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Kurzfassung

Die Diskrete-Elemente-Methode (DEM) ist eine numerische Methode zur Berechnung von

Bewegungsabläufen von Teilchen, wobei im Zuge der Simulation jedes Teilchen separat

betrachtet wird. Da üblicherweise sehr große Partikelanzahlen und kleine Zeitschritte not-

wendig sind, um reale Prozesse in ausreichender Genauigkeit abbilden zu können, werden

parallele Implementierungen der DEM verwendet, um in annehmbarer Zeit Ergebnisse

liefern zu können.

In erster Linie ist es bei dieser Methode relevant zu wissen, ob sich Partikel berühren, da

dies eine Kraftwirkung zur Folge hat. Deshalb ist auch der Algorithmus, der zur Nachbar-

suche verwendet wird, kritisch für die Gesamtperformance. Zusätzlich werden Änderungen

in der aktuellen Implementierung notwendig sein, um die spezifischen Eigenschaften der

Zielplattform (GPUs, CUDA R©) auszunutzen und eine gute Gesamtperformance zu errei-

chen. Im Speziellen läuft dies auf eine Trennung von Nachbarsuche und Kraftberechnung

hinaus.

Ziel der Arbeit ist es nun die bestehenden Algorithmen zu verbessern (Kontaktlisten,

Verfolgen von Kontakten solange aktiv) und Alternativen (Bounding Volume Hierarchie,

BVH) zu evaluieren. Nach Beschreibung der Algorithmen und der notwendigen Schritte

zur Implementierung wird mit Hilfe von geeigneten Testfällen gezeigt dass die Simula-

tionsergebnisse statistisch gleichwertig sind und, je nach Anwendungsfall, ein sehr guter

Speedup erreicht wird.

Schlüsselwörter

Diskrete-Elemente-Methode, Partikelsimulation, CUDA R©, GPU, Nachbarsuche, Kontakt-

liste, Bounding Volume Hierarchie
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Abstract

The Discrete Element Method (DEM) is a numerical simulation method for computing the

motion of particle systems, being aware of each single particle throughout the simulation.

As there typically are huge amounts of particles needed to accurately model real-world

problems, in conjunction with small time steps, massively parallel algorithms are used to

make computation times acceptable.

In the first place, the DEM addresses short-range forces during particle contact. There-

fore, the used neighbor search algorithm is critical for the overall performance. Addition-

ally, due to parallel algorithms and special platform requirements when targeting graphics

cards using CUDA R©, major changes in the existing implementation are required to achieve

good performance, namely decoupling neighbor search and force calculation.

Objectives of this thesis include optimization of existing algorithms (introducing con-

tact lists and tracking), as well as implementation of promising new approaches (Bounding

Volume Hierarchies, BVH). After description of the algorithms and implementation steps

it is shown that the accuracy has not changed for designed test cases, but significant

speed-ups can be observed.

Keywords

Discrete Element Method, Particle Simulation, CUDA R©, GPU, Neighbor Search, Contact

List, Bounding Volume Hierarchy
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Chapter 1

Introduction

This master thesis was written in cooperation with the Research Center Pharmaceutical

Engineering (RCPE) and the Institute for Technical Informatics of the TU Graz (ITI).

The following introduction gives an overview of this thesis’ motivation, objectives, and

goals.

1.1 Motivation

In industry the possibility of doing simulations before building prototypes often gives a

decisive time advantage when optimizing production processes. This is true for many

different branches, for example food industry, or cosmetics. For the pharmaceutical indus-

try such typical processes include for example tablet pressing, filling capsules, or coating

tablets with active ingredients.

The Discrete Element Method (DEM) is a numerical simulation method for computing

the motion of particle systems [CS79], originally developed for rock mechanics problems.

Typically a large number of particles is needed to accurately model real-world problems like

granular flow or powder mechanics. As the most important non-constant contribution to

the particle motion are the forces due to colliding particles, which is kind of a short-range

force, the problem itself can be highly parallelized if looking at each particle individually.

The used neighbor search algorithm therefore has critical impact on the overall algorithm

performance.

At the RCPE the DEM software prototype eXtended Particle System (XPS) is being

developed since 2011. It is able to couple with the Computational Fluid Dynamics (CFD)

solution AVL FIRE R©, extending its possibilities. Currently implemented particle types

are spherical, glued-spheres, bi-convex tablets, and polyhedra which can be seen in figure

1.1. Features included are for example arbitrary geometries (e.g. a mixer) via a triangle

mesh (optionally moving, e.g. rotating), heat transfer capability, and coating ability via

1



CHAPTER 1. INTRODUCTION 2

Figure 1.1: Shapes currently implemented in XPS - Sphere, Multi-Sphere (also known as
Clump-Sphere or Glued-Sphere), bi-convex tablet, polyhedron. (Source: RCPE)

a ray-tracing method. To make simulations on single workstations feasible the simulation

core was written in the parallel computing platform Compute Unified Device Architecture

(CUDA R©) (see chapter 2.2), to use the massive computing power of NVIDIA graphics

cards for general purpose computing. [RGK10]

Examples of simulations done with XPS are shown in figures 1.2 and 1.3. The first one

is a DEM-only simulation of a simple mixer device, the other one is a combined CFD-

DEM simulation of a so-called Wurster-Coater where particles get fluidized due to an inlet

airflow, and coated (i.e. a liquid sprayed onto the particles).

1.2 Objectives

The main objective of this thesis is to analyze different approaches which could improve

the overall performance of the simulations. Currently the neighbor search is done using an

uniform grid, where each particle in the neighbor cells can be easily accessed and checked

for collision. This simple method is very efficient, but may not be suitable for every real-

world problem. Two major issues, which already have been discussed in [Kar12b], could

deduce algorithm performance:

• Mixing a large number of small particles with big particles, which requires a big cell

size and lots of collision checks.
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Figure 1.2: DEM-only simulation of a simple mixer device where the blades are rotating
with 40 revolutions per minute. The upper-left part is the initial state at t = 0 s, where
particles got color-tagged. Upper-right, lower-left and lower-right are snapshots at times
t = 1 s, t = 2 s and t = 3 s, respectively. (Source: RCPE)
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• The so-called teapot-in-a-stadium problem, if a big part of the simulation domain

does not contain particles at all. In this case lots of memory gets wasted on empty

cells.

To overcome these issues one part of this thesis should be dedicated to evaluate tree

structures, the so-called Bounding Volume Hierarchy (BVH), and to compare with uniform

grid spatial subdivision already implemented in XPS.

On the other hand, it makes a difference how complex the collision detection and

force calculation is. In case of really simple particle shapes like spheres, one kernel which

executes both steps together is fine. Recently more complex shapes were implemented in

XPS, for example bi-convex tablets and so-called polyhedra, but performance decreased

hugely. Due to execution divergence (see chapter 2.2) it would be a good idea to divide

the collision step into broad- and narrow-phase collision detection, which means collecting

neighbors in one step and calculating forces separately.

Another important point is to make contact lists available to optionally track contacts

over time, which can for example be used to implement history-dependent tangential forces

needed in some models, or to visualize force chains. As for splitting the collision step some

kind of neighbor list is necessary anyway to store the potential collision partners, this might

be a good starting point.

Last but not least the performance and correctness of the algorithms should be analyzed

with suitable test cases.

1.3 Structure

The following chapter 2 explains the basics of the DEM and the CUDA R© developing

platform. Subsequently an analysis of the current implementation in XPS is given, as

well as alternative approaches for collision detection will be discussed in chapter 3 and 4.

In chapter 5 implementation details of the chosen algorithms are presented. Finally, in

chapter 6 appropriate test cases are chosen, along with the performance measures carried

out, and a subsequent discussion is given. Validation of the new algorithms with standard

test cases is done as well, to show that the simulation results have not changed in statistical

manner. Last but not least, chapter 7 gives a conclusion of what has been done as well as

an outlook for possible improvements in the future.
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Figure 1.3: Combined CFD-DEM simulation of a so-called Wurster-Coater where particles
get fluidized. The upper-left part is the initial state at t = 0 s, where particles got color-
tagged. Upper-right, lower-left and lower-right are different snapshots as time progresses.
(Source: RCPE)



Chapter 2

Theory

2.1 Discrete Element Method (DEM)

The method, invented by Cundall in 1971 ([Cun71], [CS79]), is a numerical method for

computing the motion of a large number of particles. Firstly, the particles are positioned

and given an initial velocity. Then this time-step based method calculates all kind of

forces the particles are exposed to and then changes position and velocity of each particle

according to some numerical integration scheme to solve Newton’s equations of motion

~Fi =
d~pi
dt

(2.1)

~Mi =
d~Li
dt

(2.2)

where ~Fi is the overall force, ~Mi is the overall torque acting on particle i, ~pi is the

momentum, and ~Li is the angular momentum of particle i. Calculating forces followed by

numerical integration is done in a loop until a specified end time is reached. What is used

in XPS is a so called soft-sphere model, where particles can overlap, and depending on the

specific overlap volume the collision force direction and magnitude is calculated. Possible

values for the time step depend on various particle properties, maximum velocities and

material parameters. To keep the overlap between particles low usually really small time

step values have to be chosen, for example tstep = 10−5 seconds is a commonly used value.

So in this example for only a second of process time to be simulated 105 time steps have to

be calculated, including at least search of neighbors, calculation of forces, and numerical

integration. If a feasible simulation with millions of particles and maybe minutes of process

time is desired, the neighbor search has to be fast, as the trivial algorithm would, for each

particle, loop over all other particles, which results in time complexity Θ(n2). What is

currently done to avoid this is explained in 2.3.

6
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2.2 Graphics Processing Units and CUDA

Graphics Processing Units (GPUs) are specialized for graphics rendering and therefore are

highly parallel, multi-threaded processors with many cores and have massive computation

power along with a very high memory bandwidth. In 2006 NVIDIA invented CUDA R© with

the aim of getting GPUs widely used also for general-purpose programming, an approach

which is widely known as General Purpose Computation on Graphics Processing Units

(GPGPU). [NVI15]

2.2.1 Programming Model

CUDA R© extends the C language by letting the programmer define functions which should

be executed N times in parallel by N different threads. These functions are called ker-

nels and are declared with the global specifier to let the compiler know that this code

should be compiled for the GPU. Such a kernel is invoked on the Central Processing Unit

(CPU)-side by not only a function call, but also specifying how much threads should be

created via the so-called execution configuration syntax <<< number of blocks, threads per

block>>>. So the caller has to define how many blocks and how many threads per block

should be created. A short example code which adds two arrays A and B element-wise

and stores the result in array C could look as follows:

1 // Kernel d e f i n i t i o n

2 g l o b a l void VecAdd( f l o a t ∗ A, f l o a t ∗ B, f l o a t ∗ C) {
3 i n t i = threadIdx . x ;

4 C[ i ] = A[ i ] + B[ i ] ;

5 }
6 i n t main ( ) {
7 . . .

8 // Kernel i nvoca t i on with N threads

9 VecAdd <<< 1 , N >>> (A, B, C) ;

10 . . .

11 }

The number of blocks is also called grid-size, the number of threads per block is also known

as block-size.

Both grid- and block-size can be two- or three-dimensional types as well, if this suits

the problem better or is more convenient to use (e.g. for matrices or images given as multi-

dimensional arrays). Each thread has access to its own thread index (range [0, block-size -

1]) and block index (range [0, grid-size - 1]) in each dimension. A configuration of having

6 blocks with 12 threads each is illustrated in figure 2.1.
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Figure 2.1: Grid of 6 thread blocks with 12 threads per block. (Source: [NVI15])

Besides the global specifier there exist also host and device , where host always

refers to the CPU and device refers to the GPU. This means for example that a device

function can only be called from another device function or from a global function because

it is only compiled for the device and not for host. [Wil13], [NVI15]

2.2.2 Hardware Implementation

When a CUDA R© kernel is invoked the blocks of the grid are distributed to so-called

Streaming Multiprocessors (SM, SMX). Such a multiprocessor is designed to execute hun-

dreds of threads concurrently. Each multiprocessor is assigned multiple thread blocks (if

there are enough), and the threads of a block are executed concurrently. Different GPUs

have a different number of SMs, but the programming model is scalable as less multipro-

cessors only lead to more blocks, and therefore more work, assigned to each SM, see figure

2.2.

The architecture used is Single-Instruction Multiple-Thread, what means that the SM

partitions blocks into warps which then are managed, scheduled, and executed. A warp

is a group of 32 threads and always executes one common instruction (i.e. common for

all the threads in a warp). However, each thread still has its own register state and

instruction address counter, which allows for independent execution. Still, full efficiency
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Figure 2.2: Scalability when using a different number of Streaming Multiprocessors
(Source: [NVI15])

is only reached if each thread in a warp executes the same instruction at a time. If that is

not the case serialization of the different branch paths happens, with some threads being

inactive. During the lifetime of a warp the execution context is stored on-chip, so a context

switch has no cost.

Available resources should always be kept in mind as the amount of registers per

multiprocessor is limited and the number of blocks and warps being processed on a multi-

processor depend on register usage and requested shared memory (see next chapter 2.2.3).

Depending on the compute capability of the device there is also a maximum number of

resident warps/blocks per multiprocessor. [Wil13], [NVI15], [Kre11]

2.2.3 Memory Hierarchy

In figure 2.3 the memory hierarchy is illustrated. Most of the data used for processing

on the GPU is usually stored in the so-called global memory, which is located in device

memory and accessible from each thread. On the other hand each thread has some private

local memory, which for example is used if register spilling occurs, i.e. if there are not

enough registers available for kernel execution. This should be avoided because this kind

of memory also resides in device memory and therefore accesses have comparably low

bandwidth and high latency.



CHAPTER 2. THEORY 10

Figure 2.3: Memory hierarchy. (Source: [NVI15])
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When it comes to optimizing memory throughput it is important to know that a warp

coalesces accesses into one or more memory transactions, depending on word sizes and

addresses. Usually it is best to only use words of size 1, 2, 4, 8 or 16 bytes which are not

scattered, i.e. thread 5 reads the 5th element of an array and thread 8 reads the 8th one.

Depending on the architecture different accessing modes (e.g. strides) lead to a different

memory throughput. A general rule is that more scattered memory accesses lead to a

lower memory throughput.

Minimizing global memory accesses can be achieved using different on-chip caches (e.g.

L1 and L2 cache available depending on device architecture), or using shared-memory

which can be seen as a user-managed cache. It is possible to have a limited amount

of this on-chip shared memory per thread block, accessible with higher bandwidth and

lower latency compared to global memory. The exact amount is specified via the exe-

cution configuration syntax. If used, synchronization primitives are available for a safe

communication between threads of a block ( syncthreads()).

The L1 and L2 cache are traditional hardware-managed caches. Usually the L1 cache

uses the same on-chip memory as shared memory, so the available resources should be

always kept in mind. Additional cache types are the so-called constant cache, which

is used for the constant memory space (resided in device memory, readable only), and

the texture cache which can have benefits over direct global memory reads if the access

patterns are not optimal. Additionally texture reads feature interpolation modes, and

address calculation by dedicated units. [Wil13], [NVI15]

2.2.4 Warp Intrinsics

With the KeplerTM architecture NVIDIA introduced warp shuffle intrinsics for exchanging

data within a warp more efficiently than possible via shared memory. These functions

either return data from specific threads or shuffle elements up or down within a warp.

Also available are so-called warp voting functions which evaluate predicates for all active

threads of a warp and then broadcast the result. [Wil13], [NVI15]

2.2.5 Atomic Functions

Atomic functions are available on current architectures to enable atomic read-modify-

write operations on global or shared memory. For example, discussed later in chapter

5, for processing the neighbor lists atomicAdd(address, value) is used to atomically add

forces if more than one thread could do so concurrently. [Wil13], [NVI15]
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Figure 2.4: XPS program flow. Colored steps are discussed in detail. (Source: RCPE)
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Figure 2.5: Objects assigned to uniform grid cells - how to find potential collision partners.
(Source: [Kar12b])

2.3 XPS - Current Implementation

The simplified XPS program flow, where only the basic steps necessary for a pure DEM-

only simulation are given, is illustrated in figure 2.4. Particles and geometries are either

loaded from a restart file or freshly initialized according to input files. A configuration

file has to be given, along with shape and material databases where detailed information

about the particles to be simulated is given. After selection of the CUDA R© device to use,

all the needed data is copied to the device, followed by the simulation loop.

The algorithms used in XPS for broad-phase collision detection will be presented in this

section. Basically, an uniform grid is used and particles are assigned to cells, illustrated in

figure 2.5. For the collision detection itself an easy access to the particles of a cell is needed.

The cells have to be at least the size of the biggest particle diameter to assure that all

potential collision partners are located inside the 33 = 27 cells around the cell containing

the particle of interest. How particles are assigned to cells and how the data structures

for looping over particles in a cell are created is described in the following sub-sections.

[RGK10]

2.3.1 Uniform Grid Sorting

Figure 2.6 presents a 2D-simplified version of the used algorithm to make easy access to

particles in a cell possible. In XPS this step is also known as preparation step. Firstly, each

particle is assigned a cell-hash-value, which is a simple mapping from the three-dimensional

cell-position to one number:

cellPos.xyz =

⌊
pos.xyz − worldOrigin.xyz

cellSize.xyz

⌋
hash = cellPos.z · gridSize.y · gridSize.x+ cellPos.y · gridSize.x+ cellPos.x

(2.3)
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Figure 2.6: Uniform grid algorithm - assign particles to cells, sort, and retrieve cell-start
indices. (Source: RCPE)

Then the particle indices are sorted with hash-values as keys, leading to particle-indices of

particles in one cell being contiguous in memory. Now the cell-start vector is introduced

with length equal to the number of cells in the simulation domain. This vector is then

filled with a magic number equal to the maximum integer value, representing empty cells

(E in the figure). Afterwards, the cell-start vector is filled with the starting indices for

each cell. That is done by looking at the indices where the hash-values, and therefore the

cell positions, change and storing these indices in the appropriate positions in the cell-start

vector. In pseudo-code that is essentially just those two lines, ignoring index checks:

1 i f ( hashes [ i ] != hashes [ i −1])

2 c e l l s t a r t [ hashes [ i ] ] = i ;

Here i is the thread index, where one thread is started for each hash value in the sorted

hash-vector. A more sophisticated approach is used in XPS to avoid loading two hash

values per thread, that is using shared memory and sharing the ith value with the thread

i+1.

How the cell-start vector is used can be seen in the next section where the collision

kernel is explained. In principle, each cell-start value points to the first particle of the

according cell.
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Figure 2.7: Collision kernel - neighbor search via uniform grid. (Source: RCPE)
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2.3.2 Collision Kernel

In figure 2.7 a flow-chart is given of how looping through potential collision partners is done

using the uniform grid. At first, the particle position has to be read from global memory,

followed by calculation of the cell position introduced in equation 2.3. With proper cell

sizes, as already discussed, for each particle looping over the 27 neighbor cells is sufficient.

From each cell position the cell hash then is evaluated, which allows for looping over the

particles in a specific cell, if the cell is not empty. This is achieved using the pair of vectors

introduced as hashes and particle indices in figure 2.6. For each neighbor particle it is then

decided if a collision can occur or not. The end of this loop is reached when the particle

hash changes, i.e. a different cell is accessed. [RGK10]

2.3.3 Handling Particle-Geometry Collisions

For the purpose of geometry input, XPS is capable to read STereoLithography (STL) files,

giving an arbitrarily detailed triangulated surface of the real-world geometry. Collision

detection is also based on the uniform grid, what means the triangles have to be inserted

into the uniform grid as well. The main difference is that a single triangle is located in

more than one cell, in general. Therefore, the triangle preparation step, as it is called in

XPS, roughly consists of the following parts:

1. For each triangle, count number of occupied cells.

2. Allocate memory for indices and hashes vector for all those cells.

3. Do step 1 again, instead of counting, fill indices and hashes vector with appropriate

values.

4. Similar as for particles (figure 2.6), sort indices by hash values.

5. Find cell-start indices by looking at changing hash values, indicating a change in cell

position.

In the collision step, similar as for particle neighbor search, the 27 surrounding cells are

looped through, where all the triangles located in a cell can be accessed by looking at the

cell-start vector.

2.3.4 Memory Management

All the dynamic data of the objects in the simulation is usually kept on the GPU, only

updating the data on host-side if needed for visualization or storing results. Read-only

values often loaded from memory such as shape parameters, material parameters, gravity,

simulation domain, or size of uniform grid, are stored in constant memory, and therefore

enable fast access via the constant cache (see chapter 2.2.3).
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Figure 2.8: The structure of a Bounding Volume Hierarchy. (Source: [Kar12b])

2.4 Alternative Approaches

2.4.1 Neighbor Search

As already mentioned in section 1.2, using an uniform grid for spatial subdivision is ef-

ficient, but has some issues like differently sized particles or largely empty areas in the

simulation domain. [Kar12b]

There are different approaches to address either polydisperse particles or the teapot-

in-a-stadium issue. For example a hierarchical grid could be used, that means grouping

particles into sets with different grid sizes, discussed by Ogarko et al. ([OL12]) recently.

But, this approach does not address large empty areas in the simulation domain at all.

Additionally, at particle samples with a continuous distribution, it is difficult to select the

number of hierarchies and the optimal size ranges covered by each hierarchy.

On the other hand, to address the sparse cell occupation, it could be beneficial to have

an alternative to the huge cell-start vector, storing the start-index for each cell in the

simulation area, occupied or not. One possibility would be hash tables which are filled

with the occupied cells as keys and the cell’s particles as value. There exist algorithms for

creating fast and memory efficient hash tables on the GPU (see [ASA+09]), and research

is ongoing regarding this matter.

Addressing the two issues of interest at once, different authors have discussed fast

parallel BVH construction in the past. The BVH is a hierarchy where bounding volumes

contain other bounding volumes or elements, organized as a tree, see figure 2.8. Each node

in the tree has its Axis Aligned Bounding Box (AABB) or some other representative for

the bounding volume - other possibilities would be bounding spheres or oriented bounding

boxes. Such trees are often used as accelerating structures for ray-tracing or broad-phase

collision detection. If the tree contains all the elements to collide with, collision detection

is equivalent to traversing the tree, starting at the root node on the very top level. Via
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each node’s bounding box it can be decided if a collision with children nodes is possible

or not.

Depending on the application it is often difficult to find the right quality (i.e. traversal

performance) vs. construction speed tradeoff. For particle simulation in every time step

the tree has to be re-built or updated as the positions change constantly, so certainly also

the tree construction time matters. A very simple approach which reduces the construction

problem to a simple sorting problem is called Linear Bounding Volume Hierarchy (LBVH)

which is focused on quick construction but still produces good-quality BVHs. To achieve

this, a so-called space-filling curve is used for ordering the input elements. Elements that

are close to each other then effectively end up close to each other in the resulting tree.

Algorithms, including construction and traversal, were presented in [LGS+09] and, more

recently, [Kar12a].

2.4.2 Neighbor Lists

One important implementation detail to consider is warp divergence. As already discussed

in chapter 2.2.2 all the 32 threads of a warp execute the same instruction at a time, with

different execution paths being serialized. Taking a look at the collision kernel (chapter

2.3.2) this happens at the following places:

1. Looping over a different number of neighbor cells for threads handling particles near

simulation domain boundary.

2. Looping over a different number of particles in a cell.

3. If distance of particles small enough or bounding boxes overlap: do fine collision

detection and/or calculate force and torque.

The first two points are inherent for this kind of simulation as each particle has its

individual number of neighbors, the same applies for traversing trees in a similar way.

But, doing fine collision detection right after the coarse check leads to a lot of inactive

threads for some time. If complex shapes are involved there is a lot more work to do to

even decide if collision occurs or not. Global memory loads additional to positions are

involved as well, e.g. velocity, angular orientation, and angular velocity of the neighbor

particle, which are usually needed to calculate the resulting force.

What is often done to avoid this is known as two-phase collision detection. That

means, after the coarse collision check, the potential collision partner is added to a list,

also known as broad-phase collision detection. In a second step the list is processed,

which is often called narrow-phase collision detection. For example this approach was
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Figure 2.9: Overlapping particles. ~n is the normal direction, ~t lies in the tangential plane
of the contact. (Source: [Rad06, page 12])

implemented by Govender et al. ([GWKE14]) for storing neighbors in their state-of-the-

art DEM-implementation featuring polyhedral shapes, using an array of neighbors with

fixed size.

There are different storage possibilities for neighbors. A static list could store a fixed

number of neighbors per particle. Also being discussed could be a dynamic list of variable

length, which may be resized if needed. In this case writing to the array has to be atomic,

as the neighbor search algorithm is running massively parallel. A similar approach was

discussed in [Wan10], where also a hybrid version combining static and dynamic list was

suggested.

Such a contact list may also be extremely useful for particle-triangle contacts. Imagin-

ing particles in a geometry, only a fraction of them may be in contact with the geometry

at all, leading to high execution divergence.

A great advantage of having contact lists available is that they do not have to be re-

built every time step, but can be kept from one to another, enabling to track the contact

and to know something about its history. If it is possible to modify the contact list directly,

append new contacts, and delete vanishing contacts, additional values can be stored for

each contact which can be accessed or modified whenever needed.

2.4.3 Force History

Figure 2.9 shows two particles during a contact, and in figure 2.10 the DEM contact

model is illustrated. When a spring/damper model is used in tangential direction as well,

tracking the contact over time becomes necessary to get an idea about the tangential spring

displacement. It can be seen that the normal spring displacement δij is known in every time
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Figure 2.10: DEM contact model in normal (top) and tangential (bottom) direction.
(Source: [Rad06, page 13])

step, being equal to the overlap distance, what is not the case for the tangential direction,

where the contact history is needed. The tangential spring displacement analytically is

defined as the time-integral over the tangential velocity vt

θij(t) =

∫ t

t0

vt(τ) · dτ (2.4)

where the contact first occured at t = t0. Initialized with 0 for each new contact, it is then

numerically approximated by adding vt · tstep to the current displacement value in each

force calculation step. For physical correctness additional steps are necessary, including a

projection of the already existing tangential displacement onto the current tangential plane

and limiting the force according to the so-called Coulomb condition. Various approaches

are reviewed by Kruggel-Emden et al. ([KEWS08]), also discussing methods of how the

tangential spring could be constrained for physical correctness. Still, managing to get a full

history working within a GPU implementation is challenging, as the number of contacts

is not known in advance. Having a working neighbor list is the first step, enabling force

history then is just a matter of having an additional storage element for each contact, and

to find a method how to in-place modify the neighbor list instead of creating everything

from scratch.



Chapter 3

Design and Implementation of

Neighbor Search

As discussed in 2.4.1, the LBVH is a good implementation candidate as a more flexible

acceleration structure compared to the original uniform grid approach. This chapter is

dedicated to the needed algorithms, and additionally introduces possible approaches for

further optimization of the uniform grid neighbor search.

3.1 Linear BVH

This section is supposed to show possible algorithm designs for binary radix tree con-

struction, creation of the BVH by assigning bounding boxes, as well as how to traverse it

in the broad-phase neighbor search step to collect potential collision partners. The most

recent publication dealing with these subjects under the aim of maximizing parallelism

is [Kar12a], showing that their implementation outperforms previously published meth-

ods. In contrast to processing each level separately, leading to limited parallelism in the

higher levels of the tree, as these layers may consist of a few nodes only, their algorithm

parallelizes over the entire tree.

3.1.1 Morton Code

The main idea of the LBVH is to order the input elements along a space-filling curve.

During generation of the node hierarchy, internal nodes are assigned subtrees, each of

them equivalent to a linear range of sorted input elements. Used for ordering elements is

the Z-order, which is often referred to as Morton Code. In figure 3.1 it is illustrated how

the one-dimensional value is constructed bit-wise from the three-dimensional coordinates

by interleaving bit patterns.

21
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Figure 3.1: Morton Code (Z-order). (Source: [Kar12b])

This automatically results in high locality, i.e. elements close to each other in space

also being close to each other in the tree. Coordinates used for calculation of Morton Codes

are normalized values of the AABB’s centroid. How to normalize depends on the Morton

Code’s storage type. In practice integer types of 32 or 64 bit width can be used, resulting

in a Morton Code of 3 · 10 = 30 bit or 3 · 31 = 63 bit width, cutting the simulation domain

into 210 or 231 parts along each axis, respectively. In the case of a 30-bit Morton Code the

normalization is a mapping of each coordinate to an integer between 0 and 210− 1, which

can be accomplished as follows:

normalizedPos.xyz = min

(⌊
pos.xyz − worldOrigin.xyz

worldSize.xyz
· 210

⌋
, 210 − 1

)
(3.1)

Afterwards, the Morton Code is constructed out of the normalized position in each di-

mension, by expanding the bits (i.e. insert 2 zeroes between each two consecutive bits)

and interleaving the resulting bit patterns. Expanding the normalized positions can be

done with magic number operations, and interleaving can be reduced to bit-shifting and

addition. For 30-bit Morton Codes the lines of code for expanding the bit patterns are:

1 unsigned i n t expandBits ( unsigned i n t v ) {
2 v = (v ∗ 0x00010001u ) & 0xFF0000FFu ;

3 v = (v ∗ 0x00000101u ) & 0x0F00F00Fu ;

4 v = (v ∗ 0x00000011u ) & 0xC30C30C3u ;

5 v = (v ∗ 0x00000005u ) & 0x49249249u ;

6 re turn v ;

7 }

The final result for the Morton Code m[i] of element i then is computed out of the

normalized positions p[i] as follows:

m[i] = 4 · expandBits(px[i]) + 2 · expandBits(py[i]) + expandBits(pz[i]) (3.2)
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3.1.2 Common Prefix

The common prefix between two Morton Codes is defined as the matching leading bits and

is interesting for creation of the node hierarchy, as splits occur at changes in the common

prefix. Therefore the common prefix length is the value of interest. The following equation

is used to calculate the common prefix length between two nodes i and j:

δ(i, j) =


−1, for j /∈ [0, n− 1]

clz(m[i]⊕m[j]), for m[i] 6= m[j]

32 + clz(i⊕ j), for m[i] = m[j]

(3.3)

Here, m[i] is the Morton Code of the i-th element, clz() (available as CUDA R© intrinsic)

counts leading zeroes, and ⊕ stands for the bit-wise XOR operation. This definition

handles non-unique Morton Codes as well, using the index as a fallback value when two

Morton Codes are equal, as suggested in [Kar12a]. In this case the leading 32 bits are

equal (as 32-bit integers are used), therefore 32 is added to get an even higher value for

those pairs, as they have more in common.

3.1.3 Tree Properties

For simplicity Morton Codes of the elements to be inserted into the tree are called keys

in the following sections. Figure 3.2 illustrates an example binary radix tree, which is

basically a hierarchical representation of the keys’ common prefixes, omitting nodes with

only one child. When n is the number of keys, the resulting tree consists of n− 1 internal

nodes. As the tree is ordered, an internal node’s range [i, j] implies that common prefix

lengths within this range are greater than or equal the common prefix of keys i and j,

i.e. δ(k1, k2) ≥ δ(i, j) ∀ k1, k2 ∈ [i, j]. The first differing bit, following the common prefix

length δ(i, j) of the internal node’s range of keys, determines where to split into sub-trees.

The last key having a zero bit at this position is denoted as split position γ. The common

prefix length at the split location δ(γ, γ + 1) then equals δ(i, j), with the sub-ranges [i, γ]

and [γ + 1, j] each having a strictly greater common prefix length than δ(i, j). This is

because each sub-range has at least one additional common bit, 0 in the left and 1 in the

right sub-range, respectively.

3.1.4 Tree Construction

From the previous section a sequential algorithm directly follows by starting at the whole

range, splitting at the first differing bit, and continue in a recursive fashion with the two

child nodes. As shown in [Kar12a], a special numbering of internal nodes (see figure 3.2,

bottom) allows to process each node independently. If the internal and leaf nodes are
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Figure 3.2: Hierarchy generation: How to determine split positions. Top: Binary radix
tree. Bottom: Special Ordering of internal nodes for independent construction. Leaf nodes
are green. (Source: [Kar12a])
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stored in separate arrays, I and L, with the first internal node located at I0, covering the

whole range [0, n− 1] of keys, the children’s indices can be assigned according to the split

position as follows:

• The children’s indices of a split at the position γ become γ and γ + 1

• If the range covers only one key, it has to be a leaf (Lγ or Lγ+1), and an internal

node otherwise (Iγ or Iγ+1)

This layout has the property that each internal node’s index is equal either to its first

or last key due to this particular construction method: The root node is located at the

beginning of its range, each left child is located at the end of range [i, γ], and each right

child is located at the beginning of range [γ + 1, j]. It should be kept in mind here that

from a bottom-down view when a node is splitted into sub-ranges, the split position alone,

in addition to its already known own range, determines the sub-ranges. But, as each

internal node should be processed independently and fully parallel, the relationships are

incomplete yet, and therefore the range of parent nodes can not simply be looked up.

Hence, a separate step to determine the range is necessary. From this point of view the

algorithm consists of following steps for node i:

1. Determine direction of range, i.e. is key i the last or first key of its range

2. Determine other end of range

3. Determine split position

4. Assign child/parent relationship

This construction algorithm does more work, compared to the recursive approach, which

only needs one binary search per node. It would not make sense at all if used for a serial

implementation, as the dependency between nodes is not a problem at all when processing

the levels serially.

Determine Direction and Minimum Common Prefix

The direction must be chosen so that the own range has a greater common prefix length

than the parent node, as follows from previous considerations. For this the neighbor keys’

common prefix lengths have to be examined, δ(i, i − 1) and δ(i, i + 1). In the ‘wrong’

direction there is actually the splitting partner located, from one level above, as follows

by construction rules. Subsequently, the common prefix is as long as for the parent node

range. As the own node’s range must have a greater common prefix length, the direction,

as well as the minimum common prefix length given by the parent’s split (i.e. the ‘wrong’

direction), can be determined by following lines of code:
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1 i n t d = s i gn ( de l t a ( i , i + 1) − de l t a ( i , i − 1) ) ) ;

2 i n t deltamin = de l t a ( i , i − d) ;

By definition (see equation 3.3), δ(0,−1) = −1, and the direction of the root node becomes

+1, which is required by the construction algorithm.

Determine Range of Node

The idea is to find the largest l that satisfies δ(i, i + l · d) > δmin, based on the property

that keys covered by a node are also part of the parent node, and therefore the lower

bound common prefix length is δmin, as determined in the previous step, which equals the

common prefix length of the parent. Two steps are done to find this range of keys. In the

direction to look, firstly an upper bound lmax is resolved so that δ(i, i + lmax · d) > δmin,

using power-of-two exponential increase:

1 i n t lmax = 2 ;

2

3 whi le ( d e l t a ( i , i + d ∗ lmax ) > deltamin ) {
4 lmax ∗= 2 ;

5 }

Afterwards a binary search is done in the range l ∈ [0, lmax − 1], to find the largest l that

satisfies δ(i, i+ l · d) > δmin:

1 i n t l = 0 ;

2 i n t t = lmax ;

3

4 do {
5 t /= 2 ;

6 i f ( d e l t a ( i , i + d ∗ ( l + t ) ) > deltamin )

7 l += t ;

8 }
9 whi le ( t > 1) ;

10

11 i n t j = i + l ∗ d ;

Here, lmax is a power-of-two integer, and starting from the highest bit the corresponding

values are added to the range length, as long as the condition for a greater common prefix

length is satisfied. Finally, the other end of the range j = i+ l · d can be fixed, and δ(i, j)

can be calculated.

Determine Split Position

Looking for the split position is basically the same binary search as previous when the

range was scanned - the largest s that satisfies δ(i, i+ s · d) > δ(i, j) gives the last key to
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be in the range starting at i. Now, l is not a power-of-two integer, therefore rounding up

has to be ensured in each halving step:

1 i n t commonPrefix = de l t a ( i , j ) ;

2 i n t s = 0 ;

3

4 do {
5 l = ( l + 1) >> 1 ;

6 i f ( d e l t a ( i , i + d ∗ ( s + l ) ) > commonPrefix )

7 s += l ;

8 }
9 whi le ( l > 1) ;

10 s p l i t = i + s ∗ d + min (d , 0) ;

When d = +1, the range starting with key i corresponds to the left child node with range

[i, γ], and the according split position equals γ = i + s. For d = −1 when the range goes

left (i.e. to lower indices), the situation is different as those keys are covered by the right

child node ending at key i, with a range starting at γ + 1, so γ + 1 equals i − s in this

case. The general equation is then given by γ = i+ s · d+ min(d, 0), being valid for both

directions.

Assign Node Relationships

Finally the sub-ranges are known to be [min(i, j), γ] and [γ + 1,max(i, j)]. As previously

discussed, if a range consists of only one key, a leaf node is placed. This is the case if for

the left sub-range min(i, j) = γ, and for the right sub-range max(i, j) = γ+1, respectively.

Therefore, the code used to assign node relationships looks as follows:

1 node . chi ldAIdx = s p l i t ;

2 node . chi ldBIdx = s p l i t + 1 ;

3

4 i f ( s p l i t == min ( i , j ) ) {
5 lea fNodes [ s p l i t ] . parentID = index ;

6 node . childAType = TYPE LEAF;

7 }
8 e l s e {
9 inte rna lNodes [ s p l i t ] . parentID = index ;

10 node . childAType = TYPE INTERNAL;

11 }
12 i f ( s p l i t + 1 == max( i , j ) ) {
13 lea fNodes [ s p l i t +1] . parentID = index ;

14 node . childBType = TYPE LEAF;

15 }
16 e l s e {
17 inte rna lNodes [ s p l i t +1] . parentID = index ;

18 node . childBType = TYPE INTERNAL;

19 }
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3.1.5 Assigning Bounding Boxes

After tree creation there is still this single step left to make it useful for collision detection.

As suggested by [Kar12a], one thread is created per leaf node, walking up towards the root

node. It is necessary that both child nodes already have been processed (i.e. an accurate

bounding box has been assigned) to go on with the parent. This can be accomplished

by having a counter for each internal node, which is initialized with 0 and incremented

atomically by each child. The first child just exits, whereas the second child calculates

the node’s bounding box, which then is safe, followed by continuing the tree-walk. This

is achieved by the following lines of code:

1 // s t a r t with a l e a f node ’ s parent

2 u int pa r en t id = lea fNodes . parentNodeID [ index ] ;

3 // whi l e root node not reached

4 whi le ( pa r en t id != INVALID HASH) {
5 // i f we are the f i r s t one to c a l l CalcAABB ( . ) , we ’ re f i n i s h e d

6 i f ( in te rna lNodes .CalcAABB( pa r en t id ) )

7 re turn ;

8 // otherw i se cont inue walk−up
9 par en t id = inte rna lNodes . nodes [ pa r en t i d ] . parentNodeID ;

10 }

where CalcAABB(.) roughly does following:

1 i n t o ld = atomicAdd(&aabb [ interna lNodeIdx ] . aabb processed , 1) ;

2 i f ( o ld == 0)

3 re turn true ;

4 // otherw i se c a l c u l a t e and a s s i gn bounding box

Calculating an axis-aligned bounding box from the child node’s boxes is rather simple. It

is defined by having a start and an end point, where the start coordinates always have

lower values in each axis. That means a per-coordinate minimum of the children’s start

points give the parent’s start point, followed by calculating the new end point by a per-

coordinate maximum of its child node’s counterparts, giving a new bounding box which

contains both child node’s bounding boxes.

3.1.6 Tree Traversal

A simple recursive implementation of independent traversal (i.e. one thread launched for

each query object) would be to start at the root node and recursively process child nodes

if the bounding boxes overlap. This can be done as follows:
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1 void t r ave r s eRecu r s i v e ( i n t pa r t i c l e Index , AABB& queryAABB ,

2 i n t nodeidx , bool i s L e a f ) {
3 i f ( ! i s L e a f && checkOverlap (queryAABB , inte rna lNodes .GetAABB( nodeidx ) ) ) {
4 // i f bounding box over laps , r e cu r s e over ch i l d r en

5 InternalNode currentnode = ∗ i n te rna lNodes . GetInternalNode ( nodeidx ) ;

6 t r ave r s eRecu r s i v e ( pa r t i c l e Index , queryAABB , currentnode . chi ldAIdx ,

7 currentnode . childAType == TYPE LEAF) ;

8 t r ave r s eRecu r s i v e ( pa r t i c l e Index , queryAABB , currentnode . chi ldBIdx ,

9 currentnode . childBType == TYPE LEAF) ;

10 }
11 // f o r a l e a f , do nece s sa ry c o l l i d e s t ep s and return

12 i f ( i s L e a f )

13 c o l l i d e ( pa r t i c l e Index , l ea fNodes . GetObjectIdx ( nodeIdx ) ) ;

14 }

This approach works, but has the problem of high execution divergence. Each thread

makes its own decision of recursing over its children, or not, i.e. skipping the node.

Nearby threads can easily go out of sync if they process a different path - and two distinct

nodes will never be processed parallel in one single warp. A possible solution is to process

the recursion stack manually, by defining an explicit stack which stores yet unhandled

nodes:

1 u int s tack [ 6 4 ] ;

2 u int ∗ s tackPtr = stack ;

3 ∗ s tackPtr++ = INVALID HASH; // push end cond i t i on

4 u int nodeidx = 0 ; // s t a r t with root node

5

6 do {
7 bool t raverseR = f a l s e , t rave r s eL = f a l s e ;

8 u int internL = 0 , internR = 0 ;

9

10 const InternalNode currentnode = ∗ i n te rna lNodes . GetInternalNode ( nodeidx ) ;

11

12 // . . . do over lap checks . . .

13

14 i f ( ! t rave r s eL && ! traverseR )

15 nodeidx = ∗−−s tackPtr ; // pop

16 e l s e {
17 nodeidx = trave r s eL ? internL : internR ;

18 i f ( t rave r s eL && traverseR )

19 ∗ s tackPtr++ = internR ; // push

20 }
21 } whi le ( nodeidx != INVALID HASH) ;

If there is no need to lookup one of the child nodes, the next node index is popped from

the stack, with the iterative algorithm finishing when there is no node left. If there is just

one candidate for continuing traversal this one is selected as next node. In case this applies

to both child nodes, one of them has to be pushed onto the stack for processing in one of
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Figure 3.3: Overlap of Axis-Aligned Bounding Boxes, illustrated in 2D. For a real overlap
all axes overlap. The same applies in three dimensions - overlaps in all three axis are
necessary.

the subsequent iterations. This implementation benefits from much better convergence,

as every node is processed by the same part of the code, regardless of where the nodes are

located in the tree - each iteration is in sync between threads in a warp, unless some have

finished already. Overlap and collision checks are done for each child node separately:

1 i f ( currentnode . childAType == TYPE LEAF) {
2 c o l l i d e ( idx1 , l ea fNodes . GetObjectIdx ( currentnode . chi ldAIdx ) ) ;

3 }
4 e l s e {
5 internL = currentnode . chi ldAIdx ;

6 t rave r s eL = checkOverlap (queryAABB , inte rna lNodes .GetAABB( currentnode . chi ldAIdx ) ) ;

7 }
8 // the same f o r c h i l d node B

The overlap check itself is as simple as constructing the AABBs, with an overlap occuring

exactly when there is an intersection in all of the three dimensions, as is illustrated in figure

3.3. The overlap in one coordinate is checked by looking at start- and end-coordinates

- if one range starts after the end of the other range, there is no intersection. Another

important matter is the order in which elements are processed - when nearby threads

process spatially close objects, also data convergence increases because nearby objects will

take similar paths for traversal, as they potentially collide with the same leafs. This is

applicable to the uniform grid algorithm as well because objects close to each other access

partly the same cells, and therefore also the particles contained by these cells.
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3.1.7 Exploit Symmetry

If the BVH is used for collision detection of a set of objects against themselves (e.g. for

particle-particle collision), each pair of objects is reported twice in the traverse step. In

case a symmetric behavior is wanted, e.g. a collision pair being inserted into the neighbor

list only once, there is a simple solution by only take leafs into consideration with an index

greater than the query object. Then, it is possible to lower the costs of traversing the tree

by storing the rightmost index a internal node covers (i.e. the maximum index which can

be reached through this node), and not traversing nodes at all if it is impossible to reach

leafs with an index greater than the index of the query object:

1 i f ( in te rna lNodes . r i gh tmos t Ind i c e s [ internR ] > qu e r y p a r t i c l e i d x &&

2 checkOverlap (queryAABB , inte rna lNodes .GetAABB( currentnode . chi ldBIdx ) ) ) {
3 traverseR = true ;

4 }

Setting up the array of rightmost indices can be done simultaneuously with assigning

the bounding boxes, for each internal node it is equal to the maximum of its children’s

rightmost indices. [Kar12a]

3.1.8 BVH Data Structures

Now, as algorithms for tree creation and traversal were already discussed, some CUDA R©

specific matters are still open, regarding memory alignment. The data structures for the

node type (i.e. is the child an internal node or a leaf) and for the internal nodes are de-

fined in the following way, storing the full relationship between internal nodes (children’s

indices, types, and parent node index):

1 s t r u c t NodeType {
2 u in t 16 t typeA , typeB ;

3 } ;
4

5 s t r u c t InternalNode {
6 u int parentNodeID ;

7 u int chi ldAIdx ;

8 u int chi ldBIdx ;

9 NodeType childNodeTypes ;

10 } ;

InternalNode elements will be stored in an array. According to this definition, one internal

node is a struct containing 16 bytes, following the rules of memory alignment perfectly.

Still missing is the data structure for a AABB. It contains start/end point of the box, as

well as the counter needed for assigning the bounding boxes:
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1 s t r u c t a l i g n (16) AABB {
2 f l o a t 3 s t a r t ;

3 f l o a t 3 end ;

4 i n t aabb processed ;

5 } ;

There should be an array of AABBs, but the proper alignment is not given automatically.

One AABB needs 6 single-precision floating point values (two 3D coordinates), as well

as an integer value, consuming 28 bytes of memory. With the align specifier, padding

is introduced so that each bounding box element starts at a 16-byte boundary, which is

necessary to fulfill memory alignment rules. Last but not least, device structs containing

all needed raw pointers for use in kernels are defined as follows:

1 s t r u c t Interna lNodes {
2 AABB∗ aabb ;

3 u int ∗ r i gh tmos t Ind i c e s ;

4 InternalNode ∗ nodes ;

5 } ;
6

7 s t r u c t LeafNodes {
8 u int ∗ parentNodeID ;

9 u int ∗ ob j e c t i dx ;

10 } ;
11

12 s t r u c t BVH {
13 u int numLeafs ;

14 LeafNodes l ea fNodes ;

15 Interna lNodes inte rna lNodes ;

16 } ;

What can be seen here is that Structure of Arrays (SoA) are used, which is in general

preferred over the so-called Array of Structures (AoS), because of better memory align-

ment - single elements of an array should be limited in size according programming guide

recommendations. [NVI15]

The memory management itself is done by Thrust, a C++ template library for CUDA.

Instantiations of thrust::device vector<T> are used for high-level abstraction of arrays

resided in device memory. These vectors can be copied, resized, etc. as easy as standard

vectors implemented in the Standard Template Library (STL).

3.2 Optimizing Neighbor Search via Uniform Grid

The same symmetry exploitation as for BVHs can be applied to the uniform grid neighbor

search as well, if it is sufficient to report collision pairs only once. For this purpose,

when looping over the hashes/indices arrays, only elements after the query particle are
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Figure 3.4: Optimized neighbor search via uniform grid. Each row can be processed in a
single loop.

considered. Additionally, a recall of the equation used for computing the cell hashes

hash = cellPos.z · gridSize.y · gridSize.x + cellPos.y · gridSize.x + cellPos.x, together with

a look at figure 3.4 gives insight for further optimizations:

1. Because elements are ordered in x-direction first, then y and z, a relative cell position

of z = −1 leads to elements being located before the query particle. Thus, those

cells have not to be considered at all.

2. The same applies for z = 0 and y = −1, the yellow ‘x-row’ below particle 0.

3. The same applies for z = 0, y = 0, and x = −1, the ‘left’ neighbor cell of particle 0.

4. For a ‘x-row’ (cells uniformly colored) it is not necessary to read 3 cell-start values

in all cases, because they appear successively anyway. For example, in figure 3.4,

the two cell-start values for cells 4 and 5 haven’t to be fetched from memory at all.

For this optimization, the range for each row has to be accordingly set:

• Range starts at hash H = hash(x−1, y, z), or H+1 if cell H is empty, or H+2

if cell H + 1 is empty, too.

• Range ends at hash H + 2.

In the best case, only 4 cell-start values are read instead of 27:

• 3 ‘x-row’s at relative positions z = 1.

• 1 ‘x-row’ at relative position z = 0 and y = 1.

• The ‘own’ row contains the particle of interest itself, so loop starts at index+1.

Additionally, there is much better execution divergence, because without optimization all

threads in a warp are processing only one cell simultaneously, but in the optimized version

all the particles of 3 cells are processed in one loop.
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3.3 Memory Consumption Comparison

When the uniform grid algorithm is used, memory consumption depends on the number

of particles and the number of grid cells, too. In tables 3.1 and 3.2 the requirements

for uniform grid and BVH structures are given. For comparison, the typical memory

consumption of dynamic particle data is estimated in table 3.3. As the number of internal

nodes is approximately equal to the number of leaf nodes, the LBVH implementation

consumes about 64 bytes per leaf node. If it is used for particle neighbor search, this is

a non-negligible amount, nearly two-thirds of particle data demands. But, it does not

depend on a grid at all, which, in terms of memory consumption, can be an advantage for

sparse particle distributions.
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Name Type Bytes

Hashes uint32 4 per particle
Indices uint32 4 per particle
Cell-Start uint32 4 per cell

Total 8 per particle
4 per cell

Table 3.1: Uniform grid: GPU memory consumption

Name Type Bytes

Morton codes uint32 4 per leaf node
Indices uint32 4 per leaf node
Leaf parent node uint32 4 per leaf node
Right-most index uint32 4 per internal node
AABB AABB 32 per internal node
Internal node relationship InternalNode 16 per internal node

Total 12 per leaf node
52 per internal node

Table 3.2: BVH: GPU memory consumption

Name Type Bytes

ID uint32 4 unique particle id
Species uint32 4 shape type and material
Position float4 16 current position and shape size
Velocity float4 16 current velocity
Force float4 16 current force acting on the particle
Quaternion float4 16 quaternion giving angular orientation
Angular velocity float4 16 current angular velocity
Torque float4 16 current torque acting on the particle

Total 104

Table 3.3: Typical GPU memory consumption per particle. A float4 is a struct containing
4 floats.



Chapter 4

Neighbor List Algorithm Design

As already discussed in 2.4.2, the main reason to decouple neighbor search and force

calculation is better execution convergence. This chapter is about the different approaches

existing regarding data structures, differences in filling and creating the lists, and memory

consumption. In figure 4.1 two possibilities are shown. One approach is static and has a

fixed amount of neighbors for each particle. The other approach to be discussed is a fully

dynamic version, storing index-pairs of potentially colliding objects.

4.1 Static Neighbor List

Within this approach, a fixed-size array stores the indices of potential collision partners.

The position of an array entry determines the first involved object index, whereas the

content points to the second element involved. In figure 4.1 (bottom) this version of the

neighbor list is illustrated for a fixed number of 8 entries per particle. The neighbors of

particle 0 start at array-index 0 (first row), the neighbor indices of particle 1 at array-index

8 (second row), and so on.

4.1.1 Memory Consumption/Management

The memory consumption of this static neighbor list is fixed as the size of the array is given

in the beginning (number of particles times number of entries). Allocating device memory

is done on host-side, once at simulation start. There are, however, some problems with

this approach. In a typical simulation each particle has its individual number of neighbors,

so some memory is wasted when using the static list. This applies, even more significant,

to particle-wall collisions, as a particle could be in contact with more than one wall at a

time, while most of the particles have no contact at all.

Another problem is, that there could be too few entries available. It is difficult to

determine the appropriate size, and, if the size is sufficient, even more memory gets wasted,

36
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Figure 4.1: Example dynamic neighbor list (top) vs. a static version (bottom) with a fixed
number of 8 entries per particle.

as only a few particles may be in touch with the maximum number of neighbors. For

example, if uniformly sized spheres are being packed, a maximum number of 12 neighbors

is possible (the Kissing number, see [CS13, p.21]). But, in general, the maximum number

can not be determined in advance, especially when considering non-uniform spheres or

non-spherical particles.

4.1.2 Building the List

Filling the array with entries is easy. All of the available neighbor search algorithms work

on a per-particle basis. That means the loop, looking for neighbors of one particle, is done

by one thread in a serial fashion (i.e. traversing a tree or looking at neighbor cells). For

each particle, the offset pointing to its first neighbor can be easily determined, and a local

counter can be used to count neighbors, which then points to the next free array position.

If the static neighbor list size per particle is NS , adding a neighbor is as simple as:

1 // ne igh nr < N S !

2 s t a t i c l i s t [ par t idx ∗ N S + ne igh nr ] = ne ighbor idx ;

3 ne igh nr = ne igh nr + 1 ;
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4.1.3 Processing the List

After the neighbor search step the list is complete and can be processed for fine colli-

sion detection and force calculation. There are various possibilities to process the list,

depending on symmetry (each collision pair contained once or twice), or on parallelism

granularity, i.e. if a thread-per-particle kernel is launched, to process all neighbors of one

particle in serial, or if a thread-per-neighbor implementation is desired, processing one

entry per thread. Details are given in section 5.1.

4.2 Dynamic Neighbor List

In figure 4.1 (top) this version of the neighbor list is illustrated. In contrast to the static

version, there are two arrays, storing pairs of potential collision partners.

4.2.1 Memory Consumption/Management

Twice the memory is needed per entry (‘own’ and ‘neighbor’ index), but each entry is valid,

opposed to the static list, where lots of entries could be unused. The memory management

has to be done on host-side. For this purpose some initial size of the arrays has to be

chosen, and resizing could be necessary if more neighbors are found than can be stored.

However, when a resize is done, it may be better to have the arrays a bit oversized, to

avoid permanent memory re-allocation.

4.2.2 Building the List

Building up the dynamic neighbor list is a bit more complicated, as it is common for all the

particles. Entries have to be appended atomically, which can be done for example by using

a global counter, which is atomically increased by one, followed by writing the collision

pair information. If the current maximum length of the dynamic array (size allocated) is

NMAX, adding an entry looks as follows:

1 // atomicAdd re tu rn s the ‘ o ld ’ va lue

2 u int ne igh nr = atomicAdd ( count , 1) ;

3 i f ( ne igh nr < NMAX) {
4 p ids [ ne igh nr ] = idxA ;

5 nbids [ ne igh nr ] = idxB ;

6 }

Additionally there has to be some error handling if the maximum number of entries is

reached, i.e. there is no more memory space for additional entries. If this happens, the

dynamic list has to be resized on host-side after the neighbor search threads have finished.

Then, the kernel is launched again, now with a sufficient dynamic list length. Due to
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Figure 4.2: Compacted version of dynamic neighbor list.

elements being added atomically, the list is in a random state after the neighbor search.

Sorting the list might be necessary, optionally followed by stream compaction, to make

kernels on a per-particle basis possible. This procedure is illustrated in figure 4.2.

4.2.3 Processing the List

There are various possibilities to process the list, similar as it is the case for the static

neighbor list. For example, the list could be processed on a per-particle basis if the

compact variant from figure 4.2 is available. But, processing the unsorted neighbor list in

a thread-per-neighbor fashion would also be possible. Details are given in section 5.2.

4.3 Hybrid Neighbor List

Figure 4.3 illustrates a possible structure of a hybrid version of the neighbor list. A great

benefit here is that the static neighbor list size can be kept small, because neighbors which

can not be stored in the static array will be appended to the dynamic array, allowing to

keep the static array size reasonable while still having a working algorithm.

The idea behind hybrid neighbor lists to combine benefits from static and dynamic lists

was discussed in [Wan10]. Besides the already given arguments there is a strong benefit

using static arrays: They are in a sorted state by definition. With the arrays containing

as much entries as some multiple of the particle count, sorting a pure dynamic neighbor

list comes at a high cost. But, to modify the contents in-place efficiently, a sorted state is

inevitable. Processing sorted lists makes it also easier to use warp reduction to lower the

costs of atomically adding particle forces. Details are given in sections 5.1 and 5.2, for the

static and dynamic version, respectively.
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Figure 4.3: Structure of hybrid neighbor list with two static entries per particle. It contains
the same information as the pure dynamic neighbor list given at the top.

4.4 Force History

As discussed in section 2.4.3, in order to make use of the force history, the contacts have

to be tracked over time. For this, an additional value is stored per neighbor list entry.

This can be done with the static and dynamic version in a similar way. How the in-place

modification of the different neighbor list variants can be implemented, will be discussed

in section 5.5.



Chapter 5

Implementation Details on

Neighbor-Lists

The basic properties and differences between static and dynamic neighbor-lists were al-

ready analyzed in chapter 4. Still, various possibilities exist in order to process the lists,

what will be discussed next. Additionally, a detailed description is given of how to modify

neighbor-lists in-place in order to track contacts, e.g. used when force history is desired.

5.1 Static Neighbor List - Force Kernel

The two possibilities processing the static neighbor-list are illustrated in figure 5.1. The

first variant is to launch one thread per particle, which then processes all the neighbor

elements belonging to itself (one row in figure 5.1). The simplified lines of code look as

follows, where index equals the particle index which is processed by the thread:

1 u int p a r t i c l e i n d e x = index ;

2 u int nbbegin = index ∗ N S ;

3 u int nbend = index ∗ N S + N S ;

4

5 f o r ( u int nbindex = nbbegin ; nbindex < nbend ; ++nbindex ) {
6 u int ne ighbor index = nbids [ nbindex ] ;

7 i f ( ne ighbor index == INVALID HASH)

8 break ;

9 // . . . load p a r t i c l e p rope r t i e s , c a l c u l a t e f o r c e s . . .

10 }
11

12 f o r c e [ p a r t i c l e i n d e x ] += f o r c e ;

13 torque [ p a r t i c l e i n d e x ] += torque ;

41
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Figure 5.1: Static neighbor-list: force kernel configuration.

There is an even simpler-to-implement approach, when one thread is launched per element

in the neighbor-list. This version is called thread-per-contact or thread-per-neighbor, and

could be implemented in the following way, where index equals the static neighbor-list

index which is being processed:

1 u int p a r t i c l e i n d e x = index / N S ;

2 u int ne ighbor index = nbids [ index ] ;

3 // . . . load p a r t i c l e p rope r t i e s , c a l c u l a t e f o r c e s . . .

4 i f ( ! c o l l i s i o n )

5 re turn ;

6

7 atomicAdd ( &f o r c e [ p a r t i c l e i n d e x ] , f o r c e ) ;

8 atomicAdd(&torque [ p a r t i c l e i n d e x ] , torque ) ;

Here, the degree of parallelism is even higher. However, atomic operations have to be

used to write the results, because multiple threads are simultaneously computing forces

belonging to only one particle. Otherwise, conflicts would occur for sure - looking at figure

5.1, illustrating an example of 8 entries per particle: When one thread per contact is used,

one warp (32 threads) will process 4 particles and its neighbors. As all these threads

are executed concurrently, there are 8 conflicting operations per particle. To overcome

performance limitations, reductions can be done using shared memory or warp-intrinsics,
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and only one thread writes the resulting force in the end. To keep this simple enough, size

restrictions for the number of entries are introduced: either 1, 2, 4, 8, 16, or 32 entries per

particle are possible. In the following examples a size of 8 entries per particles is used.

To introduce the method, it is necessary to know about the so-called lane-id, which is a

number between 0 and 31 and informs about the relative position within a warp. So, in the

actual example, the threads with a lane-id of 0, 8, 16, or 24 are the first threads processing

a particular particle’s neighbors. The following helper functions are then needed:

1 d e v i c e i n l i n e

2 f l o a t 4 sh f l down ( f l o a t 4 var , unsigned i n t srcLane , i n t width=32) {
3 f l o a t 4 a = var ;

4 a . x = sh f l down ( a . x , srcLane , width ) ;

5 a . y = sh f l down ( a . y , srcLane , width ) ;

6 a . z = sh f l down ( a . z , srcLane , width ) ;

7 a .w = sh f l down ( a .w, srcLane , width ) ;

8 re turn a ;

9 }
10 d e v i c e i n l i n e

11 f l o a t 4 warpReduceSum( f l o a t 4 val , i n t width ) {
12 f o r ( i n t o f f s e t = width /2 ; o f f s e t > 0 ; o f f s e t /= 2)

13 va l += sh f l down ( val , o f f s e t , width ) ;

14 re turn va l ;

15 }

The shfl down-intrinsic returns values from the given source lane offset and is imple-

mented only for the primitive types, so it is overriden to be useful for the float4 types

as well. The warpReduceSum function then does the tree-based reduction within a warp,

which is illustrated in figure 5.2. The following lines of code then use this warp reduction

method in the force kernel, where only the first thread processing this particular particle

does the actual force addition:

1 u int p a r t i c l e i n d e x = index / N S ;

2 u int ne ighbor index = pids [ index ] ;

3 // . . . c a l c u l a t e f o r c e s . . .

4 // int ra−warp reduce

5 f o r c e = warpReduceSum( fo r ce , N S) ;

6 torque = warpReduceSum( torque , N S) ;

7

8 // f i r s t thread p ro c e s s i ng t h i s p a r t i c l e i n d e x

9 i f ( l a n e i d ( ) % N S == 0) {
10 f o r c e [ p a r t i c l e i n d e x ] += f o r c e ;

11 torque [ p a r t i c l e i n d e x ] += torque ;

12 }
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Figure 5.2: Warp reduction example: Blocks of 8 threads within a warp exchange values
using shuffle-down operations. The intrinsic takes a offset lane-id (4, 2, 1) and works
within a given width (8). Green threads illustrate lane-ids from 0 to 7, blue threads from
8 to 15.

Figure 5.3: Dynamic neighbor-list: force kernel configuration possibilities.
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5.2 Dynamic Neighbor List - Force Kernel

The possibilities of processing the dynamic neighbor-list are illustrated in figure 5.3 and

similar to the static version, it is possible to implement a thread-per-contact or thread-per-

particle kernel. The simplest, and surprisingly efficient implementation then is structured

as follows:

1 u int p a r t i c l e i n d e x = idA [ index ] ;

2 u int ne ighbor index = idB [ index ] ;

3 // . . . load p a r t i c l e p rope r t i e s , c a l c u l a t e f o r c e s . . .

4 i f ( ! c o l l i s i o n )

5 re turn ;

6 atomicAdd ( &f o r c e [ p a r t i c l e i n d e x ] , f o r c e ) ;

7 atomicAdd(&torque [ p a r t i c l e i n d e x ] , torque ) ;

For a thread-per-particle implementation there will be a loop over all the neighbors of

one particle. But, to make this feasible, preparation steps are necessary, as was already

discussed in section 4.2.3, namely sorting the list and building an array containing the

entry-points for each particle. Key-value sort is done efficiently by using the Thrust

library, whereas the start-vector can be built by remembering positions where the key

particle index changes:

1 i f ( i == 0 | | idA [ i ] != idA [ i −1])

2 p a r t i c l e s t a r t [ idA [ i ] ] = i ;

That means for the force kernel that a loop is done over entries, until the key particle

index changes or the end of the arrays is reached:

1 u int s t a r t i nd ex = p a r t i c l e s t a r t [ index ] ;

2 u int p a r t i c l e i n d e x = idA [ s t a r t i nd ex ] ;

3 do {
4 u int ne ighbor index = idB [ s t a r t i nd ex ] ;

5 // . . . load p a r t i c l e p rope r t i e s , c a l c u l a t e f o r c e s . . .

6 ++s ta r t i nd ex ;

7 }
8 whi le ( idA [ s t a r t i nd ex ] == pa r t i c l e i n d e x ) ;

9 // adding f o r c e s

10 f o r c e [ p a r t i c l e i n d e x ] += f o r c e ;

11 torque [ p a r t i c l e i n d e x ] += torque ;

For the thread-per-contact implementation a warp-reduction is also possible by using warp

voting functions and bit-masks to find all the particles in a warp which have the same index.

With this information a similar reduction can be done, where only the first appearing

thread processing a particular particle does the summation in the end. This method is

discussed in [Wes15].
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5.3 Symmetry Considerations

Whenever the neighbor-list is built symmetric (i.e. each collision pair contained only once),

force contributions must be added to the neighbor particle as well:

1 // a f t e r f o r c e c a l c u l a t i o n : add neighbor f o r c e s

2 atomicAdd(& f o r c e [ nbidx ] , o t h e r f o r c e ) ;

3 atomicAdd(&torque [ nbidx ] , o the r to rque ) ;

In this case, or when a thread-per-contact implementation is used, each force addition has

to be an atomic operation, because not all force contributions are calculated by one single

thread. After some experience with different implementations, the symmetric versions are

preferred. Neighbor search is faster, force calculation seems to be faster in most cases as

well, especially when it is computationally expensive, and the symmetric list needs only

half of the memory since every contact is stored only once instead of twice. Additionally,

if sorting of the dynamic list is required, this is faster as well for only half the length.

5.4 Particle/Geometry Contacts

Because a static list has many disadvantages for contacts with geometry, a pure dynamic

neighbor list is used for all kind of walls. The main reason for this is that only a few

particles may be in touch with a wall at all. In the current implementation it is necessary

to have a compacted list and a thread-per-particle force kernel because knowledge about

whether in touch with more than one triangle or not is required.

As usually only a few particles are in contact with walls, there is a sligthly different

method used for creating the start-vector, to avoid starting a thread for particles currently

not in wall contact. The vector containing entry points is appended the start-indices

atomically and only different particle count threads are launched for force calculation:

1 i f ( i == 0 | | idA [ i ] != idA [ i −1]) {
2 u int o ld count = atomicAdd ( d i f f e r e n t p a r t i c l e c o u n t , 1) ;

3 p a r t i c l e s t a r t [ o ld count ] = i ;

4 }

5.5 In-Place Modification of Neighbor-List

If keeping the neighbor list from the previous time step is desired, the need arises to

modify the existing lists in-place. If the dynamic neighbor-list is used, an additional valid

flag is introduced, which is initially marked as invalid for each contact. When neighbors

are found, it has to be checked first if the contacts already exists, because re-use of some
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Figure 5.4: How to modify dynamic neighbor-list in-place when kept from previous step.

additionally stored values is required during the contact. The procedure is illustrated in

figure 5.4. Following steps are done:

1. Before neighbor search, fill valid-flags with false.

2. If a potential collision partner is found during neighbor search, do:

• If neighbor already contained, mark it as valid.

• Append new contacts at the end of the list.

3. After neighbor search, do:

• Overwrite index of invalid contacts with the empty-marker.

• Key-value sort via particle A index.

For this to work, the dynamic neighbor-list has to be sorted and compacted to find existing

contacts. The new start-vector which is created can then be used for the following force

calculation kernel, before it is used in the next time step to find existing contacts.

If the hybrid neighbor-list is used, and therefore static entries are available, the best

solution found was similar, with the difference that new contacts always are appended

to the dynamic list, as there is no static neighbor counter available and hence, insertion

into the static list is difficult. Additionally, for each contact found, this means looking up
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Figure 5.5: How to keep neighbor-list up-to-date when particle data is sorted. The new
order is reverse-sorted to get a mapping vector from old to new particle indices.

existing contacts at two different places: the static entry point, which is fixed and known,

and the dynamic entry point given by the start-vector. After the neighbor-search, static

entries are compacted, and dynamic entries can be transferred to the static list if there is

space left.

A pure static neighbor list is not considered at all - if it can store at least most of the

contact pairs, the dynamic list will be short anyway.

5.5.1 Keeping List Up-To-Date when Particle Data is Sorted

In chapter 6 the effect of sorting particle data will be discussed. It is observed that sorting

all the particle data (e.g. positions and velocities) from time to time is beneficial to data

locality, with a huge performance degradation over time if particles are moving and sorting

is omitted. But, as particle data is sorted, the indices effectively change. In figure 5.5

the necessary steps are illustrated to create an index-replacement array which then can be

applied to all indices contained in the neighbor lists. To achieve this, the sorted indices

array is inverse-sorted by using it as a key array to sort a sequence. The code to replace

a index then looks as follows:

1 idxA [ index ] = new ind i c e s [ idxA [ index ] ] ;

where idxA contains some particle indices, new indices contains the index-mapping, with

the index -th element of the array being processed. However, this step is only necessary

for neighbor lists which are re-used.
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5.6 Conclusion

Many different approaches exist for creation and processing of neighbor-lists, and lots

of configurations (dynamic, hybrid list, re-using contacts) and combinations (symmetric

or each contact pair contained twice) are possible, making it difficult to determine what

to choose, which will also depend on the specific use-case. Various tests are done for

evaluation in chapter 6.

Due to the random order of floating-point force summations the result will be a bit

different in each simulation run when using symmetric lists or a thread per contact im-

plementation. This is because floating point addition is commutative, but not necessarily

associative or distributive. [PH08]



Chapter 6

Results

In this chapter test cases are introduced. They cover basic validation (i.e. physical correct-

ness) and performance comparisons in terms of execution speed and memory consumption

of the different algorithms.

6.1 Work Flow

The work flow for doing simulations consists of the following steps:

• Prepare shape information of used shapes.

• Define material properties of used materials.

• Write configuration file:

– Give algorithmic details (e.g. BVH or uniform grid for particles/triangles,

simple neighbor list, force history, time step size, simulation end time).

– Select particle initialization details (method, domain, size distribution, mate-

rial, shape).

– Define simulation domain.

– Optionally: Give geometry information (STL files, movement definition).

– Optionally: Define CFD-DEM coupling information.

– More options: Analysis (e.g. calculating cell-averaged velocities), spray nozzle

definition, time interval for writing store files, etc.

• Optionally: give input file with particle and/or triangle data to do a re-start.

50
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Figure 6.1: Single (left) and double (right) bed use-case: Glass particles fluidized at one
and two air inlets, respectively. Used for validation regularly. Particles are colored by
magnitude of velocity. (Source: RCPE)

6.2 Validation

6.2.1 Fluidized Bed Test Case

What can be simply compared with the old algorithms is using the BVH or the neighbor-

list without force history. For validation of physical correctness there is one standard

test case used by RCPE regularly to ensure that the basic particle-particle and particle-

fluid interactions do not change. The basic test case is a single-spout bed where 12000

glass particles are fluidized. There is measurement data for validation of double- and

triple-spout beds as well. For comparison the cell-based time-averaged velocity is written

into VTK (Visualization ToolKit) files which then can be processed by external tools

like ParaView. At specific bed heights the average particle velocities are then plotted. A

description of the measurements and how simulation data is processed is given in [JSRK13].

Fluidized bed use-cases are illustrated in figure 6.1 and final results for the double bed

are given in figure 6.2, using the material parameters and number of particles given in

[JSRK13].
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Figure 6.2: Double bed validation results. Average velocities plotted at different bed
heights, using neighbor list, and comparison with old implementation and two different
experiments.
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Figure 6.3: Picture series of a tablet leaning at a wall, at times 0 s, 0.2 s, 1 s and 5 s. The
upper series shows that without force history the tablet slips away, whereas in the bottom
simulation including force history the tablet stays in this position.

6.2.2 Force History Test Cases

The history-dependent tangential contact model is a completely new feature in XPS.

Therefore the outcome of a simulation cannot be directly compared with an old imple-

mentation. For validation single-particle tests have been done to verify correctness of the

tangential force evolution. A really simple test is a tablet leaning at a wall, which then

stays in this position and does not slip away. Results are shown in figure 6.3. Another

show case is a pyramid of 4 spheres, where 3 of them are touching the ground, and the

fourth lies on them. Due to friction it is possible that these spheres stay in this position

forever if there are no external influences, apart from gravity. Without having a working

force history implementation this result would be impossible. Snapshots are shown in

figure 6.4. For the sphere pyramid a radius of r = 10 millimeters was used, with initial

positions as follows by tetrahedron edge points:

P0 : (0 1 0) · r

P1 : (2 1 0) · r

P2 : (1 1
√

3) · r

P3 : (1 1 +
2

3

√
6

√
3

3
) · r
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Figure 6.4: Picture series of a sphere pyramid with 4 spheres (bottom 3 are touching the
ground), at times 0 s, 1 s, and 2 s. The upper series shows that without force history the
spheres roll away, whereas in the bottom simulation including force history all spheres
stay roughly in the same position because of effective friction.

vt/vn −v′t/v′n without FH −v′t/v′n with FH estimated slope of line

0 0 0 -0.368
1 0.147 -0.368
2 0.322 -0.723
3 0.531 -1.066

3.5 - -1.180
4 0.781 -1.125
5 1.087 -0.127
6 1.476 0.925
7 2.029 1.977
8 3.029 3.029
9 4.081 4.081 1.052

Table 6.1: Simulation - measurement of steel particle rebound from a wall
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A more sophisticated example found in literature is measurement of the reflexion angles

of an initially non-rotating steel puck floating on an air film, see figure 6.5 where test

set-up, experimental results and exact solution are given, including the comparison with

simulation results done with a steel sphere in XPS, with and without force history. In the

literature (see [Wal94]) the solutions for the rolling and sliding case (both straight lines)

were given as:

−
[
v′t
v′n

]
rolling

= −β0
e
· vt
vn

−
[
v′t
v′n

]
sliding

= −7

2
µ(1 +

1

e
) +

1

e
· vt
vn

(6.1)

where vt and vn are the tangential and normal velocity in the contact point before wall

collision and v′t and v′n the values after the collision, respectively. Here, µ is the static

friction coefficient, and β0 and e are the coefficients of restitution in the tangential and

normal direction, respectively. These restitution coefficients are directly related to the

particle velocity change due to collision. In table 6.1 the simulation outcome is given as

well as an estimation of the slope. Following material parameters were used:

β0 = 0.35 e = 0.95 µ = 0.75

The exact slopes from equation 6.1 for the rolling and sliding solution then equal

−β0
e = −0.3684 and 1

e = 1.0526, respectively, and the zero point which lies on the sliding

solution line occurs at vt
vn

= 7
2µ·e·(1+ 1

e ) = 5.1188, which is a good match to the simulation

outcome.

6.2.3 Discussion

The results keep statistically the same when using the new algorithms. But, as already

discussed in section 5.6, due to the random order of single-precision force summations

the result will be a bit different in each simulation run when using the neighbor-list.

Additionally, using the force history leads to stable simulation outcomes and correct results

in terms of physics - and the validation cases show where the history really is needed,

namely low tangential-to-normal velocity ratio. To understand this, a look at the bottom

figure of 6.5 shows that results without force history are sufficient for large values of

vt/vn. This is the case because the tangential force is usually limited by µFN (the so-

called Coulomb condition) which is reached quickly for large vt/vn and in this case the

increments in tangential displacement are thrown away and have no effect anymore.
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Figure 6.5: Top: Test set-up showing trajectories of the sphere’s center of mass and
the contact point. Middle: Non-dimensional angles of reflexion plotted against non-
dimensional angles of incidence for a steel disk. Bottom: Simulation results for a steel
sphere at different incident angles. (Source: Top: [JH04]. Middle: [Wal94, page 902])
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Figure 6.6: Test system used for validation and performance tests

6.3 Performance Comparison

Use cases for testing performance of the algorithms are difficult to design as performance

strongly depends on the problem, e.g. particle configuration (i.e. initialized on a grid or

already mixed up during the process), particle shape, number of contacts, geometry, and

how many triangles are used to represent the geometry. Following cases are analyzed for

a sufficient large number of spheres and bi-convex tablet-shapes:

• Tuning size of the static neighbor list for particle-particle contacts.

• Particles freshly initialized in a grid, without gravity acting on particles:

– Not mixed, no collisions at all

• Particles moving in a rotating drum coater, measure starts after one full revolution,

particles loaded from store file:

– Well mixed particles

• Difference BVH and uniform grid (for particles):

– Mono-disperse spheres

– Bi-disperse spheres with a big size ratio
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• Slow-down when re-using neighbor list

Influence of sorting particle data is analyzed as well. In all cases where a comparison

between different number of particles / shape types is made, the particle sizes were scaled

so that approximately the same filling level of the box or of the drum coating device is

reached. The performance numbers measured include:

• Overall average steps calculated per computation second.

• Measured execution time for collision kernels.

Measuring kernel execution times was done using the NVIDIA visual profiler tool. Fig-

ure 6.6 shows the machine used for testing purposes. It is a GPU barebone designed to

accomodate 8 graphics cards, which was filled with 4 NVIDIA GeForce R©GTX Titan X, al-

ready powered by the newest micro-architecture available, namely MaxwellTM, driven by 2

Intel R©Xeon R©CPUs (E5-2650 v3 @ 2.30GHz) and 128 GB of DDR4 memory. The NVIDIA

driver used for testing was 352.63, and CUDA R© toolkit version 7.5.18 was installed on

the CentOS 7 system (Linux Kernel 3.10).

6.3.1 Test Case 1 - Tuning Size of Static Neighbor-List

This test case determines appropriate sizes for the static neighbor-list. Possible numbers

for static neighbor entries per particle are only powers of two up to 32. Included are tests

with tablets and spheres, as they behave differently in terms of code convergence or actual

collisions with entries in the neighbor-list. The test-cases are illustrated in figure 6.7. In

table 6.2 measured execution times for neighbor search, processing static and dynamic

neighbor-list are given for one million spheres settled in a box. Table 6.3 proves that also

for 100 million spheres with many collisions the same static size of the neighbor-list should

be chosen.

For tablets the results are different. Execution times shown in tables 6.4 and 6.5 for

one and 10 million tablets, respectively. It can be seen that for non-spherical particles

there is nearly no advantage using the static neighbor-list. The reason might be that for

spherical particles processing the neighbor-list has high convergence (each entry is a real

collision partner) and only needs low computational resources, so that memory loads and

especially the atomic writes become more important, which is better handled by the static

neighbor-list due to automatically being in a sorted state and using warp reduction for the

thread-per-contact implementation. For tablets, not each entry is actual a real collision,

leading to less conflicts at the atomic force summation.

The difference between using the thread-per-contact or thread-per-particle algorithm is

small. Thread-per-contact leads to slightly better performance but is more sensitive to the
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Figure 6.7: Neighbor-list tuning use-case: particles settled in a box. Exemplarily shown
is the one million tablet case.
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Static Entries Process time Process time Process time Overall
neighbor search static list dynamic list Steps/s

Thread per Thread per
Contact/Particle Contact/Particle

0 1.98 0 / 0 2.50 136 / 136

1 1.97 0.46 / 0.47 2.01 134 / 133

2 1.92 0.74 / 0.75 1.51 137 / 136

4 1.82 1.36 / 1.28 0.70 142 / 146

8 1.77 1.79 / 1.75 0.09 149 / 150

16 1.78 3.46 / 1.83 0.00 126 / 148

32 1.80 5.66 / 1.93 0.00 92 / 139

Table 6.2: Hybrid neighbor-list tuning for one million spheres. Times given in milliseconds.
Average number of neighbors: 9.31

Static Entries Process time Process time Process time Overall
neighbor search static list dynamic list Steps/s

Thread per Thread per
Contact/Particle Contact/Particle

0 194 0 / 0 153 2.04 / 2.04

1 193 45 / 46 153 1.85 / 1.84

2 190 75 / 75 137 1.82 / 1.81

4 182 97 / 121 69 2.08 / 1.91

8 176 122 / 150 2 2.19 / 2.05

Table 6.3: Hybrid neighbor-list tuning for 100 million spheres. Times given in milliseconds.
Average number of neighbors: 7.56

number of static entries. This is because the thread-per-particle force kernel stops when

there are no more valid neighbor indices, whereas the thread-per-contact kernel is started

for each entry in the neighbor-list. For 32 static entries per particle this means that there

is one full warp per particle, but more than half of the warp is inactive because of invalid

neighbor indices. But, performance also decreases for large static list sizes in thread-per-

particle mode due to worse memory alignment - 16 consecutive integers read from one

array, per thread, is already the maximum to comply computing guide recommendations

for maximum memory throughput.

What also can be seen in these results is that the neighbor search performances in-

creases slightly with the number of static entries. This is because for the static list a

local counter can be used as there is one thread per particle created for neighbor search,

whereas for adding an element to the dynamic list an atomic increment operation on

a global counter variable is necessary. Additionally, indices have to be stored for both

collision partners, opposed to only one index when adding a neighbor to the static list.



CHAPTER 6. RESULTS 61

Static Entries Process time Process time Process time Overall
neighbor search static list dynamic list Steps/s

Thread per Thread per
Contact/Particle Contact/Particle

0 2.88 0 / 0 8.6 68 / 68

1 2.87 1.36 / 1.4 7.28 67 / 67

2 2.84 2.55 / 2.65 5.9 68 / 67

4 2.72 5.05 / 5.25 3.22 69 / 68

8 2.5 9.5 / 10.25 0.67 61 / 59

16 2.48 17.7 / 12 0 41 / 55

Table 6.4: Hybrid neighbor-list tuning for one million tablets. Times given in milliseconds.
Average number of neighbors: 11.95

Static Entries Process time Process time Process time Overall
neighbor search static list dynamic list Steps/s

Thread per Thread per
Contact/Particle Contact/Particle

0 29 0 / 0 88 7.37 / 7.37

1 29.5 13.5 / 13.7 76 7.22 / 7.21

2 29 25 / 26 62 7.32 / 7.31

4 28 49 / 51 47 6.91 / 6.84

8 26 92 / 100 8 6.7 / 6.43

16 26 175 / 118 0 4.41 / 6

Table 6.5: Hybrid neighbor-list tuning for 10 million tablets. Times given in milliseconds.
Average number of neighbors: 11.9
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6.3.2 Test Case 2 - No Collisions

The no-collision test cases are special test cases for performance comparison when having

nearly no collisions. Shown in tables 6.6 and 6.7 significant speed-ups are observed. The

standard configuration of the static neighbor list size (8 entries per particle) here is not

the optimal choice because it has to be processed even without valid neighbors in the list.

Algorithm Collect NBs Forces Overall Steps/s

old 61 12.9

new: pure dynamic list 12.07 0 36.8

new: with static list 12.07 5.71 30

Table 6.6: Execution times for 10 million spheres in a grid without any collisions. Times
given in milliseconds.

Algorithm Collect NBs Forces Overall Steps/s

old 334 2.8

new 18.85 8.35 21.6

Table 6.7: Execution times for 10 million tablets in a grid without any collisions. Times
given in milliseconds.

6.3.3 Test Case 3 - Particles in a Drum-Coater

For this use case a industrial drum coater geometry is used. Initially 10 millions of particles

were placed with the so-called fill placer of XPS which can be used to fill geometries with

particles as an initial condition. Afterwards the simulation was run up to one full revolution

of the coater rotating with 8 rpm, that is t = 7.5 seconds. From there a restart is done

using different algorithms, including the old one which was implemented at the start of

this master thesis. The use-cases are illustrated in figure 6.8. Results are shown in tables

6.8 and 6.9. Additionally, integration of particle positions and velocities takes about 8 ms

for both cases, and the sorting into the uniform spatial grid takes between 11 ms and

13 ms. In this real-world case the fastest versions were:

• Using thread-per-contact processing for static and unsorted dynamic neighbor list

• Particle neighbor search via uniform grid

• Triangle neighbor search via BVH

• Static neighbor list size of 8 for spheres, and 0 for tablets (i.e. a pure dynamic list)

• Symmetric Lists
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Figure 6.8: Drum coating device use-case. Exemplarily shown for 10 million spheres,
colored by magnitude of velocity.
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Algo. Prep. Collect Collect Forces Forces Overall Memory
Triangles Tr. NBs Part. NBs Triangles Particles Steps/s

old 760 104.5 135 0.96 2071 MiB

new 2.5 11.75 16.1 1 19.6 13.4 2011 MiB

Table 6.8: Execution times for 10 million spheres in a drum coater. Times given in
milliseconds.

Algo. Prep. Collect Collect Forces Forces Overall Memory
Triangles Tr. NBs Part. NBs Triangles Particles Steps/s

old 470 511 1051 0.48 1737 MiB

new 2 10.8 24 4.3 63 7.9 1773 MiB

Table 6.9: Execution times for 10 million tablets in a drum coater. Times given in mil-
liseconds.

These settings seem to be the optimum and are now used as standard in XPS, giving

much better performance in general for simulations done at RCPE compared to the old

implementation. For comparison, the average entries in the collision list in this use-case are

7.85 neighbors per tablet particle and 4.3 neighbors per spherical particle, which means

much less contacts than in the tuning examples for the static neighbor list size where

particles fill up a box. Still, 8 static neighbor entries is fine for spheres, whereas tablets

tend to perform better with dynamic list use only.

What can be seen in the results is the huge amount of time needed for triangle inserting

into the uniform grid in the old algorithm. This one was already known to be very

inefficient and sensitive to actual cell sizes. The automatically chosen grid size according

to particle sizes was 410|655|410 for spheres and 348|556|348 for tablets which is responsible

for the different execution times of 470 and 760 milliseconds for triangle cell sorting. The

huge speed-up of 7.9/0.48 = 16.5 for tablets and 13.4/0.96 = 14 for spheres therefore

may not apply to each real-world example. But, also when neglecting geometries, the

reached speed-up is significant with only moderately higher memory consumption. For

example the whole speed-up neglecting geometries, but including numerical integration

and uniform grid sorting, is calculated approximately as following:

• Spheres (see table 6.8, where 19 ms are needed for preparation and integration):

(19 + 135)/(19 + 16.1 + 19.6) = 2.82

• Tablets (see table 6.9, where 21 ms are needed for preparation and integration):

(21 + 1130)/(21 + 24 + 63) = 10.7

These results show that contact lists are necessary to get good performance out of DEM

simulations, especially for non-trivial shapes.
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The additional memory consumption for the particle-particle neighbor lists is approxi-

mately:

• Spheres: 8 static entries, 4 byte each: 8 · 4 byte · 107 = 320 MiB

• Tablets: Approx. 4 dynamic entries, 8 byte each: 4 · 8 byte · 107 = 320 MiB

Additionally there is some more memory needed for particle-triangle collision pairs. When

compared with the overall memory consumption given in tables 6.8 and 6.9, in the spheres

use-case there is less memory needed overall. In the first place this is because for the

spheres a smaller cell-size can be used, and therefore more cells are used. Also, the BVH

structure needs less memory than the uniform grid, for this particular geometry.

6.3.4 Test Case 4 - Effect of Sorting in a Real-World Drum-Coater

During implementation of the new algorithms the matter of sorting particle data became

more important. As shown in figures 6.9 and 6.10, illustrating the execution speed in steps

per second over time, there is a big impact on performance whether particle data sorting

is performed or not. Taken as use-cases are the previous examples of particles in a drum

coating device, which are moving due to the rotation of the whole geometry. Therefore the

particles are continuously being mixed up in the process. Due to worse memory alignment

and less locality, leading to more global memory loads per warp, the performance reached

without sorting is not optimal. Speed-ups due to sorting all the particle data are in the

region of 4-5 in these examples and can further be increased when sorting is only done every

now and then. Especially when simulating spheres the overhead of sorting is significant

(see bottom figure in 6.9), leading to approximately 20% better performance when only

sorting every 0.0001 to 0.001 seconds, which seems to be a good choice for tablets as well.

But, the best value depends on the actual simulation problem and the degree and speed

of mixing happening. The speed losses which occur at simulation time approximately

t = 7.505 s caused attention and could be linked to the driver throttling GPU clock cause

of thermal problems due to low fan speeds at the simulation start.

For a detailed view the execution time for the kernels at sorted vs. unsorted particle

data is shown in tables 6.8, 6.9, 6.10, and 6.11. In general all the kernels regarding neigh-

bor search or force calculation, either particles or particle-triangle contacts, benefit from

sorting because of better data locality. This effect is much stronger when the new, more

performant, kernels are used for separating broad- and narrow-phase collision detection,

as also can be observed in figure 6.11, showing the execution speed over time at different

sorting intervals for the original algorithms.
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Figure 6.9: Execution speed over time at different sorting intervals for spheres. Top:
Difference in execution speed when sort is enabled or not. Bottom: Only sort after specific
time interval.



CHAPTER 6. RESULTS 67

Figure 6.10: Execution speed over time at different sorting intervals for tablets. Top:
Difference in execution speed when sort is enabled or not. Bottom: Only sort after specific
time interval.



CHAPTER 6. RESULTS 68

Figure 6.11: Execution speed over time at different sorting intervals for spheres (top) and
tablets (bottom), using the original implementation.

Algo. Preparation Collect Collect Forces Forces Overall
Triangles Triangle NBs Particle NBs Triangles Particles Steps/s

old 760 110 400 0.76

new 2.5 15 216 1.2 103 2.8

Table 6.10: Execution times for 10 million spheres in a drum coater. Particle data is not
sorted. Times given in milliseconds.
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Algo. Preparation Collect Collect Forces Forces Overall
Triangles Triangle NBs Particle NBs Triangles Particles Steps/s

old 470 516 1130 0.45

new 2 14 248 5.1 428 1.4

Table 6.11: Execution times for 10 million tablets in a drum coater. Particle data is not
sorted. Times given in milliseconds.

6.3.5 Test Case 5 - Particle Neighbor Search via BVH

To test the performance of the final BVH implementation also for particles, it is sufficient

to use the particles-in-a-box use-case as this is not a matter of geometries used. In table

6.12 the results are given. Not surprising, traversing the tree takes much longer than the

uniform-grid search, but also creating the tree is more effort. Nonetheless the overall slow-

down compared to uniform-grid is approximately 3 in this case. Also, there is significantly

more memory used, which was already explained in section 3.3.

NB-search algo. Build structure Collect NBs Forces Steps/s Memory

Uniform-grid based 12 18 31.5 13.96 1700 MiB

BVH based 27 153 31 4.46 2187 MiB

Table 6.12: Execution times for 10 million monodisperse spheres in a box, comparison
between uniform-grid and BVH. Times given in milliseconds.

One of the initial ideas of where using the BVH could be useful is simulating polydis-

perse particles with a big size-ratio, when many small particles are contained. The next

use-case is shown in figure 6.12 and the simulation results are given in table 6.13, where

one million small spheres (radius: one millimeter) were mixed with 276 large spheres (ra-

dius: 10 millimeter). As can be observed, the BVH neighbor search performs much better

because its insensitivity to particle sizes, opposed to the uniform-grid algorithm which

now has to loop over up to approximately 103 of the small particles in one cell, instead of

just one if there were no large particles in the simulation which would allow to keep the

cells small.

NB-search algo. Collect NBs Forces Steps/s Memory

Uniform-grid based 328 2.3 3 326 MiB

BVH based 14 2.3 45 379 MiB

Table 6.13: Execution times for one million 1:10 bi-disperse spheres in a box, comparison
between uniform-grid and BVH. Times given in milliseconds.
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Figure 6.12: Bi-disperse particles with a 1:10 size-ratio use-case: initial positions of parti-
cles (top) vs. settled positions after one second (bottom). Left pictures were made at side
view, right pictures are bottom view.
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6.3.6 Test Case 6 - Slow-Down when Contact List is Reused

The drum-coating use-case was also simulated for one million spheres, which is used now

to show the difference in execution times when using the force history or not. A restart at

time t = 7.5 s was done with and without force history, using dynamic lists only, leading

to the following results:

• Execution time for collecting particle neighbors increased from 1.55 ms to 3.42 ms

• Execution time for collecting triangle neighbors increased from 1.94 ms to 6.10 ms

• Execution time for calculating particle neighbors forces increased from 2.21 ms to

2.32 ms

• Execution time for calculating triangle neighbors forces increased from 0.40 ms to

0.46 ms

• Overall execution speed dropped from 83 to 36 steps per second

• Additional memory consumption of one float4 per contact (4 floats = 16 bytes for

the tangential displacement)

These results show that there is a significant additional cost when reusing the neighbor-list

to make features like force history possible. The main reason for this are the additional

un-coalesced memory loads due to check if the neighbor is already in the list and deleting

vanished contacts. Additionally, if dynamic neighbor lists are used, there is a huge over-

head for sorting the neighbor-list, which is necessary for looping through already existing

neighbors and to move contacts which are over to the end of the list.

6.3.7 Discussion

To summarize the achievements following speed-ups were reached for tablet-shaped par-

ticles:

• One million particles in a box (see table 6.4): 69/8.63 = 8.00

• 10 million particles in a box (see table 6.5): 7.37/0.91 = 8.10

• 10 million particles in a box without collisions (see table 6.7): 21.6/2.8 = 7.71

• 10 million particles in a drum-coating device (see table 6.9): 7.8/0.45 = 17.33

Here it can be seen that for complex-shaped particles it is really beneficial to use neighbor-

lists.
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The following speed-ups were reached for spherical particles:

• One million particles in a box (see table 6.2): 149/60 = 2.48

• 100 million particles in a box (see table 6.3): 2.19/0.64 = 3.42

• 10 million particles in a box without collisions (see table 6.6): 36.8/12.9 = 2.85

• 10 million particles in a drum-coating device (see table 6.8): 13.4/1 = 13.4

Still, a good speed-up results from using neighbor lists. In any case the new BVH based

algorithm for spatial subdivision of the geometrie’s triangles should be used to avoid having

potential performance issues with the old cell-space based algorithm, being too sensitive

to the cell size used in the simulation.

When the BVH is used for particles there is a significant impact on performance

when having poly-disperse particles in the simulation with a big size ratio and many small

particles included. For the bi-disperse 1:10 case given in table 6.13 a speed-up of 45/3 = 15

was reached comparing cell-space and BVH based neighbor search algorithms. Also, the

BVH would make simulations with large empty areas feasible.

An issue when doing DEM simulations is that particles potentially are in continuous

motion, and it is therefore reasonable to sort all the particle data at least every now and

then to assure a better data locality among collision partners.

Still to be analyzed is the role of static neighbor lists and what is the fastest way of

tracking and re-using contacts.
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Conclusion and Outlook

The goal of this thesis was to improve the current implementation of the CUDA R©-based

DEM implementation in the XPS software package. Alternative and more sophisticated

approaches were discussed and good speed-ups were reached.

The most significant improvements yielded the LBVH implementation for non-uniformly

sized particles with a big size-ratio. Recalling the introduction, this was the reason to im-

plement bounding volume trees in the first place.

Decoupling of neighbor search and force calculation demonstrated its strength espe-

cially for non-spherical particles, where huge speed-ups were achieved. Also, tracking

contacts is now possible which opens lots of new applications in the future.

At this point, the fastest known DEM implementation for spheres (BLAZE-DEM, see

[GWKE14]) is performing at approximately one hundred steps per second for one million

spheres, which now is reached by XPS easily as well.

7.1 Future Work

As already mentioned in the introduction, there is a simple coating algorithm implemented

in XPS, a uniform grid cell-based ray-tracing method. This implementation is rather slow

because to work correctly it has to loop over many cells to finally find the particle which

is hit. For this purpose the implemented BVH would probably be a better acceleration

structure.

Instead of the LBVH there are also other approaches which could improve tree quality

for a faster traversal, but probably slower tree construction. One approach is presented

in [LGS+09], discussing a hybrid tree using surface area heuristic in combination with an

LBVH to get a good trade-off between fast construction and good-quality trees. Also, the

memory consumption of the BVH is quite high compared with the uniform grid approach.

Both memory consumption and traversal time could be reduced with similar approaches,
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for example an Octree can be used, where each node has 8 instead of 2 children.

Last, but not least, the neighbor-list implementation can still be improved. The de-

signed algorithms are also used in a Smoothed Particle Hydrodynamics (SPH) implemen-

tation currently under development, where each particle has much more neighbors and

additional elements are stored per contact, therefore it is likely to be modified to meet

those special requirements.



Appendix A

Acronyms and Glossaries

Acronyms

AABB Axis Aligned Bounding Box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

AoS Array of Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

BVH Bounding Volume Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

CFD Computational Fluid Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

CPU Central Processing Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

CUDA R© Compute Unified Device Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

DEM Discrete Element Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

GPGPU General Purpose Computation on Graphics Processing Units . . . . . . . . . . . . . . . 7

GPU Graphics Processing Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

ITI Institute for Technical Informatics of the TU Graz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

LBVH Linear Bounding Volume Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

RCPE Research Center Pharmaceutical Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

SIMT Unique architecture employed by a SM. It creates, manages and schedules threads

of a warp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

SM Streaming Multiprocessor (SM, SMX) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

75



Acronyms 76

SoA Structure of Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

SPH Smoothed Particle Hydrodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

STL STereoLithography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Visualization ToolKit VTK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

XPS eXtended Particle System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VII
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Glossary

AVL FIRE R© A powerful multi-purpose thermo-fluid software representing the latest

generation of 3D CFD. It is being developed and continuously improved to solve

the most demanding problems in respect of geometrical complexity, physics and

chemistry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Central Processing Unit A integrated electronic circuit (processor) performing logical,

control and I/O operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Discrete Element Method A numerical simulation method for computing stresses and

motion of arbitrary particle systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

eXtended Particle System eXtended Particle System (XPS) is the name of a particle

simulation software using a CUDA R© implementation of the DEM developed at the

RCPE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VII, 1

Graphics Processing Unit A specialized electronic circuit (processor) mostly used to

compute graphics and images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

KeplerTM KeplerTM is the codename for a GPU microarchitecture developed by Nvidia

as the successor to the Fermi microarchitecture, introduced in March 2012. . . . . 10

MaxwellTM MaxwellTM is the codename for a GPU microarchitecture developed by

NVIDIA as the successor to the Kepler microarchitecture, introduced in September

2014. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

NVIDIA The NVIDIA Corporation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

ParaView ParaView is an open-source, multi-platform data analysis and visualization

application.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Smoothed Particle Hydrodynamics A numerical simulation method for computing

fluid flows, based on particles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Thrust Thrust is a C++ template library for CUDA, based on the Standard Template

Library (STL). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
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