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Kurzfassung

Der Einsatz von dreidimensionalen Bildverarbeitungstechnologien in Unterhaltungs- und
Industrieelektronik wurde in den letzten Jahren sehr populdr, wobei die Time-of-Flight-
Technologie insbesondere das Interesse auf sich gezogen hat. Aufgrund der kompakten
Baugrofle von Time-of-Flight-Kameras, konnen solche Systeme leicht in verschiedene ein-
gebettete Systeme, z.B. Smartphones, integriert werden. Daher kénnen die Anforderungen
an implementierte Anwendungsfille sehr unterschiedlich sein. Deshalb ist es nicht so ein-
fach ein Time-of-Flight-System zu entwerfen, welches einen guten Kompromiss zwischen
Hardwarebeschleunigung und Flexibilitét erzielt.

Diese Masterarbeit stellt eine neuartige Plattform zur Verarbeitung von Time-of-
Flight-Daten auf einem flexiblen und schnellen Hardware-/Software-System dar. Das wird
unter Verwendung der Xilinx Zyng-Plattform erreicht, die bereits erfolgreich fiir die zwei-
dimensionale Bildverarbeitung in verschiedenen Anwendungsfillen, z.B. Falldetektion, ein-
gesetzt wurde. Der Zyng-System-on-Chip ermdoglicht die hardwarebeschleunigte Berech-
nung von Time-of-Flight-Daten auf einem FPGA. Zusétzlich kénnen die hardwareinte-
grierten Komponenten in Software, auf einem ARM-Prozessor, gesteuert werden. Dieses
leistungsstarke Hardware-/Software-System bietet hohe Flexibilitdt und eine wesentliche
Beschleunigung in Hardware.

Dariiber hinaus wird die Durchfiihrbarkeit des vorgestellten Systems demonstriert. Das
komplette System besteht aus der Automobilplattform AURIX von Infineon Technologies,
einer Time-of-Flight-Kamera, entwickelt von Infineon Technologies in Kooperation mit
PMDTechnologies, und einem Zyng-Entwicklungsboard. Zwei Time-of-Flight-Algorithmen
fiir die Vorverarbeitung der Tiefeninformation fiir typische Anwendungsfélle (z.B. Geste-
nerkennung, Indoor-Navigation) werden implementiert. Diese Tiefen- und 3D-Daten wer-
den dann dem AURIX zur Verfiigung gestellt. Die erhaltenen Ergebnisse zeigen, dass
nahezu 100 FPS bei einem durchschnittlichen Rechenfehler von 0.08 mm erreicht werden
konnen.

AuBlerdem wird ein praktischer Ansatz von Rapid-Prototyping fiir Algorithmen vor-
gestellt. High-Level-Synthesis wird fiir die Erstellung von Hardwarekomponenten fiir zwei
Testfille verwendet, welche dann mit dem FPGA-basierten Time-of-Flight-Koprozessor
verglichen werden. Die Ergebnisse zeigen, dass die implementierten Hardwaremodule die
gleiche Gréflenordnung in Bezug auf Leistung und Groéfie haben. Dies zeigt, dass die ent-
wickelte Time-of-Flight-Plattform hinsichtlich verschiedener Anwendungsfille und deren
Anforderungen sehr flexibel ist.






Abstract

Three-dimensional imaging technologies have become very popular during the last years in
consumer and industrial electronics. The Time-of-Flight (ToF) technology has especially
attracted lots of interest. Due to the small form factor of Time-of-Flight cameras, such
systems can be easily integrated in a variety of different embedded devices, for example,
in smart phones. The requirements of implemented use-case applications can therefore
differ widely. Thus, it is not easy to create a Time-of-Flight framework that can achieve
a good trade-off between hardware-acceleration and flexibility.

This thesis presents a novel platform to process Time-of-Flight data on a flexible and
fast hardware/software system. This is accomplished by using the Xilinx Zynq platform,
which is already successfully used in evaluating two-dimensional image processing in var-
ious kinds of applications, for example, fall detection. The Zynq System-on-Chip (SoC)
allows the hardware-accelerated computation of Time-of-Flight data on an FPGA. In ad-
dition, the hardware-integrated components are controlled in software on an ARM CPU.
This powerful hardware/software system provides high flexibility while achieving an es-
sential speed-up in hardware.

The work also demonstrates the feasibility of the proposed system. The complete
system consists of the automotive platform AURIX from Infineon Technologies and a
Time-Flight camera system, developed from Infineon Technologies in cooperation with
PMDTechnologies, and the Zynq development board. Two Time-of-Flight pre-processing
algorithms for typical use-case applications (e.g., gesture recognition, indoor navigation)
are implemented to provide distance and 3D data to the AURIX. The results show that
almost 100 FPS are possible with an average calculation error of 0.08 mm.

Furthermore, a practical approach of rapid algorithm prototyping is introduced. High
Level Synthesis is used to create hardware components for two test cases, which are com-
pared to the FPGA-based Time-of-Flight co-processor. The results show that the imple-
mented hardware modules have the same dimension regarding performance and utiliza-
tion. This shows that the developed Time-of-Flight processing platform is highly flexible
regarding different use-case applications and requirements.
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Chapter 1

Introduction

In application domains such as consumer electronics, machine vision and automotive tech-
nology, three-dimensional imaging has grown in popularity in the last years due to im-
provements in such systems. In a 3D image, each pixel corresponds to the range of scenery.
Thus, scanning the environment with an additional dimension in comparison to 2D is pos-
sible.

The Time-of-Flight range imaging technology has especially raised the interest. The
principle is 3D imaging technology that measures the travel time of emitted light and
provides distance information, by sending a laser pulse from an emitter. The reflection
of the signal at the object is then detected and processed to a range image. The time
consumed in-between corresponds to the distance. One implemented approach of this
concept is shown in Figure 1.1. With photonic mixer devices (PMD), the phase difference
of the transmitted and received modulated optical signal is measured. This phase shift
is converted into a voltage that is proportional to the distance. After post-processing,
typically done in software, the results are a depth image and an amplitude image.

LED / Laser lllumination

3D Optical Signal Electrical Signal < Modulation
Iy I Block
Scene ‘»//
4+—

Time-of-Flight Sensor
> Electrical Signal Depth
Relflected Post Data
Optical Signal Phase Shift ™ Processing [ammitd
1 //’1 Raw Amplitude
Data Data

Reflected
Electrical Signal

Figure 1.1: Basic Time-of-Flight working principle [DFH'15] (with changes).
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20 CHAPTER 1. INTRODUCTION

ToF-based cameras can gather a whole scene with one shot. Thus, such systems can
achieve very high frame rates up to 100 FPS, which is perfect for real-time applications.
Compared to other 3D imaging technologies, no moving parts are necessary, allowing
cost-efficiency cameras with very small form factors to be built. The resulting distance
images can be efficiently computed by a post-processing algorithm. Therefore, such robust
systems are perfectly suitable to be integrated into consumer electronic or safety-critical
applications.

With the growing distribution of this technology in lots of domains, various kinds of
different use-cases occur. The requirements of applications vary a lot regarding the use-
case. For instance, for gesture recognition high frame rates and a short measurement range
is required, whereas for indoor navigation a long measurement range is needed and lower
frame rates are sufficient. By keeping these characteristics in mind, it is difficult to design
a cost-efficient ToF-based framework for completely different and yet, unknown use-case
applications. In addition, the processing algorithm has to be fast, accurate and flexible.

1.1 Motivation

Today Time-of-Flight cameras can be embedded in all sorts of smart devices such as,
smart phones and tablets, based on the small form factor of indirect ToF cameras, and
the compact design of integrated circuits in the semiconductor industry. Due to the large
range of devices, a variety of use-case applications with particular requirements, such
as gesture recognition and indoor navigation, are needed. Parameters include the image
resolution, frame rate, range and computation specific details. Therefore, commercial ToF
solutions are normally focused on one specific use-case only.

Furthermore, some use-cases, such as gesture recognition, require high frame rates of
around 40 frames per second (FPS). For a depth image, several raw images provided by
the ToF camera are required. It is challenging to deliver a high number of images in a
short time if the processing system performs time-consuming computation in software. In
addition, the interface needs to transmit large loads of data, which also takes up time and
resources.

This raises interest in showing the feasibility of a hardware/software platform that
tackles these issues. This work will focus on a hardware-accelerated and flexible ToF
co-processing framework. This system should efficiently implement a basic ToF post-
processing flow on a Field-Programmable Gate Array (FPGA). Additionally, it will fea-
ture a flexible realization for different use-case applications. A demonstrator should be
developed using the FPGA-based system as an interface between a ToF camera and an
automotive processing platform.

1.2 Objectives

The goal of this thesis is to design and implement a hardware-accelerated ToF imaging
processing system, which is highly flexible in terms of different use-case applications. The
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hardware /software platform enables the possibility to have a framework which is highly
customizable regarding unknown applications in future. Two different use-cases should be
efficiently implemented on an FPGA and evaluated regarding their performance. To reach
this goal, the structure of the work represents the process of the performed activities:

e Research of basic principles and related state-of-the-art publications
e Design of a flexible hardware-accelerated ToF imaging framework

e Implementation of the FPGA-based ToF processing system

e Realization of the concept in terms of a demonstrator

e Evaluation of the implementation results regarding different performance parameters

1.3 Outline

The work is organized as follows: in Chapter 2, an overview of the literature research in
the areas of Time-of-Flight and hardware-accelerated 2D and 3D image processing systems
is given. The important topics of this work are discussed and the state-of-the-art work
regarding related solutions is presented. In addition, the current system and its limitations
are described. Then in Chapter 3, the requirements of the new system are summarized.
Furthermore, the design of the FPGA-based Time-of-Flight processing system is shown
in detail. This is followed by Chapter 4, which presents the implementation of the hard-
ware/software system. Details about the development environment and the workflow are
explained. Chapter 5 contains the results of the implementation regarding area, perfor-
mance and other parameters of the processing system. Further on, details about the final
demonstrator of the implemented system are shown. Finally, in Chapter 6, the work is
concluded and an outlook of possible future prospects is given.






Chapter 2

Related Work

The goal of this chapter is to provide a good overview of the literature research. At first, the
basic Time-of-Flight principle and its applications, as well as the common systematic errors
are outlined. Next, state-of-the-art projects regarding related solutions are represented.
An outline therefore about current hardware-accelerated 2D and 3D image processing
systems is provided. Finally, the publication of the existing framework is described in
detail.

2.1 Time-of-Flight Principle

By knowing the precise value of the speed of light, it is possible to determine distances.
This is calculated by measuring the time that light travels from a transmitter to a target
and back to a receiver [Lan00].

G

DISTANCE

detector
"ns stop watch"”

\_ receiver J

3D object

Figure 2.1: Basic principle of a Time-of-Flight ranging system [Lan00].

The basic principle of a Time-of-Flight ranging system, as outlined in [Lan00], is de-
picted in Figure 2.1. A light pulse is emitted by an active light source and the measurement

23



24 CHAPTER 2. RELATED WORK

system is simultaneously initiated. The light pulse is then reflected back by the target
and received by a detector, which stops the measurement system. By considering that the
light travels to and from the reference point, a distance of 1 m corresponds to a measured
time of 6.67 ns. This relation is illustrated in Equation 2.1 where 7 is the echo time and ¢
represents the speed of light. In order to avoid shadowing effects due to different camera
angles, the emitter and detector are closely located. Another important property of the
system is the synchronous operation of the active light source and the detector.

cC-T
d=—— 2.1
; (1)

2.1.1 Modulation Signals

In order to implement this approach, different modulation types of the emitted signal
exist, as described in [Lan00]. In general, pulsed modulation or continuous wave (CW)
modulation is used. The most obvious technique is the pulsed light operation. By directly
measuring the turn-round time of an emitted light pulse, the distance can be determined.
The basic problem of such a system is the high accuracy that is required for the measure-
ment mechanism.

€
@W/ §

Depth = ii\ — Api—

B Emitter

Controller —

Sensor

Figure 2.2: Indirect Time-of-Flight principle [HLCH12].

With the use of continuous wave modulation [Lan00], it is possible to indirectly measure
the echo time by determining the phase difference between the modulated emitted and
detected signal, as depicted in Figure 2.2. For such systems, lots of different light sources
are available and the shape of the signal can be chosen, for example, sine wave, square
wave. With the knowledge of the modulation frequency fps and the measured phase ¢, the
echo time 7 can be calculated, as shown in Equation 2.2. With the help of this formula,
the final distance d can then be computed, as represented in Equation 2.3. Because of the
periodicity of the measured phase, the unambiguous range is restricted to ¢/(2fas).

T = L4
27 fpr

_cp
o (2.3)
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2.1.2 Other 3D Measurement Systems

A hierarchical characterization of contactless 3D measurement techniques is given in Fig-
ure 2.3, as summarized from the author in [Lan00]. Such systems use microwave, light
wave or ultrasonic wave techniques to measure the range to a target. Microwave- and
ultrasonic wave-based systems are typically used in GPS or radar use-case applications.
However, these two methods are not further discussed because they are not suitable for 3D
measurements with high angular resolution, due to diffraction limitations. In this work,
the focus is to provide an overview of optical range measurements techniques with a wave
length between 0.5 - 1 um. The most important optical 3D measurements techniques are
triangulation, interferometry and Time-of-Flight.

Contactless 3D shape measurements

Microwave Light wave Ultrasonic wave
A=3-30mm A=05-1Hm A=0.1-1mm
(10 - 100 GHz) (300 - 600 THz) (0.3-3 MHz)
Triangulation Interferometry Time-of-flight (TOF)
depth detection by depth detection by depth detection by
means of geometrical means of optical coherent means of optical modulation
angle measurement time-of-flight measurement time-of-flight measurement

Figure 2.3: Contactless 3D measurement systems [SHBT99).

Triangulation

The triangulation measurement method, as outlined in [Lan00], is based on geometrical
analysis of a triangle. The distance of a reference point is one unknown point of the
triangle, whereas the other two known points belong to the system. By measuring the
angles or the base line of the triangle, the unknown distance can be determined. Two
different techniques exist: passive and active triangulation.

For passive triangulation [Lan00], two cameras are placed apart with a known distance
and observe the same point. By measuring the viewing angles, the distance can then be
determined. One common realization of this principle is stereo vision. 2D-correlation is
used to find typical object features in both images. Due to this identification of the same
point, high contrast images are necessary. This method works quite well for rich contrast
scenes that need no active light source. The disadvantages however are the shadowing
effect, the high computation effort and the system’s size.
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In the active triangulation approach [Lan00], a positive sensitive detector observers
a point on the scene projected from a light source. There is no need of measuring the
viewing angles. Instead, the distance can be determined by knowing the focal length of the
system and the point projection on the detector. In order to measure the whole scene, the
laser point needs to scan the whole object surface. Using laser scanning on a complete
line provides a faster measurement. Drawbacks are the time-consuming scanning and the
need of mechanical parts in the system. An advanced technique that does not require
moving parts, is based on two-dimensional structured light. This system projects a 2D
striped pattern on the whole surface, a 2D camera then captures the scene. The range
can then be determined by analyzing the displacement of the stripes.

Interferometry

This technique [Lua01] is based on the superposition of two monochromatic waves with
the same frequency. A beam splitter is used to split a laser beam. One beam is projected
to a mirror and the other to the target. An integrated detector captures both rays as
they are reflected back. After integration, an interferogram provides phase information,
related to the distance. Interferometry is suited for applications where high accuracy over
small distances is required. The main disadvantages are that only relative distances can
be measured and that the unambiguous range is very low.

Time-of-Flight

The basic principle of Time-of-Flight has already been described in the beginning of this
chapter. An advantage of indirect ToF cameras is the small form factor because no moving
parts are used and the sensor can be built in CMOS technology [Lan00]. Therefore,
the camera system is robust and inexpensive. High frame rates are possible because
information for all pixels is gathered in parallel whereby the phase information can be
determined without much computation effort. The main drawbacks are the low resolution,
the maximum unambiguous range and measurement errors, which need to be compensated
by calibration.

2.1.3 Photonic Mixer Device

This work will focus on Time-of-Flight imaging based on continuous wave modulation.
The main feature of this method is the realization of the sensor with the photonic mixer
device (PMD) technology, which implements the process of mixing and correlation of the
detected optical signal and the reference signal in one semiconductor circuit, as shown
in [Lua01]. The correlation between the received signal and the original signal is known as
cross-correlation. Such an independent PMD pixel can be easily integrated into a matrix
in 3D, which provides parallel determination of the phase.

The schematic structure of a PMD pixel, as depicted in Figure 2.4, is described in detail
in [Alb07]. Because of the inner photoelectric effect, incoming photons in the poly-silicon-
layer are split-up into electron-hole pairs. The electrons are then separated into bucket A
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or B. This depends on the modulation of the reference signal, which generates an electrical
field. After a certain integration time, the buckets are read out. The difference between
the voltages of both buckets corresponds to the overlapping of the emitted and detected
signal. With a longer integration time, the signal-to-noise ratio can be improved. An
issue of this approach is that one measurement cannot unambiguously determine the phase
delay. Hence, a further measurement is performed with the phase-shifted emitted signal.
With the results of these two measurements, the phase delay can then be unambiguously
calculated. Therefore, at least two illuminations are necessary to determine the phase
delay.
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Figure 2.4: Schematic structure of a PMD pixel [Alb07].

2.1.4 4-Phases Measurement

The indirect TOF measurement method using the PMD technology is within the focus of
this thesis. Therefore, at least two measurements with different phase-shifts are necessary,
as mentioned in the previous paragraph. Most of the state-of-the-art solutions, which
use the same method and technology, perform four measurements with different shifted
phases, as presented in [LS01]. Advantages of this approach include a simplified formula
in calculating the final phase delay and the reduced impact of some systematic errors. In
general, an equivalent phase-shift of 90° is used, which results in measurements with the
following phase-shifts: 0°, 90°, 180° and 270°.

An example measurement [HLCH12] is depicted in Figure 2.5. The amount of electric
charge for the measurements C to Cy is respectively represented with the quantities ¢y

to Q4. The PMD pixel efficiency determines the overlapping in one semiconductor based
circuit.
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Figure 2.5: Example of a 4-Phases measurement [HLCH12].

The phase and the amplitude can be unambiguously computed [HLCH12]. The phase ¢
can be calculated with the arcus tangent function, as illustrated in Equation 2.4. The
values from the four measurements (Qoe, Qgoe, Q1s0°, Q2700 ) provided from the PMD pixel
array, are used to calculate two intermediate differences, which are divided. With the same
differences the amplitude A can be computed, as shown in Equation 2.5. The amplitude,
which represents the strength of the received signal [FAT11], is used for prediction of the
measurement quality.

= Q210° = Qoo-
p = arctan ( Qv — Ousor > (2.4)
A= V(@m0 — Q90°)22+ (Qoe — Qusoe)” 25)

2.1.5 Unambiguous Range Extension

As already mentioned, the measured phase exhibits a 2pi-periodicity. Hence, the distance
is restricted to an unambiguous range of ¢/(2fp7). In this section, a method is presented to
extend the unambiguous range. The most obvious approach is to decrease the modulation
frequency [JCPD10]. The drawback of this technique is that the measurement precision
is also decreased. Another method is presented in [DCP*07]. By performing two mea-
surements with different modulation frequencies of the scene, it is possible to extend the
unambiguous range, as shown in Equation 2.6. The precision of the measurement does
not significantly worsened.

C
2| fan — fuel

The basic idea behind dual frequency modulation is depicted in Figure 2.6. The result
of each measurement is a possible set of object locations. The true location of the object is
where both measurements are most in agreement. Algorithms that perform this selection
step using two modulation frequencies are presented in [JCPD10] and [JBP*10].

du (2.6)
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Figure 2.6: Example of a measurement combining two modulation frequencies [JBP*10].
The correct location of the object is at 9 m.

2.1.6 Systematic Measurement Errors and Compensation

Like almost all sensing devices, Time-of-Flight cameras also show different measurement
error sources. Lots of research is done in this field to identify and minimize the common
errors. A good overview of literature regarding systematic errors is given in [FAT11]. In
general, the ToF measurement exhibits systematic, which are compensated using calibra-
tion, and non-systematic errors, which are reduced using filters. This section will focus on
the main system-errors and their countermeasures.

Wiggling Error

The wiggling error, also referred to as circular distance error, is based on imperfect si-
nusoidal waves used as emitted and reference signal, as shown in [FAT11]. It is difficult
to generate in practice a plain sinusoidal signal. Therefore, an offset, which is distance-
depended, is added to every pixel. The shape of the error, which can look like a sine wave,
is depicted in Figure 2.7.

The error can be compensated, by measuring the distance with the camera to a known
reference point [FAT11]. This is repeated for every distance value within the unambiguous
range. Measured and reference distances are then compared. The result is an offset for
every distance value over the complete unambiguous range. This method comes with
the drawback that a high accuracy sensor is needed to determine the reference distance,
e.g., track line, color camera. Another approach is to generate a model of the error by
evaluating multiple relative measurements, but has the disadvantage that the processed
compensation values are only suited for a limited range.

With the processed offsets, calibration data is generated to compensate the wiggling
error [FAT11]. Several solutions exist to encode the data. It can be stored in a look-up
table (LUT), which represents the offset, depending on the distance. It is also possible, to
express the depth error by a mathematical function. A B-spline or a polynomial function
higher degree can be used to store the values in a compact form.
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Figure 2.7: Wiggling effect, approximated with a 6-degree polynomial, at multiple inte-
gration times [FAT11].

Pixel-Related Error

Pixel-related errors vary for every pixel and are independent of the modulation frequency,
as outlined in [FAT11]. One error source is diversity of produced pixels regarding manu-
facturing tolerances and different material characteristics. Neighboring pixels determine
different results for the same distance. Another reason for occurrence of this error is the lo-
cation of the pixel on the sensor. Because of different signal path lengths, a latency-related
offset is generated.

Literature distinguishes between following pixel-related errors: fixed-pattern noise
(FPN) and fixed-pattern phase noise (FPPN). In [Alb07], pixel-characteristic-related
errors are referred to as FPN, whereas FPPN is known as pixel-location-related errors. In
general, the calibration is performed by measuring the distance to a reference plain, and
determining the offsets between both results, as depicted in Figure 2.8. The compensation
results are then saved in a LUT. In [LSKK10], an approach to compensate FPN is described
by averaging a high amount of images that are taken with shut optics (black images).

Temperature-Related Error

Like almost all electronic devises, the temperature of the ToF camera has an impact on
the measurement, as illustrated in [FAT11]. The measured distances of the whole image
drift with the temperature. Internal and external temperature changes can cause this error
because the sensor shows a temperature-dependent behavior. Until the working temper-
ature is reached, the internal temperature rises and causes an offset error, as depicted in
Figure 2.9.
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Figure 2.8: Fixed pattern noise offset per pixel [KIR06].

The calibration, as described in [PMD13b], can be performed by measuring the distance
to a known reference point, as well as the temperature of the camera while changing the
internal /external temperature over a certain range. By comparing the offset error and the
temperature, a thermal correction coefficient can be determined.

If a temperature sensor is directly positioned in the camera, it is possible to com-
pensate the error with the processed calibration data [PMD13b]. If this not the case, the
typically strategy is to wait until the camera reaches working temperature. After that, the
compensation coefficient for the typical temperature occurring in the intended use-case is

used.
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Figure 2.9: Temperature-related error over an observed time [KIR06].
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2.2 State-of-the-Art

The goal of this section is to provide an overview of similar solutions. First of all, FPGA-
based Time-of-Flight imaging systems are presented. Hence the architecture and the
processing algorithm of the implementations are described. Finally, the image processing
projects for different use-case applications, which use the Xilinx Zynq platform, are shown.

2.2.1 FPGA-based Time-of-Flight Processing

In the last years 3D imaging raised the interest in several domains, some examples include
automotive technology and consumer electronics. Real-time processing is required for
lots of use-case applications. For instance, a typical gesture recognition use-case requires
around 40 FPS to work properly. Hence, the following paragraphs list the projects that
investigate this challenge with the help of an FPGA.

FPGA-based Time-of-Flight Characterization System

The authors of [SHDZ13] presented an FPGA-based characterization system for a ToF
sensor. The proposed framework allows the flexible generation of all control signals that
are needed for a ToF distance measurement, for example, the shape of the control signal.
After a measurement the captured data is pre-processed on an FPGA and sent to the
host PC, which decreases the amount of data that needs to be transferred over the USB
interface.

A simplified block diagram is depicted in Figure 2.10. A new measurement starts
by activating the FPGA (i.e., Altera Stratix IV) over the USB interface of the host PC.
The control signals are generated from the FPGA and sent to the illumination unit, as
well as the 3D sensor. A laser is used as an illumination source because of the large signal
bandwidth. Therefore, the illuminated light is coupled into the ToF chip through an optical
fiber to remove possible error sources. The used pixels of the ToF chip, which are able to
suppress very high intensities of background light, are described in [DSH*13]. The camera
supports an image resolution of up to 128x128 pixels. After successful measurement the
output voltages generated from the ToF chip are read from the FPGA via an ADC. The
device performs the storage of a full correlation triangle into the SRAM. With a memory
controller, the data can be read out to the USB interface and forwarded to the host PC.
In addition, all control signals are generated in a signal generation block on the FPGA.

The author is highlighting the high flexibility of the system as compared to other
publications, no commercial products are used in this work. The results show that the
standard deviation of the measured distance is 0.15 mm. The FPGA can average a max-
imum of 256 correlation triangles to improve measurement precision. By performing the
pre-processing on the FPGA, the integration time can be virtually increased. In addition,
the load of data, which is transferred over the USB interface, is reduced. Hence, a highly
flexible platform to characterize error sources was introduced.
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Figure 2.10: Block diagram of the measurement setup [SHDZ13].

Easily Configurable Range Imaging System

Jongenelen et al. [JCP109] developed a range imaging system that is easily configurable by
means of modulation patterns. The platform is suited for further experiments regarding
ToF-based applications. Commercial products are limited to a choice of fixed configurable
parameters, whereas the proposed system can be more flexibly configured from the FPGA.

The system architecture of the hardware design, as shown in Figure 2.11, comprises
several components. A ToF sensor from PMDTechnologies is connected via a mainboard
to the Altera Stratix III FPGA. An illumination board provides the modulated light. The
connection between the FPGA and the host PC is established with a VGA /Ethernet board.
The FPGA drives the modulation signals and generates control signals for the PMD sensor.
In addition, the device temporally stores the gathered raw data and computes distance
images, which are then forward to a VGA monitor and a host PC. Over a JTAG interface,
the PC can configure the operating parameters. The computation of the range images as
well as the PMD and VGA interface are implemented in VHDL, whereas the Ethernet
and JTAG interface are programmed in C on the Nios II processor.
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Figure 2.11: Interaction between the different sub-components. Obtained from [CCJD11].

The experimental results showed the relation between modulation frequency and stan-
dard deviation of the phase and distance. Therefore, several measurements were obtained
using different configured modulation frequencies. It was demonstrated that at a mod-
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ulation frequency of 36 MHz, the best precision of the distance measurements, which is
approximately 3.5 mm, can be achieved. The distance precision is related to the phase
precision, which becomes worse at higher modulation frequencies due to the bandwidth
limitation of electronics. The conclusion highlights the aspect of the ease of configuration
of several operating parameters.

Image Ranger System for Mobile Robotic Platforms

In [CCJD11], the authors demonstrated an FPGA-based range imaging system that can be
mounted on mobile robotic platforms. An unambiguous region of up to 15 m is required.
The proposed system in [JCPT09], as mentioned in the previous paragraph, was redesigned
to achieve a small form factor. The Stratic III FPGA from Altera was therefore replaced
by the Altera’s Cyclone 11T FPGA.

The basic architecture of the system is illustrated in Figure 2.12. The sub-components
are designed to allow stacking on top of each other. This stacked setup provides a small
form factor and upgradability of each unit. The image sensor from PMDTechnolgies
allows a resolution of up to 160x 120 pixels. The FPGA implements a typical 4-Phases
measurement algorithm.
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Figure 2.12: System architecture of mobile image ranger system [CCJD11].

The results showed that the imaging system has the compact size of 120 x 200 x 120 mm,
which corresponds to approximately 30% of the initial setup. In order to evaluate the imag-
ing quality, a video was captured with the following configuration: 26 MHz modulation
frequency, 16.7 FPS and 20 ms integration time per frame. The reference points were
evaluated in the captured video sequence. Objects located in the mid-range of the image
have a standard deviation of 3.8 mm, whereas objects placed further away have a standard
deviation of 32.6 mm, which corresponds to 4.8% of the measured distance. By using cal-
ibration, the errors can be significantly decreased. In comparison to commercial systems
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for instance, products from Canesta and Mesa Imaging, the result were reasonably good.
The conclusion of this work highlighted the good performance for the cost, in comparison
to equivalent commercial products.

Range Imaging in Real-time

In [JCDPO0S], the authors developed a ToF imaging system with the help of an FPGA.
Laser diodes are used for illumination and the Dalsa Pantera 1M60 digital video camera
captures the images. A constructed circuit board with Direct Digital Synthesizer ICs is
used to control the emitted and reference signal. The architecture on the FPGA is depicted
in Figure 2.13. Via the cameralink interface, the frames are transmitted to the FPGA.
For computation of the phase, five raw frames are used. After one received frame, a new
depth image is calculated. With a configured image resolution of 128 x 128 pixels a frame
rate of up to 30 FPS can be achieved. Furthermore, the system is evaluated by capturing
moving targets with modulation frequency of 40 MHz, which results in an error of around
4 cm.
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Figure 2.13: Development board and interconnections [JCDPO0S].

Time-of-Flight Range Imaging

The authors of [JBPT10] implemented an FPGA-based system to efficiently compute the
phase of captured raw data. The same hardware platform, as described in [JCP109], was
used. In particular, the trade-off between the accumulator’s bit widths and the processing
accuracy was evaluated. A 4-Phases algorithm was implemented using accumulators to
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calculate the pixel intensities and the arcus tangent function. The results showed that
for the proposed system, an accumulator width of 14 bits is necessary to provide a phase
error below the system standard deviation. Furthermore, a novel algorithm was presented
for extending the unambiguous range by using two different modulation frequencies.

2.2.2 Image Processing on the Xilinx Zynq Platform

The Xilinx Zynq platform has attracted the interest in recent years for the realization
of FPGA-based imaging systems. In this section, two-dimensional imaging projects are
presented which implement this framework. The publications focus on a specific use-case
application and outline the advantages of the Zynq platform.

The Zynq platform consists of several ARM CPUs and an FPGA, which are integrated
on one chip to provide high data bandwidth between both components, as described
in [Xil15j]. The system is highly flexible as software can be executed on an ARM CPU while
simultaneously using hardware-acceleration on the FPGA. In addition, Xilinx provides a
practical approach of rapid prototyping for the platform, namely High Level Synthesis
(HLS).

Road Sign Recognition

Russell et al. [RF13] has proposed a road sign recognition system using the Zynq platform.
The detection of road signs is an essential component in autonomous driving, as well as
automotive assistance systems and road sign maintenance. The system was implemented
on the Zedboard, which is a development board with an integrated Xilinx Zynq chip.

In Figure 2.14 the basic architecture of the system is illustrated. The VITA-2000 image
sensor from ON Semiconductor provides a stream with an image resolution of 1920 x 1080
at 72 frames per second. Image pre-processing is performed with hardware-integrated
components on the FPGA. Predefined video hardware modules provided by Xilinx are
used to correct the image, such as defective pixel correction. For the color based filtering,
a manually developed hardware unit performs the color segmentation algorithm. The clas-
sification of the shapes and the identification of the signs from a database are implemented
on the ARM CPU with the help of OpenCV.

Zynq

0 x 1920 x .
go | ImagePre- |is0| Road Sign

fps| processing | 9 | Recognition

HW SW

Figure 2.14: Basic system architecture for road sign recognition [RF13].
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The results showed that the system is able to detect all red and blue signs in one
frame, in approximately 5 seconds. Compared to other designs that also use hardware-
acceleration, the proposed system is slower. The authors considered that other imple-
mentations only process frames with an image resolution of VGA quality or below, while
the proposed design processes Full HD images. Furthermore, more software computa-
tions could be hardware-integrated on the FPGA to achieve an essential speed-up. The
work was concluded with an emphasis of the potential of the Zynq. This platform is well
suited for embedded road sign recognition or other imaging systems. The design of the
entire system took only six weeks due to the use of Xilinx tools and the standard memory
interface.

Fall Detection

Several publications exist that implement a fall detection use-case application using the
Xilinx Zynq platform, as shown in [SCH*14], [ASAT14] and [NBVT14]. All of these
systems similarly investigated fast prototyping of fall detection in daily life. In order to
achieve the real-time requirement, parts of the algorithms were hardware-accelerated using
High Level Synthesis tools, which directly translate code in high-level language, such as
C++, into a hardware description.

In [SCH*14], the authors developed a smart-camera based fall detection processing
system. Based on the Zynq platform, a fast prototyping methodology was proposed which
allows comparison between different real-time fall detection implementations. By using
high-level algorithmic description, such as C++4, and High Level Synthesis tools, this hard-
ware/software system was used in the design space exploration phase for testing different
architectures.

The implemented use-case has applications in the detection of falls of the elderly in
daily life. Therefore, the automatic detection of falls in real-time is required. A fast
response of the system is very important. The algorithm consists of image acquisition,
low-level processing and fall detection. Most of the processing steps are performed on the
ARM using OpenCV. The classification algorithm, which is described in C++, is used to
generate a hardware component with the help of High Level Synthesis.

The basic hardware architecture is illustrated in Figure 2.15. The Intellectual Property
(IP) description, which performs the hardware-accelerated computation, communicates
with the two ARM CPUs and the extended memory through an AXI memory interface.
This hardware module can be manually developed or generated using HLS. A pre-built
Linux is used to provide a software adaption layer between hardware and use-case appli-
cation.

The authors especially outlined the benefits of the hardware/software integration.
Therefore, the used prototyping flow of the system is depicted in Figure 2.16. The flow is
proposed for the Zynq platform, but can be used also for similar hardware/software sys-
tems. It allows a fast validation and prototyping of the fall detection application. Firstly,
part 1 illustrates the standard flow on a host computer. After the initial algorithm devel-
opment, the computation steps are validated and optimized.
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Figure 2.15: Hardware architecture including HLS-generated IP [SCHT14].

In part 2, the basic flow for creation of the hardware/software system is presented.
Therefore, the initial algorithm is partitioned into hardware/software. The least regular
part should be performed on the CPU to provide high flexibility. The most regular part is
implemented on the FPGA. Compared to the algorithm on the host PC, additional com-
putation performance is available because the regular parts are then hardware-accelerated.
The hardware components can be manually developed or with High Level Synthesis.

Finally, in part 3 all sub-components are compiled and executed on the target platform.
Implementation results can be used to start a further iteration of part 2 to improve the
overall system.

The synthesis and timing results of the HLS-based hardware component were eval-
uated. Different versions were implemented using improved synthesis directives. The
execution time of the full ARM-based software implementation (30 us) was almost the
same as the generated hardware IP without any directives (29 us). By using synthesis
directives the final execution time could be decreased to 2.5 us by using a pipeline architec-
ture and parallelization of computation steps. The work was concluded with a description
of the benefits that the Zynq platform offers for fast prototyping.

Border Detection

Sabouri et al. [SGC14] developed a border detection processing system for early diagnosis
of melanoma using the Xilinx Zynq platform. By analyzing melanoma skin lesions images,
skin cancer can be discovered. The goal of the study was the investigation of novel methods
on an embedded system. High resolution and performance are important for portable
imaging systems used in the medical domain.

Different edge detection methods, such as Sobel, Kirsch, Canny, LoG, were therefore
implemented and analyzed regarding accuracy and performance. The hardware component
used for border detection was generated with HLS software, which converted the C++
code to synthesizable FPGA code.
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Figure 2.16: System prototyping flow of the fall detection system [SCH™14].

The results indicated that the extended 5x5 canny edge detection algorithm had the
best performance compared to other presented methods. The authors showed that it
is possible to achieve a frame rate of up to 60 FPS, which is well suited for real time
applications. The work also outlined the rapid processing power, which is demonstrated
by the Zynq platform.

Grayscale Conversion and Convolution

The authors of [AGBS15] implemented a real-time image processing system on the Zynq
platform using hardware/software co-design. The Zedboard, a Zyng-based development kit
from Xilinx, was used to explore different realizations of image algorithms. The following
hardware-accelerated algorithms were investigated: grayscale conversion and convolution
operations, such as edge detection, sharpening, blurring).

The overall system consists of a HDMI monitor, a standard USB camera and the
Zedboard. A Linux operating system on the ARM processor is used to capture images
from a video source. A manually developed image co-processor in Verilog HDL performs
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the algorithms on the gathered image data.

The experimental results showed that images with a resolution of 256 x 256 could be
processed with around 40 FPS. The hardware design utilized around 5% of the available
flip-flops and look-up tables. For future work, a direct memory access (DMA) implemen-
tation was proposed, which would result in an essential speed-up of the system.

2.3 Existing Framework

The ToF 3D imaging system presented in [DFHT15] outlines the current system of this
thesis. Therefore, this paper is described in detail in this section.

A ToF camera sensor provides raw data to an automotive computation platform.
The distance is computed by performing an efficient implementation of a ToF process-
ing dataflow. The works shows a robust solution for mixed-critical applications, in the
automotive domain, on a safety-critical platform. This existing framework is already im-
plemented and used as a starting point for the new proposed system.

2.3.1 System

The architecture, as illustrated in Figure 2.17, consists of a ToF camera and an automotive
microcontroller. Through a parallel interface which connects the two systems, raw image
data provided by the camera is transmitted. The processing of the raw data is then imple-
mented on the automotive microcontroller, which calculates depth data on one core and
computes use-case specific data and events on the other, in a mixed-critical environment.
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Figure 2.17: Architecture of the ToF 3D imaging system [DFH*15].

Automotive System-on-Chip

The computation platform AURIX TC299 from Infineon Technologies is used, which tar-
gets performance and safety critical applications in the automotive industry, as outlined
in [Infl4]. It is compliant to several standards including IEC 61508, ISO 26262 and
ISO 25119. The multicore approach is based on three independent Tri-Core CPUs, where
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each core operates with a maximum clock frequency of 300 MHz. The Tri-Core architec-
ture, implemented on one chip package, unifies the instruction sets of a microcontroller, a
RISC processor and a DSP. Several concepts for safety critical systems including lockstep
architecture and safe internal communication buses are well-integrated in the platform.
These features express the perfect environment for secure, mixed-critical and real-time
applications.

One issue concerning memory-intensive computations for use-cases, such as gesture
recognition, is the limited memory capacity of the AURIX. There is in total 2728 kBytes
static RAM (SRAM) available, which is divided into 2048 kBytes global extended memory
and up to 240 kBytes scratchpad memory attached to each Tri-Core. Therefore, difficult
image processing must be implemented in a highly optimized way. Due to this limitation,
implementations of complex data processing algorithms are hardly feasible.

Time-of-Flight Camera

The camera evaluation kit used in the framework is an ongoing joint project of Infineon
Technologies and PMDTechnologies. The camera system is Infineon’s IRS10x0C Evalua-
tion Kit that features the 3D image sensor IRS10x0C, as shown in [Infl13]. The ToF-based
camera can be used in consumer electronics as well as in critical applications, such as au-
tomotive domain and robotics. It features a flexible setup which consists of a LED-based
illumination unit and a sensor System-on-Chip (SoC). The evaluation board features dif-
ferent external interface, for example parallel interface and CSI-2, and allows access to
important signals of the image sensor. Some characteristics are the resolution of up to
100k pixels, a maximum frame rate of up to 100 FPS and a modulation frequency of
maximum 100 MHz. Furthermore, robustness during darkness and full sunlight is given
by implementing suppression of background illumination on the sensor.

The camera is configured as followed: image resolution is set to 160 x 120 pixels, 12 Bits
are transmitted per pixel and 4 phases are measured with an exposure time of 1 ms. The
output, processed on the AURIX, consists of a 16-Bit depth and 8-Bit amplitude image.

2.3.2 Image Processing

The framework computes the depth data from the raw data, transmitted from the camera
sensor, by implementing several steps of a generic ToF processing pipeline. A use-case in
the automotive domain can be implemented, for example, interior monitoring. Due to the
memory and performance restrictions of the AURIX, only the necessary steps of the ToF
processing algorithm are implemented. In detail, only one modulation frequency is used,
post-processing, such as filter, analysis, Cartesian coordinate conversions, are omitted and
only a minimum of systematic error removal is carried out.

In order to clearly illustrate the interaction of the different components, a simplified
sequence diagram is depicted in Figure 2.18. The data processing steps of one full cal-
culation of a depth/amplitude image, including the start of the system, are shown. An
optional host PC is connected over Ethernet with the AURIX evaluation board. The
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calculated data is transferred via User Datagram Protocol (UDP) to the PC to display a
live-stream in a simple application or to debug the computed images.
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Figure 2.18: Sequence diagram of the current system [DFH"15] (with changes).

On a reset of the AURIX, the processing platform is started. At first CPU 2 configures
the ToF camera over the Inter Integrate Circuit (I12C) interface, and the camera interface
(CIF) is activated. Therefore, a system reset of the camera evaluation board is done and
the configuration stored on the AURIX is sent. After sending the start signal, the image
transmission is started. The image stream is received on the AURIX via the parallel
interface and pushed from the CIF module into the extended memory.

After the transmission of one raw frame, an interrupt is triggered. Upon this event,
CPU 1 copies the frame from the extended memory in its scratchpad memory. These
processing steps are repeated four times resulting in a software interrupt thrown by CPU 1
to start data computation. The calculation is efficiently implemented and results in a
phase and amplitude image. The images are stored in its own scratchpad memory. After
the execution of the ToF algorithm, the phase and amplitude image are copied to the
scratchpad memory of CPU 2 by using DMA.

After finishing computation and copy operation, an interrupt is thrown by CPU 2,
signaling that the results can be further processed. On this core, the transmission to the
host PC for display purposes is carried out. A UDP stack is implemented in order to
send the data via the network interface. Hence, multiple UDP packets of the phase image
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and amplitude image are created and transmitted. Because one single UDP packet is too
small to transmit the complete result, the data has to be divided and provided with some
metadata. With a simple application, the calculated data is viewed as a live-stream and
analyzed.

The PC is used to simulate a real system that can react on the use-case events generated
on the AURIX. For instance, a human detection system can be implemented on CPU 3.
If a person sits on a seat without a fastened seat belt, an event will be thrown and the car
will be notified to alert the passengers with an acoustic signal.

2.3.3 Results

The timing results of the work are presented in Table 2.1. Due to an exposure time of
1 ms, it requires 4 ms to gather the raw data of four measurements. It takes a further
3.4 ms to transfer the four images from the extended memory into the scratchpad. In
addition, it takes 3.25 ms to perform the ToF processing and saving the data into the
scratchpad of CPU 2. These results take up a total time of 12.5 ms, which includes
some overhead timing to compute a depth and amplitude image. Therefore, the frame
rate of the camera can be set to a maximum of 80 FPS. The depth (16 Bits/pixel) and
amplitude (8 Bits/pixel) images take up 57,600 Bytes in total. The memory results are
shown in detail in Table 2.2. For the computation of the depth and amplitude images the
equations 2.7 and 2.8 are efficiently implemented. Thus, the results meet the predefined
accuracy requirements for the use-case.

B Agrpe — Agoe
© = arctan <A0°AlSO°> 27)
A= V/(Aa700 — Agpo)? + (Age + Aygoe)? (2.8)

2

The conclusion of this work is a robust multi-core ToF framework for mixed-critical
applications in the automotive domain. The processing is efficiently performed to provide a
frame rate of 80 FPS. Consideration of functional safety, such as the ISO 26262 standard, is
also fulfilled. As future work, a hardware accelerator can be integrated into the framework
to outsource performance-intensive calculations and to have more free resources available
for use-case applications on the AURIX.

Table 2.1: Timing results of the ToF framework [DFH*15].

Operation H Time[ms] ‘
Exposure Time and Raw Data Acquisition 4

Raw Data DMA Transfers 3.4
Phase and Amplitude Calculations 3.25

’ Total (including Overhead Timing) H 12.5
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Table 2.2: Memory results of the ToF framework [DFH*15].

Memory Description H # [Bytes] ‘
Raw Data in Extended Memory 153600
CPU 1 Scratchpad Raw Data Memory 115200
CPU 1 Scratchpad Phase and Amplitude Data 0

CPU 2 Scratchpad Phase and Amplitude Data 57600

2.3.4 Limitations

One of the major challenges is the memory limitation of the AURIX. The complete amount
of internal memory is 2728 kBytes of SRAM, which is divided into 2048 kBytes of extended
memory and three times up to 240 kBytes of scratchpad memory allocated to each CPU. In
order to compare this given condition with the memory used in practice, the configuration
of the camera has to be considered.

The image resolution of the chosen configuration is 160x 120 pixels (16 Bits/pixel),
and for a computed distance image four raw measurements are necessary. Due to this
setup, the memory needed for one image calculation is shown in Equation 2.9. For four
raw frames around 115 kBytes of memory is needed. As a result, the scratchpad memory
will be almost half full if the complete raw data is saved for further computation. It is not
possible to save four frames with the maximum image size of the camera system, which is
approximately 100k pixels. Furthermore, pre-processing (e.g., averaging) that uses higher
amount of images, is not feasible because only a small number of frames can be stored.

MEMOTY frames = 1MAGCrows * VMAGCcolumns * TVEMOTYpizel - F frames
=120-160-12 bit - 4 (2.9)
= 115200 Byte

Another limitation is the computation power of the automotive SoC. The time needed
for calculation of the phase and amplitude calculation is 3.25 ms. As the computation
is in software, and not performed in parallel to the receive logic, it is completely added
to the total time (raw data acquisition, DMA transfers and calculation). By keeping in
mind that the implemented algorithm only calculates the phase and amplitude without
any systematic error correction and further processing, like filters, the total time would
be largely increased by adding an error correction consisting of many operations. It is
possible to involve additional CPUs, but for the use of another core, the data has to be
copied into its scratchpad memory. Thus, the performance in terms of latency will be
decreased.

Finally, due to the mentioned memory and performance limitations, it is not possible
to implement challenging use-cases, such as gesture recognition, on the AURIX. Thus, the
interest in a new hardware-accelerated ToF processing platform, with a sufficient high-
speed memory, is raised.



Chapter 3
Design

The focus of this chapter is to provide the design of the new system. The architectures
and interactions are presented in a top-down approach. Therefore, the requirements are
derived from the already described existing framework and its limitations. In addition,
the ToF processing algorithm is introduced and the proposed High Level Synthesis design
decisions are explained.

3.1 Requirements

The main aim of this master’s thesis is the creation of a flexible and fast Time-of-Flight
processing platform. Following requirements for the platform are as specified:

¢ HW-accelerated Computation

A ToF co-processor running on an FPGA shall be used to enhance the performance
of imaging algorithms. Operations that are computational intense shall be shifted
from software, such as a microcontroller, to the FPGA.

e High Flexibility

The hardware/software framework shall be highly customizable in terms of different
ToF applications. The system shall be designed for a high degree of reuse for projects
in future by allowing rapid algorithm prototyping, such as High Level Synthesis.
Camera configuration details, for example the image resolution, shall be configured
during runtime without a reprogramming of the FPGA.

e All-in-one System

The FPGA system shall act as interface between the camera system and an au-
tomotive microcontroller connected through a parallel interface. Hence, the target
platform’s computation and memory resources shall be free to implement more chal-
lenging use-cases. In future, the calculated data shall also be transmitted via other
interfaces (e.g., Ethernet, USB) to other processing devices, for instance, a host PC.

45
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e System Performance

A hardware-integrated co-processor shall be used to perform the calculation of depth
data on the FPGA (e.g., distance image, amplitude image, 3D coordinates). Further-
more, the transmitted data size shall be decreased. Thus, the overall performance
regarding throughput shall be increased.

For a camera configuration with an image resolution of 160 x 120 and an exposure
time of 1 ms, two different ToF pre-processing algorithms shall be efficiently implemented
and analyzed to show the feasibility of the system:

¢ 4-Phases Time-of-Flight Algorithm

The 4-Phases algorithm, as mentioned in Section 2.1.4, calculates the distance image,
the amplitude image and the 3D coordinates of a scene. Therefore, four raw frames
with a phase shift of 90 degrees are captured from the camera system. In addition, a
compensation of common system errors, as introduced in Section 2.1.6, is performed.
Such an algorithm is used in a typical gesture recognition use-case where high frames
rates and high relative distance accuracy are required.

e 8-Phases Time-of-Flight Algorithm

As a second ToF algorithm, the 8-Phases calculation is performed. According to
Section 2.1.5, two depth images recorded with two different modulation frequencies
(e.g., 60 MHz, 80 MHz), are necessary, and are combined by an unambiguous range
extension, after systematic error compensation. The result is a distance image,
an amplitude image and a 3D point cloud. This approach can be used for a Google
Tango indoor navigation algorithm that can cope with lower frame rates, but requires
high absolute distance accuracy.

3.2 System Architecture

3.2.1 Concept

In order to create a hardware-accelerated imaging platform, an FPGA is used to shift
the operations of ToF pre-processing and use-case processing onto hardware. The basic
architecture of the new proposed imaging system is depicted in Figure 3.1.

Starting with the existing framework, as already described in Section 2.3, the FPGA
works as an interface between the AURIX evaluation board and Infineon’s ToF evaluation
kit. Due to the hardware-integrated pre-processing, parts of the work load of the memory
and computation resources are free on the AURIX, and allow more challenging use-cases.

In addition to the distance calculation, the FPGA handles the camera control and
configuration. For the configuration, the camera’s 12C interface is used whereas for trans-
mission of the raw data, the parallel interface of the camera is utilized. The parallel
interface from the FPGA to the AURIX is equally specified (e.g., data signals, synchro-
nization signals), which has a major advantage in that the camera can also be directly
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connected with the AURIX without any big changes being made. So, the data is also
transferred via PIF to the AURIX and the AURIX sends control commands to the FPGA
via I2C.

One big advantage of this architecture is that the system can also be used without
AURIX. For instance, the calculated data can be transmitted for further processing over
a network interface on the FPGA board to a host PC.

3.2.2 Selection of the FPGA Platform

In order to fulfill the requirements regarding performance and flexibility, a decision for the
best suitable FPGA platform has to be made. Based on the analysis of the requirements
and the literature research, the hardware/software platform Xilinx Zynq has been chosen.
This platform, as outlined in [Xil15j], provides a heterogeneous ARM-based FPGA system
that allows the development of software on an ARM CPU with the ability to use hardware
components on an FPGA. These two components are integrated on a single chip, which
allows high data bandwidth between ARM and FPGA. Furthermore, High Level Synthesis,
a practical approach to rapid prototyping, is available.

The architecture of the Zynq SoC is presented in Figure 3.2. The main parts are the
Processing System (PS) and the Programmable Logic (PL). The PS contains the ARM
cores, NEON/DSP processors and several interface controllers, for instance, Ethernet,
USB, 12C as well as the memory controller to the external memory. The PL is a typical
FPGA. The communication between the different sub-components (e.g., CPUs, interface
controllers, FPGA) is performed over an AMBA /AXI bus. The configuration of the hard-
ware components from the CPU is done via General Purpose (GP) AXI ports, whilst the
communication between the FPGA and the memory is done via High Performance (HP)
AXI Ports.

3.2.3 Interaction

The interaction of the different components of the overall system is depicted as sequence
diagram in Figure 3.3. The shown hardware components are the ToF camera, Infineon’s
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Figure 3.2: Basic architecture of the Xilinx Zynq platform [Xillla).

AURIX and the Zynq platform. The host PC used for display purposes, as mentioned in
the current system, is not illustrated.

The AURIX platform controls the system by triggering the Zynq to start a use-case
through 12C commands. Next, the hardware-accelerated computation platform resets,
configures and starts the ToF camera system via the 12C interface. The raw data cap-
tured from the camera is transferred through the parallel interface and fetched from the
Zynq, which saves the data into the global extended memory. For the required 4-Phases
algorithm, four raw images with the same modulation frequency and a phase shift of 90
degrees are sent.

In addition to the implemented data processing steps, memory or performance intense
operations of a use-case can be performed. The resulting data, for example distance
image, amplitude image, 3D point cloud, is then forwarded through a parallel interface
to the AURIX, where it is received from the camera interface and saved into the global
extended memory. A software interrupt thrown from the CIF notifies CPU 1 to copy the
received results into its own scratchpad. After that, use-case specific events are computed
and transferred via available interfaces, for example Ethernet, 12C, CAN bus, to other
processing targets. Optionally, the results can be copied into the scratchpad memory of
CPU 2 for further processing. For display purposes, the calculated data is sent over the
network interface using UDP to a host PC.
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Figure 3.3: Sequence diagram of the new system.

3.3 Architecture on the Zynq Platform

3.3.1 Concept

The architecture of the hardware-integrated system on the Zynq is depicted in Figure 3.4.
Several sub-components realize the functionality of the fast and flexible image processing
system. The benefit of having clearly separated units connected through interfaces allows
for a high level of flexibility. The system consists of a control block in software, several
FPGA-based hardware components, such as the video receiver/transmitter and an image
processing unit.

The receiving and transmitting logic are not connected to the image processing block,
so as to allow the use of interfaces other than the PIF. For instance, the USB interface
can be used to receive images from the camera or calculated depth data is transmitted



50 CHAPTER 3. DESIGN

over the network interface to the AURIX. All components are connected through the AXI
interface to the control logic, which manages the correct execution of the sub-components.
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Figure 3.4: Architecture on the FPGA of the new system.

The Control unit is responsible for the correct functionality of the system by config-
uring all sub-components and controlling the dataflow. This component is executed on
the ARM core to provide high flexibility. Furthermore, it responds to control commands
via 12C from the AURIX, such as starting a special implemented use-case on the Zyngq.
The camera system is also controlled from this component via I12C. In addition to the 12C

interface, a reset line is also used in the control interface to reset the camera from the
FPGA.

The parallel data interface of the ToF camera is connected to the Video Receiver
component. It stores the camera’s gathered images in the global extended memory via
the AXI interface. The receive logic has to interpret the 12-Bit data signals and the
synchronization details correctly to push an image into a frame buffer. The control logic
is notified when the use-case specific number of frames is received.

The Image Processor unit performs the ToF imaging processing. The hardware-
integrated operations are independent from the algorithm that is chosen to provide the
flexibility to implement further ToF pre-processing or use-cases applications. Through
the AXI interface, one or several images are read and saved after successful computation.
This design allows flexible replacement of the image processor.

The AURIX’s parallel interface is connected through the Video Transmitter to the
Zyng. The computed depth data is read with the AXI interface from the memory and
used to provide 12-Bit data signals and the synchronization signals.

The AXI Interface connects the external global memory to the previous mentioned
sub-components. It provides a protocol for communication to the external memory for a
simple use of the memory, for example, read and write commands. The external memory
is needed to save the images because the internal memory of an FPGA does not have
enough space.
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3.3.2 Interaction

In Figure 3.5 the interaction of the different sub-components is depicted. Due to simplicity,
the AURIX object is summarized to only one receive and process operation. In detail,
the AURIX operates similarly as illustrated in Figure 3.3. The CIF interface receives the
data and CPU 1/CPU 2 are used for further processing.

The control logic is not presented as sub-component of the Zynq to further reduce the
complexity of the sequence diagram, this component is connected to every sub-component.
The interaction between the video receiver, the image processing unit and the video trans-
mitter at the beginning of the raw data transmission is shown. The starting sequence for
the system is not illustrated because no control logic is displayed.

The system is started through an external reset, for example, the main reset of the
AURIX. After start-up, the AURIX sends a command to the control logic of the Zynq to
initiate the pre-processing or use-case application via the 12C interface. Next, the Zynq
sends the corresponding configuration and a start command via [2C to the camera system.
The ToF camera gathers typically four images and sends one image via another through
the parallel interface.

The already activated video receiver recognizes the synchronization signals and saves
the input data into a frame buffer in the external memory. It is important that the input
is immediately saved otherwise the next frame overrides the current one. After enough
raw data is received, for example four raw frames for the 4-Phases algorithm, the video
receiver notifies the image processor via the control logic.

The image processor computes the ToF depth data in an optimized way to minimize
time and optimize accuracy. During computation, the next frames are sent and saved by
the receive logic. The processing time must be short enough to be finished before the next
raw frames are transmitted for calculation. Otherwise, it is possible to override images
in the frame buffer. The results of the image processor are in the external memory and
copied into another memory part via the memory interface, in particular the output frame
buffer.

After depth calculation of the image processing unit, the data is located in the output
frame buffer. The results are read from the external memory, and the synchronization
signals for the correct transfer are generated. From there, the data is transmitted via
the parallel interface to the AURIX. The data is received via the CIF on the AURIX for
further use-case specific processing. The transmission of the data is done in parallel to the
next receiving and computation operation.

Finally, after successful completion of the use-case, the AURIX can stop the data
processing of the Zynq via an 12C command. If only pre-processing is used on the Zynqg, a
live-stream of the system can continue without a stop signal. From the AURIX, use-case
specific events are sent to other processing devices, such as a host PC for display purposes.
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3.4 Interfaces

This section is focused on details of the camera system that affect the design. The parallel
and the control interface of the system are presented.

3.4.1 Parallel Interface

The parallel interface (PIF) directly connects the camera evaluation board with the Zynq
and the automotive platform with the Zynq via a multiline channel. From the sensor and
the processing platform, twelve bits of data are transmitted in parallel. In addition to the
data stream, three more signals are necessary to correctly send the rows of one raw frame
pixel-wise. The start and end of a frame are marked by the vertical synchronization signal
V sync. The horizontal synchronization signal H sync defines the start and end of one row.
The third signal is the pixel clock ClkPix. In one ClkPiz cycle, one pixel is transmitted.

The general timing of the PIF is shown in Figure 3.6. The frame blank is the elapsed
time between the transmission of two frames, whereas the line blank is the elapsed time
between two rows. It is possible to configure the PIF to delay the transmission of the first
row by the vertical synchronization delay thsd. The horizontal synchronization delay tdd
is the delay between start of a row and data transmission. The transmitter (camera system
and Zynq) generates the pixel clock whereby the clock frequency can be configured. In
addition, the polarity of the synchronization signals are configurable (active low or active
high) and if the pixels are valid on rising or falling pixel clock edge.
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Figure 3.6: Parallel interface timing [Infl5b].

Image structure

The structure of the frames that are transmitted via the parallel interface is depicted in
Figure 3.7. For the pre-processing use-case of the proposed image processing platform,
an image resolution of 160x 120 pixels is used. One row, also referenced as line, consists
of 160 pixels. An image is built of 120 rows. Therefore, the complete number of pixels
is 19,200 pixels. The amount of memory is equal to the determined one in the current
system and is around 115 kBytes, as already shown in Equation 2.9. From the camera a
pseudo row is transmitted with metadata, for example, the frame number. The placement
of the pseudo row can be configured on the camera’s parallel interface. It is possible to
place the pseudo data as first row, last row or four LSB bits in the first row.

Option 1:
First Row
(can be a dark row )

Pixel Array
Source: RAM

Figure 3.7: Structure of one frame [Infl15b].

3.4.2 Control Interface

For the control interface between AURIX, Zynq and ToF camera the standardized 12C
interface is used. The camera works as a slave and provides an address to the Zyng. One
12C data packet consists of an address and a value. The address specifies the register
where the value is written. On AURIX’s side, the Zynq is the slave and the AURIX the
master. The communication works the same.



54 CHAPTER 3. DESIGN

In addition, the camera evaluation kit provides a reset line that is also connected to
the Zynq. Hence, a camera system reset can be triggered.

3.5 Time-of-Flight Processing Pipeline

The goal of this section is to provide a clear understanding of the data processing used
in the ToF algorithms. The pre-processing 4-Phases and 8-Phases algorithm, which are
defined in the use-case requirements, are presented. The results of the algorithms are a
depth image, an amplitude image and a 3D point cloud. Furthermore, the correction of
the systematic errors with the help of calibration data is shown. For better understanding,
the processing steps are clearly separated in this section, but for the implementation, the
order can be changed or operations can be summarized to optimize the runtime. Further
post-processing, such as filters, are not discussed.

3.5.1 4-Phases Algorithm

The typically approach to generate a depth image is a 4-Phases measurement, as outlined
in [HLCH12]. Four raw frames are gathered from the camera, with a user configured
phase-shift, between every frame, as illustrated in Figure 3.8. Typically an equivalent
phase-shift of 90° is used, which results in measurements with the following phase-shifts:
0°, 90°, 180° and 270°. The modulation frequency and the illumination time are the same
for all measurements.

Frequency ( Frequency constant )

lllumination ( lllumination time constant )

Deriveable frames:

Z-Frame(block) (_ Z1 =z ( z Y oz  z N zz oz ) z )

Figure 3.8: Frame sequence of the 4-Phases algorithm [Infl5b].

The basic data flow and calculation steps of the 4-Phases algorithm are illustrated
in Figure 3.9. The order of the operations can be interchanged or combined to improve
runtime or accuracy of the results.

Raw to Phase

The four raw frames Fyo, Fygo, Figoe, Fo7ge provided from the configured camera system
are used to generate the phase image. Thus, an equivalent phase-shift of 90° is used. In
order to calculate the phase, an arc-tangent operation is performed with an imaginary
and a real part as shown in Equation 3.1. For this step, two intermediate results that are
the differences of two frames are computed. These intermediate results are also used in
a subsequent processing step. The result is in the range (—m,7]. An addition of 27 is
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Figure 3.9: Calculation steps of the 4-Phases algorithm [PMD13a].

performed on negative results to map the range to (0,27]. It is not correct to map the
phase values by adding only 7 to all values because positive values are then mapped to
the range (7, 27] and negative values to (0, 7.

Fo700 — F90°> (3.1)

( = arctan <
Foo — Figpe

Wiggling Correction

The origin of the wiggling error results in the signal modulation with imperfect sine
waves. In the raw frames, non-linearity effects appear. By providing calibration data,
this systematic error can be compensated as shown in Equation 3.2. Because the error
is phase-dependent, the compensation must be calculated for every depth value. This so-
phisticated operation, which consists of sine wave calculations, can be simplified by using
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the pre-processed linearized values of a look-up table (LUT) saved in the memory. This
strategy can decrease the processing requirements with a decrease of memory resources.

¥ = @+ Puwiggling (32)

Phase to Depth

In order to obtain the distance values from the phase values, a multiplication with a
constant factor is performed, as presented in Equation 3.3. The constant is based on the
speed of light and the modulation frequency.

(3.3)

FPPN Correction

The FPPN error is pixel-dependent and results by manufacturing tolerances. It is provided
by the calibration data. Therefore, a varying constant has to be added to every pixel to
get a correct distance image, as illustrated in Equation 3.4.

d=d+drpppN (3.4)

Offset Correction

The global offset, known from the calibration data, is compensated by adding the same
value to all pixels of the distance image, as shown in Equation 3.5. It represents the mean
error of every pixel’s individual offset, which is referred to as global offset.

d= d+doffset (3.5)

Temperature Compensation

Adding the same constant error to all pixels, as shown in Equation 3.6, compensates for
the temperature. The operation corrects different long-term and short-term effects and is
calculated using the provided calibration data.

d=d+ dtemperature (36)
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Unambiguous Range Shift

It is possible that after systematic error compensation, some distance values are outside
of the unambiguous range. For instance, distance values can be below zero or can become
higher than the unambiguous range. Therefore, the values are shifted into the unambigu-
ous range by performing a modulo operation, as represented in Equation 3.7.

C

d = d mod
2fMod

(3.7)

Raw to Amplitude

If only the illumination is active, an amplitude image is generated, which can be used to
check the correctness of individual pixels of the distance image. A magnitude operation
is performed on the imaginary and real part, already calculated for the raw-to-phase
processing step, as presented in Equation 3.8.

vV (Far00 — Foge)? — (Foe + Fisoe)?
2

A=

(3.8)

Depth to 3D Coordinates

In order to get a 3D point cloud, the distance values that are polar coordinates are trans-
lated into Cartesian coordinates. Thus, the distance values are multiplied by so called
direction parameters that are different for every pixel, as depicted in Equation 3.9. Those
parameters are based on the direction vectors, which depend on the lens’ distortion prop-
erties and the field of view, and are provided by the calibration data.

d; = d - directions,
dy = d - directions, (3.9)

d, = d - directions,

3.5.2 8-Phases Algorithm

The maximum unambiguous range is determined by the modulation frequency. In order to
increase the unambiguity, it is possible to combine two distance images captured with two
different modulation frequencies, as outlined in [JBPT10]. Therefore, two sequent 4-Phases
measurements with alternating frequencies are gathered, as shown in Figure 3.10. The
illumination is constant during the whole measurement process. Due to the unambiguous
range extension processing step, which computes the final distance image, the latency is
increased.
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Figure 3.10: Frame sequence of the 8-Phases algorithm [Infl5b].

The data flow of the 8-Phases algorithm is depicted in Figure 3.11. Two already
described 4-Phases data flows are performed and the two resulting distance images are
combined in one computation step. The 3D point cloud is only calculated once after the
unambiguous range extension and not for both images.
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Phase to Depth ) [ Phase to Depth

v v

System Error Corrections ) ( System Error Corrections

¢ h 4
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Figure 3.11: Calculation steps of the 8-Phases algorithm [PMD13a].

Unambiguous Range Extension

For this data processing step the equation for the unambiguous range extension, as shown
in [JBPT10], is similarly implemented. The basic equation uses basic arithmetic opera-
tions, modulo operations and round operations. Some required constants are calculated
from the two modulation frequencies. Due to simplification, the formula is presented as
function of the two distance images and the two modulation frequencies, as shown in
Equation 3.10.
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d = f(di,d2, farodis farod2) (3.10)

3.5.3 Calibration Data

For correction of systematic errors, it is important to have a calibrated camera. The
process of determining the camera’s parameters is performed during calibration.

In the proposed ToF processing system the calibration data of the ToF camera system
is already determined for Infineon’s ToF evaluation kit. The data is saved in the board’s
memory and can be read with a software tool through the USB interface and used for
further processing. In order to use the calibration data in the algorithm, the files have to
be correctly interpreted which is described in the application note [PMD14].

For the following systematic errors the calibration is specified: wiggling, offset, FPPN
and temperature. In addition, the direction parameters for the lens calibration used in
the Cartesian coordinate conversion are provided.

3.6 High Level Synthesis

In order to fully achieve the requirement of a highly flexible system, the concept of High
Level Synthesis, which is used for rapid prototyping in practice, is evaluated in the pro-
posed hardware/software system. As mentioned in the related work (Section 2.2.2), HLS is
already used in different use-cases for two-dimensional images. In this work, this approach
is applied on hardware-accelerated ToF processing algorithms.

The main idea behind HLS is the raising of the design abstraction level especially
in digital hardware development. Challenging use-cases make the process of creation of
hardware components more time-intensive, resource-intensive and error-prone. Thus, HLS
provides a technique to generate register-transfer level (RTL) hardware that is optimized
for performance, power and area.

The basic creation flow is shown in Figure 3.12. An algorithm written in a high
level language (e.g., C, C++, Matlab) is interpreted and automatically transformed into
the register-transfer level abstraction level by providing a design in a hardware description
language, for example, VHDL, Verilog. Such a generated hardware block can be integrated
into an FPGA and allows the rapid generation of hardware-integrated blocks.

Test Cases

Two different test cases are designed for implementation to show the feasibility of High
Level Synthesis. The results are compared with a corresponding implementation in soft-
ware and the manually developed imaging processing unit. One simple test case with only
one operation and a more complex one with several instructions are performed.
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Figure 3.12: Basic concept of High Level Synthesis [Cad13].

This first test case represents a pixel-by-pixel addition by calculating the sum of two

frames in one operation. The 16-Bit pixels are read from the extended memory, computed

and pushed into the memory.

In order to provide a more complex test case than the previous one, the amplitude

calculation, as shown in Equation 3.8, is calculated. Hence, four frames have to be used
as input. Furthermore, the more complex root operation is used.



Chapter 4

Implementation

This chapter deals with the implementation of the whole system including hardware and
software specifics, the used development workflow and environment, as well as the realiza-
tion of the hardware-accelerated ToF processing algorithm.

4.1 Development

The goal of this section is to provide a detailed overview of the used development workflow
and environment. Due to the chosen FPGA platform, a hardware/software co-design
workflow developed the system. In addition, the software tools, which were used during
development for the proposed platform, are shortly described.

4.1.1 Workflow

The life cycle, as depicted in Figure 4.1, that is used in particular for Zynq SoC sys-
tems is applied in the proposed framework. Beginning with the literature research of
the basic principles and the state-of-the-art projects, the requirements of the system and
the use-cases are defined. As a next step, the design of the system and the used algo-
rithms regarding architecture, interaction and interfaces of the different components are
determined. Based on the Zynq architecture, the system is partitioned into software and
hardware. During implementation, the hardware system on Zynq’s PL is developed using
Xilinx’s IP cores, manually developed IP Cores in HDL and generated IP cores with HLS.
Simultaneously the software system on the ARM CPUs is implemented by configuring the
hardware-integrated IP cores, and constructing SW algorithms. The hardware/software
system is finally integrated by combining the compiled executable for the ARM and the
generated bitstream for the FPGA on the Zynq SoC board.

Over the whole workflow, verification is performed between the different steps and
measurements are interpreted to accomplish the system’s requirements. Furthermore, the
hardware/software components are concurrently developed on a demonstrator to show the
feasibility.

61
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Figure 4.1: Development flow based on the Xilinx Zynq platform [Cigl5] (with changes).

4.1.2 Environment

In order to develop the processing system, the following software programs are used. Based
on the Zynq SoC platform, Xilinx’s Vivado Design Suite is used, which provides lots of
different tools for creation of a hardware/software framework, as outlined in [Xil15f]. The
Vivado IP Integrator, the Xilinx SDK and the Vivado HLS tools are described in detail.
The WebPACK edition for this design environment is freely available. Furthermore, tools
for development of the demonstrator are presented.

Vivado IP Integrator

Vivado Intellectual Property (IP) Integrator, as shown in [Xill5h], is a tool to develop
hardware designs for Xilinx’s FPGAs. It provides a graphical design development flow
to integrate and configure IPs that are manually developed with a hardware description
language, generated with HLS or already created by Xilinx. Furthermore, the system is
synthesized, analyzed and a bitstream for the Xilinx FPGAs is created.

This tool is used during implementation to create the ToF processing hardware system.
Several IP cores from Xilinx are used and configured to meet the system’s requirements.
Such provided IPs are already verified and provide high flexibility. Thus, the development
time can be significantly reduced. For debugging, logic cores can be used to monitor
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internal signals. The system is automatically synthesized and implemented. Then the
placement and routing is performed with a final generation of the bitstream that is used
for configuration of the FPGA.

Xilinx SDK

The Xilinx Software Development Kit (SDK) is an Eclipse-based IDE to develop C-based
embedded applications for the ARM core, as represented in [Xil15i]. A project works with
the hardware design that is created from Vivado IP Integrator. It provides library and
drivers for Xilinx IP cores used in the hardware system. Furthermore, it allows debugging

and profiling on the Zynq platform. It is used to program the ARM with the executable
and the FPGA with the bitfile.

In this work the tool is used to create the ToF processing library that is a bare-metal
C++ application that configures all IP cores in the hardware design and implements
the use-case application. Furthermore, the Zynq is programmed with the software and
hardware description, and via a terminal the output of the application is displayed during
runtime.

Vivado HLS

Vivado High Level Synthesis, as described in [Xill5g], is a program based on the Eclipse
IDE that directly transforms C, C++ and SystemC applications into IP cores without
the manually creation of RTL code. With directives and constraints in the high-level lan-
guage code, the produced hardware component can be configured regarding architecture,
performance and area.

In order to evaluate this practical approach of rapid prototyping, Vivado HLS is used
to develop an image processing unit that can be compared to the image processor. At first,
the code is written in C++ and verified against a test bench. The code is then synthesized,
and the synthesis results are evaluated. Different directives are used to optimize the
generated IP core. Finally, the hardware component is exported and used in the Vivado
IP Integrator.

Matlab

Matlab developed by MathWorks is a computing environment for numerical analysis,
as shown in [Matl4]. Tt allows the processing of big amounts of data with vectorized
operations. Scripts or functions can be used to develop algorithms. Data can be easily
plotted and analyzed. Furthermore, it provides easy access to external interfaces, for
example, Ethernet.

One application for Matlab in this work is the interpretation of memory dumps, trans-
mitted with Xilinx SDK from the external memory of the Zynq. These frames are saved
in a hexadecimal format and therefore, transformed into raw data provided by the camera
system. The data is plotted and used for further processing. Furthermore, the network
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interface is accessed for receiving the data via UDP of the AURIX. The data is plotted,
saved and processed to check the correct functionality of the demonstrator.

Visual Studio

For C++ development on a Windows PC, the integrated development environment Visual
Studio, as presented in [Mic13], from Microsoft is used. It is used for software development
for Windows programs, web applications and mobile apps. It supports different program-
ming languages, such as C++, C#. Different Windows APIs are provided which allow an
easy development of programs with graphical user interfaces.

The reference implementation is developed in C++, in Visual Studio. The test data
is read from files, calculated and verified against the reference data. The advantage over
software development on the ARM is the fast compilation and execution time. Further-
more, a Visual Studio application with a user interface is used to display a live-stream of
the received image via UDP from the demonstrator. This functionality is also developed
in Matlab but not used for a live-stream as at higher FPS, Matlab performs poorly.

Free TriCore Entry Tool Chain

Free TriCore Entry Tool Chain, as illustrated in [Tecl5], is a tool chain for Infineon’s
automotive platform AURIX. It is an Eclipse-based IDE that allows the programming of
the TriCore CPUs and the evaluation board of the automotive microcontroller.

In this project, the tool is used to develop the application for the AURIX. The inter-
action between the three CPUs, the Ethernet interface, the 12C interface and the CIF are
configured in the IDE. Furthermore, the use-case application that is executed on the main
core is deployed.

4.2 Time-of-Flight Processing Platform

The FPGA-based ToF processing platform consists of a ToF camera, an automotive com-
puting platform and a Zynq development board. The components used in the overall
system are described in the following paragraphs.

Time-of-Flight 3D Camera

Infineon’s ToF camera evaluation kit, as shown in [Infl3], is used in the implemented
system. The sensor, which is developed from Infineon in cooperation with PMDTechnolo-
gies, comes with the highest on-chip integration on the market (2013). The evaluation
board features different external interfaces, such as parallel interface and CSI-2, and al-
lows access to important signals of the image sensor. Furthermore, the sensor unit and
the illumination unit are exchangeable.
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Automotive System-on-Chip

The automotive microcontroller AURIX, as shown in [Infl4], developed from Infineon is
used as a starting point for a pre-processing or use-case application. The AURIX evalu-
ation board is connected with the hardware-accelerated system, and provides three inde-
pendent TriCore CPUs. It is compliant to various safety standards used in the automotive
domain.

Zynq Development Board

The Zynq development board from Trenz Electronic is used in the system, as represented
in [Trel5]. It consists of a Zyng-based SoC module, as shown in Figure 4.2a, and a
connected carrier board with peripherals, as depicted in Figure 4.2b. On the module a
Zynq 7020, as explained in [Xill15j], is placed with a Dual ARM Cortex-A9 MPCore with
a clock frequency of up to 1 GHz as well as an FPGA with 85k logic cells and 560 KByte
Block RAM. In addition a 256 MByte DDR3 SDRAM is available. The carrier board
provides lots of interfaces (e.g., Ethernet, USB) and allows a direct connection to the
FPGA through board connector pins.

(a) SoC module TEO720 [Trel5]. (b) Carrier board TEQ703 [Trel4].

Figure 4.2: The used hardware from Trenz Electronics.

4.2.1 System

The implemented system and its sub-components are illustrated in Figure 4.3. The in-
terfaces of the camera and the AURIX are connected with the board connector pins that
are directly controlled by the FPGA. The pin allocation can be manually defined in the
hardware design.

The control of the sub-components and the dataflow through the system is implemented
on the ARM core. The programmable logic configures the hardware components. The
video input stage receives the frames from the camera and pushes it to the memory. The
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image processor provides hardware-accelerated operations for the ToF processing pipeline.
The video output stage reads the results from the memory and sends the data to the
AURIX. The memory interface is an AXI interface, and is provided by the platform that
connects the extended memory of the carrier board to the Zyng.

Zynqg Development Board
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( DDR Memory )
7'}
Zynq
(Processing System A
A
ToF Camera ( DOR Controller ) AURIX
— T —
Control Control
2c ( ToF Processing Library )4 Olgcro
---------- ( AXl Interface )
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data ‘( Video Image Video ] data |
Parallel 'L Input Stage Processor Output StageJ Parallel
Interface Interface
\ ) \Programmable Logic )
\ J Depth

Events Data

Figure 4.3: Implementation of the new system.

Interfaces

The control interface is connected with the I2C controller of the processing system. The
reset line of the camera is connected through a GPIO port. Following configuration is
used in this work for the data streams via the parallel sensor interface:

e Vertical Synchronization: The polarity of Vsync is active high. The signal is high
during the whole frame. The delay of Vsync to Hsync is zero pixels.

e Horizontal Synchronization: Hsync is active high when data is transmitted. The
signal is active during the transmission of one complete row. The delay between an
active Vsync and the first active Hsync is one pixel clock cycle. If there is no delay,
following problem will occur: the last row of a transmitted frame is the first row of
the next frame. The receive logic requires time for a correct setup.

e Pixel clock: The pixel clock runs only during transmission of one frame and is set
to the maximum clock frequency of 66.66 MHz. On the falling edge of a clock cycle,
the data is valid.
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4.2.2 Hardware Specifics

The focus of this section is to provide a high-level description of the hardware design.
The main configuration details of the hardware components are presented. In order to
develop a flexible framework, predefined IP cores are used. Xilinx provides several high-
performance cores for video processing that are highly configurable in the processing sys-
tem, as illustrated in [Xill4a]. Furthermore, the development time is shortened because
the components are already verified. In the following paragraphs the connection to other
cores and the configuration of the main IP cores are described.

Processing System

The hardware characteristics of the processing system are configured by the corresponding
IP core in the hardware design, such as clock frequencies and activated interface controllers,
as outlined in [Xill5e]. It is configured to enable an AXI HP port and an AXI GP port.
All configurable IP cores are connected via an AXI Interconnect to the AXI GP port for
configuration, as represented in [Xill5a]. For a high speed connection to the extended
memory, the input and output stage, as well as the image processor, are connected to
the AXI HP port via another AXI Interconnect. The memory controller and two 12C
interfaces for the control interfaces are enabled. Interrupt signals provided by IP cores are
directly connected to the PS. PL fabric clocks are used to generate a clock for the AXI
GP slaves and to generate the pixel clock of the output stage. The used clock frequencies
are listed in Table 4.1.

Table 4.1: Configured clock frequencies of the system.

Component H Clock Frequency [MHz] ‘
CPU 666
DDR 533
AXI HP Ports 100
AXI GP Ports 100
PL Fabric (Pixel Clock) 66

Video Input Stage

The video input stage, as depicted in Figure 4.4, is responsible in receiving the raw data
through the parallel interface from the camera system and in writing the corresponding
data into the DDR memory. At first the output signals of the PIF are interpreted from
the Video In to AXI}-Stream block and transformed into an AXI4-Stream. The stream is
then forwarded to the Test Pattern Generator (TPG). During a live data stream, the data
is passed through this block without modifications. In addition, this block can also be
configured to transmit a predefined pattern for tests. The AXIL/-Stream Subset Converter
adds a signal to the data stream, where it is necessary to have a fully specified AXI4-
Stream. Finally, the write channel of the AXI VDMA unit generates an AXI4-Memory-
Mapped signal set that pushes the data into the RAM.
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Figure 4.4: Basic architecture of the video input stage.

The Video In to AXI4-Stream core, as described in [Xil14d], is an interface between
the parallel video input and the AXI4-Stream Video Protocol. The video source has to
provide a pixel clock and synchronization signals (e.g., syncing and/or blanking signals).
This allows easy connection of different video sources (e.g., DVI, HDMI, monochrome
data) to a video processing pipeline that uses the AXI4-Stream interface. The following
main configuration parameters are specified: one pixel per clock is transmitted from the
video source. The component data width of the video source is 12-Bit. The video format
Mono/Sensor is used. The core is connected to the PIF input signals (data/11:0], hsync,
vsyne, pizclk). Additionally, it is important to tie the blanking signals to logical low and
connect the hsync signal to the active video flag.

In order to test the subsequent hardware blocks without a transmitter, the optional
Test Pattern Generator core, as shown in [Xill4e], is used to generate horizontal /ver-
tical ramps, color or checkerboard patterns. In order to bring up and debug the complex
AXI VMDA block, it is useful to not remove this component in the final design. In
pass-through mode, the input signal is passed straight forward to the output. The main
parameters result from the characteristics of the previous described core: the video com-
ponent width is 12-Bit and the video input format is monochrome. Test pattern and image
size can be configured in software.

The AXI4-Stream Subset Converter unit, as presented in [Xill5c], connects in-
compatible AXI4-Streams. All signals of the AXI4-Stream interface can be added or
removed. The output signal set of the Video In to AXI4-Stream core does not include the

tkeep signal (marked null byte), which is required for the AXI VDMA block. Therefore,
this unit is configured to generate the tkeep signal that is tied to logical high.

In order to write the input AXI4-Stream into the memory, the AXI VDMA IP core, as
shown in [Xil15b], is used. It provides high-speed direct memory access between the AXI4-
Stream and the memory. Two-dimensional DMA operations are efficiently implemented,
and an independent read and write channel is supported. The block is highly configurable
through software, for example, after how many frames the CPU is notified through an
interrupt. In this design, the write channel is used for the input stage. The following main
configuration parameters are specified: the number of frame buffer locations is 20 and the
address width is 32 Bits. The frame synchronization mode is set to s2mm tuser, which
defines the start-of-frame (SOF) through the tuser signal of the AXI4-Stream.

Image Processor

The image processor is a hardware component that performs parts of the hardware-
accelerated ToF processing algorithm and is provided by Infineon, as outlined in [Enc14].
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Thus, it is an important component of the hardware/software platform that allows flex-
ible exploration of different computation methods of a distance images. It provides ToF
specific operations for image processing on the FPGA. In addition to the basic arithmetic
operations, the co-processor also supports more complex ones, for instance, the square
root or arcus tangent. The following operations are supported by the image processing
unit:

Pixel by pixel multiplication/addition/subtraction/division of two images

Constant multiplication/addition/subtraction/division of an image

Pixel by pixel limit check

Pixel by pixel square root/arcus tangent (angle and magnitude)
e Variance/average of an image

e Variance/average per pixel over multiple images

The input data format of all images is represented in a fixed-point number format.
The fixed-point number format is specified by the word length w and fraction length f.
One pixel is stored in memory in the 16-Bit format, whereby one sign bit, zero integer bits
and 15 fraction bits give the presentation. Two’s complement is used to represent signed
numbers. The image size can be more than 100k pixels.

Time-of-Flight Co-Processor

| Control Logic |

Input Processing Output
Buffer Unit Buffer
| AXI Interface |

AXl4-Memory
Mapped

Figure 4.5: Baisc architecture of the image processor [Encl4].

The basic architecture of the co-processor is illustrated in Figure 4.5. At first the CPU
sets up an instruction, which is then executed by the image processor. The component
reads the images from the memory, processes them and writes the results back. Finally,
the CPU is notified about the completion through an interrupt. The AXI interface inter-
connects the memory and the hardware-integrated block through which configuration and
DDR memory access is possible. The input buffer is responsible for reading the images
into a buffer using a receive logic. In addition, it provides the image streams for the pro-
cessing unit that executes the instruction on one or two images. The results are loaded
into the output buffer block that writes the resulting image to the memory. The control
logic configures the state machines for the data flow of the different blocks based on the
incoming operation.



70 CHAPTER 4. IMPLEMENTATION

Video Output Stage

After the image processing unit performs a successful computation, the results are trans-
mitted via the FPGA’s parallel interface to the AURIX. The video output stage, as shown
in Figure 4.6, reads the results from the memory and provides the data, the synchroniza-
tion signals and a pixel clock. The read channel of the AXI VDMA block, as illustrated
in [Xill5b], gathers the resulting data of the RAM and generates an AXI4-Stream sig-
nal. The vertical and horizontal synchronization timing signals are provided by the Video
Timing Controller (VTC) unit. A PL fabric clock, generated from the processing sys-
tem, is used as pixel clock. With the Clocking Wizard core it is possible to change the
pixel clock through software. Finally, the AXI}-Stream to Video Out block combines the
AXI4-Stream and the timing signals to provide the PIF output signals.

AXI4-Memory
Mapped AXI VDMA AX14- Stream
Read data[15:0]
Channel | T
: — hsync AX|4-Stream hsync
N Video Timing v to Video Out

Controller yne vsync |

fclk Clocking pixclk
Wizard

Figure 4.6: Basic architecture of the video output stage.

In order to read the data from the memory, the read channel of the AXTI VDMA
core, as shown in [Xil15b], is used. Because the write channel and the read channel of this
core are independent, the same block is used for the input stage and the output stage.
The main parameters are specified as following: the AXI4-Stream data widths and the
size of the frame buffer are the same as for the write channel. For frame synchronization
the free run mode is used, which waits for no external triggers and sends the data as fast
as possible. Further behavior is configured through software.

With the Video Timing Controller core, as described in [Xill3], it is possible to
detect or generate video timing signals. It is commonly used with the Video In to AXI4-
Stream or AXIj-Stream to Video Out IP core. Lots of different combinations of synchro-
nization and blanking signals are possible and the polarity of the signals is configurable.
The maximum supported frame size is 8192x 8192 pixels. In this design, the core is used
as signal generator and is configured through software. The pixel clock is connected as
input to this bock.

The Clocking Wizard unit, as represented in [Xill5d], provides methods to flexibly
change the parameters of an active input clock, such as clock frequency, phase shift.
In this work, the core is used to generate a dynamic reconfigurable pixel clock through
software. The input clock is a PL fabric clock with 66.66 MHz from the processing system.
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The output clock is used in the FPGA’s parallel interface and as input for the VT'C and
AXI1j-Stream to Video Out core. The division factor of the clock frequency can be changed
through software.

After creation of all necessary signals for the output parallel interface, the data AXI4-
Stream and synchronization signals are brought together by the AXI4-Stream to Video
Out IP core, as can be seen in [Xill4c]. This core has the analog behavior compared to
the Video In to AXIj-Stream block by providing an interface between the AXI4-Stream
interface and a parallel video output. The following main configuration parameters are
specified: one pixel per clock cycle is transmitted and the video format is Mono/Sensor.
The timing mode is specified as master because a VDMA is used in the video processing
pipeline. Thus, it automatically synchronizes the read channel of the VDMA to the VI'C
timing signals by applying back-pressure to the AXI4-Stream. The pixel clock is needed
as input for this core. Due the fact that the image processor provides 16-Bit results, the
output data width is also 16-Bit.

4.2.3 Time-of-Flight Processing Library

The Time-of-Flight processing library is the main part of the hardware/software system.
It connects the hardware components of the programmable logic to the processing system.
The library is executed on the ARM CPU as bare-metal application. Furthermore, it
implements the link between use-case application and the camera as well as the AURIX.
It is designed to be flexible for further use-case applications to fulfill the requirements.
Hence, the hardware-integrated components for the input and output stage are configured
in software for the required use-case. The image processor provides hardware-accelerated
operations, which are used to implement the required two ToF algorithms. In addition,
an interrupt system is activated to react on triggered events from the FPGA.

The class diagram of the ToF processing library is depicted in Figure 4.7. The main
class ToF ProcessingLibrary implements the link between communication on the inter-
faces and the ToF algorithm. The class ToFAlgorithm performs the hardware-accelerated
use-case application. In addition, it provides methods to verify the hardware-integrated
algorithm to the reference implementation. Class I2CCommuncation provides methods
for the control interface to configure and control the camera, as well as receive commands
from the AURIX. The class PIFCommunication is responsible to set up the input and
output stage. For every IP core that is configurable via software, an own class exists
which adjusts the behavior regarding the use-case with the low-level drivers provided by
Xilinx or Infineon. No methods are displayed because each core has almost the same:
reset(), start(), stop(), configure(), setupInterruptSystem(). In the following paragraphs
all classes are shortly presented in the bottom-up approach.

The class VDMA configures the central part of the receive and transmit logic. For
the input stage the write channel, and for the output stage the read channel are used. It
is important to set the correct image resolution. The write channel is configured to run in
circular buffer mode. Frames received through the parallel interface are written into the
input frame buffer on the extended memory. The start address of the frame buffer can be
set in software. An interrupt is thrown every four raw frames to notify the ARM core by
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Figure 4.7: Class diagram of the ToF processing library.

setting a flag. The circular mode for the read channel is disabled. After the given number
of frames are sent from the output frame buffer, the VDMA stops the transmission. This
allows more flexibility than the circular mode because otherwise, frame synchronization
between write and read channel must be considered.

The Video Timing Controller is configured from the class VI'C. The synchronization
signals are set for the output stage depending on the frame resolution. The polarity and
delays are described in detail in Section 4.2.1.

The class ClockingWizard configures the Clocking Wizard IP core that provides the
pixel clock for the output stage. A divisor can be configured during runtime to change
the frequency.

The Test Patter Generator is configured using the class TPG. The image resolution
and mode can be set. For testing, a predefined pattern is used, for example a check board
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pattern, and for the running system the pass-through mode is activated.

The class I12C sets the frequency and slave address of the 12C interfaces. Read and
write methods are provided from the Xilinx driver.

The image processor hardware-component is configured in software by the class Ifx-
ImageProcessor. The configuration registers and the interrupt system are set up.

The class PIFCommunication implements the link between the cores of the input
and output stage. The methods from the corresponding core classes are used to configure
and start the independent read and write channels. The method sendImages() starts the
read channel to transmit frames from the output frame buffer.

12C commands are sent with predefined values with the class I2CCommunication
to the camera. In addition, it is used to read 12C messages from the AURIX.

The class FPGAOperation provides an easy setup of the image processor operations.
With one function call the instruction can be set up and executed.

The use-case applications are implemented in the class TofAlgorithm. It provides
methods to initialize the look-up tables and to run the software implementation of the
reference implementation. The methods calcImage(), calcUnambRangeExtension() and
cale3Dcoord() perform the algorithm with hardware-integrated operations on the FPGA.
These three methods can be verified with the method wverifiyAlgorithm(), which checks
the results against the reference implementation results. The data is saved in objects
of separate classes. The class Toflmages represents the captured raw frames as well as
the results (e.g., distance, amplitude, 3D point cloud). An object of the class ToFCali-
bration is used to save the frequency and the range as well as the calibration values to
compensate systematic errors. Which operations are performed from the ToF Pipeline can
be configured with the class ToFPipeline. A boolean flag can be set for every processing
step.

The combination of all parts is implemented in the class ToFProcessingLibrary.
The two use-cases can be run in a video stream by gathering the data from the camera
via the input stage, performing the algorithm and sending the images to the AURIX via
the output stage. This is achieved by executing an endless loop which polls the interrupt
flag of the VDMA write channel. If the flag is true, the addresses of the current four
frames in the frame buffer are calculated and the methods from the class TofAlorithm
depending on the use-case are performed. Afterwards, the images are sent via the class
PIFCommunication. Finally, the flag is set to false. The loop stops if the AURIX sends
the corresponding 12C command.

The ToF processing library allows a high degree of flexibility and re-usability. Further
use-case algorithms can be easily added by using hardware-integrated operations. The
interfaces can be changed, e.g., using the network interface as output stage. Furthermore,
the frame resolution is completely configured through software.

4.3 Time-of-Flight Processing Algorithm

In this section the implementation of the ToF processing pipeline, as described in Sec-
tion 3.5, and the used workflow are presented.
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4.3.1 Workflow

The workflow used to develop the ToF algorithm is illustrated in Figure 4.8. Several dif-
ferent implementations of the algorithm are generated to allow a fast and easy verification
of the final results.

Starting with the deployment of a reference implementation in C++ on a host PC,
the ground-truth prototype is created. The test data and the reference implementation
are then ported on the Zynq’s ARM CPU to verify the results of the hardware-accelerated
algorithm. This step can be easily done and shows the advantage of a hardware/software
system. The development of the reference implementation is done on PC because it allows
faster compilation and execution of the application.

Next, a hardware-related software implementation is developed to test the intermediate
results of the hardware algorithm. Specific characteristics of the image processor’s opera-
tions have to be kept in mind. The order of operations can be changed and instructions
can be summarized to improve the algorithm in terms of performance and accuracy. This
implementation is then developed with image processor operations on the FPGA. These
two steps are performed until the timing and accuracy requirements for the application are
met. During the whole process, the results are verified with the previous implementations.

Reference Implementation 1
In C++
On PC J
@ SW Implementation )
In C++
<
I =
3
@ HW-related SW Implementation A S
In C++
Design iterations \_ On ARM J
to improve
performance and
accuracy. HW-accelerated Implementation W
With Image Processor Operations
On FPGA J

—

Figure 4.8: Development flow for the implemented ToF algorithm.

4.3.2 Implementation

The used arithmetic operations, which perform the calculation of the depth data and the
compensation of the systematic errors, are shown in detail in the following paragraphs.
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Reference Algorithm

The reference algorithm, as presented in Algorithm 1, implements the 4-Phases use-
case in software. This implementation is developed with knowledge of application notes
([PMD13a], [PMD13b], [PMD14]) and literature ([Lan00], [HLCH12], [FAT11], [JBP*10]).

As a starting point, the real and imaginary part of the raw data are computed, as
shown in Lines 2 and 3. Next, the arcus tangent is calculated, as can be seen in Line 4.
The resulting phase values are in the value range of (—m, 7] and mapped to (0,27] by
adding 27 to negative results, as represented in Line 6. If 7 is added to the initial phase
values, this will map the positive values to a range of (m, 27| and the negative values to
(0, 7], which is a completely different result.

The calibration data to compensate the wiggling error, which depends on the distance,
is saved in a look-up table. By multiplying the phase with a factor, the index of the LUT is
calculated, as can be seen in Line 8. For the distance, the phase values are multiplied with
the range factor, as illustrated in Line 9. As represented in Line 10, the remaining error
corrections are only additions of positive or negative values. For the modulo operation of
the unambiguous range shift, the fraction part is calculated with the floor function and
subtracted from the distance, as shown in Line 11. The amplitude and 3D point cloud are
straight forward computed, which is evident in Lines 12 to Line 15.

Algorithm 1 Reference implementation.

C
crange = 5/—
9 2fMod

1

2: imag = F270° — Fgoo

3: real = F()o — Flgoo

4: ¢ = arctan (imag, real) (—m, 7

5. if ¢ < 0 then

6: @=¢@+27m

7. end if

8: ¢ =+ WigglingLUT H«p . %H
9: d= © - %

10: d =d+doffset + drppN + dtemperature
11: d=d— { d J -range

range

19: A= \/7‘6(1122+z'mag2

13: d; = d - directions,

14: dy = d - directions,

15: d, = d - directions,
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Hardware-accelerated Algorithm

The hardware-accelerated algorithm, as shown in Algorithm 2, efficiently implements the
reference algorithm. The focus of this algorithm is the improvement of the software al-
gorithm regarding performance and accuracy, done by changing the order of operations
and summarizing instructions. Furthermore, specific features of the image processor op-
erations have to be considered. The hardware-related software algorithm is the same and
used to provide correct intermediate results to verify the hardware implementation. The
reference algorithm is used as a starting point. Over several design iterations following
improvements can be made:

e Arctan operation

The value range of the image processor’s arctangent operation is (—1, 1) instead of
(—m,m), as illustrated in Line 4. Instead of a multiplication with 7, the advantage
of a smaller value range for subsequent operations is used. For correct application,
all given values for systematic error compensation must be divided by 7.

¢ Range multiplication

The distance is the multiplication of the phase with the range constant. By perform-
ing this operation at the end of the distance calculation and not after the wiggling
compensation, as can be seen in Line 11, the value range of the intermediate results
is smaller: (0, 1] instead of (0,range]. This can be applied because the calibration
data for the systematic errors are divided by the range constant during initializa-
tion of the algorithm. Hence, the results are more precise because of the smaller
value range. Due to the fixed-point number representation, a smaller value range
decreases the number of bits used to specify the integer part. Thus, the fraction
length is increased. In addition, fewer operations are used because for the unambi-
tious range shift, no division and multiplication operations with the range constant
are necessary.

e No Wiggling Compensation

The calibration values to compensate the wiggling error are determined with the
help of a LUT, as represented in Line 8. Due to the fact that the image processor
provides no index operation, the index look-up is made in software on the ARM
core, as shown in Listing 4.1. The index is calculated with hardware-accelerated
operations. In some use-cases, such as gesture recognition, and in newer camera
generations, the wiggling compensation is not necessarily needed. Therefore, an
implementation without wiggling compensation exists to speed up the performance.

e Arctan Mapping

The resulting phase values of the image processor’s arctangent operation are in the
value range of (—1,1]. Adding 2 to the negative values, map the result to the value
range of (0,2]. The improvement is to compute the if statement for negative phases
only if wiggling compensation is used, which is evident in Line 5 to Line 7. This
can be applied because the unambiguous range shift, as shown in Line 10, is also
mapping the negative results into the correct value region, whereas for the wiggling
index calculation the correct phase is required.
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e No Amplitude Shifts

The 12-Bit raw data defines a maximum possible real and imaginary part of 4,096.
If these values are inserted into the amplitude calculation, as shown in Line 12, the
maximum possible amplitude value will be 2,895.6. This value can be represented
by a 16-Bit fixed-point number with the format (Q12.3). The fixed-point format of
the result of the image processor’s magnitude operation is the same as the fixed-
point format of the input values. Therefore, the real and imaginary parts have to
be shifted from (Q15.0) to (Q12.3). For most of the use-cases, it is not necessary to
use precise amplitude values. Hence, an implementation exists that skips these two
shift operations to improve performance.

Algorithm 2 Hardware-accelerated implementation.

range = 54—

L: 2fMod

2: 1’mag = F270° — Fgoo

3: real = Foo — F1800

4: ¢ = arctan (imag, real) (—1,1]

5. if ¢ < 0 then

6: PWigg = P +2

7. end if .
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dO se +d +d emperature

9%0:(’0_’_ ffset Fizgget P t
10: =9 — [¢]
11: d = ¢ - range

19: A= v/ real?+imag?

: - 2

13: d, = d - directions,

14: dy = d - directions,

15: d, = d - directions,

Listing 4.1: Wiggling compensation in software.

1 for( i=0; i<numPixels; i++ )
2 A

3 phase[i] = phase[i] + wiggLUT[wiggIdx[il];
4 %}

4.4 High Level Synthesis

Xilinx provides a complete framework for High Level Synthesis with an easy integration
of generated IP Cores into existing Vivado designs. Vivado HLS allows the addition
of directives and constraints to high-level language code to specify how the program is
synthesized, for instance, memory interfaces, loop unrolling or pipelining.
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4.4.1 Workflow

The workflow for Xilinx’s HLS framework is shown in Figure 4.9. Xilinx provides the IDE
Vivado HLS for developing HLS-based hardware components.

At first a project is created that consists of a test bench and a top function that should
be hardware-integrated. Following high-level languages (HLL) are supported: C, C++ or
System C. Next, the desired functionality is developed in software by keeping in mind
that not all HLL constructs can be used, e.g., dynamic memory allocation. The program
is compiled and verified against the test bench. As a next step, the synthesis is started
that results in a synthesis report including timing and area estimations. By including
directives and constraints in the top function (e.g., loop unrolling, memory interface),
different solutions can be synthesized and compared. After that, the generated RTL code
is verified against the test bench by running an RTL simulation. If everything is correct,
the code is exported in HDL language and can be used in Vivado design as IP core.

Constraints/ C, C++
’ ’ H Testbench
Directives SystemC

N

Vivado HLS

} }

VHDL/Verilog \ RTL Wrapper

RTL Export
IP-XACT | IP Core | SysGen

RTL Simulation

Figure 4.9: Basic concept of High Level Synthesis [CEES14] (based on [Xill1b]).

4.4.2 Implementation

In order to rebuild the image processing unit, the memory interface is very important
because high amounts of data must be processed. The following directives, as described
in [Xil14b], are used: in Vivado HLS framework it is possible to use an AXI High Perfor-
mance port as the memory interface. The frame is sequentially calculated by reading a
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data burst from the memory, computing it and saving it to the memory. The processing
unit, which implements the functionality of the test case, is pipelined.

Therefore, two different dataflow approaches for two test-cases are implemented. The
first test-case that is implemented is shown in the Algorithm 3. It is a simple pixel-by-pixel
addition of two 16-Bit per pixel frames. In Algorithm 4 the second test-case is shown. It
calculates the amplitude of four input frames. The magnitude is calculated by using two
multiplications for the square, an addition and a root operation.

Algorithm 3 Pixelwise addition.
1: Fout = ImgProc_Add( F1, F2 );

Algorithm 4 Amplitude calculation.
1: imag = ImgProc_Sub( F3, F1 );
2: real = ImgProc_Sub( F0, F2);
3: mag = ImgProc_Magnitude( imag, real );
4

: amplitude = ImgProc_Div( mag, 2 );

Dataflow solutions

The frames of both algorithms are saved in the extended memory. The HLS hardware
component reads the data in bursts from the memory, performs the computation on one
data burst at the time, and saves the results in bursts into the memory. During imple-
mentation, two solutions for efficient memory operations were encountered.

The first approach is the straight-forward implementation by running a loop with
following three operations: reading, computing and saving the data. It sequentially works
on the data burst by reading the next burst after the previous one is completely saved in
memory, as shown in Figure 4.10. It can be observed that no pipeline architecture is used.

Read Read

Compute Compute

Write Write

Figure 4.10: Architecture of the multi-burst approach.

The second strategy is based on a pipeline, as depicted in Figure 4.11. A directive
is used that streams the data into a buffer. During computation the next data burst is
read from the memory and the already previous calculated burst is saved into memory.
As a result, the throughput is higher. Therefore, independent read and write access of the
memory is necessary.
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Read Read Read
Compute Compute Compute
Write Write Write

Figure 4.11: Architecture of the pipeline approach.

4.5 Verification

Verification is an important part to check if the system’s functionality fulfills the initial
requirements. The different sub-components of the implemented hardware/software plat-
form and the transmission of data through the interfaces have to be tested to accomplish
a correct result. The components, listed below, are verified in the following way:

e Video Input Stage

From the video input stage module the VDMA core and the memory interface are
tested without the ToF camera by using the Test Pattern Generator. A predefined
pattern, such as a horizontal pattern, is created and transferred to memory. By
comparing the memory and the predefined pattern, the correct functionality of the
VDMA is verified. Using the pass-through mode of the TPG with the connected
ToF camera, the receive logic is tested. Because it is not possible to know the
correct values of the transmitted pixels, only the pseudo row is checked. This row
is predefined and always the same. By running a live- stream and checking this row
in real-time, the correct transmission functionality is verified.

ToF Processing Algorithm

The verification of this component is also explained in detail in Section 4.3.1. The
hardware/software platform Zynq allows an easy comparison of software and hard-
ware results. A hardware-related software implementation is used to check all in-
termediate results of the hardware implementation. These results are then verified
with the reference algorithm implemented on the ARM core.

Video Output Stage

The video output stage component is verified by sending a predefined test pattern,
which is saved in RAM. On the AURIX, the received test pattern can be compared
to the specified one. Hence, successful verification can be performed. Furthermore,
predefined images are saved into extended memory, sent to AURIX and forwarded
over Ethernet to a PC. The predefined image is compared with the received image
in Matlab.

In order to check the whole integrated system, the calculated results, as well as the raw

data, are all sent to AURIX and to the PC. On the PC, the raw data is computed with
the reference implementation and compared to the results from the processing platform.
Hence, the successful verification of the framework can be carried out.
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Results

This chapter deals with the evaluation of the implemented ToF processing platform. First
of all, the implementation results, including utilization and throughput, are analyzed.
Furthermore, the two implemented pre-processing applications regarding performance are
discussed. The accuracy of the ToF computation using hardware-accelerated fixed-point
operations is compared in detail with the software implementation. In addition, the
demonstrator and its interfaces are evaluated. Finally, the results of the two developed
hardware-integrated components, using Vivado’s High Level Synthesis toolchain, are pre-
sented.

5.1 Implementation

In this section the implementation results are discussed. For synthesis and implementation
of the hardware design, the software tool Xilinx Vivado 2015.1 is used. The target system
for creation of the FPGA hardware bitstream is the Xilinx Zynq 7020 SoC platform.

5.1.1 Utilization

In Table 5.1 the different used and available hardware resources are shown in detail. Xilinx
Vivado creates utilization reports after every step generation of the hardware design. The
post-implementation results are presented. These results are optimized and represent the
real numbers contrary to the post-synthesize ones.

The actual number of used flip-flops (FF) is 19,493 whereby 106,400 FF's are available,
this is equivalent to 18.2%. 28.1% of the look-up tables (LUT) are used which results
in 14,991 LUTSs out of 53,200 available LUTs. 13 block RAM (BRAM) units out of the
available 140 are consumed. Digital signal processor (DSP) slices utilize around 6% of the
complete available slices, which corresponds to 13 DSP slices. In order to fully complete
the utilization listing, the numbers of following hardware resources are shown: memory
look-up tables, input/output (I/O) interfaces, global clock buffers (BUFCG) and mixed-
mode clock manager (MMCM) modules.

81
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Table 5.1: FPFA utilization of used resources.

Resource H Utilization | Available | Utilization % ‘
FF 19,493 106,400 18.2

LuT 14,991 53,200 28.12
Memory LUT 647 17,400 3.72

I/0 43 200 21.50
BRAM 13 140 9.29

DSP 13 220 5.91
BUFG 5 32 15.62
MMCM 1 4 25

The percentage distribution of used and available resources is graphical presented in
Figure 5.1. It is clearly obvious that less than one third of the disposable resources from
the FPGA are used for the implemented hardware design. Thus, lots of resources are avail-
able for further use-case applications or post-processing, such as filters. Performance and
memory intensive programs on the AURIX, such as gesture recognition, can be transferred
to the Zynq platform for a speed-up of the overall system .

The performance can also be increased by using more hardware components at the
same time. It is possible to initiate the image processing unit several times to speed up
the computation by using hardware-accelerated operations in parallel. Due to no data
dependency between pixels, different parts of one image can be simultaneously computed.
On top of that, several video input and output stages can be instantiated for implement-
ing further ToF cameras in the system by using additional connector pins of the Zynq
development board.

FF
LUT 28%
Memory LUT

I/0 2%
BRAM
DSP

BUFG

MMCM

25%

0% 25% 50% 75% 100%

Figure 5.1: Percentage utilization of the resources.
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The utilized area of each hardware component is illustrated in detail in Table 5.2.
Shown are the four important hardware resource types BRAM, DSP, FF and LUT. The
percentage distribution of the hardware components regarding used look-up tables is
graphically depicted in Figure 5.2.

The biggest components are the already described AXI VMDA IP core and the image
processor provided by Infineon as well as the AXI Interconnect hardware module that
connects the AXI memory-mapped master or slaves to the processing system. Each of the
three units needs about one quarter of the complete system. The Test Pattern Generator
IP core, which utilizes around 17% of the area, is optional and can be removed because it
is only used to test the AXT VDMA of the input stage. In the running system the TPG
is configured in pass-through mode.

Components of the video output stage including the Video Timing Controller and
Clocking Wizard allocate around 8% of available LUTs. Further IP cores of the receive
and transmit logic utilize very little resources, such as the Video In to AXI4-Stream IP,
the AXI4-Stream to Video Out core and the AXI4-Stream Subset Converter unit. System
specific components (e.g., processing system, processing system reset) need hardly any
resources. Almost all of the used BRAM memory is used by the image processor due to
the input and output buffering of the pixels. The DSP slices are nearly equally separated
into the image processor and the Test Pattern Generator.

Due to the use of already developed IP cores, no further improving of area consumption
is possible. The IP cores are synthesized in an optimized way for the given configuration
and wiring. This drawback comes with the advantage of having highly configurable com-
ponents through software, such as AXI VDMA, which are already verified.

Table 5.2: FPFA utilization of all components.

Hardware Unit | BRAMs | DSPs | FFs [ LUTs |
AXI Interconnect 0 0 3,751 | 3,426
AXI VDMA 2 0 4,807 | 3,206
AXI4-Stream Subset Converter 0 0 198 105
AXI4-Stream to Video Out 1 0 185 90
Clocking Wizard 0 0 1,439 | 1,097
IFX Image Processor 9.5 7 4732 | 3,343
Processor System Reset 0 0 59 32
Processing System 0 0 4
Test Pattern Generator 0.5 6 2,076 | 2,491
Video In to AXI4-Stream 0 0 151 74
Video Timing Controller 0 0 2,095 1,123

Total | 13 | 13 [19493 | 14,991 |
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Figure 5.2: Percentage distribution of the used look-up tables.

5.1.2 Throughput

In Table 5.3 the maximum theoretical bandwidths of the memory interfaces are shown,
which are calculated from the configured hardware parameters. The parallel interface of
the ToF camera sends 12 Bit in parallel and works at a clock frequency of 66.66 MHz. As a
result, the bandwidth of the camera is 100 MB/s without the use of an illumination time
between captured frames. The AXI interfaces run with a clock frequency of 100 MHz.
Hence, the bandwidth of Video In to AXI4-Stream IP core is 200 MB/s due to an increase
of the data width to 16 Bit. The data width of the AXI VDMA module is 32 Bit,
which corresponds to a bandwidth of 800 MB/s for the read and write channel. 128 Bit
data width is delivered from the image processor, which is equivalent to a bandwidth of
3.2 GB/s. The high performance port provides a bandwidth of 1.6 GB/s and the DDR
memory interface performs read and write commands with a bandwidth of around 4.2
GB/s. The AXI interconnect IP cores generally provides enough bandwidth for the access
to the DDR memory, as outlined in [Encl4] and [Xil15j].

The components are not running with the maximum possible clock frequency for the
AXI buses. Therefore, the interfaces between processing system, programmable logic and
extended memory are not the bottlenecks. The video input stage and video output stage
can gather and provide the calculated data in real-time. The image processor can be
further accelerated to minimize the time for an execution of one operation.
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Table 5.3: Theoretical bandwidths of the memory interfaces, which are calculated from
the configured hardware parameters.

Data width | Clock frequency | Bandwidth

Interface )

[bits] [MHz] [MB/s]
PIF Camera 12 66.66 100
Video In to AXI4-Stream 16 100 200
VDMA (R+W) 32 200 800
Image Processor (R+W) 128 200 3,200
AXI4-Stream to Video Out 16 66.66 133.3
AXI HP (R4+W) 64 200 1,600
DDR (R+W) 32 1,066 4,264

Frames per Second

In order to calculate the maximum possible FPS, the actual used camera configuration has
to be considered: an illumination time of 1 ms between frames and a frame resolution of
160x 120 is used. For one distance image, four raw frames with an equivalent phase-shift
of 90° are required. The time for the transmission of one raw frame is 0.65 ms using the
camera’s parallel interface with a pixel clock of 66 MHz, as presented in Equation 5.1. The
formula is outlined in [Inf15b]. As a result, the maximum FPS with the used configuration
is 151, as illustrated in Equation 5.2.

Magecolumns * 1MAGErows

tframe - + (3/1'3 : imagerows)
frir (5.1)
_ _100-120 g 190) = 0.65 ms
T 66.66 MHz  “H -
FPSpas = Ls - Ls = 151 (5.2)

#frames . (tframe + te:rpo) 4. (065 ms+1 ms)

5.2 Time-of-Flight Processing Measurements

The focus of this section is to provide the evaluation of the implemented hardware-
accelerated ToF algorithms. The results regarding performance and accuracy of the two
pre-processing applications are presented. The number of hardware-integrated image pro-
cessor operations is analyzed. Furthermore, the fixed-point calculation results of the hard-
ware implementation are compared with the floating-point values of the hardware-related
software implementation. The accuracy results, which represent only the calculation errors
of the algorithm due to fixed-point arithmetic, are achieved by measuring a typical scene.
Therefore, the shown mean and maximum errors are not absolute values. It is important
to note that no system errors, which result from the measurement setup, are analyzed.
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5.2.1 4-Phases Measurement

The 4-Phases algorithm is a typical pre-processing approach for a gesture recognition
use-case. Such a use-case application requires high frame rates (40+ FPS) and high
relative distance accuracy. The distance and amplitude image as well as the 3D coordinates
are calculated. A compensation of the systematic errors is performed. Furthermore,
the algorithm is part of the 8-Phases measurement and directly affects its computation
performance and accuracy.

The results of one 4-Phases measurement are depicted in Figure 5.3 and Figure 5.4. The
used ToF camera evaluation board only provides the calibration data for the FPPN, offset
error and direction parameters. Therefore, no wiggling and temperature compensation is
possible. The gathered four raw frames with an equivalent phase-shift of 90° are shown
in Figures 5.3a to 5.3d. The calculated distance image, as illustrated in Figure 5.4a,
shows the test objects. At the sharp edges of the objects, flying pixels are visible. These
defective pixels can be improved by further post-processing methods, which are not further
discussed in this work. The amplitude image is represented in Figure 5.4b. It shows an

infrared image of the scenery.
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Figure 5.3: Raw frames of 4-Phases measurement (fy;,q: 60 MHz).
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Figure 5.4: Calculated depth data of 4-Phases measurement (fysoq: 60 MHz).

Performance

The timing results for the 4-Phases hardware implementation are outlined in Table 5.4.
The floating-point software implementation of the reference algorithm executed on the
ARM core needs 248.15 ms, which corresponds to 4 FPS. This computation is performed
in floating-point arithmetic, and predefined math functions (e.g., arcus tangent, square
root) are used. The time is not feasible for the required use-case.

The hardware algorithm implemented with image processor operations calculates the
results in 30.5 ms. 32.8 FPS are possible with the use of hardware-integrated operations.
This time results from the use of 23 hardware-accelerated operations, whereby one oper-
ation needs around 0.7 ms as well as the calculation time on the ARM core for the index
operation of the wiggling compensation, as already shown in Listing 4.1. The execution
time for this software part is 14.12 ms. There are more hardware operations than executed
operations in the hardware-related software implementation needed due to specifics of the
image processor. For instance, shift operations are necessary to bring values to the same
fixed-point format. In addition, for the floor function one subtraction and two shift op-
erations are necessary. In order to meet the timing requirements two improvements with
trade-offs are introduced:

e No Wiggling Compensation

The first improvement is the omission of the wiggling compensation. Wiggling is a
distance-dependent error that needs to be compensated. Hence, the sophisticated
calculation is typically calculated with the help of a look-up table. Because this com-
putation is mostly done in software, it represents around half of the total time and
significantly decreases the performance of this pre-processing approach. Wiggling
correction is not necessarily needed in some use-case applications, such as gesture
recognition. Hence, those calculation steps can be skipped to speed up the perfor-
mance. In addition, there is no need of performing several hardware operations,
such as the wiggling index calculation or the mapping of negative arcus tangent
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values. The time needed to calculate the results without wiggling compensation is
11.46 ms, which corresponds to 87.2 FPS. These results are compatible with the
gesture recognition use-case, which requires high frame rates around 40 FPS.

e No Amplitude Shifts

Another improvement concerns the amplitude calculation. Two hardware operations
can be saved by not shifting the real and imaginary part. The fixed-point format
(Q15.0) is used instead of (Q12.3). Thus, the amplitude values are not precise, but in
most case this is not necessary. The execution time is 10.11 ms. The corresponding
FPS, without wiggling compensation and amplitude shifts, are 98.9.

Table 5.4: Timing results of the 4-Phases algorithm.

Time-of-Flight Algorithm | t [ms] | FPS | #HW Instr.

Reference in Software 248.15 | 4.0 -

Reference in Zynq HW/SW 30.48 | 32.8 23

+ Improvement: No Wiggling Comp. 11.46 | 87.2 16

+ Improvement: No Amplitude Shifts || 10.11 | 98.9 14
Accuracy

The accuracy of the 4-Phases algorithm is shown in Table 5.5. In addition to the final
results (e.g. distance, amplitude, 3D point loud), the intermediate results of every hard-
ware operation are calculated to view the error source and propagation, as illustrated in
Table 5.6. The average error and the maximum error are represented. An error is defined
as the absolute error between the fixed-point and floating-point value. For the mean er-
ror, the sum of all errors is divided by the number of pixels, which is 19,200, with the
chosen camera configuration. The algorithm is performed with the provided test data and
calibration data for all systematic errors. The modulation frequency is 80 MHz, which
corresponds to an unambiguous range of 1.87 m.

The mean error of the distance is 0.032 mm and the maximum error is 1.33 mm. The
maximum error is significant higher than the mean error. Hence, the maximum error
value corresponds to only 0.07% of the unambiguous range. The mean amplitude error

Table 5.5: Mean/max errors of the 4-Phases algorithm.

Result H Eean [mm] ‘ Einaz [mm] ‘ Emean(1] ‘ Enaz[1] ‘
Distance 0.092 1.330 - -
Amplitude - - 0.030 0.075
3D point cloud 0.080 1.343 - -

+ Improvement: No Wigg. Comp. 0.076 0.268 - -

+ Improvement: No Amplit. Shifts - - 0.117 0.253
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Table 5.6: Mean/max errors after each image processor operation of the 4-Phases algo-
rithm. In addition, the line numbers of the corresponding hardware-acceleration imple-
mentation, as shown in Algorithm 2, are represented.

’ Intermediate Result H Erean [mm] ‘ Eraz [mm] ‘
Imaginary part (3) 0.000 0.000
Real part (2) 0.000 0.000
Phase (4) 0.032 0.085
Phase Below Zero (5) 0.000 0.000
Phase Mapped (6) 0.032 0.085
Wiggling Index (8) 0.020 1.000
Wiggling Error (LUT) (8) 0.042 1.309
Phase Add. Wiggling (8) 0.056 1.320
Phase Div. 2 (8) 0.028 0.660
Phase Add. Errors (9) 0.032 0.672
Phase Floor (10) 0.000 0.061
Phase Subtr. (10) 0.032 0.672
Distance Mult. (11) 0.092 1.330

is 0.03 and the maximum amplitude error is 0.075. By reconsidering the value range of
the amplitude, which is 0 to 2895.6, the percentage maximum error is 0.003%. This result
is feasible for most use-cases. The errors of the 3D point cloud amounts to 0.08 mm for
the mean error and 1.343 mm for the maximum error. Because the 3D coordinates are
computed only with a multiplication of the distance with the direction parameters, the
errors are almost the same.

In order to analyze the origin of the error, the intermediate results must be sequentially
evaluated. The errors propagate linearly that means that for an addition or subtraction,
the errors of the two operands are added or subtracted. If the two operands have the same
number of integer and fraction bits, no error will occur. For multiplications and divisions,
the errors of the two operands are multiplied or divided. Furthermore, multiplications and
divisions cause an error if the fraction part is decreased. It is not possible to represent
every exact floating-point value in the fixed-point format. Hence, the multiplication or
division with a constant can also cause an error.

By considering the first few intermediate results, the first big maximum error occurs
at the wiggling index calculation. A floor function is performed that shifts the values to
the right and generates an integer value for the index look-up implemented on the ARM
core. It was investigated that the error occurs when the correct floating-point value is
slightly below an integer value, for example 0.9999, and the calculated fixed-point value
is above, for example 1.0001, or vice versa. The absolute error is minimal but the floor
function calculates 0 in the first case and 1 in the second case. That means for the
wiggling compensation, the neighboring wiggling compensation value in the look-up table
is chosen. This results in a maximum error of 1.32 mm for the phase value after wiggling
compensation. The sequent intermediate errors are then linearly propagated. In order to
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solve this error source, the image processor architecture can be changed from 16-Bit to
32-Bit. Thus, the accuracy is increased and the appearance of such errors is decreased
but the main issue still remains. This error can also arise with the floor function at the
unambiguous range shift calculation step.

The errors of the improvements are also given. The omission of the wiggling com-
pensation greatly reduces the maximum error of the distance. Due to this improvement,
the wiggling index error does not occur, and no neighboring value in the look-up table
is added. Thus, the mean distance error is 0.076 mm and the maximum distance error
is 0.268 mm. This result is significantly better than with wiggling compensation. For
the required use-case application, such as in gesture recognition, high relative accuracy
is necessary. This can be achieved with this improvement by only causing a maximum
calculation error of 0.268 mm.

The other improvement skips the two amplitude shifts. The inputs of the arcus tangent
magnitude are the real and imaginary part, which are represented in the fixed-point format
(Q15.0). Without the two shift operations the output of the magnitude operation is also
in the format (Q15.0). Due the division with the constant two, the fixed-point format of
the result is (Q14.1), which corresponds to a maximum error of 0.5. This corresponds to
0.017% of the value range, which is feasible for most use-case applications. The actual
mean error is 0.117 and the maximum error is 0.253. The value range of the amplitude is
0 to 2895.6.

The results show that skipping the wiggling compensation can only fulfill the use-
case requirements. The processing steps for the calculation of wiggling compensation are
the main bottleneck of the 4-Phases algorithm. At first the calculation of the wiggling
compensation value is not precise enough due the floor function of the wiggling index.
Furthermore, the execution time is almost doubled because of the software part for the
necessary index look-up. Thus, the interest arises to create in future a hardware component
for the wiggling compensation or furthermore an IP core for calculation steps with look-up
tables. The expansion of the used image processor for that is not easily realized as the
LUT can be read in any order from the extended memory. Hence, the best-case would be
to load the LUT into the BRAM of the FPGA. Another issue is the floor function, which
is not precise enough. Therefore, the image processor could be extended to provide a floor
or modulo operation with more precise intermediate results. Those ideas are not further
discussed in this work.

5.2.2 8-Phases Measurement

The 8-Phases algorithm represents a typical pre-processing approach for an indoor nav-
igation use-case, for example, Google Tango. For this use-case lower, frame rates are
sufficient and a high absolute distance accuracy is required. Two distance images of 4-
Phases measurements with different modulation frequencies are combined. The final step
is an unambiguous range extension. The result is a distance image and a 3D point cloud.
Because the 4-Phases algorithm is part of this algorithm, the distance error of this ap-
proach directly propagates to this computation.
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Figure 5.5: Unambiguous range extension using dual modulation frequencies.
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In Figure 5.5 the results for one measurement are depicted. The ToF camera is placed
on the table to capture a scene of a room to observe the extension of the unambiguous
range. The first distance image, as illustrated in Figure 5.5a, is the result of a 4-Phases
measurement with a modulation frequency of 80 MHz, which corresponds to a unambigu-
ous range of 1.87 m. The second measurement is done with a modulation frequency of
60 MHz, which provides valid results within the range of 2.49 m. Because of unambiguous
range extension computation, the valid range can be increased to 7.46 m. This value can
be calculated by using Equation 2.6.

It can be clearly seen that in the first picture the background beyond the unambiguous
range, is mapped into the valid range by the unambiguous range shift calculation step of the
4-Phases algorithm, due to the 2m-periodicity of the phase. Thus, the distance information
of such objects cannot not be correctly recognized. In Figure 5.5e the final distance image
of the scenery is shown. By performing the extension processing step, the objects that are
not correctly displayed can be mapped into the bigger range. Therefore, a decrease of the
modulation frequency, which would also increase the unambiguous range, is not necessary.
Flying pixels are visible at the sharp edges of the objects.

The calculated amplitude images of the scenery are represented in Figure 5.5¢ and
Figure 5.5d. The amplitude can be used to provide further pre-processing steps on the
distance before unambiguous range extension, such as the invalid pixel detection. Finally,
the distance values are then translated into 3D coordinates. Therefore, the 3D point cloud
calculation can be skipped in the 4-Phases algorithm for both images.

Performance

In Table 5.7 the timing results of the 8-Phases hardware implementation are shown. One
successful computation needs the time of two 4-Phases executions, the unambiguous range
extension and the 3D point cloud calculation. The software implementation on the ARM
core needs 559.54 ms, which corresponds to 1.9 FPS. This result is not feasible for the
most use-cases.

Table 5.7: Timing results of the 8-Phases algorithm.

Time-of-Flight Algorithm H t [ms] ‘ FPS ‘ #HW Instr.
Reference in Software 559.54 | 1.9 -
Reference in Zynq HW/SW 66.45 | 15.05 54
+ Improvement: No Wiggling Comp. 28.41 | 35.2 40
+ Improvement: No Amplitude Shifts || 27.11 | 38.9 36

The hardware/software implementation using the ARM core and image processor op-
erations needs 66.45 ms. Hence, 15.05 FPS are possible. The 4-Phases wiggling compen-
sation on the ARM core significantly increases the execution time. For the unambiguous
range extension 13 hardware-accelerated operations are necessary. This number results
in the use of several operations for basic arithmetic, as well as a round and floor func-
tion. Thus, the complete algorithm is implemented with 54 image processor operations.
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Because high frame rates are not required for this use-case, the obtained execution time
without improvements is suitable.

Furthermore, the timings are also simulated using the two improvements (i.e., no
wiggling compensation, no amplitude shifts) in the execution of the 4-Phases algorithm.
A speed up can be achieved by skipping the wiggling correction. The timing result for that
improvement amounts to 28.41 ms, which corresponds to 35.2 FPS. This is achieved by
skipping the software implementation and by using 40 operations of the image processor.
The skipping of the amplitude shifts decreases the time only minimally. Because only two
operations can be saved, the execution time is 27.11 ms and the FPS are 38.9.

Accuracy

In Table 5.8 the accuracy results of the 8-Phases hardware implementation is shown.
The fixed-point values are compared to the floating-point results of the hardware-related
software implementation. The mean and the maximum error are equally defined as for
the evaluation of the 4-Phases algorithm. The 4-Phases distance images are used. The
modulation frequencies are 80 MHz for the first image and 60 MHz for the second image.
The second distance image is the same as described in the accuracy section of the 4-Phases
algorithm.

Table 5.8: Mean/max errors of the 8-Phases algorithm.

Result H Ermean[mm] ‘ Emaz[mm] ‘
Distance 0.534 2.456
3D point cloud 0.272 2.043
+ Improvement: No Wigg. Comp. 0.523 2.109

The distance mean error is 0.534 mm and the maximum error is 2.456 mm. As for the
4-Phases algorithm the maximum error is also significant higher than the mean error. Due
to the bigger unambiguous range, the percentage maximum error is only 0.003%. This
result can be accepted for the required use-case, which requires high absolute accuracy due
to the compensation of all systematic errors. 0.272 mm is the mean error and 2.042 mm
is the maximum error of the 3D point cloud. The improvement of skipping the wiggling
compensation results in a mean distance error of 0.523 mm and a maximum distance error
of 2.109 mm. Compared to the 4-Phases algorithm, it is obvious that this improvement
only slightly reduces the maximum error. This behavior is further inspected in the next
paragraph. The amplitude errors are not represented because the amplitude images of
the 4-Phases measurements are used and no special calculation in the unambiguous range
extension is performed.

The intermediate results of every used operation are outlined in Table 5.9 to analyze
the error source. At the first few operations the errors are high due to the error propagation
of the 4-Phases distance values. The error of the round intermediate result is 0 mm. After
the round operation, the intermediate result is multiplied with a constant. Therefore, the
error of the second multiplication should also equal 0 mm. This is not the case because the
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multiplication constant cannot be represented exactly in the fixed-point format. Thus, a
maximum error of 0.163 mm occurs which propagates to the final value. Due to the final
multiplication with the large unambiguous range constant, the maximum distance error is
finally 2.456 mm. Because of this error source, the error after the first improvement (no
wiggling compensation) is not that strongly decreased as in the 4-Phases algorithm.

The results show that the high absolute accuracy, which is required for this use-case
application, is achieved by providing an implementation with a compensation of all sys-
tematic errors. Because lower frame rates are sufficient, the wiggling compensation in
software can be performed. Furthermore, it is shown that the limited accuracy of the
16-Bit image processor significantly limits the system’s accuracy. The errors of the unam-
biguous range extension computation are almost eliminated because of the multiplications
with very small constants. Thus, the errors of the 4-Phases algorithm do not heavily
influence the results. Because of inaccuracies of the representation of values in the 16-Bit
fixed-point format, another error source is raised. One solution would be to upgrade the
image processor to a 32-Bit architecture in order to minimize such errors. This work does
not further discuss this issue.

Table 5.9: Mean/max error after each image processor operation of the 8-Phases algorithm.

’ Intermediate Result H Epean[mm] ‘ Epaz[mm] ‘

Addition (1%%) 0.141 2.403
Subtraction 0.144 2.165
Multiplication (1%¢) 0.263 3.564
Round 0.000 0.000
Multiplication (2°9) 0.016 0.163
Multiplication (3"9) 0.067 0.253
Addition (2"9) 0.071 0.329
Floor 0.000 0.000
Subtraction 0.071 0.329
Distance Mult. 0.534 2.456

5.3 Demonstrator

A demonstrator is implemented to show the feasibility of the system. Figure 5.6 shows the
complete developed ToF processing platform. Infineon’s ToF evaluation kit is connected
through the parallel interface with the Xilinx Zynq platform and provides the gathered raw
data. The Zynq development board from Trenz Electronic performs the ToF processing
steps and sends the results through the FPGA’s parallel interface via an adapter PCB to
the AURIX platform. The pre-processed data is then evaluated and transmitted over the
Ethernet interface to the PC. There it can be further used for other purposes, for example,
displaying a live-stream.

During development some issues regarding the transmission over the parallel interfaces
were recognized. In the following paragraphs, those results are described in detail.
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Figure 5.6: Developed demonstrator of the overall system.

Video Input Stage

At first, the initial setup of the connection between the ToF camera and the Zynq platform
is described. Instead with a short flat cable, the parallel interface was firstly connected
with separate cables. Each signal was connected with a 10 cm long cable. This floating
wiring caused transmission errors. Therefore, the separate cables were exchanged with
a flat cable of 10 cm length. With this replacement the setup was more stable but also
transmission errors were occurring.

In Figure 5.7 some error-prone transmitted frames are depicted. The raw frames are
gathered from the ToF camera and then received through the video input stage on the
Zynq. The data is directly copied from the Zynq’s extended memory to the PC to exclude
errors in the video output stage and plotted with the software tool Matlab. One effect of
the unstable transmission is the occurrence of pixels with a wrong value value, e.g., the
maximum value. Hence, these pixels are easily recognizable in Figure 5.7a. The frame is
captured with a pixel cock of 66.66 MHz.

In order to see if the error is reasoned on the high clock frequency, the pixel clock
is changed. The ToF camera can be configured to use another pixel clock. A divider
can be configured to decrease the maximum pixel clock frequency of 66.66 MHz. Follow-
ing dividers are possible: 2, 4 and 8. Hence, following clock frequencies are adjustable:
33.33 MHz, 16.66 MHz and 8.33 MHz. Therefore, the pixel clock frequency is changed
to 16.66 MHz. As illustrated in Figure 5.7b, the false pixels do not appear anymore but
there are blurred rows visible.

In order to be sure about the occurrence of these errors, the visible verification is not
enough. Because the exact pixel values are not known for verification, only the known
pseudo row can be verified. This was done during the verification step of the video input
stage. These pixel values of captured frames are compared to the predefined values in
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real-time. This test shows that at almost every received frame, some transmission errors
occur.

The error source might be an electromagnetic compatibility (EMC) issue due to the
long cable length. In fact, each row is buffered on the ToF evaluation kit to provide better
transmission results. The 10 cm flat cable with nearly no isolation is not suitable for this
framework. For instance, if a line is logical low between two logical high lines, the signal
can also be pulled to high. Therefore, it is not possible to use the framework in use-case
applications where the ToF camera needs to be placed far away from the Zynq platform.

The solution is a shorter flat cable with a length of around 2 cm, which replaces the
long cable. In this setup no such transmission errors occur. Such a short cable is also used
to connect the Zynq development board with the AURIX platform where such errors also
occurred. This setup is verified with a test of the pseudo row of transmitted frames. This
final testing step is performed with a high amount of frames in real-time, so that the error

can be excluded.
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(a) Pixel clock: 66.66 MHz. (b) Pixel clock: 16.66 MHz.
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Figure 5.7: Transmission errors at the video input stage using a 10 cm long flat cable,
e.g., pixel errors, blurred rows.

Video Output Stage

The connection between the Zynq development board and the AURIX platform is estab-
lished with an adapter printed circuit board (PCB) provided from Infineon, as illustrated
in Figure 5.8. It connects the camera interface of the AURIX with the parallel interface
of the ToF camera. Therefore, the parallel interface is equally specified (e.g., data signals
and synchronization signals) on the FPGA. As shown in the top view of the adapter PCB
the 12-Bit data, synchronization and other signals are connected to a parallel interface
plug, as outlined in [Infl5a].

The connection between the Zynq development board and the adapter PCB is realized
with a 2 cm long flat cable. Because of the transmission errors that occur with a 10 cm
long cable at the video input stage, also a shorter flat cable is used. Due to the previous
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Figure 5.8: Adapter PCB [Infl5a].

insights, one would assume that no error-prone transmission would appear. But during the
verification step of the video output stage, similar errors could be recognized. Therefore,
a predefined pattern was loaded into the extended memory and then sent via the transmit
logic through the parallel interface to the AURIX.

In Figure 5.9 an example of the transmission errors is shown. The Zynq platform is
connected with a 2 cm long flat cable with the adapter PCB. The test pattern that is sent
is depicted in Figure 5.9a. Each alternating column has the same value. The pixel values
of the complete first column are OxFFF. The second column is 0x0 and so on. The frequent
change of a pixel value from logical high to logical low, provokes lots of transmission errors.
The received test pattern on the AURIX is shown in Figure 5.9b. It is clearly obvious
that blurred rows occur like at the video input stage. In addition, false pixel values are
also transmitted.

It is not possible to further decrease the length of the flat cable. Therefore, the adapter
PCB might be the error source regarding electromagnetic compatibility issues. Looking
at the top view of the adapter board, it is recognizable that long signal paths are used to
connect the parallel interface plug with the camera interface. Furthermore, the signals of
the camera interface are not placed in the same area. The pins that connect the camera
interface of the AURIX are far away distributed. Thus, different signal path lengths are
used for the connection, which can cause timing problems. Another issue might be the
long distance between the two interfaces. The signal paths on the PCB are around 10 cm
long. This length is already a problem at the video input stage.
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Figure 5.9: Transmission errors at the adapter PCB using a 2 cm long flat cable, e.g.,
blurred Rows (pixel clock: 66.66 MHz, test pattern: OxFFF /0x0)

The solution is to change the pixel clock frequency of the output stage to 8.33 MHz.
This decreases the electromagnetic compatibility issues. As already recognized at the video
input stage, lower pixel clocks provide better results. This solution works also with the
output stage. Due to this decrease, latency is created which can limit the FPS. Another
solution might be the integration of a buffer on the adapter PCB. Regarding the short
flat cable, which can reduce the number of possible use-case applications, it is possible
to connect the AURIX over another interface with the Zynq development board. One
good alternative is the Ethernet interface. For an easy use of this interface an operating
system, e.g., FreeRTOS ([Ltd15]), has to be used. The proposed solutions are not further
discussed in this thesis.

5.4 High Level Synthesis

High Level Synthesis is used to fulfill the requirement of high flexibility in the system.
Therefore, two algorithms are implemented and compared to the software implementation
and Infineon’s image processor regarding performance and area. In this section the esti-
mation results of the HLS tool chain and the final implemented results are presented and
evaluated.

Two test-cases were carried out with an image resolution of 160x 128, which corre-
sponds to 20,480 pixels. The generated IP cores run with a clock frequency of 50 MHz. In
order to determine the execution time of a competition, a timer is started when the start
register is set and immediately stopped after a thrown hardware interrupt.

Pixel-by-Pixel Addition

In the first test-case, a pixel-wise addition of two 16-Bit images is performed. In Ta-
ble 5.10 the timing and utilization results are outlined. The execution time of the HLS
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implementations clearly outperforms the software implementation on the ARM core. The
ToF image processor needs 0.44 ms for one operation. The execution time of the imple-
mented solution with the multi-burst approach is 1.7 ms and with the dataflow directive
is 0.82 ms.

The specified clock frequency is 50 MHz, which corresponds to a clock period of 20 ns.
If one pixel calculation is performed in one clock cycle, the computation time of 20,480
pixels will be 0.41 ms. By keeping the execution times in mind, the image processor needs
one clock cycle per pixel including some overhead timing.

The multi-burst approach sequentially performs following processing steps: read first
image from memory, read second image from memory, perform calculation on two images
and write result into memory. Therefore, four clock cycles are needed to compute one
result pixel. Hence, the estimated time and the real time are almost the same.

The dataflow approach should need one clock cycle per pixel. Thus, the estimated time
is 0.41 ms. The real timing result is however 0.82 ms, which is twice the estimated time.
Hence, there must be a bottleneck in the reading of the memory because two clock cycles
are necessary. In the first pipeline stage the first image is read from memory, whereas in
the second pipeline stage the second image is read, the calculation is performed and the
result image is written into memory. It is not possible to read both images in one pipeline
stage. The image processor efficiently implements its input buffer for two input image
streams, as shown in [Encl4].

The area is smaller for both HLS implementations because the image processor im-
plements lots of more different operations. The dataflow approach needs more utilization
resources because every input or output parameter is synthesized with an own AXI High
Performance (HP) port, whereas the multi-burst approach is generated with only one AXI
HP interface.

Table 5.10: HLS results: addition of two images.

fmplementation || Lov Clock | Bt | BRAMS | DSPs | FFs | LUTs
Cycles t [ms]
Reference in Software - - 15.60 - - - -
HLS Multi-Burst 82,056 1.64 1.70 6 0 1980 | 1589
HLS Dataflow 20,502 0.41 0.82 6 0 3900 | 3836
Image Processor - - 0.44 9.5 7 4732 | 3343

Amplitude calculation

The second test-case calculates the amplitude. The timing and utilization results are
shown in Table 5.11. The software implementation is much slower than the hardware-
accelerated implementations. With the image processor four separate operations have to
be performed which needs 1.76 ms. The execution time of the multi-burst approach is
2.48 ms, and of the dataflow approach is 1.62 ms.
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Table 5.11: HLS results: ToF amplitude calculation.

Implementation Est. Clock |~ Est. t[ms] | BRAMs | DSPs | FFs | LUTs
Cycles t [ms]
Reference in Software - - 95.60 - - - -
HLS Multi-Burst 123,316 2.47 2.48 10 2 4491 | 4014
HLS Dataflow 20,543 0.41 1.62 10 2 8902 | 8438
Image Processor - - 1.76 9.5 7 4732 | 3343

In the multi-burst implementation six clock cycles are used to compute on result pixel
value. At first, the four images are read from memory. Next, the amplitude is calculated
and saved into memory. The estimated results are quite similar to the real execution time.

The dataflow approach implements a pipeline architecture and should use one clock
cycle per pixel but it needs around four. In the first three pipeline stages the first three
images are read from memory, whereas in the fourth pipeline stage the fourth image is
read, the calculation is performed and the result image is written into memory. It is not
possible to read all four images in one pipeline stage. However, the execution time is still
lower than the one of the image processor because the calculation steps are successfully
implemented in a pipeline. Therefore, the bottleneck is also the memory interface.

The utilization of the multi-burst approach is quite similar to the image processor
because more operations are used in the HLS implementation. The area of the dataflow
approach is twice as big because four input images are used and therefore four AXI HP
ports are necessary.

The results show the trade-off between flexibility and achievable hardware-acceleration.
It is outlined that High Level Synthesis is a quite useful tool for rapid prototyping. The
estimated results of the HLS toolchain should be carefully noted because they can differ
widely. Furthermore, the limits of HLS are quickly reached with hardware-accelerated
components, which need to process high amounts of data from the extended memory.



Chapter 6

Conclusion and Future Work

6.1 Conclusion

The Time-of-Flight range imaging technology has attracted the interest of developers for
use-case applications in recent years. Due to the small form factor that can be achieved
with indirect ToF cameras, such systems can be integrated into embedded systems, for
instance, smart phones. Thus, commercial solutions will come up with a range of appli-
cations with specialized requirements.

In this work an FPGA-based ToF processing platform is introduced that is based on
a hardware/software system and allows the flexible realization of lots of different use-case
applications. Furthermore, critical calculations are performed in hardware that increases
the performance of the overall system.

To fulfill the requirements, the Xilinx Zynq platform is used, which allows the hard-
ware/software co-development of complex ToF-based applications. Two pre-processing
applications are developed to show the features of the framework. The state-of-the-art
4-Phases and 8-Phases algorithms are implemented. Such algorithms have applications in
gesture recognition or indoor navigation use-cases. The distance, amplitude and 3D point
cloud can be computed with almost 100 FPS while only producing an average calculation
error of 0.08 mm.

In order to present the feasibly of the proposed framework, a demonstrator with the
automotive platform AURIX developed by Infineon is implemented. It is shown that the
system can also fulfill the high performance and memory requirements in safety-critical
applications in the automotive domain. Thanks to the pre-processing on the Zynq plat-
form, the amount of transferred data can be decreased and allows the AURIX to perform
more complex use-case applications with the additional free resources.

Finally, rapid algorithm prototyping is possible through the presented high level syn-
thesis approach. It is shown that the performance and utilization is in the same dimension
as an application-specific developed hardware-component. A computation implemented
with several image processor operations is even outperformed by the generated high level
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synthesis module. Therefore, performance-intensive calculations in software can be suc-
cessively integrated into hardware. The trade-off between acceleration and flexibility is
illustrated by the obtained results.

6.2 Future Work

The implementation of a demonstrator proves the feasibility of the presented FPGA-based
ToF processing systems in this work. As a next step, the system can be improved regarding
performance and accuracy. Furthermore, the framework can be extended for further yet,
unknown use-case applications. Future work might involve following topics:

e 32-Bit Image Processor

In order to improve the processing accuracy of the two implemented ToF' algorithms,
the 16-Bit architecture of the image processor can be increased to, for example,
32-Bit. The maximum error of the 8-Phases algorithm is caused by the limited
representation of a constant in the 16-Bit fixed-point format.

e Additional Hardware-Integrated Operations

The image processor can be extended with additional hardware-integrated opera-
tions. For instance, a modulo operation with a precise intermediate result in hard-
ware can increase the accuracy. A shift operation can minimize error sources because
in the current system a shift is performed with a multiplication or division that au-
tomatically rounds the result.

e Parallelization of Hardware Components

Due to enough free resources on the FPGA and no data dependency between pixels,
the performance can be quickly improved by adding further image processors to the
hardware design. For instance, adding a second image processor can double the
maximum achievable FPS.

e Wiggling Correction in Hardware

The wiggling compensation can currently only be implemented in software on the
ARM. Hence, a considerable speed-up can be achieved with a hardware-integrated
calculation. Because the wiggling look-up table is non-sequentially read from mem-
ory, an extension of the image processor is not easily achieved. For instance, the
proposed High Level Synthesis approach can be used to create such a hardware
component.

e Hardware-accelerated Post-processing

In order to improve the quality of the computed distance data, hardware-accelerated
calculation for further post-processing can be integrated in the proposed system, for
example, noise filtering.
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e Ethernet Interface

The Ethernet interface of the Zynq development board can be activated and used
for transmission of the calculated data to the AURIX. This connection is less error-
prone than the parallel interface in combination with the adapter PCB and can also
be used to directly connect a host PC to the Zynq platform.

e Real-Time Operating System

For an easy use of the already provided Ethernet protocol implementation, a real-
time operating system, such as FreeRTOS, can be integrated in the current software
system. Furthermore, such an operating system would extend the proposed platform
for use-case applications with real-time requirements.

e Further Use-Case Applications

Additional use-case applications, such as face recognition, can be directly imple-
mented on the Zynq platform. Memory- and performance-intensive calculations can
be moved from the AURIX to the hardware/software platform to free the valuable
resources.

Future projects can use the developed Time-of-Flight processing system for design
exploration in lots of different fields of applications. Furthermore, the platform can be
extended with real-time, multi-core and mixed-criticality concepts, which allow the imple-
mentation of critical applications in the industrial and automotive domain.






Appendix A

Hardware System

Listing A.1: Detailed hardware implementation of the 4-Phases algorithm. Fixed-point

number format (Qu.f) is represented for a modulation frequency of 60 MHz.

© 00~y ULk WN -

imag
real

phase = ImgOp_Atan(imag, real);

phase = ImgOp_Mul (phase,

// Wiggling

phaselim = ImgOp_Limit (0);

Compensation

phaselim = ImgOp_Div(phaselim,

phaseWigg =

wiggldx = ImgOp_Mul (phaseWigg,

wiggldx = ImgOp_Sub(wiggldx,
ImgOp_Mul (wiggldx,

wiggldx
for( i=0; i<
{

wiggError [

}

phase = ImgOp_Add(phase,

phaseFractionBits += 1; //(Q1.14);
phase = ImgOp_Add (phase,

numPixels; i++ )

//(Q0.15);
1/pow (2, 14);
ImgOp_Add (phase, phaselLim);
(N_LUT-1)/2);
pow(2, 1)); //mo rounding of next shift
1/pow(2, 2)); //(Q0.15); wiggldz >>= 2;

ImgOp_Sub (F270, F90); //(Q15.0)
IngOp_Sub(FO, F180); //(Q15.0)

//(Q0.15)

il = wiggLUT [wiggIdx[il];

wiggError);

phaseLim

1/pow(2, 2)); //(Q2.13); phase >>= 2;

= (phase < 0) ? 1:0;

//(Q1.14); phaseLim <<= 14;
//(Q2.13)
//(Q13.2)

equal to division of 2
offsetFppnTempErros) ;

//(Q1.14)

phFloor = ImgOp_Sub(phase, pow(2, 13)); //no rounding of next shift

phFloor = ImgOp_Mul (phFloor,
phFloor = ImgOp_Div (phFloor,
phase = ImgOp_Sub (phase,
distance = ImgOp_Mul (phase,

// Amplitude
real = ImgOp
imag = ImgOp
amplitude =

amplitudeFractionBits += 1; //(Q12.3);

// 3D Point
distanceX =
distanceY
distanceZ

_Div(real, 1/pow(2,
_Div(imag, 1/pow(2,

Cloud

ImgOp_Mul (distance,
ImgOp_Mul (distance,
ImgOp_Mul (distance,

1/pow (2, 14)); //(Q15.0); phFloor >>= 14;
1/pow(2, 14)); //(Q1.14); phFloor <<= 14;
phFloor); //(Q1.14)

c/(2%fMod)); //(Q3.12)

2)); //(Q13.2); real <<= 2;
2)); //(Q13.2); imag <<= 2;
ImgOp_Magnitude (real, imag); //(Q13.2)

directionsX);
directionsY);
directionsZ);

equal to division of 2

//(Q3.12)
//(Q3.12)
//(Q3.12)
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Figure A.1: Block diagram of the hardware system on the FPGA (Vivado IP Integrator).
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