Up Table (LUT) data for different integration 
times. The reflectivity of the targets in comparison to the other 
influences is negligible. 
 

 
Figure 13 shows the filtered data. The predicted circular effect 
can be clearly seen. Figure 14 shows the Look Up Table (LUT) 
data. This data is used for the correction of the distance data. 
Experiments with a modeling of the offset data with linear and 
cosine functions were done. But these did not brought better 
results. Therefore, a LUT is fully adequate. 
 
3.3 Fixed Pattern Noise (FPN) 

The distance calibration for a single pixel is not sufficient for 
the whole sensor array. Due to the high demand for time, a 

distance calibration cannot be done for all pixels. A simple 
strategy to reduce an offset is to acquire a Fixed Pattern Noise 
matrix. This matrix contains an individual offset for every 
pixel. To gain this matrix, an accurate procedure was 
developed. The SR-2 was mounted above a total station. The 
total station is able to measure coordinates of an object in front 
of the setup. In this case a white wall was chosen. By means of 
comparison between the nominal distances (calculated out of 
the nominal coordinates measured by the total station) and the 
data acquired by the camera, the FPN matrix can be determined. 
 

Figure 15: FPN matrix for the SR-2. Integration time was about 0.1 s, 
nominal distance 2.452 m. Damaged pixel can be depicted, too. 

 
As Figure 15 depicts, the variation of the offset is not negligible 
and has to be considered in the calibration of the sensor. The 
range goes from about -0.3 m to about +0.15 m. A systematic 
tenor can be outlined. In this case this FPN matrix is only valid 
for an integration time of about 0.1 s. For every integration 
time, respectively every controlling computer/program setup 
such FPN is specific and has to be determined. 
 
In Figure 16 and 17 the 3D comparisons between the data 
recorded before and after the calibration procedure are reported. 

 
Figure 16: Deviations towards a flat wall before the calibration of the 
sensor. The highest deviation is around -30 cm (dark blue area). 

0 1 2 3 4 5 6 7 8
- 0 . 4 5

- 0 . 4

- 0 . 3 5

- 0 . 3

- 0 . 2 5

- 0 . 2

- 0 . 1 5

- 0 . 1

N o m i n a l  D i s t a n c e  [ m ]

O
ffs

et
 [m

]

 

 

I n t e g r a t i o n  T i m e  1 6
I n t e g r a t i o n  T i m e  2 0
I n t e g r a t i o n  T i m e  4 0
I n t e g r a t i o n  T i m e  6 0
I n t e g r a t i o n  T i m e  1 0 0
I n t e g r a t i o n  T i m e  1 2 0
I n t e g r a t i o n  T i m e  1 4 0

0 1 2 3 4 5 6 7 8
- 1

0

1

2

3

4

5

6

7

8

N o m in a l D i s t a n c e  [ m ]

M
ea

su
re

d 
D

is
ta

nc
e 

[m
]

 

 

I n t e g r a t i o n  T i m e  1 6
I n t e g r a t i o n  T i m e  2 0
I n t e g r a t i o n  T i m e  4 0
I n t e g r a t i o n  T i m e  6 0
I n t e g r a t i o n  T i m e  1 0 0
I n t e g r a t i o n  T i m e  1 2 0
I n t e g r a t i o n  T i m e  1 4 0

140

ISPRS Commission V Symposium 'Image Engineering and Vision Metrology'

140

Figure 2.8: Fixed pattern noise offset per pixel [KIR06].

The calibration, as described in [PMD13b], can be performed by measuring the distance
to a known reference point, as well as the temperature of the camera while changing the
internal/external temperature over a certain range. By comparing the offset error and the
temperature, a thermal correction coefficient can be determined.

If a temperature sensor is directly positioned in the camera, it is possible to com-
pensate the error with the processed calibration data [PMD13b]. If this not the case, the
typically strategy is to wait until the camera reaches working temperature. After that, the
compensation coefficient for the typical temperature occurring in the intended use-case is
used.

 

 
Figure 6.  SwissRangerTM SR-2. 

 
Table 7 outlines some of the SwissRangerTM’s characteristics. 
This sensor has a non-ambiguity distance of 7.5 m. Remarkable 
is the high number of pixels (nearly 20’000). The large pixel 
size corresponds to the high degree of integration of electronics. 
 

SwissRangerTM SR-2 
development  CSEM 
features 
number of pixel 160 124 
pixel size 39.2 μm 54.8 μm 
sensor field 6.27 mm 6.8 mm 
mod. frequency 20 MHz 
carrier wavelength 870 nm 
non-ambiguity distance 7.5 m 
Interface USB 2.0 

 

Table 7.  Characteristics of the investigated range imaging camera 
SwissRangerTM SR-2 
 
The sensor can be run with different integration times. The 
integration time indicates how often/long the intensities c(τi) 
were collected and thus integrated. For a higher integration 
time, the electrons (also the photon generated ones) are 
collected for a higher number of cycles. The calculations are 
done afterwards. 
Currently a new version of the sensor has been produced 
(SwissRanger SR-3000, http://www.swissranger.ch). 
 
 

2. SYSTEM PROPERTIES 

At the laboratories of the Institute of Geodesy and 
Photogrammetry (IGP), ETH Zurich, many different properties 
of the SwissRangerTM were investigated. The impact of the 
internal and external temperature influences on the distance 
measurements are reported in the next sections.  
 
2.1 Influence of the Temperature onto the distance 
measurement 

A problem very well known in semiconductor technology is the 
materials high respond to different temperatures and changes in 
the temperature. Especially in CCD and CMOS photo sensors 
an increased temperature causes a higher rate of thermal 
generated electrons. These electrons do not contain any usable 
information; they only fill the storage sites of the sensor equally 
and thus decrease and limit the usable optical capability for the 
actual signal to be derived. The saturation is reached sooner. In 
case of the SR-2, two different effects were observed. 
 
2.1.1 Internal Temperature 
The first effect observed relates to an internal heating of the 
sensor. As seen in Figure 8, in the first minutes after the sensor 
starts working, the measured distance towards a fixed target 
increases. After a few minutes the process stabilizes. Therefore 

it is recommended to use the sensor in some kind of master 
mode, where it acquires continuously and stabilizes in 
temperature. But due to the fact that small gaps remain between 
the single frames, a cooling process takes place and small 
effects still remain as can be seen in Figures 8 and 9. The 
SR-2’s concept does not provide an independent continuous 
mode. But nevertheless the effect remains regular and can 
therefore be factored in the calibration. 
 

 
Figure 8: Distance offset drift (fixed target) caused by self-induced 
heating of the sensor. 
 
 
2.1.2 External Temperature 
The second important influence of temperature on the distance 
measurement comes from the external temperature. To 
investigate this effect, the SwissRangerTM was placed in front of 
a fixed target. It has to be remarked that the sensor was not run 
in continuous mode, so far (separate thread in the mastering 
computer). Therefore, the trend of the single graphs in Figure 9 
is valid for exactly the computer and program setup they were 
acquired with. But the main systematic behaviour can be seen. 
With a higher temperature the measured distance increases. It 
also can be pointed out that the effect is systematic and thus 
removable with a calibration procedure, as well. The 
determined drift lies around 8mm/°C. 

0 20 40 60 80 100 120 140 160 180
1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

Integration-Time [ms]

M
ea

su
re

d 
D

is
ta

nc
e 

[m
]

Influence of Integration-Time and Temperature on Measured Distance by SwissRanger

39.7 °C
28.8 °C
19.2 °C
 9.2 °C
 5.2 °C
 0.0 °C
-5.6 °C
-10.0 °C

 
Figure 9: Relation between Integration-Time and Measured Distance 
with respect to different external temperatures 
 
 
2.2 Distance Accuracy 

Figure 10 shows the standard deviation for the distance 
measurements in every pixel. As it can be clearly seen, the 

138

ISPRS Commission V Symposium 'Image Engineering and Vision Metrology'

138

Figure 2.9: Temperature-related error over an observed time [KIR06].



32 CHAPTER 2. RELATED WORK

2.2 State-of-the-Art

The goal of this section is to provide an overview of similar solutions. First of all, FPGA-
based Time-of-Flight imaging systems are presented. Hence the architecture and the
processing algorithm of the implementations are described. Finally, the image processing
projects for different use-case applications, which use the Xilinx Zynq platform, are shown.

2.2.1 FPGA-based Time-of-Flight Processing

In the last years 3D imaging raised the interest in several domains, some examples include
automotive technology and consumer electronics. Real-time processing is required for
lots of use-case applications. For instance, a typical gesture recognition use-case requires
around 40 FPS to work properly. Hence, the following paragraphs list the projects that
investigate this challenge with the help of an FPGA.

FPGA-based Time-of-Flight Characterization System

The authors of [SHDZ13] presented an FPGA-based characterization system for a ToF
sensor. The proposed framework allows the flexible generation of all control signals that
are needed for a ToF distance measurement, for example, the shape of the control signal.
After a measurement the captured data is pre-processed on an FPGA and sent to the
host PC, which decreases the amount of data that needs to be transferred over the USB
interface.

A simplified block diagram is depicted in Figure 2.10. A new measurement starts
by activating the FPGA (i.e., Altera Stratix IV) over the USB interface of the host PC.
The control signals are generated from the FPGA and sent to the illumination unit, as
well as the 3D sensor. A laser is used as an illumination source because of the large signal
bandwidth. Therefore, the illuminated light is coupled into the ToF chip through an optical
fiber to remove possible error sources. The used pixels of the ToF chip, which are able to
suppress very high intensities of background light, are described in [DSH+13]. The camera
supports an image resolution of up to 128x128 pixels. After successful measurement the
output voltages generated from the ToF chip are read from the FPGA via an ADC. The
device performs the storage of a full correlation triangle into the SRAM. With a memory
controller, the data can be read out to the USB interface and forwarded to the host PC.
In addition, all control signals are generated in a signal generation block on the FPGA.

The author is highlighting the high flexibility of the system as compared to other
publications, no commercial products are used in this work. The results show that the
standard deviation of the measured distance is 0.15 mm. The FPGA can average a max-
imum of 256 correlation triangles to improve measurement precision. By performing the
pre-processing on the FPGA, the integration time can be virtually increased. In addition,
the load of data, which is transferred over the USB interface, is reduced. Hence, a highly
flexible platform to characterize error sources was introduced.



2.2. STATE-OF-THE-ART 33

corrV

TOFϕ
 

Figure 2. Correlation triangle and its fundamental wave. 
 

Figure 3. Basic block diagram of a TOF measurement setup.

the finite speed of light ܿ଴. To acquire the desired distance 
information an optical signal is sent from the sensor, illustrated 
amongst others in Fig. 1, to an object in front of the camera. 
There a fraction of the signal is backscattered towards the cam-
era. Once the optical signal is received it is correlated with the 
sent one resulting in a correlation triangle similar to that in 
Fig. 2. The angular phase shift ்߮ைி  of the correlation triangle 
is equivalent to the phase shift between the sent and received 
signal. By determining ்߮ைி  of the correlation triangle the 
propagation time of the optical signal can be calculated. Subse-
quently the distance of the object can be acquired by (1). 

 ݀௢௕௝ ൌ ఝ೅ೀಷ ௖బଶగ ଶ௙೘೚೏   (1) 

When starting a measurement cycle a continuous modula-
tion clock is generated by the control logic block, illustrated 
amongst others in Fig. 1. This signal is emitted by an illumina-
tion source. At an object at the distance ݀௢௕௝ a fraction of the 
signal is backscattered to a TOF measurement pixel. When the 
light signal is received at the pixel it was delayed proportional 
to the finite speed of light c0 and the distance of the object ݀௢௕௝. Meanwhile a second clock, the reference clock is trans-
mitted electrically onboard to the TOF pixel. It has the very 
same frequency as the modulation clock. The phase delay ߮ of 
the modulation clock to the reference clock can be varied in 
dedicated steps to correlate both signals. To acquire one point 
of the correlation triangle a certain phase shift ߮ ൌ ߮ଵ is ap-
plied to the modulation clock. Then the pixel integrates both 
the optical modulation and the electrical reference clock during 
the integration time according to the correlation operation. 
After the integration process is completed the correlation vol-
tage ௖ܸ௢௥௥  can be read from the sensor pixel. Then a new mea-
surement with a phase ߮ ൌ ߮ଶ of the reference clock can be 
started. 

By successively varying ߮ in dedicated steps from 0 to 2π 
a correlation triangle similar to the one depicted in Fig. 2 can 
be generated. The phase shift ்߮ைி  of the optical modulation 
signal is proportional to the time it travels over the distance ݀௢௕௝ due to ܿ଴. 

To acquire the distance information from the correlation 
triangle, it is Fourier transformed with a Fast Fourier Trans-
form (FFT) algorithm. ்߮ைி  can finally be obtained from the 
fundamental wave of the correlation triangle depicted in Fig. 2 
resulting from the FFT operation. This task has to be per-
formed for every single pixel, resulting in a 3D image of the 
space in front of the camera. Moreover, the higher harmonics 
obtained by the FFT can be used for further analytics of the 
TOF measurement. For instance a TOF range sensor shows a 
certain dependence of the measured distance on the electrical 

bandwidth of the illumination source [3]. This effect can be 
corrected by, e.g., a reference path [3] or by acquiring the high-
er harmonics of the triangle [4]. 

III. MEASUREMENT SYSTEM IN DETAIL 
The TOF measurement setup, using an FPGA, is illustrated 

in Fig. 3. Via a USB interface a terminal PC directs the Stratix 
IV FPGA to start a new measurement. The device generates the 
appropriate control signals and sends them to the camera chip 
and the illumination source, respectively. In our measurement 
setup typically a laser is used. Lasers possess a large signal 
bandwidth making them ideal for characterizing TOF pixels. 
The light is coupled into the pixel by means of an optical fiber, 
thus removing optical components such as lenses as possible 
error sources. Another advantage of a fiber based setup is that 
the received optical power of the TOF pixel can be precisely 
adjusted. Alternatively, a LED light source can be connected 
instead of the laser. In this case no fiber is necessary to guide 
the modulated light to the TOF pixels. After the measurement 
is completed the FPGA reads in the output signals from the 
camera chip, pre-processes the data internally and sends the 
data to the terminal PC. Additionally, the PC can change the 
laser power via a second USB connection. 

The pixels of the TOF camera used in this measurement 
system are described in, e.g., [5]. They are able to suppress 
very high background light intensities. To use this feature a 
CALIB pin has to be set before every single measurement. 
When this is done, the strength of the background light is 
sensed and stored within a section of the pixel. This postpones 
a possible saturation of the correlation circuitry of the pixel 
during integration. After the background light calibration is 
completed, the old integration charge stored within the integra-
tion capacitor of every pixel is dumped by setting the RESET 
pin. This pin is set for an adjustable amount of time. Then the 
pixel is ready to perform the actual measurement process. As 
described above the integration time is started by generating 
both the reference and the modulation clock with a dedicated 
phase shift ߮. Furthermore, those signals are fed to the pixel 
and the illumination source, respectively. By finishing the 
integration time, one phase step of the correlation triangle from 
every single pixel of the camera was acquired. The FPGA 
directs the camera chip to issue the obtained voltages to the 
output. The voltages are then converted by an ADC and are 
stored to a memory. This whole process is performed for N 
phase steps to obtain a complete correlation triangle. Every 
correlation voltage for each pixel is stored to the SRAM-blocks 
of the FPGA. After a complete correlation triangle is captured, 
the data can be transferred to a terminal PC. There the acquired 
data can be visualized and analyzed. 

241

Figure 2.10: Block diagram of the measurement setup [SHDZ13].

Easily Configurable Range Imaging System

Jongenelen et al. [JCP+09] developed a range imaging system that is easily configurable by
means of modulation patterns. The platform is suited for further experiments regarding
ToF-based applications. Commercial products are limited to a choice of fixed configurable
parameters, whereas the proposed system can be more flexibly configured from the FPGA.

The system architecture of the hardware design, as shown in Figure 2.11, comprises
several components. A ToF sensor from PMDTechnologies is connected via a mainboard
to the Altera Stratix III FPGA. An illumination board provides the modulated light. The
connection between the FPGA and the host PC is established with a VGA/Ethernet board.
The FPGA drives the modulation signals and generates control signals for the PMD sensor.
In addition, the device temporally stores the gathered raw data and computes distance
images, which are then forward to a VGA monitor and a host PC. Over a JTAG interface,
the PC can configure the operating parameters. The computation of the range images as
well as the PMD and VGA interface are implemented in VHDL, whereas the Ethernet
and JTAG interface are programmed in C on the Nios II processor.

with a view towards incorporating it on several mobile robots 

in our fleet. 

The previous system comprised a number of 

interconnected circuit boards: 

• Stratix III Development Kit - This is the primary 

control unit for the system and is centred around the 

Altera Stratix III FPGA.  It controls all peripheral 

hardware, provides phase locked modulation signals 

and performs real time image processing. 

• Illumination Board - This provides the high 

frequency modulated illumination of the scene to be 

imaged. 

• PMD Daughter Board - This contains the CMOS 

sensor (from PMDTechnologies) that images the 

scene and provides modulation inputs that allow the 

sensor’s two video outputs to encode range data in 

the phase shift between the waveforms of the 

reflected light source and the sensor modulation 

frequency.  Further details on this sensor are provided 

later in this paper. 

• PMD Main Board - This provides the interface 

between the FPGA development kit, the Illumination 

board and PMD imaging sensor.  It is also 

responsible for the modulation of the imaging sensor 

and analogue to digital conversion of the video output 

stream from the sensor. 

• VGA/Ethernet Board - This provides an interface 

between the system and a control computer.  An 

Ethernet interface allows images to be transferred to a 

computer for analysis and storage.  A VGA interface 

allows the display, in real time, of both processed and 

raw data images.  

These boards are illustrated with their signal flow 

connections in Figure 1.    The white arrows represent the flow 

of ranging data from the sensor through the FPGA and out the 

VGA / Ethernet board.  The gray arrows represent the flow of 

the modulation signals.  The physical bench-top system is 

presented in Figure 2. 

 

Figure 1.  System Architecture of prototype Full-Field Range Imaging 

System 

 

Figure 2.  Bench-top prototype Full-Field Range Imaging System 

The remainder of this paper details the redesign of this full-

field range imaging system in order to produce a system that is 

suitable for use on the mobile robots in the VUW fleet. 

III. REDEVELOPMENT OF THE FULL-FIELD RANGER 

The mobile platform version of the full-field range imaging 

system packages the complete system into a small form factor 

that can be mounted on mobile robotic vehicles.  The main 

modification of the mobile platform system is the design of an 

application specific FPGA board replacing the Stratix III 

FPGA development board used in the prototype system [8]. 

The geometry of the mobile full-field range imaging 

system implements key sub-systems on individual electronic 

boards.  This system architecture has been adopted for several 

reasons: 

• It has allowed the laser diodes, used for active 

illumination of the scene under measurement, to be 

positioned at the end of the optical lens and in a 

concentric layout around the lens. 

• It has allowed the image sensor to be easily upgraded 

without radical revisions required to the entire 

system. 

• The division of sub-systems onto individual boards 

has provided flexibility in altering the configuration 

of the ranger, such as changing the optical hardware, 

and increased upgradability to the system. 

Each sub-system board has been designed to be stacked 

on top of each other (Figure 3).  The stacked system provides 

the flexibility in optical setup by allowing the position of the 

Laser Illumination board to vary to accommodate differing 

optical lenses.  The stacked system also provides upgradability 

by allowing the Image Capture board to be modified to house 

new image sensors without having to change the remaining 

circuit boards.  

Figure 2.11: Interaction between the different sub-components. Obtained from [CCJD11].

The experimental results showed the relation between modulation frequency and stan-
dard deviation of the phase and distance. Therefore, several measurements were obtained
using different configured modulation frequencies. It was demonstrated that at a mod-



34 CHAPTER 2. RELATED WORK

ulation frequency of 36 MHz, the best precision of the distance measurements, which is
approximately 3.5 mm, can be achieved. The distance precision is related to the phase
precision, which becomes worse at higher modulation frequencies due to the bandwidth
limitation of electronics. The conclusion highlights the aspect of the ease of configuration
of several operating parameters.

Image Ranger System for Mobile Robotic Platforms

In [CCJD11], the authors demonstrated an FPGA-based range imaging system that can be
mounted on mobile robotic platforms. An unambiguous region of up to 15 m is required.
The proposed system in [JCP+09], as mentioned in the previous paragraph, was redesigned
to achieve a small form factor. The Stratic III FPGA from Altera was therefore replaced
by the Altera’s Cyclone III FPGA.

The basic architecture of the system is illustrated in Figure 2.12. The sub-components
are designed to allow stacking on top of each other. This stacked setup provides a small
form factor and upgradability of each unit. The image sensor from PMDTechnolgies
allows a resolution of up to 160 x 120 pixels. The FPGA implements a typical 4-Phases
measurement algorithm.

 
 

Figure 3.  System Architecture of Mobile Full-Field Range Imaging System 

The FPGA board replaces the previous Altera Stratix III 

FPGA with a Cyclone III FPGA since the latter are 

approximately an order of magnitude less expensive and offer 

essentially the same functionality (for this application). The 

main FPGA board can accommodate either the EP3C40 or the 

EP3C120 Cylcone III.  The EP3C40 is the least expensive 

option.  It contains 39,600 logic elements, 4 PLLs (Phase 

Locked Loops), ~ 1 Mbit RAM, and 535 User I/Os. This is 

sufficient for low resolution imaging, but if a higher resolution 

sensor is later employed this can be better accommodated by 

the EP3C120 which contains three times the number of logic 

elements and RAM. A 50 MHz oscillator is employed as the 

system clock 

The imaging sensor employed is obtained from 

PMDTechnologies and features a 160 × 120 array of pixels.  

The design of the full-field range imaging system utilises four 

discrete blocks of memory for processing and storage of these 

images and a fifth block to store the FPGA configuration file.  

The prototype system implemented the four image processing 

and storage memory blocks on the FPGA’s internal 5499 Kbit 

static random access memory.  The full-field image ranging 

system converts each sensor pixel into a 16-bit number.  With 

this 19K2 sensor the frame size is 38.4 kB.  For future 

upgrades of the sensor when a higher resolution image will be 

required then external memory must be utilised.  It is 

anticipated that the imaging sensor may achieve a resolution 

of 1 Mega-pixel (MP) in the next couple of years.  At 16 bits 

per pixel a 1 MP frame will be approximately 2 MB in size. 

To provide the storage and processing capacity for a high 

resolution sensor the mobile platform system has external 

memory available to the FPGA.  Five different types of 

memory have been identified and implemented on the mobile 

platform system.  These memory banks are: 

1 Accumulator – this memory bank is required for the 

storage of images during image processing.  The 

memory holds semi-processed and fully processed 

image data that determine phase measurements.  

2 Output Buffer – this memory bank is required to store 

images that will be accessed by a Nios II soft processor 

(a processor embedded within the FPGA) and the VGA 

output. 

3 Nios II Program – this memory bank is required to 

store the firmware of the Nios II soft processor running 

on-board the FPGA.  The Nios II processor is 

responsible for controlling the Ethernet interface.   

4 Nios II Ethernet Frame Buffer – this memory bank is 

required to store image frames that will be transferred 

to a peripheral computer via the Ethernet interface.  It 

is used to buffer images to handle the latency of the 

Ethernet connection.  

5 Flash FPGA Configuration Memory – this memory 

bank is required to store the FPGA configuration that is 

loaded at power up. 

The Cyclone III family of FPGAs support numerous high 

speed external memory interfaces which allow external 

memory to be connected to the FPGA with little customisation 

of hardware or software.  Supported memory devices include 

DDR, DDR2 and SDR SDRAM.  DDR2 SDRAM was 

selected as the preferred type of memory due to its high 

density and data rates compared with cost.  The cyclone 

family of FPGAs provide a DDR2 SDRAM memory interface 

to handle data transfer and refreshing of the memory. 

The interface between the FPGA board and other boards 

has been designed as a generic interface to accommodate 

future upgrades to the system as a whole.  The generic 

interface also allows the FPGA board to be used in other 

hardware systems and research projects. 

The generic I/O interface has been modeled on the external 

interfaces available on the Stratix III FPGA development kit.  

These external interfaces use a high speed mezzanine female 

172 pin connector.  Maintaining the same interface as adopted 

by the Stratix III development kit allows 3
rd

 party expansion 

boards to be used with the FPGA board.  The FPGA board has 

two generic I/O interface ports.  One port is mounted on the 

side of the board that mates with the Image Capture board.  

The other generic I/O port is mounted on the other side of the 

FPGA board and connects to the External Interface board.  

Figure 4 presents the FPGA system supervision board. 

Each sub-system requires a number of independent voltage 

rails, several requiring high current draw. An unregulated 

power bus allows voltage regulators to be implemented 

onboard the sub-system circuit board where the voltage rail is 

required.  This simplifies the system to only requiring a single 

high current capacity rail bussed through-out the system.  The 

unregulated power bus allows power separation between sub-

system circuit boards lending them to greater flexibility for 

upgrading and modifying.  

All VUW robotic vehicles run off a single unregulated 

power supply, typically a pair of lead acid batteries.  

Following the model of having a single power supply source 

on these vehicles, the use of an unregulated power bus has 

Figure 2.12: System architecture of mobile image ranger system [CCJD11].

The results showed that the imaging system has the compact size of 120 x 200 x 120 mm,
which corresponds to approximately 30% of the initial setup. In order to evaluate the imag-
ing quality, a video was captured with the following configuration: 26 MHz modulation
frequency, 16.7 FPS and 20 ms integration time per frame. The reference points were
evaluated in the captured video sequence. Objects located in the mid-range of the image
have a standard deviation of 3.8 mm, whereas objects placed further away have a standard
deviation of 32.6 mm, which corresponds to 4.8% of the measured distance. By using cal-
ibration, the errors can be significantly decreased. In comparison to commercial systems



2.2. STATE-OF-THE-ART 35

for instance, products from Canesta and Mesa Imaging, the result were reasonably good.
The conclusion of this work highlighted the good performance for the cost, in comparison
to equivalent commercial products.

Range Imaging in Real-time

In [JCDP08], the authors developed a ToF imaging system with the help of an FPGA.
Laser diodes are used for illumination and the Dalsa Pantera 1M60 digital video camera
captures the images. A constructed circuit board with Direct Digital Synthesizer ICs is
used to control the emitted and reference signal. The architecture on the FPGA is depicted
in Figure 2.13. Via the cameralink interface, the frames are transmitted to the FPGA.
For computation of the phase, five raw frames are used. After one received frame, a new
depth image is calculated. With a configured image resolution of 128 x 128 pixels a frame
rate of up to 30 FPS can be achieved. Furthermore, the system is evaluated by capturing
moving targets with modulation frequency of 40 MHz, which results in an error of around
4 cm.

driver for real-time display.

5 FPGA System Top Level
The target IC for this design is an Altera EP2S60
FPGA mounted on an Altera Nios II Stratix II (RoHS)
Development Kit [9]. Key advantages that this board
offers are:

• Stratix II EP2S60 FPGA
◦ 144 18-bit × 18-bit hardware multipliers,
◦ 12 Phase-locked-loops (PLLs),
◦ 2,544,192 bits block RAM,
◦ 60,440 equivalent logic elements,

• Nios II soft processor core with 32 MB DDR
SDRAM,

• 10/100/1000 ethernet port,
• JTAG programming and debugging port,
• RS232 serial port,
• Two general purpose 41-pin expansion headers.

Figure 4 gives an overview of the system including
connections to the Dalsa camera, the PC and a standard
VGA monitor for real-time display. The PC is no
longer involved in the processing of the depth images
and is included purely as a means for long term storage.
Additional boards have been produced and plugged in
to the expansion headers to drive the VGA monitor and
interface to the camera using the Cameralink interface.

Figure 4: Altera Stratix II Development Kit and
interconnections

Frames are captured by the Dalsa camera and
transferred directly to the FPGA through the
Cameralink interface. These are processed in
real-time with resultant frames stored on the FPGA.
These frames are then output to the VGA monitor and
retrieved by the Nios CPU to be transferred out to
the PC via a TCP/IP connection on the ethernet port.
Control registers for the ranging process are configured

through the Nios CPU via either the JTAG debugging
interface or the TCP/IP connection. Also shown in
Figure 4 is the logical block for controlling the gain
of the modulation signals to the image intensifier and
laser diodes.

Software tools used in the design are Altera’s Quartus
II 7.1 for VHDL synthesis, and Nios II 7.1 IDE
for programming of the Nios II CPU and JTAG
communication. Aldec’s Riviera Pro is used for VHDL
simulation, and Microsoft Visual Studio is used to
program the TCP/IP client program for the PC.

6 Results and Discussion
Overall, removal of the PC from the processing loop
has been successful. The system is still flexible in
its ability to select between high precision or fast
acquisition time operating modes, and the end user
such as a desktop PC or mobile robot’s CPU is relieved
of the task of calculating the depth data from the scene.
Output frame rates of up to 30 frames per second have
been achieved, with fS = 150 Hz, n = 5 and camera
resolution = 128 × 128 pixels.

Table 2 shows a summary of FPGA resources used by
various elements of the design. The logic requirements
of the design are not large, using only 9% of available
Adaptive Logic Modules (ALMs), however the large
block RAM requirement limits the pixel resolution of
the processed images. For 128 × 128 pixels the 22-bit
wide accumulated real and imaginary values account
for 720,896 bits. The remainder of block RAM used in
the ranger process represent the arc tangent LUT and
the output buffers for the Nios CPU and VGA module.

Table 2: Summary of Stratix II EP2S60 FPGA
Resource Usage

Resource ALMs DSP9×9 BlockRAM
(bits)

Ranger 1529 8 1,163,476
Process

Nios CPU 2285 8 48,128
Other 417 0 181,248
Total 4231 16 1,392,852

Total as % 9% 6% 55%
of available

To experimentally verify the plausibility of the realtime
ranging system a number of captures of dynamic
scenes have been taken. The example described here
involves a number of objects moving about in the
scene: a pendulum swinging in a circular arc across the
camera’s field of view, a teddy bear figurine rotating
on a turntable, and a roll of paper towels rolling down
a ramp towards the camera. Modulation frequency for
this capture is 40 MHz.

Figure 5 shows the scene at the start of the capture with
depth represented by pixel intensity. Five test points
are identified in the image: 1) a region of cardboard

3rd International Conference on Sensing Technology, Nov. 30 – Dec. 3, 2008, Tainan, Taiwan

60

Figure 2.13: Development board and interconnections [JCDP08].

Time-of-Flight Range Imaging

The authors of [JBP+10] implemented an FPGA-based system to efficiently compute the
phase of captured raw data. The same hardware platform, as described in [JCP+09], was
used. In particular, the trade-off between the accumulator’s bit widths and the processing
accuracy was evaluated. A 4-Phases algorithm was implemented using accumulators to



36 CHAPTER 2. RELATED WORK

calculate the pixel intensities and the arcus tangent function. The results showed that
for the proposed system, an accumulator width of 14 bits is necessary to provide a phase
error below the system standard deviation. Furthermore, a novel algorithm was presented
for extending the unambiguous range by using two different modulation frequencies.

2.2.2 Image Processing on the Xilinx Zynq Platform

The Xilinx Zynq platform has attracted the interest in recent years for the realization
of FPGA-based imaging systems. In this section, two-dimensional imaging projects are
presented which implement this framework. The publications focus on a specific use-case
application and outline the advantages of the Zynq platform.

The Zynq platform consists of several ARM CPUs and an FPGA, which are integrated
on one chip to provide high data bandwidth between both components, as described
in [Xil15j]. The system is highly flexible as software can be executed on an ARM CPU while
simultaneously using hardware-acceleration on the FPGA. In addition, Xilinx provides a
practical approach of rapid prototyping for the platform, namely High Level Synthesis
(HLS).

Road Sign Recognition

Russell et al. [RF13] has proposed a road sign recognition system using the Zynq platform.
The detection of road signs is an essential component in autonomous driving, as well as
automotive assistance systems and road sign maintenance. The system was implemented
on the Zedboard, which is a development board with an integrated Xilinx Zynq chip.

In Figure 2.14 the basic architecture of the system is illustrated. The VITA-2000 image
sensor from ON Semiconductor provides a stream with an image resolution of 1920 x 1080
at 72 frames per second. Image pre-processing is performed with hardware-integrated
components on the FPGA. Predefined video hardware modules provided by Xilinx are
used to correct the image, such as defective pixel correction. For the color based filtering,
a manually developed hardware unit performs the color segmentation algorithm. The clas-
sification of the shapes and the identification of the signs from a database are implemented
on the ARM CPU with the help of OpenCV.

II. RELATED WORK 
Research into RSR systems tends to split the process into 

the two aforementioned steps of detection and 
recognition/classification.  Detection algorithms usually 
employ color or shape as a method of determining regions of 
interest in the image for further processing.  Møgelmose, 
Trivedi and Moeslund present an overview of the methods used 
by 41 different papers [4]; their work reveals that it is common 
to use color segmentation on the input to remove the 
background.  Since RGB values are quite sensitive to lighting 
changes, these approaches usually convert the pixels into 
another color space (typically Hue Saturation Intensity or Hue 
Saturation Value (HSI/HSV), but others such as CIECAM97 
[5] and Yuv [6] [7] have been used) or use relationships 
between the components for segmentation, as in [8].  After 
color segmentation, the remaining objects in the image are 
classified, usually by shape; this process is quite efficient since 
many background shapes will have been removed and small 
objects can be filtered out.  Some algorithms use shape 
detection as the first step to find signs in the input image, as in 
[9]; this enables them to use grayscale images, which can be 
processed faster or used to reduce color sensitivity.  These 
shape detection algorithms are generally optimized for a 
particular shape of sign, such as circles, or use another method 
to eliminate detected shapes which do not represent signs in the 
image.  Once signs are detected, recognition takes place; this is 
often performed by Neural Networks (e.g. [8] and [10]) or 
Support Vector Machines (e.g. [11] and [12]) but other 
approaches, such as template matching [13], have been used. 

Many different approaches are available at each stage of the 
RSR process; those which are most relevant to the proposed 
design, and those which could be used as a basis for 
improvement shall be summarized here.  Color segmentation 
using the (HSI) color space is performed in [10], [11], [12] and 
others, while some papers use HSV (e.g. [14]).  Some of these 
use a function of the color space to perform segmentation (e.g. 
[10]), and white pixels can be included using achromatic 
decomposition (e.g. [11]).  The authors of [15] demonstrate an 
algorithm to join two halves of signs such as “No Through 
Road” which may be split during segmentation, they also use a 
function of hue and saturation to filter the image.  Shape 
approximation using the Ramer-Douglas-Peucker algorithm is 
performed in [16] to determine the shapes in a pre-processed 
image. 

Recently Field Programmable Gate Arrays (FPGAs) have 
been used as a platform for RSR; the authors of [17] have used 
a MicroBlaze processor on a Virtex-5 with hardware 
accelerators for color filtering and morphological operations.   
They point out that previous works on FPGA have been 
orientated towards embedded processors without much 
consideration for hardware acceleration of the algorithms.  
Their system currently uses small images of 320x240 pixels, 
they implement morphological operations in hardware and 
complete their algorithm in 777 ms.  In [18] LEON3 CPUs are 
instantiated in a Virtex4 FPGA, however this leaves little room 
for custom accelerators; their design completes within 600 ms, 
but the size of the images used is not discussed.  An Altera 
Cyclone II FPGA is used in [19], but only circular traffic signs 
are considered. 

All these approaches have used ‘soft’ processors in the 
logic, i.e. the processor is created from programmable logic; 
Irmak uses a ‘hard’ PowerPC processor on a Virtex5 in [20].  
The advantage of a hard processor is that higher frequencies 
can be obtained since the architecture is optimized for the 
processor.  Utilization of the FPGA is quite low in the design 
and only 60x60 images are tested; these images would need to 
be output from a previous stage which had already detected the 
sign.  Execution time is around 70 ms for one of these images. 

III. SYSTEM OVERVIEW 
The Zynq Evaluation and Development Board (ZedBoard) 

produced by Avnet and Digilent uses a Xilinx Zynq-ZC702 
part and 512 MB of off-chip memory (OCM).  There are many 
external connectors on the ZedBoard including UART, HDMI, 
Ethernet and FPGA Mezzanine Card (FMC) among others.  
Avnet have developed the FMC-IMAGEON module, which is 
an FMC connector to interface the ON Semiconductor VITA-
2000 CMOS image sensor.  A reference design for this 
connector (available online [21]) has been adapted by Xilinx 
for XAPP794 [22] and an Xcell journal article [23], in which 
they create an image processing pipeline with a webserver to 
perform image correction on 1920x1080 images. 

In the proposed system, input images are taken from the 
VITA-2000 sensor which is set up to capture HD video 
resolution (1920x1080 pixels) at 72 frames per second.  The 
images are pre-processed in hardware and passed from the PL 
to the PS via a triple frame buffer in the 512 MB OCM.  When 
the user wishes to begin processing the data, the PS reads the 
frame buffer and performs the remaining steps of the 
algorithm.  Output can be obtained from a webserver or UART, 
both of which can initiate the RSR process.  A system 
overview is given in Fig.1 showing the sensor and Zynq chip. 

Development for the Zynq platform is not supported by 
version 2012.4 of Xilinx’s Vivado Design Suite, so the design 
was developed in PlanAhead (which is similar in style to 
Vivado).  PlanAhead itself is used mainly as a link between 
two other Xilinx tools, Xilinx Platform Studio (XPS) and 
Software Development Kit (SDK).  XPS is used to develop the 
hardware portion of the design, including the interface to the 
processors from the PL; SDK is where the software is built to 
run on the ARM processor target.  Together with a library of IP 
and software drivers these offer a way to rapidly implement an 
entire system on the Zynq.  Fig. 2 details the development 
process for the system. 

 

Fig 1. System Overview of the Design 

 

Fig 2. Development Process for Zynq in PlanAhead.  Blue represents tasks 
performed in PlanAhead, red are performed in XPS, and yellow in SDK. 

597

Figure 2.14: Basic system architecture for road sign recognition [RF13].



2.2. STATE-OF-THE-ART 37

The results showed that the system is able to detect all red and blue signs in one
frame, in approximately 5 seconds. Compared to other designs that also use hardware-
acceleration, the proposed system is slower. The authors considered that other imple-
mentations only process frames with an image resolution of VGA quality or below, while
the proposed design processes Full HD images. Furthermore, more software computa-
tions could be hardware-integrated on the FPGA to achieve an essential speed-up. The
work was concluded with an emphasis of the potential of the Zynq. This platform is well
suited for embedded road sign recognition or other imaging systems. The design of the
entire system took only six weeks due to the use of Xilinx tools and the standard memory
interface.

Fall Detection

Several publications exist that implement a fall detection use-case application using the
Xilinx Zynq platform, as shown in [SCH+14], [ASA+14] and [NBVT14]. All of these
systems similarly investigated fast prototyping of fall detection in daily life. In order to
achieve the real-time requirement, parts of the algorithms were hardware-accelerated using
High Level Synthesis tools, which directly translate code in high-level language, such as
C++, into a hardware description.

In [SCH+14], the authors developed a smart-camera based fall detection processing
system. Based on the Zynq platform, a fast prototyping methodology was proposed which
allows comparison between different real-time fall detection implementations. By using
high-level algorithmic description, such as C++, and High Level Synthesis tools, this hard-
ware/software system was used in the design space exploration phase for testing different
architectures.

The implemented use-case has applications in the detection of falls of the elderly in
daily life. Therefore, the automatic detection of falls in real-time is required. A fast
response of the system is very important. The algorithm consists of image acquisition,
low-level processing and fall detection. Most of the processing steps are performed on the
ARM using OpenCV. The classification algorithm, which is described in C++, is used to
generate a hardware component with the help of High Level Synthesis.

The basic hardware architecture is illustrated in Figure 2.15. The Intellectual Property
(IP) description, which performs the hardware-accelerated computation, communicates
with the two ARM CPUs and the extended memory through an AXI memory interface.
This hardware module can be manually developed or generated using HLS. A pre-built
Linux is used to provide a software adaption layer between hardware and use-case appli-
cation.

The authors especially outlined the benefits of the hardware/software integration.
Therefore, the used prototyping flow of the system is depicted in Figure 2.16. The flow is
proposed for the Zynq platform, but can be used also for similar hardware/software sys-
tems. It allows a fast validation and prototyping of the fall detection application. Firstly,
part 1 illustrates the standard flow on a host computer. After the initial algorithm devel-
opment, the computation steps are validated and optimized.



38 CHAPTER 2. RELATED WORK

9

Table 5 Processing time of the different fall detection tasks
(ms), Zynq based plateform.

Background
Median

Descriptor
Decision

Total
Subtraction Construction Time

SVM 3.6 12.6 2.5 7.16 25.86
Boosting 3.6 0 2.5 0.029 6.13

propose to implement a hardware accelerator using high-
level algorithm description (such as C language) and
High-Level Synthesis (HLS) in order highlight another
strategy in fast prototyping the smart camera system.
Therefore we have selected the classifier part of our al-
gorithm as it is a very popular and efficient method used
in image analysis. The SVM classifier is more robust nev-
ertheless more complex as well than boosting approach.
The regularity of the boosting-based classifier represents
an ideal candidate for HW implementation. Therefore
we have selected this algorithm despite its relatively low-
processing time compared to the global system process-
ing time. Due to its popularity in image analysis, an ef-
ficient implementation of this classifier represents a sig-
nificant contribution by itself as attest the number of
references dealing with this issue [32][33][21].

4.2.3 Hardware/Software architecture overview and
implementation

In order to demonstrate the efficiency of our hardware
platform based approach for smart-camera fall-detection
application prototyping, we will consider in the following
the generic specifications for target hardware architec-
ture as illustrated in Figure 7, following the design flow
described in the section 4.1.

USB 2.0USB/JTAG

SDRAMETHERNET

HDMIUART

AXI Interconnect

ARM
Cortex-A9

ARM
Cortex-A9

I-cache I-cache

Snoop Control

Inst Mem Data Mem

Memory
Controller

IP

AMBA

Fig. 7 Target hardware architecture including Boosting IP

The basic hardware architecture is built using the
EDK tool. Once this basic architecture is ready, we inte-
grate the IP, which implements the Adaboost algorithm
in hardware inside the user logic. The IP description can
be done either manually or using HLS tools. The Ad-
aboost IP is interfaced with the rest of the architecture
via the AXI interconnect. More details about the hard-
ware Adaboost IP is given bellow.

4.2.3.1 Boosting: Hardware Implementation

The decision function, according to the equation 3, is
originally a sum of products. However, each product is
made of a constant λt and the value (-1) or (+1) de-
pending on the output of ht. Then, it can be replaced
by if statements or multiplexors allowing to choose be-
tween the positive and negative values of the constants
λt which are hard-coded in the IP. ht are comparators
between the k component of the vector x and constant
thresholds which can also be hard-coded in the IP.

Accu⇐ 0
t⇐ 1
ht ⇐ 1
while t 6= T do

if Typet = 1 then
if Thresholdt ≥ xt then
ht ⇐ 1

else
ht ⇐ 0

end if
else

if Thresholdt > xt then
ht ⇐ 0

else
ht ⇐ 1

end if
end if
if ht = 1 then
Accu⇐ Accu+ λt

else
Accu⇐ Accu− λt

end if
t⇐ t+ 1

end while
if Accu ≤ 0 then
y ⇐ −1

else
y ⇐ +1

end if

Algorithm 1: Calculate resulting class y

The pseudo-code of the decision function is given in
the algorithm 1, where xt is the input value (from the de-
scriptor), and y is the output. The thresholds Thresholdt,
associated with their polarity Typet and the λt are pa-
rameters of the function determined during the training
step, and coded directly in static tables in the IP. The
corresponding tables are automatically generated by our
Adaboost tool and can be easily updated. In all the next
experiments, the number of iterations has been auto-
matically tuned during the training process and fixed
to T = 100. This cascade of multiplexors and adders
presents a real bottleneck of time consuming in terms of
computation when implemented as a sequential process,

Figure 2.15: Hardware architecture including HLS-generated IP [SCH+14].

In part 2, the basic flow for creation of the hardware/software system is presented.
Therefore, the initial algorithm is partitioned into hardware/software. The least regular
part should be performed on the CPU to provide high flexibility. The most regular part is
implemented on the FPGA. Compared to the algorithm on the host PC, additional com-
putation performance is available because the regular parts are then hardware-accelerated.
The hardware components can be manually developed or with High Level Synthesis.

Finally, in part 3 all sub-components are compiled and executed on the target platform.
Implementation results can be used to start a further iteration of part 2 to improve the
overall system.

The synthesis and timing results of the HLS-based hardware component were eval-
uated. Different versions were implemented using improved synthesis directives. The
execution time of the full ARM-based software implementation (30 µs) was almost the
same as the generated hardware IP without any directives (29 µs). By using synthesis
directives the final execution time could be decreased to 2.5 µs by using a pipeline architec-
ture and parallelization of computation steps. The work was concluded with a description
of the benefits that the Zynq platform offers for fast prototyping.

Border Detection

Sabouri et al. [SGC14] developed a border detection processing system for early diagnosis
of melanoma using the Xilinx Zynq platform. By analyzing melanoma skin lesions images,
skin cancer can be discovered. The goal of the study was the investigation of novel methods
on an embedded system. High resolution and performance are important for portable
imaging systems used in the medical domain.

Different edge detection methods, such as Sobel, Kirsch, Canny, LoG, were therefore
implemented and analyzed regarding accuracy and performance. The hardware component
used for border detection was generated with HLS software, which converted the C++
code to synthesizable FPGA code.



2.2. STATE-OF-THE-ART 39
7

HW Architecture 
Specification

Merge boot, programming images

OpenCV Library

Output : Real-Time fall detection 

HW/SW Algorithm 
Partitionning

HDL Development

Debugging / Profiling

Synthesis

Placement & Routing

EDK/SDK Bitstream Generation

Vivado HLSHW IP
Drivers

Application SW compiling
& Linking

2

Compilation & Linking
(C Algorithm+OpenCV)

Native Validation

OpenCV Functions 
selection

Algorithm Specification

SW Debug

1

Profiling

Validation

FSBL

DeviceTree
generation

Kernel
compilation

3

Fig. 3 Fall Detection System Prototyping flow

formance and the time consuming of each tasks of fall-
detection application. Partitioning here means that the
software time consuming tasks shall migrated to a HW
implementation on the reconfigurable logic of the SoC
platform.

4.2 Fall-Detection System: Embedded HW/SW
Architecture

4.2.1 Global Hardware Architecture Overview

We are using a Xilinx Zynq-zc702 platform for our exper-
iments presented below. This board is based on the Zynq-
zc7020 device. This SoC component regroups large re-
configurable logic, communication interface controllers,
and one processing unit that integrates two ARM Cortex-
A9 CPUs. Each CPU has its own cache memory banks
for instruction and data, and one common level 2 cache
memory. The clock frequency of each unit is 667 MHz.
The communications between the interface controllers
and the CPUs (as well as HW IP), are performed via
AMBA/AXI bus network.

The board proposes a large panel of interfaces (see
Figure 4).

Connectors

SD Card

FMC1 LPC

FMC2 LPC

CAN Bus

Quad SPI
Flash 

Memory

JTAG
Module,

Connector 
and Header

DDR3
Memory

8 x 256 Mb x 8
SDRAM

USB
UART

ARM PJTAG
Header

Switches
LEDs and

Pushbuttons

I²C 

Real Time 
Clock,

Multiplexer 
and EEPROM

Configurable
Clocks

HDMI Codec
and

Connector

USB 2.0 ULPI
Tranceiver

and 
Connector

10/100/1,000
Ethernet PHY
(RGMII only)

Processing 
System

U1
Zynq-7000 AP SoC

XC7Z020-1CLG484C

Programmable Logic

Fig. 4 Zynq 702 board architecture

In our smart camera prototype configuration, the video
acquisition is performed using a standard webcam con-
nected to SoC platform via an USB interface. An non-
standard camera could be used instead of the webcam
with extra driver constraint as discussed in section 4.2.2.1.
The visualisation of results produced by the system is
performed via HDMI interface. Extra data-files can be

Figure 2.16: System prototyping flow of the fall detection system [SCH+14].

The results indicated that the extended 5x5 canny edge detection algorithm had the
best performance compared to other presented methods. The authors showed that it
is possible to achieve a frame rate of up to 60 FPS, which is well suited for real time
applications. The work also outlined the rapid processing power, which is demonstrated
by the Zynq platform.

Grayscale Conversion and Convolution

The authors of [AGBS15] implemented a real-time image processing system on the Zynq
platform using hardware/software co-design. The Zedboard, a Zynq-based development kit
from Xilinx, was used to explore different realizations of image algorithms. The following
hardware-accelerated algorithms were investigated: grayscale conversion and convolution
operations, such as edge detection, sharpening, blurring).

The overall system consists of a HDMI monitor, a standard USB camera and the
Zedboard. A Linux operating system on the ARM processor is used to capture images
from a video source. A manually developed image co-processor in Verilog HDL performs



40 CHAPTER 2. RELATED WORK

the algorithms on the gathered image data.

The experimental results showed that images with a resolution of 256 x 256 could be
processed with around 40 FPS. The hardware design utilized around 5% of the available
flip-flops and look-up tables. For future work, a direct memory access (DMA) implemen-
tation was proposed, which would result in an essential speed-up of the system.

2.3 Existing Framework

The ToF 3D imaging system presented in [DFH+15] outlines the current system of this
thesis. Therefore, this paper is described in detail in this section.

A ToF camera sensor provides raw data to an automotive computation platform.
The distance is computed by performing an efficient implementation of a ToF process-
ing dataflow. The works shows a robust solution for mixed-critical applications, in the
automotive domain, on a safety-critical platform. This existing framework is already im-
plemented and used as a starting point for the new proposed system.

2.3.1 System

The architecture, as illustrated in Figure 2.17, consists of a ToF camera and an automotive
microcontroller. Through a parallel interface which connects the two systems, raw image
data provided by the camera is transmitted. The processing of the raw data is then imple-
mented on the automotive microcontroller, which calculates depth data on one core and
computes use-case specific data and events on the other, in a mixed-critical environment.

Control

Raw
DataIllumination

Depth
Data Events

Depth
Data

Raw
Data

Control
Raw
Data

Camera 
Interface

Extended Memory

CPU 1
ToF Raw 

Processing

CPU 2
Application 

SW using 
Depth Data

AURIX Automotive System-on-ChipToF Camera

Sensor

Sc
ra

tc
h

p
ad

Sc
ra

tc
h

p
ad

CPU 3
Lockstep e.g.

Sc
ra

tc
h

p
ad

3D 
Scene

Figure 2.17: Architecture of the ToF 3D imaging system [DFH+15].

Automotive System-on-Chip

The computation platform AURIX TC299 from Infineon Technologies is used, which tar-
gets performance and safety critical applications in the automotive industry, as outlined
in [Inf14]. It is compliant to several standards including IEC 61508, ISO 26262 and
ISO 25119. The multicore approach is based on three independent Tri-Core CPUs, where



2.3. EXISTING FRAMEWORK 41

each core operates with a maximum clock frequency of 300 MHz. The Tri-Core architec-
ture, implemented on one chip package, unifies the instruction sets of a microcontroller, a
RISC processor and a DSP. Several concepts for safety critical systems including lockstep
architecture and safe internal communication buses are well-integrated in the platform.
These features express the perfect environment for secure, mixed-critical and real-time
applications.

One issue concerning memory-intensive computations for use-cases, such as gesture
recognition, is the limited memory capacity of the AURIX. There is in total 2728 kBytes
static RAM (SRAM) available, which is divided into 2048 kBytes global extended memory
and up to 240 kBytes scratchpad memory attached to each Tri-Core. Therefore, difficult
image processing must be implemented in a highly optimized way. Due to this limitation,
implementations of complex data processing algorithms are hardly feasible.

Time-of-Flight Camera

The camera evaluation kit used in the framework is an ongoing joint project of Infineon
Technologies and PMDTechnologies. The camera system is Infineon’s IRS10x0C Evalua-
tion Kit that features the 3D image sensor IRS10x0C, as shown in [Inf13]. The ToF-based
camera can be used in consumer electronics as well as in critical applications, such as au-
tomotive domain and robotics. It features a flexible setup which consists of a LED-based
illumination unit and a sensor System-on-Chip (SoC). The evaluation board features dif-
ferent external interface, for example parallel interface and CSI-2, and allows access to
important signals of the image sensor. Some characteristics are the resolution of up to
100k pixels, a maximum frame rate of up to 100 FPS and a modulation frequency of
maximum 100 MHz. Furthermore, robustness during darkness and full sunlight is given
by implementing suppression of background illumination on the sensor.

The camera is configured as followed: image resolution is set to 160 x 120 pixels, 12 Bits
are transmitted per pixel and 4 phases are measured with an exposure time of 1 ms. The
output, processed on the AURIX, consists of a 16-Bit depth and 8-Bit amplitude image.

2.3.2 Image Processing

The framework computes the depth data from the raw data, transmitted from the camera
sensor, by implementing several steps of a generic ToF processing pipeline. A use-case in
the automotive domain can be implemented, for example, interior monitoring. Due to the
memory and performance restrictions of the AURIX, only the necessary steps of the ToF
processing algorithm are implemented. In detail, only one modulation frequency is used,
post-processing, such as filter, analysis, Cartesian coordinate conversions, are omitted and
only a minimum of systematic error removal is carried out.

In order to clearly illustrate the interaction of the different components, a simplified
sequence diagram is depicted in Figure 2.18. The data processing steps of one full cal-
culation of a depth/amplitude image, including the start of the system, are shown. An
optional host PC is connected over Ethernet with the AURIX evaluation board. The



42 CHAPTER 2. RELATED WORK

calculated data is transferred via User Datagram Protocol (UDP) to the PC to display a
live-stream in a simple application or to debug the computed images.

ToF Camera

CIF CPU 1

configure/start camera

send frame

CPU 2

PC

save frame into 
extended memory

interrupt

copy frame
into scratchpad

SW interrupt
after 4 frames

depth/amplitude 
calculation

copy result into 
CPU2 scratchpad

loop

[iterations: 4]

setup UDP packet

send UDP packet

display 
depth image

AURIX

Figure 2.18: Sequence diagram of the current system [DFH+15] (with changes).

On a reset of the AURIX, the processing platform is started. At first CPU 2 configures
the ToF camera over the Inter Integrate Circuit (I2C) interface, and the camera interface
(CIF) is activated. Therefore, a system reset of the camera evaluation board is done and
the configuration stored on the AURIX is sent. After sending the start signal, the image
transmission is started. The image stream is received on the AURIX via the parallel
interface and pushed from the CIF module into the extended memory.

After the transmission of one raw frame, an interrupt is triggered. Upon this event,
CPU 1 copies the frame from the extended memory in its scratchpad memory. These
processing steps are repeated four times resulting in a software interrupt thrown by CPU 1
to start data computation. The calculation is efficiently implemented and results in a
phase and amplitude image. The images are stored in its own scratchpad memory. After
the execution of the ToF algorithm, the phase and amplitude image are copied to the
scratchpad memory of CPU 2 by using DMA.

After finishing computation and copy operation, an interrupt is thrown by CPU 2,
signaling that the results can be further processed. On this core, the transmission to the
host PC for display purposes is carried out. A UDP stack is implemented in order to
send the data via the network interface. Hence, multiple UDP packets of the phase image



2.3. EXISTING FRAMEWORK 43

and amplitude image are created and transmitted. Because one single UDP packet is too
small to transmit the complete result, the data has to be divided and provided with some
metadata. With a simple application, the calculated data is viewed as a live-stream and
analyzed.

The PC is used to simulate a real system that can react on the use-case events generated
on the AURIX. For instance, a human detection system can be implemented on CPU 3.
If a person sits on a seat without a fastened seat belt, an event will be thrown and the car
will be notified to alert the passengers with an acoustic signal.

2.3.3 Results

The timing results of the work are presented in Table 2.1. Due to an exposure time of
1 ms, it requires 4 ms to gather the raw data of four measurements. It takes a further
3.4 ms to transfer the four images from the extended memory into the scratchpad. In
addition, it takes 3.25 ms to perform the ToF processing and saving the data into the
scratchpad of CPU 2. These results take up a total time of 12.5 ms, which includes
some overhead timing to compute a depth and amplitude image. Therefore, the frame
rate of the camera can be set to a maximum of 80 FPS. The depth (16 Bits/pixel) and
amplitude (8 Bits/pixel) images take up 57,600 Bytes in total. The memory results are
shown in detail in Table 2.2. For the computation of the depth and amplitude images the
equations 2.7 and 2.8 are efficiently implemented. Thus, the results meet the predefined
accuracy requirements for the use-case.

ϕ = arctan

(
A270◦ −A90◦

A0◦ −A180◦

)
(2.7)

A =

√
(A270◦ −A90◦)2 + (A0◦ +A180◦)2

2
(2.8)

The conclusion of this work is a robust multi-core ToF framework for mixed-critical
applications in the automotive domain. The processing is efficiently performed to provide a
frame rate of 80 FPS. Consideration of functional safety, such as the ISO 26262 standard, is
also fulfilled. As future work, a hardware accelerator can be integrated into the framework
to outsource performance-intensive calculations and to have more free resources available
for use-case applications on the AURIX.

Table 2.1: Timing results of the ToF framework [DFH+15].

Operation Time[ms]

Exposure Time and Raw Data Acquisition 4

Raw Data DMA Transfers 3.4

Phase and Amplitude Calculations 3.25

Total (including Overhead Timing) 12.5



44 CHAPTER 2. RELATED WORK

Table 2.2: Memory results of the ToF framework [DFH+15].

Memory Description # [Bytes]

Raw Data in Extended Memory 153600

CPU 1 Scratchpad Raw Data Memory 115200

CPU 1 Scratchpad Phase and Amplitude Data 0

CPU 2 Scratchpad Phase and Amplitude Data 57600

2.3.4 Limitations

One of the major challenges is the memory limitation of the AURIX. The complete amount
of internal memory is 2728 kBytes of SRAM, which is divided into 2048 kBytes of extended
memory and three times up to 240 kBytes of scratchpad memory allocated to each CPU. In
order to compare this given condition with the memory used in practice, the configuration
of the camera has to be considered.

The image resolution of the chosen configuration is 160 x 120 pixels (16 Bits/pixel),
and for a computed distance image four raw measurements are necessary. Due to this
setup, the memory needed for one image calculation is shown in Equation 2.9. For four
raw frames around 115 kBytes of memory is needed. As a result, the scratchpad memory
will be almost half full if the complete raw data is saved for further computation. It is not
possible to save four frames with the maximum image size of the camera system, which is
approximately 100k pixels. Furthermore, pre-processing (e.g., averaging) that uses higher
amount of images, is not feasible because only a small number of frames can be stored.

memoryframes = imagerows · imagecolumns ·memorypixel ·#frames
= 120 · 160 · 12 bit · 4
= 115200 Byte

(2.9)

Another limitation is the computation power of the automotive SoC. The time needed
for calculation of the phase and amplitude calculation is 3.25 ms. As the computation
is in software, and not performed in parallel to the receive logic, it is completely added
to the total time (raw data acquisition, DMA transfers and calculation). By keeping in
mind that the implemented algorithm only calculates the phase and amplitude without
any systematic error correction and further processing, like filters, the total time would
be largely increased by adding an error correction consisting of many operations. It is
possible to involve additional CPUs, but for the use of another core, the data has to be
copied into its scratchpad memory. Thus, the performance in terms of latency will be
decreased.

Finally, due to the mentioned memory and performance limitations, it is not possible
to implement challenging use-cases, such as gesture recognition, on the AURIX. Thus, the
interest in a new hardware-accelerated ToF processing platform, with a sufficient high-
speed memory, is raised.



Chapter 3

Design

The focus of this chapter is to provide the design of the new system. The architectures
and interactions are presented in a top-down approach. Therefore, the requirements are
derived from the already described existing framework and its limitations. In addition,
the ToF processing algorithm is introduced and the proposed High Level Synthesis design
decisions are explained.

3.1 Requirements

The main aim of this master’s thesis is the creation of a flexible and fast Time-of-Flight
processing platform. Following requirements for the platform are as specified:

• HW-accelerated Computation

A ToF co-processor running on an FPGA shall be used to enhance the performance
of imaging algorithms. Operations that are computational intense shall be shifted
from software, such as a microcontroller, to the FPGA.

• High Flexibility

The hardware/software framework shall be highly customizable in terms of different
ToF applications. The system shall be designed for a high degree of reuse for projects
in future by allowing rapid algorithm prototyping, such as High Level Synthesis.
Camera configuration details, for example the image resolution, shall be configured
during runtime without a reprogramming of the FPGA.

• All-in-one System

The FPGA system shall act as interface between the camera system and an au-
tomotive microcontroller connected through a parallel interface. Hence, the target
platform’s computation and memory resources shall be free to implement more chal-
lenging use-cases. In future, the calculated data shall also be transmitted via other
interfaces (e.g., Ethernet, USB) to other processing devices, for instance, a host PC.

45



46 CHAPTER 3. DESIGN

• System Performance

A hardware-integrated co-processor shall be used to perform the calculation of depth
data on the FPGA (e.g., distance image, amplitude image, 3D coordinates). Further-
more, the transmitted data size shall be decreased. Thus, the overall performance
regarding throughput shall be increased.

For a camera configuration with an image resolution of 160 x 120 and an exposure
time of 1 ms, two different ToF pre-processing algorithms shall be efficiently implemented
and analyzed to show the feasibility of the system:

• 4-Phases Time-of-Flight Algorithm

The 4-Phases algorithm, as mentioned in Section 2.1.4, calculates the distance image,
the amplitude image and the 3D coordinates of a scene. Therefore, four raw frames
with a phase shift of 90 degrees are captured from the camera system. In addition, a
compensation of common system errors, as introduced in Section 2.1.6, is performed.
Such an algorithm is used in a typical gesture recognition use-case where high frames
rates and high relative distance accuracy are required.

• 8-Phases Time-of-Flight Algorithm

As a second ToF algorithm, the 8-Phases calculation is performed. According to
Section 2.1.5, two depth images recorded with two different modulation frequencies
(e.g., 60 MHz, 80 MHz), are necessary, and are combined by an unambiguous range
extension, after systematic error compensation. The result is a distance image,
an amplitude image and a 3D point cloud. This approach can be used for a Google
Tango indoor navigation algorithm that can cope with lower frame rates, but requires
high absolute distance accuracy.

3.2 System Architecture

3.2.1 Concept

In order to create a hardware-accelerated imaging platform, an FPGA is used to shift
the operations of ToF pre-processing and use-case processing onto hardware. The basic
architecture of the new proposed imaging system is depicted in Figure 3.1.

Starting with the existing framework, as already described in Section 2.3, the FPGA
works as an interface between the AURIX evaluation board and Infineon’s ToF evaluation
kit. Due to the hardware-integrated pre-processing, parts of the work load of the memory
and computation resources are free on the AURIX, and allow more challenging use-cases.

In addition to the distance calculation, the FPGA handles the camera control and
configuration. For the configuration, the camera’s I2C interface is used whereas for trans-
mission of the raw data, the parallel interface of the camera is utilized. The parallel
interface from the FPGA to the AURIX is equally specified (e.g., data signals, synchro-
nization signals), which has a major advantage in that the camera can also be directly



3.2. SYSTEM ARCHITECTURE 47

Raw 
Data

Control

Hardware 
accelerated

ToF-processing
and 

use-case
processing

Control

Depth
DataIllumination

Events
Depth
Data

Depth
Data

Control
Depth
Data

Camera 
Interface

Extended Memory

CPU 1
Application 

SW using 
Depth Data

AURIX Automotive System-on-ChipToF Camera

Sensor

Sc
ra

tc
h

p
ad

FPGA

CPU 2

Sc
ra

tc
h

p
ad

CPU 3

Sc
ra

tc
h

p
ad

3D 
Scene

Figure 3.1: Basic system architecture of the proposed platform.

connected with the AURIX without any big changes being made. So, the data is also
transferred via PIF to the AURIX and the AURIX sends control commands to the FPGA
via I2C.

One big advantage of this architecture is that the system can also be used without
AURIX. For instance, the calculated data can be transmitted for further processing over
a network interface on the FPGA board to a host PC.

3.2.2 Selection of the FPGA Platform

In order to fulfill the requirements regarding performance and flexibility, a decision for the
best suitable FPGA platform has to be made. Based on the analysis of the requirements
and the literature research, the hardware/software platform Xilinx Zynq has been chosen.
This platform, as outlined in [Xil15j], provides a heterogeneous ARM-based FPGA system
that allows the development of software on an ARM CPU with the ability to use hardware
components on an FPGA. These two components are integrated on a single chip, which
allows high data bandwidth between ARM and FPGA. Furthermore, High Level Synthesis,
a practical approach to rapid prototyping, is available.

The architecture of the Zynq SoC is presented in Figure 3.2. The main parts are the
Processing System (PS) and the Programmable Logic (PL). The PS contains the ARM
cores, NEON/DSP processors and several interface controllers, for instance, Ethernet,
USB, I2C as well as the memory controller to the external memory. The PL is a typical
FPGA. The communication between the different sub-components (e.g., CPUs, interface
controllers, FPGA) is performed over an AMBA/AXI bus. The configuration of the hard-
ware components from the CPU is done via General Purpose (GP) AXI ports, whilst the
communication between the FPGA and the memory is done via High Performance (HP)
AXI Ports.

3.2.3 Interaction

The interaction of the different components of the overall system is depicted as sequence
diagram in Figure 3.3. The shown hardware components are the ToF camera, Infineon’s



48 CHAPTER 3. DESIGN

2x
I2C

2x
SPI

2x
CAN

2x
UART

GPIO

2x SDIO
with DMA

2x USB
with DMA

2x GigE
with DMA

I/O
MUX

PCIeXADC

Multi Gigabit TransceiversMulti Standards I/Os (3.3V & High Speed 1.8V)

Processing System

Programmable
Logic:

System Gates,
DSP, RAM

M
ul

ti 
St

an
da

rd
s I

/O
s (

3.
3V

 &
 H

ig
h 

Sp
ee

d 
1.

8V
)

   Static Memory Controller
Quad-SPI, NAND, NOR

   Dynamic Memory Controller
DDR3, DDR2, LPDDR2

ConfigurationDMAGeneral Interrupt Controller

ARM® CoreSight™ Multi-core and Trace Debug

Snoop Control Unit (SCU)512 KB L2 Cache

Timer Counters 256 KB On-Chip Memory

NEON™/FPU Engine

   Cortex™-A9 MPCore™

32/32 KB I/D Caches

NEON™/FPU Engine

   Cortex™-A9 MPCore™

32/32 KB I/D Caches
ACP

AMBA® Switches

AMBA® Switches AMBA® Switches

PROCESSOR-CENTRIC EXTENSIBLE 
PLATFORMS FOR POWERFUL, SCALABLE, 
COST-EFFICIENT EMBEDDED DESIGNS

The Xilinx® Zynq™-7000 Extensible Processing Platform (EPP) redefines the possibilities for 
embedded systems, giving system and software architects and developers a flexible platform to 
launch their new solutions and traditional ASIC and ASSP users an alternative that aligns with 
today’s programmable imperative. The new class of product elegantly combines an industry-
standard ARM®processor-based system with Xilinx 28nm programmable logic—in a single 
device. The processor boots first, prior to configuration of the programmable logic. This, along 
with a streamlined workflow, saves time and effort and lets software developers and hardware 
designers start development simultaneously.

	 Embedded Systems Challenges 

•	 Critical need to build in more differentiation 
in less time, which limits the use of standard 
products

•	 Increasingly complex functions and exploding 
demand for signal-processing performance 

•	 Balancing performance, power, cost and 
flexibility without sacrificing results

•	 Reducing costs through hardware and software 
design reuse across a common platform for 
multiple products 

•	 Flexibility to comply with continually changing 
industry standards, regulations and market 

needs

	 Xilinx Solution

•	 Powerful foundation for system on a chip 
(SoC): dual ARM®Cortex™-A9 processing 
system including hardened memory controllers 
and peripherals, along with Xilinx 7 series 
programmable logic

•	 Size, power, throughput and cost advantages in 
a flexible single-chip architecture

•	 Best-in-class tools, operating system support, 
and ecosystem leveraging the ARM connected 
community

•	 A complete product family that enables 
solutions to scale features and reduce costs 
within a defined SW programming model – 
accelerating time to market

•	 Advanced software and hardware 
programmability, enabling unique system 
partitioning and unparalleled performance while 
accommodating late product definition changes 
and standards evolutions

Zynq-7000 EPPExtensible Processing Platform

THE FIRST GENERATION OF EXTENSIBLE PROCESSING PLATFORMS:
A NEW LEVEL OF PERFORMANCE, FLEXIBILITY AND SCALABILITY

Zynq-7000 EPP

Figure 3.2: Basic architecture of the Xilinx Zynq platform [Xil11a].

AURIX and the Zynq platform. The host PC used for display purposes, as mentioned in
the current system, is not illustrated.

The AURIX platform controls the system by triggering the Zynq to start a use-case
through I2C commands. Next, the hardware-accelerated computation platform resets,
configures and starts the ToF camera system via the I2C interface. The raw data cap-
tured from the camera is transferred through the parallel interface and fetched from the
Zynq, which saves the data into the global extended memory. For the required 4-Phases
algorithm, four raw images with the same modulation frequency and a phase shift of 90
degrees are sent.

In addition to the implemented data processing steps, memory or performance intense
operations of a use-case can be performed. The resulting data, for example distance
image, amplitude image, 3D point cloud, is then forwarded through a parallel interface
to the AURIX, where it is received from the camera interface and saved into the global
extended memory. A software interrupt thrown from the CIF notifies CPU 1 to copy the
received results into its own scratchpad. After that, use-case specific events are computed
and transferred via available interfaces, for example Ethernet, I2C, CAN bus, to other
processing targets. Optionally, the results can be copied into the scratchpad memory of
CPU 2 for further processing. For display purposes, the calculated data is sent over the
network interface using UDP to a host PC.



3.3. ARCHITECTURE ON THE ZYNQ PLATFORM 49

ToF Camera

CIF CPU 1

start use-case

send frame

CPU 2

save depth data into 
extended memory

interrupt

copy result
into scratchpad

SW interrupt

use-case
computition

copy result into 
CPU2 scratchpad

AURIXZynq

configure/start camera

save frame into 
extended memory

loop

[iterations: 4]

calculate 
distance/amplitude

send depth data

Figure 3.3: Sequence diagram of the new system.

3.3 Architecture on the Zynq Platform

3.3.1 Concept

The architecture of the hardware-integrated system on the Zynq is depicted in Figure 3.4.
Several sub-components realize the functionality of the fast and flexible image processing
system. The benefit of having clearly separated units connected through interfaces allows
for a high level of flexibility. The system consists of a control block in software, several
FPGA-based hardware components, such as the video receiver/transmitter and an image
processing unit.

The receiving and transmitting logic are not connected to the image processing block,
so as to allow the use of interfaces other than the PIF. For instance, the USB interface
can be used to receive images from the camera or calculated depth data is transmitted



50 CHAPTER 3. DESIGN

over the network interface to the AURIX. All components are connected through the AXI
interface to the control logic, which manages the correct execution of the sub-components.

Events
Depth
Data

AURIX

Control

ToF Camera Zynq

AXI Interface

Processing System

Programmable Logic

Control
Control

Video
Receiver

Image 
Processor

Video
Transmitter

Figure 3.4: Architecture on the FPGA of the new system.

The Control unit is responsible for the correct functionality of the system by config-
uring all sub-components and controlling the dataflow. This component is executed on
the ARM core to provide high flexibility. Furthermore, it responds to control commands
via I2C from the AURIX, such as starting a special implemented use-case on the Zynq.
The camera system is also controlled from this component via I2C. In addition to the I2C
interface, a reset line is also used in the control interface to reset the camera from the
FPGA.

The parallel data interface of the ToF camera is connected to the Video Receiver
component. It stores the camera’s gathered images in the global extended memory via
the AXI interface. The receive logic has to interpret the 12-Bit data signals and the
synchronization details correctly to push an image into a frame buffer. The control logic
is notified when the use-case specific number of frames is received.

The Image Processor unit performs the ToF imaging processing. The hardware-
integrated operations are independent from the algorithm that is chosen to provide the
flexibility to implement further ToF pre-processing or use-cases applications. Through
the AXI interface, one or several images are read and saved after successful computation.
This design allows flexible replacement of the image processor.

The AURIX’s parallel interface is connected through the Video Transmitter to the
Zynq. The computed depth data is read with the AXI interface from the memory and
used to provide 12-Bit data signals and the synchronization signals.

The AXI Interface connects the external global memory to the previous mentioned
sub-components. It provides a protocol for communication to the external memory for a
simple use of the memory, for example, read and write commands. The external memory
is needed to save the images because the internal memory of an FPGA does not have
enough space.



3.3. ARCHITECTURE ON THE ZYNQ PLATFORM 51

3.3.2 Interaction

In Figure 3.5 the interaction of the different sub-components is depicted. Due to simplicity,
the AURIX object is summarized to only one receive and process operation. In detail,
the AURIX operates similarly as illustrated in Figure 3.3. The CIF interface receives the
data and CPU 1/CPU 2 are used for further processing.

The control logic is not presented as sub-component of the Zynq to further reduce the
complexity of the sequence diagram, this component is connected to every sub-component.
The interaction between the video receiver, the image processing unit and the video trans-
mitter at the beginning of the raw data transmission is shown. The starting sequence for
the system is not illustrated because no control logic is displayed.

The system is started through an external reset, for example, the main reset of the
AURIX. After start-up, the AURIX sends a command to the control logic of the Zynq to
initiate the pre-processing or use-case application via the I2C interface. Next, the Zynq
sends the corresponding configuration and a start command via I2C to the camera system.
The ToF camera gathers typically four images and sends one image via another through
the parallel interface.

The already activated video receiver recognizes the synchronization signals and saves
the input data into a frame buffer in the external memory. It is important that the input
is immediately saved otherwise the next frame overrides the current one. After enough
raw data is received, for example four raw frames for the 4-Phases algorithm, the video
receiver notifies the image processor via the control logic.

The image processor computes the ToF depth data in an optimized way to minimize
time and optimize accuracy. During computation, the next frames are sent and saved by
the receive logic. The processing time must be short enough to be finished before the next
raw frames are transmitted for calculation. Otherwise, it is possible to override images
in the frame buffer. The results of the image processor are in the external memory and
copied into another memory part via the memory interface, in particular the output frame
buffer.

After depth calculation of the image processing unit, the data is located in the output
frame buffer. The results are read from the external memory, and the synchronization
signals for the correct transfer are generated. From there, the data is transmitted via
the parallel interface to the AURIX. The data is received via the CIF on the AURIX for
further use-case specific processing. The transmission of the data is done in parallel to the
next receiving and computation operation.

Finally, after successful completion of the use-case, the AURIX can stop the data
processing of the Zynq via an I2C command. If only pre-processing is used on the Zynq, a
live-stream of the system can continue without a stop signal. From the AURIX, use-case
specific events are sent to other processing devices, such as a host PC for display purposes.



52 CHAPTER 3. DESIGN

ToF Camera

Video 
Receiver

Image 
Processor

send frame

Video 
Transmitter

AURIX

save frame into 
input frame buffer

notification

ToF data
processing

copy depth data into
output frame buffer

loop

[iterations: 4]

send depth data
receive/process

depth data

Zynq

Figure 3.5: Sequence diagram of the architecture on the Zynq.

3.4 Interfaces

This section is focused on details of the camera system that affect the design. The parallel
and the control interface of the system are presented.

3.4.1 Parallel Interface

The parallel interface (PIF) directly connects the camera evaluation board with the Zynq
and the automotive platform with the Zynq via a multiline channel. From the sensor and
the processing platform, twelve bits of data are transmitted in parallel. In addition to the
data stream, three more signals are necessary to correctly send the rows of one raw frame
pixel-wise. The start and end of a frame are marked by the vertical synchronization signal
V sync. The horizontal synchronization signal Hsync defines the start and end of one row.
The third signal is the pixel clock ClkP ix. In one ClkP ix cycle, one pixel is transmitted.

The general timing of the PIF is shown in Figure 3.6. The frame blank is the elapsed
time between the transmission of two frames, whereas the line blank is the elapsed time
between two rows. It is possible to configure the PIF to delay the transmission of the first
row by the vertical synchronization delay thsd. The horizontal synchronization delay tdd
is the delay between start of a row and data transmission. The transmitter (camera system
and Zynq) generates the pixel clock whereby the clock frequency can be configured. In
addition, the polarity of the synchronization signals are configurable (active low or active
high) and if the pixels are valid on rising or falling pixel clock edge.



3.4. INTERFACES 53

3D Imaging
MiraCE

Confidential 

   Development Specification 260 2.4, 2015-01-13
Hardware Description

8.3 Parallel Sensor Interface
The parallel sensor interface (PIF) supports direct connection to 12-bit raw grayscale data compliant controllers.
The PIF provides the digital image data stream on digital general ports, as well as the horizontal and vertical
synchronization (HSync, VSync) and the pixel clock (ClkPix). The I/O voltage of the corresponding pins is defined
by VDDD3V3. The default I/O voltage 3.3V, but also 1.8V can be connected.
All timing parameters are integer multiples of the period of ClkPix. The frequency of ClkPix is set in register PIF
Control Configuration. The detailed timing of the control signals as well as the polarity of the control signals are
configured via the registers PIF Control Configuration and PIF Timing Configuration in order to be compatible to
a wide range of parallel interfaces schemes of commonly used controllers. Disabling the PIF results in the module
driving all output signals to reset default which is low in each case.

Figure 8-13  Parallel Sensor Interface timing

Figure 8-13 exemplarily presents the output timing scheme of the PIF module. The interface is configured to
provide the HSync and VSync signals as active high pulses of one ClkPix cycle duration. The horizontal
synchronization delay (thsd) is configured to be two ClkPix cycles whereas the horizontal synchronization to data
delay (tdd) is one ClkPix cycle. The ClkPix polarity is configured to signal the validity of all outputs on the falling
edge. As a special case both the Vsync and the Hsync signals can be configured to be active during the entire row
and frame respectively. Again the polarity is configurable to be either active high or active low. Figure 8-14
presents the corresponding timing scheme.

Figure 8-14  Parallel Sensor Interface timing

tvsync

thsync

tdd

thsd

New frame idicator

New line idicator

Data(0) Data(1) Data(n-1) Data(n) Data(0) Data(1)Data

HSync

VSync

ClkPix

Line blank

tdd

thsd

Data(0) Data(1) Data(n-1) Data(n) Data(0) Data(1)Data

HSync

VSync

ClkPix

Line blank

Data(n-1) Data(n)

Frame blank

Figure 3.6: Parallel interface timing [Inf15b].

Image structure

The structure of the frames that are transmitted via the parallel interface is depicted in
Figure 3.7. For the pre-processing use-case of the proposed image processing platform,
an image resolution of 160 x 120 pixels is used. One row, also referenced as line, consists
of 160 pixels. An image is built of 120 rows. Therefore, the complete number of pixels
is 19,200 pixels. The amount of memory is equal to the determined one in the current
system and is around 115 kBytes, as already shown in Equation 2.9. From the camera a
pseudo row is transmitted with metadata, for example, the frame number. The placement
of the pseudo row can be configured on the camera’s parallel interface. It is possible to
place the pseudo data as first row, last row or four LSB bits in the first row.

3D Imaging
MiraCE

Confidential 

   Development Specification 266 2.4, 2015-01-13
Hardware Description

Figure 8-18 Pseudo Data

Pixel Array

Pixel Array

Pixel Array

Option 1:
First Row 

(can be a dark row )
Source: RAM

Option 2:
Last Row

Source: RAM

Option 3:
4 LSB of first row

(only PIF, not CSI-2)
Source: Registers 

0x08008:
frame counter (12 Bit)

0x08009:
sequence index (5 Bit) & binning mode (2 Bit) & hblocks* (5 Bit)
*hsize = hblocks x 16 / (1 << binning )

0x0800A:
MSBs of phase shifter config (3 Bit), vsize* (9 Bit)
*In single ended (A+B) mode, vsize is divided by 2. 
each line is counted only once , although it is converted twice
vsize does not consider binning

0x0800B:
LSBs of phase shifter config (12 Bit)

RAM:
For Option1 and Option 2, Pseudo Data can be stored in RAM . In this case , additional data like 
temperature , internal voltages , or any other data can be transmitted in addition to the items 
listed above .

Figure 3.7: Structure of one frame [Inf15b].

3.4.2 Control Interface

For the control interface between AURIX, Zynq and ToF camera the standardized I2C
interface is used. The camera works as a slave and provides an address to the Zynq. One
I2C data packet consists of an address and a value. The address specifies the register
where the value is written. On AURIX’s side, the Zynq is the slave and the AURIX the
master. The communication works the same.



54 CHAPTER 3. DESIGN

In addition, the camera evaluation kit provides a reset line that is also connected to
the Zynq. Hence, a camera system reset can be triggered.

3.5 Time-of-Flight Processing Pipeline

The goal of this section is to provide a clear understanding of the data processing used
in the ToF algorithms. The pre-processing 4-Phases and 8-Phases algorithm, which are
defined in the use-case requirements, are presented. The results of the algorithms are a
depth image, an amplitude image and a 3D point cloud. Furthermore, the correction of
the systematic errors with the help of calibration data is shown. For better understanding,
the processing steps are clearly separated in this section, but for the implementation, the
order can be changed or operations can be summarized to optimize the runtime. Further
post-processing, such as filters, are not discussed.

3.5.1 4-Phases Algorithm

The typically approach to generate a depth image is a 4-Phases measurement, as outlined
in [HLCH12]. Four raw frames are gathered from the camera, with a user configured
phase-shift, between every frame, as illustrated in Figure 3.8. Typically an equivalent
phase-shift of 90◦ is used, which results in measurements with the following phase-shifts:
0◦, 90◦, 180◦ and 270◦. The modulation frequency and the illumination time are the same
for all measurements.

3D Imaging
MiraCE

Application ExamplesConfidential 

   Development Specification 28 2.4, 2015-01-13
Hardware Description

• Phase frame rate
• Phase setting / Greyscale setting

– either 0°, 90°, 180°, or 270° phase shift between illumination and modulation gates
– alternatively greyscale measurement

General settings like binning, region of interest (ROI), offset, length of the sequence, and data interface settings
are set globally and are valid for all steps of the defined sequence. 

2.2.1 Typical Use Cases
In the following section typical use cases are presented, but the user is not limited to these scenarios.

2.2.1.1 Basic Four Phase Sequence
The four phase measurement is the basic operation mode for generating a distance image. In this operation mode
the user selects a common illumination time and modulation frequency for all phase measurements. Furthermore
the user assigns the preferred phase shift to every step. Usually the phase measurements are performed in the
following order: 0°, 90°, 180°, or 270° and a z-image is calculated from a fixed block of four measurements.
However the z-calculation can also be implemented in a continuous manner to achieve even higher framerates.

Figure 2-2  Basic Four Phases Sequence

2.2.2 High Dynamic Range Sequence (HDRZ)
In order to be able to extend the dynamic range, the calculation of Z-frames can be done using two successive
simple four phase measurements with a common modulation frequency but with alternating illumination times. A
strong optically reflected modulation signals will provide better results at short illumination times, weak optical
signals will provide better results at longer illumination times. Therefore the results of the diverging measurement
setups can be combined in a beneficial way.
A HDRZ can be performed either in block or continuous mode. Both modes are presented in Figure 2-3. In block
mode the results of eight phase measurements are combined to generate one Z-image. In continuous mode, as
soon as four new phase frames are available the eight latest phase frames are combined in a pipelined manner
to provide the next Z-image.

Figure 2-3  High Dynamic Range Sequence

Frequency constant

Illumination time constant

Frequency

Illumination

Phase 1 2 3 4

Z-Frame(block) Z2 Z3 Z4

Deriveable frames

Z5 Z6

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

Z7 Z8

Z-Frame(continuous)

Z1

...Z2 Z3 Z4 Z5 Z6 ... ...Z1 ...... ... ... ...... ... ... ...... ... ... ...... ... ... ...... ... ...

Frequency constantFrequency

Illumination

Phase

Deriveable frames

short long

1 2 3 4 1 2 3 4

short long

1 2 3 4 1 2 3 4

short long

1 2 3 4 1 2 3 4

short long

1 2 3 4 1 2 3 4

Z-Frame

HDRZ (block)

Z1 Z2

Z D1

Z3 Z4

Z D2

Z5 Z6

Z D3

Z7 Z8

Z D4

HDRZ (continuous) Z D1 Z D2 Z D3 Z D4 Z D5 Z D6 Z D7

Figure 3.8: Frame sequence of the 4-Phases algorithm [Inf15b].

The basic data flow and calculation steps of the 4-Phases algorithm are illustrated
in Figure 3.9. The order of the operations can be interchanged or combined to improve
runtime or accuracy of the results.

Raw to Phase

The four raw frames F0◦ , F90◦ , F180◦ , F270◦ provided from the configured camera system
are used to generate the phase image. Thus, an equivalent phase-shift of 90◦ is used. In
order to calculate the phase, an arc-tangent operation is performed with an imaginary
and a real part as shown in Equation 3.1. For this step, two intermediate results that are
the differences of two frames are computed. These intermediate results are also used in
a subsequent processing step. The result is in the range (−π, π]. An addition of 2π is



3.5. TIME-OF-FLIGHT PROCESSING PIPELINE 55

Raw to Phase

Wiggling Correction

Phase to Depth

Offset Correction

FPPN Compensation

Temperature Compensation

Unambigious Range Shift

Raw to Amplitude

Depth to 3D Coordinates

Figure 3.9: Calculation steps of the 4-Phases algorithm [PMD13a].

performed on negative results to map the range to (0, 2π]. It is not correct to map the
phase values by adding only π to all values because positive values are then mapped to
the range (π, 2π] and negative values to (0, π].

ϕ = arctan

(
F270◦ − F90◦

F0◦ − F180◦

)
(3.1)

Wiggling Correction

The origin of the wiggling error results in the signal modulation with imperfect sine
waves. In the raw frames, non-linearity effects appear. By providing calibration data,
this systematic error can be compensated as shown in Equation 3.2. Because the error
is phase-dependent, the compensation must be calculated for every depth value. This so-
phisticated operation, which consists of sine wave calculations, can be simplified by using



56 CHAPTER 3. DESIGN

the pre-processed linearized values of a look-up table (LUT) saved in the memory. This
strategy can decrease the processing requirements with a decrease of memory resources.

ϕ = ϕ+ ϕwiggling (3.2)

Phase to Depth

In order to obtain the distance values from the phase values, a multiplication with a
constant factor is performed, as presented in Equation 3.3. The constant is based on the
speed of light and the modulation frequency.

d = ϕ · c

4πfMod
(3.3)

FPPN Correction

The FPPN error is pixel-dependent and results by manufacturing tolerances. It is provided
by the calibration data. Therefore, a varying constant has to be added to every pixel to
get a correct distance image, as illustrated in Equation 3.4.

d = d+ dFPPN (3.4)

Offset Correction

The global offset, known from the calibration data, is compensated by adding the same
value to all pixels of the distance image, as shown in Equation 3.5. It represents the mean
error of every pixel’s individual offset, which is referred to as global offset.

d = d+ doffset (3.5)

Temperature Compensation

Adding the same constant error to all pixels, as shown in Equation 3.6, compensates for
the temperature. The operation corrects different long-term and short-term effects and is
calculated using the provided calibration data.

d = d+ dtemperature (3.6)



3.5. TIME-OF-FLIGHT PROCESSING PIPELINE 57

Unambiguous Range Shift

It is possible that after systematic error compensation, some distance values are outside
of the unambiguous range. For instance, distance values can be below zero or can become
higher than the unambiguous range. Therefore, the values are shifted into the unambigu-
ous range by performing a modulo operation, as represented in Equation 3.7.

d = d mod
c

2fMod
(3.7)

Raw to Amplitude

If only the illumination is active, an amplitude image is generated, which can be used to
check the correctness of individual pixels of the distance image. A magnitude operation
is performed on the imaginary and real part, already calculated for the raw-to-phase
processing step, as presented in Equation 3.8.

A =

√
(F270◦ − F90◦)2 − (F0◦ + F180◦)2

2
(3.8)

Depth to 3D Coordinates

In order to get a 3D point cloud, the distance values that are polar coordinates are trans-
lated into Cartesian coordinates. Thus, the distance values are multiplied by so called
direction parameters that are different for every pixel, as depicted in Equation 3.9. Those
parameters are based on the direction vectors, which depend on the lens’ distortion prop-
erties and the field of view, and are provided by the calibration data.

dx = d · directionsx
dy = d · directionsy
dz = d · directionsz

(3.9)

3.5.2 8-Phases Algorithm

The maximum unambiguous range is determined by the modulation frequency. In order to
increase the unambiguity, it is possible to combine two distance images captured with two
different modulation frequencies, as outlined in [JBP+10]. Therefore, two sequent 4-Phases
measurements with alternating frequencies are gathered, as shown in Figure 3.10. The
illumination is constant during the whole measurement process. Due to the unambiguous
range extension processing step, which computes the final distance image, the latency is
increased.



58 CHAPTER 3. DESIGN

3D Imaging
MiraCE

Application ExamplesConfidential 

   Development Specification 29 2.4, 2015-01-13
Hardware Description

2.2.3 Extended Unambiguity Range Sequence (EURZ)
In order to extend the unambiguity region given by the modulation frequency, the calculation of Z-frames can be
done using two successive four phase measurements with alternating modulation frequency but with a common
illumination time. 

Figure 2-4  Extended Unambiguity Range Sequence

2.2.4 Combined EURZ and HDRZ Sequence
In order to increase the robustness of the distance calculation HDRZ and EURZ sequences can be combined
beneficially in a 16 phases measurement. However, the impact on the achievable Z-frame rates has to be
considered. 

Figure 2-5  Combined EURZ and HDRZ Sequence

2.2.5 Grey-Scale Image Measurement
In addition to the phase measurements used for distance image generation the 3D Imaging IRS10x0C is able to
generate a grey-scale picture of a scene using a single frame measurement. Therefore standard 2D image
processing algorithms can be applied to generate additional information on the overall scene.

Frequency

Illumination

Phase

Deriveable frames

Z-Frame

EURZ (block) Z E1 Z E2 Z E3 Z E4

F2F1 F2F1 F2F1 F2F1

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

Illu time constant

Z2 Z3 Z4 Z5 Z6 Z7 Z8Z1

EURZ (continuous) Z E1 Z E2 Z E3 Z E4 Z E5 Z E6 Z E7

Frequency A Frequency B

short long

Frequency

Illumination

Phase 1 2 3 4 1 2 3 4

Z-Frame

HDRZ 

EURZ(block) 

Z1 Z2

Z D1

short long

1 2 3 4 1 2 3 4

Z3 Z4

Z D2

Z ED1

Frequency A Frequency B

short long

1 2 3 4 1 2 3 4

Z5 Z6

Z D3

short long

1 2 3 4 1 2 3 4

Z7 Z8

Z D4

Z ED2

Derived frames

EURZ(continuous) Z ED1 Z ED2 Z ED3

Figure 3.10: Frame sequence of the 8-Phases algorithm [Inf15b].

The data flow of the 8-Phases algorithm is depicted in Figure 3.11. Two already
described 4-Phases data flows are performed and the two resulting distance images are
combined in one computation step. The 3D point cloud is only calculated once after the
unambiguous range extension and not for both images.

Raw to Phase fMod1

Phase to Depth

System Error Corrections

Raw to Amplitude

Raw to Phase fMod2

Phase to Depth

System Error Corrections

Raw to Amplitude

Unambiguous Range Extension using 
dual Modulation Frequencies

Depth to 3D Coordinates

Figure 3.11: Calculation steps of the 8-Phases algorithm [PMD13a].

Unambiguous Range Extension

For this data processing step the equation for the unambiguous range extension, as shown
in [JBP+10], is similarly implemented. The basic equation uses basic arithmetic opera-
tions, modulo operations and round operations. Some required constants are calculated
from the two modulation frequencies. Due to simplification, the formula is presented as
function of the two distance images and the two modulation frequencies, as shown in
Equation 3.10.



3.6. HIGH LEVEL SYNTHESIS 59

d = f(d1, d2, fMod1, fMod2) (3.10)

3.5.3 Calibration Data

For correction of systematic errors, it is important to have a calibrated camera. The
process of determining the camera’s parameters is performed during calibration.

In the proposed ToF processing system the calibration data of the ToF camera system
is already determined for Infineon’s ToF evaluation kit. The data is saved in the board’s
memory and can be read with a software tool through the USB interface and used for
further processing. In order to use the calibration data in the algorithm, the files have to
be correctly interpreted which is described in the application note [PMD14].

For the following systematic errors the calibration is specified: wiggling, offset, FPPN
and temperature. In addition, the direction parameters for the lens calibration used in
the Cartesian coordinate conversion are provided.

3.6 High Level Synthesis

In order to fully achieve the requirement of a highly flexible system, the concept of High
Level Synthesis, which is used for rapid prototyping in practice, is evaluated in the pro-
posed hardware/software system. As mentioned in the related work (Section 2.2.2), HLS is
already used in different use-cases for two-dimensional images. In this work, this approach
is applied on hardware-accelerated ToF processing algorithms.

The main idea behind HLS is the raising of the design abstraction level especially
in digital hardware development. Challenging use-cases make the process of creation of
hardware components more time-intensive, resource-intensive and error-prone. Thus, HLS
provides a technique to generate register-transfer level (RTL) hardware that is optimized
for performance, power and area.

The basic creation flow is shown in Figure 3.12. An algorithm written in a high
level language (e.g., C, C++, Matlab) is interpreted and automatically transformed into
the register-transfer level abstraction level by providing a design in a hardware description
language, for example, VHDL, Verilog. Such a generated hardware block can be integrated
into an FPGA and allows the rapid generation of hardware-integrated blocks.

Test Cases

Two different test cases are designed for implementation to show the feasibility of High
Level Synthesis. The results are compared with a corresponding implementation in soft-
ware and the manually developed imaging processing unit. One simple test case with only
one operation and a more complex one with several instructions are performed.



60 CHAPTER 3. DESIGN

www.cadence.com 2

C-to-Silicon Compiler High-Level Synthesis 

high-level constraints that are unique 
to the target product requirements and 
process library. These constraints are 
fine-tuned based on visual feedback 
from a rich graphical design environment 
and an incremental database. Because 
the implementation constraints are kept 
separate from the design’s functionality, 
the same verified SystemC model is easily 
re-targeted for different end products 
with different requirements and process 
libraries (see Figure 2).

Cadence has developed a full method-
ology to extend design and verifi-
cation to SystemC TLM. By starting the 
metric-driven verification methodology 
with TLM, most bugs are eliminated 
before RTL is even created, greatly 
speeding the overall turnaround time 
of what is typically the critical path of a 
design project. Because the production 
synthesis guides generation of the RTL 
and synthesis constraints, the path into 
existing implementation flows is smooth. 
And if bugs need to be fixed or features 
added later during implementation, the 
automated engineering change order 
(ECO) capability applies a small patch that 
is optimized and formally verified so the 
project can stay on schedule.

C-to-Silicon Compiler Features 

Micro-architecture exploration

•	 SystemC describes only the 
functionality, while C-to-Silicon 
implements the micro-architecture, 
enabling full exploration of the PPA 
solution space before committing to an 
RTL micro-architecture

•	 Graphical environment delivers source-
connected visual analysis of such items 
as the control and data flow, critical 
timing path, area utilization, and power 
consumption 

•	 Identify micro-architectures that have 
a greater power reduction than is 
possible in RTL synthesis, while meeting 
performance goals

Production quality of results for ASIC 
or FPGA

•	 Industry-leading scheduling and optimi-
zation, including resource sharing, 
various pipelining approaches, speed 
grade control, and carry-save adder 
(CSA) optimization.

•	 Cadence RTL Compiler synthesis is 
embedded under-the-hood for ASIC 
flows to accurately characterize 
resources for analysis and optimization

•	 Utilizes Liberty libraries for ASIC flows, 
along with wireload models or RTL 
Compiler physical layout estimation 
(PLE)

•	 Supports Xilinx and Altera FPGA devices 
and synthesis flows 

ECO from TLM to GDSII

•	 Incremental synthesis minimizes 
changes to RTL while meeting 
constraints when applying an ECO 
patch 

•	 Tight links to Cadence Encounter® 
Conformal ECO applies patches 
downstream to anywhere in the 
implementation flow, from netlist 
to placement with routing to 
metal-only ECO

Successful on all types of hardware

•	 Synthesizes datapath and control logic 
together, supporting all type of designs 
in the mixed datapath-control spectrum

•	 Has been used in production on 
projects spanning the datapath-
control spectrum. Examples include 
H.265 video codec, high-speed image 
processor, 3G equalizer, 100Gbps 
optical networking, AES encryption, L2 
cache control, and low-density parity 
checker

Built to enhance existing 
methodologies 

•	 Supports IEEE SystemC and OSCI TLM 
with a single-source model used as a 
virtual prototype in simulation and then 
taken through high-level synthesis

•	 Generates RTL and constraints 
compatible with Cadence and 
third-party RTL synthesis and logic 
equivalence checking

•	 Methodology available to extend 
today’s RTL-driven metric-driven verifi-
cation environments to TLM-driven

Better PPA for ASIC or FPGA

High-level synthesis takes in untimed 
algorithms and implements micro-archi-
tectures and pipelines with the freedom 
to distribute and share logic across 
registers in order to satisfy constraints. 
Thus it is able to choose from a much 
broader and more powerful array of 
implementation options in order to deliver 
better PPA than is delivered by manually 
constructing designs with RTL.

C-to-Silicon Compiler embeds production 
logic synthesis technology in order to 
provide accurate analysis and optimization 
guidance. It characterizes the timing, 
power, and area of logic components in 
the context in which they are used in the 
design in order to more accurately model 
wire timing effects.

For ASIC flows, C-to-Silicon Compiler 
utilizes RTL Compiler synthesis along 
with the production Liberty library (see 
Figure 3). For FPGA flows, it utilizes either 

SystemC
Design

RTL
µArch1 

RTL
µArch2 

RTL
µArch3 

RTL
µArch4 

Figure 2: Generate different micro-
architectures for different end-product needs 
from the same verified SystemC design.

SystemC

LIB

RTL
Constraints

HLS
Constraints

RTL

C-to-Silicon
Compiler

RTL Compiler
Inside

Figure 3: C-to-Silicon ASIC flowFigure 3.12: Basic concept of High Level Synthesis [Cad13].

This first test case represents a pixel-by-pixel addition by calculating the sum of two
frames in one operation. The 16-Bit pixels are read from the extended memory, computed
and pushed into the memory.

In order to provide a more complex test case than the previous one, the amplitude
calculation, as shown in Equation 3.8, is calculated. Hence, four frames have to be used
as input. Furthermore, the more complex root operation is used.



Chapter 4

Implementation

This chapter deals with the implementation of the whole system including hardware and
software specifics, the used development workflow and environment, as well as the realiza-
tion of the hardware-accelerated ToF processing algorithm.

4.1 Development

The goal of this section is to provide a detailed overview of the used development workflow
and environment. Due to the chosen FPGA platform, a hardware/software co-design
workflow developed the system. In addition, the software tools, which were used during
development for the proposed platform, are shortly described.

4.1.1 Workflow

The life cycle, as depicted in Figure 4.1, that is used in particular for Zynq SoC sys-
tems is applied in the proposed framework. Beginning with the literature research of
the basic principles and the state-of-the-art projects, the requirements of the system and
the use-cases are defined. As a next step, the design of the system and the used algo-
rithms regarding architecture, interaction and interfaces of the different components are
determined. Based on the Zynq architecture, the system is partitioned into software and
hardware. During implementation, the hardware system on Zynq’s PL is developed using
Xilinx’s IP cores, manually developed IP Cores in HDL and generated IP cores with HLS.
Simultaneously the software system on the ARM CPUs is implemented by configuring the
hardware-integrated IP cores, and constructing SW algorithms. The hardware/software
system is finally integrated by combining the compiled executable for the ARM and the
generated bitstream for the FPGA on the Zynq SoC board.

Over the whole workflow, verification is performed between the different steps and
measurements are interpreted to accomplish the system’s requirements. Furthermore, the
hardware/software components are concurrently developed on a demonstrator to show the
feasibility.

61



62 CHAPTER 4. IMPLEMENTATION

V
erificatio

n

Hardware/
Software
Design
Iterations

Research Requirements

System Modelling

Software/Hardware Partitioning

Implementation

Algorithms for 
Processing System

Algorithms for 
Programmable Logic 

Design

Build Executable
ARM Cortex-A9

IP Core Generation
FPGA

Integration

Zynq SoC 
Development Board

C Code Generation HDL Code Generation

Figure 4.1: Development flow based on the Xilinx Zynq platform [Cig15] (with changes).

4.1.2 Environment

In order to develop the processing system, the following software programs are used. Based
on the Zynq SoC platform, Xilinx’s Vivado Design Suite is used, which provides lots of
different tools for creation of a hardware/software framework, as outlined in [Xil15f]. The
Vivado IP Integrator, the Xilinx SDK and the Vivado HLS tools are described in detail.
The WebPACK edition for this design environment is freely available. Furthermore, tools
for development of the demonstrator are presented.

Vivado IP Integrator

Vivado Intellectual Property (IP) Integrator, as shown in [Xil15h], is a tool to develop
hardware designs for Xilinx’s FPGAs. It provides a graphical design development flow
to integrate and configure IPs that are manually developed with a hardware description
language, generated with HLS or already created by Xilinx. Furthermore, the system is
synthesized, analyzed and a bitstream for the Xilinx FPGAs is created.

This tool is used during implementation to create the ToF processing hardware system.
Several IP cores from Xilinx are used and configured to meet the system’s requirements.
Such provided IPs are already verified and provide high flexibility. Thus, the development
time can be significantly reduced. For debugging, logic cores can be used to monitor



4.1. DEVELOPMENT 63

internal signals. The system is automatically synthesized and implemented. Then the
placement and routing is performed with a final generation of the bitstream that is used
for configuration of the FPGA.

Xilinx SDK

The Xilinx Software Development Kit (SDK) is an Eclipse-based IDE to develop C-based
embedded applications for the ARM core, as represented in [Xil15i]. A project works with
the hardware design that is created from Vivado IP Integrator. It provides library and
drivers for Xilinx IP cores used in the hardware system. Furthermore, it allows debugging
and profiling on the Zynq platform. It is used to program the ARM with the executable
and the FPGA with the bitfile.

In this work the tool is used to create the ToF processing library that is a bare-metal
C++ application that configures all IP cores in the hardware design and implements
the use-case application. Furthermore, the Zynq is programmed with the software and
hardware description, and via a terminal the output of the application is displayed during
runtime.

Vivado HLS

Vivado High Level Synthesis, as described in [Xil15g], is a program based on the Eclipse
IDE that directly transforms C, C++ and SystemC applications into IP cores without
the manually creation of RTL code. With directives and constraints in the high-level lan-
guage code, the produced hardware component can be configured regarding architecture,
performance and area.

In order to evaluate this practical approach of rapid prototyping, Vivado HLS is used
to develop an image processing unit that can be compared to the image processor. At first,
the code is written in C++ and verified against a test bench. The code is then synthesized,
and the synthesis results are evaluated. Different directives are used to optimize the
generated IP core. Finally, the hardware component is exported and used in the Vivado
IP Integrator.

Matlab

Matlab developed by MathWorks is a computing environment for numerical analysis,
as shown in [Mat14]. It allows the processing of big amounts of data with vectorized
operations. Scripts or functions can be used to develop algorithms. Data can be easily
plotted and analyzed. Furthermore, it provides easy access to external interfaces, for
example, Ethernet.

One application for Matlab in this work is the interpretation of memory dumps, trans-
mitted with Xilinx SDK from the external memory of the Zynq. These frames are saved
in a hexadecimal format and therefore, transformed into raw data provided by the camera
system. The data is plotted and used for further processing. Furthermore, the network



64 CHAPTER 4. IMPLEMENTATION

interface is accessed for receiving the data via UDP of the AURIX. The data is plotted,
saved and processed to check the correct functionality of the demonstrator.

Visual Studio

For C++ development on a Windows PC, the integrated development environment Visual
Studio, as presented in [Mic13], from Microsoft is used. It is used for software development
for Windows programs, web applications and mobile apps. It supports different program-
ming languages, such as C++, C#. Different Windows APIs are provided which allow an
easy development of programs with graphical user interfaces.

The reference implementation is developed in C++, in Visual Studio. The test data
is read from files, calculated and verified against the reference data. The advantage over
software development on the ARM is the fast compilation and execution time. Further-
more, a Visual Studio application with a user interface is used to display a live-stream of
the received image via UDP from the demonstrator. This functionality is also developed
in Matlab but not used for a live-stream as at higher FPS, Matlab performs poorly.

Free TriCore Entry Tool Chain

Free TriCore Entry Tool Chain, as illustrated in [Tec15], is a tool chain for Infineon’s
automotive platform AURIX. It is an Eclipse-based IDE that allows the programming of
the TriCore CPUs and the evaluation board of the automotive microcontroller.

In this project, the tool is used to develop the application for the AURIX. The inter-
action between the three CPUs, the Ethernet interface, the I2C interface and the CIF are
configured in the IDE. Furthermore, the use-case application that is executed on the main
core is deployed.

4.2 Time-of-Flight Processing Platform

The FPGA-based ToF processing platform consists of a ToF camera, an automotive com-
puting platform and a Zynq development board. The components used in the overall
system are described in the following paragraphs.

Time-of-Flight 3D Camera

Infineon’s ToF camera evaluation kit, as shown in [Inf13], is used in the implemented
system. The sensor, which is developed from Infineon in cooperation with PMDTechnolo-
gies, comes with the highest on-chip integration on the market (2013). The evaluation
board features different external interfaces, such as parallel interface and CSI-2, and al-
lows access to important signals of the image sensor. Furthermore, the sensor unit and
the illumination unit are exchangeable.



4.2. TIME-OF-FLIGHT PROCESSING PLATFORM 65

Automotive System-on-Chip

The automotive microcontroller AURIX, as shown in [Inf14], developed from Infineon is
used as a starting point for a pre-processing or use-case application. The AURIX evalu-
ation board is connected with the hardware-accelerated system, and provides three inde-
pendent TriCore CPUs. It is compliant to various safety standards used in the automotive
domain.

Zynq Development Board

The Zynq development board from Trenz Electronic is used in the system, as represented
in [Tre15]. It consists of a Zynq-based SoC module, as shown in Figure 4.2a, and a
connected carrier board with peripherals, as depicted in Figure 4.2b. On the module a
Zynq 7020, as explained in [Xil15j], is placed with a Dual ARM Cortex-A9 MPCore with
a clock frequency of up to 1 GHz as well as an FPGA with 85k logic cells and 560 KByte
Block RAM. In addition a 256 MByte DDR3 SDRAM is available. The carrier board
provides lots of interfaces (e.g., Ethernet, USB) and allows a direct connection to the
FPGA through board connector pins.

(a) SoC module TE0720 [Tre15]. (b) Carrier board TE0703 [Tre14].

Figure 4.2: The used hardware from Trenz Electronics.

4.2.1 System

The implemented system and its sub-components are illustrated in Figure 4.3. The in-
terfaces of the camera and the AURIX are connected with the board connector pins that
are directly controlled by the FPGA. The pin allocation can be manually defined in the
hardware design.

The control of the sub-components and the dataflow through the system is implemented
on the ARM core. The programmable logic configures the hardware components. The
video input stage receives the frames from the camera and pushes it to the memory. The



66 CHAPTER 4. IMPLEMENTATION

image processor provides hardware-accelerated operations for the ToF processing pipeline.
The video output stage reads the results from the memory and sends the data to the
AURIX. The memory interface is an AXI interface, and is provided by the platform that
connects the extended memory of the carrier board to the Zynq.

Events
Depth
Data

AURIX

Control

ToF Camera

Zynq

AXI Interface

Processing System

Programmable Logic

ToF Processing Library
Control

Video
Input Stage

Image 
Processor

Video
Output Stage

Zynq Development Board

DDR Controller

DDR Memory

I2C I2C

Parallel
Interface

Parallel
Interface

Figure 4.3: Implementation of the new system.

Interfaces

The control interface is connected with the I2C controller of the processing system. The
reset line of the camera is connected through a GPIO port. Following configuration is
used in this work for the data streams via the parallel sensor interface:

• Vertical Synchronization: The polarity of V sync is active high. The signal is high
during the whole frame. The delay of V sync to Hsync is zero pixels.

• Horizontal Synchronization: Hsync is active high when data is transmitted. The
signal is active during the transmission of one complete row. The delay between an
active V sync and the first active Hsync is one pixel clock cycle. If there is no delay,
following problem will occur: the last row of a transmitted frame is the first row of
the next frame. The receive logic requires time for a correct setup.

• Pixel clock: The pixel clock runs only during transmission of one frame and is set
to the maximum clock frequency of 66.66 MHz. On the falling edge of a clock cycle,
the data is valid.



4.2. TIME-OF-FLIGHT PROCESSING PLATFORM 67

4.2.2 Hardware Specifics

The focus of this section is to provide a high-level description of the hardware design.
The main configuration details of the hardware components are presented. In order to
develop a flexible framework, predefined IP cores are used. Xilinx provides several high-
performance cores for video processing that are highly configurable in the processing sys-
tem, as illustrated in [Xil14a]. Furthermore, the development time is shortened because
the components are already verified. In the following paragraphs the connection to other
cores and the configuration of the main IP cores are described.

Processing System

The hardware characteristics of the processing system are configured by the corresponding
IP core in the hardware design, such as clock frequencies and activated interface controllers,
as outlined in [Xil15e]. It is configured to enable an AXI HP port and an AXI GP port.
All configurable IP cores are connected via an AXI Interconnect to the AXI GP port for
configuration, as represented in [Xil15a]. For a high speed connection to the extended
memory, the input and output stage, as well as the image processor, are connected to
the AXI HP port via another AXI Interconnect. The memory controller and two I2C
interfaces for the control interfaces are enabled. Interrupt signals provided by IP cores are
directly connected to the PS. PL fabric clocks are used to generate a clock for the AXI
GP slaves and to generate the pixel clock of the output stage. The used clock frequencies
are listed in Table 4.1.

Table 4.1: Configured clock frequencies of the system.

Component Clock Frequency [MHz]

CPU 666

DDR 533

AXI HP Ports 100

AXI GP Ports 100

PL Fabric (Pixel Clock) 66

Video Input Stage

The video input stage, as depicted in Figure 4.4, is responsible in receiving the raw data
through the parallel interface from the camera system and in writing the corresponding
data into the DDR memory. At first the output signals of the PIF are interpreted from
the Video In to AXI4-Stream block and transformed into an AXI4-Stream. The stream is
then forwarded to the Test Pattern Generator (TPG). During a live data stream, the data
is passed through this block without modifications. In addition, this block can also be
configured to transmit a predefined pattern for tests. The AXI4-Stream Subset Converter
adds a signal to the data stream, where it is necessary to have a fully specified AXI4-
Stream. Finally, the write channel of the AXI VDMA unit generates an AXI4-Memory-
Mapped signal set that pushes the data into the RAM.



68 CHAPTER 4. IMPLEMENTATION

Video In to 

AXI4-Stream

data[11:0]

Test Pattern 

Generator

hsync

vsync

pixclk

AXI4- 

Stream AXI4-Stream 

Subset 

Converter

AXI4- 

Stream AXI VDMA

Write 

Channel

AXI4- 

Stream

AXI4-Memory 

Mapped

Figure 4.4: Basic architecture of the video input stage.

The Video In to AXI4-Stream core, as described in [Xil14d], is an interface between
the parallel video input and the AXI4-Stream Video Protocol. The video source has to
provide a pixel clock and synchronization signals (e.g., syncing and/or blanking signals).
This allows easy connection of different video sources (e.g., DVI, HDMI, monochrome
data) to a video processing pipeline that uses the AXI4-Stream interface. The following
main configuration parameters are specified: one pixel per clock is transmitted from the
video source. The component data width of the video source is 12-Bit. The video format
Mono/Sensor is used. The core is connected to the PIF input signals (data[11:0], hsync,
vsync, pixclk). Additionally, it is important to tie the blanking signals to logical low and
connect the hsync signal to the active video flag.

In order to test the subsequent hardware blocks without a transmitter, the optional
Test Pattern Generator core, as shown in [Xil14e], is used to generate horizontal/ver-
tical ramps, color or checkerboard patterns. In order to bring up and debug the complex
AXI VMDA block, it is useful to not remove this component in the final design. In
pass-through mode, the input signal is passed straight forward to the output. The main
parameters result from the characteristics of the previous described core: the video com-
ponent width is 12-Bit and the video input format is monochrome. Test pattern and image
size can be configured in software.

The AXI4-Stream Subset Converter unit, as presented in [Xil15c], connects in-
compatible AXI4-Streams. All signals of the AXI4-Stream interface can be added or
removed. The output signal set of the Video In to AXI4-Stream core does not include the
tkeep signal (marked null byte), which is required for the AXI VDMA block. Therefore,
this unit is configured to generate the tkeep signal that is tied to logical high.

In order to write the input AXI4-Stream into the memory, the AXI VDMA IP core, as
shown in [Xil15b], is used. It provides high-speed direct memory access between the AXI4-
Stream and the memory. Two-dimensional DMA operations are efficiently implemented,
and an independent read and write channel is supported. The block is highly configurable
through software, for example, after how many frames the CPU is notified through an
interrupt. In this design, the write channel is used for the input stage. The following main
configuration parameters are specified: the number of frame buffer locations is 20 and the
address width is 32 Bits. The frame synchronization mode is set to s2mm tuser, which
defines the start-of-frame (SOF) through the tuser signal of the AXI4-Stream.

Image Processor

The image processor is a hardware component that performs parts of the hardware-
accelerated ToF processing algorithm and is provided by Infineon, as outlined in [Enc14].



4.2. TIME-OF-FLIGHT PROCESSING PLATFORM 69

Thus, it is an important component of the hardware/software platform that allows flex-
ible exploration of different computation methods of a distance images. It provides ToF
specific operations for image processing on the FPGA. In addition to the basic arithmetic
operations, the co-processor also supports more complex ones, for instance, the square
root or arcus tangent. The following operations are supported by the image processing
unit:

• Pixel by pixel multiplication/addition/subtraction/division of two images

• Constant multiplication/addition/subtraction/division of an image

• Pixel by pixel limit check

• Pixel by pixel square root/arcus tangent (angle and magnitude)

• Variance/average of an image

• Variance/average per pixel over multiple images

The input data format of all images is represented in a fixed-point number format.
The fixed-point number format is specified by the word length w and fraction length f .
One pixel is stored in memory in the 16-Bit format, whereby one sign bit, zero integer bits
and 15 fraction bits give the presentation. Two’s complement is used to represent signed
numbers. The image size can be more than 100k pixels.

Control Logic

Input

Buffer

Output

Buffer

Processing 

Unit

AXI Interface

Time-of-Flight Co-Processor

AXI4-Memory 

Mapped

Figure 4.5: Baisc architecture of the image processor [Enc14].

The basic architecture of the co-processor is illustrated in Figure 4.5. At first the CPU
sets up an instruction, which is then executed by the image processor. The component
reads the images from the memory, processes them and writes the results back. Finally,
the CPU is notified about the completion through an interrupt. The AXI interface inter-
connects the memory and the hardware-integrated block through which configuration and
DDR memory access is possible. The input buffer is responsible for reading the images
into a buffer using a receive logic. In addition, it provides the image streams for the pro-
cessing unit that executes the instruction on one or two images. The results are loaded
into the output buffer block that writes the resulting image to the memory. The control
logic configures the state machines for the data flow of the different blocks based on the
incoming operation.



70 CHAPTER 4. IMPLEMENTATION

Video Output Stage

After the image processing unit performs a successful computation, the results are trans-
mitted via the FPGA’s parallel interface to the AURIX. The video output stage, as shown
in Figure 4.6, reads the results from the memory and provides the data, the synchroniza-
tion signals and a pixel clock. The read channel of the AXI VDMA block, as illustrated
in [Xil15b], gathers the resulting data of the RAM and generates an AXI4-Stream sig-
nal. The vertical and horizontal synchronization timing signals are provided by the Video
Timing Controller (VTC) unit. A PL fabric clock, generated from the processing sys-
tem, is used as pixel clock. With the Clocking Wizard core it is possible to change the
pixel clock through software. Finally, the AXI4-Stream to Video Out block combines the
AXI4-Stream and the timing signals to provide the PIF output signals.

AXI VDMA

Read 

Channel
AXI4-Stream 

to Video Out

AXI4- Stream

Video Timing 

Controller

Clocking 

Wizard

AXI4-Memory 

Mapped

data[15:0]

hsync

vsync

pixclkfclk

hsync

vsync

Figure 4.6: Basic architecture of the video output stage.

In order to read the data from the memory, the read channel of the AXI VDMA
core, as shown in [Xil15b], is used. Because the write channel and the read channel of this
core are independent, the same block is used for the input stage and the output stage.
The main parameters are specified as following: the AXI4-Stream data widths and the
size of the frame buffer are the same as for the write channel. For frame synchronization
the free run mode is used, which waits for no external triggers and sends the data as fast
as possible. Further behavior is configured through software.

With the Video Timing Controller core, as described in [Xil13], it is possible to
detect or generate video timing signals. It is commonly used with the Video In to AXI4-
Stream or AXI4-Stream to Video Out IP core. Lots of different combinations of synchro-
nization and blanking signals are possible and the polarity of the signals is configurable.
The maximum supported frame size is 8192 x 8192 pixels. In this design, the core is used
as signal generator and is configured through software. The pixel clock is connected as
input to this bock.

The Clocking Wizard unit, as represented in [Xil15d], provides methods to flexibly
change the parameters of an active input clock, such as clock frequency, phase shift.
In this work, the core is used to generate a dynamic reconfigurable pixel clock through
software. The input clock is a PL fabric clock with 66.66 MHz from the processing system.



4.2. TIME-OF-FLIGHT PROCESSING PLATFORM 71

The output clock is used in the FPGA’s parallel interface and as input for the VTC and
AXI4-Stream to Video Out core. The division factor of the clock frequency can be changed
through software.

After creation of all necessary signals for the output parallel interface, the data AXI4-
Stream and synchronization signals are brought together by the AXI4-Stream to Video
Out IP core, as can be seen in [Xil14c]. This core has the analog behavior compared to
the Video In to AXI4-Stream block by providing an interface between the AXI4-Stream
interface and a parallel video output. The following main configuration parameters are
specified: one pixel per clock cycle is transmitted and the video format is Mono/Sensor.
The timing mode is specified as master because a VDMA is used in the video processing
pipeline. Thus, it automatically synchronizes the read channel of the VDMA to the VTC
timing signals by applying back-pressure to the AXI4-Stream. The pixel clock is needed
as input for this core. Due the fact that the image processor provides 16-Bit results, the
output data width is also 16-Bit.

4.2.3 Time-of-Flight Processing Library

The Time-of-Flight processing library is the main part of the hardware/software system.
It connects the hardware components of the programmable logic to the processing system.
The library is executed on the ARM CPU as bare-metal application. Furthermore, it
implements the link between use-case application and the camera as well as the AURIX.
It is designed to be flexible for further use-case applications to fulfill the requirements.
Hence, the hardware-integrated components for the input and output stage are configured
in software for the required use-case. The image processor provides hardware-accelerated
operations, which are used to implement the required two ToF algorithms. In addition,
an interrupt system is activated to react on triggered events from the FPGA.

The class diagram of the ToF processing library is depicted in Figure 4.7. The main
class ToFProcessingLibrary implements the link between communication on the inter-
faces and the ToF algorithm. The class ToFAlgorithm performs the hardware-accelerated
use-case application. In addition, it provides methods to verify the hardware-integrated
algorithm to the reference implementation. Class I2CCommuncation provides methods
for the control interface to configure and control the camera, as well as receive commands
from the AURIX. The class PIFCommunication is responsible to set up the input and
output stage. For every IP core that is configurable via software, an own class exists
which adjusts the behavior regarding the use-case with the low-level drivers provided by
Xilinx or Infineon. No methods are displayed because each core has almost the same:
reset(), start(), stop(), configure(), setupInterruptSystem(). In the following paragraphs
all classes are shortly presented in the bottom-up approach.

The class VDMA configures the central part of the receive and transmit logic. For
the input stage the write channel, and for the output stage the read channel are used. It
is important to set the correct image resolution. The write channel is configured to run in
circular buffer mode. Frames received through the parallel interface are written into the
input frame buffer on the extended memory. The start address of the frame buffer can be
set in software. An interrupt is thrown every four raw frames to notify the ARM core by



72 CHAPTER 4. IMPLEMENTATION

IP setup

VDMA

TPG
ToFProcessingLibrary

+stream4PhaseAlgorithm()
+stream8PhaseAlgorithm()

I2C

I2CCommunication

+Cam_start()
+Cam_stop()
+Cam_config()
+Cam_reset()
+Aurix_receive()

IfxImageProcessor

PIFCommunication

+setupInputStage()
+setupOutputStage()
+sendImages()

FPGAOperation

+setup()
+execute()

ToFAlgorithm

+initLUTs()
+calcSWImpl()
+verifyAlgorithm()
+calcImage()
+calcUnambRangeExtension()
+calc3Dcoord()

ToFImages

+rawFrames
+distance
+amplitude
+coord3D

ToFCalibration

+frequencyModulation
+range
+wiggling
+offset
+fppn
+tempCompensation
+directions

ToFPipeline

+useWiggling
+useOffset
+useFPPN
+useTempCompensation
+useUnambRangeShift
+use3DCoord
+useAmplitudeImprovement

VTC

ClockingWizard

Figure 4.7: Class diagram of the ToF processing library.

setting a flag. The circular mode for the read channel is disabled. After the given number
of frames are sent from the output frame buffer, the VDMA stops the transmission. This
allows more flexibility than the circular mode because otherwise, frame synchronization
between write and read channel must be considered.

The Video Timing Controller is configured from the class VTC. The synchronization
signals are set for the output stage depending on the frame resolution. The polarity and
delays are described in detail in Section 4.2.1.

The class ClockingWizard configures the Clocking Wizard IP core that provides the
pixel clock for the output stage. A divisor can be configured during runtime to change
the frequency.

The Test Patter Generator is configured using the class TPG. The image resolution
and mode can be set. For testing, a predefined pattern is used, for example a check board



4.3. TIME-OF-FLIGHT PROCESSING ALGORITHM 73

pattern, and for the running system the pass-through mode is activated.

The class I2C sets the frequency and slave address of the I2C interfaces. Read and
write methods are provided from the Xilinx driver.

The image processor hardware-component is configured in software by the class Ifx-
ImageProcessor. The configuration registers and the interrupt system are set up.

The class PIFCommunication implements the link between the cores of the input
and output stage. The methods from the corresponding core classes are used to configure
and start the independent read and write channels. The method sendImages() starts the
read channel to transmit frames from the output frame buffer.

I2C commands are sent with predefined values with the class I2CCommunication
to the camera. In addition, it is used to read I2C messages from the AURIX.

The class FPGAOperation provides an easy setup of the image processor operations.
With one function call the instruction can be set up and executed.

The use-case applications are implemented in the class TofAlgorithm. It provides
methods to initialize the look-up tables and to run the software implementation of the
reference implementation. The methods calcImage(), calcUnambRangeExtension() and
calc3Dcoord() perform the algorithm with hardware-integrated operations on the FPGA.
These three methods can be verified with the method verifiyAlgorithm(), which checks
the results against the reference implementation results. The data is saved in objects
of separate classes. The class TofImages represents the captured raw frames as well as
the results (e.g., distance, amplitude, 3D point cloud). An object of the class ToFCali-
bration is used to save the frequency and the range as well as the calibration values to
compensate systematic errors. Which operations are performed from the ToF Pipeline can
be configured with the class ToFPipeline. A boolean flag can be set for every processing
step.

The combination of all parts is implemented in the class ToFProcessingLibrary.
The two use-cases can be run in a video stream by gathering the data from the camera
via the input stage, performing the algorithm and sending the images to the AURIX via
the output stage. This is achieved by executing an endless loop which polls the interrupt
flag of the VDMA write channel. If the flag is true, the addresses of the current four
frames in the frame buffer are calculated and the methods from the class TofAlorithm
depending on the use-case are performed. Afterwards, the images are sent via the class
PIFCommunication. Finally, the flag is set to false. The loop stops if the AURIX sends
the corresponding I2C command.

The ToF processing library allows a high degree of flexibility and re-usability. Further
use-case algorithms can be easily added by using hardware-integrated operations. The
interfaces can be changed, e.g., using the network interface as output stage. Furthermore,
the frame resolution is completely configured through software.

4.3 Time-of-Flight Processing Algorithm

In this section the implementation of the ToF processing pipeline, as described in Sec-
tion 3.5, and the used workflow are presented.



74 CHAPTER 4. IMPLEMENTATION

4.3.1 Workflow

The workflow used to develop the ToF algorithm is illustrated in Figure 4.8. Several dif-
ferent implementations of the algorithm are generated to allow a fast and easy verification
of the final results.

Starting with the deployment of a reference implementation in C++ on a host PC,
the ground-truth prototype is created. The test data and the reference implementation
are then ported on the Zynq’s ARM CPU to verify the results of the hardware-accelerated
algorithm. This step can be easily done and shows the advantage of a hardware/software
system. The development of the reference implementation is done on PC because it allows
faster compilation and execution of the application.

Next, a hardware-related software implementation is developed to test the intermediate
results of the hardware algorithm. Specific characteristics of the image processor’s opera-
tions have to be kept in mind. The order of operations can be changed and instructions
can be summarized to improve the algorithm in terms of performance and accuracy. This
implementation is then developed with image processor operations on the FPGA. These
two steps are performed until the timing and accuracy requirements for the application are
met. During the whole process, the results are verified with the previous implementations.

V
erificatio

nHW-related SW Implementation
In C++

On ARM

HW-accelerated Implementation
With Image Processor Operations

On FPGA

SW Implementation
In C++

On ARM

Reference Implementation
In C++
On PC

Design iterations 
to improve

performance and 
accuracy.

Figure 4.8: Development flow for the implemented ToF algorithm.

4.3.2 Implementation

The used arithmetic operations, which perform the calculation of the depth data and the
compensation of the systematic errors, are shown in detail in the following paragraphs.



4.3. TIME-OF-FLIGHT PROCESSING ALGORITHM 75

Reference Algorithm

The reference algorithm, as presented in Algorithm 1, implements the 4-Phases use-
case in software. This implementation is developed with knowledge of application notes
([PMD13a], [PMD13b], [PMD14]) and literature ([Lan00], [HLCH12], [FAT11], [JBP+10]).

As a starting point, the real and imaginary part of the raw data are computed, as
shown in Lines 2 and 3. Next, the arcus tangent is calculated, as can be seen in Line 4.
The resulting phase values are in the value range of (−π, π] and mapped to (0, 2π] by
adding 2π to negative results, as represented in Line 6. If π is added to the initial phase
values, this will map the positive values to a range of (π, 2π] and the negative values to
(0, π], which is a completely different result.

The calibration data to compensate the wiggling error, which depends on the distance,
is saved in a look-up table. By multiplying the phase with a factor, the index of the LUT is
calculated, as can be seen in Line 8. For the distance, the phase values are multiplied with
the range factor, as illustrated in Line 9. As represented in Line 10, the remaining error
corrections are only additions of positive or negative values. For the modulo operation of
the unambiguous range shift, the fraction part is calculated with the floor function and
subtracted from the distance, as shown in Line 11. The amplitude and 3D point cloud are
straight forward computed, which is evident in Lines 12 to Line 15.

Algorithm 1 Reference implementation.

1: range = c
2fMod

2: imag = F270◦ − F90◦

3: real = F0◦ − F180◦

4: ϕ = arctan (imag, real) (−π, π]

5: if ϕ < 0 then

6: ϕ = ϕ+ 2π

7: end if

8: ϕ = ϕ+WigglingLUT
[⌊
ϕ · N−1

2π

⌋]

9: d = ϕ · range2π

10: d = d+ doffset + dFPPN + dtemperature

11: d = d−
⌊

d
range

⌋
· range

12: A =

√
real2+imag2

2

13: dx = d · directionsx
14: dy = d · directionsy
15: dz = d · directionsz



76 CHAPTER 4. IMPLEMENTATION

Hardware-accelerated Algorithm

The hardware-accelerated algorithm, as shown in Algorithm 2, efficiently implements the
reference algorithm. The focus of this algorithm is the improvement of the software al-
gorithm regarding performance and accuracy, done by changing the order of operations
and summarizing instructions. Furthermore, specific features of the image processor op-
erations have to be considered. The hardware-related software algorithm is the same and
used to provide correct intermediate results to verify the hardware implementation. The
reference algorithm is used as a starting point. Over several design iterations following
improvements can be made:

• Arctan operation

The value range of the image processor’s arctangent operation is (−1, 1) instead of
(−π, π), as illustrated in Line 4. Instead of a multiplication with π, the advantage
of a smaller value range for subsequent operations is used. For correct application,
all given values for systematic error compensation must be divided by π.

• Range multiplication

The distance is the multiplication of the phase with the range constant. By perform-
ing this operation at the end of the distance calculation and not after the wiggling
compensation, as can be seen in Line 11, the value range of the intermediate results
is smaller: (0, 1] instead of (0, range]. This can be applied because the calibration
data for the systematic errors are divided by the range constant during initializa-
tion of the algorithm. Hence, the results are more precise because of the smaller
value range. Due to the fixed-point number representation, a smaller value range
decreases the number of bits used to specify the integer part. Thus, the fraction
length is increased. In addition, fewer operations are used because for the unambi-
tious range shift, no division and multiplication operations with the range constant
are necessary.

• No Wiggling Compensation

The calibration values to compensate the wiggling error are determined with the
help of a LUT, as represented in Line 8. Due to the fact that the image processor
provides no index operation, the index look-up is made in software on the ARM
core, as shown in Listing 4.1. The index is calculated with hardware-accelerated
operations. In some use-cases, such as gesture recognition, and in newer camera
generations, the wiggling compensation is not necessarily needed. Therefore, an
implementation without wiggling compensation exists to speed up the performance.

• Arctan Mapping

The resulting phase values of the image processor’s arctangent operation are in the
value range of (−1, 1]. Adding 2 to the negative values, map the result to the value
range of (0, 2]. The improvement is to compute the if statement for negative phases
only if wiggling compensation is used, which is evident in Line 5 to Line 7. This
can be applied because the unambiguous range shift, as shown in Line 10, is also
mapping the negative results into the correct value region, whereas for the wiggling
index calculation the correct phase is required.



4.4. HIGH LEVEL SYNTHESIS 77

• No Amplitude Shifts

The 12-Bit raw data defines a maximum possible real and imaginary part of 4,096.
If these values are inserted into the amplitude calculation, as shown in Line 12, the
maximum possible amplitude value will be 2,895.6. This value can be represented
by a 16-Bit fixed-point number with the format (Q12.3). The fixed-point format of
the result of the image processor’s magnitude operation is the same as the fixed-
point format of the input values. Therefore, the real and imaginary parts have to
be shifted from (Q15.0) to (Q12.3). For most of the use-cases, it is not necessary to
use precise amplitude values. Hence, an implementation exists that skips these two
shift operations to improve performance.

Algorithm 2 Hardware-accelerated implementation.

1: range = c
2fMod

2: imag = F270◦ − F90◦

3: real = F0◦ − F180◦

4: ϕ = arctan (imag, real) (−1, 1]

5: if ϕ < 0 then

6: ϕWigg = ϕ+ 2

7: end if

8: ϕ = ϕ
2 +

WigglingLUT [bϕWigg ·N−1
2 c]

2π

9: ϕ = ϕ+
doffset+dFPPN+dtemperature

range

10: ϕ = ϕ− bϕc
11: d = ϕ · range
12: A =

√
real2+imag2

2

13: dx = d · directionsx
14: dy = d · directionsy
15: dz = d · directionsz

Listing 4.1: Wiggling compensation in software.

1 for( i=0; i<numPixels; i++ )
2 {
3 phase[i] = phase[i] + wiggLUT[wiggIdx[i]];
4 }

4.4 High Level Synthesis

Xilinx provides a complete framework for High Level Synthesis with an easy integration
of generated IP Cores into existing Vivado designs. Vivado HLS allows the addition
of directives and constraints to high-level language code to specify how the program is
synthesized, for instance, memory interfaces, loop unrolling or pipelining.



78 CHAPTER 4. IMPLEMENTATION

4.4.1 Workflow

The workflow for Xilinx’s HLS framework is shown in Figure 4.9. Xilinx provides the IDE
Vivado HLS for developing HLS-based hardware components.

At first a project is created that consists of a test bench and a top function that should
be hardware-integrated. Following high-level languages (HLL) are supported: C, C++ or
System C. Next, the desired functionality is developed in software by keeping in mind
that not all HLL constructs can be used, e.g., dynamic memory allocation. The program
is compiled and verified against the test bench. As a next step, the synthesis is started
that results in a synthesis report including timing and area estimations. By including
directives and constraints in the top function (e.g., loop unrolling, memory interface),
different solutions can be synthesized and compared. After that, the generated RTL code
is verified against the test bench by running an RTL simulation. If everything is correct,
the code is exported in HDL language and can be used in Vivado design as IP core.

CHAPTER 13: IP Block Design

243

sometimes be complicated to follow in terms of readability, and in some cases hard to 
customise.

13.3.4.  Vivado High-Level Synthesis

Vivado HLS is a tool provided by Xilinx, as part of the Vivado Design Suite, which is 
capable of converting C-based designs (C, C++ or SystemC) into RTL design files (VHDL/
Verilog or SystemC) for implementation of Xilinx All Programmable devices. An overview 
of the Vivado HLS design flow is provided in Figure 13.4. 

 From Figure 13.4 we can see that there are three distinct forms of RTL output available 
from the Vivado HLS flow. These are outlined below [6]:

1. IP-XACT — IP-XACT is a public specification for documenting design IP which 
was developed by the SPIRIT Consortium. It is a widely-adopted XML schema for 
the description of IP which is tool-independent and machine-readable [1].  
IP-XACT is the option that should be chosen to allow your IP design to be imported 
into the Vivado IP Catalog [6]. 
IP-XACT is covered in greater detail in Chapter 18 — IP Reuse and Integration.

M-fileM-fileC, C++,

SystemC

Vivado HLS

Testbench

M-fileM-fileVHDL/Verilog

RTL Export

IP CoreIP-XACT SysGen
RTL Simulation

RTL Wrapper

Constraints/

Directives

Figure 13.4:  Vivado HLS flowFigure 4.9: Basic concept of High Level Synthesis [CEES14] (based on [Xil11b]).

4.4.2 Implementation

In order to rebuild the image processing unit, the memory interface is very important
because high amounts of data must be processed. The following directives, as described
in [Xil14b], are used: in Vivado HLS framework it is possible to use an AXI High Perfor-
mance port as the memory interface. The frame is sequentially calculated by reading a



4.4. HIGH LEVEL SYNTHESIS 79

data burst from the memory, computing it and saving it to the memory. The processing
unit, which implements the functionality of the test case, is pipelined.

Therefore, two different dataflow approaches for two test-cases are implemented. The
first test-case that is implemented is shown in the Algorithm 3. It is a simple pixel-by-pixel
addition of two 16-Bit per pixel frames. In Algorithm 4 the second test-case is shown. It
calculates the amplitude of four input frames. The magnitude is calculated by using two
multiplications for the square, an addition and a root operation.

Algorithm 3 Pixelwise addition.

1: Fout = ImgProc Add( F1, F2 );

Algorithm 4 Amplitude calculation.

1: imag = ImgProc Sub( F3, F1 );

2: real = ImgProc Sub( F0, F2 );

3: mag = ImgProc Magnitude( imag, real );

4: amplitude = ImgProc Div( mag, 2 );

Dataflow solutions

The frames of both algorithms are saved in the extended memory. The HLS hardware
component reads the data in bursts from the memory, performs the computation on one
data burst at the time, and saves the results in bursts into the memory. During imple-
mentation, two solutions for efficient memory operations were encountered.

The first approach is the straight-forward implementation by running a loop with
following three operations: reading, computing and saving the data. It sequentially works
on the data burst by reading the next burst after the previous one is completely saved in
memory, as shown in Figure 4.10. It can be observed that no pipeline architecture is used.

Compute

Read

Write

Compute

Read

Write

Figure 4.10: Architecture of the multi-burst approach.

The second strategy is based on a pipeline, as depicted in Figure 4.11. A directive
is used that streams the data into a buffer. During computation the next data burst is
read from the memory and the already previous calculated burst is saved into memory.
As a result, the throughput is higher. Therefore, independent read and write access of the
memory is necessary.



80 CHAPTER 4. IMPLEMENTATION

Compute

Read

Write

Compute

Read

Write

Compute

Read

Write

Figure 4.11: Architecture of the pipeline approach.

4.5 Verification

Verification is an important part to check if the system’s functionality fulfills the initial
requirements. The different sub-components of the implemented hardware/software plat-
form and the transmission of data through the interfaces have to be tested to accomplish
a correct result. The components, listed below, are verified in the following way:

• Video Input Stage

From the video input stage module the VDMA core and the memory interface are
tested without the ToF camera by using the Test Pattern Generator. A predefined
pattern, such as a horizontal pattern, is created and transferred to memory. By
comparing the memory and the predefined pattern, the correct functionality of the
VDMA is verified. Using the pass-through mode of the TPG with the connected
ToF camera, the receive logic is tested. Because it is not possible to know the
correct values of the transmitted pixels, only the pseudo row is checked. This row
is predefined and always the same. By running a live- stream and checking this row
in real-time, the correct transmission functionality is verified.

• ToF Processing Algorithm

The verification of this component is also explained in detail in Section 4.3.1. The
hardware/software platform Zynq allows an easy comparison of software and hard-
ware results. A hardware-related software implementation is used to check all in-
termediate results of the hardware implementation. These results are then verified
with the reference algorithm implemented on the ARM core.

• Video Output Stage

The video output stage component is verified by sending a predefined test pattern,
which is saved in RAM. On the AURIX, the received test pattern can be compared
to the specified one. Hence, successful verification can be performed. Furthermore,
predefined images are saved into extended memory, sent to AURIX and forwarded
over Ethernet to a PC. The predefined image is compared with the received image
in Matlab.

In order to check the whole integrated system, the calculated results, as well as the raw
data, are all sent to AURIX and to the PC. On the PC, the raw data is computed with
the reference implementation and compared to the results from the processing platform.
Hence, the successful verification of the framework can be carried out.



Chapter 5

Results

This chapter deals with the evaluation of the implemented ToF processing platform. First
of all, the implementation results, including utilization and throughput, are analyzed.
Furthermore, the two implemented pre-processing applications regarding performance are
discussed. The accuracy of the ToF computation using hardware-accelerated fixed-point
operations is compared in detail with the software implementation. In addition, the
demonstrator and its interfaces are evaluated. Finally, the results of the two developed
hardware-integrated components, using Vivado’s High Level Synthesis toolchain, are pre-
sented.

5.1 Implementation

In this section the implementation results are discussed. For synthesis and implementation
of the hardware design, the software tool Xilinx Vivado 2015.1 is used. The target system
for creation of the FPGA hardware bitstream is the Xilinx Zynq 7020 SoC platform.

5.1.1 Utilization

In Table 5.1 the different used and available hardware resources are shown in detail. Xilinx
Vivado creates utilization reports after every step generation of the hardware design. The
post-implementation results are presented. These results are optimized and represent the
real numbers contrary to the post-synthesize ones.

The actual number of used flip-flops (FF) is 19,493 whereby 106,400 FFs are available,
this is equivalent to 18.2%. 28.1% of the look-up tables (LUT) are used which results
in 14,991 LUTs out of 53,200 available LUTs. 13 block RAM (BRAM) units out of the
available 140 are consumed. Digital signal processor (DSP) slices utilize around 6% of the
complete available slices, which corresponds to 13 DSP slices. In order to fully complete
the utilization listing, the numbers of following hardware resources are shown: memory
look-up tables, input/output (I/O) interfaces, global clock buffers (BUFCG) and mixed-
mode clock manager (MMCM) modules.

81



82 CHAPTER 5. RESULTS

Table 5.1: FPFA utilization of used resources.

Resource Utilization Available Utilization %

FF 19,493 106,400 18.2

LUT 14,991 53,200 28.12

Memory LUT 647 17,400 3.72

I/O 43 200 21.50

BRAM 13 140 9.29

DSP 13 220 5.91

BUFG 5 32 15.62

MMCM 1 4 25

The percentage distribution of used and available resources is graphical presented in
Figure 5.1. It is clearly obvious that less than one third of the disposable resources from
the FPGA are used for the implemented hardware design. Thus, lots of resources are avail-
able for further use-case applications or post-processing, such as filters. Performance and
memory intensive programs on the AURIX, such as gesture recognition, can be transferred
to the Zynq platform for a speed-up of the overall system .

The performance can also be increased by using more hardware components at the
same time. It is possible to initiate the image processing unit several times to speed up
the computation by using hardware-accelerated operations in parallel. Due to no data
dependency between pixels, different parts of one image can be simultaneously computed.
On top of that, several video input and output stages can be instantiated for implement-
ing further ToF cameras in the system by using additional connector pins of the Zynq
development board.

25% 

16% 

6% 

9% 

22% 

4% 

28% 

18% 

0% 25% 50% 75% 100%

MMCM

BUFG

DSP

BRAM

I/O

Memory LUT

LUT

FF

Figure 5.1: Percentage utilization of the resources.



5.1. IMPLEMENTATION 83

The utilized area of each hardware component is illustrated in detail in Table 5.2.
Shown are the four important hardware resource types BRAM, DSP, FF and LUT. The
percentage distribution of the hardware components regarding used look-up tables is
graphically depicted in Figure 5.2.

The biggest components are the already described AXI VMDA IP core and the image
processor provided by Infineon as well as the AXI Interconnect hardware module that
connects the AXI memory-mapped master or slaves to the processing system. Each of the
three units needs about one quarter of the complete system. The Test Pattern Generator
IP core, which utilizes around 17% of the area, is optional and can be removed because it
is only used to test the AXI VDMA of the input stage. In the running system the TPG
is configured in pass-through mode.

Components of the video output stage including the Video Timing Controller and
Clocking Wizard allocate around 8% of available LUTs. Further IP cores of the receive
and transmit logic utilize very little resources, such as the Video In to AXI4-Stream IP,
the AXI4-Stream to Video Out core and the AXI4-Stream Subset Converter unit. System
specific components (e.g., processing system, processing system reset) need hardly any
resources. Almost all of the used BRAM memory is used by the image processor due to
the input and output buffering of the pixels. The DSP slices are nearly equally separated
into the image processor and the Test Pattern Generator.

Due to the use of already developed IP cores, no further improving of area consumption
is possible. The IP cores are synthesized in an optimized way for the given configuration
and wiring. This drawback comes with the advantage of having highly configurable com-
ponents through software, such as AXI VDMA, which are already verified.

Table 5.2: FPFA utilization of all components.

Hardware Unit BRAMs DSPs FFs LUTs

AXI Interconnect 0 0 3,751 3,426

AXI VDMA 2 0 4,807 3,206

AXI4-Stream Subset Converter 0 0 198 105

AXI4-Stream to Video Out 1 0 185 90

Clocking Wizard 0 0 1,439 1,097

IFX Image Processor 9.5 7 4,732 3,343

Processor System Reset 0 0 59 32

Processing System 0 0 0 4

Test Pattern Generator 0.5 6 2,076 2,491

Video In to AXI4-Stream 0 0 151 74

Video Timing Controller 0 0 2,095 1,123

Total 13 13 19,493 14,991



84 CHAPTER 5. RESULTS

AXI Interconnect 
22,85% 

AXI4-Stream 
Subset Converter 

0,70% 

AXI VDMA 
21,39% 

AXI4-Stream to 
Video Out 0,60% 

IFX Image 
Processor 

22,30% 

Processor 
System Reset 

0,21% 

Clocking Wizard 
7,32% 

Processing 
System 0,03% 

Test Pattern 
Generator 
16,62% 

Video Timing 
Controller 7,49% 

Video In to AXI4-
Stream 0,49% 

Figure 5.2: Percentage distribution of the used look-up tables.

5.1.2 Throughput

In Table 5.3 the maximum theoretical bandwidths of the memory interfaces are shown,
which are calculated from the configured hardware parameters. The parallel interface of
the ToF camera sends 12 Bit in parallel and works at a clock frequency of 66.66 MHz. As a
result, the bandwidth of the camera is 100 MB/s without the use of an illumination time
between captured frames. The AXI interfaces run with a clock frequency of 100 MHz.
Hence, the bandwidth of Video In to AXI4-Stream IP core is 200 MB/s due to an increase
of the data width to 16 Bit. The data width of the AXI VDMA module is 32 Bit,
which corresponds to a bandwidth of 800 MB/s for the read and write channel. 128 Bit
data width is delivered from the image processor, which is equivalent to a bandwidth of
3.2 GB/s. The high performance port provides a bandwidth of 1.6 GB/s and the DDR
memory interface performs read and write commands with a bandwidth of around 4.2
GB/s. The AXI interconnect IP cores generally provides enough bandwidth for the access
to the DDR memory, as outlined in [Enc14] and [Xil15j].

The components are not running with the maximum possible clock frequency for the
AXI buses. Therefore, the interfaces between processing system, programmable logic and
extended memory are not the bottlenecks. The video input stage and video output stage
can gather and provide the calculated data in real-time. The image processor can be
further accelerated to minimize the time for an execution of one operation.



5.2. TIME-OF-FLIGHT PROCESSING MEASUREMENTS 85

Table 5.3: Theoretical bandwidths of the memory interfaces, which are calculated from
the configured hardware parameters.

Interface
Data width Clock frequency Bandwidth

[bits] [MHz] [MB/s]

PIF Camera 12 66.66 100

Video In to AXI4-Stream 16 100 200

VDMA (R+W) 32 200 800

Image Processor (R+W) 128 200 3,200

AXI4-Stream to Video Out 16 66.66 133.3

AXI HP (R+W) 64 200 1,600

DDR (R+W) 32 1,066 4,264

Frames per Second

In order to calculate the maximum possible FPS, the actual used camera configuration has
to be considered: an illumination time of 1 ms between frames and a frame resolution of
160 x 120 is used. For one distance image, four raw frames with an equivalent phase-shift
of 90◦ are required. The time for the transmission of one raw frame is 0.65 ms using the
camera’s parallel interface with a pixel clock of 66 MHz, as presented in Equation 5.1. The
formula is outlined in [Inf15b]. As a result, the maximum FPS with the used configuration
is 151, as illustrated in Equation 5.2.

tframe =
imagecolumns · imagerows

fPIF
+ (3µs · imagerows)

=
160 · 120

66.66 MHz
+ (3µs · 120) = 0.65 ms

(5.1)

FPSmax =
1 s

#frames · (tframe + texpo)
=

1 s

4 · (0.65 ms+ 1 ms)
= 151 (5.2)

5.2 Time-of-Flight Processing Measurements

The focus of this section is to provide the evaluation of the implemented hardware-
accelerated ToF algorithms. The results regarding performance and accuracy of the two
pre-processing applications are presented. The number of hardware-integrated image pro-
cessor operations is analyzed. Furthermore, the fixed-point calculation results of the hard-
ware implementation are compared with the floating-point values of the hardware-related
software implementation. The accuracy results, which represent only the calculation errors
of the algorithm due to fixed-point arithmetic, are achieved by measuring a typical scene.
Therefore, the shown mean and maximum errors are not absolute values. It is important
to note that no system errors, which result from the measurement setup, are analyzed.



86 CHAPTER 5. RESULTS

5.2.1 4-Phases Measurement

The 4-Phases algorithm is a typical pre-processing approach for a gesture recognition
use-case. Such a use-case application requires high frame rates (40+ FPS) and high
relative distance accuracy. The distance and amplitude image as well as the 3D coordinates
are calculated. A compensation of the systematic errors is performed. Furthermore,
the algorithm is part of the 8-Phases measurement and directly affects its computation
performance and accuracy.

The results of one 4-Phases measurement are depicted in Figure 5.3 and Figure 5.4. The
used ToF camera evaluation board only provides the calibration data for the FPPN, offset
error and direction parameters. Therefore, no wiggling and temperature compensation is
possible. The gathered four raw frames with an equivalent phase-shift of 90◦ are shown
in Figures 5.3a to 5.3d. The calculated distance image, as illustrated in Figure 5.4a,
shows the test objects. At the sharp edges of the objects, flying pixels are visible. These
defective pixels can be improved by further post-processing methods, which are not further
discussed in this work. The amplitude image is represented in Figure 5.4b. It shows an
infrared image of the scenery.

Frame Columns
20 40 60 80 100 120 140 160

F
ra

m
e 

R
ow

s

10

20

30

40

50

60

70

80

90

100

110

R
aw

 D
at

a 
[1

]

1750

1800

1850

1900

1950

2000

2050

2100

2150

2200

2250

(a) Phase image 0◦.

Frame Columns
20 40 60 80 100 120 140 160

F
ra

m
e 

R
ow

s

10

20

30

40

50

60

70

80

90

100

110

R
aw

 D
at

a 
[1

]

1750

1800

1850

1900

1950

2000

2050

2100

2150

2200

2250

(b) Phase image 90◦.

Frame Columns
20 40 60 80 100 120 140 160

F
ra

m
e 

R
ow

s

10

20

30

40

50

60

70

80

90

100

110

R
aw

 D
at

a 
[1

]

1750

1800

1850

1900

1950

2000

2050

2100

2150

2200

2250

(c) Phase image 180◦.

Frame Columns
20 40 60 80 100 120 140 160

F
ra

m
e 

R
ow

s

10

20

30

40

50

60

70

80

90

100

110

R
aw

 D
at

a 
[1

]

1750

1800

1850

1900

1950

2000

2050

2100

2150

2200

2250

(d) Phase image 270◦.

Figure 5.3: Raw frames of 4-Phases measurement (fMod: 60 MHz).



5.2. TIME-OF-FLIGHT PROCESSING MEASUREMENTS 87

Frame Columns
20 40 60 80 100 120 140 160

F
ra

m
e 

R
ow

s

10

20

30

40

50

60

70

80

90

100

110

D
is

ta
nc

e 
[m

]

0

0.5

1

1.5

2

(a) Calculated distance image.

Frame Columns
20 40 60 80 100 120 140 160

F
ra

m
e 

R
ow

s

10

20

30

40

50

60

70

80

90

100

110

A
m

pl
itu

de
 [1

]

0

20

40

60

80

100

120

140

160

180

(b) Calculated amplitude image.

Figure 5.4: Calculated depth data of 4-Phases measurement (fMod: 60 MHz).

Performance

The timing results for the 4-Phases hardware implementation are outlined in Table 5.4.
The floating-point software implementation of the reference algorithm executed on the
ARM core needs 248.15 ms, which corresponds to 4 FPS. This computation is performed
in floating-point arithmetic, and predefined math functions (e.g., arcus tangent, square
root) are used. The time is not feasible for the required use-case.

The hardware algorithm implemented with image processor operations calculates the
results in 30.5 ms. 32.8 FPS are possible with the use of hardware-integrated operations.
This time results from the use of 23 hardware-accelerated operations, whereby one oper-
ation needs around 0.7 ms as well as the calculation time on the ARM core for the index
operation of the wiggling compensation, as already shown in Listing 4.1. The execution
time for this software part is 14.12 ms. There are more hardware operations than executed
operations in the hardware-related software implementation needed due to specifics of the
image processor. For instance, shift operations are necessary to bring values to the same
fixed-point format. In addition, for the floor function one subtraction and two shift op-
erations are necessary. In order to meet the timing requirements two improvements with
trade-offs are introduced:

• No Wiggling Compensation

The first improvement is the omission of the wiggling compensation. Wiggling is a
distance-dependent error that needs to be compensated. Hence, the sophisticated
calculation is typically calculated with the help of a look-up table. Because this com-
putation is mostly done in software, it represents around half of the total time and
significantly decreases the performance of this pre-processing approach. Wiggling
correction is not necessarily needed in some use-case applications, such as gesture
recognition. Hence, those calculation steps can be skipped to speed up the perfor-
mance. In addition, there is no need of performing several hardware operations,
such as the wiggling index calculation or the mapping of negative arcus tangent



88 CHAPTER 5. RESULTS

values. The time needed to calculate the results without wiggling compensation is
11.46 ms, which corresponds to 87.2 FPS. These results are compatible with the
gesture recognition use-case, which requires high frame rates around 40 FPS.

• No Amplitude Shifts

Another improvement concerns the amplitude calculation. Two hardware operations
can be saved by not shifting the real and imaginary part. The fixed-point format
(Q15.0) is used instead of (Q12.3). Thus, the amplitude values are not precise, but in
most case this is not necessary. The execution time is 10.11 ms. The corresponding
FPS, without wiggling compensation and amplitude shifts, are 98.9.

Table 5.4: Timing results of the 4-Phases algorithm.

Time-of-Flight Algorithm t [ms] FPS #HW Instr.

Reference in Software 248.15 4.0 -

Reference in Zynq HW/SW 30.48 32.8 23

+ Improvement: No Wiggling Comp. 11.46 87.2 16

+ Improvement: No Amplitude Shifts 10.11 98.9 14

Accuracy

The accuracy of the 4-Phases algorithm is shown in Table 5.5. In addition to the final
results (e.g. distance, amplitude, 3D point loud), the intermediate results of every hard-
ware operation are calculated to view the error source and propagation, as illustrated in
Table 5.6. The average error and the maximum error are represented. An error is defined
as the absolute error between the fixed-point and floating-point value. For the mean er-
ror, the sum of all errors is divided by the number of pixels, which is 19,200, with the
chosen camera configuration. The algorithm is performed with the provided test data and
calibration data for all systematic errors. The modulation frequency is 80 MHz, which
corresponds to an unambiguous range of 1.87 m.

The mean error of the distance is 0.032 mm and the maximum error is 1.33 mm. The
maximum error is significant higher than the mean error. Hence, the maximum error
value corresponds to only 0.07% of the unambiguous range. The mean amplitude error

Table 5.5: Mean/max errors of the 4-Phases algorithm.

Result Emean [mm] Emax [mm] Emean[1] Emax[1]

Distance 0.092 1.330 - -

Amplitude - - 0.030 0.075

3D point cloud 0.080 1.343 - -

+ Improvement: No Wigg. Comp. 0.076 0.268 - -

+ Improvement: No Amplit. Shifts - - 0.117 0.253



5.2. TIME-OF-FLIGHT PROCESSING MEASUREMENTS 89

Table 5.6: Mean/max errors after each image processor operation of the 4-Phases algo-
rithm. In addition, the line numbers of the corresponding hardware-acceleration imple-
mentation, as shown in Algorithm 2, are represented.

Intermediate Result Emean [mm] Emax [mm]

Imaginary part (3) 0.000 0.000

Real part (2) 0.000 0.000

Phase (4) 0.032 0.085

Phase Below Zero (5) 0.000 0.000

Phase Mapped (6) 0.032 0.085

Wiggling Index (8) 0.020 1.000

Wiggling Error (LUT) (8) 0.042 1.309

Phase Add. Wiggling (8) 0.056 1.320

Phase Div. 2 (8) 0.028 0.660

Phase Add. Errors (9) 0.032 0.672

Phase Floor (10) 0.000 0.061

Phase Subtr. (10) 0.032 0.672

Distance Mult. (11) 0.092 1.330

is 0.03 and the maximum amplitude error is 0.075. By reconsidering the value range of
the amplitude, which is 0 to 2895.6, the percentage maximum error is 0.003%. This result
is feasible for most use-cases. The errors of the 3D point cloud amounts to 0.08 mm for
the mean error and 1.343 mm for the maximum error. Because the 3D coordinates are
computed only with a multiplication of the distance with the direction parameters, the
errors are almost the same.

In order to analyze the origin of the error, the intermediate results must be sequentially
evaluated. The errors propagate linearly that means that for an addition or subtraction,
the errors of the two operands are added or subtracted. If the two operands have the same
number of integer and fraction bits, no error will occur. For multiplications and divisions,
the errors of the two operands are multiplied or divided. Furthermore, multiplications and
divisions cause an error if the fraction part is decreased. It is not possible to represent
every exact floating-point value in the fixed-point format. Hence, the multiplication or
division with a constant can also cause an error.

By considering the first few intermediate results, the first big maximum error occurs
at the wiggling index calculation. A floor function is performed that shifts the values to
the right and generates an integer value for the index look-up implemented on the ARM
core. It was investigated that the error occurs when the correct floating-point value is
slightly below an integer value, for example 0.9999, and the calculated fixed-point value
is above, for example 1.0001, or vice versa. The absolute error is minimal but the floor
function calculates 0 in the first case and 1 in the second case. That means for the
wiggling compensation, the neighboring wiggling compensation value in the look-up table
is chosen. This results in a maximum error of 1.32 mm for the phase value after wiggling
compensation. The sequent intermediate errors are then linearly propagated. In order to



90 CHAPTER 5. RESULTS

solve this error source, the image processor architecture can be changed from 16-Bit to
32-Bit. Thus, the accuracy is increased and the appearance of such errors is decreased
but the main issue still remains. This error can also arise with the floor function at the
unambiguous range shift calculation step.

The errors of the improvements are also given. The omission of the wiggling com-
pensation greatly reduces the maximum error of the distance. Due to this improvement,
the wiggling index error does not occur, and no neighboring value in the look-up table
is added. Thus, the mean distance error is 0.076 mm and the maximum distance error
is 0.268 mm. This result is significantly better than with wiggling compensation. For
the required use-case application, such as in gesture recognition, high relative accuracy
is necessary. This can be achieved with this improvement by only causing a maximum
calculation error of 0.268 mm.

The other improvement skips the two amplitude shifts. The inputs of the arcus tangent
magnitude are the real and imaginary part, which are represented in the fixed-point format
(Q15.0). Without the two shift operations the output of the magnitude operation is also
in the format (Q15.0). Due the division with the constant two, the fixed-point format of
the result is (Q14.1), which corresponds to a maximum error of 0.5. This corresponds to
0.017% of the value range, which is feasible for most use-case applications. The actual
mean error is 0.117 and the maximum error is 0.253. The value range of the amplitude is
0 to 2895.6.

The results show that skipping the wiggling compensation can only fulfill the use-
case requirements. The processing steps for the calculation of wiggling compensation are
the main bottleneck of the 4-Phases algorithm. At first the calculation of the wiggling
compensation value is not precise enough due the floor function of the wiggling index.
Furthermore, the execution time is almost doubled because of the software part for the
necessary index look-up. Thus, the interest arises to create in future a hardware component
for the wiggling compensation or furthermore an IP core for calculation steps with look-up
tables. The expansion of the used image processor for that is not easily realized as the
LUT can be read in any order from the extended memory. Hence, the best-case would be
to load the LUT into the BRAM of the FPGA. Another issue is the floor function, which
is not precise enough. Therefore, the image processor could be extended to provide a floor
or modulo operation with more precise intermediate results. Those ideas are not further
discussed in this work.

5.2.2 8-Phases Measurement

The 8-Phases algorithm represents a typical pre-processing approach for an indoor nav-
igation use-case, for example, Google Tango. For this use-case lower, frame rates are
sufficient and a high absolute distance accuracy is required. Two distance images of 4-
Phases measurements with different modulation frequencies are combined. The final step
is an unambiguous range extension. The result is a distance image and a 3D point cloud.
Because the 4-Phases algorithm is part of this algorithm, the distance error of this ap-
proach directly propagates to this computation.



5.2. TIME-OF-FLIGHT PROCESSING MEASUREMENTS 91

Frame Columns
20 40 60 80 100 120 140 160

F
ra

m
e 

R
ow

s

10

20

30

40

50

60

70

80

90

100

110

D
is

ta
nc

e 
[m

]
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

(a) Calculated distance image (fMod: 80 MHz).

Frame Columns
20 40 60 80 100 120 140 160

F
ra

m
e 

R
ow

s

10

20

30

40

50

60

70

80

90

100

110

D
is

ta
nc

e 
[m

]

0

0.5

1

1.5

2

(b) Calculated distance image (fMod: 60 MHz).

Frame Columns
20 40 60 80 100 120 140 160

F
ra

m
e 

R
ow

s

10

20

30

40

50

60

70

80

90

100

110

A
m

pl
itu

de
 [1

]

0

20

40

60

80

100

120

140

160

(c) Calculated amplitude image (fMod: 80 MHz).

Frame Columns
20 40 60 80 100 120 140 160

F
ra

m
e 

R
ow

s

10

20

30

40

50

60

70

80

90

100

110

A
m

pl
itu

de
 [1

]

0

20

40

60

80

100

120

140

160

180

(d) Calculated amplitude image (fMod: 60 MHz).

Frame Columns
20 40 60 80 100 120 140 160

F
ra

m
e 

R
ow

s

10

20

30

40

50

60

70

80

90

100

110

D
is

ta
nc

e 
[m

]

0

1

2

3

4

5

6

7

(e) Calculated distance image.

Figure 5.5: Unambiguous range extension using dual modulation frequencies.



92 CHAPTER 5. RESULTS

In Figure 5.5 the results for one measurement are depicted. The ToF camera is placed
on the table to capture a scene of a room to observe the extension of the unambiguous
range. The first distance image, as illustrated in Figure 5.5a, is the result of a 4-Phases
measurement with a modulation frequency of 80 MHz, which corresponds to a unambigu-
ous range of 1.87 m. The second measurement is done with a modulation frequency of
60 MHz, which provides valid results within the range of 2.49 m. Because of unambiguous
range extension computation, the valid range can be increased to 7.46 m. This value can
be calculated by using Equation 2.6.

It can be clearly seen that in the first picture the background beyond the unambiguous
range, is mapped into the valid range by the unambiguous range shift calculation step of the
4-Phases algorithm, due to the 2π-periodicity of the phase. Thus, the distance information
of such objects cannot not be correctly recognized. In Figure 5.5e the final distance image
of the scenery is shown. By performing the extension processing step, the objects that are
not correctly displayed can be mapped into the bigger range. Therefore, a decrease of the
modulation frequency, which would also increase the unambiguous range, is not necessary.
Flying pixels are visible at the sharp edges of the objects.

The calculated amplitude images of the scenery are represented in Figure 5.5c and
Figure 5.5d. The amplitude can be used to provide further pre-processing steps on the
distance before unambiguous range extension, such as the invalid pixel detection. Finally,
the distance values are then translated into 3D coordinates. Therefore, the 3D point cloud
calculation can be skipped in the 4-Phases algorithm for both images.

Performance

In Table 5.7 the timing results of the 8-Phases hardware implementation are shown. One
successful computation needs the time of two 4-Phases executions, the unambiguous range
extension and the 3D point cloud calculation. The software implementation on the ARM
core needs 559.54 ms, which corresponds to 1.9 FPS. This result is not feasible for the
most use-cases.

Table 5.7: Timing results of the 8-Phases algorithm.

Time-of-Flight Algorithm t [ms] FPS #HW Instr.

Reference in Software 559.54 1.9 -

Reference in Zynq HW/SW 66.45 15.05 54

+ Improvement: No Wiggling Comp. 28.41 35.2 40

+ Improvement: No Amplitude Shifts 27.11 38.9 36

The hardware/software implementation using the ARM core and image processor op-
erations needs 66.45 ms. Hence, 15.05 FPS are possible. The 4-Phases wiggling compen-
sation on the ARM core significantly increases the execution time. For the unambiguous
range extension 13 hardware-accelerated operations are necessary. This number results
in the use of several operations for basic arithmetic, as well as a round and floor func-
tion. Thus, the complete algorithm is implemented with 54 image processor operations.



5.2. TIME-OF-FLIGHT PROCESSING MEASUREMENTS 93

Because high frame rates are not required for this use-case, the obtained execution time
without improvements is suitable.

Furthermore, the timings are also simulated using the two improvements (i.e., no
wiggling compensation, no amplitude shifts) in the execution of the 4-Phases algorithm.
A speed up can be achieved by skipping the wiggling correction. The timing result for that
improvement amounts to 28.41 ms, which corresponds to 35.2 FPS. This is achieved by
skipping the software implementation and by using 40 operations of the image processor.
The skipping of the amplitude shifts decreases the time only minimally. Because only two
operations can be saved, the execution time is 27.11 ms and the FPS are 38.9.

Accuracy

In Table 5.8 the accuracy results of the 8-Phases hardware implementation is shown.
The fixed-point values are compared to the floating-point results of the hardware-related
software implementation. The mean and the maximum error are equally defined as for
the evaluation of the 4-Phases algorithm. The 4-Phases distance images are used. The
modulation frequencies are 80 MHz for the first image and 60 MHz for the second image.
The second distance image is the same as described in the accuracy section of the 4-Phases
algorithm.

Table 5.8: Mean/max errors of the 8-Phases algorithm.

Result Emean[mm] Emax[mm]

Distance 0.534 2.456

3D point cloud 0.272 2.043

+ Improvement: No Wigg. Comp. 0.523 2.109

The distance mean error is 0.534 mm and the maximum error is 2.456 mm. As for the
4-Phases algorithm the maximum error is also significant higher than the mean error. Due
to the bigger unambiguous range, the percentage maximum error is only 0.003%. This
result can be accepted for the required use-case, which requires high absolute accuracy due
to the compensation of all systematic errors. 0.272 mm is the mean error and 2.042 mm
is the maximum error of the 3D point cloud. The improvement of skipping the wiggling
compensation results in a mean distance error of 0.523 mm and a maximum distance error
of 2.109 mm. Compared to the 4-Phases algorithm, it is obvious that this improvement
only slightly reduces the maximum error. This behavior is further inspected in the next
paragraph. The amplitude errors are not represented because the amplitude images of
the 4-Phases measurements are used and no special calculation in the unambiguous range
extension is performed.

The intermediate results of every used operation are outlined in Table 5.9 to analyze
the error source. At the first few operations the errors are high due to the error propagation
of the 4-Phases distance values. The error of the round intermediate result is 0 mm. After
the round operation, the intermediate result is multiplied with a constant. Therefore, the
error of the second multiplication should also equal 0 mm. This is not the case because the



94 CHAPTER 5. RESULTS

multiplication constant cannot be represented exactly in the fixed-point format. Thus, a
maximum error of 0.163 mm occurs which propagates to the final value. Due to the final
multiplication with the large unambiguous range constant, the maximum distance error is
finally 2.456 mm. Because of this error source, the error after the first improvement (no
wiggling compensation) is not that strongly decreased as in the 4-Phases algorithm.

The results show that the high absolute accuracy, which is required for this use-case
application, is achieved by providing an implementation with a compensation of all sys-
tematic errors. Because lower frame rates are sufficient, the wiggling compensation in
software can be performed. Furthermore, it is shown that the limited accuracy of the
16-Bit image processor significantly limits the system’s accuracy. The errors of the unam-
biguous range extension computation are almost eliminated because of the multiplications
with very small constants. Thus, the errors of the 4-Phases algorithm do not heavily
influence the results. Because of inaccuracies of the representation of values in the 16-Bit
fixed-point format, another error source is raised. One solution would be to upgrade the
image processor to a 32-Bit architecture in order to minimize such errors. This work does
not further discuss this issue.

Table 5.9: Mean/max error after each image processor operation of the 8-Phases algorithm.

Intermediate Result Emean[mm] Emax[mm]

Addition (1st) 0.141 2.403

Subtraction 0.144 2.165

Multiplication (1st) 0.263 3.564

Round 0.000 0.000

Multiplication (2nd) 0.016 0.163

Multiplication (3rd) 0.067 0.253

Addition (2nd) 0.071 0.329

Floor 0.000 0.000

Subtraction 0.071 0.329

Distance Mult. 0.534 2.456

5.3 Demonstrator

A demonstrator is implemented to show the feasibility of the system. Figure 5.6 shows the
complete developed ToF processing platform. Infineon’s ToF evaluation kit is connected
through the parallel interface with the Xilinx Zynq platform and provides the gathered raw
data. The Zynq development board from Trenz Electronic performs the ToF processing
steps and sends the results through the FPGA’s parallel interface via an adapter PCB to
the AURIX platform. The pre-processed data is then evaluated and transmitted over the
Ethernet interface to the PC. There it can be further used for other purposes, for example,
displaying a live-stream.

During development some issues regarding the transmission over the parallel interfaces
were recognized. In the following paragraphs, those results are described in detail.



5.3. DEMONSTRATOR 95

Time-of-Flight Evalkit

AURIX PlatformZynq SoC
Adapter

PCB

Figure 5.6: Developed demonstrator of the overall system.

Video Input Stage

At first, the initial setup of the connection between the ToF camera and the Zynq platform
is described. Instead with a short flat cable, the parallel interface was firstly connected
with separate cables. Each signal was connected with a 10 cm long cable. This floating
wiring caused transmission errors. Therefore, the separate cables were exchanged with
a flat cable of 10 cm length. With this replacement the setup was more stable but also
transmission errors were occurring.

In Figure 5.7 some error-prone transmitted frames are depicted. The raw frames are
gathered from the ToF camera and then received through the video input stage on the
Zynq. The data is directly copied from the Zynq’s extended memory to the PC to exclude
errors in the video output stage and plotted with the software tool Matlab. One effect of
the unstable transmission is the occurrence of pixels with a wrong value value, e.g., the
maximum value. Hence, these pixels are easily recognizable in Figure 5.7a. The frame is
captured with a pixel cock of 66.66 MHz.

In order to see if the error is reasoned on the high clock frequency, the pixel clock
is changed. The ToF camera can be configured to use another pixel clock. A divider
can be configured to decrease the maximum pixel clock frequency of 66.66 MHz. Follow-
ing dividers are possible: 2, 4 and 8. Hence, following clock frequencies are adjustable:
33.33 MHz, 16.66 MHz and 8.33 MHz. Therefore, the pixel clock frequency is changed
to 16.66 MHz. As illustrated in Figure 5.7b, the false pixels do not appear anymore but
there are blurred rows visible.

In order to be sure about the occurrence of these errors, the visible verification is not
enough. Because the exact pixel values are not known for verification, only the known
pseudo row can be verified. This was done during the verification step of the video input
stage. These pixel values of captured frames are compared to the predefined values in



96 CHAPTER 5. RESULTS

real-time. This test shows that at almost every received frame, some transmission errors
occur.

The error source might be an electromagnetic compatibility (EMC) issue due to the
long cable length. In fact, each row is buffered on the ToF evaluation kit to provide better
transmission results. The 10 cm flat cable with nearly no isolation is not suitable for this
framework. For instance, if a line is logical low between two logical high lines, the signal
can also be pulled to high. Therefore, it is not possible to use the framework in use-case
applications where the ToF camera needs to be placed far away from the Zynq platform.

The solution is a shorter flat cable with a length of around 2 cm, which replaces the
long cable. In this setup no such transmission errors occur. Such a short cable is also used
to connect the Zynq development board with the AURIX platform where such errors also
occurred. This setup is verified with a test of the pseudo row of transmitted frames. This
final testing step is performed with a high amount of frames in real-time, so that the error
can be excluded.

Frame Columns
20 40 60 80 100 120 140 160

F
ra

m
e 

R
ow

s

10

20

30

40

50

60

70

80

90

100

110

R
aw

 D
at

a 
[1

]

0

500

1000

1500

2000

2500

3000

3500

4000

(a) Pixel clock: 66.66 MHz.

Frame Columns
20 40 60 80 100 120 140 160

F
ra

m
e 

R
ow

s

10

20

30

40

50

60

70

80

90

100

110

R
aw

 D
at

a 
[1

]

0

500

1000

1500

2000

2500

3000

3500

4000

(b) Pixel clock: 16.66 MHz.

Figure 5.7: Transmission errors at the video input stage using a 10 cm long flat cable,
e.g., pixel errors, blurred rows.

Video Output Stage

The connection between the Zynq development board and the AURIX platform is estab-
lished with an adapter printed circuit board (PCB) provided from Infineon, as illustrated
in Figure 5.8. It connects the camera interface of the AURIX with the parallel interface
of the ToF camera. Therefore, the parallel interface is equally specified (e.g., data signals
and synchronization signals) on the FPGA. As shown in the top view of the adapter PCB
the 12-Bit data, synchronization and other signals are connected to a parallel interface
plug, as outlined in [Inf15a].

The connection between the Zynq development board and the adapter PCB is realized
with a 2 cm long flat cable. Because of the transmission errors that occur with a 10 cm
long cable at the video input stage, also a shorter flat cable is used. Due to the previous



5.3. DEMONSTRATOR 97

Figure 5.8: Adapter PCB [Inf15a].

insights, one would assume that no error-prone transmission would appear. But during the
verification step of the video output stage, similar errors could be recognized. Therefore,
a predefined pattern was loaded into the extended memory and then sent via the transmit
logic through the parallel interface to the AURIX.

In Figure 5.9 an example of the transmission errors is shown. The Zynq platform is
connected with a 2 cm long flat cable with the adapter PCB. The test pattern that is sent
is depicted in Figure 5.9a. Each alternating column has the same value. The pixel values
of the complete first column are 0xFFF. The second column is 0x0 and so on. The frequent
change of a pixel value from logical high to logical low, provokes lots of transmission errors.
The received test pattern on the AURIX is shown in Figure 5.9b. It is clearly obvious
that blurred rows occur like at the video input stage. In addition, false pixel values are
also transmitted.

It is not possible to further decrease the length of the flat cable. Therefore, the adapter
PCB might be the error source regarding electromagnetic compatibility issues. Looking
at the top view of the adapter board, it is recognizable that long signal paths are used to
connect the parallel interface plug with the camera interface. Furthermore, the signals of
the camera interface are not placed in the same area. The pins that connect the camera
interface of the AURIX are far away distributed. Thus, different signal path lengths are
used for the connection, which can cause timing problems. Another issue might be the
long distance between the two interfaces. The signal paths on the PCB are around 10 cm
long. This length is already a problem at the video input stage.



98 CHAPTER 5. RESULTS

Frame Columns
20 40 60 80 100 120 140 160

F
ra

m
e 

R
ow

s

20

40

60

80

100

120

R
aw

 D
at

a 
[1

]

0

50

100

150

200

250

(a) Test data send from Zynq SoC.

Frame Columns
20 40 60 80 100 120 140 160

F
ra

m
e 

R
ow

s

20

40

60

80

100

120

R
aw

 D
at

a 
[1

]

0

50

100

150

200

250

(b) Received data on PC.

Figure 5.9: Transmission errors at the adapter PCB using a 2 cm long flat cable, e.g.,
blurred Rows (pixel clock: 66.66 MHz, test pattern: 0xFFF/0x0)

The solution is to change the pixel clock frequency of the output stage to 8.33 MHz.
This decreases the electromagnetic compatibility issues. As already recognized at the video
input stage, lower pixel clocks provide better results. This solution works also with the
output stage. Due to this decrease, latency is created which can limit the FPS. Another
solution might be the integration of a buffer on the adapter PCB. Regarding the short
flat cable, which can reduce the number of possible use-case applications, it is possible
to connect the AURIX over another interface with the Zynq development board. One
good alternative is the Ethernet interface. For an easy use of this interface an operating
system, e.g., FreeRTOS ([Ltd15]), has to be used. The proposed solutions are not further
discussed in this thesis.

5.4 High Level Synthesis

High Level Synthesis is used to fulfill the requirement of high flexibility in the system.
Therefore, two algorithms are implemented and compared to the software implementation
and Infineon’s image processor regarding performance and area. In this section the esti-
mation results of the HLS tool chain and the final implemented results are presented and
evaluated.

Two test-cases were carried out with an image resolution of 160 x 128, which corre-
sponds to 20,480 pixels. The generated IP cores run with a clock frequency of 50 MHz. In
order to determine the execution time of a competition, a timer is started when the start
register is set and immediately stopped after a thrown hardware interrupt.

Pixel-by-Pixel Addition

In the first test-case, a pixel-wise addition of two 16-Bit images is performed. In Ta-
ble 5.10 the timing and utilization results are outlined. The execution time of the HLS



5.4. HIGH LEVEL SYNTHESIS 99

implementations clearly outperforms the software implementation on the ARM core. The
ToF image processor needs 0.44 ms for one operation. The execution time of the imple-
mented solution with the multi-burst approach is 1.7 ms and with the dataflow directive
is 0.82 ms.

The specified clock frequency is 50 MHz, which corresponds to a clock period of 20 ns.
If one pixel calculation is performed in one clock cycle, the computation time of 20,480
pixels will be 0.41 ms. By keeping the execution times in mind, the image processor needs
one clock cycle per pixel including some overhead timing.

The multi-burst approach sequentially performs following processing steps: read first
image from memory, read second image from memory, perform calculation on two images
and write result into memory. Therefore, four clock cycles are needed to compute one
result pixel. Hence, the estimated time and the real time are almost the same.

The dataflow approach should need one clock cycle per pixel. Thus, the estimated time
is 0.41 ms. The real timing result is however 0.82 ms, which is twice the estimated time.
Hence, there must be a bottleneck in the reading of the memory because two clock cycles
are necessary. In the first pipeline stage the first image is read from memory, whereas in
the second pipeline stage the second image is read, the calculation is performed and the
result image is written into memory. It is not possible to read both images in one pipeline
stage. The image processor efficiently implements its input buffer for two input image
streams, as shown in [Enc14].

The area is smaller for both HLS implementations because the image processor im-
plements lots of more different operations. The dataflow approach needs more utilization
resources because every input or output parameter is synthesized with an own AXI High
Performance (HP) port, whereas the multi-burst approach is generated with only one AXI
HP interface.

Table 5.10: HLS results: addition of two images.

Implementation
Est. Clock

Cycles

Est.

t [ms]
t[ms] BRAMs DSPs FFs LUTs

Reference in Software - - 15.60 - - - -

HLS Multi-Burst 82,056 1.64 1.70 6 0 1980 1589

HLS Dataflow 20,502 0.41 0.82 6 0 3900 3836

Image Processor - - 0.44 9.5 7 4732 3343

Amplitude calculation

The second test-case calculates the amplitude. The timing and utilization results are
shown in Table 5.11. The software implementation is much slower than the hardware-
accelerated implementations. With the image processor four separate operations have to
be performed which needs 1.76 ms. The execution time of the multi-burst approach is
2.48 ms, and of the dataflow approach is 1.62 ms.



100 CHAPTER 5. RESULTS

Table 5.11: HLS results: ToF amplitude calculation.

Implementation
Est. Clock

Cycles

Est.

t [ms]
t[ms] BRAMs DSPs FFs LUTs

Reference in Software - - 95.60 - - - -

HLS Multi-Burst 123,316 2.47 2.48 10 2 4491 4014

HLS Dataflow 20,543 0.41 1.62 10 2 8902 8438

Image Processor - - 1.76 9.5 7 4732 3343

In the multi-burst implementation six clock cycles are used to compute on result pixel
value. At first, the four images are read from memory. Next, the amplitude is calculated
and saved into memory. The estimated results are quite similar to the real execution time.

The dataflow approach implements a pipeline architecture and should use one clock
cycle per pixel but it needs around four. In the first three pipeline stages the first three
images are read from memory, whereas in the fourth pipeline stage the fourth image is
read, the calculation is performed and the result image is written into memory. It is not
possible to read all four images in one pipeline stage. However, the execution time is still
lower than the one of the image processor because the calculation steps are successfully
implemented in a pipeline. Therefore, the bottleneck is also the memory interface.

The utilization of the multi-burst approach is quite similar to the image processor
because more operations are used in the HLS implementation. The area of the dataflow
approach is twice as big because four input images are used and therefore four AXI HP
ports are necessary.

The results show the trade-off between flexibility and achievable hardware-acceleration.
It is outlined that High Level Synthesis is a quite useful tool for rapid prototyping. The
estimated results of the HLS toolchain should be carefully noted because they can differ
widely. Furthermore, the limits of HLS are quickly reached with hardware-accelerated
components, which need to process high amounts of data from the extended memory.



Chapter 6

Conclusion and Future Work

6.1 Conclusion

The Time-of-Flight range imaging technology has attracted the interest of developers for
use-case applications in recent years. Due to the small form factor that can be achieved
with indirect ToF cameras, such systems can be integrated into embedded systems, for
instance, smart phones. Thus, commercial solutions will come up with a range of appli-
cations with specialized requirements.

In this work an FPGA-based ToF processing platform is introduced that is based on
a hardware/software system and allows the flexible realization of lots of different use-case
applications. Furthermore, critical calculations are performed in hardware that increases
the performance of the overall system.

To fulfill the requirements, the Xilinx Zynq platform is used, which allows the hard-
ware/software co-development of complex ToF-based applications. Two pre-processing
applications are developed to show the features of the framework. The state-of-the-art
4-Phases and 8-Phases algorithms are implemented. Such algorithms have applications in
gesture recognition or indoor navigation use-cases. The distance, amplitude and 3D point
cloud can be computed with almost 100 FPS while only producing an average calculation
error of 0.08 mm.

In order to present the feasibly of the proposed framework, a demonstrator with the
automotive platform AURIX developed by Infineon is implemented. It is shown that the
system can also fulfill the high performance and memory requirements in safety-critical
applications in the automotive domain. Thanks to the pre-processing on the Zynq plat-
form, the amount of transferred data can be decreased and allows the AURIX to perform
more complex use-case applications with the additional free resources.

Finally, rapid algorithm prototyping is possible through the presented high level syn-
thesis approach. It is shown that the performance and utilization is in the same dimension
as an application-specific developed hardware-component. A computation implemented
with several image processor operations is even outperformed by the generated high level

101



102 CHAPTER 6. CONCLUSION AND FUTURE WORK

synthesis module. Therefore, performance-intensive calculations in software can be suc-
cessively integrated into hardware. The trade-off between acceleration and flexibility is
illustrated by the obtained results.

6.2 Future Work

The implementation of a demonstrator proves the feasibility of the presented FPGA-based
ToF processing systems in this work. As a next step, the system can be improved regarding
performance and accuracy. Furthermore, the framework can be extended for further yet,
unknown use-case applications. Future work might involve following topics:

• 32-Bit Image Processor

In order to improve the processing accuracy of the two implemented ToF algorithms,
the 16-Bit architecture of the image processor can be increased to, for example,
32-Bit. The maximum error of the 8-Phases algorithm is caused by the limited
representation of a constant in the 16-Bit fixed-point format.

• Additional Hardware-Integrated Operations

The image processor can be extended with additional hardware-integrated opera-
tions. For instance, a modulo operation with a precise intermediate result in hard-
ware can increase the accuracy. A shift operation can minimize error sources because
in the current system a shift is performed with a multiplication or division that au-
tomatically rounds the result.

• Parallelization of Hardware Components

Due to enough free resources on the FPGA and no data dependency between pixels,
the performance can be quickly improved by adding further image processors to the
hardware design. For instance, adding a second image processor can double the
maximum achievable FPS.

• Wiggling Correction in Hardware

The wiggling compensation can currently only be implemented in software on the
ARM. Hence, a considerable speed-up can be achieved with a hardware-integrated
calculation. Because the wiggling look-up table is non-sequentially read from mem-
ory, an extension of the image processor is not easily achieved. For instance, the
proposed High Level Synthesis approach can be used to create such a hardware
component.

• Hardware-accelerated Post-processing

In order to improve the quality of the computed distance data, hardware-accelerated
calculation for further post-processing can be integrated in the proposed system, for
example, noise filtering.



6.2. FUTURE WORK 103

• Ethernet Interface

The Ethernet interface of the Zynq development board can be activated and used
for transmission of the calculated data to the AURIX. This connection is less error-
prone than the parallel interface in combination with the adapter PCB and can also
be used to directly connect a host PC to the Zynq platform.

• Real-Time Operating System

For an easy use of the already provided Ethernet protocol implementation, a real-
time operating system, such as FreeRTOS, can be integrated in the current software
system. Furthermore, such an operating system would extend the proposed platform
for use-case applications with real-time requirements.

• Further Use-Case Applications

Additional use-case applications, such as face recognition, can be directly imple-
mented on the Zynq platform. Memory- and performance-intensive calculations can
be moved from the AURIX to the hardware/software platform to free the valuable
resources.

Future projects can use the developed Time-of-Flight processing system for design
exploration in lots of different fields of applications. Furthermore, the platform can be
extended with real-time, multi-core and mixed-criticality concepts, which allow the imple-
mentation of critical applications in the industrial and automotive domain.





Appendix A

Hardware System

Listing A.1: Detailed hardware implementation of the 4-Phases algorithm. Fixed-point
number format (Qw.f ) is represented for a modulation frequency of 60 MHz.

1 imag = ImgOp_Sub(F270 , F90); //(Q15 .0)
2 real = ImgOp_Sub(F0, F180); //(Q15 .0)
3
4 phase = ImgOp_Atan(imag , real); //(Q0.15)
5 phase = ImgOp_Mul(phase , 1/pow(2, 2)); //(Q2.13); phase >>= 2;
6
7 // Wiggling Compensation
8 phaseLim = ImgOp_Limit (0); //(Q0 .15); phaseLim = (phase < 0) ? 1:0;
9 phaseLim = ImgOp_Div(phaseLim , 1/pow(2, 14); //(Q1.14); phaseLim <<= 14;

10 phaseWigg = ImgOp_Add(phase , phaseLim ); //(Q2.13)
11 wiggIdx = ImgOp_Mul(phaseWigg , (N_LUT -1)/2); //(Q13 .2)
12 wiggIdx = ImgOp_Sub(wiggIdx , pow(2, 1)); //no rounding of next shift
13 wiggIdx = ImgOp_Mul(wiggIdx , 1/pow(2, 2)); //(Q0.15); wiggIdx >>= 2;
14 for( i=0; i<numPixels; i++ )
15 {
16 wiggError[i] = wiggLUT[wiggIdx[i]];
17 }
18 phase = ImgOp_Add(phase , wiggError );
19
20 phaseFractionBits += 1; //(Q1.14); equal to division of 2
21 phase = ImgOp_Add(phase , offsetFppnTempErros ); //(Q1.14)
22 phFloor = ImgOp_Sub(phase , pow(2, 13)); //no rounding of next shift
23 phFloor = ImgOp_Mul(phFloor , 1/pow(2, 14)); //(Q15 .0); phFloor >>= 14;
24 phFloor = ImgOp_Div(phFloor , 1/pow(2, 14)); //(Q1.14); phFloor <<= 14;
25 phase = ImgOp_Sub(phase , phFloor ); //(Q1.14)
26 distance = ImgOp_Mul(phase , c/(2* fMod )); //(Q3.12)
27
28 // Amplitude
29 real = ImgOp_Div(real , 1/pow(2, 2)); //(Q13 .2); real <<= 2;
30 imag = ImgOp_Div(imag , 1/pow(2, 2)); //(Q13 .2); imag <<= 2;
31 amplitude = ImgOp_Magnitude(real , imag); //(Q13 .2)
32 amplitudeFractionBits += 1; //(Q12 .3); equal to division of 2
33
34 // 3D Point Cloud
35 distanceX = ImgOp_Mul(distance , directionsX ); //(Q3.12)
36 distanceY = ImgOp_Mul(distance , directionsY ); //(Q3.12)
37 distanceZ = ImgOp_Mul(distance , directionsZ ); //(Q3.12)

105



106 APPENDIX A. HARDWARE SYSTEM

D
D

R

F
IX

E
D

_I
O

IIC
_0

pr
oc

es
si

ng
_s

ys
te

m
7_

0

Z
Y

N
Q

7 
P

ro
ce

ss
in

g 
S

ys
te

m

P
T

P
_E

T
H

E
R

N
E

T
_0

G
P

IO
_0

D
D

R

F
IX

E
D

_I
O

IIC
_0

IIC
_1

S
_A

X
I_

H
P

0_
F

IF
O

_C
T

R
L

M
_A

X
I_

G
P

0

S
_A

X
I_

H
P

0

M
_A

X
I_

G
P

0_
A

C
LK

S
_A

X
I_

H
P

0_
A

C
LK

IR
Q

_F
2P

[3
:0

]
F

C
LK

_C
LK

0

F
C

LK
_C

LK
2

F
C

LK
_R

E
S

E
T

0_
N

IIC
_1

pr
oc

es
si

ng
_s

ys
te

m
7_

0_
ax

i_
pe

rip
h

A
X

I I
nt

er
co

nn
ec

t

S
00

_A
X

I

M
00

_A
X

I

M
01

_A
X

I

M
02

_A
X

I

M
03

_A
X

I

M
04

_A
X

I

M
05

_A
X

I

M
06

_A
X

I

A
C

LK

A
R

E
S

E
T

N
[0

:0
]

S
00

_A
C

LK

S
00

_A
R

E
S

E
T

N
[0

:0
]

M
00

_A
C

LK

M
00

_A
R

E
S

E
T

N
[0

:0
]

M
01

_A
C

LK

M
01

_A
R

E
S

E
T

N
[0

:0
]

M
02

_A
C

LK

M
02

_A
R

E
S

E
T

N
[0

:0
]

M
03

_A
C

LK

M
03

_A
R

E
S

E
T

N
[0

:0
]

M
04

_A
C

LK

M
04

_A
R

E
S

E
T

N
[0

:0
]

M
05

_A
C

LK

M
05

_A
R

E
S

E
T

N
[0

:0
]

M
06

_A
C

LK

M
06

_A
R

E
S

E
T

N
[0

:0
]

ax
i_

gp
io

_i
n

A
X

I G
P

IO

S
_A

X
I

G
P

IO
s_

ax
i_

ac
lk

s_
ax

i_
ar

es
et

n

vi
n

ax
i_

m
em

_i
nt

er
co

n

A
X

I I
nt

er
co

nn
ec

t

S
00

_A
X

I

M
00

_A
X

I

S
01

_A
X

I

S
02

_A
X

I

A
C

LK

A
R

E
S

E
T

N
[0

:0
]

S
00

_A
C

LK

S
00

_A
R

E
S

E
T

N
[0

:0
]

M
00

_A
C

LK

M
00

_A
R

E
S

E
T

N
[0

:0
]

S
01

_A
C

LK

S
01

_A
R

E
S

E
T

N
[0

:0
]

S
02

_A
C

LK

S
02

_A
R

E
S

E
T

N
[0

:0
]

ifx
_i

m
ag

e_
pr

oc
es

so
r_

0

IF
X

 Im
ag

e 
P

ro
ce

ss
orM

_A
X

I

S
_A

X
I

M
_A

X
I_

A
C

LK

M
_A

X
I_

A
R

E
S

E
T

N

S
_A

X
I_

A
C

LK

S
_A

X
I_

A
R

E
S

E
T

N

IP
2I

N
T

C
_I

rp
t

vi
d_

ou
t_

cl
k

cl
k_

w
iz

_0

C
lo

ck
in

g 
W

iz
ar

d

s_
ax

i_
lit

e

s_
ax

i_
ac

lk

s_
ax

i_
ar

es
et

n

cl
k_

in
1

cl
k_

ou
t1

lo
ck

ed

rs
t_

pr
oc

es
si

ng
_s

ys
te

m
7_

0_
10

0M

P
ro

ce
ss

or
 S

ys
te

m
 R

es
et

sl
ow

es
t_

sy
nc

_c
lk

ex
t_

re
se

t_
in

au
x_

re
se

t_
in

m
b_

de
bu

g_
sy

s_
rs

t

dc
m

_l
oc

ke
d

m
b_

re
se

t

bu
s_

st
ru

ct
_r

es
et

[0
:0

]

pe
rip

he
ra

l_
re

se
t[0

:0
]

in
te

rc
on

ne
ct

_a
re

se
tn

[0
:0

]

pe
rip

he
ra

l_
ar

es
et

n[
0:

0]

ax
i_

vd
m

a_
0

A
X

I V
id

eo
 D

ire
ct

 M
em

or
y 

A
cc

es
s

S
_A

X
I_

LI
T

E
M

_A
X

I_
M

M
2S

M
_A

X
I_

S
2M

M

M
_A

X
IS

_M
M

2S

S
_A

X
IS

_S
2M

M

s_
ax

i_
lit

e_
ac

lk

m
_a

xi
_m

m
2s

_a
cl

k

m
_a

xi
s_

m
m

2s
_a

cl
k

m
_a

xi
_s

2m
m

_a
cl

k

s_
ax

is
_s

2m
m

_a
cl

k

ax
i_

re
se

tn

m
m

2s
_f

ra
m

e_
pt

r_
ou

t[5
:0

]

s2
m

m
_f

ra
m

e_
pt

r_
ou

t[5
:0

]

m
m

2s
_i

nt
ro

ut

s2
m

m
_i

nt
ro

ut

xl
co

nc
at

_0

C
on

ca
t

In
0[

0:
0]

In
1[

0:
0]

In
2[

0:
0]

In
3[

0:
0]

do
ut

[3
:0

]

ax
i_

gp
io

_o
ut

A
X

I G
P

IO

S
_A

X
I

G
P

IO
s_

ax
i_

ac
lk

s_
ax

i_
ar

es
et

n

vo
ut

v_
tp

g_
0

T
es

t P
at

te
rn

 G
en

er
at

or

ct
rl

vi
de

o_
ou

t

vi
de

o_
in

ac
lk

ac
lk

en

ar
es

et
n

irq

s_
ax

i_
ac

lk

s_
ax

i_
ac

lk
en

s_
ax

i_
ar

es
et

n

ax
is

_s
ub

se
t_

co
nv

er
te

r_
0

A
X

I4
-S

tr
ea

m
 S

ub
se

t C
on

ve
rt

er

S
_A

X
IS

M
_A

X
IS

ac
lk

ar
es

et
n

vi
d_

ou
t_

da
ta

[1
5:

0]

v_
tc

_0

V
id

eo
 T

im
in

g 
C

on
tr

ol
le

r

ct
rl

vt
im

in
g_

ou
t

cl
k

cl
ke

n

s_
ax

i_
ac

lk

s_
ax

i_
ac

lk
en

ge
n_

cl
ke

n

re
se

tn

s_
ax

i_
ar

es
et

n

irq

fs
yn

c_
in

fs
yn

c_
ou

t[0
:0

]
vi

d_
ou

t_
hs

yn
c

vi
d_

ou
t_

vs
yn

c

v_
ax

i4
s_

vi
d_

ou
t_

0

A
X

I4
-S

tr
ea

m
 to

 V
id

eo
 O

ut

vi
de

o_
in

vt
im

in
g_

in
vi

d_
io

_o
ut

vi
d_

da
ta

[1
5:

0]

vi
d_

hs
yn

c

vi
d_

vs
yn

c

ac
lk

rs
t

ac
lk

en

ar
es

et
n

fid vi
d_

io
_o

ut
_c

lk

vi
d_

io
_o

ut
_c

e

vt
g_

ce

lo
ck

ed

w
r_

er
ro

r

em
pt

y

lo
ck

ed

pr
oc

_s
ys

_r
es

et
_0

P
ro

ce
ss

or
 S

ys
te

m
 R

es
et

sl
ow

es
t_

sy
nc

_c
lk

ex
t_

re
se

t_
in

au
x_

re
se

t_
in

m
b_

de
bu

g_
sy

s_
rs

t

dc
m

_l
oc

ke
d

m
b_

re
se

t

bu
s_

st
ru

ct
_r

es
et

[0
:0

]

pe
rip

he
ra

l_
re

se
t[0

:0
]

in
te

rc
on

ne
ct

_a
re

se
tn

[0
:0

]

pe
rip

he
ra

l_
ar

es
et

n[
0:

0]

vi
d_

hs
yn

c

vi
d_

da
ta

[1
1:

0]
xl

co
ns

ta
nt

_2

C
on

st
an

t

do
ut

[0
:0

]
xl

co
ns

ta
nt

_0

C
on

st
an

t

do
ut

[0
:0

]

v_
vi

d_
in

_a
xi

4s
_0

V
id

eo
 In

 to
 A

X
I4

-S
tr

ea
mvi
de

o_
ou

t

vt
im

in
g_

ou
t

vi
d_

io
_i

n

vi
d_

ac
tiv

e_
vi

de
o

vi
d_

da
ta

[1
1:

0]

vi
d_

fie
ld

_i
d

vi
d_

hb
la

nk

vi
d_

hs
yn

c

vi
d_

vb
la

nk

vi
d_

vs
yn

c

vi
d_

io
_i

n_
cl

k

rs
t

vi
d_

io
_i

n_
ce

ac
lk

ac
lk

en

ar
es

et
n

fid

w
r_

er
ro

r

em
pt

y

ax
is

_e
na

bl
e

vi
d_

vs
yn

c

vi
d_

io
_i

n_
cl

k

xl
co

ns
ta

nt
_1

C
on

st
an

t

do
ut

[0
:0

]

Figure A.1: Block diagram of the hardware system on the FPGA (Vivado IP Integrator).



Bibliography

[AGBS15] M. Ali Altuncu, Taner Guven, Yasar Becerikli, and Suhap Sahin. Real-Time
System Implementation for Image Processing with Hardware/Software Co-
design on the Xilinx Zynq Platform. International Journal of Information
and Electronics Engineering, 5(6):473–477, November 2015.

[Alb07] Martin Albrecht. Untersuchung von photogate-pmd-sensoren hinsichtlich qual-
ifizierender charakterisierungsparameter und -methoden. PhD thesis, Depart-
ment of Electrical Engineering and Computer Science, University of Siegen,
2007.

[ASA+14] Amine Ait Si Ali, Marek Siupik, Abbes Amira, Faycal Bensaali, and Pablo
Casaseca-de-la Higuera. HLS based hardware acceleration on the zynq SoC:
A case study for fall detection system. In Computer Systems and Applications
(AICCSA), 2014 IEEE/ACS 11th International Conference on, pages 685–690,
November 2014.

[Cad13] Cadence. C-to-Silicon Compiler High-Level Synthesis, December 2013.

[CCJD11] Johnny Mc Clymont, Dale A Carnegie, Adrian Jongenelen, and Benjamin
Drayton. The Development of a Full-Field Image Ranger System for Mobile
Robotic Platforms. In IEEE International Symposium on Electronic Design,
Test and Application (DELTA), pages 128–133, January 2011.

[CEES14] Louise H Crockett, Ross A Elliot, Martin A Enderwitz, and Robert W Stewart.
The Zynq Book: Embedded Processing with the Arm Cortex-A9 on the Xilinx
Zynq-7000 All Programmable Soc. Strathclyde Academic Media, 2014.

[Cig15] Eric Cigan. MathWorks Targets Hardware/Software. http://www.eejournal.
com/archives/articles/20150127-matlab/, January 2015. Accessed: 2016-
08-04.

[DCP+07] Adrian A Dorrington, Michael J Cree, Andrew D Payne, Richard M Conroy,
and Dale A Carnegie. Achieving sub-millimetre precision with a solid-state
full-field heterodyning range imaging camera. Measurement Science and Tech-
nology, 18(9):2809, 2007.

[DFH+15] N. Druml, G. Fleischmann, C. Heidenreich, A. Leitner, H. Martin, T. Herndl,
and G. Holweg. Time-of-Flight 3D Imaging for Mixed-Critical Systems. In 13th
International Conference on Industrial Informatics (INDIN), pages 1432–1437,
July 2015.

107

http://www.eejournal.com/archives/articles/20150127-matlab/
http://www.eejournal.com/archives/articles/20150127-matlab/


108 BIBLIOGRAPHY

[DSH+13] Milos Davidovic, Johannes Seiter, Michael Hofbauer, Wolfgang Gaberl, and
Horst Zimmermann. A background light resistant tof range finder with inte-
grated pin photodiode in 0.35 µm cmos. In SPIE Optical Metrology 2013, pages
87910R–87910R. International Society for Optics and Photonics, 2013.

[Enc14] Enclustra. IFX Image Processor, Design Document, November 2014.

[FAT11] Sergi Foix, Guillem Alenya, and Carme Torras. Lock-in time-of-flight (tof)
cameras: a survey. Sensors Journal, IEEE, 11(9):1917–1926, 2011.

[HLCH12] Miles Hansard, Seungkyu Lee, Ouk Choi, and Radu Patrice Horaud. Time-
of-flight cameras: principles, methods and applications. Springer Science &
Business Media, 2012.

[Inf13] Infineon Technologies. IRS10x0C, Evaluation Kit User Manual, December
2013.

[Inf14] Infineon Technologies. AURIX, User Manual, May 2014.

[Inf15a] Infineon Technologies. Camera Adapter Board for TriBoard, December 2015.

[Inf15b] Infineon Technologies. MiraCE Development Specification, Januar 2015.

[JBP+10] Adrian Jongenelen, DG Bailey, Andrew D Payne, Dale A Carnegie, and
Adrian A Dorrington. Efficient FPGA implementation of homodyne-based
time-of-flight range imaging. Journal of Real-Time Image Processing, 7(1):21–
29, 2010.

[JCDP08] A. Jongenelen, D.A. Carnegie, A.A. Dorrington, and A.D. Payne. Heterodyne
range imaging in real-time. In 3rd International Conference on Sensing Tech-
nology, pages 57–62, November 2008.

[JCP+09] Adrian Jongenelen, Dale Carnegie, Andrew D Payne, Adrian Dorrington, et al.
Development and Characterisation of an Easily Configurable Range Imaging
System. In 24th International Conference Image and Vision Computing New
Zealand, pages 79–84, November 2009.

[JCPD10] Adrian PP Jongenelen, Dale A Carnegie, Andrew D Payne, and Adrian A Dor-
rington. Maximizing precision over extended unambiguous range for tof range
imaging systems. In Instrumentation and Measurement Technology Conference
(I2MTC), 2010 IEEE, pages 1575–1580. IEEE, 2010.

[KIR06] Timo KHALMANN, Hilmar INGENSAND, and Fabio REMONDINO. Cal-
ibration for increased accuracy of the range imaging camera swissrangertm.
ISPRS Archives, 36(Part 5):136–141, 2006.

[Lan00] Robert Lange. 3D Time-of-Flight Distance Measurement with custom Solid-
State Image Sensors in CMOS/CCD-Technology. PhD thesis, Department of
Electrical Engineering and Computer Science, University of Siegen, 2000.



BIBLIOGRAPHY 109

[LS01] R. Lange and P. Seitz. Solid-state time-of-flight range camera. IEEE Journal
of Quantum Electronics, 37(3):390–397, March 2001.

[LSKK10] Marvin Lindner, Ingo Schiller, Andreas Kolb, and Reinhard Koch. Time-of-
flight sensor calibration for accurate range sensing. Computer Vision and Image
Understanding, 114(12):1318–1328, 2010.

[Ltd15] Real Time Engineers Ltd. Free RTOS, 2015, 2015. Free RTOS Website.

[Lua01] Xuming Luan. Experimental investigation of photonic mixer device and de-
velopment of TOF 3D ranging systems based on PMD technology. PhD the-
sis, Department of Electrical Engineering and Computer Science, University of
Siegen, 2001.

[Mat14] MathWorks. Matlab, R2014b, 2014. Matlab Website.

[Mic13] Microsoft. Visual Studio, 2013, 2013. Visual Studio Website.

[NBVT14] Hong Thi Khanh Nguyen, Cecile Belleudy, and Pham Van Tuan. Fall detec-
tion application on an ARM and FPGA heterogeneous computing platform.
International journal of advanced research in electrical, electronics and instru-
mentation engineering, 3(8):11349–11357, 2014.

[PMD13a] PMDTechnologies. pmd Application Note AN 004, Basic ToF Data Processing,
December 2013.

[PMD13b] PMDTechnologies. pmd Application Note AN 005, Data Calibration, October
2013.

[PMD14] PMDTechnologies. Calibration Data, File format, April 2014.

[RF13] Matthew Russell and Scott Fischaber. OpenCV based road sign recognition on
Zynq. In IEEE International Conference on Industrial Informatics (INDIN),
pages 596–601, July 2013.

[SCH+14] Benaoumeur Senouci, Imen Charfi, Barthelemy Heyrman, Julien Dubois, and
Johel Miteran. Fast prototyping of a SoC-based smart-camera: a real-time fall
detection case study. Journal of Real-Time Image Processing, October 2014.

[SGC14] Peyman Sabouri, Hamid GholamHosseini, and John Collins. Advanced Tech-
nologies, Embedded and Multimedia for Human-centric Computing: Human-
Com and EMC 2013, chapter Border Detection of Skin Lesions on a Single
System on Chip, pages 465–471. Springer Netherlands, 2014.

[SHB+99] R Schwarte, H Heinol, B Buxbaum, T Ringbeck, Z Xu, and K Hartmann.
Principles of 3-d imaging techniques, 1999.

[SHDZ13] Johannes Seiter, Michael Hofbauer, Milos Davidovic, and Horst Zimmermann.
FPGA based time-of-flight 3D camera characterization system. In 16th In-
ternational Symposium on Design and Diagnostics of Electronic Circuits &
Systems (DDECS), pages 240–245, April 2013.



110 BIBLIOGRAPHY

[Tec15] Infineon Technologies. Free TriCore Entry Tool Chain, Version 4.6.6.0-infineon-
1.1, 2015. Free TriCore Entry Tool Chain Website.

[Tre14] Trenz Electronic. 4x5 Carrier Boards Overview, September 2014.

[Tre15] Trenz Electronic. TE0720 User Manual, March 2015.

[Xil11a] Xilinx, Inc. The First Generation of Extensible Processing Platforms: A New
Level of Performance, Flexibility and Fcalability, 2011.

[Xil11b] Xilinx, Inc. Vivado Design Suite User Guide: Logic Simulation, v2014.2,
UG900, June 2011.

[Xil13] Xilinx, Inc. LogiCORE IP Video Timing Controller, v6.0, PG016, October
2013.

[Xil14a] Xilinx, Inc. Designing High-Performance Video Systems with the Zynq-7000
All Programmable SoC Using IP Integrator, v1.0, XAPP1205, March 2014.

[Xil14b] Xilinx, Inc. High-Level Synthesis, v2015.2, UG902, April 2014.

[Xil14c] Xilinx, Inc. LogiCORE IP AXI4-Stream to Video Out, v3.0, PG044, April
2014.

[Xil14d] Xilinx, Inc. LogiCORE IP Video In to AXI4-Stream, v3.0, PG043, March 2014.

[Xil14e] Xilinx, Inc. Test Pattern Generator, v6.0, PG103, October 2014.

[Xil15a] Xilinx, Inc. AXI Interconnect, v2.1, PG059, November 2015.

[Xil15b] Xilinx, Inc. AXI Video Direct Memory Access, v6.2, PG020, November 2015.

[Xil15c] Xilinx, Inc. AXI4-Stream Infrastructure IP Suite, PG085, April 2015.

[Xil15d] Xilinx, Inc. Clocking Wizard, v5.1, PG065, April 2015.

[Xil15e] Xilinx, Inc. Processing System 7, v5.5, PG082, September 2015.

[Xil15f] Xilinx, Inc. Vivado Design Suite - HLx Editions, 2015.1, 2015. Vivado Design
Suite Website.

[Xil15g] Xilinx, Inc. Vivado High-Level Synthesis, 2015.1, 2015. Vivado High-Level
Synthesis Website.

[Xil15h] Xilinx, Inc. Vivado IP Integrator, 2015.1, 2015. Vivado IP Integrator Website.

[Xil15i] Xilinx, Inc. Xilinx Software Development Kit, 2015.1, 2015. Xilinx Software
Development Kit Website.

[Xil15j] Xilinx, Inc. Zynq-7000 All Programmable SoC, Technical Reference Manual,
v1.10, UG585, February 2015.


	Introduction
	Motivation
	Objectives
	Outline

	Related Work
	Time-of-Flight Principle
	Modulation Signals
	Other 3D Measurement Systems
	Photonic Mixer Device
	4-Phases Measurement
	Unambiguous Range Extension
	Systematic Measurement Errors and Compensation

	State-of-the-Art
	FPGA-based Time-of-Flight Processing
	Image Processing on the Xilinx Zynq Platform

	Existing Framework
	System
	Image Processing
	Results
	Limitations


	Design
	Requirements
	System Architecture
	Concept
	Selection of the FPGA Platform
	Interaction

	Architecture on the Zynq Platform
	Concept
	Interaction

	Interfaces
	Parallel Interface
	Control Interface

	Time-of-Flight Processing Pipeline
	4-Phases Algorithm
	8-Phases Algorithm
	Calibration Data

	High Level Synthesis

	Implementation
	Development
	Workflow
	Environment

	Time-of-Flight Processing Platform
	System
	Hardware Specifics
	Time-of-Flight Processing Library

	Time-of-Flight Processing Algorithm
	Workflow
	Implementation

	High Level Synthesis
	Workflow
	Implementation

	Verification

	Results
	Implementation
	Utilization
	Throughput

	Time-of-Flight Processing Measurements
	4-Phases Measurement
	8-Phases Measurement

	Demonstrator
	High Level Synthesis

	Conclusion and Future Work
	Conclusion
	Future Work

	Hardware System
	Bibliography

