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Abstract

The purpose of this thesis is the development and the practical evaluation of a
new power-train control concept for the prevention of power-train oscillations.
The advantages of this concept are that it does not require any torque sensor
information and it copes with backlash of unknown width and the wheel speed
information from the vehicle’s bus system.

The concept uses a state observer which estimates the shaft and load torque
at the power-train. The observer is designed by means of first-order sliding mode
technique. It requires the motor and the wheel angular velocity signals for mea-
surement, but in vehicles the information of the wheel speed sensors is available
only with a limited update rate. Therefore the sliding mode observer is extended
for the case of delayed and sampled signal measurements.

Based on the observer a first-order sliding mode controller is designed for
tracking of a given reference torque. Due to the choice of the sliding surface,
sliding mode is possible in the contact and backlash phase. The proposed concept
is verified by means of a multi-body system simulation of the electrical rear axle
of a prototype vehicle. For comparison reasons a second-order sliding mode step-
by-step observer and a controller based on the so-called generic second order
algorithm are designed.

For the investigation of the presented concepts a test-bench was designed.
The rolling resistance, the tire parameters and an approximation of the motor
dynamics with a second-order transfer function were experimentally determined.
The power-train control concepts are implemented at the servo drive of the test
bench. The tests proved a good tracking of the reference torque and sufficiently
smooth backlash-contact transition. The developed control concept with delayed
and sampled measurement of the wheel speed information performs with respect
to tracking and backlash-contact transition nearly as good as the concept with
undelayed and high-frequency sampled measurements.

i



Zusammenfassung

Das Ziel deser Arbeit ist die Entwicklung und praktische Evaluierung eines neuen
Regelkonzeptes zur Unterdrückung von Antriebsstrangschwingungen. Ein Vorteil
dieses Konzepts ist, dass kein Momentensensor benötigt wird. Zusätzlich ist das
Regelkonzept in der Lage mit Getriebespiel nicht bekannter Weite und den Rad-
drehzahlwerten vom Fahrzeugbussystem zurechtzukommen.

Das Konzept nutzt einen Zustandsbeobachter für die Schätzung des Antriebs-
strang- und Lastmoments, wofür ein Sliding Mode Ansatz erster Ordnung verwen-
det wird. Es werden die Motor- und Raddrehzahlinformation benötigt. In einem
Fahrzeug sind die Raddrehzalgrößen jedoch nur mit einer beschränkten Wieder-
holrate verfügbar. Daher wird der Sliding Mode Beobachter für die Verwendung
von zusätzlichen Messsignalen erweitert, die totzeitbehaftet und abgetastet sind.

Aufbauend auf dem Beobachter wird ein Sliding Mode Regler erster Ord-
nung für die Nachführung eines Referenzmomentes entworfen. Durch die Wahl
der Sliding Mode Schaltfläche wird ein Sliding Mode sowohl in der Kontakt- als
auch in der Spielphase ermöglicht. Das entworfene Regelkonzept wird mit einer
Mehrkörpersimulation einer elektrisch angetriebenen Hinterachse eines Prototy-
penfahrzeuges evaluiert. Für Vergleichszwecke wird ein step-by-step Beobachter
mit Sliding Mode Methoden zweiter Ordnung und ein Regler mit Hilfe eines so-
genannten generischen Algorithmus zweiter Ordnung entworfen.

Für die Evaluierung der entwickelten Konzepte wurde ein Prüfstand entwor-
fen. Die Rollreibung, die Reifenparameter und eine Approximaton der Motordy-
namik mit einer Übertragungsfunktion zweiter Ordnung wurden experimentell
bestimmt. Die Regelkonzepte wurden im Umrichter des Prüfstandes implemen-
tiert. Die Experimente zeigen eine gute Nachführung des Referenzmomentes und
einen hinreichend sanften Spiel-Kontaktübergang. Das entwickelte Konzept, wel-
ches verzögerte und abgetastete Radrehzahlmesswerte verwendet, verhält sich
bezüglich Nachführung und Spiel-Kontaktübergang annähernd so gut wie mit
unverzögerten und hochfrequent abgetasteten Messwerten.
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Chapter 1

Introduction

Passenger vehicles and vans emit about 15% of the overall carbon dioxide (CO2)
in the European Union (EU). The framework for climate and energy of the EU
for 2030 requires a reduction of at least 40% of greenhouse gases compared
to 19901. This legal requirement and rising fuel prices will have a significant
impact on the automotive industry in the long term such that the market share
of electric vehicles (EV) and hybrid electric vehicles (HEV) will increase. Thus
further development and improvement of EVs and HEVs is important. One of
the problems of electrically driven vehicles is that torsional oscillations can arise
in the power-train such that the driving comfort is significantly reduced.

1.1 Torsional oscillations

An automotive power-train corresponds to a low-damped system where unwanted
torsional oscillations can be stimulated which result in vehicle jerk and discomfort.
Torsional oscillations can also cause significant wear of mechanical parts in the
power-train and as a consequence their life time is reduced. The torque of electric
machines (EM) can be well controlled by means of field-oriented control (FOC).
Therefore it is expected that torsional oscillation can be reduced for electrically
driven vehicles by appropriate power-train control methods such that driving
safety and comfort remain preserved.

In [Men01] the factors influencing the torsional oscillations of the power-train
at the rear axle of an electrically driven passenger vehicle are analyzed. The
power-train consists of an EM, a transmission and a final drive, drive shafts and
wheels2. The oscillations occur mainly due to the elasticity of the low-damped
drive shafts. These oscillations are of low frequency which is in general less
than 10Hz. Backlash is present within the gear and the joints of the drive shafts.
Fast torque changes from zero to a constant value or converse, also called ”tip-in”
and ”back-out”, can increase the torsional oscillations due to the abrupt backlash-
contact transitions. In general this can be acoustically noticed and significantly

1http://ec.europa.eu/clima/
2For HEVs this configuration is sometimes called Electric Rear Axle Drive (ERAD).
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deteriorates the driving comfort. The tire slip increases the damping of the tor-
sional oscillations which grows with vehicle speed. The rise time of the torque of
the EM has a significant influence. Assuming linearity and presuming that the
torque of the EM corresponds to an ideal ramp the zeros in the spectrum of the
ramp function can be exploited by choosing the rise time as a multiple of the
reciprocal eigen-frequency [Men01]. In practice there is some mitigation of the
oscillations because of the nonlinear tire slip, a non-ideal torque ramp of the EM
and model uncertainties.

1.2 Previous works

In [NG02] a survey for controlling mechanical systems with backlash is presented.
The article mainly examines speed and position control applications. In general
and for the case of power-train control the control design is based on a two-mass
system representation, see for example [Men01, ABP04, KN05].

In [Men01] control concepts for damping of torsional oscillations are evaluated
for the power-train of electrically driven passenger vehicles. The first control
concept reduces the power-train oscillations by an additional damping factor.
This can be achieved by a feedback of the difference of the angular speeds, i.e.
the difference of the motor and load angular speed of the two-mass system. It
is assumed that only the motor angular speed is measurable such that the load
angular speed is estimated by means of an observer. The second concept feeds
back the torsion angle which is estimated by the observer. This concept reduces
the motor inertia. Combining both concepts results in a state feedback.

In [ABP04] a control scheme for damping power-train oscillations for electri-
cally driven vehicles is described. The shaft torque is estimated by means of a
Kalman filter including a dead zone model for the backlash. The wheel speed sen-
sor information is used dependent on the velocity. It is provided by the controller
area network (CAN) bus which has been considered by a constant delay. The
control law is represented by a third-order discrete-time transfer function from
the estimated shaft torque to the motor torque. It has been designed such that
the steady state control output is zero, i.e. it has a zero at z = 1 which means
differentiating behavior. Measurements from a prototype vehicle are given.

In [KN05] the power-train of passenger cars with conventional integrated com-
bustion engines (ICE) has been modeled as a linear two-mass system for anti-
jerking control. The vehicle mass is considered in the load inertia. In [TE09] a
linear-quadratic regulator (LQR) with integral part for anti-jerking control for a
truck with a diesel engine is proposed. In the synthesis model the wheel slip is
considered which is defined as the difference between load and wheel speed. In
[XHH+11] a model-predictive control scheme for anti-jerk during the tip-in/tip-
out process is presented.

In [GK13] a drivetrain observer for active damping control is presented. In
[HK07] a state observer for mechanical systems with backlash is presented and
its asymptotic stability is shown by means of Popov’s criterion. In [LE07] a state
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observer for automotive power-trains with backlash is presented. The twist angle
and the backlash width are estimated.

In [CSV+06] an observer and a control law for linear systems based on sampled
data measurements are presented. In [Web08] a proportional-differential (PD),
an LQR and a model predictive control (MPC) for the power-train of heavy
commercial vehicles are presented. The controller parameters are adapted with
the help of parameter estimation algorithms. The effect of the control with respect
to the driving comfort is investigated by analyzing gear switching maneuvers and
oscillations of the pitch rate of the driving cab. The state estimation is performed
with a Kalman filter where the delayed wheel speed signals are extrapolated.

Unknown input observers using first-order sliding modes are presented in
[ES98] and in [Spu08] a survey of sliding mode observers (SMO) is given. The
effect of chattering can be reduced by using higher order sliding modes. In
[FB06] a canonical form for the design of unknown input sliding mode observers
is presented. This observer incorporates the so called super-twisting algorithm of
[Lev93] step-by-step. In [FLD06a, FLD06b] a higher order sliding mode differen-
tiator based observer for linear systems with unknown inputs is presented.

1.3 Objectives

The goal of this thesis is to develop a power-train control concept for electrically
driven vehicles such that unwanted oscillations will be significantly reduced, also
for the case if backlash is present in the power-train. Reduced oscillations also
mean that the driving comfort can be improved and more energy can be regener-
ated. The power-train control concept should be able to cope with the following
restrictions given in series passenger vehicles:

• The knowledge of the system states, such as the shaft torque, can improve
the control performance. Due to cost reasons torque sensors will rather
not be present in the near future in an automotive power-train. Therefore
techniques for estimating the drive shaft torque with sufficient accuracy
and reliability are preferred. The power-train is additionally affected by an
unknown input, the load torque which results mainly from the acceleration
force and the road gradient.

• The play within the power-train is distributed and no angular encoders are
available to measure the backlash angle. Additionally the backlash widths
may vary due to series production, ageing and changing ambient conditions.

• The automotive wheel speed sensors of the anti-lock braking system (ABS)
used in series passenger vehicles have a low resolution such that the mea-
sured signal cannot be used in the control concept at small angular velocities.

• The wheel speed information is available on the vehicle’s bus system. In
general the cycle time of the control software is less than the message update
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time on the bus3. Additionally there is some delay due to measurement or
signal processing.

• In general the computational power of processors in automotive electronic
control units (ECU) is comparably low.

1.4 Outline of the thesis

In order to reach the goals with the restrictions listed in section 1.3 sliding mode
techniques will be used in this thesis. Due to the absence of torque sensors the
presented control concepts are based on state observers.

Chapter 2 first introduces two-mass systems, tire forces and backlash models.
Then a power-train model for an electrically driven vehicle will be represented as
a two-mass system with backlash. From that a linear synthesis model is derived,
where the backlash is neglected since its width and its actual angle are unknown.
An automotive wheel speed sensor model is presented. The delay of the wheel
speed signal due to the measurement and the automotive bus system is analyzed.
A test bench for analyzing and verifying the power-train control concepts is pre-
sented. A detailed three-mass model including tire slip is derived.

Chapter 3 presents sliding mode based observers for estimating the not mea-
surable state variables and the inknown input. It is estimated by means of a
disturbance model. A first-order sliding mode observer for linear-time invariant
(LTI) systems is extended for delayed and sampled measurements as it is the case
for the wheel speed information provided by the automotive bus system. The de-
termination of the observer gains for the sliding mode observer with delayed and
sampled measurements involves a linear matrix inequality (LMI) design proce-
dure. Additionally a second-order sliding mode unknown input observer concept
for power-train state estimation is presented.

Chapter 4 presents sliding mode based control concepts for controlling the shaft
torque in an automotive power-train with backlash. The control concepts are
based on the state estimates. The first concept incorporates a first-order sliding
mode design. Appropriate methods for chattering reduction are applied. The
control concept is evaluated with a multi-body system (MBS) simulation model
of an electrically driven axle of a hybrid vehicle. The second concept is based on
a reduced version of the so-called generic second order algorithm (GSOA).

Chapter 5 describes the test bench in detail, especially the design of the torsion
bar and the electrical topology. The tire-cylinder friction forces and the step re-
sponse of the torque generating current are analyzed. The corresponding observer
and control gains are determined for the test bench. Test bench experiments are

3The message update time at the bus system of the wheel speed signals is typically 10ms.
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presented and discussed.

Chapter 6 summarizes the presented work and gives an outlook for future work.

Appendix A describes two criteria for the the stability of linear sampled data
systems expressed with time-varying delay.

Appendix B analyzes the error dynamics of the first order sliding mode based
observer concepts for the contact and backlash phase. Additionally a sliding mode
control concept for the case that the backlash width is known is presented and
discussed.

Appendix C contains additional information and parameters of the test bench
and the MBS simulation model.
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Chapter 2

System Modeling

At the beginning of this chapter a linear two-mass system is analyzed in the
frequency domain. The longitudinal forces acting on the wheel and the vehicle
are described and a physical backlash model is compared with the well-known
dead zone model.

Then a power-train model for passenger vehicles including backlash is derived.
It represents the power-train of a driven axle, for example an electrically driven
rear axle. The model lumps the main elasticities of the drive-shafts such that
the power-train can be represented as a two-mass system. In an automotive
power-train the backlash widths and the backlash angles are unknown. Therefore
the synthesis model for observer and control design does not contain a backlash
model. A model of a wheel speed sensor currently used in series passenger vehicles
is presented. The wheel speed information is transmitted over the vehicle’s bus
system for which also a simple model is described.

A test-bench which has been designed for verifying the developed control con-
cepts is introduced in this section. It is modeled as a three-mass system including
nonlinear friction and tire-slip.

2.1 Frequency-domain analysis of a linear two-

mass system

In this section a linear two-mass system is analyzed in the frequency domain and
an approximate transfer function is derived for the case that viscous friction is
considered.

2.1.1 System representation

The two-mass system as shown in Fig. 2.1 consists of two mass moments of inertia
and a flexible shaft. It is assumed that the left inertia, denoted by Jm, represents
a motor with the driving torque Tm. The right inertia represents the load and
is denoted by Jl. The angular frequencies of the motor and load are denoted by
ωm and ωl. The viscous damping coefficient with respect to the motor and the

6



Jm Jl

ks

dm
ds

dl

Tm, ωm ωl

Figure 2.1: Two-mass system with additional viscous friction at the motor and
the load.

load are denoted by dm and dl respectively
1. It is assumed that the flexible shaft

consists of an ideal spring with stiffness ks and internal speed-dependent damping.
The damping coefficient is denoted by ds. According to [Föl08] the torque at the
shaft is calculated as

Ts = ksϕ+ dsϕ̇, (2.1)

where ϕ denotes the torsion angle of the shaft. It is defined by the difference
between the motor angle and the angle of the load such that its derivative cor-
responds to ϕ̇ = ωm − ωl. The differential equations of the two-mass system are
given by

ϕ̇ = ωm − ωl,

Jl ω̇l = Ts − dl ωl,

Jm ω̇m = −Ts − dmωm + Tm.

(2.2)

Equations (2.2) represent a linear, time-invariant (LTI) system which can be
written in matrix notation as

ẋ = Ax+ bu,

y = cTx,
(2.3)

where u = Tm, x denotes the state and b is the input vector, i.e.

x =





ϕ
ωl

ωm



 , b =





0
0
1
Jm



 . (2.4)

The system matrix is given by

A =







0 −1 1
ks
Jl

−ds+dl
Jl

ds
Jl

− ks
Jm

ds
Jm

−ds+dm
Jm






. (2.5)

For the frequency domain analysis the shaft torque is of interest. Therefore the
output vector was chosen as

cT =
[
ks −ds ds

]
. (2.6)

1The viscous damping of the motor can also be considered in the motor torque Tm such that
it can be set to zero.
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The transfer function from the input torque Tm to the shaft torque Ts is calculated
by

Gsm(s) =
Ts(s)

Tm(s)
= cT (sI−A)−1 b, (2.7)

where s denotes the complex Laplace variable and I denotes the unit matrix of
dimension three. The transfer function is given by

Gsm(s) =
dsJls

2 + (Jlks + dlds) s+ dlks
n(s)

, (2.8)

where

n(s) = JlJms
3 + ((ds + dl)Jm + (ds + dm)Jl) s

2+

+ ((Jm + Jl)ks + (dm + dl)ds + dldm) s+ (dm + dl)ks.

2.1.2 Neglected viscous damping

At first, for the analysis of the transfer function (2.8) the viscous damping coef-
ficients are neglected, i.e. dm = 0 and dl = 0. Then the zeros at s = 0 in the
numerator and denominator of (2.8) cancel out such that the order of the transfer
function is reduced by one, i.e.

Gsm(s) =
dsJls+ Jlks

JlJms2 + ds(Jm + Jl)s+ (Jm + Jl)ks

=
Jl

Jm + Jl

(ds
ks
s+ 1)

JmJl
(Jm+Jl)ks

s2 + ds
ks
s+ 1

= V0
z0(s)

n0(s)
.

(2.9)

The denominator n0(s) has the form of a normed polynomial, see e.g. [Föl08],

n0(s) =
s2

ω2
0

+
2ζ

ω0
s+ 1, (2.10)

where ω0 and ζ correspond to the undamped natural frequency and the damping
ratio. Comparing the coefficients their values are

ω0 =

√

(Jm + Jl)ks
JmJl

,

ζ =
ds
2

√

Jm + Jl
JmJlks

.

(2.11)

For different damping ratios 0 ≤ ζ ≤ 1 the roots of the normed polynomial (2.10)
are

s1,2 = −ζω0 ± j
√

1− ζ2 ω0. (2.12)
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Figure 2.2: Roots of the normed second order polynomial.

The roots are located at a semi circle in the closed left complex half plane with
radius ω0, see [HD04]. This is shown in Fig. 2.2. For small damping ratios ζ the
amplitude plot of the transfer function (2.9) has a significant resonant peak. The
resonance frequency of (2.9) is very close to the resonance frequency ωres of the
transfer function

Gsm,0(s) =
1

s2

ω2
0

+ 2ζ
ω0
s + 1

, (2.13)

which is
ωres = ω0

√

1− 2ζ2. (2.14)

2.1.3 Transfer function approximation

In the above analysis the damping coefficients dm and dl were neglected. If the
damping coefficients are different from zero the exact symbolic calculation of the
poles of the transfer function (2.8) becomes tedious. But the poles can be well
approximated. In [Sch09] the transfer function from the motor torque to the mo-
tor angular velocity of a two-mass system is represented as a combination of the
stiff and the elastic system.

For ks → ∞ the transfer function (2.8) corresponds to

lim
ks→∞

Gsm(s) =
dl

dm + dl

Jl
dl
s+ 1

Jm+Jl
dm+dl

s+ 1
. (2.15)

Factoring out the numerator and denominator of (2.15) from the numerator and
denominator of (2.8) and neglecting the terms multiplied with J2

m and dm in the
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Figure 2.3: Bode diagrams of the transfer function (2.8) of a two-mass system
and its approximation (2.16).

denominator, the transfer function (2.8) can be approximated by

Gsm,a(s) =
dl

dm + dl

(
Jl
dl
s+ 1

)(
ds
ks
s+ 1

)

(
Jm+Jl
dm+dl

s+ 1
)(

JmJl
(Jm+Jl)ks

s2 + ds
ks
s+ 1

) . (2.16)

The Bode diagrams of the transfer functions (2.8) and (2.16) are shown in Fig. 2.3.
The transfer function was parameterized with the parameters of the test bench,
see Tab. C.3.

2.2 Forces acting on the wheels and the vehicle

In [MW04] the forces acting on the wheels, the vehicle body and the road are de-
scribed as shown in Fig. 2.4. The aerodynamic resistance Fad acts on the vehicle’s
front area. The sum of the tread forces are denoted by Fx, the vertical force by
Fz. The torques and forces apply to the driven axle. Fa denotes the longitudinal
axle force, mv and mw denote the vehicle mass in the center of gravity (COG) and
the mass of the wheels at the axle respectively. The static tire radius is denoted
by rst and corresponds to the distance from the wheel center to the road. The
drive shaft torque is denoted by Ts. The longitudinal tire force Fx at the tread is
composed of the resistance force due to the road gradient χ, the rolling resistance
Fr and the acceleration resistance Facc. The acceleration resistance consists of the
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Figure 2.4: Forces acting on the wheel and vehicle according to [MW04].
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Figure 2.5: Friction coefficient µ versus tire slip.

acceleration force of the vehicle including the axles, the wheels and the accelera-
tion force due to the rotating parts.

2.2.1 Rolling resistance

The rolling resistance results mainly from the deformation work of the tire due
to the rolling motion. Additionally the pressure distribution in the tire contact
patch is not constant. This results in a reaction torque Fz ew proportional to
the vertical load, where ew corresponds to the distance of the pressure maximum
to the center of the contact patch, see Fig. 2.4. The rolling resistance depends
approximately linearly on the vertical force Fz, see [MW04], i.e

Fr = fr Fz, (2.17)

where fr denotes the rolling resistance coefficient. It consists of a constant and a
speed-dependent part, i.e.

fr = fr0 + fr1

( vx
100

)

+ fr4

( vx
100

)4

, (2.18)

where the longitudinal vehicle velocity vx has to be inserted in kmh−1. The
coefficient fr4 can be neglected up to a vehicle velocity of 150 kmh−1.

2.2.2 Longitudinal tire forces

According to [MW04] the friction coefficient µ is defined as

µ =
Fx

Fz

. (2.19)

The friction coefficient depends on the tire slip sx and on the road condition. The
tire slip is constituted of a deformation of the rubber and a gliding part. It is

12



defined as

sx =







vx − ωwrdyn
vx

for braking,

ωwrdyn − vx
ωwrdyn

for traction,
(2.20)

where rdyn denotes the dynamical tire radius. It is defined by the rolling circum-
ference U of a non-driven wheel, i.e.

rdyn =
U

2π
. (2.21)

In this definition the tire slip is always positive, sx ∈ [ 0, 1 ]. Fig. 2.5 shows
the the friction coefficient µ in dependence of the longitudinal tire slip sx. The
maximum friction coefficient µh is reached at the critical slip sx,c whose value is
about 10%. At a tire slip larger than sx,c the friction coefficient decreases, at
pure gliding, i.e sx = 1 the friction coefficient is µg < µh. Depending on the tire
µh ≈ 1 for dry roads and µh ≈ 0.8 for wet roads.

The tire force in dependence of the tire slip can be expressed by e.g. the Pacejka
magic formula which corresponds to a semi-empirical model, see [Pac02],

Fx = D sin (C arctan (Bsx − E (Bsx − arctan Bsx))) . (2.22)

From the stiffness factor B and the peak value D the shape and curvature factors C
and E can be determined. The product BCD corresponds to the slope at the
origin and denotes the tire stiffness.

2.3 Backlash models

Two different backlash models from the literature are presented in this section.
The first one is the well-known dead-zone model and the second one represents a
physical model.

2.3.1 Dead-zone model

The dead zone model represents the torque in dependence of the total angle of
deflection θ with a zero output zone around the origin, as shown in Fig. 2.6.
Within the dead band no torque is transferred. For |θ| ≥ α there is contact of the
gear teeth. The dead-zone model does not include any damping. The angle θ is
composed of the deflection angle of the backlash β and the torsion angle ϕ, i.e.

θ = β + ϕ. (2.23)

The angle β is bounded by half of the backlash width, i.e. |β| ≤ α. The torque is
calculated by

Ts = ks(θ − β). (2.24)
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Figure 2.6: Dead zone model for the shaft torque Ts(θ) in the presence of backlash
of width 2α.
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Figure 2.7: Phase plane plots of backlash models. Within the open set of the
shaded area there is no contact of the gear teeth.

During the backlash phase θ = β such that the shaft torque can be represented
as

Ts(θ) =

{

ks (θ − α sgn(θ)) for |θ| > α,

0 for |θ| ≤ α.
(2.25)

2.3.2 Physical model

The physical backlash model combines an ideal backlash with an inertia-free elas-
tic shaft with damping, see [NGG97]. The shaft torque Ts is calculated by

Ts = ks(θ − β) + ds(θ̇ − β̇). (2.26)

The coefficient ds represents the viscous damping. For β = α or β = −α
and β̇ = 0 there is contact. Solving the right hand side of (2.26) for θ̇ yields
θ̇ > −ks/ds · (θ − α) for Ts > 0 and θ̇ < −ks/ds · (θ + α) for Ts < 0. This
separates the (θ, θ̇)-plane in three areas with straight lines of slope −ks/ds as

14



Tm

Tl

2

Tl

2

ωm

electric motor

ks,1

ks,2

ω1

ω2

kg

energy

manager

inverter
HV-

battery

ABS/ESC

bus
backlash

sensor

elastic
shaft

2α
differential
gear

Figure 2.8: Power train of an electrically driven vehicle.

shown in Fig. 2.7(a). Within the open set defined by the shaded area there is no
contact. Fig. 2.7(b) shows the (θ, θ̇)-plane for the dead zone model with a vis-
cous damping term added which is significantly different from the physical model.

The dynamics of the backlash angle β is given by

β̇ =







max(0, θ̇ + ks
ds
(θ − β)) for β = α,

θ̇ + ks
ds
(θ − β) for |β| < α,

min(0, θ̇ + ks
ds
(θ − β)) for β = −α.

(2.27)

2.4 Power-train modeling

Fig. 2.8 shows the power-train of an electrically driven vehicle. It consists of
the EM, the backlash of width 2α, the differential gear with the gear ratio kg,
the elastic drive shafts and the wheels. Fig. 2.8 shows also ECUs interconnected
via the vehicle’s bus system, the angular sensor of the EM and the wheel speed
sensors, which are processed by the ABS or ESC (Electronic Stability Control)
ECU. The wheel angular velocities are denoted by ω1 and ω2.

2.4.1 Two-mass system model

In this section the power-train is represented as a two-mass system. Therefore
the wheels and the elasticities of the drive shafts are lumped. The backlash of the
entire power train is lumped as well. An ideal differential gear is assumed such
that the torques of the drive shafts are identical. The elasticity, which consists
mainly of the elasticities of the drive shafts, is represented by a linear spring with
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stiffness
ks = ks,1 + ks,2. (2.28)

Viscous damping is assumed for the motor and the load. Then the differential
equations of the power train can be summarized as2

θ̇ =
ωm

kg
− ωl,

Jl ω̇l = Ts − dl ωl − Tl,

Jm ω̇m = −
Ts
kg

− dm ωm + Tm,

(2.29)

where Jm and Jl respectively denote the motor and load inertia. The angular
velocities of motor and load are denoted by ωm and ωl, where the load angu-
lar velocity is the mean value of the corresponding left and right wheel angular
velocities, i.e.

ωl =
1

2
(ω1 + ω2) . (2.30)

The damping coefficients dm and dl consider the viscous friction of the motor and
the load. The motor inertia consists of the moments of inertia of the rotor and
the differential gear.

Load inertia

The load torque Tl represents the torque due to the tire-road contact forces as
described in section 2.2. Neglecting the rolling resistance and the resistance due to
the road gradient the load torque can be expressed with respect to the acceleration
force, i.e.

Tl = Faccrst. (2.31)

Assuming small tire slip the longitudinal vehicle speed vx can be approximated
by vx ≈ ωlrdyn. Then the acceleration force can be expressed as

Facc = mvv̇x ≈ mvrdynω̇l, (2.32)

where mv denotes the vehicle mass. Inserting (2.31) and (2.32) into the second
equation of (2.29) the load torque can be considered in the load inertia, i.e.

Jl = 2Jw +mvrdynrst, (2.33)

where Jw corresponds to the wheel inertia.

2The load angular position can not be measured with an automotive wheel speed sensor.
Therefore the difference angle between motor and load angular position θm and θl is used for
system representation, i.e. θ = θm

kg

− θl .
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Nonlinear state-space representation

Combining the state variables in the vector

x =





θ
ωl

ωm



 , (2.34)

the differential equations in (2.29) can be expressed in state-space form as

ẋ = f(x) + bu+mw

y = Cx,
(2.35)

where u = Tm and w = Tl denote the known and unknown input respectively.
The backlash is modeled as a dead-zone model as described in section 2.3 and the
shaft torque is calculated according to (2.25). Then the nonlinear function f(x),
the vectors corresponding to the known and unknown input b and m are

f(x) =






ωm

kg
− ωl

−dl
Jl
ωl +

1
Jl
Ts(θ)

−dm
Jm
ωm − 1

kg Jm
Ts(θ)




 ,

b =





0
0
1
Jm



 , m =





0
− 1

Jl

0



 .

It is assumed that the measured signals are the motor angular speed and the
wheel angular velocities. With (2.30) the output matrix is

C =

[
0 1 0
0 0 1

]

. (2.36)

Backlash representation as a combination of a linear and nonlinear
function

In [HK07] the dead zone model representation Ts(θ) according to (2.25) is ex-
pressed as the combination of a linear and nonlinear function in θ, i.e.

Ts(θ) = ks θ − ks ξ(θ), (2.37)

where

ξ(θ) =

{

θ for θ ≤ α,

α sgn(θ) for θ > α.
(2.38)

The function ξ(θ) is shown in Fig. 2.9. With (2.37) the nonlinear state-space
model (2.35) can be expressed as the sum of a linear system and a nonlinear
vector gξ(θ), i.e.

ẋ = Ax+ bu+mw + gξ(θ),

y = Cx.
(2.39)
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Figure 2.9: Nonlinear function ξ(θ) for correcting a linear function in θ in order
to model the effect of backlash.

The vector g corresponds to the negative first column of the matrix A. They are

A =






0 −1 1
kg

ks
Jl

−dl
Jl

0

− ks
kg Jm

0 −dm
Jm




 , g =






0

−ks
Jl

ks
kg Jm




 .

In the backlash and contact phase the system (2.39) describes different systems. In
the backlash phase no torque can be transmitted, i.e θ = ξ(θ). The nonlinear part
of (2.39) and the first column of the matrix A cancel out each other. Then (2.39)
corresponds to

ẋ = Ablx+ bu+mw,

y = Cx,
(2.40)

where

Abl =






0 −1 1
kg

0 −dl
Jl

0

0 0 −dm
Jm




 .

2.4.2 Synthesis model

Due to cost reasons no angle encoders are present which would measure the overall
backlash angle β. It cannot be reconstructed for example by an observer, i.e. the
pair (C,Abl) according to (2.36) and (2.40) is neither observable nor detectable3.

Due to the spread of series production and different ambient conditions the
backlash width is not exactly known. This requires an algorithm for the estima-
tion of the backlash width, such as presented in [LE07]. Due to the high torsional
stiffness ks the estimation of the backlash width 2α̂ has to be exact for the appli-
cation in a state observer.

3Detectability means that the non-observable modes are stable.

18



In automotive applications the control concepts should be simple and robust.
Therefore in this thesis a linear synthesis model neglecting the backlash is pro-
posed. This allows the design of the state observer and the controller to be
independently of backlash width. The state variable ϕ instead of θ is used to
indicate that the backlash is not considered in the model. The shaft torque can
be retrieved according to (2.1). The state vector corresponds to

x =





ϕ
ωl

ωm





T

. (2.41)

Synthesis Model

The synthesis model is represented by

ẋ = Ax+ bu+mw,

y = Cx,
(2.42)

where the system matrix A is

A =






0 −1 1
kg

ks
Jl

−ds+dl
Jl

ds
Jl kg

− ks
Jm kg

ds
Jm kg

− 1
Jm

(
ds
k2g

+ dm

)




 .

2.5 Wheel speed sensor and bus model

2.5.1 Automotive wheel speed sensor

The wheel speed sensors of passenger vehicles are integrated in the wheel bearing
at the hub, see [Rei12b]. They consist of a sensor element and a magnetic multi-
pole ring with N0 = 48 alternating magnetic units which are made of synthetic
material with ferromagnetic powder on a non-magnetic metallic wheel. Fig. 2.10
shows schematically a wheel speed sensor with multi-pole ring.

The sensor consists of a Hall sensor element and an integrated circuit (IC) which
are encapsulated in plastic material. The integrated circuit generates pulses from
the Hall voltage. The sensor IC is connected to the ABS or ESP ECU by a
current interface. Additional information such as direction of rotation, sensor
error or standstill is modulated onto the pulse width.

2.5.2 Wheel speed sensor model

The sensor is modeled as an incremental encoder. The angular velocity signal of
the wheel rim, denoted by ωr, is calculated by numerical approximation of the
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time-derivative of the rotation angle, i.e

ωr ≈
∆φ

∆t
, (2.43)

where ∆φ and ∆t denote the angle and the time interval respectively. Depending
on the method, as shown in [FPL12], the numerator or the denominator in (2.43)
can be fixed for calculating the angular velocity value. If the measurement time ∆t
is fixed the corresponding angle has to be determined4. If the angle ∆φ is fixed
the time for traversing a predefined number of increments or magnetic units has
to be measured5. The time measurement can be accomplished with the help of a
counter running at a high sampling frequency f0. This method is preferred since
it results in a smaller relative quantization error erel at low velocities, i.e.

erel ≤
ωr,s

∆φf0
, (2.44)

where ωr,s corresponds to the sensor angular velocity signal and ∆φ corresponds
to the angle of N ∈ N consecutive segments of the multi-pole ring, i.e.

∆φ = N
2π

N0

. (2.45)

In the sensor model the sampling frequency was chosen as f0 = 10kHz. In gen-
eral the measured signal ωr,s is subsequently filtered. Fig. 2.11 shows the real
angular velocity signal of the wheel rim ωr, the output of the wheel speed sensor
model ωr,s and the filtered signal of the model for which a first-order low-pass
filter with time constant τf = 10ms has been used.

The measurement principle introduces a delay of ωr,s. Assuming that the angular
velocity changes slowly the delay of the measured signal can be approximated
by ∆t/2. Due to the filter only the lower frequencies are transferred. There is an
additional delay due to the zero order hold. For a sinusoidal signal the delay of a
zero order hold can be approximated by ∆t/2, see [Lun13]. The delay introduced
by the filter can be approximated by the group delay at zero frequency tgr|ω=0.

2.5.3 Bus model

In general the power-train control algorithm is implemented in a separate ECU,
such as an inverter. It is connected to the vehicle’s bus system where the wheel
speed information is provided. Due to the bus transmission the wheel speed
information is affected by an additional delay.

With a Controller Area Network (CAN) bus system the delay cannot be de-
termined exactly since the bus system is event-driven. Although the wheel speed
information is provided with a high priority, the tasks of the sender and receiver

4This method is also called chronologically synchronous acquisition.
5This method is also called angular synchronous acquisition.
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Figure 2.12: Test bench for investigating power train control concepts.

ECU are not synchronized. With a time-triggered bus system implementing the
Time Division Multiple Access (TDMA) strategy, such as FlexRayTM, the software
tasks can be synchronized and the transmission delay is constant, see [Rei12a].

The bus model implements a constant transmission delay τb. In general the bus
update time is higher than the cycle time of the software task implementing the
control algorithm. This is modeled by a sampler and a zero order hold.

2.6 Test bench model

2.6.1 Test bench description

Fig. 2.12 shows the test bench built for investigating the power train control con-
cepts. The upper part represents the power train of a single axle of an electrically
driven vehicle. It consists of the traction motor, a claw coupling, the torsion bar
and the wheel. The claw coupling represents the gear play within the power-train.
The motor can be moved horizontally such that the backlash angle of the coupling
has a predefined value between zero and ten degrees. The torsion bar represents
the drive shaft and is attached between two ball bearings. Its stiffness is well
known from geometrical dimensions and from the steel properties. The lower
part can be adjusted in height statically such that the vertical force between tire
and metal cylinder, which represents the road, can be adjusted. By changing the
cylinder’s horizontal position two different friction values are available. The lower
motor can be used to apply additional load torques or disturbances.

22



kt
dt

Jr

Jt
ωr

ωt

tire

rim

Figure 2.13: Tire modeled as an elastic element with stiffness and damping coef-
ficient kt and dt.

High resolution sensors for angular position and speed measurement are lo-
cated at the motors and at both ends of the torsion bar. The two motors are
identical induction machines (IM) with squirrel cage rotor with a nominal torque
of 55Nm. They are driven by 9 kW ACOPOS inverters from B&R6 using three
phase voltage of 400 Veff.

The parameters of the mechanical parts, such as the moment of inertia of the
rotor of the EM, the clutch and the metal cylinder are known from CAD modeling.
The test bench is described in more detail in chapter 5. For details on the motor,
the inverter and the parameters of the test bench see appendix C.

2.6.2 Tire model

As in [MW04] the tire is modeled as a torsional elastic element as shown in
Fig. 2.13. The torque Tt at the tire is represented by

Tt = kt ϕt + dtϕ̇t, (2.46)

where ϕt corresponds to the tire torsion angle and kt and dt denote the stiffness
and damping coefficient of the tire respectively. The inertias of the wheel rim and
the tire are denoted by Jr and Jt respectively. The traction force between tire
and cylinder corresponds to a nonlinear function of the longitudinal tire slip sx.
According to Fig. 2.4 the longitudinal tire force Fx is

Fx =
Tt
rst

− Fr, (2.47)

where Fr and rst denote the rolling resistance and the statical tire radius.

2.6.3 Backlash model

The physical backlash model from section 2.3.2 is applied. The backlash angle
β is calculated with an integrator with saturation. The conditions β = ±α and

6www.brautomation.com
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|β| < α are used to distinguish the cases in (2.27). Then the shaft torque is
calculated with (2.26).

2.6.4 Model of the EM

The torque dynamics of the induction machine is approximated by a second-order
transfer function. It corresponds to (2.13) and its parameterization can be found
in Tab. C.13.

2.6.5 Differential equations

The shaft and the tire represent the main elasticities such that the test bench
corresponds to a three-mass system. It is described by the differential equations

θ̇ = ωm − ωr,

Jmω̇m = Tm − Ts − dmωm,

Jrω̇r = Ts − Tt,

ϕ̇t = ωr − ωt,

Jtω̇t = Tt − Fx rst − Fr(|ωt|) sgn(ωt)rst,

Jcω̇c = Fx rc − dcωc − Tl,

(2.48)

where ωr, ωt and ωc correspond to the angular velocities of the wheel rim, the
tire and the cylinder respectively. The torques at the shaft and at the tire are
calculated according to (2.26) and (2.46). The inertias of the wheel rim, the
tire and the steel cylinder are denoted as Jr, Jt and Jc. The radius of the steel
cylinder is denoted by rc. The viscous damping at the motor and at the cylinder
is considered by the damping coefficients dm and dc. The rolling resistance Fr(ωt)
is represented in dependence of the positive tire angular velocity as shown in
Fig. 5.5.

The longitudinal tire force in dependence of the tire slip is represented as
shown in Fig. 5.6. The tire slip is calculated according to (2.20). The rolling
resistance and the longitudinal tire force were evaluated experimentally.
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Chapter 3

Power-Train State Estimation

The shaft torque in the power-train of series passenger vehicles is not measured
due to costly sensor equipment. The torque therefore has to be estimated via ap-
propriate methods. The backlash within the power-train is in general distributed
and of unknown width. In the contact phase, i.e. when the backlash gap is closed,
the power-train model is observable and the shaft torque can be estimated with
the help of a state observer.

Since the synthesis model of section 2.4.2 has been chosen to be linear the ob-
server design will focus on linear time-invariant (LTI) systems. The computational
effort of the observer should be small. For this reason the designed observers are
based on first-order sliding mode techniques. For the observer implementation a
basic method for chattering reduction is applied. In order to estimate the shaft
torque exactly, the unknown load torque has additionally to be estimated. The
observer design involves a simple disturbance model.

In the observer design the measurement of the ideal motor and load angular
velocities is presumed. The wheel speed information is of poor quality at low
angular velocities and therefore cannot be used reliably in a state observer. The
impact on the observability is analyzed by means of observability measures.

The sliding mode observer concept is extended for the case that a part of
the sensor signals is only available with delay and a limited update rate. The
extension incorporates a linear correction term of the delayed measurements such
as the wheel speed information which is available on the vehicle’s bus system. The
stability determination of the observer error dynamics a Linear Matrix Inequality
has to be solved.

For the measurement of the ideal motor and load angular velocities the syn-
thesis model (2.40) fulfills the so-called strong observability condition with respect
to the unknown input. A second-order sliding mode unknown input observer is
applied for state estimation. It allows the estimation of the shaft torque despite
an unknown load torque.
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3.1 Observability

3.1.1 Definition and criteria

Consider a continuous-time LTI system with disturbance w and initial state x(t =
0) = x0,

ẋ = Ax+ bu+mw,

y = Cx,
(3.1)

with x ∈ R
n, y ∈ R

r, and u, w ∈ R. The definition of observability of an LTI
system is given e.g. in [ZDG96].

Definition: System (3.1) is observable if, for any t1 > 0 the initial state x0 can
be calculated from the output y(t) and the input u(t) within the finite time in-
terval [ 0, t1 ].

In [ZDG96] criteria for the observability of LTI systems are given:

1. System (3.1) is observable if and only if the observability matrix By has full
column rank n, i.e.

rankBy = rank








C
CA
...

CAn−1







= n. (3.2)

2. System (3.1) is observable if and only if the observability Gramian Wo(t) is
positive definite for any t > 0, i.e.

Wo(t) :=

∫ t

0

eA
T τCTCeA

T τdτ ≻ 0, (3.3)

where the matrix eAτ denotes the state transition matrix.

3. System (3.1) is observable if and only if

Cpij 6= 0, (3.4)

where pij corresponds to a (linearly independent) eigenvector of the eigenvalue si
of A with multiplicity k, j ≤ k, i.e.

Apij = sipij, i = 1, . . . , m ≤ n. (3.5)

4. System (3.1) is observable if and only if the eigenvalues of (A + LC) can be
assigned arbitrary.

Definition: [Hau83] System (3.1) is strongly observable if for any initial state x0

and w ≡ 0, y(t) ≡ 0 implies x(t) ≡ 0.
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3.1.2 Observability measures

Due to the low resolution of the automotive wheel speed sensors their signal can-
not be used for state estimation at small vehicle speeds. Therefore the question
arises if the observability significantly deteriorates if only the motor angular ve-
locity signal is considered for measurement in an observer. In order to evaluate
the degree of observability so-called observability measures were introduced. In
[Mos11] controllability measures for LTI systems are analyzed. Because of duality
these measures can be applied to observability. In the following section a short
overview of well-known measures is given.

Observability measure according to Litz

The observability measure according to Litz is based on the diagonal form. As-
suming that the system matrix A is diagonalizable, the system (3.1) can be trans-
formed into the canonical form via the state transformation

z = Vx, (3.6)

where V = [p1, . . . , pn ] denotes the matrix of eigenvectors. The transformed
system reads as

ż = diag(si)z+ b̃u,

y = C̃z,
(3.7)

where diag(si) = V−1AV, b̃ = V−1b and C̃ = CV.

The system (3.1) is observable if and only if the output matrix C̃ has no zero
column which means that Cpi 6= 0, i = 1, . . . , n. Small values in the i-th column
of the transformed output matrix C̃ indicate ’poor’ observability of the corre-
sponding eigenvalue. The measure according to Litz is defined as

κi =
p∗

iC
TCpi

p∗

ipi

, i = 1, . . . , n, (3.8)

where p∗

i denotes the conjugate transpose of pi.

Observability measure according to Benninger and Rivoir

The controllability measure according to Benninger and Rivoir, see [BR86], is
based on the minimal energy required to steer an initial state x0 to the ori-
gin x = 0. Applied to observability the measure is defined as

mi =
1

√(

W̃−1
o (t)

)

ii

, i = 1, .., n, (3.9)
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Table 3.1: Observability measure according to Litz.

y1 = ωm κ1 = 0.5
κ2 = 0.637
κ3 = 0.637

y2 = [ωm, ωl ] κ1 = 1.0
κ2 = 1.0
κ3 = 1.0

where (W̃−1
o (t))ii denotes the i-th main diagonal element of the inverse observ-

ability Gramian, where

W̃o(t) =

∫ t

0

e−A
T τCTCe−Aτdτ. (3.10)

The minimal control energy of the dual system of (3.1) corresponds to

Wmin(t) = xT
0 W̃

−1
o x0. (3.11)

The definition of the Observability Gramian according to (3.10) is based on the
inverse state transition matrix such that for a stable system matrix A the mea-
sure (3.9) will tend to infinity as the integration time goes to infinity. This means
that no control energy is needed for stabilizing the dual system of (3.1).

Analysis of the synthesis model

In this section the observability of the synthesis model (2.42) is analyzed for two
sensor configurations. In the first configuration the only measured output is the
motor angular velocity, i.e

y1 = ωm = C1x, C1 =
[
0 0 1

]
. (3.12)

In the second configuration the motor and the load angular velocities are mea-
sured, i.e.

y2 =

[
ωl

ωm

]

= C2x, C2 =

[
0 1 0
0 0 1

]

. (3.13)

For the analysis it is assumed that the disturbance input w ≡ 0 since external
disturbances are not considered with the investigated measures. The parameters
correspond to them of the test bench, see Tab. C.3. For both sensor configurations
the corresponding observability matrix (3.2) has full rank.

The results of the observability measure according to Litz for the two sensor
configurations are shown in Tab. 3.1. The values κ2 and κ3 belong to the complex
conjugate eigenvalues. The measure has no significant dependence on the damping
coefficient ds.
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Table 3.2: Observability measure according to Benninger and Rivoir with damping
coefficient ds = 1.

y1 = ωm m1 = 98.64
m2 = 0.31
m3 = 0.28

y2 = [ωm, ωl ] m1 = 123.86
m2 = 0.42
m3 = 0.4

Table 3.3: Observability measure according to Benninger and Rivoir with damping
coefficient ds = 0.

y1 = ωm m1 = 32.01
m2 = 0.22
m3 = 0.18

y2 = [ωm, ωl ] m1 = 40.09
m2 = 0.29
m3 = 0.24

For the measure (3.9) according to Benninger and Rivoir it is not necessary to
compute the integral (3.10). Eq. (3.10) fulfills the Lyapunov differential equation

˙̃Wo(t) = −ATW̃o(t)− W̃o(t)A+CTC, (3.14)

with the initial condition W̃o(0) = 0. Eq. (3.14) was evaluated numerically using
Matlab/Simulink1. The simulation was performed with a step size of 1ms by
the Runge-Kutta integration method, see e.g. [Kre93]. In [BR86] it is proposed
to choose the integration time of (3.10) in the magnitude of the dominant time
constant of the system which corresponds to 2.3 s. For (2.42) this yields large
values of the measure for the case that the damping coefficient ds = 1. Therefore
the integration time was chosen as 0.1 s.

Tab. 3.2 and Tab. 3.3 show the results of the measure (3.9) according to
Benninger and Rivoir. The two tables compare the influence of the damping
coefficient ds.

1www.mathworks.com
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3.2 First-order sliding mode observers

3.2.1 Sliding mode observer for LTI systems

Consider an observable continuous-time linear, time-invariant (LTI) system with
unknown disturbance w

ẋ = Ax+ bu+ dw,

y = Cx,
(3.15)

with x ∈ R
n, y ∈ R

r, u, w ∈ R. In order to estimate the state x and the
unknown input w, system (3.15) is augmented by a disturbance model. The
disturbance is assumed to be constant, i.e. ẇ = 0. With the augmented state
vector x̄T = [ w xT ] with x ∈ R

n̄×1, where n̄ = n+ 1, the model has the form

˙̄x = Āx̄+ b̄u,

y = C̄x̄.
(3.16)

Observer design

It is assumed that rank(C̄) = r and C̄ = [ 0 C ]. The augmented system (3.16) is
observable if and only if the eigenvalues of the matrix

(Ā+ L̄C̄) =

[
0 lTC
d A+ LC

]

(3.17)

can be assigned arbitrary, where L̄T = [ l LT ] denotes the observer gain matrix
with lT ∈ R

1×r and L ∈ R
n×r. Such an observer is also called a proportional

integral (PI) observer, see [BS88].

For the design of the sliding mode observer the state variables have to be reordered
such that the last r states are the measured states, i.e.

x̄ =

[
x1

y

]

(3.18)

with x1 ∈ R
n̄−r. This can be accomplished by a linear state transformation

TĀT
−1

=

[
A11 A12

A21 A22

]

, Tb̄ =

[
b1

b2

]

, (3.19)

with the regular matrix

T =

[
N
C̄

]

,

where the rows of N span the null space of C̄. Then the state-space model (3.15)
has the following form:

ẋ1 = A11x1 +A12y + b1u,

ẏ = A21x1 +A22y + b2u.
(3.20)
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For the system (3.20), the sliding mode observer has the form [UGS09]:

˙̂x1 = A11x̂1 +A12ŷ + b1u+ Lv,

˙̂y = A21x̂1 +A22ŷ + b2u− v,

v = Msgn(ŷ − y),

M = diag (Mi) , i = 1, . . . , r,

(3.21)

where sgn(·) denotes the vector-valued sign function which defines r sliding sur-
faces

σi = ŷi − yi, i = 1, . . . , r. (3.22)

The constant elements Mi of the r-dimensional diagonal matrix M have to be
strictly positive and sufficiently large such that sliding mode is enforced on each
surface of (3.22). Finite time convergence within

te,i = |σi(0)|/ηi (3.23)

is ensured to σi = 0 for the initial conditions σi(0) if

σ̇i sgn(σi) < −ηi, ηi > 0. (3.24)

In sliding mode the error of the measured states ey = y − ŷ and its derivative

ėy = ˙̂y − ẏ vanish. The equivalent control method yields veq = A21ex1
, where

ex1
= x̂1 − x1 denotes the error of the not measurable states. The observer gain

matrix L ∈ R
(n̄−r)×r has to be chosen such that the error dynamics

ėx1
= (A11 + LA21) ex1

(3.25)

is stable. The remaining linear error dynamics (3.25) in sliding mode corresponds
to the error dynamics of a reduced Luenberger observer, see [Utk92].

Implementation issues

The sliding mode design method involves continuous-time models an presumes
infinite switching frequency. The implementation of the observer (3.21) in a com-
puter will generate chattering because of the finite switching frequency. An effi-
cient strategy is to introduce a boundary layer of width εo by replacing the sign
functions in (3.21) with saturation functions as shown in Fig. 3.1, see [SL91], i.e.

sat

(
σi
εo,i

)

=

{

sgn(σi) for |σi| > εo,i

σi/εo,i for |σi| ≤ εo,i
, i = 1 . . . , r, (3.26)

where εo,i denotes the boundary layer width of the i− th sliding surface σi. Due
to the implementation of the boundary layer sliding mode cannot exist, since the
right hand side of (3.26) is continuous.
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sat
(

σi

εo,i

)

1

-1

σi
εo,i

−εo,i

Figure 3.1: Representation of a boundary layer with a saturation function for
chattering reduction.

Design with nonlinear synthesis model

The sliding mode observer can also be designed based on the nonlinear power-train
model according to (2.39). This is performed in section B.3. The observer (B.42)
has a major disadvantage compared to the observer design based on a linear
synthesis model. The backlash width 2α must be known. This means that an
additional estimation algorithm is necessary for the backlash width, see for exam-
ple [LE07, MDCF06]. Due to the large stiffness estimation errors of the backlash
width will lead to large errors of the estimated torque.

3.2.2 Extension for delayed and sampled measurements

In this section the observer of section 3.2.1 will be extended for the case that a
part of the sensor signals is available only via a network or bus system. Assume
that (r − l) > 0 output signals y1(t) = C̄1x̄(t) can be measured without any
delay and l output signals of (3.16) can only be measured with delay τ0 which is
assumed to be constant. Due to the transmission over the network or bus system
the outputs are available only at the time instants tk, k ∈ N0, such that they
remain constant for the time tk ≤ t < tk+1 as shown in Fig. 3.2. The delayed and
sampled outputs can be represented as signals with time-varying delay τ(t), i.e.

y2(tk − τ0) = C̄2x̄(t− τ(t)), (3.27)

32



y

t

tk tk+1

y(t)

y(t− τ0)

y(tk − τ0)

Figure 3.2: Delayed and sampled signal due to network or bus transmission.

τ(t)

t
tk tk+1

τm

τ0

Figure 3.3: Variable time delay τ(t) due to sampling. Additional constant de-
lay τ0 due to measurement processing and bus transmission. The overall delay is
assumed to be bounded by τm.
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where tk+1 − tk ≤ τs is upper bounded and C̄2 ∈ R
l×n̄. Due to sampling

τ(t) = t− tk + τ0 (3.28)

has the form of a sawtooth function where τ̇(t) = 1 for t 6= tk, see Fig. 3.3.

Remark: For the wheel speed sensor and bus model in sections 2.5.2 and 2.5.3
the delay τ0 can be represented as τ0 = ∆t+ τgr + τb.

Observer design

It is assumed that the pair (C̄1, Ā) in (3.16) is observable and that the output
matrix can be represented as

C̄ =

[
C̄2

C̄1

]

, (3.29)

such that the rows of C̄1 and C̄2 span different sub-spaces. Applying the linear
state transformation (3.19) the output matrix (3.29) is of the form

C̄T−1 =

[
0 C′

2 0
0 0 C′

1

]

,

where C′

1 ∈ R
(r−l)×(r−l) and C′

2 ∈ R
l×l. The transformed system (3.16) can be

represented as

ż = A11z+A12y1 + b1u,

ẏ1 = A21z+A22y1 + b2u.
(3.30)

The vector y1 contains the state variables which can be measured without delay.
The vector z ∈ R

(n̄−r+l)×1 contains the state variables to be estimated x1 ∈
R

(n̄−r)×1 and the state variables which can be measured only with delay y2, i.e.

z =

[
x1

y2

]

. (3.31)

Then, observer (3.21) for the system (3.30) is extended by an additional time-
delay term as follows:

Sliding mode observer with additional delayed linear error feedback

˙̂z = A11ẑ+A12ŷ1 + b1u+ L1v + L2 ey2(tk − τ0),

˙̂y1 = A21ẑ+A22ŷ1 + b2u− v,

v = Msgn(ŷ1 − y1),

M = diag (Mi) , i = 1, . . . , r − l.

(3.32)
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The dimensions of the observer gain matrices are L1 ∈ R
(n̄−r+l)×(r−l), L2 ∈

R
(n̄−r+l)×l, M ∈ R

(r−l)×(r−l).

The error of the delayed measurements is defined by

ey2(tk − τ0) = ŷ2(tk − τ0)− y2(tk − τ0) = C2ez(tk − τ0), (3.33)

where tk ≤ t < tk+1,
C2 = [ 0 C′

2 ] ∈ R
l×(n̄−r+l), (3.34)

and
ez = ẑ− z. (3.35)

Stability determination

For Mi, i = 1, . . . , r− l sufficiently large sliding mode exists and the dynamics of
the estimation error ez is

ėz = A0ez +A1ez(t− τ(t)), (3.36)

where A0 = A11 + L1A21 and A1 = L2C2. The initial condition of (3.36) is

ez(ψ) = 0, for ψ ∈ [−τm, 0),

ez(0) = e0,
(3.37)

where τm = τs+ τ0 denotes the maximum time delay and e0 the initial estimation
error.

The stability of the error dynamics (3.36) has to be determined in a two-step pro-
cedure. First the observer gain L1 has to be chosen such that A0 is stable. The
error dynamics (3.36) has to be stable also in the delay free case, i.e. A0+A1 must
be Hurwitz. The gain L2 can be chosen e.g. by pole placement such that A0+A1

is stable. The stability of (3.36) can be determined with e.g. the Razumikhin
theorem, see [GKC03], but leads to conservative results. Therefore the stability
will be determined with the help of the following theorem, see [LF12, Fri14], which
yields less conservative results:

Theorem: For τ0, and τs given, if the positive definite (n̄− r + l)× (n̄− r + l)-
matrices P, W, R1, R2 ≻ 0 exist, system (3.36) is asymptotically stable, if







U PA1 +R2 PA1 AT
0F

AT
1P+R2 −R1 −R2 0 AT

1F

AT
1P 0 −π2

4
W AT

1F
FA0 FA1 FA1 −F






≺ 0, (3.38)

where

U = AT
0P+PA0 +R1 −R2,

F = τ 2sW + τ 20R2.
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Theorem (3.38) denotes a Linear Matrix Inequality (LMI) and results from the
derivative of a Lyapunov-Krasovskii functional, see appendix A.

Also exponential stability with decay rate γ > 0 can be guaranteed [LF12]. With
the change of variables ēz(t) = eγtez(t) the error dynamics of (3.36) can be
represented as

˙̄ez = (A0 + γI) ēz + eγτ(t)A1ēz(t− τ(t)). (3.39)

The stability of (3.39) guarantees the exponential stability of (3.36) with decay
rate γ > 0. Since (3.38) is affine in A0 and A1 and by convexity arguments,
condition (3.38) has to be verified for

Ā0 = A0 + γI, Ā
(1)
1 = eγτ0A1, (3.40)

and
Ā0 = A0 + γI, Ā

(2)
1 = eγτmA1, (3.41)

by solving the two corresponding LMIs simultaneously.

Implementation issues

Again a boundary layer can be used in (3.32) to reduce chattering. Within the
boundary layer the observer gains are

L̄1 =
1

εo

[
L1M
−M

]

, L̄2 =

[
L2

0

]

. (3.42)

3.2.3 Observer design for a power-train with backlash

In this section the observer concepts of sections 3.2.1 and 3.2.3 are used for esti-
mating the shaft and load torque in the power-train. The model for the observer
design is the synthesis model (2.42). The unknown disturbance w = Tl is modeled
as

w = ks q, q̇ = 0, (3.43)

where the scaling factor ks corresponds to the shaft stiffness. The scaling factor
has been introduced for convenience such that the observer stability analysis is
simplified in section B.1. As proposed in section 3.2.1 the state variable corre-
sponding to the disturbance is placed at first in the augmented state vector. Since
the state of the synthesis model is already in the appropriate form the state x̂
does not have to be reordered by the linear state transformation (3.19).

Measurements without delay

In this section it is assumed that the motor and load angular speeds can be
measured without delay. The proposed observer concept is based on the works
presented in [AH11] and [AH10]. The states according to (3.20) are

x1 =
[
q ϕ

]T
and y =

[
ωl ωm

]
.
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The submatrices according (3.20) are A11 = 0, b1 = 0 and

A12 =

[
0 0
−1 1

kg

]

, A21 =

[

−ks
Jl

ks
Jl

0 − ks
kg Jm

]

,

A22 =

[
−dl

Jl
0

0 −dm
Jm

]

, b2 =

[
0
1
Jm

]

.

For sufficiently large elements Mi, i = 1, 2 of the matrix M observer (3.21) with
the following gain matrix L renders the error dynamics (3.25) exponentially stable:

Observer gain matrix

L =

[
Jl
ks
λ1

kg Jm
ks

λ1

0 kg Jm
ks

λ2

]

, λ1 > 0, λ2 > 0 (3.44)

The observer gain matrix L can be determined by hand. The error dynamics is
given by

ėx1
= diag (−λ1, −λ2 ) ex1

. (3.45)

In section B.1.1 the observer error dynamics is analyzed for the contact and
backlash phase for the power-train model with backlash (2.39). In the contact
phase the observer error dynamics does not change and the estimated sates are
calculated correctly if unknown backlash is present in the power train. During the
backlash phase the shaft torque estimate remains bounded and the error dynamics
of the load torque estimate remains stable.

According to (2.33) the load inertia Jl might change e.g. due to longitudinal
slip or a changing vehicle load. Since the load torque which is estimated influences
the second differential equation in (2.29) a change of the load inertia will change
the load torque estimate. The analysis of the parameter Jl is given in section B.2.1.

Delayed and sampled load speed measurement

According to (3.30) the state vector consists of

z =
[
q ϕ ωl

]T
and y1 = ωm (3.46)

The sub-matrices according to (3.30) are b1 = 0, b2 = 1/Jm and

A11 =





0 0 0
0 0 −1

−ks
Jl

ks
Jl

−dl
Jl



 , a12 =





0
1
kg

0



 ,

aT
21 =

[

0 − ks
kg Jm

0
]

, a22 = −dm/Jm.

The determination of the gains l1 and l2 of the observer from section 3.2.2 are
determined in a two step process.
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Figure 3.4: Exponential decay rate γ of the observer error dynamics in dependence
of the real part −λ̃0 of the eigenvalues of A0 +A1.
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Figure 3.5: Value ι which is a measure for the estimation error of the load angular
velocity signal in the backlash phase in dependence of the real part −λ̃0 of the
eigenvalues of A0 +A1.
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In the first step the gain l1 has to be chosen such thatA0 is stable. The eigenvalues
si of A0 are determined by pole placement such that their real parts are identical,
i.e.

Re(si) = −λ0, λ0 > 0, i = 1, . . . , 3. (3.47)

In the second step the gain l2 has to be determined with an iterative process
by pole placement such that (A0 + A1) has desired eigenvalues. It is desirable
that the decay rate γ of the error dynamics (3.25) will not deteriorate due to the
delayed and sampled measurement signal ωl. Therefore the real part λ̃0 of the
eigenvalues of (A0 +A1) has to be chosen such that λ̃0 > λ0.

For each value of λ̃0 the decay rate γ has to be determined. This involves
also an iterative search by a bisection method for γ by solving the LMIs (3.38)
for the matrices (3.40) and (3.41) simultaneously. The initial interval of the bi-
section search for γ is chosen as [ 0, λ̃0 ]. The bisection search is stopped after
a predefined number of steps. Fig. 3.4 shows the exponential decay rate γ of
the error dynamics (3.36) in dependence of the real part −λ̃0 of the eigenvalues
of (A0 +A1). This design was done with the parameters of the test bench. The
real parts of the eigenvalues of A0 were chosen as −λ0 = −170. The choice of
the eigenvalues of (A0+A1) and the observer parameters is described in chapter 5.

In section B.1.2 the observer error dynamics is analyzed for the contact and back-
lash phase with the power-train model with backlash (2.39). In the contact phase
the observer error dynamics does not change and the estimated states are calcu-
lated correctly if unknown backlash is present in the power train. Contrary to the
observer without delayed measurement the state corresponding to the disturbance
estimate is not observable due to the delayed load speed measurement. Therefore
the load torque should be small during the backlash phases. This can be achieved
by considering the acceleration force of the vehicle in load inertia as described in
section 2.4.1.

In section B.1.2 also the steady state error in the backlash phase is analyzed.
According to (B.24) the value ι is a measure for the steady state error of the load
speed estimate in the backlash phase, i.e.

Steady state error measure of the load speed estimate in the backlash phase

ι = −hT
3 (A0 +A1)

−1 h2. (3.48)

The vectors h3 and h2 denote the corresponding unit vectors. Fig. 3.5 de-
picts (3.48) in dependence of the the real part −λ̃ of the eigenvalues of (A0+A1).
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3.3 Second-order sliding mode observer

The disadvantage of first-order sliding modes is chattering. With the help of
a saturation function the chattering was significantly reduced. As a result the
robustness properties are lost. Therefore in this section a second-order sliding
mode unknown input observer concept will be used for estimating the torsion
angle of the shaft.

3.3.1 Step-by-step observer

Consider the linear, time-invariant, observable system with unknown input (3.15).
The vector of measured signals y ∈ R

r can be expressed as

y = Cx =






cT1
...
cTr




x. (3.49)

Define the relative degree δi,w, i = 1, . . . , r of the i-th output yi with respect to
the disturbance input w as the smallest integer such that

cTi A
jm = 0, j = 1, . . . , δi,w − 2, and cTi A

δi,w−1m 6= 0. (3.50)

It is assumed that the sum of the relative degrees corresponds to n. This means
that the system (3.15) is strongly observable and the transformation matrix

T =















cT1
...

cT1A
ρ1

...
cTr
...

cTr A
ρr















(3.51)

has full rank. With z = Tx the system (3.15) can be transformed into a block
triangular form, see [FB06]. Separating the transformed state vector z into r
subvectors, i.e.

z =






z1
...
zr




 , zi ∈ R

ρi , (3.52)

the i-th block of the transformed system has the form

zi = H̃izi + Ãiz+ b̃iu+ d̃iw,

yi = [ 1 0 . . . 0 ]zi,
(3.53)
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where H̃i ∈ R
ρi×ρi , Ãi ∈ R

ρi×n, b̃i, d̃i, z̃i ∈ R
ρi and

H̃i =








0 1 0 . . . 0
...

. . .
. . .

. . .
...

...
. . . 1 0

0 . . . . . . 0 0







, Ãi =








0T

...
0T

cTi A
ρiT−1







, d̃i =








0
...
0

cTi A
ρi−1m







.

According to [FB06] the step-by-step observer for the i-th block is given by

˙̂zi,1 = ν(ẑi,1 − yi) + b̃i,1u,

˙̂zi,2 = Ei,1ν(ẑi,2 − z̃i,2) + b̃i,2u,

...

˙̂zi,ρi = cTi A
ρiT−1ẑ+ Ei,ρi−1ν(ẑi,ρi − z̃i,ρi) + b̃i,ρiu,

(3.54)

where b̃i,j, j = 1, . . . , ρi denote the elements of b̃i. The elements of z̃i,j are defined
recursively, i.e.

z̃i,1 = yi,

z̃i,j = ν(ẑi,j−1 − z̃i,j−1), j = 2, . . . , ρi.
(3.55)

The nonlinear injection terms are composed of the super-twisting algorithm [Lev93,
Lev98]

ν(σi,j) = −κ1,i,j

√

|σi,j| sgn(σi,j) + vi,j,

v̇i,j = −κ2,i,j sgn(σi,j),
(3.56)

where κ1,i,j > 0, κ2,i,j > 0, j = 1, . . . , ρi. The factors Ei,j , j = 1, . . . , ρi− 1 will be
set to one if all the previous errors have vanished which represents an anti-peaking
structure. The observer design involves in total 2n states. The estimation errors
are defined as

ei,j = ẑi,j − zi,j , j = 1, . . . , ρi. (3.57)

The dynamics of the first error differential equation of the i-th block is given by

ėi,1 = ν(ei,1)− zi,2. (3.58)

Assuming that zi,2 obeys a Lipschitz condition with Lipschitz constant2 Li,2,
i.e. |żi,2| ≤ Li,2 and for sufficiently large κ1,i,1, κ2,i,1 after finite time a second-
order sliding mode occurs in (3.58), i.e. {ei,1 = 0, ėi,1 = 0}, such that

ν(ei,1) = zi,2. (3.59)

2|z(t1)− z(t0)| ≤ L |t1 − t0| for all t0, t1 ∈ R.
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With żi,1 = zi,2 the error dynamics (3.58) implements a robust exact differentiator,
see [Lev98]. Then the second observer equation in the i-th block will be enabled
by setting Ei,1 to one. With (3.55) and (3.59) it follows that

ėi,2 = ν(ẑi,2 − z̃i,2)− zi,3,

= ν(ẑi,2 − ν(ei,1))− zi,3,

= ν(ẑi,2 − zi,2)− zi,3,

= ν(ei,2)− zi,3.

(3.60)

For |żi,3| ≤ Li,3 and sufficiently large κ1,i,2, κ2,i,2 after finite time a second-order
sliding mode occurs in (3.60), i.e. {ei,2 = 0, ėi,2 = 0}, such that

ν(ei,2) = zi,3. (3.61)

This process is continued such that the estimates of the corresponding states
converge step-by-step. In the last step Ei,ρi−1 will be set to one such that

ėi,ρi = ν(ẑi,ρi − z̃i,ρi) + cTi A
ρiT−1e− cTi A

ρi−1mw, (3.62)

where e = ẑ − z. It is assumed that a Lipschitz constant exists such that
|cTi A

ρi−1m| · |ẇ| ≤ Li,ρi+1. Sufficient conditions for the stability of the super-
twisting algorithm, see [SEFL13], are

κ2,i,j > 1.1Li,j+1,

κ1,i,j ≥ 1.5
√

Li,j+1, j = 1, . . . , ρi, i = 1, . . . , r.
(3.63)

3.3.2 Observer design for a power-train with backlash

For the application of the observer from section 3.3.1 the number of steps should
be small as it will be the case for the power-train synthesis model (2.42). The
damping constant ds > 0 is incorporated in the synthesis model since it reduces
the relative degrees with respect to the unknown input by one. For the outputs
y1 = cT1 x = ωl and y2 = cT2 x = ωm the relative degrees with respect to the
unknown input w are

δ1,w = 1, δ2,w = 2. (3.64)

The sum of the relative degrees in (3.64) corresponds to the system order n = 3
such that the strong observability condition is fulfilled with respect to the unknown
input w. The transformation matrix T is

T =





cT1
cT2
cT2A



 , (3.65)

such that ρ1 = 1 and ρ2 = 2. With the regular state transformation z = Tx the
system in block observable form is given by

Ã =






−dl
Jl

−dm
Jl

−Jmkg
Jl

0 0 1
Jlks−dlds

JlJm
−Jlks+dmds

JlJm
−dsJm+Jl(ds+dm)

JlJm




 , (3.66)
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where the gear transmission ratio kg = 1 was assumed for simplicity. The trans-
formed vectors d̃ and b̃ are given by

d̃ =





− 1
Jl

0
− ds

JlJm



 , b̃ =





0
1
Jm

−ds+dm
J2
m



 . (3.67)

The elements of the vectors b̃, d̃ and z will be numbered in ascending order for
convenience. Then

z1 = y1,

z2 = y2,

z3 = ż2 − b̃2u.

(3.68)

Denoting the elements of the transformed matrix Ã with ãij, i, j = 1, . . . , 3, the
transformed system (3.15) corresponds to

ż1 = ã11z1 + ã12z2 + ã13z3 + d̃1w,

ż2 = z3 + b̃2u,

ż3 = ã31z1 + ã32z2 + ã33z3 + b̃3u+ d̃3w.

(3.69)

The observer for the transformed system (3.69) is given as follows:

Step-by-step observer

˙̂z1 = ã11z1 + ã12z2 + ã13ẑ3 + ν (ẑ1 − y1) ,

˙̂z2 = ν (ẑ2 − y2) + b̃2u,

˙̂z3 = ã31z1 + ã32z2 + ã33ẑ3 + E3 ν (ẑ3 − z̃3) + b̃3u.

(3.70)

The term z̃3 denotes the result of the super-twisting algorithm of the previous
step, i.e. z̃3 = ν(ẑ2 − y2). The first and third observer equation reproduce the
system equations in order to reduce the gains in the super-twisting algorithms.
Fig. 3.6 shows the structure of the observer.

Determination of the observer gains

The estimation errors are defined as

ei = ẑi − zi, i = 1, . . . , 3. (3.71)

The observer error dynamics corresponds to

ė1 = ν(e1) + ã13e3 − d̃1w,

ė2 = ν(e2)− z3,

ė3 = E3ν(z̃3 − ẑ3) + ã33e3 − d̃3w.

(3.72)
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For sufficiently large observer gains a second-order sliding mode will occur after
finite time such that {ei = 0, ėi = 0}, i = 1, . . . , 2. Then

ν(e2) = z3, and e3 = z̃3 − ẑ3 (3.73)

Since ã33 < 0 the error e3 is bounded for E3 = 0. Then, by setting E3 = 1, after
finite time a second-order sliding mode occurs also in the third error differential
equation, i.e. {e3 = 0, ė3 = 0}.

For the determination of the observer gains the Lipschitz constants have to
be estimated with the help of the observer error dynamics (3.72). According to
the second error differential equation in (3.72) the Lipschitz constant has to be
chosen such that

|ż3|max ≤ L2. (3.74)

According to (3.68) |ż3| = |ω̈m − b̃2u̇|. In the first and third differential equation
of (3.72) the maximum derivative of the disturbance |w| has to be considered, i.e.

|d̃1| |ẇ|max ≤ L1, (3.75)

and
|d̃3| |ẇ|max ≤ L3. (3.76)

The maximum values of the derivatives can be evaluated with the simulation
model (2.48) or from measurements. Then the observer gains can be calculated
with the help of (3.63).

Reconstruction of the unknown input

Presuming sliding mode the unknown input w can be reconstructed form the first
and third equation of (3.72). It is preferred to reconstruct the unknown input
from the first equation as it involves no differentiation process. Then

ŵ =
ν(e1)

d̃1
. (3.77)
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Figure 3.6: Step-by-step sliding mode observer for the power-train.
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Chapter 4

Power-Train Control Concepts

In this chapter control concepts for a power-train of an electrically driven vehicle
are presented. The control task is to track a given reference torque command Tref.
In general the command is transmitted via the vehicle’s bus system from the
ECU executing the operating strategy to the corresponding power-train ECU.
The emphasis of the presented control concept is to cope with the backlash of
unknown width within the power-train. On the one hand the controller has to
track the reference torque and on the other hand the backlash-contact transitions
have to be performed such that no noticeable torque overshoots occur.

The use of Sliding mode techniques allows to fulfill these requirements, since
sliding mode is possible in the contact and backlash phase with an appropriate
definition of the sliding surface. A first-order sliding mode control (SMC) concept
is derived because it can be implemented in an embedded processor of a servo
drive in addition to the field-oriented control. Additionally, the sliding mode
design allows the analysis of the backlash phase. The control law needs the state
variables which are estimated by the observers from section 3.2.3.

Methods for chattering reduction are analyzed, especially the so-called bound-
ary layer method. The maximum control gain is determined with the help of a
second-order actuator model. For the parameterization of the controller gain a
differentiation has to be made in practice depending on whether the load speed
is delayed or not.

In general chattering reduction methods are necessary for the implementation
of first-order SMC. Therefore a reduced version of the so-called Generic Second
Order Algorithm (GSOA) is applied for power-train control. The state variables
are calculated by the second-order sliding mode observer from section 3.3.2.

For the integration of the proposed concepts into an automotive ECU addi-
tional algorithms are necessary. This involves a conditional usage of the delayed
wheel speed signal and a concept for a very low vehicle velocity.

The first-order SMC concept is evaluated in a multi-body system (MBS) co-
simulation for a hybrid electrical vehicle. The MBS system represents a detailed
model of the electrically driven rear axle. The co-simulation includes the models
of the wheel speed sensor and the bus system of section 2.5.
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4.1 First-order sliding mode based control

In this section a power-train control law based on first-order sliding mode design
techniques is derived. It is based on the work presented in [AH11]. Following
the arguments in section 2.4.2 the control design incorporates the linear synthesis
model (2.42).

4.1.1 Sliding surface design

The first task is to design the sliding surface. Define the error variable e as

e = ϕ̂− ϕref, (4.1)

where ϕref denotes the reference shaft torsion angle. It is determined by solv-
ing (2.1) for ϕ and by setting ϕ̇ = 0, i.e.

ϕref =
Tref
ks
, (4.2)

where Tref denotes the reference shaft torque. Due to the structure of the synthe-
sis model (2.42) the sliding surface has been chosen as follows:

Sliding surface design

σ = ė + λ e, λ > 0. (4.3)

Substituting the corresponding model equation of (2.42) and (4.1) into (4.3) the
sliding surface σ corresponds to

σ =
ωm

kg
− ωl − ϕ̇ref + λ(ϕ̂− ϕref), (4.4)

where ϕ̂ and ϕ̇ref correspond to the estimated torsion angle the time-derivative of
the reference torsion angle.

4.1.2 Power-train control design

The above definition of the sliding surface according to (4.3) allows that slid-
ing mode is possible in the contact and backlash phase of the power-train con-
troller. In order to enforce sliding mode, the so-called reachability condition, see
e.g. [PB02], i.e.

σσ̇ < 0 (4.5)

has to be fulfilled. This can be achieved with the constraint

σ̇ = −K sgn(σ), (4.6)

where the parameter K > 0 has to be sufficiently large such that sliding mode
will be enforced within finite time, see [UGS09]. Differentiating (4.4) with respect
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to the time, substituting the equations of the synthesis model (2.42) and solving
the expression for the actuating signal yields the control law given by

u = ueq − JmkgK sgn(σ), (4.7)

where ueq corresponds to the equivalent control term which is given by

ueq = dmωm +

(
1

kg
+
Jmkg

Ĵl

)

ksϕ̂−
dlJmkg

Ĵl
ωl−

−
Jmkg

Ĵl
T̂l + Jmkgϕ̈ref − Jmkgλ

(
ωm

kg
− ωl − ϕ̇ref

)

.

(4.8)

The symbols Ĵl and T̂l denote the estimated load inertia and the load torque
estimate respectively. In (4.8) the damping coefficient ds = 0 was assumed for
simplicity.

Determination of the control gain

According to (2.33) the load inertia Jl depends on the vehicle mass which may
vary. In (2.33) it is assumed that the tire slip is small. For spinning wheels
the load inertia will significantly decrease. This fact should be considered in the
determination of the controller gain K. With the Lyapunov function

V =
1

2
σ2 (4.9)

the attractiveness of the sliding surface σ = 0 can be guaranteed if V̇ = σσ̇ < 0.
In section B.4 the time derivative of the sliding surface (4.4) is calculated for the
case that the load inertia is not exactly known. The load inertia is assumed to be
constant, i.e.

Ĵl = Jl + δJl. (4.10)

Define the error of the load torque as

eTl
= T̂l − Tl. (4.11)

With (B.57) the time-derivative of (4.9) becomes

V̇ = σσ̇

= σ

(

−
eTl

Ĵl
−
δJl

Ĵl
ω̇l −K sgn(σ)

)

≤ |σ|

(
|eTl

|max

Ĵl
+

|δJl|max

Ĵl
|ω̇l|max −K

)

≤ −η|σ|, η > 0.

(4.12)

The condition σσ̇ ≤ −η|σ| is also called the η-reachability condition, see [PB02].
For the finite time convergence to σ = 0 within the reaching time tr, i.e.

tr ≤
|σ(0)|

η
, (4.13)
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the control gain K has to satisfy the following condition:

Control gain

K ≥
|eTl

|max

Ĵl
+

|δJl|max

Ĵl
|ω̇l|max + η. (4.14)

For the implementation of the control law the corresponding state estimates are
provided by the observers from section 3.2.3. For the delayed measurement of the
load angular velocity the load torque can not be estimated correctly during the
backlash phase. Then |eTl

|max corresponds to the absolute maximum load torque.

4.1.3 Chattering reduction

The direct implementation of the control law would generate chattering which
results from the unmodeled dynamics, such as neglected motor dynamics and the
finite switching frequency.

In [UGS09] methods for chattering reduction are presented. The ’Equivalent
control dependent gain method’ varies the control gain depending on the equivalent
control term (sgn(σ))eq. An estimate of the equivalent control term can be re-
trieved by a low-pass filter of the discontinuous control part. The ’Observer-Based
Solution’ generates sliding mode in an auxiliary observer loop. These methods
require the control law to be discontinuous.

In general the control concept has to cope with existing field-oriented control
(FOC) implementations such that the actuating signal represents the reference
signal for the underlying current control loop. This reference must be continuous
such that high voltages are prevented due to the inductive nature of the electric
motor. Therefore a boundary layer solution is chosen.

Boundary layer

The boundary layer solution implements a saturation function such that the con-
trol will be continuous [SL91]. In [ES98] also variants of the continuous approx-
imation are given. In section 3.2.1 the saturation functions were used in the
observer implementation. Fig. 4.1 shows the sliding surface (4.3) with the bound-
ary layer

|σ| ≤ εc (4.15)

in the (e, ė)-plane, where εc corresponds to the boundary layer width. If con-
dition (4.14) is fulfilled the boundary layer is attractive. It follows from (4.3)
and (4.15) that after finite time the absolute value of the torque error eTs

for a
constant reference torque is bounded by

|eTs
| = |T̂s − Tref| ≤

εc
λ
ks. (4.16)
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Figure 4.1: Boundary layer solution for chattering reduction.

For |σ| ≤ εc the slope of the linear part of the saturation function corresponds
to 1/εc. Within the boundary layer the derivative of the sliding surface (4.3) is
continuous such that (B.57) becomes

σ̇ = −
K

εc
σ −

eTl

Ĵl
−
δJl

Ĵl
ω̇l. (4.17)

Eq. (4.17) introduces a first-order low-pass filter with time constant εc/K, i.e.

σ̇ = −
K

εc
σ −

K

εc

(
εc

ĴlK
(eTl

+ δJlω̇l)

)

. (4.18)

For the assumption that σ and the torque error eTs
are constant within the bound-

ary layer it follows from (4.3), (2.1) and (4.18) that the absolute value of the
control error |eTs

| corresponds to:

Control error of shaft torque

|eTs
| =

|σ| ks
λ

=
εc ks

λ ĴlK
|eTl

+ δJlω̇|. (4.19)

Stability within the boundary layer in presence of second-order actua-
tor dynamics

In the synthesis of the control law (4.7) the actuator dynamics is neglected. High
control gains in combination with small boundary layer widths will lead to in-
stability within the boundary layer which generates chattering, see for exam-
ple [UGS09]. For the stability analysis only the linear high-gain control term is
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Figure 4.2: Closed loop transfer function for stability analysis of the control law
within the boundary layer.

applied, i.e.

u = −
K

εc
σ = −V σ. (4.20)

Linear second order actuator dynamics is assumed. Its transfer function Ga(s)
has the shape of (2.13). The sliding surface (4.3) can be rewritten as

σ = cTσx
︸︷︷︸

=:σx

−λϕref − ϕ̇ref, (4.21)

where
cTσ =

[

λ −1 1
kg

]

. (4.22)

The transfer function Pσ(s) from the plant input u to the output σx is involved
in the control loop as shown in Fig. 4.2. It corresponds to

Pσ(s) =
σx(s)

u(s)
= cTσ (sI−A)−1 b. (4.23)

The transfer function Tσ(s) of the closed-loop system is

Tσ(s) =
V Ga(s)Pσ(s)

1 + V Ga(s)Pσ(s)
. (4.24)

The gain V = K/εc has to be designed such that the roots of the denominator
of (4.24) are located in the open complex left half-plane.

4.1.4 Controller analysis in backlash phase

In this section the difference angular velocity

ω̄ =
ωm

kg
− ωl (4.25)

in the backlash phase is determined. On the one hand, a large difference angular
velocity causes a torque jerk at the backlash contact transition. On the other
hand, a too slow difference angular velocity results in poor control behavior. The
behavior of the controlled power-train during the backlash phase is determined
by the definition of the sliding surface (4.3).
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First, it is assumed that the control gain is sufficiently large such that σ ≡ 0
can be fulfilled also during the backlash phase. It is further assumed that the
estimated torsion angle ϕ̂ is small and therefore can be neglected. Solving (4.4)
for ω̄ yields

ω̄ = ϕ̇ref + λϕref. (4.26)

The realization of the controller of section 4.1.2 is based on a boundary layer of
width εc. As in section 4.1.2 it is assumed that the load inertia is not exactly
known. The differential equation for ω̄ can be determined from the second and
third equation of (B.51) such that

˙̄ω = −
dm
kg Jm

ωm +
dl
Jl
ωl +

Tl
Jl

+
Tm
kg Jm

. (4.27)

By substitution of the control law (4.7) into (4.27) and assuming that ϕ̂ = 0,
ϕ̇ref = 0 and ϕ̈ref = 0 the sliding surface (4.3) can be expressed in terms of ω̄, i.e.

σ = ω̄ − λϕref. (4.28)

It is further assumed that the absolute value of the load angular acceleration |ω̇l|
is small such that it can be neglected. With (B.55) and (B.56) the dynamics of
the difference speed ω̄ in the backlash phase corresponds to

˙̄ω = −
eTl

Ĵl
−

(
λεc +K

εc

)

ω̄ +
K λ

εc
ϕref. (4.29)

The steady state difference angular velocity is given as:

Difference angular velocity in backlash phase

ω̄ = −
εc

λεc +K

eTl

Ĵl
+

Kλ

λεc +K
ϕref. (4.30)

This means that the difference angular velocity depends on the reference torque
in the backlash phase and the design parameters λ, K and εc and the load torque
estimation error. For a small value of the boundary layer width εc the difference
angular velocity ω̄ approximately corresponds to

ω̄ ≈ λϕref. (4.31)

Due to (4.2) the difference angular velocity also depends on the shaft stiffness. In
general the reference torsion angle ϕref is small which results in a small difference
angle such that the transition from the backlash to the contact phase is smooth.

4.1.5 Remarks on the definition of the sliding surface

The use of a boundary layer implies that the steady-state error will not decay to
zero, see (4.19). The sliding surface (4.3) can be extended by an integral term,
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see for example [SL91], such that the sliding surface corresponds to

σ = ė + 2λ e+ λ2
∫

e dt, λ > 0. (4.32)

Due to the integral term the actuating signal reaches comparably large values in
the backlash phase such that a too large difference angular velocity ω̄ causes a
torque overshoot after the backlash-contact transition. For small values of λ the
control performance significantly deteriorates.

Chattering results from unmodeled dynamics and the finite switching fre-
quency. The actuator dynamics can be approximated, for example by a first-order
system with time constant τa, i.e.

τaṪm = −Tm + Tm,ref. (4.33)

Then the relative degree of the sliding surface σ with respect to the control input,
the motor reference torque Tm,ref, has to be increased, i.e.

σ = ë+ 2λė+ λ2e. (4.34)

It follows from (2.42) and (4.33) that the unknown load torque Tl appears in the
sliding surface (4.34) which has to be estimated. This can lead to unwanted control
action, for example by using the estimate for T̂l from the observer in section 3.2.2.

The sliding surface can be designed as the error variable as introduced in (4.1).
Then the relative degree of σ with respect to the control input is two. The
power-train can be controlled for example by means of the twisting algorithm,
see [Lev93]. In the backlash phase however, sliding mode cannot occur since
the reference does not correspond to the real shaft torque, i.e. σ 6= 0. As a
consequence there will be an overshoot at the backlash contact transition.

4.2 Power-train control software

The functionality of the control concept must be guaranteed even at low vehicle
speeds, where the load angular velocity signal is not reliable. Therefore additional
software modules are necessary. The first module determines whether the wheel
speed signal is used in the observer. The second module limits the reference
torque and its gradient at very low vehicle speeds. It is assumed that the control
software is implemented in the power-train ECU together with the field-oriented
control (FOC) of the EM. Fig. 4.3 shows the concept of the power-train control
software.

4.2.1 Conditional usage of the delayed correction term

During the backlash phase the knowledge of the load angular velocity signal is of
essential importance for a good control performance. But the delayed correction
term

l2eωl
(t− τ(t)) (4.35)
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Figure 4.3: Overview of the controller software.

of observer (3.32) cannot be used at low vehicle speeds. This is accomplished
by an additional multiplicative term which enables or disables (4.35) in the ob-
server (3.32). The enabling or disabling of (4.35) in the state estimator should
only be accomplished in the contact phase. The contact phase can be detected if,
for example, the absolute value of the estimated shaft torque exceeds a predefined
threshold.

In general the load angular velocity signal is affected by noise. In the case
of the delayed and sampled load angular velocity signal a disturbance remains
constant between two consecutive samples, i.e. bus signals. These disturbances
prevent that the observation error completely vanishes. Therefore it is proposed
to use the delayed correction term (4.35) in the state observer only when travers-
ing the backlash phases. For example, it can be enabled when the absolute value
of estimated shaft torque is lower than a certain threshold value. This can be
performed without a very small impact to the state estimates because the ob-
server (3.32) represents one dynamical system.

The conditional usage of the delayed correction term (4.35) in observer (3.32) can
be managed by the following boolean condition

d(T̂s, ωl(t− τ(t))) =

{

1 for |T̂s| < Tth ∧ |ωl(t− τ(t))| > ωth

0 for |T̂s| ≥ Tth ∨ |ωl(t− τ(t))| ≤ ωth

, (4.36)

where Tth and ωth denote the corresponding threshold values. The threshold
value with respect to the shaft torque Tth has to be sufficiently large such that
the switching of the correction term is accomplished when there is contact in the
power-train. The threshold value ωth corresponds to a sufficiently large wheel
speed.
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Figure 4.4: Limitation of the reference torque and its gradient within the backlash
phase for the case that no load angular signal is available.

4.2.2 Reference torque limitation

At low vehicle speeds the control concept has no information about the load
angular velocity. Consequently torque overshoots cannot be suppressed by the
control at the backlash-contact transitions. Therefore it is necessary to limit the
reference torque and its gradient. Fig. 4.4 shows the concept of torque limitation.

4.3 Multi-body system simulation

For the evaluation of the control concept a multi body system (MBS) model of
the power-train of an electrically driven rear axle from a prototype hybrid vehicle
of Magna Steyr Fahrzeugtechnik1 has been generated. The prototype vehicle is
a Fiat Panda with 1200 cm3 integrated combustion engine which consists addi-
tionally of an electrically driven rear axle. The traction motor is a synchronous
machine with a peak torque of 72Nm. The peak power is 23 kW. Details about
the vehicle and the hybrid power-train can be found in [SSK10].

4.3.1 Model of an electrically driven rear axle

In Figure 4.5 the Adams/Car2 MBS model of the electrically driven rear axle
power-train is depicted. The differential gear is placed off the center of the axle
such that the drive shafts have different length and stiffness. They are connected
with the differential gear by tripod joints. The three small flat cylinders show the
mountings at the vehicle body. They are modeled as stiff springs.

Since the MBS model consists only of the axle the wheels interact with a roll.

1www.magnasteyr.com
2www.mscsoftware.com
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Figure 4.5: Multi Body System model of an electrically driven rear axle of a
hybrid prototype vehicle.

A constant vertical force of
Fz =

mv g

4
(4.37)

acts on the wheels, where mv denotes the vehicle mass. The roll has been designed
such that its inertia corresponds to 50% of the total vehicle mass, i.e.

Jroll =
mv r

2
st

2
, (4.38)

since the traction motor at the rear axle supports the combustion engine, e.g.
with all wheel drive functionality.

For the used tires with dimension of 165×65R14 a model for dry road is available.
It consists of a set of adhesion coefficients µ(sx) in dependence of the longitudinal
tire slip. The longitudinal tire force, as shown in Fig. 4.6, is obtained by multi-
plication of the tire slip with the vertical force, i.e Fx = µ(sx)Fz. In addition to
the tire model, the tire itself is modeled as a torsional elastic element.

Each drive shaft is modeled by two identical inertias and a spring-damper
element in-between. The magnitudes of the damping coefficients have been set
to 0.5% of the corresponding stiffness magnitudes. The remaining elements of
the power-train, such as the differential gear, are modeled as stiff components.
The backlash has been modeled between rotor and differential gear and at the
tripod joints. Tab. C.14 shows the parameters of the MBS model which result
from CAD design of the prototype parts of the power-train. Tab. C.15 shows the
moments of inertias of the power-train parts.
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Figure 4.6: Longitudinal tire force Fx versus tire slip sx.

4.3.2 Implemented control concept

Fig. 4.7 shows the implemented control concept. The state observer corresponds
to that of section 3.2.3 incorporating the delayed load angular velocity and the
controller corresponds to that of section 4.1.2. A model of an automotive wheel
speed sensor according to section 2.5 is used in the simulation. The sensor model
is applied to the load angular velocity signal according to (2.30). The wheel
speed sensor signal is filtered by a first-order low-pass filter with time constant
τf = 5ms. Subsequently it is delayed by 2ms and sampled every 5ms. The signal
delay of the sensor is also considered in the observer. The delay is calculated from
the time difference ∆t of traversing a magnetic sensor unit.

Due to the low resolution of the wheel speed sensor a strategy for very low
vehicle speeds according to section 4.2 has been applied. The error of the delayed
load speed signal ωl(t− τ(t)) is used in the observer if

|T̂s| < 50Nm and |ω̂l| > 8 rad s−1.

4.3.3 Controller and observer parameters

The overall stiffness ks of the power-train has been set to the sum of the shaft
stiffnesses such that ks = 140Nm/◦. The damping coefficients dm and dl have been
both set to 0Nms rad−1. Tab. 4.1 shows the controller and observer parameters.
The observer gains l1 and l2 of the observer according to (3.32) have been set by
pole placement. The spectra σ(A0) and σ(A0 + A1) were chosen according to
Tab. 4.1.
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Figure 4.7: Observer-based Sliding Mode Control evaluated with a MBS model
of an electrically driven rear axle power-train.

Table 4.1: Controller and observer parameters of the control concept for the
MBS simulation.

Controller Observer

K 60 M 5000
λ 110 εo 1
ǫc 1 σ(A0) {−180,−180± 40j}

σ(A0 +A1) {−210,−210± 40j}
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Figure 4.8: Multi Body System simulation of the control concept at an accelera-
tion maneuver.

4.3.4 Simulated maneuvers

The Adams/Car MBS model was simulated in a co-simulation with Matlab/Simu-
link. The sampling time in Simulink was set to 0.1ms. In the simulation the
reference shaft torque is increased to 300Nm. After some seconds the reference
torque changes to −150Nm. The magnitude of the torque gradient is limited
to 600Nms−1.

Fig. 4.8 shows the acceleration maneuver from standstill. The top graph shows
the reference and the actual shaft torque. The middle graph shows the motor
speed speed divided by kg, the load speed and its estimate. The lower graph plots

the estimation error of the shaft torque |T̂s − Ts|. Fig. 4.9 shows the decelera-
tion maneuver, where the shaft torque changes its sign such that energy can be
regenerated.
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Figure 4.9: Multi Body System simulation of the control concept at an decelera-
tion maneuver.
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The dashed vertical lines show the transition of the backlash phase to the
contact phase and vice versa. Due to the fact that the backlash is modeled
between motor and differential gear and within the tripod joints two lines are
plotted at each transition.

In the simulated concept the load inertia Jl consists only of the wheel inertias.
Due to the delayed load angular velocity signal the load torque estimation is not
reliable in the backlash phase. Therefore the load torque estimate was not used in
the controller such that a steady-state control error remains. The error feedback of
the delayed load angular velocity was activated in the observer at about t = 4.41s.
This can be seen in the lower plot of Fig. 4.9, where the estimation error slightly
increases. This is due to the approximation of the delay of the sensor by ∆t and
the group delay of the low-pass filter.

Finally Fig. 4.10a compares the control concept with the uncontrolled power-
train. Fig. 4.10b shows the vertical force in z-direction of the rear mounting beside
the motor. It can be seen that the oscillations at the mounting can be significantly
reduced.

4.4 Generic second order algorithm (GSOA)

For the first-order sliding mode based control concept from section 4.1 appropriate
chattering reduction methods have to be applied. By the use of a saturation
function finite time convergence to σ = 0 is only possible outside of the boundary
layer of the sliding surface. By the use of second-order sliding mode algorithms,
such as the super-twisting algorithm, chattering can be mitigated. In this section
the so-called Generic Second Order Algorithm (GSOA), as proposed by [Mor11],
is applied for power-train control. The concept is based on the work presented
in [ARH12]. Due to limited computational power only a sub-set of the algorithm
incorporating the lower-order terms is considered.

4.4.1 GSOA with lower-order terms

The GSOA with lower-order terms corresponds to

σ̇1 = −k1 |σ1|
p sgn(σ1) + σ2 + ρ1

σ̇2 = −k2p |σ1|
2p−1 sgn(σ1) + ρ2,

(4.39)

where 1/2 ≤ p ≤ 1, k1 > 0, k2 > 0, ρ1 and ρ2 correspond to bounded disturbances.
Depending on the parameter p the algorithm (4.39) has different properties:

• For p = 1/2 the algorithm (4.39) corresponds to a second order sliding mode
algorithm, namely the super twisting algorithm.

• For 1/2 < p < 1 the algorithm (4.39) is continuous, but not Lipschitz
continuous.

• For p = 1 it is linear.
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In [Mor11] the stability determination of the GSOA including disturbances is
based on Lyapunov methods. It is assumed that the disturbances satisfy the
sector conditions

|ρ1| ≤ g1

∣
∣
∣|σ1|

p sgn(σ1) + σ2

∣
∣
∣,

|ρ2| ≤ g2

∣
∣
∣
1

2
|σ1|

2p−1 sgn(σ1)
∣
∣
∣.

(4.40)

This means that the disturbances have to vanish at the origin σ = [ σ1, σ2 ]T .
For p = 1/2 the disturbance ρ2 does not have to vanish, i.e. |ρ2| ≤ g2/2. For the
case that ρ1 = 0 finite time convergence to the origin σ = 0 can be achieved with
the parameters

k1 > g2, k2 >
k21
2
. (4.41)

For the case that the disturbances do not correspond to the sector conditions (4.40)
the trajectories of (4.39) converge to a neighborhood of σ = 0 in finite time for
bounded disturbances

|ρ1| < δ1, |ρ2| < δ2,

for k1 > 0, k2 > 0. According to [Mor11] this is also called ”practical stability”
and means that the trajectories are uniformly ultimately bounded, see [Kha02].
For that case the parametrs have to be determined experimentally.

4.4.2 Power-train control design

As in section 4.1 the control design involves the linear synthesis model (2.42). The
sliding surface is defined according to (4.3). It is assumed that the corresponding
states can be estimated in finite-time, for example by the observer from section 3.3.
Choosing the control input u such that the closed loop dynamics corresponds
to (4.39), the control law reads as

u = Jm kg (−k1 |σ1|
p sgn(σ1) + σ2) + ueq,

σ̇2 = −k2p|σ1|
2p−1 sgn(σ1),

(4.42)

where ueq corresponds to (4.8). Only the derivative of the disturbance is consid-
ered with the term ρ2. This means that ρ1 = 0. As in section 4.1.2 it is assumed
that the constant load inertia Ĵl is not exactly known. Additionally an error in the
load torque estimate eTl

is considered. In (B.57) the dynamics of σ with respect
to the first-order sliding mode control is given. The derivative of the disturbance
corresponds to ρ2 which is

ρ2 = −
ėTl

Ĵl
−
δJl

Ĵl
ω̈l. (4.43)
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Chapter 5

Test Bench Design and Concept
Verification

For the practical verification of the presented control concepts a test bench has
been realized. It reproduces a basic automotive power-train with a traction ma-
chine, gear backlash, a low-damped elastic axle, a wheel and a load. The control
performance concerning tracking behavior, oscillation damping and the backlash
transitions are investigated within the real-world environment. Since the control
variable has to be calculated by an observer the quality of the estimated states is
verified. The control concept is affected by the unknown load torque, nonlinear
friction due to the rolling resistance and tire slip. Additionally a time-varying
delay is introduced to simulate the effect of an automotive bus system.

From the goals and requirements with respect to the test bench mechanics
detailed design drawings were generated. Special emphasis was made on the
torsion bar which is a compromise of a large torsion angle and a high fatigue
strength. Additionally a CAD model was drawn. The test bench design involved
the choice of appropriate electrical parts, such as EM, servo drive, interfaces and
rotary encoders. Induction machines were chosen to be used at the test bench.
The motor torque is an estimate from the machine parameters and the measured
stator current of the q-component. For its calculation the direction-dependent
motor losses are considered phenomenologically. The torque at the torsion bar
can be determined with the help of the rotary encoders.

The tire parameters are determined experimentally. These are the speed-
dependent rolling resistance, the tire force depending on the longitudinal tire slip
and the tire torsional stiffness and the corresponding damping coefficient.

The implemented state estimation concepts are the observers of section 3.2.3
and section 3.3.2. The implemented control concepts are those presented in sec-
tion 4.1 and section 4.4.2. The concepts are implemented in addition to the FOC
software in C at the servo drive. This requires that the implemented algorithms
are not computationally expensive. Experiments were made in order to demon-
strate the performance of the implemented control and observer concepts.
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5.1 Mechanical test bench design

Figure 5.1: Test bench for investigating the power-train control concepts.

5.1.1 Design goals

For the mechanical design of the test bench the following goals and requirements
were considered:

• Construction of a low-damped system such that torsional oscillations with
a low frequency can arise.

• Smaller nominal torques compared to series electric vehicles.

• Adjustable gear backlash within the power-train.

• Availability to apply different tire-road friction forces.

• Possibility to apply additional load torques or disturbances.

• Measurement of the torque at the torsion bar.
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Figure 5.2: Test bench without metal frame.

5.1.2 Test bench realization

Fig. 5.1 shows the test bench construction which consists mainly of two parts.
The upper part represents the power-train of a single axle of an electrically driven
vehicle. It consists of the traction machine, the coupling with backlash, the torsion
bar and the wheel. The lower part consists of the metal cylinder, which represents
the road, and the load machine. The traction machine can be moved horizontally
to adjust the backlash width at the coupling. The maximum backlash width is
ten degrees. The torsion bar is made of spring steel and reproduces a drive shaft
of a vehicle. Rotary encoders are mounted at both ends of the torsion bar such
that the torque can be determined by the stiffness and damping coefficient and
the measurement of the torsion and its derivative. Fig. 5.2 shows the CAD model
of the test bench without the metal frame. Tab. C.1 shows some basic parameters
of the test bench such as the geometrical dimensions.

The lower part can be moved manually such that the vertical force between
the tire and the metal cylinder can be adjusted. Additionally a force sensor is
mounted. The cylinder has a smooth and a rough surface such that two different
friction values are available. With the help of the load machine additional load
torques or disturbances can be applied.

By assigning the mass density to the corresponding parts the mass moments of
inertia were calculated by the CAD software AutoCAD1. The mass density of the
tire was estimated by its weight and volume. Tab. C.2 shows the mass moments

1www.autodesk.de
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of inertia of the corresponding parts of the test bench.
For future applications an automotive series wheel speed sensor, as described

in section 2.5, is mounted next to the wheel.

5.1.3 Torsion bar design

According to Hooke’s law the torque at the torsion bar corresponds to the torsion
angle multiplied with the shaft stiffness ks. For a cylindrical steel shaft the stiffness
can be calculated by

ks =
π

2

r4G

l
, (5.1)

where r and l correspond to the radius and the length of the shaft [Föl08]. The
elastic properties are defined by the shear modulus G.

The torsion bar is made of a hardened and tempered spring steel steel from
Böhler2 and has a total length of 50 cm including the mountings for the sensors
and the feather keys below the ball bearings on both ends. The visible part is of
reduced thickness and defines mainly the elasticity. It has a total length of 30 cm.
Tab. C.4 shows the parameters of the torsion bar. The stiffness of the torsion bar
was designed with the help of the software KISSsoft3 such that fatigue durability4

is guaranteed for torque steps with the maximum motor torque of 140Nm. This
results in a thickness of 16.6mm.

5.2 Electrical topology

Figure 5.3 shows the electrical topology of the test bench. It shows the traction
motor, the servo drive or inverter and the rotary encoders.

For the motor control industrial servo drives (type ACOPOS) from Bernecker &
Rainer5 have been chosen. They require a three-phase 400V AC and a 24V DC
power supply. They are provided with four plug-in module slots. Tab. C.11 shows
the basic parameters of the ACOPOS servo drive. The AC power supply requires
an all-current sensitive earth-leakage circuit breaker. The test bench is equipped
with an emergency-stop button and is protected with 20A fuses per phase.

Two identical induction machines with squirrel cage rotor from AEG/Lafert6

are mounted on the test bench. The motor housings are made of aluminium and
have a total weight of 54 kg each. Tab. C.9 shows the motor parameters.

High resolution encoders for angular position and velocity measurement are
mounted at the motors and at both ends of the torsion bar. The sensors are single
turn absolute angle encoders of type ECN/ERN 100 from Heidenhain7. Tab. C.10
shows the basic parameters of the rotary encoders.

2www.bohler-bleche.com
3www.kisssoft.ch
42 000 000 load changes were assumed.
5www.brautomation.com
6www.lafert.com
7www.heidenhain.com
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Figure 5.3: Testbench configuration.

5.3 Parameter identification

5.3.1 Motor torque calculation

In the inverter the concept of field-oriented control (FOC) is implemented. The
voltage, flux and current are represented by two-dimensional phasors. In the
rotating rotor-flux reference frame, denoted by the (d, q), the rotor flux phasor
consists only of the d-axis component such that it is a scalar, namely Ψrd. The
motor torque can be calculated by, see [QD99],

Tm =
3

2
p
Lh

Lr

Ψrdisq, (5.2)

where p, Lh and Lr denote the number of pole pairs, the mutual inductance
and the rotor inductance respectively. The stator current of the imaginary q-
coordinate in the rotating rotor-flux reference frame is denoted by isq. It is as-
sumed that the EM is operated in the base range such that the magnetic flux
does not have to be weakened. Then the magnetic flux can be held constant in
the motor control such that the motor torque is calculated by

Tm = kT isq, (5.3)

where kT defines the motor torque constant in NmA−1, i.e.

kT =
3

2
p
Lh

Lr

Ψrd. (5.4)

For the practical application of the presented state observers the accurate knowl-
edge of the motor torque is of great importance, since an offset leads to deviations
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Figure 5.4: Step responses of the scaled motor current isq and the linear second
order actuator model.

in the state estimation. Therefore also the losses due to the magnetization of the
EM have to be considered. The magnetization losses depend on the rotation di-
rection. They have been considered approximately such that the motor torque is
calculated by

Tm = kT isq − kM sat

(
ωm

ωm,0

)

, (5.5)

where ωm,0 corresponds to the saturation angular velocity. The motor torque con-
stant kT , the constant with respect to the magnetization losses kM and ωm,0 were
identified experimentally. The constants kM and ωm,0 were approximately iden-
tified by a maneuver where the rotation direction changed. The constant kT was
approximately identified with the help of the torque measurement by the rotary
encoders mounted at the torsion bar. The identification process was performed
with the help of a maneuver of controlled constant shaft torque. Tab. C.12 shows
the identified parameters and Fig. 5.10 shows an identification maneuver.

5.3.2 Linear model of the induction machine

The torque dynamics of the induction machine is approximated by the second
order transfer function according to (2.13). Fig. 5.4 shows the step responses of
the scaled current is,q of the EM and of the second order model. The torque-
step maneuver was performed with a closed backlash gap from standstill. The
parameters of the approximated transfer function are listed in Tab. C.13.
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5.3.3 Rolling resistance

The rolling resistance or friction torque depends non-linear in the speed. Fig. 5.5
shows the friction values of different operating points. The friction torques cor-
respond to the shaft torque values at the torsion bar at steady state load angular
velocities. The measurements are interpolated by a fifth-order polynomial. Addi-
tionally the linear friction torque used in the synthesis model (2.42) is depicted.

5.3.4 Tire model

At the test bench a moped tire is used. Its parameters are shown in Tab. C.6.
In this section the tire-slip characteristic, the tire radius rst and the elasticity
parameters of the tire are determined. According to (2.48) the longitudinal tire
force corresponds to

Fx =
T̂s − Jwω̇w

rst
− Fr(|ωw|) sgn(ωw), (5.6)

where ωw denotes the wheel angular velocity. The tire force in dependence of the
wheel slip was determined experimentally. The measurements were performed at
different reference shaft torques where the backlash gap was closed beforehand.
The longitudinal tire slip was determined according to (2.20), where the velocity
of the cylinder surface area corresponds to the vehicle’s velocity, i.e. vx = ωc rc.
Then the corresponding tire force was determined according to (5.6). Fig. 5.6
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Figure 5.6: Longitudinal tire force versus wheel slip.

shows the longitudinal tire force in dependence the longitudinal wheel slip. The
Pacejka tire model (2.22) was fitted to the mean values of the measurements.
Tab. C.7 shows the parameters. The tire radius was estimated such that the
straight line connecting the mean values of the tire forces in the linear region
crosses the origin.

Since the stiffness of the torsion bar is known the tire elasticity and the damp-
ing coefficient were estimated by comparing the oscillation frequencies of the mea-
sured and simulated shaft torques. Tab. C.8 shows the identified parameters.

5.4 Test bench model

5.4.1 Model evaluation

The test bench model described in sections 2.6.2 - 2.6.5 has been implemented
using Matlab/Simulink8 as a three-mass system. The inertias of the wheel rim
and the tire are shown in Tab. C.2. The inertia of the metal cylinder and its
radius are shown in Tab. C.5. The shaft including the part of the clutch is
modeled inertia-free due to the physical backlash model. The test bench model
includes the rolling resistance and the Pacejka tire model which were identified in
sections 5.3.3 and 5.3.4.

Fig. 5.7 compares the results of the simulation model with the test bench
measurements at an acceleration maneuver. It shows the shaft torque and the an-
gular velocities of the motor and the load. The load angular velocity corresponds
to the angular velocity of the wheel rim ωr. The maneuver and the simulation
were performed with a backlash gap at the beginning. For comparison reasons

8www.mathworks.com
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Figure 5.7: Evaluation of the test bench simulation model at an acceleration
maneuver.
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Figure 5.8: Evaluation of the test bench simulation model at a deceleration ma-
neuver.
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the measured motor torque estimate was used as input to the simulation. The
oscillation frequency of the simulation model is higher than in the measurement
because the simulation model assumes the all the test bench parts to be stiff ex-
cept the torsion bar and the tire. Fig. 5.8 compares the results of the simulation
model with the test bench measurements at deceleration. The reference torque
changes from 10Nm to −5Nm at about t = 3.1 s. The test bench model is able to
represent the dynamics of the test bench in the backlash and the contact phases.
Deviations during the backlash transition result from the inertia-free modeling of
the backlash dynamics.

5.4.2 Synthesis model

The stiffness of the torsion bar was determined by software, see section 5.1.3. The
value of the damping coefficient ds was determined approximately from the decay
time of the torque oscillations of an open loop measurement. The inertia of the
clutch was added to the motor inertia. The load inertia consists of the inertias of
the wheel rim, the tire and the metal cylinder. Tab. C.3 shows the parameters of
the linear synthesis model (2.42).

5.5 Concept implementation

The observer and controller concepts have been implemented in C into the FOC
software of the ACOPOS servo drive. Only the header files and current controller
routine are available as source code. This means that only the current isq can be
modified by the controller. The sampling time of the current controller routine
corresponds to 100 µs. It is defined by the predefined switching frequency of the
servo drive. Because of the small sampling time and the limited computing power
of the ACOPOS processor only a few floating-point multiplication instructions
can be added to the existing source code. The angular encoder values are read
by the ACOPOS software every 400µs. This requires that the encoder angular
velocity signals have to be filtered due to the small sampling time of the current
controller routine. This has been accomplished by a first-order low-pass filter
with time constant τf = 333µs. The ACOPOS SW is controlled by setting or
reading so-called parameter identifier variables via an Ethernet network. User
defined parameter identifiers have been assigned to the corresponding variables of
the concept. Batch scripts have been written for measurement. The measurement
memory is very limited. It involves a maximum of ten variables for a measurement
length of about 5 s.

For the predefined constants of the controllers and the observers the code
of the corresponding C-defines has been generated by a Matlab script such that
parameter changes can be performed quickly in the software. The implementation
of the concepts itself was done in a two step process. First the Simulink models
were implemented into a Matlab function and compared with each other. Then
the Matlab code was ported into C.
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Figure 5.9: Observer of section 3.2.3 using non-delayed measurement signals at a
torque step and subsequent step to zero.

For the implementation of the observer of section 3.2.2 the filtered load an-
gular velocity signal has been artificially delayed by 2ms with the help of a ring
buffer. Then the delayed value has been sampled every 5ms using a counter. This
implements the delay and the limited update rate, for example, of a bus system.
Euler integrators have been implemented for the observer concepts.

The rotor-flux of the electric motor is held constant during the experiments by
the FOC, see Tab. C.9 where the value of the predefined magnetization current
is given.

5.6 Experiments

5.6.1 First order SMC concepts

Measurement of load angular velocity without delay

At first, it is assumed that the load angular velocity can be measured without any
delay. Since the observer forms the basis of the control concept it is parameterized
and analyzed first. This involves the parameterization of the gains Mi, i = 1, 2
of (3.21) and the widths of the saturation functions εo,i, i = 1, 2, see (3.26),
by verifying the estimates with respect to the measured states. Initial values
were determined with the help of the test-bench simulation model described in
section 2.6. Since the encoder values are read every 400 µs the widths of the
saturation functions εo,i were chosen such that the measured states are filtered
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Figure 5.10: Observer of section 3.2.3 at a positive and negative torque step
maneuver.
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and chattering is reduced. Subsequently the observer gain matrix (3.44) was
parameterized. Tab. 5.1 shows the parameters, where σ(·) denotes the spectrum
of a matrix.

Fig. 5.9 shows the performance of the observer of section 3.2.3. It depicts the
reference torque, the torque estimate at the torsion bar and the torque which
results from the measured difference angle at the torsion bar. The initial back-
lash gap was closed manually. Due to the torque step low-damped oscillations
are enforced. The remaining oscillations at the constant torque of 15Nm result
due slight axial misalignments of the test bench construction. After setting the
reference torque to zero torque oscillations arise due to the backlash. It can be
seen that the estimated torque does not exactly correspond to the real measured
torque during the backlash phase. This results from the linear observer synthesis
model (2.42). In the backlash phase the torque measurement signal also oscillates.
This is due to the inertia of the coupling part connected to the torsion bar. But in
the contact phase the shaft torque is estimated sufficiently accurate independently
of the backlash width. During the backlash phase the torque estimate remains
small.

Fig. 5.10 shows the observer performance at a positive and subsequent neg-
ative torque step maneuver. It can be seen that after the backlash transition a
large torque overshoot occurs which is also reflected by the observer’s estimate.
Additionally, when the direction of the angular velocities becomes negative, the
absolute torque value reduces whereas the the reference is constant. According
to the second equation of (2.48) this is effected by the motor torque. The motor
torque is calculated according to (5.5) considering the magnetization losses.

The implementation of the control law, see (4.7) and (4.8), requires the estimated
state variables of the observer. Also the measured state variables are provided
by the observer. Due to the filtering property high frequency components are
attenuated in the measured signals. From the reference torque a reference torsion
angle φref is calculated according to (4.2). The reference torsion angle has been
also filtered by a first-order low-pass filter with time constant τr = 2.5ms. Due
to computational reasons the time derivative terms in the equivalent control (4.8)
have been neglected in the implementation.

The determination of the control gain K is done according to (4.12) and
experimentally. It is assumed that the load torque error is sufficiently small such
that it is neglected. It is further assumed that the absolute maximum acceleration
of the load corresponds to |ω̇l|max = 100 rad s−2 and that the term δJl/Ĵl ≤ 0.25.
Then according to (4.12) the control gain has to be chosen as K > 25. For
the practical implementation a saturation function has been chosen to reduce
chattering. The control gain K has to be chosen such that the system is also
stable within the boundary layer. According to section 4.1.3 the parameter λ,
the gain K and the boundary layer width εc have to be designed such that the
system remains stable., i.e. the denominator of (4.24) has zeros in the open left
complex half-plane. With the identified parameters of the test-bench and the
IM, see Tab. C.3 and Tab. C.13, and the chosen parameters for λ and εc, the
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Table 5.1: Observer Parameters for load angular velocity without delay.

Parameter Value

M1, M2 1200
ǫo,1, ǫo,2 0.9
σ(A11 + LA21) {−400,−400}

Table 5.2: Controller parameters for load angular velocity without delay.

Parameter Value

K 120
ǫc 0.4
λ 200

upper bound of the gain has to satisfy K < 127.5. Tab. 5.2 shows the controller
parameters which were tuned experimentally.

Fig. 5.11 shows the reference, the estimated and the measured shaft torque.
Additionally the motor and load angular velocities and the load torque are de-
picted. The test-bench was accelerated from standstill by applying a constant
reference shaft torque of 30Nm. Immediately after the backlash gap is closed the
shaft torque tracks the reference. There are no visible torque overshoots at the
backlash-contact transition and when the shaft torque reaches the reference.

After a short acceleration period the reference torque changes to −15Nm
which corresponds to an energy regeneration maneuver. Again there is no visible
torque overshoot and torque oscillations can be completely avoided. During the
deceleration phase there is a very small deviation of the estimated shaft torque
from the measured one. Due to the large rolling resistance compared to the
reference torque, see Fig. 5.5, the value of the load inertia changes. This yields
a load torque estimation error and a small control error according to (4.19). The
load torque estimate is noisy due to the chosen eigenvalue, see Tab 5.1. Peaks at
the backlash-contact and contact-backlash transitions can be seen. The reason is
that the error dynamics is not differentiable at these transitions, see (B.9).

Delayed and sampled load angular velocity

Due to the delayed and sampled load angular velocity the observer design is a
two-step process as described in section 3.2.3. The observer parameters were de-
termined with the help of the simulation model and were tuned experimentally
afterwards. First the eigenvalues of the matrix A0 were chosen such that they
all have the same real part −λ0. In the second step the eigenvalues of A0 + A1

were shifted to the left in the complex plane. Again, all the real parts were chosen
identical at −λ̃0. The choice of −λ̃0 was performed with the help of Fig. 3.4 which
depicts the decay rate of the observer error dynamics (3.36). The goal was to in-
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Figure 5.11: Reference and controlled shaft torque based on the observer of sec-
tion 3.2.1 using non-delayed measurement signals.
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Figure 5.12: Comparison of the high-resolution, the measured and the estimated
load angular velocity signal in the contact phase.

crease the decay rate. Fig. 3.5 depicts the value ι which is a which is a measure
for the estimation error of the load angular velocity signal in the backlash phase.
From experiments it was found that it is necessary for a satisfactorily closed-loop
control behavior that

ι < 0.7. (5.7)

For larger values of ι there is a torque overshoot at the backlash-contact tran-
sitions. This requires that the real parts of the eigenvalues of A0 + A1 have to
be placed at about −190, see Fig. 3.4. Tab. 5.3 shows the observer parameters
where σ(·) denotes the spectrum of a matrix. The observer gains are

l1 =





0.141
0.024
−4.093



 , l2 =





5.046
0.242
−90.9



 . (5.8)

From the delayed and sampled measurement of the load angular velocity the
high-resolution signal is estimated without any delay. Fig. 5.12 shows the high-
resolution, the delayed and sampled and the estimated load angular velocity signal
in the contact phase. The delayed and sampled signal is generated from the high-
resolution signal. Noise in the high-resolution signal deteriorates the estimate
since it corresponds to a constant disturbance of the sampled signal such that
there are small deviations in the estimate of the angular velocity signal.
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Table 5.3: Parameters for the observer using the delayed and sampled load angular
velocity measurement.

Parameter Value

M 1400
ǫo 1.0
σ(A0) {−170,−170 + 68j,−170− 68j}
σ(A0 +A1) {−190,−190 + 76j,−190− 76j}

Table 5.4: Controller parameters based on the observer using the delayed and
sampled load angular velocity measurement.

Parameter Value

K 140
ǫc 0.7
λ 110

Tab. 5.4 shows the parameters of the implemented first order sliding mode control
concept. Compared to the concept without delay the parameter λ has to be
significantly decreased because of the reduced decay rate of the observer error
dynamics.

Fig. 5.13 shows the reference, measured and estimated shaft torque, the motor
and the load angular velocity and the load torque estimate. There is no torque
overshoot at the backlash-contact transitions. There is a small overshoot when the
reference torque is reached. This results from the erroneous load torque estimate
in the backlash phase, see (B.24). The backlash is transitioned faster compared
to the concept of the previous section. The steady state control error because of
the controller parameters λ and εc. Due to the fact that the observer incorporates
the delayed and sampled measurement the control performance is nearly as good
as the concept with measurements without any delay and sampling.

For comparison reasons Fig. 5.14 shows the control performance torque when
the load angular velocity signal is not available for measurement at all. This
was implemented by setting the observer gain l2 to zero. Since no information
of the load side is available, the backlash-contact transition is performed non-
smooth although the mean difference angular velocity ω̄ is small in the backlash
phase. A large torque overshoot appears which could harm mechanical parts. In
the contact phase the load angular velocity becomes observable and the concept
tracks the reference. When the reference torque is set to zero multiple non-smooth
backlash-contact transitions arise.
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Figure 5.13: Reference and controlled shaft torque based on the observer using
the delayed and sampled load angular velocity measurement.
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Figure 5.14: Controlled shaft torque using only the motor angular velocity signal
as measurement.
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Figure 5.15: Reference and controlled shaft torque based on the second-order
step-by-step observer.

5.6.2 Higher-order based concepts

The second-order sliding mode observer of section 3.3.2 was implemented in the
current controller C-file of the ACOPOS SW. Since the square-root operations of
the super-twisting algorithm are time consuming the switching frequency of the
servo drive had to be set to 5 kHz.

According to section 3.3.2 the Lipschitz constants were determined with the
help of the simulation model. The maximum absolute value of the derivative of
the transformed third state variable was set to |ż3|max = 8000. The maximum
absolute value of the load torque derivative is assumed not to exceed the maxi-
mum absolute value of the shaft torque derivative. Then the Lipschitz constants
correspond to L1 = 8000, L2 = 8000 and L3 = 100 000. The observer gains are
calculated according to (3.63) and adapted slightly experimentally. The param-
eters are shown in Tab. 5.5. The parameter E3 was always set to 1 since all the
state variables are zero initially.
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Table 5.5: Observer gains of the second-order step-by-step observer.

Parameter Value

κ1,1 583.27
κ2,1 8800
κ1,2 583.27
κ2,2 8800
κ1,3 1944.22
κ2,3 110 000

Table 5.6: Controller parameters of the GSOA.

Parameter Value

k1 90
k2 30
p 0.75
λ 200

Fig. 5.15 shows the measured and estimated shaft torque and the motor and load
angular velocity signals. It can be seen that the estimate nearly perfectly matches
the measurement.

The determination of the control parameters k1 and k2 according to the sector
conditions, see (4.41), allows finite time convergence to the origin σ = 0 but leads
to large control parameters, especially to that of of k2. This leads to chattering
because of the actuator dynamics which is not considered in the design. Therefore
the gains were determined experimentally such that the high-frequency control is
sufficiently mitigated. Due to the reduced control gains only practical stability
can be achieved, see section 4.4. The exponent in (4.42) was chosen as p = 0.75
such that it can be computed by two successive square root operations. Tab. 5.6
shows the parameters of the GSOA.

Fig. 5.16 shows the controlled test-bench shaft torque, the measured torque and
the angular velocities. The state variables were estimated by the second-order
step-by-step observer of section 3.3.2. The load torque estimate of the observer
according to (3.77) is not used in the equivalent control term because it is very
noisy. Since the control algorithm (4.42) is continuous no additional chattering
reduction methods are necessary. Again, the controller tracks well the reference
torque and the backlash-contact transitions are performed without torque over-
shoot.
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Figure 5.16: Reference and controlled shaft torque based on the observer of Sec-
tion 3.3.
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Chapter 6

Summary and Outlook

In this thesis a new sliding mode power-train control concept for electric vehicles
was developed for tracking a given reference torque such that power-train oscil-
lations are prevented. The advantage of this concept is that it does not require
any torque sensor information and it copes with unknown backlash and the wheel
speed information from the vehicle’s bus system.

The concept is based on a state observer which estimates the shaft and load
torque at the power-train. The observer was designed by means of sliding mode
concepts. For the synthesis of the controller and the state observer a linear two-
mass system model of the power-train was derived. The observer based on the
linear synthesis model is able to estimate the shaft torque despite of unknown
backlash width.

The observer requires the motor and the wheel angular velocity signals for
measurement. The information of the wheel speed sensors is available on the
vehicle’s bus system but its update rate is not sufficient for a proper function of
the controller. Therefore the sliding mode observer was extended for the use of
delayed and sampled signal measurements.

Based on the presented observer a first-order sliding mode controller was de-
signed and an appropriate chattering reduction method was applied. The bounds
of the control gain were determined with respect to the disturbance and the
second-order actuator dynamics. The behavior of the control concept in the back-
lash phase was described in dependence of the control parameters. The proposed
concept was verified by means of a multi-body system simulation of the electrical
rear axle of a prototype vehicle. The simulation model includes a wheel speed sen-
sor model and a simple bus model. It was shown that the power-train oscillations
were prevented with the presented control concept.

For comparison reasons a second-order sliding mode step-by-step observer for
the power-train was designed. It has a smaller estimation error. Additionally a
controller based on the so-called generic second order algorithm was designed.

In order to investigate the performance of the observer and controller concepts
a test-bench was designed. A three-mass system model of the test-bench including
the tire elasticity, the tire slip, the rolling resistance and a physical backlash model
was designed and parameterized. The control concepts were implemented at the
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servo drive in addition to the field-oriented control of the electric machine.
The first-order sliding mode concepts are preferred due to the very limited

computational power of the servo drive processor. The developed concepts track
the reference torque in the contact phase. The backlash-contact transition is per-
formed without any noticeable torque overshoot. The control concept based on
the observer with delayed and sampled measurement of the wheel speed infor-
mation performs nearly as good as the control concept based on measurements
without delay.

The presented results form the basis for future research in the field of power-
train control and reduction of torque oscillations. The proposed concepts are not
limited to power-train control. They can be applied to applications in the field of
mechanical engineering where torque oscillations must be prevented.
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Appendix A

Stability of Linear Sampled Data
Systems

Consider the linear, continuous-time system

ẋ = A0x+A1x(t− τ(t)), (A.1)

where τ(t) is a time-varying delay with the initial condition x(ν) = φ(ν), for
−τm ≤ ν ≤ 0. A basic method for the determination of the stability of (A.1) is
the Razumikhin Theorem [GKC03, Fri14]. Assume V = xTPx positive definite.

The system (A.1) is asymptotically stable if

V̇ < 0, if V (t+ ψ) < pV (t), p > 1, ∀ ψ ∈ [−τm, 0 ]. (A.2)

This leads to the following linear matrix inequality (LMI), i.e.
[
AT

0P+PAT
0 + qP PA1

AT
1P −qP

]

≺ 0. (A.3)

The LMI (A.3) does not depend on the delay or on its derivative such that it
can be applied for sampled data systems. The drawback of this method is that it
leads to conservative results.

Less conservative stability criteria for the stability of linear sampled data sys-
tems are given in [Fri14]. In [LF12, Fri14] a method for sampled data systems
with additional constant delay were published. The method is based on a dis-
continuous Lyapunov-Krasovskii functional which also results in solving an LMI.
The functional consists of a nominal and a discontinuous term V = Vn + Vw, i.e.

Vn = xTPx+

∫ t

t−τ0

xT (s)R1x(s)ds+ τ0

∫ 0

−τ0

∫ t

t+ν

ẋT (s)R2ẋ(s)dsdν,

Vw = (τm − τ0)
2

∫ t

tk−τ0

ẋT (s)Wẋ(s)ds

−
π2

4

∫ t−τ0

tk−τ0

(x(s)− x(tk − τ0))
T W (x(s)− x(tk − τ0)) ds,

(A.4)
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where P, W, R1, R2 are symmetric, positive definite matrices. For t = tk Vw = 0
because the integration interval is zero. Additionally, in the last term of (A.4)
the expression (x(s)−x(tk − τ0) is zero for s = tk − τ0. In the derivative of (A.4)
the the so-called Jensen and Wirtinger inequality are used for the derivation of
the LMI criterion (3.38). The derivation is outlined in [LF12].

90



Appendix B

Observer and Controller Analysis

B.1 Observer analysis with respect to unknown

backlash width

The error dynamics of the presented observers of sections 3.2.1 and 3.2.2 is an-
alyzed for the contact and backlash phase. In the analysis the backlash width
corresponding to the angle 2α is assumed to be unknown.

B.1.1 Measurements without delay

In this section the error dynamics of observer (3.21) applied to the model (2.39)
is analyzed. In the observer design of section 3.2.3 the synthesis model is aug-
mented by the disturbance model (3.43) in order to estimate the unknown input.
To express the observer error dynamics conveniently, the model (2.39) is also
augmented by the disturbance model. With the state transformation (3.19) the
augmented power-train model is

[

ẋ1

ẏ

]

=

[

A11 A12

A21 A22

][

x1

y

]

+

[

b1

b2

]

u+

[

g1

g2

]

ξ(θ),

g2 =

[

−ks
Jl

ks
kg Jm

]

,

(B.1)

where g1 = 0. The vector of the non-measured states in (B.1) corresponds to

x1 =

[
q
θ

]

, (B.2)

where θ denotes the total angle of deflection including backlash according to (2.23).
In the observer design the state variable corresponding to the torsion angle ϕ is
introduced instead of θ, since observer (3.21) applies for LTI systems.

It is assumed that the elements of the diagonal matrixM of the observer (3.21)
are sufficiently large such that sliding mode is enforced. Subtracting the second
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equation of (B.1) from the second equation of (3.21) yields the error dynamics of
the measured states, i.e.

ėy = A21ex1
+A22ey − g2 ξ(θ)− v, (B.3)

where
ey = ŷ − y. (B.4)

In sliding mode the error vanishes, i.e. ey ≡ 0. With the help of the equivalent
control method ėy = 0. Then the discontinuous term v in (B.3) can be expressed
by

veq = A21ex1
− g2ξ(θ). (B.5)

Substituting (B.5) into the error dynamics of

ex1
= x̂1 − x1 (B.6)

yields
ėx1

= LA21ex1
− Lg2ξ(θ). (B.7)

With (2.37) the error vector with respect to the non-measured states can be
defined as

e =
1

ks

[
T̂l − Tl
T̂s − Ts

]

=

[
q̂ − q

ϕ̂− (θ − ξ(θ))

]

=

= ex1
+ h2 ξ(θ),

(B.8)

where hi ∈ R
2 denotes the i− th unit vector. With

ė = ėx1
+ h2

dξ

dθ
θ̇ (B.9)

the error dynamics of (B.7) in terms of the error vector e is

ė = LA21 (e− h2ξ(θ))− Lg2ξ(θ) + h2
dξ

dθ
θ̇. (B.10)

According to (2.39) the vector g2 corresponds to the negative second column
of A21, i.e. g2 = −A21h2, such that the terms corresponding to ξ(θ) cancel out.
In the contact phase dξ/dθ vanishes such that

ė = LA21e = diag {−λ1,−λ2} e. (B.11)

This means that the observer error exponentially decays to zero if unknown back-
lash is present in the power train. In the backlash phase dξ/dθ = 1 such that

ė = LA21e+ h2θ̇

= diag {−λ1,−λ2} e+ h2

(
ωm

kg
− ωl

)

.
(B.12)

This means that ϕ̂ corresponds to the output of a first order low-pass filter with
time constant 1/λ2, i.e.

ϕ̂ =
1

λ2

(
ωm

kg
− ωl

)

f

. (B.13)

The load torque error vanishes also in backlash phase, since ėq = −λ1 eq.
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B.1.2 Delayed and sampled load speed measurement

Applying the state transformation (3.19) to the power train model (2.39) yields
[

ż

ẏ1

]

=

[
A11 a12

aT
21 a22

][
z
y1

]

+

[
b1

b2

]

u+

[
g1

g2

]

ξ(θ)

g1 =





0
0

−ks/Jl



 , g2 =
ks

kg Jm
.

(B.14)

The vector of the non-measured states and the delayed measured state corresponds
to

z =





q
θ
ωl



 , (B.15)

whereas the state vector of the observer corresponds to (3.46). The error of the
measured state ey1 = ŷ1 − y1 is

ėy1 = aT
21êz + a22ey1 − v − g2ξ(θ). (B.16)

For sufficiently large M sliding mode exists and the equivalent control method
yields

veq = aT
21ez − g2ξ(θ). (B.17)

The observer error dynamics with respect to the non-measured states is

ėz = (A11 + l1a
T
21)ez + l2ey2(t− τ(t))

− l1g2ξ(θ)− g1ξ(θ).
(B.18)

With (2.37) the error vector can be defined as

e =
1

ks





T̂l − Tl
T̂s − Ts

ks(ω̂l − ωl)



 = ez + h2ξ(θ), (B.19)

where h2 = [ 0 1 0 ]T . With the time-derivative of (B.19)

ė = ėz + h2
dξ

dθ
θ̇ (B.20)

the error dynamics with respect to e can be expressed, i.e.

ė = (A11 + l1a
T
21)(e− h2ξ(θ)) + l2ey2(t− τ(t))

− l1 g2ξ(θ)− g1ξ(θ) + h2
dξ

dθ
θ̇.

(B.21)

Since A11h2 = −g1, and aT
21h2 = −g2 the terms corresponding to ξ(θ) cancel out.

In the contact phase dξ/dθ vanishes such that

ė = A0e+A1e(t− τ) (B.22)
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is independently of the unknown backlash width. In the backlash phase dξ/dθ = 1
such that

ė = A0e+A1e(t− τ(t)) + h2

(
ωm

kg
− ωl

)

. (B.23)

The matrix (A0 +A1) is invertible such that the steady-state error is

e∞ = − (A0 +A1)
−1 h2

(
ωm

kg
− ωl

)

, (B.24)

where

(A0 +A1)
−1h2 =







Jll11l23+(Jmkg−Jll13)l21−dll11
ksl11l22−ksl12l21−ksl11

Jmkgl21
ksl11l22−ksl12l21−ksl11

l11
l11l22−l12l21−l11






,

and l1 = [ l11 l12 l13 ]T , l2 = [ l21 l22 l23 ]T .

B.2 Observer analysis with respect to a unknown

load inertia

Basically, the model parameters are known from CAD modeling. The vehicle
mass is considered in the load inertia Jl and therefore not exactly known. By the
extension of the observer with the disturbance model the unknown load torque T̂l
will be estimated. The parameter Jl appears only in the equation affected by the
unknown input Tl. The analysis is performed for the backlash-free case. Assume
that the estimated, constant load inertia corresponds to

Ĵl = Jl + δJl, (B.25)

where Jl correspond to the real load inertia. Then the inverse of (B.25) is

1

Ĵl
=

1

Jl
−
δJl

JlĴl
. (B.26)

B.2.1 Measurements without delay

With (B.26) the matrices Â21 and Â22 of observer of section 3.2.3 can be expressed
as

Â21 = A21 + δA21 =

[

−ks
Jl

ks
Jl

0 − ks
kg Jm

]

+

[ksδJl
JlĴl

−ksδJl
JlĴl

0 0

]

,

Â22 = A22 + δA22

[
−dl

Jl
0

0 −dm
Jm

]

+

[dlδJl
JlĴl

0

0 0

]

.

(B.27)

Then the error dynamics resulting from the measurement vector is

˙̂ey = (A21 + δA21)x̂1 + (A22 + δA22)ŷ − v−A21x1 −A22y. (B.28)
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Assuming that sliding mode exists the value for v can be calculated with the help
of the equivalent method, i.e.

veq = A21ex1
+ δA21x̂1 + δA22ŷ. (B.29)

Substituting (B.29) into the error dynamics of ex1
= x̂1 − x1 yields

ėx1
= (LA21)ex1

+ L(δA21x̂1 + δA22ŷ). (B.30)

The steady-state error is

ex1,∞ = −(LA21)
−1(LδA21x̂1 + δA22ŷ). (B.31)

Assuming that L is invertible (B.31) can be expreesed as

ex1,∞ = −A−1
21 (δA21x̂1 + δA22ŷ), (B.32)

where

−A−1
21 δA21 =

[ δJl
Ĵl

− δJl
Ĵl

0 0

]

, −A−1
21 δA22 =

[dlδJl
ksĴl

0

0 0

]

.

B.2.2 Delayed and sampled measurements

With (B.26) the matrix Â11 can be expressed as

Â11 = A11 + δA11 =





0 0 0
0 0 −1

−ks
Jl

ks
Jl

−dl
Jl



+





0 0 0
0 0 0

ksδJl
JlĴl

−ksδJl
JlĴl

dlδJl
JlĴl



 . (B.33)

Since the error differential equation with respect to the measured state ωm is
independent of Jl and Ĵl the equivalent method yields

veq = aT
21ex1

. (B.34)

The error dynamics of the non-measured states and the delayed measured state
ez = ẑ− z is

ėz = A0ez +A1ex1
(tk) + δA11x̂1. (B.35)

The steady-state error is

ez,∞ = −A−1
0 δA11 = −(A0 +A1)

−1δA11 =





δJl
Jl

− δJl
Jl

dlδJl
ksJl

0 0 0
0 0 0



 . (B.36)
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B.3 Observer analysis with known backlash width

In this section the backlash width, which corresponds to the angle of 2α, is as-
sumed to be known exactly. The power-train model (2.40) corresponds to the
synthesis model for the sliding mode observer design.

B.3.1 Sliding mode observer for nonlinear systems

In [SHM86] a sliding mode observer for non-linear autonomous systems is pre-
sented. It is assumed that the system

ẋ = f (x, t) ,

y = Cx,
(B.37)

with x ∈ R
n, y ∈ R

r is locally observable. A non-linear system is locally ob-
servable if the rank of the non-linear observability matrix has full rank, see for
example [Ada09]. The observer is

˙̂x = f̂ (x̂, t)−Ksgn(s),

σ = ŷ − y,
(B.38)

where K ∈ R
n×r, sgn(·) denotes the vector-valued sign-function and f̂ is the

model of f . Sliding mode occurs for

σ̇iσi < −η|σi|, η > 0, i = 1, . . . , r. (B.39)

The observer gain matrix K is designed in the same way as in the sliding mode
observer design for LTI systems of section 3.2.1, i.e.

K =

[
LM
−M

]

. (B.40)

B.3.2 Power-train observer design

The observer (B.38) is applied to the non-linear power-train model (2.39). For
simplicity the unknown input is assumed to be zero. With the state transforma-
tion (3.19) the power-train model (2.39) corresponds to

[

θ̇

ẏ

]

=

[

a11 aT
12

a21 A22

][

θ

y

]

+

[

b1

b2

]

u+

[

g1

g2

]

ξ(θ), (B.41)

where a11 = 0, b1 = 0, g1 = 0 and

g2 =

[

−ks
Jl

ks
kg Jm

]

, aT
12 =

[

−1 1
kg

]

a21 =

[
ks
Jl

− ks
kg Jm

]

, A22 =

[
−dl

Jl
0

0 −dm
Jm

]

.
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The sliding mode observer incorporates the dead zone model of the backlash, i.e.

˙̂
θ = aT

12ŷ + lTv,

˙̂y = a21θ̂ +A22ŷ + b2u+ g2ξ(θ̂)− v,

v = Msgn (ŷ − y) .

(B.42)

B.3.3 Observer stability analysis

The observer error dynamics with respect to the measured states is

ėy = a21 eθ +A22 ey − v + g2

(

ξ(θ̂)− ξ(θ)
)

, (B.43)

where ey = ŷ−y and eθ = θ̂− θ. It is assumed that the diagonal elements of the
matrix M are sufficiently large such that a sliding mode is enforced in (B.43). In
sliding mode ey = 0. With the equivalent control method ėy = 0 such that

veq = a21eθ + g2

(

ξ(θ̂)− ξ(θ)
)

. (B.44)

The term (B.44) is substituted into the observer error dynamics with respect to
the non-measurable state θ. This yields

ėθ = +lTa21 eθ + lTg2

(

ξ(θ̂)− ξ(θ)
)

. (B.45)

The vector a21 = −g2. The observer gain vector l has to designed such that
lTa21 = −λ, λ > 0. Then the error dynamics corresponds to

ėθ = −λ eθ + λ
(

ξ(θ̂)− ξ(θ)
)

. (B.46)

The stability of the observer error dynamics with respect to the non-measurable
state θ is shown with the help of a quadratic Laypunov function, i.e.

V (eθ) =
1

2
θ2. (B.47)

Its time-derivative corresponds to

V̇ (eθ) = −λ e2θ + λ eθ

(

ξ(θ̂)− ξ(θ)
)

. (B.48)

Due to the shape of ξ(θ), see Fig. 2.9, the term

eθ

(

ξ(θ̂)− ξ(θ)
)

≥ 0. (B.49)

In the contact phase e2θ > eθ(ξ(θ̂)− ξ(θ)) such that (B.48) is negative definite. In
the backlash phase (

ξ(θ̂)− ξ(θ)
)

= eθ, (B.50)

such that (B.48) is zero. The terms g2 eθ and a21 eθ cancel out in (B.41) such that
the observability is lost.
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B.4 Sliding surface with unknown load inertia

In this section the sliding surface (4.3) with not exactly known load inertia is
derived. For the analysis the power-train is assumed to be in contact phase. It
is further assumed that the damping coefficient ds = 0 for simplicity. The rolling
resistance is assumed to be part of the load torque. According to (2.42) the
synthesis model corresponds to

ϕ̇ =
ωm

kg
− ωl,

Jl ω̇l = ksϕ− dl ωl − Tl,

Jm ω̇m = −
ksϕ

kg
− dm ωm + Tm.

(B.51)

In this analysis the corresponding differential equations of (B.51) and the control
law (4.7) with estimated load inertia Ĵl and load torque T̂l are inserted into the
time-derivative of the sliding surface (4.4) such that

σ̇ =
ksϕ̂

Ĵl
−
ksϕ

Jl
︸ ︷︷ ︸

1

+
Tl
Jl

−
T̂l

Ĵl
︸ ︷︷ ︸

2

−
dl

Ĵl
ωl +

dl
Jl
ωl

︸ ︷︷ ︸

3

−K sgn(σ). (B.52)

The estimated, constant load inertia corresponds to

Ĵl = Jl + δJl. (B.53)

It is further assumed that the estimation error of the torsion angle is sufficiently
small such that ϕ̂ = ϕ. With (B.53) the first part of (B.52) can be simplified such
that

ksϕ

Ĵl
−
ksϕ

Jl
= −

ksδJl

JlĴl
ϕ. (B.54)

For the simplification of the second part of (B.52) the second differential equation
of (B.51) can be solved for Tl. Solving the load torque error eTl

= T̂l − Tl for T̂l
yields

Tl
Jl

−
T̂l

Ĵl
= −

eTl

Ĵl
+
δJl

JlĴl
(ksϕ− dlωl − Jlω̇l) . (B.55)

The third part of (B.52) corresponds to

dl
Jl
ωl −

dl

Ĵl
ωl =

dlδJl

JlĴl
ωl. (B.56)

Substituting the right-hand sides of (B.54) to (B.56) into (B.52) yields

σ̇ = −
eTl

Ĵl
−
δJl

Ĵl
ω̇l −K sgn(σ). (B.57)
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Appendix C

Parameters

C.1 Test bench parameters

Table C.1: General test bench parameters.

Parameter Value

Length 2000mm
Width 780mm
Height without screw feet 1200mm
Dimension of outer hollow iron profiles 80×80×4mm
Dimension of inner hollow iron profiles 80×80×3mm
Weight 700 kg
Max. backlash width 2α 10◦

Table C.2: Moments of inertia of test bench parts.

Part Value

sensor 0.0003 kgm2

coupling 0.0154 kgm2

torsion bar 0.0006 kgm2

ball bearings at torsion bar 0.0003 kgm2

wheel bearing 0.0041 kgm2

tire 0.0506 kgm2

wheel rim 0.0437 kgm2

steel cylinder 1.38 kgm2

steel shaft 0.0052 kgm2

coupling at steel shaft with flange 0.0047 kgm2

ball bearing at steel shaft 0.0015 kgm2
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Table C.3: Test-bench parameters of the linear synthesis model.

Parameter Value

shaft stiffness ks 1747.58Nmrad−1

shaft damping coefficient ds 1Nmrad−1 s−1

rotor inertia Jm 0.05 kgm2

load inertia Jl 1.4743 kgm2

viscous friction coefficient motor 0.005Nms rad−1

viscous friction coefficient load 0.06Nms rad−1

gear ratio kg 1

Table C.4: Torsion bar.

Parameter Value

steel type Böhler VEW F550,
spring steel, hardened and tempered.

steel material 50CrV4
length 30 cm
length with feather keys 50 cm
diameter 16.6mm
torsion at 140Nm 4.59◦

shear modulus 79.231 kNmm−2

load changes 2 000 000

Table C.5: Parameters of the steel cylinder.

Parameter Value

Inertia 1.38 kgm2

radius rc 0.2m

Table C.6: Tire parameters.

Parameter Value

Type Michelin S83, 3-10
Width 3”
Diameter 10mm
load speed index 42J, i.e. up to 150 kg at 100 kmh−1

Weight 1.8 kg
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Table C.7: Parameters of the Pacejka tire model.

Parameter Value

peak value D 196N
stiffness factor B 22
shape factor C 1.16
curvature factor E −3.45

Table C.8: Identified tire parameters.

Parameter Value

tire stiffness kt 50 N/◦

tire damping coefficient dt 5Nms rad−1

statical tire radius rst 0.194m

Table C.9: Parameters of the induction machine.

Parameter Value

type AEG AM 132M ZA
housing material aluminium
weight 54 kg
rotor and motor shaft inertia 0.04 kgm2

overall motor efficiency 82.4%
rated motor speed nn 940min−1

max. motor speed nmax 6000min−1

pole pairs p 3
active power factor cos(ϕ) 0.75
rated voltage Un 400V
rated current In 12.3A
max. current Imax 44.7A
rated torque Tn 55Nm
max. torque Tmax 148Nm
stator leakage inductance Lsσ 8.2mH
stator resistance Rs 879.9mΩ
rotor leakage inductance Lrσ 8.2mH
rotor resistance Rr 879.9mΩ
mutual inductance Lh 110mH
magnetizing current Iµ 7.5A
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Table C.10: Rotary encoder parameters.

Parameter Value

type ECN/ERN 100
single turn, absolute angle

interface type EnDat 2.2/01
outer diameter 87mm
shaft diameter 38mm
resolition 25 bits
line counts 2048
system accuracy ±0.0056◦

supply voltage 5V
calculation time ≤ 25µs

Table C.11: Servo Drive.

Parameter Value

type ACOPOS 1180.00-2 with line filter
braking resistor and DC bus power supply

voltage three phase 400Veff

intermediate DC voltage 400V
continuous rated current 19Aeff

rated power 9 kW
switching frequency 5, 10 (nominal) and 20 kHz
DC bus power supply 24V
Plug-in module slots 4
Used Plug-in modules EnDat encoder interfaces

Ethernet Powerlink interface
weight 10.1 kg

Table C.12: Identified parameters for motor torque calculation

Parameter Value

torque constant kT 3.33NmA−1

constant kM w.r.t. magnetization losses 0.9Nm
saturation angular velocity ωm,0 0.5 rad s−1

Table C.13: Parameters of the second-order model of the induction machine

Parameter Value

undamped frequency ωn 1753.85 (rad s−1)
damping ratio dn 0.7
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C.2 Parameters of the MBS simulation model

Table C.14: Parameters of the MBS power-train model.

Parameter Value

stiffness left shaft 80Nm/◦

stiffness right shaft 80Nm/◦

vehicle mass 860 kg
transmission ratio 11.94
backlash width motor 10◦

backlash width tripod joint 1◦

torsional tire stiffness 330Nm/◦

stiffness of mountings 200Nmmm−1

Table C.15: Inertia of the MBS power-train parts.

Parameter Value

inertia of rotor 0.047 kgm2

inertia of roll 33.3 kgm2

inertia of wheel 0.86 kgm2

inertia of hub and rim 0.26 kgm2

inertia of tire 0.59 kgm2

inertia of left shaft 1967 kgmm2

inertia of right shaft 1991 kgmm2

inertia of differential gear 0.012 kgm2

inertia of input shaft (diff) 90 kgmm2

inertia of shaft between motor and diff 940 kgmm2

inertia of right output shaft (diff) 610 kgmm2

inertia of left output shaft (diff) 507 kgmm2
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Nomenclature

Symbols

Symbol Unit Description

A system matrix
Aij, aij sub-matrix of system matrix

Ãi sub-matrix (block observable form)
B stiffness factor, Pacejka tire model
b input vector

b̃ input vector (block observable form)
C shape factor, Pacejka tire model
C output matrix
D peak factor, Pacejka tire model

d̃ unknown input vector (block observable form)
d conditional usage delayed corr. term
dc Nms rad−1 viscous friction coefficient cylinder
dm Nms rad−1 viscous friction coefficient motor
dl Nms rad−1 viscous friction coefficient load
ds Nms rad−1 viscous damping coefficient shaft
dt Nms rad−1 viscous damping coefficient tire
E curvature factor, Pacejka tire model
e error vector
erel relative quantization error (sensor)
ei error variable (block observable form)
ew m distance of wheel center to pressure maximum of tire
f0 s−1 reference frequency (sensor)
Fr, Fr(ωt) N rolling resistance
fr rolling resistance coefficient
Fa N longitudinal axle force
Facc N acceleration resistance
Fad N air drag resistance
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Symbol Unit Description

Fx N longitudinal tire force
Fz N vertical tire force
g ms−2 gravitational acceleration
G Nm−2 shear modulus
Ga(s) transfer function of actuator dynamics
Gsm transfer function motor to shaft torque
Gsm,0 transfer function motor to shaft torque (undamped)
Gsm,a(s) transfer function motor to shaft torque (approx.)
hi i-th unit vector

H̃i sub-matrix (block observable form)
isq A motor current q-axis
Jc kgm2 steel cylinder inertia
Jl kgm2 inertia load
Jm kgm2 inertia motor
Jr kgm2 inertia of wheel rim
Jroll kgm2 MBS roll inertia
Js kgm2 shaft inertia
Jt kgm2 tire inertia
K SMC gain value
k1, k2 gain GSOA
kg gear ratio
kM Nm constant w.r.t. magnetization losses
ks Nmrad−1 shaft stiffness
ks,1, ks,2 Nmrad−1 stiffness of left and right half shaft
kt Nmrad−1 torsional tire stiffness
kT NmA−1 motor torque constant
l m length
L observer gain matrix
L1, l1 observer gain w.r.t. output without delay
L2, l2 observer gain w.r.t. output with delay
Lh H mutual inductivity
Li Lipschitz constant (block observable form)
Lr H rotor inductivity
M observer gain matrix w.r.t. discontinuous part
m input vector of unknown input
mv kg vehicle mass
mw kg wheel mass
n system order
n0(s) denumerator polynomial
N number of sensor increments for measurement
N0 total number of magnetic sensor units
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Symbol Unit Description

p eigen-vector
p exponent GSOA, pole pairs
P solution of Lyapunov equation
rc m steel cylinder radius
rst m static tire radius
rdyn m dynamical tire radius
s s−1 Laplace variable
sx longitudinal tire slip
sx,c critical tire slip at maximum adhesion
T regular state transformation matrix
tt row vector of state transformation matrix
tk, tk+1 s sampled time instants
Tl Nm load torque
Tm Nm motor torque
Tm,ref Nm reference motor torque
Tref Nm reference shaft torque
Ts Nm shaft torque
Tt Nm tire torque
Tth Nm threshold torque
T (s) command step response
tgr s group delay
u actuating signal, system input
V Lyapunov function, Lyapunov-Krasovskii functional
V0 transfer function gain
V matrix of eigen-vectors
vx ms−1 longitudinal vehicle velocity
w unknown input
Wo observability Gramian
x state vector
x̂ state vector estimate
x1 sub-vector of state vector
y output vector
y1 sub-vector of output vector
z sub-vector of state vector
z, zi transformed state (sub-)vector (block observable form)
z0(s) numerator polynomial
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Symbol Unit Description

α rad half backlash width
β rad backlash angle
γ decay rate
∆φ rad angle of N sensor units
∆t s time interval (wheel speed sensor)
δi,w relative degree of output i w.r.t unknown input w
δ1, δ2 bounds on disturbance GSOA
θ rad total angle of deflection at shaft including backlash
λ parameter of sliding surface

λ0, λ̃0 real part of eigenvalues
κ1,i,j , κ2,i,j gains of super-twisting algorithm
µ adhesion
µh maximum adhesion
µg adhesion at pure slip
ν() abbreviation for super-twisting algorithm
εc boundary layer width controller
εo boundary layer width observer
ϕ rad shaft torsion angle
ϕt rad tire torsion angle
ϕref rad reference torsion angle
ρi dimension of sub-block i (block observable form)
ρ1, ρ2 disturbances GSOA
σ sliding surface
σ(·) spectrum of a matrix
τf s filter time constant
τb s delay due to bus transmission
τ0 s minimum delay
τm s maximum delay
τs s maximum delay due to sampling
ξ(θ) correction due to backlash
χ rad road gradient angle
ω̄ rad s−1 difference angular frequency
ω0 rad s−1 undamped natural frequency
ωm rad s−1 motor angular frequency
ωm,0 rad s−1 sat. angular frequency
ωl rad s−1 load angular frequency
ωres rad s−1 resonance frequency
ωr rad s−1 angular frequency of wheel rim
ωs rad s−1 sensor angular speed
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Symbol Unit Description

ωs,m rad s−1 measured sensor angular speed
ωs,m,f rad s−1 measured and filtered sensor angular speed
ωt rad s−1 tire angular frequency
ωth rad s−1 threshold tire angular frequency
ψ s delay time
Ψrd Wb rotor flux, d-axis
ζ damping ratio

Acronyms

Acronym Name

ABS Anti-lock Braking System
CAN Controller Area Network
COG Center of Gravity
ECU Electronic Control Unit
EM Electric Machine
ESC Electronic Stability Control
EV Electric Vehicle
FOC Field-Oriented Control
GSOA Generic Second Order Algorithm
HEV Hybrid Electric Vehicle
HV High-Voltage
IC Integrated Circuit
IM Induction Machine
LMI Linear Matrix Inequality
LQR Linear Quadratic Regulator
LTI Linear Time-Invariant
MBS Multi-Body System
PI Proportional Integral
SMC Sliding Mode Control
SMO Sliding Mode Observer
TDMA Time Division Multiple Access
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[SHM86] J.-J. E. Slotine, J. K. Hedrick, and E. A. Misawa. Nonlinear state
estimation using sliding observers. volume 25, pages 332 –339, dec.
1986.

[SL91] Jean-Jacques E. Slotine and Weiping Li. Applied Nonlinear Control.
Prentice Hall, Englewood Cliffs, New Jersey, 1991.

[Spu08] Sarah K. Spurgeon. Sliding mode observers: a survey. International
Journal of Systems Science, 39(8):751–764, 2008.

[SSK10] Rainer Schruth, Germano Sandoni, and Wolfgang Kriegler. Chal-
lenges of an electronically distributed all wheel drive on basis of a
“retrofit” full hybrid 4wd solution. In The 25th World Battery, Hy-
brid and Fuel Cell Electric Vehicle Symposium & Exhibition, Shen-
zhen, China, Nov. 2010.

[TE09] P. Templin and B. Egardt. An LQR torque compensator for drive-
line oscillation damping. In Control Applications, (CCA) Intelligent
Control, (ISIC), 2009 IEEE, pages 352–356, jul. 2009.

[UGS09] V. Utkin, J. Guldner, and Jingxin Shi. Sliding Mode Control in Elec-
tromechanical Systems. CRC Press, second edition, 2009.

115



[Utk92] Vadim I. Utkin. Sliding Modes in Control and Optimization. Springer
Berlin, Heidelberg, 1992.

[Web08] Lena Webersinke. Adaptive Antriebsstrangregelung für die Opti-
mierung des Fahrverhaltens von Nutzfahrzeugen. PhD thesis, Uni-
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