
Josef Steinbäck BSc

Integration of a Time-of-Flight 3D Camera

into a Mobile Sensing Platform

to achieve the university degree of

MASTER'S THESIS

Master's degree programme: Telematics

submitted to

Graz University of Technology

Univ.-Doz. Dipl.-Ing. Dr. techn. Daniel Watzenig

Institute of Electrical Measurement and Measurement Signal Processing

Diplom-Ingenieur

Supervisor

Dipl.-Ing. Dr. techn. Norbert Druml

Dipl.-Ing. Dr. techn. Allan Tengg

Graz, September 2016

Advisors:

Affidavit

I declare that I have authored this thesis independently, that I have not used other than
the declared sources/resources, and that I have explicitly indicated all material which
has been quoted either literally or by content from the sources used. The text document
uploaded to TUGRAZonline is identical to the present master‘s thesis dissertation.

Date Signature

3

Abstract

Automated driving has recently become an important subject that will most probably
dominate the automotive industry in the next decades. Assisted driving functions have
been around for quite a while, and new systems and ideas are continually being presented.
There is a fair chance of deploying automated driving to the streets within the next
couple of years. To accomplish that, the general public has to build trust in the systems.
Automated driving systems have to operate at the highest level of robustness and safety.
Thus, redundancy and diversity of different technologies is inevitable in order to guarantee
the functionality in any possible scenario.

Today the most used sensor technologies for automotive environment perception are 2D
cameras, radar, lidar and ultrasonic sensors. An uprising technology on this sector are
Time-of-Flight (ToF) cameras, providing high frame rate 3D data with minimal computa-
tion overhead. Compared to other systems, ToF cameras are very compact and inexpensive.
This work evaluates the feasibility of a 3D ToF camera in order to be used in automat-
ed/assisted driving systems. In addition, limitations and imperfections of ToF cameras in
this field of application are analyzed. These include ambient light, motion artifacts and
the restricted range.

To examine its performance in the field, a ToF image processing system was attached to
a remote-control 1/5 scaled vehicle. Further, an algorithm was developed to compute the
distance image from the sensor data and to processes the image with the purpose to detect
possible obstacles. Together with the data of the scaled vehicle’s current state (i.e. velocity,
direction) the system estimates whether a collision is likely to occur. If so, emergency
braking is initiated to avoid the crash or at least to reduce the extent of it. Due to the
limited computational power of the used automotive microcontroller, a very efficient image
processing algorithm is required in order to accomplish real-time performance. Utilizing
all three cores of the automotive microcontroller, the system achieves frame rates of more
than 30 Frames per Second (FPS).

5

Kurzfassung

Autonomes Fahren war und ist das Stichwort der Automobilindustrie und wird die techno-
logischen Entwicklungen in den nächsten Jahrzehnten weiterhin wesentlich mitbestimmen.
Teilautomatisierungen und Fahrerassistenzfunktionen wie die Einparkhilfe gehören bereits
zum Standard, neue Systeme und Ideen werden laufend vorgestellt. Die Entwicklungen
deuten darauf hin, dass automatisiertes Fahren in den kommenden Jahren mehr und mehr
Einzug auf den öffentlichen Straßen findet. Dementsprechend muss die Öffentlichkeit den
eingesetzten Technologien vertrauen können. Automatisierte Fahrfunktionen müssen sich
daher bezüglich Zuverlässigkeit und Sicherheit auf dem höchstem Niveau bewegen. Um
die Funktionalität in jedem erdenklichen Szenario zu gewährleisten, sind Redundanz und
Vielfältigkeit beim Einsatz dieser Technologien unumgänglich.

Die heute am häufigsten verwendeten Sensortechnologien für die Umfelderkennung von
Fahrzeugen sind 2D Kameras, Radar, Lidar und Ultraschallsensoren. Eine relativ neue
und aufstrebende Technologie ist jene der Time-of-Flight (ToF) Kameras. Diese liefern 3D
Bilder mit hohen Bildraten und geringem Rechenaufwand und sind im Vergleich zu anderen
Systemen kompakt und kostengünstig. Diese Arbeit evaluiert die praktische Umsetzbarkeit
einer 3D ToF Kamera für die Umfelderkennung in Fahrassistenzsystemen. Ein zusätzli-
cher Fokus liegt auf den Beschränkungen und Unzulänglichkeiten der ToF Kamera auf
diesem Anwendungsgebiet, konkret wird dabei auf den Einfluss von Umgebungslicht und
Bewegungsartefakten sowie den eingeschränkten Entfernungsbereich eingegangen.

Um die Anwendung des Systems in der Praxis zu testen, wurde eine ToF Verarbeitungsein-
heit auf einem im Maßstab 1/5 skalierten Elektrofahrzeug montiert. Damit einhergehend
wurde ein Algorithmus entwickelt, der aus den Sensordaten ein Entfernungsbild errechnet
und etwaige Hindernisse erkennt. Zusammen mit den Daten über den aktuellen Zustand
des skalierten Fahrzeugs - etwa dessen Geschwindigkeit und Fahrtrichtung - berechnet das
System die Wahrscheinlichkeit einer Kollision. Übersteigt diese einen Schwellwert, wird
eine Notbremsung eingeleitet, um den Zusammenstoß zu vermeiden oder zumindest das
Ausmaß zu verringern. Aufgrund der begrenzten Rechenleistung des verwendeten Mikro-
controllers ist ein sehr effizienter Bildverarbeitungsalgorithmus notwendig, um Echtzeitfä-
higkeit zu erreichen. Unter effizienter Nutzung aller drei Kerne des Mikrocontrollers kann
das System Bildwiederholungsraten von über 30 Bildern pro Sekunde erreichen.

7

Acknowledgements

This thesis was carried out at the Institute of Electrical Measurement and Measurement
Signal Processing at the Technical University Graz in cooperation with Infineon Technolo-
gies Austria in Graz and the Virtual Vehicle Research Center in Graz. At the beginning
of this thesis I want to seize the chance to thank all the people who supported me during
my studies and especially during my thesis.

Especially, I would like to express my sincere gratitude to my supervisor Univ.-Doz.Dipl.-
Ing.Dr. techn.Daniel Watzenig and to both of my advisors Dipl.-Ing.Dr. techn.Norbert
Druml and Dipl.-Ing.Dr. techn.Allan Tengg for their continuous support during the cre-
ation of this work, their patience and their contributed knowledge. Furthermore, I want
to thank my colleagues at the “Cooperative Research and Exploration” department of the
Infineon Development Center Graz for the great working atmosphere.

I also want to thank all new friends I found during my time at the university for making
it such a great experience and period of my life. In particular, I want to thank my long
term study-group and very good friends Christoph, Lukas and Josef for their backup and
support in any situation during our years at the TU Graz.

In addition, I must express my very profound gratitude to my family and my friends for
their support and patience during my studies and during the work on my thesis. I am very
grateful for the unconditional support of my mother Brigitte and for her words of advice
in difficult life situations. Finally, I want to thank my father Josef, the greatest man I
have ever known, for inspiring me to choose a technical career path. Thank you!

Graz, September 2016 Josef Steinbäck

9

Contents

1 Introduction 15
1.1 Motivation . 15
1.2 Objectives . 16
1.3 Outline . 17

2 Literature 19
2.1 Automated Driving . 19

2.1.1 Levels of Automated Driving . 19
2.1.2 Sensors . 20
2.1.3 Range Imaging . 22

2.2 Time-of-Flight Imaging . 23
2.2.1 Basic Principle . 23
2.2.2 Characteristics . 25
2.2.3 Applications . 29
2.2.4 REAL3 Image Sensors . 31

2.3 Object Detection . 32
2.3.1 Pre-Processing . 33
2.3.2 Segmentation . 35
2.3.3 Classification . 37

3 Design 39
3.1 Requirements . 39
3.2 Existing Platform . 40

3.2.1 Time-of-Flight System . 40
3.2.2 Scaled Vehicle . 41

3.3 Mobile Sensing Platform . 41
3.3.1 Overall System . 42
3.3.2 ToF Module . 42
3.3.3 AURIX Microcontroller . 45
3.3.4 Scaled Vehicle . 49

3.4 Emergency Braking . 52
3.4.1 Stopping Distance . 52
3.4.2 Automated Braking . 53

3.5 ToF Processing Algorithm . 55
3.5.1 Distance Image Calculation . 55

11

12 CONTENTS

3.5.2 Pre-Processing . 57
3.5.3 Object Detection . 60
3.5.4 Decision-Making . 62

3.6 Debug System . 63

4 Implementation 67
4.1 Development . 67

4.1.1 Tools . 67
4.1.2 Workflow . 68

4.2 Hardware Platform . 70
4.2.1 Overall System . 71
4.2.2 Power Supply . 71
4.2.3 Adapter Board . 72
4.2.4 Camera Mount . 72

4.3 Interfaces . 72
4.3.1 CAN Interface . 73
4.3.2 Camera Control Interface . 74
4.3.3 Parallel Sensor Interface . 75
4.3.4 Debug Interface . 76

4.4 AURIX Implementation . 78
4.4.1 CPU Partitioning . 78
4.4.2 Shared Memory . 79
4.4.3 Memory Partitioning . 81
4.4.4 UDP Data Buffering . 82

4.5 ToF Processing Algorithm . 84
4.5.1 Distance Image Calculation . 84
4.5.2 Pre-Processing . 86
4.5.3 Object Detection . 88
4.5.4 Decision-Making . 89

5 Results 91
5.1 Built-up Platform . 91

5.1.1 Test Scene . 92
5.1.2 Camera Mount . 92

5.2 ToF Camera Configuration . 92
5.2.1 Illumination Time . 92
5.2.2 Modulation Frequency . 94

5.3 Performance . 94
5.3.1 Ambient Light . 94
5.3.2 Image Processing Steps . 94
5.3.3 Emergency Braking . 97
5.3.4 Time Behavior . 99

6 Conclusion and Future Work 101
6.1 Conclusion . 101
6.2 Future Work . 102

CONTENTS 13

A Technical Additions 103
A.1 ToF Module Connection . 103
A.2 Voltage Converter Board . 104
A.3 Rotation into the First Octant . 105
A.4 CAN Message Structure . 105
A.5 Amplitude Reference Image . 106
A.6 Additional Tools . 107
A.7 PC Debug Application . 108
A.8 Sorting Network . 110
A.9 Linker Description File . 110
A.10 ToF Camera Configuration . 113

List of Abbreviations 115

Bibliography 117

Chapter 1

Introduction

1.1 Motivation

The number of road fatalities has decreased over the last decades due to the introduction of
new safety features in modern vehicles. Still, the number of car accidents caused by human
failure is comparatively high, and measures are taken to decrease that number.

The Annual Accident Report of the European Union [Eur15] shows the statistics of road
accidents in the European Union in 2015. The data is obtained from the Community
Database on Accidents on the Roads in Europe (CARE) database. The report reveals
that 38% of all lethal traffic accidents occur inside urban areas, 8% thereof affect cyclists
and 22% pedestrians. The underlying statistics for road fatalities in the EU are shown in
Figure 1.1. Consequentially, an enhanced view upon unprotected traffic participants and
their safety is necessary.

(a) By Area Type.

Passenger car
45%

Motor cyclist
18%

Pedal cycle
8%

Pedestrian
22%

Other
7%

(b) By Transport Mode.

Figure 1.1: Road fatalities in the EU, 2013 [Eur15].

While the protection of the car passengers has steadily improved over the last decades,
the protection of pedestrians and other unprotected traffic participants has stayed more

15

16 CHAPTER 1. INTRODUCTION

or less the same. Many accidents are caused by the fact that the driver does not notice
an obstacle or cannot react fast enough. At this point modern sensor technology could be
used to improve the current situation. Real-time sensor data is able to detect potential
obstacles within the surrounding area of a vehicle and react to dangerous situations within
milliseconds. Hence, there is a huge potential in this area of technology to make the roads
safer.

Figure 1.2: State-of-the-art surround view [Vol16].

A number of different sensors are already used in modern cars’ assisted driving systems.
Figure 1.2 shows the combined visible area of multiple sensors installed in modern cars. To
work reliably, those assisted driving systems are in need of robust sensor data. Further,
to assure the functionality in difficult and more complex situations, the safety critical
systems require both redundancy and diversity. As a consequence of this there is a major
interest for the automotive industry to utilize new sensor technologies and evaluate their
feasibility in future systems.
The fusion of highly reliable sensor data and the ability to process this very data in real-
time is essential to roll out fully autonomous driving in a safe and generally accepted
way. With fully autonomous driving, traffic accidents caused by human failure could be
completely wiped out.

1.2 Objectives

This thesis focuses on a 3D imaging sensor using the ToF principle. The sensor’s feasibility
is evaluated for the front-view use on a vehicle. The main goals of this work are:

• Build up a system consisting of a 3D ToF camera and an automotive microcontroller.
• Install this system on a mobile platform (a 1/5 scaled vehicle).
• Make the sensor’s 3D images available to the microcontroller.
• Develop a fast algorithm to process the 3D data, meeting real-time constraints.
• Detect obstacles and stop the moving vehicle in situations when a collision is likely

to occur.

CHAPTER 1. INTRODUCTION 17

• Estimate the usability of the 3D camera for front-view application on a full-sized
passenger car.

The construction of this system will evaluate if the 3D camera is a feasible application for
environmental perception. If so, the use of a 3D camera could significantly improve the
quality of surround detection of the vehicle’s environment and thus lead to better driver
assistance or autonomous driving performance. Another possible use case is installing the
camera as an additional system for surround detection to add diversity and redundancy
to the system. The ToF object detection might work in special situations when other
sensors fail, for example, in bad lighting conditions, where regular 2D cameras provide a
low image quality.

1.3 Outline

Chapter 2 contains the theoretical part of this work. The current state-of-the-art of
surround-view sensors in modern cars is described. The principle of ToF cameras, their
imperfections and current applications is introduced. In addition, different methods of
achieving object detection with 3D data are explained. A requirement analysis to point
out the single requirements of the thesis is performed in Chapter 3. Additionally, the
used components of the system are described in detail and the structure of the process-
ing algorithm is introduced. Chapter 4 explains the workflow of the actual development
as well as implementation related details of both hardware and software. The results of
the thesis are presented in Chapter 5. The built-up platform is described and the per-
formance of the system is evaluated in terms of quality, robustness and speed. Finally,
Chapter 6 summarizes the results and gives suggestions for possible future work based on
this thesis.

Chapter 2

Literature

This chapter gives an overview of the current state-of-the-art of the problem targeted
in this thesis. A rough overview of automated driving and the currently used sensor
technologies is given. Afterwards, the ToF principle is described and different methods of
performing object detection are introduced.

2.1 Automated Driving

Automated driving recently became an important subject and there is a lot of investment
in improving the technology. This section first introduces the different levels of automated
driving and then focuses on 3D sensor data.

2.1.1 Levels of Automated Driving

In automated driving, there exist different classifications for automated driving systems
from different institutions. Standardization is important to help customers, politicians
and the industry to distinguish between the available assisted/automated driving func-
tionalities.

The Society of Automotive Engineers (SAE) has published the currently most acknowl-
edged standard, defining six different levels of driving automation for on-road vehicles
[Sae14]. A rough overview of the different levels is illustrated in Figure 2.1. Currently
the car industry offers cars with built-in assisted driving functions up to level 2. The
introduction of higher-level systems also depends on the progress done in legislation and
politics.

3D ToF cameras can be used in systems of different levels. In lower level systems (level 0
or 1), a ToF camera can be used to obtain environment data and implement functions like
emergency breaking or reverse driving assistance. In higher level systems (level 2, 3 or 4)
the main field of application is interior monitoring. In situations when the assisted/auto-
mated driving system gives the control back to the driver, a ToF camera can be used to
detect if there is a person ready to take over at the driver’s seat.

19

20 CHAPTER 2. LITERATURE

0 1 2 3 4 5

Monitored Driving Non-Monitored Driving

Eyes on

Hands on

Eyes on

Hands on

Eyes on

Hands
temp. off

Eyes
temp. off

Hands off

Eyes off

Hands off

Eyes off

Hands off

Figure 2.1: Levels of automated driving.

The levels of automated driving are introduced here with examples for each level:
• Level 0 (no automation):

The human driver has to perform all actions on their own. The system does not
take over control and at most can only warn the driver. E.g.: lane change assist,
park distance control, lane departure warning, front crash warning.

• Level 1 (driver assistance):
The system can either perform steering or acceleration/braking. The human driver
has to operate the remaining tasks and at any time be ready to take over full control.
E.g.: adaptive cruise control, park assistance (level 1), lane keeping assist, front crash
prevention.

• Level 2 (partial automation):
The system can perform steering and acceleration/braking. The human driver has
to be ready to take over full control at any time. E.g.: park assistance (level 2),
traffic jam assist.

• Level 3 (conditional automation):
The system can perform steering and acceleration for given use cases. It can request
the driver to intervene, when it recognizes its limits. The human driver does not
always have to monitor the driving, but shall be able to resume control within a
certain time. E.g.: traffic jam chauffeur (level 3), highway chauffeur (level 3).

• Level 4 (high automation):
The system is capable of driving on its own for given use cases. Within those use
cases, the driver does not need to monitor the system or take control. E.g.: parking
garage pilot, traffic jam chauffeur (level 4), highway chauffeur (level 4).

• Level 5 (full automation):
The system can perform the entire driving task in any use case. No actions from a
human driver are required. E.g.: fully automated vehicle.

2.1.2 Sensors

Currently, the combination of multiple sensor technologies is used to offer assisted/au-
tonomous driving functionality [Win09], [Vol16]. The Figure 2.2 shows the impact area
of the different sensors used in the autonomous driving project “Drive Me” by Volvo
[Vol13].

CHAPTER 2. LITERATURE 21

(a) Ultrasonic sensors. (b) Surround radar.

(c) Multiple beam laser scanners. (d) Surround vision.

Figure 2.2: Volvo’s autonomous driving sensors [Vol16].

• Ultrasonic sensors:
Multiple ultrasonic sensors are mounted around the car to detect close objects. The
combination of the data from different sensors makes it possible to increase the
detection accuracy of an object. Currently those sensors are mostly used for parking
assistance, but they could also be used for the detection of pedestrians that are
close or other objects. The impact area of multiple ultrasonic sensors can be seen in
Figure 2.2a.

• Radar:
The term radar comes from radio detection and ranging. Long-range radar sys-
tems are mounted in the front to detect other road users or objects on the road.
Long-range radar systems pointing backwards can be used to detect vehicles behind
the car. With the mid- and short-range radars mounted on the vehicle’s sides, ob-
jects around the car can be detected. The impact area of the radars is shown in
Figure 2.2b.

• Lidar:
Lidar is an acronym for light detection and ranging. The advantage of the laser
scanners is the high angle resolution combined with a high range of more than
100 m. With multiple beams it is possible to detect objects within a wide field of
view in front of the vehicle (see Figure 2.2c).

• Cameras:
2D cameras have been around for many years. They are technically highly developed
compared to other technologies and are inexpensive due to the availability on the

22 CHAPTER 2. LITERATURE

mass-market. Since the cameras strongly depend on the lighting conditions, their
performance decreases at night and bad weather. Multiple cameras are placed around
the vehicle to achieve a surround view (see Figure 2.2d). A special trifocal camera
is placed in the front direction, combining three different cameras with different
fields of view. By comparing the different images, it is possible to estimate a depth
knowledge of the scene.

2.1.3 Range Imaging

3D range cameras are becoming more and more popular for use cases in automotive envi-
ronments. In many situations, object detection using distance data leads to better results
than with the corresponding 2D images. Since redundancy is an important topic in as-
sisted driving and even more important in autonomous driving, 3D cameras can be used
as an additional independent system along with other sensors. Other approaches combine
the high resolution 2D data with the distance data from a 3D sensor [Pla16]. This can
significantly improve the expressiveness of the data.

The automotive applications of 3D cameras can be split into interior monitoring and
outside monitoring. Interior monitoring describes the inside use of a 3D camera. For
example, for gesture control or the observation of the driver’s state of fatigue. Outside
monitoring focuses on the outside use of range cameras to capture the surroundings of the
vehicle. Examples are a camera on the rear-side of the car for back-driving assistance or
in front-direction, and around the car to detect obstacles [Win09].

In general, there are three different methods to obtain a 3D image of a scene:

• Stereo vision:
Stereo vision is an approach using two cameras with a defined position. With the
same point detected on both images it is possible to calculate the distance using
triangulation. The downside is that finding the same point in two images is compu-
tationally expensive (solving the correspondence problem).

• Structured light:
Structured light is actively emitted to the scene in a special pattern. The pattern
can be detected with the camera and triangulation can be applied to gain distance
information.

• Time-of-Flight:
In the ToF approach, the travel time of the light is measured. An active emitter
sends out a signal, which gets reflected by the scene and detected by the sensor. ToF
cameras implement Photonic Mixing Device (PMD) pixels to directly measure the
distance in every pixel. Thus, ToF cameras do not require a high computational effort
to obtain the distance image. Additionally, ToF cameras are compact, affordable and
allow high frame rates. That is why the use of ToF is very promising in dynamic
automotive environments.

ToF is an uprising technology, but as it is pretty new to the industry, not many profound
studies are available, which evaluate the real value of that technology in automotive envi-
ronments. Most approaches in literature have focused on the interior use of ToF in cars.

CHAPTER 2. LITERATURE 23

Therefore, this thesis targets the feasibility of this technology for vehicle environment
perception.

2.2 Time-of-Flight Imaging

This section describes the working principle of ToF cameras, introduces the most impor-
tant characteristics and presents some applications.

2.2.1 Basic Principle

As the name of the technology indicates, the travel time of the light is measured. The most
straightforward way to do this is to transmit a light pulse and measure the time until the
reflected pulse is detected. Knowing the speed of light, the travel time corresponds to twice
the distance from the object. Using continuously modulated infrared light instead of a light
pulse simplifies the measurement process in the hardware. Instead of direct measurement
of the time, the phase difference is measured. An illumination unit transmits the light and
a PMD sensor detects the reflected light to determine the phase difference efficiently. To
obtain the depth information of the whole scene instead of a single pixel, an array of PMD
pixels behind an optic lens is used [Lan00]. Figure 2.3 shows the basic ToF principle, with
the use of modulated light and a PMD array.

Figure 2.3: Illustration of the ToF principle [Lin10].

Photonic Mixing Device

The PMD sensor can directly measure the cross correlation value cτ (x, y) of the received
signal r(t) and a phase shifted version s(t + τ) of the transmitted signal s(t). Figure 2.4
shows the structure of a PMD sensor in Complementary Metal–Oxide–Semiconductor
(CMOS) technology. Caused by the photoelectric effect, incoming photons translate to
electron-hole pairs in the substrate. The modulated reference signal s(t+ τ) is applied to
the photosensitive photogates in order to create a potential variation within the substrate.

24 CHAPTER 2. LITERATURE

Depending on the phase difference between the received signal and the reference signal, the
photoelectrons drift either to the left or the right diode. After a certain illumination time,
the difference between the two voltages UA and UB is read out, expressing the correlation
of the two signals.

Figure 2.4: PMD sensor layout [Lin10] and [Möl05].

Amplitude and Distance Calculation

The cross correlation value C is typically determined with four different phase shifted
versions of the transmitted signal s(t + τ) for τ = {0◦, 90◦, 180◦, 270◦}. With those four
cross correlation values it is possible to calculate the intensity value A with [Lan01]:

A =
√

(C270◦ − C90◦)2 + (C0◦ − C180◦)2

2 (2.1)

The phase difference ∆ϕ can be determined with [Lan01]:

∆ϕ = arctan
(
C270◦ − C90◦

C0◦ − C180◦

)
(2.2)

The distance d to the reflected object can be determined using the speed of light c0 ≈
3 · 108 m

s , the modulation frequency fmod and the phase difference ∆ϕ (see Equation 2.3).
Since the light travels back and forth until it is detected, the whole term has to be divided
by two.

d = 1
2 ·

c0
fmod

· ∆ϕ
2π (2.3)

The main computational expense to obtain the distance image from the sensor’s four
raw phase-images is the arctangent calculation. The choice of the best arctangent al-
gorithm strongly depends on the targeted architecture and the use case. There exist
mainly three different approaches to implement the inverse tangent function in embedded
systems:

CHAPTER 2. LITERATURE 25

• Series expansion:
The use of series expansion (e.g., Taylor series, Chebyshev polynomials) can be
very accurate, at the cost of high computational effort. On many microcontrollers,
trigonometric functions based on series expansion are already included in the soft-
ware libraries.

• Coordinate Rotation Digital Computer (CORDIC):
The CORDIC algorithm is an efficient, iterative algorithm to calculate trigonometric
functions [Vol59]. The algorithm can be implemented using only simple shifts and
additions, but the iterative behavior limits the speed if certain accuracy is required.
Using parallelism can drastically increase the throughput, making it popular to be
implemented in hardware [Bel00].

• Look-up Table (LUT):
A LUT holds the arctangent values for the required input range. The accuracy can
be further improved by using linear interpolation. This approach is very fast but
requires a certain amount of memory. The work in [Uki11] shows an implementation
of this approach for embedded systems with very limited computational resources.

2.2.2 Characteristics

The output of a ToF camera depends on various parameters and properties. The most
influential characteristics are introduced and discussed here.

Modulation Frequency

The modulation frequency determines the maximum range of a single ToF measurement.
For the unambiguous range, the phase difference ∆ϕ has to be within 0 and 2π. This
limits the maximum unambiguous distance du,max to:

du,max = 1
2 ·

c0
fmod

(2.4)

A lower frequency results in a higher unambiguous range, but lower accuracy within that
range. This unambiguous distance shall not be confused with the range of a ToF camera.
Objects beyond the maximum unambiguous distance might still be detected but result in
a wrong distance value.

Illumination Time

The illumination time directly affects the quality of the obtained image. It is equivalent
to the integration time of the photons on the PMD sensor. A higher illumination time
comes with important advantages. It increases the signal-to-noise ratio (SNR) and the
robustness of the measurement. But on the other hand, it can lead to overexposure of
close and highly reflective objects. Additionally, the vulnerability to motion blur and
motion artifacts increases, as well as the power consumption.

26 CHAPTER 2. LITERATURE

Range

The effective range of the ToF camera is not only limited by the modulation frequency
but also by the transmitted signal strength. Some objects exceeding a certain distance are
not reflected strongly enough to be detected properly, while others at the same distance
still result in a solid distance value.

For a given transmission signal strength, the amplitude and thus the quality of the distance
data of one pixel depends on the albedo ρ, the distance to the reflecting object r and the
angle θ to its surface [Mur07]. This reflection is shown in Figure 2.5 and described with
the following formula:

A ∝ ρ · cos(θ)
r2 (2.5)

Figure 2.5: Reflection characteristics of the emitted light
[Mur07].

The most straightforward way to increase the range would be to increase the transmitting
strength of the infrared signal. But in many application fields this is only allowed up until
a certain magnitude due to eye-safety regulations. This causes the usable range of current
ToF cameras for automotive use to be limited to a distance of less than 10 m.

Accuracy

The accuracy of a ToF camera depends on multiple factors (e.g., modulation frequency,
noise and systematic errors). The compensation of systematic errors is mandatory to
achieve high distance accuracy. The data required for the compensation can be obtained
using calibration. Systematic errors include: the global offset, fixed pattern noise, tem-
perature dependent error, distance dependent error, etc. But there are also random errors
present, which are not able to be compensated, and limit the maximum accuracy of the
system. Those random errors include light scattering, multi path reflections, shot noise
and other quantification effects. Additionally, the measurement accuracy increases with an
increasing modulation frequency. After the compensation of the systematic errors, current
ToF systems can achieve precisions in the area of a few millimeters [Win09].

The calculation of the distance data using finite numbers and approximations will also
add an uncertainty. This error has to be considered, especially when embedded systems
with fixed point arithmetic are used.

CHAPTER 2. LITERATURE 27

Resolution

The resolution of most current ToF cameras is within a range of 160 x 120 pixels and
352 x 288 pixels. Compared to current 2D cameras with multiple megapixels, the resolution
is very low and might not be sufficient for certain applications with the need of fine-grained
data.

Drawbacks

This subsection describes the imperfectness of the ToF measurement with the use of a
PMD sensor. The most relevant errors that occur during the measurement are described
here and their impact on the output is explained. Some errors can not be compensated.
Some compensation methods are described as well.

• Wiggling error:
The wiggling error is a distance dependent error and is caused by the imperfection
of the sinusoidal modulation. The distance equations only lead to exact values if
the modulation signal is a perfectly shaped sine. In reality the modulation signal is
rather a digital rectangle signal (see Figure 2.6a) and thus the distance equations
lead to an imprecise result. As seen in Figure 2.6b, the distance error caused by
the wiggling effect follows a sinusoidal shape. There exist different approaches to
compensate the wiggling error. One is to determine the distance error for a sufficient
amount of distance values using an exact reference and compensate it using a LUT.
Another possibility is to compensate the error using a mathematical model, derived
from the sinusoidal shape of the error.

(a) Modulation signal. (b) Wiggling error.

Figure 2.6: Wiggling Error [Sch09].

• Ambient light:
An optical spectral filter is applied to the sensor to block all light waves outside the
relevant infrared range. If ambient light is present at the same wavelength as the
emitted signal, it causes the image quality to decrease. Although it is usually not
modulated, it can still cause the sensor’s pixels to enter saturation. A suppression of

28 CHAPTER 2. LITERATURE

background illumination can be applied using special compensation circuits, reject-
ing ambient light up to a certain magnitude and thus avoiding saturation [Möl05].
Additionally, ambient light causes photon shot noise on the sensor [Gok04].

• Overexposure:
Highly-reflective objects close to the lens can cause overexposure of pixels. The PMD
sensor has a fixed capacity and only works properly up until a certain amount of
photons are received. The impact can be reduced by lowering the exposure time,
this may cause however that badly reflective objects at a certain distance to not be
detected anymore. So there is always a trade-off between risking overexposure and
not detecting objects.

A related error to overexposure is called light scattering (stray light inside optics),
describing the reflections between the lens and the image sensor [Mur07]. It occurs
because the infrared light is scattered over the whole image and causes the back-
ground to appear at a closer distance. Figure 2.7 illustrates the origin of the effect
and shows the influence of light-scattering on the distance image. The impact of
this error significantly increases when overexposure occurs and also causes many of
the remaining image pixels to become unusable.

(a) Light scattering, principle.

(b) Only background. (c) With foreground. (d) Distance difference.

Figure 2.7: Impact of light scattering [Mur07].

• Motion artifacts:
In dynamic scenes with moving objects or a moving camera, motion artifacts are
very likely to occur. Motion artefacts shall not be confused with motion blur. The
latter concerns the distance uncertainty that occurs by motion during the integration

CHAPTER 2. LITERATURE 29

time. Since the integration time is usually very low in ToF systems, the influence of
motion blur can be neglected in many cases. The major problem is motion artifacts
that describe the distance error caused by changes of the scene during the sequential
measurement of the four phase-images. Figure 2.8 shows a few examples of motion
artifacts in distance images.
In certain applications, reducing the illumination time can be sufficient to cope with
motion artifacts in dynamic scenes. In other applications it might be mandatory
to apply certain algorithms to identify and/or correct motion artifacts within the
distance data. Examples for such algorithms are presented in [Hoe13], [Sch15] and
[Sch11a].

(a) Juggling. (b) Rotating fan. (c) Fast arm movement.

Figure 2.8: Distance images with motion artifacts [Sch11b].

• Phase-wrapping:
From the raw ToF data of a single measurement it is not possible to distinguish
between ∆ϕ = ∆ϕ+n ·2π phase data. This effect leads to wrong distances for pixels
with corresponding distances further away than the unambiguous range. There exist
some phase unwrapping approaches to extend the unambiguous range of the ToF
camera [Han13]. One method is to execute sequential measurements with different
modulation frequencies that are combined to extend the unambiguous range of the
distance data [Gok04]. The disadvantage is the additional delay, introduced by the
increased capturing and processing time. This additionally limits the frame rate and
can cause motion artifacts in dynamic scenes.

2.2.3 Applications

Many new applications arise with the ability to capture 3D data at a high frame rate.

Human-Machine Interaction

There exist multiple applications where ToF cameras are used for human-machine inter-
action. Examples are gesture control (e.g., of media devices in a car) and augmented
reality.
A well-known example for a ToF camera used for human machine interaction is the Kinect
for Microsoft’s Xbox One. The Kinect is a user interface to use motions of players as input

30 CHAPTER 2. LITERATURE

to the gaming console to enhance the gaming experience. Compared to other currently
available sensors, it offers a high resolution of 512 x 424 pixels [Bam15].
With ToF cameras real-time motion tracking can be achieved marker-less. A single ToF
camera can be used instead of expensive and complex camera systems. Approaches to
accomplish real-time motion capture and human 3D pose estimation are presented in
[Gan10], [Pla10] and [Sch11c]. The Figure 2.9 shows a full-body pose estimation using a
ToF camera.

Figure 2.9: Full-body pose estimation. The distance images are overlaid
with the estimated skeleton pose. Obtained from [Sch11c]
with changes.

Automotive Assistance Functions

The authors in [Sch07] evaluated a special PMD camera for automotive use with the result
that the ToF principle can be used for obstacle detection and tracking (e.g., for pre-crash
detection).
The work in [Dal14] presents an approach with four ToF cameras mounted on a vehicle
to gain a 360 degree view of the vehicle’s surrounding area. Static and dynamic objects
around the vehicle are detected in real-world conditions. Figure 2.10 shows the field of
view of the single cameras mounted on different sides of the vehicle.
In [Wei14] a ToF vision system is proposed that is able to perform pedestrian detection.
First the scene is efficiently segmented using the distance histogram and then the range
values are clustered using a mean-shift algorithm. Afterwards Fourier and Generalized
Search Tree (GiST) features are extracted for each region. Finally, the segmented regions
are classified into pedestrians and non-pedestrians using a Support Vector Machine (SVM)
as classifier.

Face Detection

The availability of distance data can drastically improve the quality of face detection.
Due to the distance information, it is possible to get additional information, for example

CHAPTER 2. LITERATURE 31

Figure 2.10: Full surround view with four ToF cameras [Dal14].

about the position of a human head within the image. The works presented in [Böh09]
and [Fis10] show the value of a range measurement in addition to a regular color image in
order to improve the quality and the speed of face detection.
The work in [Wal07] presents a simple way to implement person counting using a PMD
based ToF camera. A ToF camera was placed on top of a door facing the ground, and the
resulting distance images were scanned for human heads.

2.2.4 REAL3 Image Sensors

Infineon Technologies AG and PMD Technologies AG started a cooperation to develop a
3D ToF image sensor. A first generation of 3D image sensors was released in 2013 [Inf13].
The sensor was advertised as the most integrated and sophisticated ToF imager available
on the market. Two products with different resolutions were introduced (see Table 2.1). A
second generation was presented in 2015 [Inf15]. The new sensors have a highly improved
sensitivity due to the use of special micro-lenses. Additionally, there exist versions with
smaller size and lower resolution for low-power applications like the use in mobile devices.
An overview of the different products can be seen in Table 2.1 and Figure 2.11. PMD
Technologies offers the CamBoard pico flexx, a reference camera with the ToF image sensor
(see Figure 2.12). The small USB device comes with a Software Development Kit (SDK),
which makes it possible to use the provided sensor data in custom applications.

Product Name Resolution

Generation 1 IRS1010C 160 x 120
IRS1020C 352 x 288

Generation 2
IRS1125C 352 x 288
IRS1645C 224 x 172
IRS1615C 160 x 120

Table 2.1: Released image sensors from Infineon Technologies
in cooperation with PMD Technologies.

32 CHAPTER 2. LITERATURE

Ø·¹¸ ®»­±´«¬·±² º±®

� Ô±²¹ ®¿²¹»

� É·¼» Ú±Ê

Ô±© ®»­±´«¬·±² º±®

� Í³¿´´ ­·¦»

� Ô±© ½±­¬

� Î»¼«½»¼ °±©»®

½±²­«³°¬·±²

×ÎÍïð¨ðÝ

ïðð µ ×ÎÍïïîëÝ

ïðð µ

×ÎÍïêìëÝ

íè µ

×ÎÍïêïëÝ

ïç µ
×³°®±ª»¼

°¸±¬±ó

­»²­·¬·ª·¬§

¨î

¨î Î»¼«½»¼

­·¦»

Figure 2.11: Product evolution of the ToF image sensors [Inf15].

Figure 2.12: CamBoard pico flexx reference design [Pmd15].

2.3 Object Detection

This section describes the image processing steps to achieve object detection with 3D
images. There exist various different approaches for 2D images, but since 3D cameras are
relatively new to the industry, there are not so many well-founded 3D object detection
principles. Some parts of the principles can be easily modified for 3D cameras while others
are not applicable for distance data.

For use in an automotive environment, the system shall detect objects in front of the ToF
camera, isolate them and get the area, position and distance of each object. The detected
objects should be re-recognized in the following frames to assign trajectories to every
object, representing their relative movement to the ToF camera. Considering the car’s
speed, direction, etc., it is possible to decide for each object independently if intervention
is required.

CHAPTER 2. LITERATURE 33

2.3.1 Pre-Processing

For pre-processing of image data, different filters can be used. The choice of the filter
depends on the type of the image itself, and under what circumstances it was taken. In
ToF 3D images, there is usually some noise in the image. This holds especially true for
pixels, where there is no object present to reflect the emitted light.

Median Filter

A median filter can be used to omit single erroneous pixels and thus decrease the noise of
the image. The 8-neighborhood is considered and the processed pixel is set to the median
value. This can be implemented time-efficient and leads to good results. The filter has
the advantage, that it preserves edges and does not blur them.

Iout(x, y) = median
(x,y)∈8N

{Iin(x, y)} (2.6)

Mean Filter

Another smoothing technique is to apply a mean filter. This filter considers the neighbor-
ing pixel values, usually of the 8-neighborhood, and sets the processed pixel to the mean
value. The mean filter smooths the whole image, but sharp edges get lost since the whole
image gets blurred. Also single pixels with a totally wrong distance value can affect the
output significantly.

Iout(x, y) = 1
9

∑
(x,y)∈8N

Iin(x, y) (2.7)

Common Neighborhood Filter

A Common Neighborhood (CN) filter is used to detect and discard erroneous pixels [Far06],
[Dal14]. The filter considers neighboring pixels in the same value-range as the currently
processed pixel as common neighbors (see Equation 2.9). Usually the 8-neighborhood is
taken into account. If the common neighbors exceed a certain amount, the pixel is marked
as valid and is considered for further processing. Otherwise the pixel is discarded and not
further processed (see Equation 2.8).

I(x, y) =

I(x, y) , if
∑

(i,j)∈8N
h(i, j) > T1,

invalid , otherwise.
(2.8)

h(i, j) =
{

1 , if |I(i, j)− I(x, y)| ≤ T2,

0 , otherwise.
(2.9)

34 CHAPTER 2. LITERATURE

Amplitude Thresholding

Since the raw sensor data can be used to obtain amplitude data in addition to the distance
data, the amplitude values can be used to make decisions about the quality of the distance
image. Distance pixels with low amplitude values are very likely to be erroneous and can
be discarded. An easy approach to achieve this is shown in Equation 2.10.

I(x, y) =
{
I(x, y) , if A(x, y) ≥ Atreshold,
invalid , otherwise.

(2.10)

Caused by the lens and the illumination unit, the reflected light is not equally distributed
throughout the pixel array. The amplitude value in the center of the pixel array is higher
than in outer regions for objects of the same reflectivity. To overcome this issue, an
amplitude reference image can be used to define the threshold value depending on each
pixel’s location.

Bilateral Filtering

Bilateral filtering determines the value of the processed pixel by calculating the weighted
average of the neighboring pixels. The filter achieves smoothing while preserving edges.
Other than regular Gaussian smoothing, the weights for bilateral filtering do not only
depend on the pixel-distance, but also on a second domain. The typical example for the
second domain is the intensity values. The bilateral filter is defined as:

I(x0) = 1
Wp

∑
x∈Ω

Gs(‖x0 − x‖)Gi(‖x0 − x‖)I(x) (2.11)

Where Wp is the sum of all weights to normalize the result. Ω is the window around the
currently processed pixel x0. Gs and Gi are the Gaussian kernels for the spatial and the
intensity domain.

For ToF data, the second domain can be the z-values, while the first domain is the pixel
position within the image. The filter is called a cross-bilateral filter if there is external
data used for the second domain. An example for a cross bilateral filter is the use of
the amplitude data for the second domain. In [Len11] a special bilateral filter for ToF
data is used that combines the amplitude and the distance data for the second domain.
This filter especially preserves edges seen in both, the amplitude and the distance image.
Bilateral filtering leads to good results and has already been successfully applied in ToF
pre-processing applications. Figure 2.13b shows an example for ToF image pre-processing
using a bilateral filter. The downside is that the required calculations are significantly
more computational expensive than for the previously mentioned methods.

CHAPTER 2. LITERATURE 35

Total Variation De-noising

In the total variation (TV) de-noising approach, the total variation of the data is reduced
while the output data has to be as similar as possible to the input data. After applying
this method the unwanted noise is removed while the relevant information, such as edges,
is kept.

To perform TV de-noising the following objective function has to be minimized [Len13]:

min
[(∑

x∈N

1
2(Iout(x)− Iin(x)2

)
+ λ ·R(Iout)

]
(2.12)

The first term assures that the output image is close to the input image, while the second
is a regularization term to minimize the total variation. Figure 2.13c shows an example
for ToF image pre-processing using TV de-noising. This de-noising approach leads to very
good results, but solving the optimization problem is expensive in terms of computation.

(a) Input. (b) Bilateral filter. (c) TV de-noising.

Figure 2.13: Bilateral filtering and TV de-noising [Len13].

2.3.2 Segmentation

After pre-processing, the next step is to segment the distance image into different regions.
A few relevant segmentation methods that are applicable to 3D ToF images are introduced
here.

Distance Thresholding

A very simple and time efficient method to achieve segmentation is to apply thresholding
to the image. With that approach it is for example possible to separate the foreground
and the background of the image. It is also possible to extract a custom Area of Interest
(AOI), by setting a threshold depending on the pixel-position.

36 CHAPTER 2. LITERATURE

Histogram-Based Segmentation

An efficient approach presented in [Wei14] is to achieve segmentation of a 3D image using
the histogram. Figure 2.14 shows the already pre-processed input image, the corresponding
histogram with the segmentation borders marked and the segmented output image with
different colors for each segment.

(a) Input image. (b) Histogram. (c) Segmented image.

Figure 2.14: Histogram-based segmentation [Wei14].

First the histogram of the pre-processed image has to be created, dividing all distance
values into histogram-bins with a certain range. In order to detect the local minima of
the histogram, the first-order derivative has to be determined. For a histogram h with N
bins, the first-order derivative dn has N − 1 bins and can be calculated as follows:

dn = hn − hn−1, for n = 2, 3, ..., N (2.13)

The local minima of the histogram are located at distances, where the first-order derivative
changes the sign from negative to positive (seen in Equation 2.14).

dn ≤ 0 and dn+1 > 0 (2.14)

Clustering

Clustering starts with multiple cluster centers and assigns every pixel to the nearest cluster
center. The distance can be based on the color, texture, location and intensity of the pixels.
After all pixels are assigned, the cluster centers are recomputed and the pixels are assigned
to new cluster centers once again. This is done until the cluster centers are changed to
less than a certain threshold. For 3D data, a good approach is to use the spatial distance
of each pixel from the 3D cluster center as distance function. In [Wei14], a mean shift
clustering is used to split the distance data into sub-regions.

Region Growing

Starting from multiple seed points, all close neighbors are added to the regions until there
is no more left. Close can mean a similar distance or intensity value. For ToF data, the
3D spatial distance is used to determine if a neighboring pixel is close. A very crucial

CHAPTER 2. LITERATURE 37

point for this method to succeed is the selection of the seed points. If frames are processed
continuously, center points of regions in the previous frame are a good choice. For other
regions the seed points can either be placed randomly or by using special algorithms. The
authors in [Dal14] use a special region growing implementation for 3D data in their work.
Region growing leads to good results, but also requires significantly more resources than
simpler approaches such as the histogram segmentation.

Component Labeling

Component labeling is usually done with binary images. Connected components are
merged, and the result is a picture with N non-connected components. This can be
done using the 4-neighborhood or the 8-neighborhood. Component labeling is not directly
applicable to 3D data, but a possible option is to divide the distance image into several
slices of certain distance ranges, and create binary images for each slice. Component la-
beling is a low effort algorithm with the potential to satisfy the demands of certain simple
applications.

2.3.3 Classification

A more advanced task is the classification of objects in images. In some applications it
is important to recognize certain objects, for example the detection pedestrians, other
cars or traffic signs. For more advanced use cases, already detected objects have to be
re-recognized in continuous frames (tracking) in order to assign them trajectories and
estimate their movement.

In other applications it is sufficient to detect whether there is an object within a certain
area or not. With ToF sensor data it is easy to detect if there is a reflective object in
front of the camera. The main goal of this thesis is object detection rather than object
recognition. Thus, methods to classify and recognize objects are only briefly introduced
here.

The first step to achieve object classification is usually to extract image feature points.
These features are aimed to be as invariant as possible to translation, rotation, etc., in
order to get robust feature descriptors such as Haar-like features, GiST features or Fourier
features. Finally, classificators like SVMs or neural networks can then be applied to
recognize certain objects. These classificators have to be trained with labeled training
data prior to operation. For the classification step it can be beneficial to use the data of a
2D camera instead of the distance data, since the spatial resolution of ToF cameras is low
in comparison [Nat08]. The fusion of the 3D and 2D images can improve the classification
quality even further. Since a robust classification task takes high computational effort, it
is currently not feasible for real-time operation on most embedded systems.

Chapter 3

Design

This chapter discusses the requirements of the system developed in this work, explains the
used components in detail and presents a processing algorithm, planned to be used with
the ToF system.

3.1 Requirements

The main goal of this work is to evaluate the feasibility of a ToF camera on a mobile plat-
form. Since the performance of the sub-modules was not known in prior, the extent of the
requirements strongly depends on the feasibility of the modules in the target environment.
A non-specific breakdown of the basic requirements is listed here:

• Platform:
The first requirement is to build up the platform and establish a communication
between the scaled vehicle’s control module and the ToF processing platform. The
ToF platform shall have the ability to communicate with the scaled vehicle.

• Distance data:
The distance shall be efficiently calculated on the automotive processing platform.
The ToF camera itself provides raw data only, which is not directly usable for further
processing.

• Object detection:
When objects arise, the car control module should be informed as fast as possible.
Thus, a fast algorithm to detect objects shall be implemented. The detection has to
be robust in order to minimize false positive and false negative results.

• Emergency braking:
If an object is detected and likely to cause a crash with the moving vehicle, the
brakes of the car shall be applied to avoid the crash or at least reduce the impact of
the collision.

• Debug-ability:
The distance data obtained by the ToF camera shall also be possible to be viewed

39

40 CHAPTER 3. DESIGN

on a computer in real-time. This makes it possible to analyze the obtained distance
data in detail and move the algorithm development process to a PC.

3.2 Existing Platform

The prototype built in the work presented in [Dru15] was used as a starting point for this
thesis. The contents of that work and the prototype are described in this section.

3.2.1 Time-of-Flight System

In the work published in [Dru15], the authors present a 3D ToF processing system for
mixed critical systems consisting of an automotive microcontroller and a ToF camera. The
AURIX (Automotive Realtime Integrated NeXt Generation Architecture) state-of-the-art
microcontroller from Infineon Technologies provides three independent cores and supports
safety-critical applications. The novel approach in this work is the implementation of the
ToF data processing on this comparably weak platform, in regards to processing power
and availability of high-speed memory.
Figure 3.1 shows the different processing blocks of this ToF application. The ToF camera
illuminates the scene and captures the sensor data. This raw ToF data is then transferred
to the automotive microcontroller where it is processed. One Central Processing Unit
(CPU) core of the AURIX calculates the distance data from the raw sensor data. The
other two cores are not used in the presented implementation, but reserved for future
applications (e.g., pedestrian recognition). The implementation on the microcontroller is
capable of processing the raw sensor data with frame rates up to 80 FPS.

Figure 3.1: Functional blocks of the existing platform [Dru15].

Hardware

The prototype presented consists of a ToF camera evaluation board, the AURIX evaluation
board and an adapter board to establish a connection between the two components. The
adapter board connects the two evaluation kits via a special interface. A picture of the
built-up platform is shown in Figure 3.2. The system is supplied by two Direct Current
(DC) power adapters, one for each evaluation kit.

CHAPTER 3. DESIGN 41

Figure 3.2: Photo of the existing platform. Obtained from [Dru15] with changes.

Software

The starting point of this work is a base implementation on the AURIX microcontroller,
receiving raw sensor data (four phase-images) via the Camera Interface (CIF). The ToF
camera is configured and started via the microcontroller. One core calculates the distance
image (including global offset compensation) and a fast approximation of the amplitude
image. Another CPU sends a stream containing the distance image and the amplitude
image to a PC application for visualization.

3.2.2 Scaled Vehicle

The Virtual Vehicle research center in Graz has a Radio-Controlled (RC) 1/5 scaled vehicle
available, which is used in this work. The platform is a modified version of a standard
RC car, used as a simplified model of a real car. The module to control the engine
and the actuators (brake servos, steering servos) are replaced by a custom control board.
This board contains a microcontroller with a Controller Area Network (CAN) interface to
communicate with other modules. A rear-view picture of the scaled vehicle can be seen
in Figure 3.3.

3.3 Mobile Sensing Platform

This section describes the used hardware components in detail. The main components
are the ToF image sensor evaluation kit, the AURIX evaluation board and the RC vehi-
cle.

42 CHAPTER 3. DESIGN

Figure 3.3: Scaled vehicle.

3.3.1 Overall System

Figure 3.4 illustrates the block diagram of the used modules and how they communicate
with each other. The AURIX module configures and starts the ToF module and then
continuously receives raw image data. The vehicle’s control module sends the car state to
the AURIX and can receive control signals to influence the current car state. Additionally,
it should be possible to transmit internal processing data to a PC for visualization and
debugging purposes.

Figure 3.4: Block diagram of the main components.

3.3.2 ToF Module

As a platform to capture ToF raw data, the IRS10x0C evaluation kit from Infineon Tech-
nologies is used (see Figure 3.5). This evaluation kit comes with the IRS1020C, a 3D
image sensor based on the ToF principle. The evaluation kit contains multiple distinct

CHAPTER 3. DESIGN 43

sub-modules mounted on the base-board. Those sub-modules are the image sensor board,
and the illumination board. Those boards can be exchanged with other compatible boards
using the same interface.

Figure 3.5: IRS10x0C evaluation kit.

The base-board offers a variety of debugging, testing and extension possibilities. It pro-
vides a USB interface, a Camera Serial Interface-2 (CSI-2) and multiple pin headers to
transfer data to external platforms. The electrical current consumption of the system can
be measured using a bridged pin-header. Many internal signals of the image sensor chip
can be made available to the outside via one of the several debug interfaces. The General-
Purpose Input/Output (GPIO) pins of the image sensor, mapped to debug pins on the
evaluation kit can be configured to be assigned to various internal signals used during
operation. There is also an interface for a Field-Programmable Gate Array (FPGA) on
the board, which offers to directly plug in a Spartan-6 FPGA board to accomplish fast
data processing. The kit has to be supplied by a 5 V DC source. While the illumination
unit is active, the whole kit can temporarily consume electrical current peaks up to 2 A
(depending on the use case). The used illumination board is equipped with two infrared
LEDs with a centroid wavelength of 850 nm and a power consumption of Ptot = 3.4 W.
With the combination of this illumination unit and the used image sensor, a minimum
effective working range of 4 m can be expected.

3D Image Sensor

The IRS1020C, a 3D image sensor for consumer applications from Infineon Technologies
AG and PMD Technologies AG is used in this work. This sensor uses the ToF principle
to capture raw data, which can later be used to calculate the distance image. As already
addressed in Section 2.2.4, the image chip offers a resolution of 352 x 288 pixels. But due
to activated 2 x 2 binning, the mean of four pixel values are combined to one value directly
on the imaging chip. The binning and the selection of a centered region of interest (ROI)
decrease the spatial resolution to 160 x 120 pixels, but increase the SNR and the read-out
speed.

44 CHAPTER 3. DESIGN

Before the camera is started, the modulation frequency, the illumination time, the frame
delay and the phase settings have to be set. In this work four phase measurements are
performed with a phase setting of 0°, 90°, 180° and 270°.

Parallel Interface

The Parallel Interface (PIF) of the ToF image sensor consists of 12 data bits, a pixel
clock (PIXCLK), a horizontal synchronization signal (HSYNC) and vertical synchroniza-
tion signal (VSYNC). The PIF provides the data-stream of the 12 bit raw sensor phase-
images.
The 26-pin PIF header and the FPGA connector of the ToF evaluation board contain all
PIF signals. Thus, a connection via the FPGA connector or the PIF header can be used
to receive the raw data from the sensor.
Additionally to the PIF, a CSI-2 interface is available on the ToF evaluation kit which
can be used to receive data. It offers a faster read-out time and a lower vulnerability to
electromagnetic interference at the cost of a higher complexity. But since the AURIX does
not support CSI-2, the PIF is used to transfer sensor data.

Camera Configuration Interface

The ToF camera configuration and measurement setup is done via the Inter-Integrated
Circuit (I2C) interface of the sensor chip. The I2C camera configuration interface is also
included in both, the PIF header and the FPGA connector of the ToF evaluation kit.

Illumination Time

Since the system runs in an automotive environment, the illumination time has to be set
low enough in order to avoid serious impact of effects like motion blur, motion artifacts
and overexposure. But a low illumination time causes the SNR to decrease. To obtain
the best performance, the illumination time shall be selected as high as possible, but low
enough to not cause a significant impact on the negative effects of a high illumination
time.
Different illumination times were evaluated in the targeted environment in order to deter-
mine a suitable value (see Section 5.2.1).

Modulation Frequency

The modulation frequency of the ToF camera determines the unambiguous range of the
system. In this work, a time-consuming phase unwrapping algorithm is not implemented
to save computation power for other tasks. Thus, the maximum distance is given by
Equation 2.4 and wrong pixel values resulting from reflections beyond that distance shall
be discarded. The Table 3.1 shows the unambiguous distance for different modulation
frequencies in a relevant scope.

CHAPTER 3. DESIGN 45

Lowering the modulation frequency increases the maximum distance of the system, but
decreases the accuracy. With the given imaging sensor, the modulation frequency can be
chosen within a range of 2.0833 MHz up to 100 MHz. The maximum unambiguous range
has to be significantly higher than the working range. This avoids the wrong detection
of objects further away than the unambiguous range and improves the detection of the
phase-wrapped pixels.

Thus, different modulation frequencies were evaluated in order to find a good trade-off
between accuracy and range for the given use case in this thesis (see Section 5.2.2).

Modulation Frequency Unambiguous Range
(MHz) (m)
30 5.0
20 7.5
17 8.8
12 12.5
10 15.0

Table 3.1: Unambiguous range for different modulation fre-
quencies.

Lens

The ToF evaluation kit uses a fixed focus lens to focus the received light onto the image
sensor. The field of view of the camera has to be considered for further examination.
To calculate the 3D coordinates of a point, every camera pixel is assigned with a certain
angle. For exact calculations, an angle for every pixel has to be determined. This can be
done during calibration.

A less accurate approach to determine the angle of every pixel is to use an approximation.
The horizontal field of view of the lens is 80°, while the vertical is 60°. For an image
resolution of 160 x 120 pixels, a horizontal and vertical angle of 0.5° per pixel can be
assumed. Although effects like distortion or aberration are not considered, this approach
still results in workable data and can be implemented very efficiently.

3.3.3 AURIX Microcontroller

The TC299TF, a 32-bit microcontroller in the absolute high-end segment of the AURIX
family from Infineon Technologies, is used in this work. This microcontroller uses three
independent TriCore CPUs and is targeted to be used in automotive environments. The
device operates at a frequency of 300 MHz and provides various amounts of different mem-
ories and built-in interfaces. Applications of the AURIX microcontroller are powertrain
applications and safety applications in the automotive industry. Figure 3.6 shows the
block diagram of the AURIX microcontroller.

46 CHAPTER 3. DESIGN

TriCore Architecture

The TriCore architecture is based on the combination of a Reduced Instruction Set Com-
puting (RISC) core, a microcontroller core and a Digital Signal Processing (DSP) core.
The AURIX is the latest generation based on the TriCore architecture and offers three Tri-
Core CPUs. The TriCore platform offers real-time capabilities and state-of-the-art safety
features.

9DI
DAI

DA=
7A=

\cR_YNf 7NaN!SYN`U

5FCA

XRf!SYN`U

D_\T_'

SYN`U

D_\T_'

SYN`U

DAI

D_\T_'

SYN`U

D_\T_'

SYN`U

99H!8[TV[R

A&>D8;(6=9

8
aU

R
_[

Ra

;HA

8JF

.!J

`V[TYR!`b]]Yf

9
YR

eF
N
f

A
b
Ya

V6
4
B

$

A
G
6

e

4
G
6

@
=B

e

E
G
D

=e

G
8
B

H

D
G
=.

"G
#

=+
6

96
8

<
G
G
@

D
@@

!N
[
Q

D
@@

!8
F

4
M

D_a`

<GA

7G&476e

476e

6
6
I

/
e

;
D
H
*
+
e

G
H
A

G
6

I

5
6
I

G7A45_VQTR C67G 85I

F4A

@AI

GF=!P_\``!ON_

G
f`

aR
Z

!]
R
_V

]
U
R
_N

Y!O
b
`

Gf`aRZ!]R_V]UR_NY!Ob`

8OG.LOCW

'&)5

9DI

@\PX`aR]!P_R

DA=
7A=

\cR_YNf
8OG.LOCW

'&)5

9DI

DA=

7A=

`aN[QOf!

\cR_YNf
8OG.LOCW

'&)5

=C
A

Figure 3.6: Block diagram of the AURIX [Inf16].

TriBoard TriCore Evaluation Board

The TriBoard TC2X9 provides access to many interfaces and functionalities of the AURIX
microcontroller. Applications for the AURIX can be downloaded and programmed via the
micro USB interface available on the board. To communicate with other systems, the
board is for example, equipped with an RJ45 connector for Ethernet, and two CAN head-
ers. Additionally, an on-board voltage regulator is used to generate the different supply
voltages required for the microcontroller and the on-board peripherals. The evaluation
board’s supply voltage can vary from 5.5 V to 50 V. A picture of the evaluation board is
shown in Figure 3.7.

CHAPTER 3. DESIGN 47

Figure 3.7: TriBoard TC2X9, TriCore evaluation board.

Memory

The available memory on the AURIX can be split up into data memory and program mem-
ory. Table 3.2 and Table 3.3 show the different available memories and their corresponding
sizes.

• Data memory:
The data memory is used for data storage during runtime. It can be further divided
into the following different physical memories:

– Data Scratch-Pad RAM (DSPR):
Data read and write access to the local Data Scratch-Pad Random-Access Mem-
ory (RAM) of every CPU can be performed with an access latency of zero clock
cycles. Thus, the DSPR is the best choice to achieve fast data access and should
especially be used for frequently accessed data.

– Local Memory Unit (LMU) RAM:
There are 32 KByte of RAM available, provided by the LMU.

– Extended memory (EMEM):
Additionally, the EMEM can be used to save data. It is split up into the Appli-
cation Data Memory (ADM) and the Extended Application Memory (XAM).
The ADM is connected to the CIF module, which can directly write to the
memory in hardware. For power saving reasons, the EMEM is in non-active
mode after the power-on reset and has to be unlocked prior to use.

– Data Flash (DFlash):
The DFlash is also directly available on the chip, which can be used to perma-
nently save data.

• Program memory:
The program memory is used for program code storage and thus the instructions are
fetched from it.

48 CHAPTER 3. DESIGN

– Program Scratch-Pad RAM (PSPR):
The PSPR can be used to store executable program code. Each CPU has a
local PSPR, providing fast instruction fetching. Locating critical code in the
local PSPR can significantly increase the performance of an application.

– Program Flash (PFlash):
The PFlash is used per default to save the program code and constant data.

The DSPR and the PSPR of the TriCore CPUs can be addressed locally and globally.
The local and global addresses are mapped to different regions in the memory map. Every
CPU’s scratch-pad memory is mapped to a different global address range and can be
accessed separately. But the memories are also mapped to a local address range, which
is the same for each CPU. Accesses to the local address range of the memory map are
forwarded to the global address range of the active CPU. This is especially useful for the
storage of data and code used on every CPU. Exclusive data and code should be stored
only in the DSPR/PSPR of the respective CPU (global addressing).

Name Size
(KByte)

DSPR CPU 0 120
DSPR CPU 1 240
DSPR CPU 2 240
LMU RAM 32
EMEM 2048
DFlash 768

Table 3.2: Data memories.

Name Size
(KByte)

PSPR CPU 0 32
PSPR CPU 1 32
PSPR CPU 2 32

PFlash 8192

Table 3.3: Program memories.

Camera Interface

The AURIX provides a CIF, which is capable of transferring image data from a camera
to the EMEM of the AURIX. The CIF implements 16 parallel data lines. A vertical
synchronization signal (VSYNC), a horizontal synchronization signal (HSYNC) and a
pixel clock (PIXCLK) are used to control the data flow. The CIF of the AURIX is used

CHAPTER 3. DESIGN 49

to connect the microcontroller with the ToF camera board, in order to receive sensor
data.

Ethernet

The AURIX implements an Ethernet interface that is used with the RJ45 connector and
a Gigabit Ethernet transceiver Integrated Circuit (IC) on the TriBoard. For Transmis-
sion Control Protocol/Internet Protocol (TCP/IP) functionality, the Lightweight IP Stack
(lwIP), a small open source TCP/IP stack for embedded systems [Ada11] was used. The
Ethernet module on the AURIX can be configured to run in 10 Mbit or 100 Mbit mode.
The connection is used for debugging and visualization during the development process,
and is not intended to be used in the final system. The lwIP stack can be used to initiate
a network socket and send debug data to a PC.

Real-Time Operating System

The FreeRTOS [Rea11] is an open-source Real-Time Operating System (RTOS) for em-
bedded systems and is used with the AURIX microcontroller. Since it is a very small and
simple operating system, it offers only very basic functionality, and introduces very little
overhead. The operating system provides real-time scheduling, inter-task communication
and some synchronization functionality. A program can be written as a set of different
independent tasks with given priorities. The scheduler ensures that the task with the
highest priority always gets to work. If multiple tasks have the same priority, they share
computation time in time slices. Synchronization between the tasks can be performed
using semaphores and mutexes.
An official FreeRTOS port for the TC1782 microcontroller of the Infineon TriCore family
exists and is freely available. In this work a slightly adapted version of this port is used
with the AURIX TC299 microcontroller. The FreeRTOS scheduler runs concurrently on
each of the three TriCores of the AURIX. The use of the FreeRTOS is very beneficial in
the scope of this work since the provided functionality simplifies the developing process of
real-time applications.

3.3.4 Scaled Vehicle

The Virtual Vehicle Research Center modified a 1/5 scaled gasoline-powered vehicle to be
used with an electrical engine. The RC car can be driven using a remote control. The
maximum speed vmax of the scaled vehicle is about 20 km

h . Additionally, the car has a mi-
crocontroller on board that is in charge of controlling the car’s engine and actuators.

Power Supply

The scaled vehicle has two power supplies. A 7.2 V, 2300 mAh Nickel–Metal Hydride
(NiMH) battery for the electrical engine and another 7.2 V, 2000 mAh NiMH battery for
the electronic circuits. The separation into two independent supply circuits is required,

50 CHAPTER 3. DESIGN

because the electronic components need a very stable supply voltage. The electronic circuit
containing the engine cannot provide a very stable voltage level, since the voltage drops
in high load situations of the engine.

Scaled Vehicle Microcontroller

The scaled vehicle comes with a low cost, low power Atmel 8-bit AVR RISC based mi-
crocontroller with an integrated CAN controller [Atm08]. The controller reads the output
signals from the RF receiver module, which are originally directly sent to the steering/brak-
ing servos of the car and to the motor-control block. The microcontroller manipulates the
signals and forwards them to the actuators. Depending on the current mode, motor control
signals are generated and sent to the custom designed engine control board.
The microcontroller permanently monitors significant values of the vehicle; for example
the battery voltage, the motor voltage or the rotation speed. Additionally, it measures
the temperatures at multiple points on the scaled vehicle. Figure 3.8 shows a picture of
the vehicle’s microcontroller mounted on top of the engine control board.

Figure 3.8: Vehicle microcontroller.

Remote Control

The scaled vehicle can be controlled with a radio frequency (RF) remote, working at a
frequency of 40 MHz. The remote has three different channels. One for accelerate/brake,
one for steering left/right and one for forward/backward mode. Figure 3.9 shows a picture
of the remote control.

Speed Sensor

The scaled vehicle is equipped with a speed sensor. It is a photoelectric sensor that detects
the holes in a metal plate, assembled to the engine shaft. The rate of detecting holes is

CHAPTER 3. DESIGN 51

Figure 3.9: RF remote for the scaled vehicle.

proportional to the rotation speed of the wheels, and thus also to the current speed of
the car. This assumption is of course only true as long as the tires do not slip. Since the
holes in the sensor are evenly distributed, it is not possible to detect whether the car goes
forward or backward. Figure 3.10 shows a picture of the speed sensor.

Figure 3.10: Speed sensor of the scaled vehicle.

Camera Mount

The camera is mounted on the front of the scaled vehicle pointing in forward direction,
since the system’s aim is to be used for pre-crash detection. Other than that, the position
shall be comparable to the mount on a fully sized car, what would most likely be in the
windshield or somewhere else in the front.

52 CHAPTER 3. DESIGN

CAN Interface

The scaled vehicle’s microcontroller implements a CAN node and is able to send and re-
ceive CAN messages. The interface is used to send the current car state to other bus
participants. The car state includes a number of values available on the vehicle’s micro-
controller. For example the motor current, the remote control values, the battery voltage,
different temperatures and the rotation speed. It is also possible to control the vehicle via
the CAN bus instead of the remote control.

The automotive microcontroller of the ToF processing system is connected to the vehicle’s
microcontroller via a CAN bus. The purpose of this connection is that the ToF processing
system is able to receive the car’s current state and to send control commands.

3.4 Emergency Braking

This section first explains the components of the stopping distance, and then focuses on
the processing time requirements for the ToF processing system in order to implement
emergency braking.

3.4.1 Stopping Distance

The total stopping distance sstop of a car is the sum of the reaction distance sreact, and
the braking distance sbrake. This holds true for a human driven car, as well as for an
autonomously driven car.

sstop = sreact + sbrake (3.1)

Reaction Distance

The reaction distance is the distance, the car moves from the time an obstacle appears
until the brake is applied. For a human driver, this reaction time depends on a variety of
factors, like fitness, age, alertness and fatigue. In regular circumstances, the reaction time
of a human is less than 1.5 s. The reaction distance sreact depends on the currently driven
speed v and the reaction time Treact. The calculation of the reaction distance is shown in
Equation 3.2.

sreact = v · Treact (3.2)

Braking Distance

The braking distance s of a car can be calculated using the current velocity v, the friction
coefficient µ and the gravitational acceleration g = 9.81 m

s2 as shown in Equation 3.3.

s = v2

2µg (3.3)

CHAPTER 3. DESIGN 53

The Table 3.4 shows the braking distance for different speeds of a car when using a typical
friction coefficient for a car tire and dry road (µ = 0.7). As seen in the table, the braking
distance is proportional to the square of the speed. When braking from a high speed
(> 75 km

h), the braking distance will most probably be the dominating component of the
stopping distance. This non-linear relationship has to be kept in mind when transitioning
the results from the scaled vehicle to a fully sized vehicle.

Velocity Velocity Braking distance
(km

h) (m
s) (m)

10 2.8 0.56
20 5.6 2.2
30 8.3 5.1
50 13.9 14.0

Table 3.4: Braking distance for different speeds on a
dry road.

3.4.2 Automated Braking

According to Section 3.3.4, the maximum speed vmax of the scaled vehicle is assumed to
be 20 km

h . The maximum braking distance sbrake,max for the scaled vehicle on a dry road
(µ = 0.7) can be calculated using Equation 3.3 and results to:

sbrake,max = v2
max

2µg = 2.25 m (3.4)

It can be assumed that all objects are robustly detected within a distance of 4 m from
the lens (according to Section 3.3.2). The scaled vehicle should be able to stop before an
obstacle on a dry road, this means the range sstop,range for stopping the car is:

sstop,range = 4 m (3.5)

For the ToF processing platform, the reaction time Treact depends on a sum of times and
its composition is stated in Equation 3.6. The object capturing time Tobj,capt is the time
it takes from a newly appearing object until it is captured and available for processing.
Tproc is the time to process an image and decide whether to brake or not. Tbrake,delay is
the time from sending the brake signal until the brake gets activated physically.

Treact = Tobj,capt + Tproc + Tbrake,delay (3.6)

This time is only valid, if the system performs the image processing and decision-making for
every image independently. If multiple sequential frames are required to draw a decision,
the reaction time increases.

54 CHAPTER 3. DESIGN

With the use of Equation 3.3, 3.5 and 3.6, the maximum reaction time Treact,max can
be calculated as stated in Equation 3.7. Treact,max describes the maximum time delay
for the used platform to activate the brake after an object appears, in order to avoid a
crash.

Treact,max = sstop,range − sbrake,max
vmax

= 0.315 s (3.7)

This means the ToF processing system has to activate the brake within a time span of
0.315 s in order to successfully avoid a collision.

Required Frame Rate

In the worst case, an obstacle occurs directly after the ToF sensor data (four phase-images)
is captured. Thus, it takes the whole frame delay time TFPS until the frame containing
the obstacle is even captured. Afterwards, the three CPUs sequentially perform their
processing part until the signal to brake the car can finally be sent.
Assuming ideal pipelining, the processing time on each of the three CPUs Tproc,CPU is
equal the frame delay time TFPS . The time from sending the brake signal until the brake
gets physically activated Tbrake,delay can be roughly estimated with 100 ms.
Considering all this assumptions, an estimation of the worst case reaction time Treact,wc
can be calculated with:

Treact,wc = TFPS + 3 · Tproc,CPU + Tbrake,delay

= 4 · TFPS + 0.1 s
(3.8)

The worst case reaction time Treact,wc has to be smaller than the maximum allowed reaction
time Treact,max from Equation 3.7:

Treact,wc ≤ Treact,max (3.9)

With the use of Equation 3.8 and Equation 3.9 and Treact,max from Equation 3.7, the
frame delay time TFPS has to meet the following criteria:

TFPS ≤
Treact,max − 0.1 s

4 = 53.8 ms (3.10)

If the system should still provide its functionality in the case that the object detection
fails once in a while, another FPS delay TFPS has to be added, resulting in the following
criteria:

TFPS ≤
Treact,max − 0.1 s

5 = 43 ms

To meet the requirements, the system’s frame delay time has to be lower than 43 ms,
corresponding in a minimum frame rate of about 23 FPS. To allow even more margin for
error, a frame rate of at least 25 FPS should be used with the system. Thus, the maximum
processing time on each CPU must not exceed 40 ms in order to meet the deadlines.

CHAPTER 3. DESIGN 55

3.5 ToF Processing Algorithm

This section describes the processing algorithm to detect and react to possible obstacles
in front of the car. Figure 3.11 shows the flow chart of the algorithm, with the input data
and output data of each stage. Each step of the algorithm is described in detail in this
section.

Figure 3.11: Data flow of the processing algorithm.

3.5.1 Distance Image Calculation

The first step of the algorithm is to calculate the distance image from the raw image data of
the sensor. The amplitude image is not entirely calculated to save resources, since it is only
used for thresholding. Figure 3.12 shows the data flow of the distance image calculation.
The single steps performed during this task are described in more detail.

Figure 3.12: Distance image calculation.

Distance Image

After the four phase-images from the sensor are available, the arctangent function has
to be calculated for each pixel in order to determine the phase difference ∆ϕ (see Equa-

56 CHAPTER 3. DESIGN

tion 2.2). The distance can be calculated using Equation 2.3. Since the only variable in
that equation is ∆ϕ, the phase to distance conversion is a simple multiplication with the
constant RangeFactor .

d(x, y) = ∆ϕ · RangeFactor (3.11)

The RangeFactor can be calculated with the speed of light c0 and the modulation frequency
fmod:

RangeFactor = 1
2 ·

c0
2π · fmod

(3.12)

Global Offset Compensation

The global offset is an additive constant for all pixels, and is determined during calibration.
It can be distributed all over the unambiguous range and depends on the modulation
frequency. Thus, the compensation of this offset is a mandatory step within the distance
image calculation.

To achieve global offset compensation, the global offset dglobal has to be subtracted from
every distance value din(x, y) of the image. The distance values after the global offset
compensation dgo(x, y) are calculated with:

dgo(x, y) = din(x, y)− dglobal (3.13)

After the global offset compensation there might be values outside the unambiguous range
Dunamb. Thus, an unambiguous range shift has to be applied to obtain the correct distance
values dout(x, y) within the unambiguous range.

dout(x, y) = dgo(x, y)−
⌊
dgo(x, y)
Dunamb

⌋
·Dunamb (3.14)

Figure 3.13 shows the distance values before the global offset compensation, after the
global offset compensation and after the unambiguous range shift. In the illustration
an unambiguous range of 5 m (fmod = 30 MHz) and a global offset of dglobal = −1 m is
given.

For example: a real distance value of 0.5 m (in green segment) will result in a distance value
of 4.5 m after the uncompensated distance image calculation. The global offset compen-
sation adds 1 m to every distance value. Accordingly, the distance after the compensation
is 5.5 m. This value is outside the unambiguous range. In the next step, the unambiguous
range shift is performed to map all values back into that range. After the unambiguous
range shift, the distance value is 0.5 m, equal to the real distance.

CHAPTER 3. DESIGN 57

0m 1m 5m 6m

RealDdistance

2m 3m 4m

BeforeDcomp.

AfterDcomp.

UnambiguousDrangeDshift

DistanceD(m)

Figure 3.13: Global offset compensation and unambiguous range shift.

3.5.2 Pre-Processing

Several pre-processing steps are performed to improve the quality of the distance image.
During this procedure the image is smoothed, the noise is reduced and erroneous pixels
are discarded in order to improve the expressiveness of the distance image for further
processing. Invalid pixels are marked with a certain out-of-range value to signalize the
further processing steps to not consider those pixels. The data flow of the pre-processing
steps can be seen in Figure 3.14. All steps performed during pre-processing are introduced
here.

Figure 3.14: Pre-processing.

Camera Angle Conversion

Up to this point, the distance image contains the distance values from the reflected object
to the camera sensor for every pixel. This causes points of a plain surface parallel to
the image sensor to result in different distances. To obtain the distance values from a
plain instead of a point, the distance values have to be converted. Figure 3.15 shows
the difference of the distance data before and after the conversion. The camera angle
conversion is performed because it improves the performance of the object detection.

An approximation for the converted distance value dconv(x, y) can be calculated with the
use of the horizontal pixel angle β and the vertical pixel angle α, as shown in Equation 3.15.
The Figure 3.16 shows the camera angle conversion and the included horizontal and vertical
angles.

dconv(x, y) = d(x, y) · cos(α) · cos(β) (3.15)

58 CHAPTER 3. DESIGN

The calculation of the vertical pixel angle α and horizontal pixel angle β is stated in
Equation 3.16. The coordinates (x, y) define the horizontal and vertical pixel position of
the 160 x 120 pixel image. As already mentioned in Section 3.3.2, an approximated angle
of 0.5◦ is assumed for every pixel.

α = (x− 60) · 0.5◦

β = (y − 80) · 0.5◦
(3.16)

d(x,y)

(a) Before.

dconv(x,y)

(b) After.

Figure 3.15: Camera angle conversion.

α

d(x,y)

β

dconv(x,y)

Figure 3.16: Pixel angle.

Amplitude Thresholding 1

The amplitude value of a certain pixel indicates the quality of the measurement. The first
pre-processing step is to discard pixels with low amplitude since they are very likely to be
erroneous. An easy method in achieving this has been introduced in Equation 2.10.

Since the amplitude is not uniquely distributed over the whole image, a reference image
is used as a base for the thresholding. Figure 3.17 shows the amplitude reference image of
a white surface at a distance of 1 m.

The idea is to discard pixels with amplitude values A(x, y) smaller than the amplitude
reference image, scaled with a constant scaling factor cth1. Pixels meeting the following
criteria are discarded:

A(x, y) < Aref · cth1 (3.17)

CHAPTER 3. DESIGN 59

Frame Columns
50 100 150

F
ra

m
e

R
ow

s

20

40

60

80

100

A
m

pl
itu

de
 (

1)

0

20

40

60

80

100

120

140

Figure 3.17: Amplitude reference image.

Amplitude Thresholding 2

A second thresholding method is applied in order to avoid phase-wrapping. This method
compares the threshold value with the amplitude value of the pixel, weighted with its
corresponding squared distance. This thresholding method takes into account that objects
at a higher distance cause lower amplitudes in the detecting pixel. Since the amplitude
decreases with the square of the distance (see Equation 2.5), it is weighted with its squared
distance value in order to compensate this effect. If an object outside the unambiguous
range is detected, phase-wrapping occurs and the detected distance value is too small.
Thus, pixels where phase-wrapping occurred are likely to be identified and discarded in
this step.

The amplitude values A(x, y) are weighted with the squared distance d(x, y)2 and com-
pared with the amplitude reference image, scaled with a constant scaling factor cth2. Pixels
meeting the following criteria are discarded:

A(x, y) · d(x, y)2 < Aref · cth2 (3.18)

Common Neighborhood Thresholding

CN thresholding is applied to further reduce the noise of the distance image. This method
takes the output of the camera angle conversion as input, since it has to be applied to an
image with all pixels present.

After the application of CN thresholding and amplitude thresholding, both outputs are
combined. A pixel marked as invalid in one of the two output images is marked as invalid
in the combined output as well.

60 CHAPTER 3. DESIGN

Median Filter

Afterwards a median filter is applied to the distance values, to obtain a smoother version
of the image. The median filter requires sorting the neighborhood values of the considered
input pixel.

3.5.3 Object Detection

At this step all remaining pixels of the pre-processed distance image are assumed to be
trustworthy, so the actual object detection can be performed. Multiple steps are executed
to segment the image and detect whether there are obstacles in front of the ToF camera
or not. Figure 3.18 shows the data flow of the object detection.

Figure 3.18: Object detection.

Area of Interest

Not every pixel in the field of view of the camera has to be considered for object detec-
tion. Objects too far away, or not in the direct impact area of the car can be discarded.
Examples for areas outside the AOI are the ground plane, bridges, walls or trees next to
the road.

First the range of interest is considered. Distance values further away than a certain
maximum distance are likely to be erroneous and are discarded. Also pixels with a very
low distance value (up to a few centimeters) are very likely to be noise and are discarded
as well.

d(x, y) =
{
d(x, y) , if dmin < d(x, y) < dmax,

invalid , otherwise.
(3.19)

Afterwards the perspective is considered. The vehicle should only be stopped if there is
an object in front of it. So pixels outside the impact area of the car are discarded and not
considered in future steps. Figure 3.19 shows a vehicle’s AOI, if only the objects in the
impact area of a straight driving car are to be considered. The pixels from objects in the
green zones are discarded.

Since every pixel of the camera is assigned with an angle, it can be calculated if a pixel
is within the AOI or not. The horizontal field of view (80°) and the vertical field of view
(60°) have to be considered.

CHAPTER 3. DESIGN 61

(a) Top view. (b) Side view.

Figure 3.19: AOI of the scaled vehicle.

Equation 3.20 shows the mathematical statements to determine if a detected distance value
is within the AOI or not. The horizontal distance Dhorizontal and the vertical distance
Dvertical are constants, based on the width and height of the vehicle. The Figure 3.20
depicts the relationship between the distance of a reflected object from the camera plane
dconv(x, y) (after the camera angle conversion) and the horizontal or vertical deviation
from the center caused by the angle (α and β) of the corresponding pixel.

d(x, y) =
{
d(x, y) , if d(x, y) · tan(α) ≤ Dvertical

2 ,

invalid , otherwise.

d(x, y) =
{
d(x, y) , if d(x, y) · tan(β) ≤ Dhorizontal

2 ,

invalid , otherwise.

(3.20)

α

dmeas(x,y)

dconv(x,y)·tan(α)

dconv(x,y)

Figure 3.20: AOI calculation.

Histogram Segmentation

At this point, a histogram segmentation based on the approach presented in Section 2.3.2
is performed. First, a distance histogram is created with the remaining pixels in the
AOI. The histogram is smoothened using averaging over multiple bins. Afterwards, the
first derivative of the histogram is determined, by subtracting two consecutive histogram
values. The zero-crossing of the first derivative is used to obtain the local minima of the
histogram, in order to get the segmentation of objects located at different distances.

62 CHAPTER 3. DESIGN

All local minima of the histogram are evaluated for their feasibility to form a segmentation
border. If the histogram values within two segmentation borders meet special criteria, the
corresponding pixels of those histogram intervals are extracted to an object.

This approach leads to under segmentation. If two objects are located at the same distance,
they are most likely recognized as one. Nevertheless, the histogram segmentation is used
because it is very efficient.

Each object obtained in the histogram segmentation is assigned an x, y and z coordinate
and an area. The coordinates are the mean values of all points of the object. The area
is determined by the number of pixels assigned to the object. Additionally, the minimum
and maximum coordinates of the objects are determined in order to identify the objects
limits. Output of the histogram segmentation is an object list containing the mentioned
properties, describing the form and the location of every object.

3.5.4 Decision-Making

The final step in the algorithm is to decide if it is required to take over the control of the
scaled vehicle. The decision-making algorithm has two inputs, the car state and the object
list. The state of the car is periodically sent to the ToF processing system and includes
the rotation speed and remote control values. The object list is available each time the
processing of a new ToF image is completed.

When new input data is available, the decision-making algorithm is triggered and eval-
uates the situation. If all of the following requirements are met, control take-over is
initiated:

• At least one of the detected objects exceeds a specified area, depending on the
distance.

• The braking distance at the current speed exceeds a certain fraction of the distance
to the closest relevant object in the impact area.

• The car’s driving direction is forward and the speed is higher than a certain minimum
speed.

The algorithm itself is built in the structure of a state machine (see Figure 3.21). In the
“User Control” state, it is evaluated whether one of the detected objects is likely to cause
a collision if the vehicle continues driving at the current speed. If there is a dangerous
situation detected, the state machine translates to the “Stop via CAN” state and the
vehicle’s brakes are applied. At the time the car stands still, the state translates back to
the “User Control” state and can be controlled via the remote again.

If no new data (either image data or a new car state) has been received within a certain
period of time, the system is supposed to be in a non-functional state. Then the state
translates to the “System Not Working” state and the vehicle is stopped by sending a
brake command via a CAN message.

CHAPTER 3. DESIGN 63

Figure 3.21: State machine for decision-making.

3.6 Debug System

One important requirement of the system is debug-ability. With the ability to access the
internal data of the system, it is possible to rate the quality of the sensor data and the
implemented algorithm. Additionally, it is possible to visualize processed data.

Included Data

The following data shall be available for debugging:
• Debug data:

Every CPU can write debug data to a debug string available on every CPU.
• Current car state:

The current state of the car is transferred to the AURIX via CAN. This data is
included into the debug string of each CPU.

• Histogram:
All or a part of the distance image’s histogram. This data is included into the debug
string of each CPU.

• Metadata:
The metadata includes some settings of the camera and some other constants. This
is useful to interpret saved data for later use.

• Phase-images:
The four raw phase-images from the sensor are transferred. The mode is used to
obtain the raw sensor data externally. But since the amount of transferred data is
high, it cannot be used at high frame rates.

64 CHAPTER 3. DESIGN

• Real and imaginary image:
In that mode the real and imaginary image are calculated from the four phase-
images. This compresses the transferred images to two, without losing information
and makes it applicable for higher frame rates.

• Distance image:
Only the distance image is sent.

• No data:
In this mode, no data is sent, to remove the overhead and to achieve a higher frame
rate. This comes with the loss of observability of the system.

Since the transfer of that data introduces a significant processing overhead, the structure
of the debug data should be able to be customized. At some stages of the development
process it might be convenient to have most of the debug data available, at the cost of a
higher processing time. At other phases a fast system with as little delay as possible will
be required.

PC Workstation

With the received debug data on a workstation, a number of applications are possi-
ble:

• Debugging:
An obvious application is to use the permanently transferred data for debugging.
During the processing, each CPU can write specific intermediate data to a debug
string, which is sent to the workstation along with every frame. Images after certain
processing steps can be transferred to the workstation and visually verified.

• Visualization:
Another application is to use the workstation as platform to display the distance
data (e.g., while the car is driving). If the car moves around, a mobile device has to
be used that can be placed on the car.

• Save sequences:
While the car moves, a mobile workstation can record the received data sequences
from the system. With the obtained data (depth image, car state, etc.) it is possible
to analyze the performance and debug the algorithm “offline”.

• Emulation:
The exact same algorithm running on the embedded system is implemented on the
PC workstation. Since the raw sensor data can be received, it is possible to move the
development process of the algorithm to the workstation. Changes of the algorithm
can be performed and tested in a short space of time compared to deploying and
testing on the embedded system.

Data Rate

Depending on the amount of debug data transferred, the data transmission can become
a very time consuming task and even limit the maximum operating speed of the whole

CHAPTER 3. DESIGN 65

system. Here the required data transfer rates to transfer four phase-images in time are
explained in detail. One 16 bit image with a size of 160 x 120 pixels, results in 38400 byte
of data. Four 16 bit phase-images contain 153600 byte of data.

The data rate R of four 16 bit phase-images of data Ndata sent at a frame rate frate is
calculated with:

R = Ndata · frate (3.21)

Frame Rate Data Rate
(FPS) (Mbit

s)
10 12.29
20 24.58
30 36.86
40 49.15

Table 3.5: Data rate for different frame rates.

The Table 3.5 shows the minimum data rate required to not exceed the deadlines given by
certain frame rates. In practice, the transmitted data will also include overhead in form of
headers and checksums and thus the minimum frame rate has to be even higher than the
values stated here. Additionally, the processor might be occupied with other tasks and
thus cannot use the full frame delay time for transmission. The data rate of the Ethernet
interface of the AURIX is limited to a certain value, depending on various factors (like
lwIP configuration or the used memory). This limitation has to be kept in mind, when
choosing the debug data and the frame rate.

Chapter 4

Implementation

This chapter is about the implementation details of this thesis. First the development
process and the used tools are presented. The major part of the chapter is split into the
detailed description of the hardware segment and the software segment of this thesis. The
chapter ends with a description of the debug system.

4.1 Development

In this section, the development tools that are mainly used are described. Afterwards
the workflow to implement the requirements and to improve the functionality is pre-
sented.

4.1.1 Tools

During the development process, multiple software tools were used. The most important
ones are introduced here. Additional programs are mentioned in Appendix A.6.

Free TriCore Entry Tool Chain

The Free TriCore Entry Tool Chain from HighTec [Hig15] is an Eclipse based integrated
development environment used in this work. The main part of the toolchain is the TriCore
Development Platform based on the GNU development tools. It can be used to create
executables for TriCore microcontrollers and comes with a C/C++ cross compiler and
a debugger with multi-core support. Additionally, it is possible to program the DFlash
and the PFlash within the development environment. For this thesis, the Free TriCore
Entry Tool Chain is used to write, organize and debug the code for the AURIX microcon-
troller.

67

68 CHAPTER 4. IMPLEMENTATION

Matlab

Matlab [Mat15] is used to visualize the distance data and debug the processing algorithm
implemented on the AURIX. The software has many required functions already built-in
(e.g., plotting images, creating histogram). Thus, it is easy to write a debug application
within a short time. Using scripts, it is possible to receive User Datagram Protocol (UDP)
data via Ethernet and to calculate and display the distance image. But this easy to
use, high-level structure of Matlab can also cause problems. The execution performance
of Matlab scripts is slow compared to similar implementations in other programming
languages. The available routine to receive data via UDP can not handle a livestream of
the distance data in real-time. In addition, it is not possible to perform image processing
calculations in real-time.

Nevertheless, Matlab is used to receive and store single images of the livestream, inspect
the quality of the data, perform image processing steps, and quickly display images and
debug data.

Visual Studio

Caused by the shortcomings of Matlab, Visual Studio [Mic12] was used to develop a
C# Windows application with the purpose of supporting the algorithm development on
the AURIX microcontroller. Due to the higher performance of the C# application, the
distance data can be received in real-time via UDP. Additionally, the data is able to be
processed and visualized without violating any deadlines. Thus, the C# application is the
main tool used to debug and visualize data from the embedded system. The disadvantage
compared to Matlab, is the significantly higher effort to create and change an application
since almost all functionality has to be implemented manually.

The application is also used to receive a livestream of the raw ToF phase-images and move
the whole algorithm development process to the PC. The advantage is that debugging on
PC is far easier and the whole compilation/execution process is faster. The algorithm in
C# is written in very similar to C code, in order to easily move the code to the AURIX.
A more detailed explanation of the C# application developed with Visual Studio can be
found in Appendix A.7.

4.1.2 Workflow

The following list presents the different working steps that were performed during this
thesis.

• Base implementation:
The first step was to understand and use the base implementation of the existing
platform described in Section 3.2. The existing implementation was created using
the Tasking toolchain from Altium. Since the Free TriCore Entry Tool Chain is used
in this thesis, the existing code also had to be adapted.

CHAPTER 4. IMPLEMENTATION 69

• Implement debug interfaces:
Next step was to implement the ability to observe the system’s state. The base
version was extended to provide debug functionality via Ethernet using the UDP
protocol. With the use of UDP debugging, it is possible to validate the single image
processing steps done on the embedded system.

The CAN functionality was activated in order to send and handle received CAN
Messages via the CAN interface on the TriBoard. With the use of a CAN to USB
converter, CAN messages can also be used to send short debug messages and view
them on a PC. The used application to send and receive CAN messages from a PC
is introduced in Appendix A.6.

A third way to gain information about the current state of the processing algorithm
on the embedded system is to use the GPIO pins. Special port pins can be set high
during certain processing steps. This also enables the possibility to obtain detailed
timing information of the processing algorithm on the microcontroller. A special
USB logic analyzer is used to make the signal traces directly available on a PC. The
tool is further described in Appendix A.6.

• Camera mount and configuration:
Different positions of the whole ToF imaging platform on the scaled vehicle were
evaluated in order to obtain the best possible distance image quality. Addition-
ally, appropriate camera parameters (illumination time, modulation frequency) were
picked for the targeted use case.

• Image processing algorithm:
The development of the image processing algorithm was an iterative process starting
with the raw sensor data. The following steps were run through multiple times:

– Development:
Every modification of the algorithm was first implemented, validated and de-
bugged in high-level language (Matlab scripts or C#) on the PC workstation.
This was done using the raw sensor data as input, obtained via a UDP debug
stream. Special parameters of the algorithm were tweaked and evaluated in
real-time using a Graphical User Interface (GUI). This process is illustrated in
Figure 4.1.

Figure 4.1: Algorithm development on workstation.

70 CHAPTER 4. IMPLEMENTATION

– Validation:
After major changes, the algorithm was deployed to the embedded system.
The raw sensor data and output data of the image processing algorithm were
sent to the workstation in order to validate the result. The output data can
for example include a processed distance image, a histogram or the object-
list. Additionally, the timing of the different tasks was measured using a logic
analyzer. The timing data was then examined to meet the processing deadlines.
This is especially important, since there is no timing information available from
the emulation on the workstation. The validation process of the algorithm
running on the AURIX is shown in Figure 4.2.

Figure 4.2: Algorithm validation.

• Decision-making algorithm:
The decision-making algorithm was mainly evaluated directly on the running system,
with the real-world car state available via CAN messages. But a basic evaluation
of the algorithm was also possible with simulated CAN messages using the CAN-to-
USB converter.

• Test run:
The whole system with the most recent algorithm was tested in real scenarios, in
order to evaluate the functionality/performance of the system.

The whole development process was an iterative process, starting from a very simple base
version. For major modifications of the algorithm, the influence to the performance of
the whole system was evaluated. Shortcomings discovered within the validation steps
were analyzed and aimed to be eliminated, by applying modifications in prior developing
steps.

4.2 Hardware Platform

This section describes the detailed composition of the built-up platform. The mounting of
the ToF camera on the scaled vehicle is described and the adapter board used to connect
the ToF camera and the AURIX evaluation board is presented.

CHAPTER 4. IMPLEMENTATION 71

4.2.1 Overall System

The overall system consists of the scaled vehicle with the ToF processing platform mounted
on it. The scaled vehicle comes with on-board control modules. Two battery packs
and a voltage converter are available on the scaled vehicle in order to supply the single
components with power. A block diagram of the overall system is depicted in Figure 4.3.
The figure shows the different building blocks of the scaled vehicle with the ToF processing
platform.

Figure 4.3: Block diagram of the overall system.

4.2.2 Power Supply

The battery pack for the electronic circuits consists of six 1.2 V NiMH cells. Thus, the
nominal voltage is 7.2 V. In practice, the voltage decreases from about 7.5 V to 6.0 V
during the discharging process. The TriBoard with the AURIX has a voltage regulator
on-board and can be directly supplied with the 7.2 V from the battery. Since the ToF
evaluation kit requires a supply voltage of exactly 5.0 V, there is a need of an external
voltage regulator for the camera evaluation board. A small board with a linear low-dropout
voltage regulator (LM1084, Texas Instruments) is used to convert the battery voltage to
5.0 V with an output current up to 5 A.
The voltage converter board does not work very efficiently as a lot of energy is wasted
through the linear conversion. But a fast and simple solution is sufficient for the prototype
built in this work. A more sophisticated approach, using an efficient step-down converter
to extend the battery runtime is presented in Appendix A.2.

72 CHAPTER 4. IMPLEMENTATION

4.2.3 Adapter Board

The ToF evaluation kit and the AURIX TriBoard are connected using a special adapter
board. The first version (V 1.0) of the adapter board uses two high speed hermaphroditic
terminal/socket strip connectors to directly connect the corresponding pins of the AURIX
TriBoard with the FPGA header of the ToF evaluation board. The FPGA header in-
cludes the signals of the PIF and the camera configuration interface of the ToF evaluation
kit.

An alternative approach is to establish a flexible connection between the AURIX Tri-
Board and the ToF evaluation kit using a ribbon cable. This connection simplifies the
positioning of the ToF camera on the scaled vehicle. A second version of the adapter
board connects the pins of the PIF header of the ToF evaluation kit to the corresponding
pins on the AURIX. The 26-pin PIF header includes the signals of the PIF and the camera
configuration interface of the ToF evaluation kit.

In both approaches, the signals of the PIF on the ToF evaluation kit are connected to the
CIF pins of the AURIX. Since the CIF provides 16 data bits and the PIF only provides
12 bits, the data lines are connected Most Significant Bit (MSB)-aligned. The I2C camera
configuration interface pins from the ToF evaluation kit are connected to one of the I2C
interfaces of the AURIX. The signal assignment is illustrated in Figure 4.4. Both con-
necting methods offer the possibility to configure the ToF camera and receive raw sensor
data.

The flexible connection, using the second version of the adapter board, leads to a signifi-
cantly decreased image quality due to its vulnerability to interference. The issues occurring
with this setup are described in Appendix A.1. Thus, the first version is used in this thesis,
approving the less flexible, and bulkier composition.

4.2.4 Camera Mount

The ToF evaluation kit and the AURIX TriBoard are coupled using an adapter board.
The whole ToF processing platform is rather bulky and difficult to place on the small
scaled vehicle. Hence a flexible camera arm is used to bring the ToF camera system into
position. This construction also allows evaluating different positions of the camera on the
car. A picture of the camera mount is shown in Figure 4.5. The ToF processing platform
is attached to an aluminum plate fixed to the camera arm. With that setup, it is possible
to evaluate different positions of the camera, while it is still possible to heavily tighten the
camera arm to minimize shaking while driving.

4.3 Interfaces

The overall system consists of multiple submodules which have to communicate with each
other. This section describes the different interfaces used to connect the components.

CHAPTER 4. IMPLEMENTATION 73

Figure 4.4: Signal assignments to establish a communication between the AURIX and the
ToF image sensor.

Figure 4.5: Flexible arm on the scaled vehicle.

4.3.1 CAN Interface

A CAN connection is established between the AURIX microcontroller and the control
board of the scaled vehicle (see Figure 4.3). The microcontroller periodically sends multiple
CAN messages about the current car state and the current values from the remote control

74 CHAPTER 4. IMPLEMENTATION

channels.

There is also the possibility to take over control of the car via the CAN bus. If the
CAN take-over message is received, the car microcontroller changes in “CAN Control
Mode”. The take-over message is a regular CAN message with a special ID and a data
field containing the car control signals. In “CAN Control Mode” the car control values
from the CAN take-over message are considered, instead of the values from the remote
channels. The CAN control mode ends when a special CAN give-back message is received
or a timeout occurs.

The two operating modes of the scaled vehicle’s microcontroller are illustrated in Fig-
ure 4.6. The detailed structure of the CAN messages is explained in Appendix A.4.

Figure 4.6: Different operating modes of the scaled vehicle.

4.3.2 Camera Control Interface

The I2C camera configuration interface is used to configure the ToF data before the image
capturing is started.

An array of camera configuration data is stored on the AURIX and transferred to the
ToF camera when initiated by the AURIX. The array containing all used register values
to configure the ToF sensor is listed in Appendix A.10.

In this work, the main parameters of interest within the camera configuration are the mod-
ulation frequency, the illumination time and the frame rate. Since those parameters are
adjusted frequently, the configuration of the required registers is explained in detail.

Modulation Frequency

The modulation frequency can be adjusted by setting multiple register values containing
the phase-locked loop (PLL) settings. There exist four different PLL presets that can be
configured for different modulation frequencies. The aimed PLL preset has to be selected
by defining the register value in the sequence settings for the respective phase-image.

The register parameters shown in Listing 4.1 are used to set the modulation frequency to
17 MHz. The PLL preset 3 is set to 17 MHz and selected in the sequence settings of the
four captured phase-images.

CHAPTER 4. IMPLEMENTATION 75

{CFGCNT_S00_PLLSET, 0x0002 } ,
{CFGCNT_S01_PLLSET, 0x0002 } ,
{CFGCNT_S02_PLLSET, 0x0002 } ,
{CFGCNT_S03_PLLSET, 0x0002 } ,
{CFGCNT_PLLCFG1_LUT3, 0x6449 } , // 17 MHz
{CFGCNT_PLLCFG2_LUT3, 0x2762 } , // 17 MHz
{CFGCNT_PLLCFG3_LUT3, 0x03F6 } , // 17 MHz

Listing 4.1: Settings for a modulation frequency fmod = 17 MHz.

{CFGCNT_S00_EXPOTIME, 0x109A } , // 2ms @ 17MHz
{CFGCNT_S01_EXPOTIME, 0x109A } , // 2ms @ 17MHz
{CFGCNT_S02_EXPOTIME, 0x109A } , // 2ms @ 17MHz
{CFGCNT_S03_EXPOTIME, 0x109A } , // 2ms @ 17MHz

Listing 4.2: Settings for an illumination time Tillu = 2 ms.

{CFGCNT_S00_FRAMERATE, 0x0000 } ,
{CFGCNT_S01_FRAMERATE, 0x0000 } ,
{CFGCNT_S02_FRAMERATE, 0x0000 } ,
{CFGCNT_S03_FRAMERATE, 0x1000 } , // ca 30 FPS

Listing 4.3: Settings for a frame rate frate = 30 FPS.

Illumination Time

The illumination time can be defined for every phase-image within the sequence separately.
The actual illumination time resulting from that register value depends on the active PLL
preset.
The parameters shown in Listing 4.2 are used to set the illumination time to 2 ms. These
values are only valid at a modulation frequency of 17 MHz.

Frame Rate

The frame rate can be set via an adjustable delay after a phase-image is captured. The
ToF camera is configured to capture a sequence of four phase-images in a loop. Thus, the
frame delay after the first three phase-images is set to zero. And with the value of the
frame delay after the fourth phase-image, it is possible to define the frame rate.
The required parameters to define a frame rate of about 30 FPS are shown in List-
ing 4.3.

4.3.3 Parallel Sensor Interface

The ToF camera is configured to continuously capture four consecutive phase-images and
send them via the PIF to the AURIX. The CIF of the AURIX receives the images in hard-

76 CHAPTER 4. IMPLEMENTATION

ware and directly writes them into the ADM EMEM. After the four frames are received
and written to the ADM, an interrupt is raised to notify the AURIX that new sensor data
is available.

Figure 4.7 shows the timing of the PIF for an illumination time of 1 ms and a pixel clock of
66.6 MHz. In the illustration an active task is indicated by a “high” signal. As seen in the
figure, an interrupt is only raised after all four phase-images were fully transferred.

Illumination

PIF Data Transfer

0 10 20 30 Time (ms)

Interrupt Interrupt

Figure 4.7: Timing of the PIF.

The illumination time can be changed by modifying the camera configuration via the I2C
serial bus. For a pixel clock of 66.6 MHz, the time to read out one 16 bit phase-image and
transfer it via the PIF, equals to 1.23 ms. This time is also the minimum time between
two illuminations. In dynamic environments the time between two illuminations should
be kept as low as possible in order to avoid effects like motion artifacts.

4.3.4 Debug Interface

Here the debug connection between AURIX and the PC workstation is explained in detail.
The AURIX microcontroller board and a PC workstation can be connected using an
Ethernet connection. Data is sent from the AURIX to the PC to obtain observability of
the state of the embedded system. Due to its simplicity UDP was used to transmit the
data. In this section the structure of the UDP packages is described.

UDP Transmission

After the processing algorithm is finished, CPU 0 is ready to send relevant and related
data of the processed image. The included data can be selected via pre-processor defines
in the AURIX code. There are different modes of included data-sets predefined on the
AURIX. To change the mode, the AURIX code has to be re-compiled and programmed
to the AURIX flash.

Depending on the included debug data, different processing steps have to be performed.
For certain modes it is possible to suppress the further algorithm calculation in order to
achieve higher frame rates. For example, there exists a processing mode that only sends
the four phase-images via UDP and does not process any data. Using that mode makes
it possible to record raw data at an acceptable frame rate.

CHAPTER 4. IMPLEMENTATION 77

UDP Data Structure

Debug data is sent from the AURIX to the PC as a sequence of UDP packages. In order
to keep the complexity low, all sent UDP packages have a size of exactly 400 bytes. Since
various data is sent via UDP, the data flow has to be marked with control packages in
order to determine which data is currently being received.
The structure of the data always follows the same pattern:

• Start frame:
To signal the receiver that a new data sequence is transmitted, a special start package
is sent. The start package has to start with the string “FRM_STRT” and the remaining
bytes in order to fill up the 400 byte package do not matter.

• Debug data:
Directly after the start frame, debug data can be sent. The debug data typically
consists of four UDP packages. The first package contains metadata of the AURIX
system. The other three packages contain debug data of each CPU. For example,
the debug data of CPU 0 includes information about the current car state, since
that data is available on that CPU.

• Image data:
To inform the receiver that image data will be transmitted next, a control UDP
package starting with “IMG_x” has to be sent. Afterwards the actual image-data is
sent, which might consist of many UDP packages. There can be multiple images
transferred. The “x” in the image control package has to be incremented for every
image, starting with 0.

• Stop frame:
After the last image was completely transmitted, a special UDP package starting
with the string “FRM_STOP” has to be transferred in order to inform the receiver that
the data sequence is over.

Figure 4.8 shows the structure of a valid sequence of UDP packages. In that case, two
images are transferred. As indicated in the illustration, the debug data, image 0 and image
1 usually consist of multiple UDP packages while the control packages only consist of one
package each.

Figure 4.8: UDP transmission structure.

UDP Reception

For reception of the debug data, the received UDP frames have to be reassembled to gain
the original data structure. Figure 4.9 shows a state diagram for a receiver to save the
debug data.

78 CHAPTER 4. IMPLEMENTATION

Figure 4.9: UDP receive state-machine.

4.4 AURIX Implementation

This section is about AURIX specific implementation details. It discusses the partitioning
of the algorithm tasks onto the three CPUs and the distribution of the data within the
memory. Additionally, the buffering process for the UDP transmission is presented.

4.4.1 CPU Partitioning

Figure 4.10 shows the partitioning of the main processing tasks on the three AURIX
CPUs.

After four raw phase-images are transferred from the ToF Camera to the EMEM, CPU 1
gets notified (via an interrupt) and starts to process the images. CPU 1 calculates the
distance data and pre-processes the image. Then the output image is saved to a shared
memory and an interrupt in CPU 2 is triggered. CPU 2 fetches the output image and
continues to process the image in order to obtain an object list. The object list is saved to
a shared memory and an interrupt in CPU 0 is triggered. CPU 0 starts processing either
if a new object list or a new car state is available. Either way, the decision-making routine
is performed in order to decide whether to brake or not. Every time a new ToF image was
fully processed, CPU 0 sends debug data via Ethernet.

A good way to increase the performance of the system is to use pipelining. The total
workload has to be partitioned as equally as possible among the CPUs in order to obtain

CHAPTER 4. IMPLEMENTATION 79

Figure 4.10: CPU partitioning.

a high level of parallelism and utilization. This causes an increased throughput of the
system and increases the maximum frame rate. Figure 4.11 shows the pipelining concept.
At the time CPU 1 has finished its processing part and CPU 2 takes over, CPU 1 is already
available to process the next sensor data from the ToF camera.

The ideal case would be to divide the workload in a way that each CPU takes exactly the
same processing time Tproc. In that case a maximum frame rate of frate = 1

Tproc
can be

achieved without violating deadlines.

4.4.2 Shared Memory

To transfer data between two CPUs the following different approaches are possible. Two
methods are described here:

• Image data is transferred using the XAM EMEM as intermediate storage. Smaller
data amounts are transferred via the LMU RAM (object list, etc.).

• Another method is to transfer data using the DSPRs of the different CPUs. This
method requires additional synchronization to avoid data inconsistency and thus is
not implemented in the final system.

To transfer data using the above mentioned method, the sending CPU has to copy the data
from the DSPR into the temporary memory. Then the sending CPU triggers a software
interrupt in the receiving CPU, causing a task to unblock. This task then copies the data
from the temporary memory into its DSPR.

There is still the chance that the receiving CPU has not finished reading when the sending
CPU already writes new data again. Thus, a synchronization flag is introduced, to avoid
writing into currently used memory areas. The flag is set by the writing CPU right before
writing new data to the region. The flag is reset by the receiving CPU, after copying is
done.

80 CHAPTER 4. IMPLEMENTATION

1

CPU 1 CPU 2 CPU 0

process

Frame

get phase-images

save distance image

get distance image

process

save object list

get object list

process car control

new car state

send debug data debug data

2

process

get phase-images

save distance image

get distance image

process

save object list

get object list

process car control

new car state

send debug data debug data

3

process

get phase-images

save distance image

get distance image

process

save object list

debug datasend debug data

new car state

car controlprocess

get object list

Figure 4.11: CPU pipelining concept.

If the frame rate is set to a reasonable value the processing algorithm will have no prob-
lems to meet the deadlines. Since the accesses to the shared memory is temporally well-
organized, the synchronization flag is not essential during regular operation.

CHAPTER 4. IMPLEMENTATION 81

4.4.3 Memory Partitioning

The memory configuration of the AURIX can be controlled via the linker description file.
Figure 4.12 gives a simplified overview of the memory partitioning on the AURIX. Since
the image data occupies the majority of memory space, the reserved space for image data
in the different memories is emphasized in the illustration.
The following memories are used to store program code and data:

• DSPR:
The memory used by the RTOS is mapped equally into each CPU’s DSPR using
its local address range. This is beneficial since the RTOS code is used by all three
CPUs. The remaining part of the DSPR is used independently and thus addressed
globally. This causes only variables that are actually used in the code of one CPU
to occupy space in its memory.
The image slots on CPU 1 and CPU 2 are used for image processing, for example
to save a temporary image after a filter operation. The image slot on CPU 0 is used
as high speed buffer to send image data via UDP. The remaining DSPR memory is
used to save other data (like the car state, debug data, etc.) or is unused.
A solution to separate the memory placement onto the different CPUs is shown in
Appendix A.9.

• LMU RAM:
The LMU RAM is used to share data between the CPUs, for example synchronization
variables.

• EMEM:
The raw phase-images from the ToF camera, received via the CIF of the AURIX
are directly stored into the ADM EMEM via the Back Bone Bus (BBB). Since the
phase-images arrive in bursts of four images each, the memory space for four pictures
is reserved in the ADM EMEM.
The XAM EMEM is mainly used to temporarily buffer image data for UDP stream-
ing. Additionally, it is used to share image data between the CPUs, since the LMU
RAM cannot fit a full 16 bit image. For example, CPU 1 saves its output image
to the XAM EMEM and then notifies CPU 2 to fetch that image and continue the
image processing.

• PSPR:
Frequently called code is placed into the PSPR for fast code execution. Thus, most
of the image processing routines are located in this memory.

• DFlash:
The DFlash is used to store the amplitude reference image. It is saved there perma-
nently and does not have to be renewed each time the PFlash is programmed. This
memory is not shown in the picture since it is only read and the data is loaded into
the DSPR prior to its use, to achieve higher speed.

• PFlash:
The PFlash contains most of the program code and some read-only data. This
memory is also not shown in the figure.

82 CHAPTER 4. IMPLEMENTATION

Figure 4.12: Memory configuration.

4.4.4 UDP Data Buffering

To detach the UDP sending task from any other data dependencies, all relevant data is
copied to a UDP buffer area in XAM EMEM before any data is sent. Since pipelining
is used, the other CPUs are processing new image data already when CPU 0 is ready to
send debug data. Hence the data from CPU 1 and CPU 2 has to be buffered to have it
still available when the UDP transmission of CPU 0 becomes active. CPU 1 buffers three
times the debug data size, and CPU 2 buffers two times the size. The used buffer slot is
determined using a running image number. Figure 4.13 shows the buffer concept used to
achieve that.
When CPU 0 has finished the decision-making, the debug data of all three CPUs is copied
to a separate UDP buffer. This buffer has the purpose to decouple the UDP sending task
from all other data dependencies. This makes sense since the UDP sending task on CPU 0
has a low priority and might exceed time constraints. In that case, CPU 0 will recognize
that the UDP task has not finished, skip the transmission of the debug data of the current
image and resume sending the previous one. To improve the sending performance, data
chunks of the UDP buffer are copied into a smaller buffer in the DSPR of CPU 0 before
they are actually sent.
To avoid the waste of processing time with copying data to and from the buffer, the Direct
Memory Access (DMA) controller of the AURIX is used when suitable.

CHAPTER 4. IMPLEMENTATION 83

Figure 4.13: Buffering of debug data, to allow pipelining.

84 CHAPTER 4. IMPLEMENTATION

4.5 ToF Processing Algorithm

This section describes the implementation details of the processing algorithm on the
AURIX, starting with the calculation of the distance image. Afterwards, the pre-processing
steps and the object detection is introduced before the section is closed with the description
of the decision-making algorithm.

4.5.1 Distance Image Calculation

To calculate the distance image, the microcontroller first receives a sequence of four raw
phase-images from the ToF camera board. The CIF of the AURIX microcontroller is
configured to automatically save received images to the ADM EMEM. After four phase-
images are received, an interrupt on CPU 1 is triggered that unblocks a task copying the
image from the EMEM to the local DSPR of CPU 1.

Afterwards, the task starts the conversion of the values from the four captured phase-
images into a real and an imaginary component. The phase difference is obtained by
calculating the arctangent function of that complex number, using a LUT containing 256
elements and linear interpolation. Before the LUT is used, it is loaded into the DSPR of
CPU 1 in order to speed-up the calculation. The offset compensation and the unambiguous
range shift are performed directly with the phase difference data, right before the distance
data is calculated.

Additionally to the distance data, the amplitude could be calculated from the raw data as
well. But to avoid the square root and save computation time, only the squared value is
calculated. After this step, the distance image contains values between 0 mm and 8823 mm
and is available for further processing.

The processing steps performed are shown in Algorithm 4.1. The calculation of the arctan-
gent is the main part of this algorithm. Thus, this step is described in further detail.

Algorithm 4.1: Distance image calculation on CPU 1.
image[0..3] = getPhaseImages() . copy phase-images from EMEM
for every pixel idx do

im, re = CalculateImRe(image[0..3])
∆ϕ = Atan2(im, re)
∆ϕ = GlobalOffsetComp(∆ϕ)
∆ϕ = UnambRangeShift(∆ϕ)
d[idx] = ∆ϕ · rangeFactor . unprocessed distance image
A2 = (re ∗ re + im ∗ im)/4 . squared amplitude
... . pre-processing starts here

end for

CHAPTER 4. IMPLEMENTATION 85

Arctangent Computation

The arctangent function is a high-cost function in software and thus is implemented using
a LUT with linear interpolation. As seen in Figure 4.14, this approach (Lerp) outper-
forms two existing implementations using series expansion (libc and Ifx_atan2Q15) and
an available CORDIC implementation on the AURIX.

Figure 4.14: Comparison of different arctangent algorithms on the
AURIX [Inf14].

Since the real part and imaginary part are known, the four-quadrant arctangent function
atan2(im,re) is implemented. Caused by the properties of complex numbers, a rotation
into the first octant can be performed to simplify the calculation (Figure 4.15a). The
rotation angle has to be kept track of, and added to the result afterwards.

The rotation into the first octant is performed as follows:

• Rotate by π:
Points from quadrant 3 and 4 (Im < 0) are rotated into quadrant 1 and 2 with a
rotation angle of π (Figure 4.15b). To perform the rotation, the real and imaginary
part are updated with:

xnew = −x
ynew = −y

• Rotate by π
2 :

Points from quadrant 2 (Im < 0) are rotated into quadrant 1 with a rotation angle of
π
2 (Figure 4.15c). To perform the rotation, the real and imaginary part are updated
with:

xnew = y

ynew = −x

• Rotate by π
4 :

Points from quadrant 1 with y > x (octant 2) are translated into octant 1 (Fig-

86 CHAPTER 4. IMPLEMENTATION

ure 4.15d) with an angle shift of π4 . To perform this translation, the real and imag-
inary part are updated with:

xnew = y − x
ynew = x+ y

This point translation to achieve a rotation of π
4 is explained in detail in Ap-

pendix A.3. As seen in Figure 4.15d, the length of the vector alters during this
translation. But since only the angle is of interest, this does not matter.

Im

Re

π/4

(a) First octant.

π

Im

Re

(b) Rotate 180°.

Im

Re

π/2

(c) Rotate 90°.

α

Im

Re

π/4

(d) Rotate 45°.

Figure 4.15: Arctangent calculation simplification.

After the rotation into the first octant, the input domain of the atan2(im,re) function
is reduced to the range 0 ≤ y

x ≤ 1, resulting in an angle 0 ≤ atan2(y,x) ≤ π
4 . This as-

signment is mapped to a LUT containing 256 elements. Additionally, linear interpolation
between the two resulting LUT entries is applied, to improve the accuracy of the calcula-
tion. After the calculation of the angle within the first octant, the result is back-projected
to the original octant to obtain the actual phase difference ∆ϕ.

4.5.2 Pre-Processing

The pre-processing of the distance data is also done on CPU 1. The single steps performed
in the pre-processing task are shown in Algorithm 4.2. The first pre-processing steps are
performed in the same loop as the distance calculation, to save computation time.

Discarded pixels during pre-processing steps are set to a special value outside the range
(12500 mm) to indicate that they are not valid. After pre-processing, the output image
is transferred to the XAM EMEM and an interrupt on CPU 2 is triggered to indicate
that new data is ready. Important implementation details of the pre-processing steps are
further explained.

Camera Angle Conversion

The cosine functions of Equation 3.15 are implemented using a look-up table for all possible
angle values. The LUT has 81 entries for angle values between 0° and 40° in steps of 0.5°.
The LUT is copied into the DSPR of CPU 1 during the start-up in order to speed-up the
execution.

CHAPTER 4. IMPLEMENTATION 87

Algorithm 4.2: Pre-processing on CPU 1.
for every pixel idx do . distance calculation loop

...
d[idx] = CameraAngleConv(d[idx])
d1[idx] = AmpThresh1(d[idx], A2)
d1[idx] = AmplThresh2(d1[idx], A2)

end for
for every pixel idx do . common neighborhood loop

d2[idx] = CommonNeighborhood(d[idx])
d1[idx] = Combine(d1[idx], d2[idx])

end for
for every pixel idx do . median filter loop

d[idx] = Median(d1[idx])
end for

Amplitude Thresholding

Since the squared amplitude value is available, the comparison value has to be squared
as well. The amplitude reference image was obtained using Matlab via the UDP stream
of the phase-images. The squared amplitude image is defined as a constant array in the
AURIX code and is located in the DFlash. Before usage, it gets copied into the DSPR of
CPU 1 to allow faster access.

Another method, without the need to save an additional amplitude image is to calculate an
approximation of the amplitude reference image on the AURIX. This approach is described
in Appendix A.5

Common Neighborhood Thresholding

CN thresholding is an area operation, since it takes the local neighborhood as input to
determine the output for the original pixel. Thus, the method cannot be applied in-place
and an additional memory region has to be used for the output.

To save computing time, border pixels are ignored since additional exception handling
would significantly increase the computation time.

Median Filter

For the median filter, an efficient way to sort the neighborhood (nine values) is imple-
mented in form of a sorting network. A sorting network consists of a fixed number of
statements and implements sorting algorithm with minimum overhead. The implemen-
tation of the sorting network can be found in Appendix A.8. Since the discarded values
are sorted as well using this method, the median index of the array has to be adapted
depending on the number of discarded pixels within the neighborhood. The median filter

88 CHAPTER 4. IMPLEMENTATION

is also an area operation, and thus has to use a separate memory region for the output.
Due to the same reasons as for the CN filter, border pixels are ignored.

4.5.3 Object Detection

Object detection is done on CPU 2 and the implementation details are presented here.
When CPU 1 finishes pre-processing, an interrupt is triggered in CPU 2, which unblocks
the object detection task running on CPU 2. The task copies the pre-processed image from
the XAM EMEM to the DSPR of CPU 2 and performs the object detection steps.

The single steps performed during the object detection are shown in Algorithm 4.3, and
the major implementation details of the single steps are explained in this section.

After object detection, the object list is stored in the LMU RAM, and an interrupt in
CPU 0 is triggered to initiate further processing.

Algorithm 4.3: Object detection on CPU 2.
for every pixel idx do

d[idx] = AreaOfInterest(d[idx])
end for
h = CreateHistogram(d)
objectList = HistogramSegementation(h, d)

Area of Interest

Trigonometric functions are used to check whether a pixel value is within the AOI or not
(see Equation 3.20) . Since the angle values for every pixel are assumed to be constant,
the distance limit for every pixel is stored in a LUT in order to save computation time.
A LUT for the horizontal distance limits containing 81 values, and a LUT for the vertical
distance limits containing 61 values are defined in the AURIX program code. They are
loaded into the DSPR of CPU 2 before usage.

Histogram Segmentation

The local minima and very small values of the histogram are evaluated as segmentation
borders. To be used as a segmentation border, they have to additionally meet the following
criteria:

• A certain amount of pixels within two segmentation borders has to be exceeded.

• The peak between two minima has to exceed a certain height.

• The relation between the minima and the maxima in between has to be within a
specified range.

• The two minima should not be too different from each other.

CHAPTER 4. IMPLEMENTATION 89

If a potential segmentation border does not meet the criteria, it is either ignored, or
marked as a new segmentation border if the histogram value is very small. This avoids
pixels to be segmented into objects within low-level histogram areas, which generally do
not contain relevant object data.
After the segmentation borders are determined, the pixels within the segmented ranges are
assumed to be objects. Next, all pixels of the distance image are iterated through in order
to obtain the characteristics (limits, mean values, amount of pixels) of each object.

4.5.4 Decision-Making

If a new object list is available, an interrupt on CPU 0 is triggered and the new data is
copied from the LMU RAM to the local DSPR of CPU 0. If a new car state is received via
CAN, an interrupt on CPU 0 is triggered and the car state contained in the CAN message
data is saved to the DSPR of CPU 0. The decision-making task is unblocked, either if
new data is available, or if there was not any new data received within a certain period of
time.
The part of the decision-making part of the algorithm, where the decision to brake or not
is made, is shown in Algorithm 4.4.

Algorithm 4.4: Decision-making on CPU 0.
stopping_dist = CalculateStoppingDistance(car_state)
for every object in object list do

min_area = CalcMinArea(object.dist)
if object.dist < 1.5 stopping_dist and

(object.area > min_area or object.area > 750) and
object.area > 10 and
car_state.current_speed > 500 and
car_state.forward = true then

StopVehicle()
end if

end for

The stopping_distance used in the decision-making algorithm has to take into account
that the captured distance image was already captured a certain time ago. According
to Section 3.4.1 the stopping distance also has to take the processing time Tproc and the
brake delay time Tbrake,delay into account.
For a frame rate of 30 FPS (Tfps = 33 ms) the reaction time Treact, from the time a frame
was captured until the brake is applied, calculates as shown in Equation 4.1. Similar as
in Section 3.4.1, fully utilized pipelining is assumed.

Treact = Tproc,CPU2 + Tproc,CPU1 + Tproc,CPU0 + Tbrake,delay

= 4 · TFPS + 0.1 s
= 233 ms

(4.1)

90 CHAPTER 4. IMPLEMENTATION

Thus, the stopping distance stopping_distance is calculated as seen in Equation 4.2. The
current speed of the car v and a friction factor µ = 0.3 for an indoor PVC floor are
used.

sstop = sreact + sbrake

= v · Treact + v2

2µg
(4.2)

A criterion for the system to apply emergency braking is that the distance to the detected
object is smaller than 1.5 times the calculated stopping distance. This assures that the
vehicle is able to avoid the collision.

Another criteria, is that the object exceeds a distance depending area, or a certain area
value (i.e., 750 pixels). This distance depending area (min_area) is about the size of
a 10 cm x 10 cm square, resulting in a different amount of pixels depending on the dis-
tance.

Additionally, the object area has to be higher than a certain minimum (10 pixels) in order
to avoid incorrect breaking due to noise. The emergency breaking only takes action if the
scaled vehicle is in forward driving mode.

Chapter 5

Results

This chapter is about the actual performance of the system. First the composition of
the final prototype is shown. Afterwards the quality of the ToF images is compared for
different parameters. Finally, the performance of the used algorithm is discussed regarding
computation time and robustness.

5.1 Built-up Platform

This section shows the composition of the built-up platform. A picture of the scaled vehicle
with the ToF processing platform mounted in front-view direction is shown in Figure 5.1a.
Figure 5.1b shows the top view of the scaled vehicle. The different modules of the scaled
vehicle are clearly visible from that perspective. A test scene used to perform different
evaluations in order to get comparative results is presented. Additionally, different ToF
camera positions are compared and discussed.

(a) Front view. (b) Top view.

Figure 5.1: Scaled vehicle with mounted camera.

91

92 CHAPTER 5. RESULTS

5.1.1 Test Scene

An example scene was set up in order to obtain comparable sensor data. A similar setup
was built both indoors and outdoors in order to evaluate the influence of sunlight (see
Section 5.3.1). The scene contains the chassis of a 1/5 scaled vehicle about 0.5 m and a
box approximately 1.5 m from the lens.

(a) Indoor test scene. (b) Outdoor test scene.

Figure 5.2: Used test scenes.

5.1.2 Camera Mount

The camera mount is important for the quality of the obtained image. In this thesis the
ToF camera is used in front-view direction. So the major variable is the vertical position
of the camera and the angle it is pointing to. The Figures 5.3 and 5.4 show three different
camera positions with the related distance images. In order to achieve the lower positions
of the camera, the processing system had to be rotated. The distance images in Figure 5.4b
and Figure 5.4c were rotated back in software in order to obtain a common orientation. If
the camera is placed close to the ground, the image quality decreases due to effects such
as light scattering and overexposure At a height of about 20 cm, the impact of those errors
is almost void.

5.2 ToF Camera Configuration

This section deals with the comparison of different illumination times and different mod-
ulation frequencies.

5.2.1 Illumination Time

The obtained image quality strongly depends on the choice of the illumination time. The
distance images in Figure 5.5 show the same scene, obtained with different illumination

CHAPTER 5. RESULTS 93

(a) 30 cm above ground. (b) 20 cm above ground. (c) 10 cm above ground.

Figure 5.3: Different ToF camera positions.

Frame Columns
50 100 150

F
ra

m
e

R
ow

s

20

40

60

80

100

120

D
is

ta
nc

e
(m

m
)

0

2000

4000

6000

8000

(a) 30 cm above ground.
Frame Columns
50 100 150

F
ra

m
e

R
ow

s

20

40

60

80

100

120

D
is

ta
nc

e
(m

m
)

0

2000

4000

6000

8000

(b) 20 cm above ground.
Frame Columns
50 100 150

F
ra

m
e

R
ow

s

20

40

60

80

100

120

D
is

ta
nc

e
(m

m
)

0

2000

4000

6000

8000

(c) 10 cm above ground.

Figure 5.4: Resulting distance images for different camera positions.

times. A short illumination time results in a noisy image because for many pixels, not
enough photons are acquired to gain a robust value (see Figure 5.5a). In contrast, a high
illumination time leads to a higher certainty of the single pixel values (see Figure 5.5c).
But since a high illumination time also increases the vulnerability to motion blur and
saturation, an illumination time of 2 ms is used in this work.

Frame Columns
50 100 150

F
ra

m
e

R
ow

s

20

40

60

80

100

120

D
is

ta
nc

e
(m

m
)

0

2000

4000

6000

8000

(a) 0.3 ms.
Frame Columns
50 100 150

F
ra

m
e

R
ow

s

20

40

60

80

100

120

D
is

ta
nc

e
(m

m
)

0

2000

4000

6000

8000

(b) 2 ms.
Frame Columns
50 100 150

F
ra

m
e

R
ow

s

20

40

60

80

100

120

D
is

ta
nc

e
(m

m
)

0

2000

4000

6000

8000

(c) 5 ms.

Figure 5.5: Distance image for different illumination times.

94 CHAPTER 5. RESULTS

5.2.2 Modulation Frequency

The modulation frequency primarily determines the unambiguous range of the distance
image. Higher frequencies result in a lower unambiguous range but in a higher accuracy
within that range. Figure 5.6 shows the obtained distance image for different modulation
frequencies. At a modulation frequency of 30 MHz, the unambiguous range is 5 m, causing
invalid depth values for distances higher than 5 m. This effect is called phase-wrapping,
and is clearly visible in Figure 5.6c. In this work, a modulation frequency of 17 MHz is
used resulting in an unambiguous range of about 8.3 m.

Frame Columns
50 100 150

F
ra

m
e

R
ow

s

20

40

60

80

100

120

D
is

ta
nc

e
(m

m
)

0

2000

4000

6000

8000

10000

(a) 12 MHz.
Frame Columns
50 100 150

F
ra

m
e

R
ow

s

20

40

60

80

100

120

D
is

ta
nc

e
(m

m
)

0

2000

4000

6000

8000

(b) 17 MHz.
Frame Columns
50 100 150

F
ra

m
e

R
ow

s

20

40

60

80

100

120

D
is

ta
nc

e
(m

m
)

0

1000

2000

3000

4000

(c) 30 MHz.

Figure 5.6: Distance image for different modulation frequencies.

5.3 Performance

In this section the performance of the whole setup is evaluated in regards to speed and
quality.

5.3.1 Ambient Light

The performance of the camera was evaluated for different light conditions. This was
done by setting up a similar test scene outdoors (see Figure 5.2b) and recording 3D data
in order to determine the influence of sunlight.

Figure 5.7 and 5.8 show the distance and amplitude image with different intensities of
ambient light. The indoor scene, with almost no ambient light present, results in a very
good image quality (see Figure 5.7a and 5.8a). As seen in the figures, the noise level
increases tremendously in the outdoor scene. The back-light suppression of the ToF sensor
is not sufficient for robust outdoor usage. Thus, the platform is only used indoor in this
work.

5.3.2 Image Processing Steps

This section gives an example of the full image processing lifespan. The indoor test scene
(Figure 5.2a) was used to record and process the 3D data.

CHAPTER 5. RESULTS 95

Frame Columns
50 100 150

F
ra

m
e

R
ow

s

20

40

60

80

100

120

D
is

ta
nc

e
(m

m
)

0

2000

4000

6000

8000

(a) Indoor.
Frame Columns
50 100 150

F
ra

m
e

R
ow

s

20

40

60

80

100

120

D
is

ta
nc

e
(m

m
)

0

2000

4000

6000

8000

(b) Outdoor, clouded.
Frame Columns
50 100 150

F
ra

m
e

R
ow

s

20

40

60

80

100

120

D
is

ta
nc

e
(m

m
)

0

2000

4000

6000

8000

(c) Outdoor, direct sun-
light.

Figure 5.7: Distance image for different light conditions.

Frame Columns
50 100 150

F
ra

m
e

R
ow

s

20

40

60

80

100

120

A
m

pl
itu

de
 (

1)

0

2000

4000

6000

8000

(a) Indoor.
Frame Columns
50 100 150

F
ra

m
e

R
ow

s

20

40

60

80

100

120
A

m
pl

itu
de

 (
1)

0

2000

4000

6000

8000

(b) Outdoor, clouded.
Frame Columns
50 100 150

F
ra

m
e

R
ow

s

20

40

60

80

100

120

A
m

pl
itu

de
 (

1)

0

2000

4000

6000

8000

(c) Outdoor, direct sun-
light.

Figure 5.8: Amplitude image for different light conditions.

Four Phase-Images

Figure 5.9 shows the raw sensor data received from the ToF evaluation kit, the four phase-
images. The first row looks different because pseudo data is transmitted here.

Amplitude and Distance Image

With the four phase-images the distance and amplitude image are calculated. The cal-
culated distance and amplitude image from the phase-images can be seen in Figure 5.10.
As seen in the figure, the distance image is not further processed and still contains the
global offset. In the final algorithm, the amplitude image is not fully computed on the
AURIX. Only the squared amplitude values are calculated and temporarily stored for
further processing.

Pre-Processing Steps

Starting with the unprocessed distance data, multiple pre-processing steps are performed
to improve the suitability of the image for object detection. Figure 5.11 shows intermediate
images during the single pre-processing steps. Non confident pixels (for example because
of a low amplitude value) are discarded and displayed as white pixels.

96 CHAPTER 5. RESULTS

Frame Columns
50 100 150

F
ra

m
e

R
ow

s
20

40

60

80

100

120

R
aw

 D
at

a
(1

)

0

1000

2000

3000

4000

(a) 0°.
Frame Columns
50 100 150

F
ra

m
e

R
ow

s

20

40

60

80

100

120

R
aw

 D
at

a
(1

)

0

1000

2000

3000

4000

(b) 90°.

Frame Columns
50 100 150

F
ra

m
e

R
ow

s

20

40

60

80

100

120

R
aw

 D
at

a
(1

)

0

1000

2000

3000

4000

(c) 180°.
Frame Columns
50 100 150

F
ra

m
e

R
ow

s

20

40

60

80

100

120

R
aw

 D
at

a
(1

)

0

1000

2000

3000

4000

(d) 270°.

Figure 5.9: Raw data (4 phase-images) from ToF evaluation kit.

Frame Columns
50 100 150

F
ra

m
e

R
ow

s

20

40

60

80

100

A
m

pl
itu

de
 (

1)

0

100

200

300

400

(a) Amplitude image.
Frame Columns
50 100 150

F
ra

m
e

R
ow

s

20

40

60

80

100

120

D
is

ta
nc

e
(m

m
)

0

2000

4000

6000

8000

(b) Unprocessed distance image.

Figure 5.10: Amplitude and distance image.

Object Detection

The remaining points within the AOI are shown in Figure 5.12a. Pixels outside the AOI
are discarded and displayed as white pixels. Figure 5.13 shows a smoothed version of
the histogram from that distance image. This histogram is used for the segmentation of
objects at different distances. The detected objects that use the histogram approach are
outlined with red rectangles in the distance image seen in Figure 5.12b.

CHAPTER 5. RESULTS 97

Frame Columns
50 100 150

F
ra

m
e

R
ow

s
20

40

60

80

100

120

D
is

ta
nc

e
(m

m
)

0

2000

4000

6000

8000

(a) Offset compensation.
Frame Columns
50 100 150

F
ra

m
e

R
ow

s

20

40

60

80

100

120

D
is

ta
nc

e
(m

m
)

0

2000

4000

6000

8000

(b) Camera angle conversion.

Frame Columns
50 100 150

F
ra

m
e

R
ow

s

20

40

60

80

100

120

D
is

ta
nc

e
(m

m
)

0

2000

4000

6000

8000

(c) CN filtering.
Frame Columns
50 100 150

F
ra

m
e

R
ow

s

20

40

60

80

100

120

D
is

ta
nc

e
(m

m
)

0

1000

2000

3000

4000

5000

6000

7000

(d) Amplitude thresholding

Frame Columns
50 100 150

F
ra

m
e

R
ow

s

20

40

60

80

100

120

D
is

ta
nc

e
(m

m
)

0

500

1000

1500

2000

2500

3000

3500

(e) Combined data.
Frame Columns
50 100 150

F
ra

m
e

R
ow

s

20

40

60

80

100

120

D
is

ta
nc

e
(m

m
)

0

500

1000

1500

2000

2500

(f) Median filter.

Figure 5.11: Single image pre-processing steps.

The implemented object detection is simple and efficient. The used histogram segmenta-
tion is likely to result in under-segmentation, because distinct objects at the same distance
are not separated any further. Since only the pixels within the AOI are considered, only
a very limited number of objects are recognized.

5.3.3 Emergency Braking

A very basic version of emergency braking was implemented during this thesis. If an
obstacle is detected within the AOI, the current speed of the car is considered in order

98 CHAPTER 5. RESULTS

Frame Columns
50 100 150

F
ra

m
e

R
ow

s
20

40

60

80

100

120

D
is

ta
nc

e
(m

m
)

0

500

1000

1500

(a) AOI.
Frame Columns
50 100 150

F
ra

m
e

R
ow

s

20

40

60

80

100

120

D
is

ta
nc

e
(m

m
)

0

500

1000

1500

(b) Detected objects.

Figure 5.12: Object detection.

Distance (mm)
0 500 1000 1500 2000 2500 3000

F
re

qu
en

cy
 (

1)

0

500

1000

1500

2000

2500

3000

Figure 5.13: Smoothed histogram of the remaining pixels
with the segmentation borders marked.

to decide whether a collision is likely to occur or not. If a collision is predicted, the car
switches in “CAN Control Mode” and the brakes are applied until the vehicle is stopped.
Afterwards the control is given back to the user, and the remote control can be used to
move the car. This implementation works very well, when used indoors and with static
obstacles.

To predict if a collision is likely to occur, the stopping distance is considered. This distance
depends on a number of factors, like the current speed and the road surface. The friction
coefficient is defined as a constant in the program code and thus the system cannot adapt
to changing road conditions. Thus, the system fails for bad road conditions, if the stopping
distance increases.

Other than that, since only the current frame is evaluated and object tracking is not
performed, it is not possible to determine the object’s trajectories. Thus, an object moving
in the same direction as the car is seen as a static obstacle and the brakes are applied
although there is no danger.

Phase-wrapping is still a problem in this implementation, although measures are taken
to eliminate it. If a very reflective object outside the unambiguous range is detected, the
pre-processing might not be able to discard those pixels. The system might then consider
the object located at a wrong distance, and mistakenly apply the brakes.

CHAPTER 5. RESULTS 99

5.3.4 Time Behavior

The performance regarding processing time on the AURIX is examined. Furthermore, the
CPU utilization of the final system is analyzed and the maximum frame rate is deter-
mined.

CPU Utilization

The timing of the implemented algorithm on the AURIX is shown in Figure 5.14. The
frame rate for this example is about 30 FPS. The utilization of every CPU can be directly
seen in the timing diagram.

The timing behavior was recorded with a logic analyzer while processing a camera frame
from a real-world scene. The pre-processing algorithm running on CPU 1 is not data
dependent and thus the execution time is always the same. The execution time of the
algorithm on CPU 2 depends on the number of objects detected, so the processing time is
data-dependent. Thus, the time surplus was chosen to be high enough to meet the dead-
lines in any case. The half-transparent colored time-frames indicate the UDP transmission
task on CPU 0. Since it does not provide any functionality to the processing system, it
can be totally disabled if no debug data is desired.

Each very short processing pulse on CPU 0 indicates the execution of the decision-making
task. The task is executed frequently as the car state and values from the remote control
are also transmitted very frequently. It is important that the decision-making algorithm
has a short execution time and is immediately activated when new data is available. Since
the UDP task running on CPU 0 is not high-priority, it can be interrupted by the decision-
making task.

CPU 1

CPU 2

CPU 0

0 10 20 30 40 50 60 70 80 Time (ms)90

Figure 5.14: Timing diagram of the algorithm.

Frame Rate

According to Section 3.4.2, the frame rate of the camera has to exceed 25 FPS in order to
successfully brake before an object. Due to the processing time on CPU 1, the frame rate
of the implemented algorithm is limited to about 35 FPS. At higher frame rates, deadlines

100 CHAPTER 5. RESULTS

are violated, leading to malfunction of the system. The utilization of CPU 2 is relatively
low, leaving space to extend the object detection part of the processing algorithm.

The algorithm could be partitioned more equally on the three CPUs in order to achieve
a higher frame rate. With a slightly simplified modification of the current algorithm and
the total exclusion of debug data, a frame rate of at least 60 FPS is possible.

Chapter 6

Conclusion and Future Work

This chapter draws conclusions based on the results obtained during the work. Addition-
ally, multiple ideas for possible future works based on the built-up platform and the results
of this thesis are presented.

6.1 Conclusion

ToF cameras are a promising technology to be used in the automotive section in the future.
The technology has already proved its feasibility for automotive interior applications, such
as for human detection on the driver’s seat and gesture control. This thesis evaluates the
feasibility of a 3D ToF camera for the automotive environment perception. The camera
was mounted on a remote-control 1/5 scale vehicle, pointed in the front direction. An
automotive microcontroller processes the ToF data in order to obtain information about
objects in front of the vehicle.
As presented in Chapter 5, different positions of the ToF camera on the scaled vehicle
were evaluated in order to obtain the most suitable view for the use case. Furthermore,
the influence of the illumination time and the modulation frequency on the output image
quality were examined and discussed within this work.
The efficient working range of the ToF camera was examined to be limited to around 5 m.
Although different pre-processing approaches were applied to enhance the performance,
robust object detection could not be achieved for higher distances. The range might be
sufficient to provide emergency braking on a relatively slow RC car, but definitely too low
to use it on a real world vehicle moving at high speed.
Interfering sunlight causes the quality of the ToF data to decrease drastically. The in-
tegrated backlight suppression is not sufficient to avoid negative effects on image quality
caused by conditions with direct sunlight. Thus, the built system is not feasible to be used
outdoor, due to its limited illumination power.
A basic emergency braking was implemented and successfully tested in an indoor envi-
ronment. The implemented processing algorithm uses simple and efficient steps to detect
objects in front of the vehicle in order to allow a very responsive system. The algorithm was

101

102 CHAPTER 6. CONCLUSION AND FUTURE WORK

reasonably partitioned onto the three cores of the automotive microcontroller. Due to a
sophisticated pipelining approach, the system can handle frame rates up to 30 FPS.
The performance of the used ToF sensor is not sufficient to be used for unrestricted emer-
gency braking on a fully sized vehicle. Still, applications for ToF sensors are possible in
special use cases limited to low speeds (e.g., reverse driving assistance or parking assis-
tance). A ToF camera could also be used as a redundant system to ultrasonic sensors. If
the ToF sensor technology is further improved, and major limitations such as the range
and the vulnerability to sunlight are repealed, ToF cameras might play an important role
in automotive vehicle environment perception.

6.2 Future Work

The novel platform, built throughout the progress of this thesis, can be used as a prototype
for similar approaches in the future or serve as a base for future projects. This section
introduces various ideas for future works based on this thesis.

Alternative processing unit: The AURIX microcontroller is not designed to perform
computative costly image processing tasks. To reach a feasible frame rate, low-complexity
algorithms and diverse approximations were used. A more efficient object detection could
be achieved by replacing the AURIX microcontroller by a high-performance system.
Instead of replacing the automotive microcontroller, an additional processing unit could
be interposed. Doing so, all computative expensive processing steps could be moved to
the high performance chip.
Another application is to use an additional platform to make the debug data available via
a wireless stream. The single-board computer can be connected to the AURIX TriBoard
via Ethernet and forward the UDP data-stream via the wireless interface.

Custom system: The used setup consists of multiple evaluation boards, feasible for
prototyping. The single components made the system bulky and inflexible, and caused
signal propagation problems. A possible improvement would be the construction of a
Printed Circuit Board (PCB) with all required components on a single board.

Additional sensors: In the current setup, the scaled vehicle is equipped with the
rotation-speed sensor and the ToF camera only. To obtain a more accurate state of the
car and its surroundings, additional sensors such as radar, lidar, ultrasonic or 2D cameras
could be implemented. The combination of data from the different sensors would allow a
more accurate object detection, although increasing the computational cost.

Special use cases: Some application-specific use cases can be implemented using the
current setup. The system could be extended to applications such as automatic distance
control or parking assistance, to simulate real world use cases with the scaled vehicle.
Another interesting use case would be to follow an object with the scaled vehicle.

Appendix A

Technical Additions

This chapter contains some details of the work worth mentioning, but either too detailed
or not directly relevant to the outcome of the work itself.

A.1 ToF Module Connection

Different approaches were made to establish a connection between the ToF camera module
and the AURIX TriBoard. The different methods and the reasons why a flexible connection
is not practicable, are presented here.

Flexible Connection

A flexible connection between the AURIX TriBoard and the ToF evaluation kit was es-
tablished using a flexible ribbon cable.

Unfortunately, this setup leads to erroneous data at the used data rate (pixel clock =
66 MHz). Multiple effects like crosstalk or reflections negatively influence the data quality.
Effectively terminating the signals is difficult, since the wave impedance changes during
the signal path. Figure A.1 shows a raw phase-image using the alternative adapter board
for different ribbon cables. The signal quality is acceptable for very short cables, but for
a reasonable cable length, the quality is not sufficient. Since the quality of the calculated
distance image adds up the errors of the single phase-images, this flexible setup is not
feasible to be used in the targeted environment.

Pixel Clock

Since the image quality is not acceptable with the full pixel clock, the influence of a a
lower pixel clock was evaluated. The pixel clock of PIF on the ToF evaluation kit can be
divided by 2, 4 and 8. Unfortunately, there occur some problems with the CIF when using
lower settings for the pixel clock. It seems that not every pixel clock edge is recognized,
which causes a horizontal blur in the received image on the AURIX. This behavior can be

103

104 APPENDIX A. TECHNICAL ADDITIONS

Frame Columns
50 100 150

F
ra

m
e

R
ow

s

20

40

60

80

100

120

R
aw

 D
at

a
(1

)

0

1000

2000

3000

4000

(a) Short cable, 5 cm.
Frame Columns
50 100 150

F
ra

m
e

R
ow

s

20

40

60

80

100

120

R
aw

 D
at

a
(1

)

0

1000

2000

3000

4000

(b) Long cable, 30 cm.
Frame Columns
50 100 150

F
ra

m
e

R
ow

s

20

40

60

80

100

120

R
aw

 D
at

a
(1

)

0

1000

2000

3000

4000

(c) Long cable with shield-
ing, 30 cm.

Figure A.1: Phase-image 0° of the setup with a flexible cable.

seen in Figure A.2. Thus, the setup is used with the pixel clock configured to the highest
possible rate (fclk = 66 MHz).

Frame Columns
50 100 150

F
ra

m
e

R
ow

s

20

40

60

80

100

120

R
aw

 D
at

a
(1

)

0

1000

2000

3000

4000

Figure A.2: Phase-image 0°, at a pixel
clock of 8.33 MHz.

A.2 Voltage Converter Board

An additional voltage converter board using a step down converter (LMR14050, Texas
Insruments) was designed during this work. The board can be used to efficiently convert
the available battery voltage to supply the electronic components of the car. Figure A.3
shows the schematic, and Figure A.4 shows the layout of the voltage converter board. The
PCB was created using the electronic design automation software EAGLE [Eag15].

BOOT
1

VIN
2

EN
3

RT_SYNC
4

FB
5

SS
6

GND
7

SW
8

PAD
9

1

2

1

2

1

2

Figure A.3: Voltage regulator schematic.

APPENDIX A. TECHNICAL ADDITIONS 105

Figure A.4: Voltage regulator PCB.

A.3 Rotation into the First Octant

For the arctangent calculation process, the complex point is rotated into the first octant
of the complex plane. This is done to reduce the domain of input values and make the
use of a LUT feasible. Figure A.5 shows the step performed to rotate a point by π

4 . The
components of the destination point P ′ are calculated with:

x′ = y1 − x1

y′ = x1 + y1

As seen in the figure, an isosceles, right-angled triangle arises, which causes an angle of
α = π

4 between the points P1 and P ′.

Pʹ(xʹ,yʹ)

y

x

α

α

P1(x1,y1)

Figure A.5: Angle rotation in the first quadrant.

A.4 CAN Message Structure

The most important parts of a CAN message are the 11 bit identifier defining the priority
of the message and the 0-8 bytes of data.

106 APPENDIX A. TECHNICAL ADDITIONS

The car-status messages are split up into two messages which are sequentially sent. The
structure of the two messages and their contents is shown in Table A.2 and Table A.3. All
CAN message IDs used in the system are described in Table A.1. Every time new values
from the remote are received by the car’s microcontroller, a message with the current
remote values is sent via the CAN interface. The structure of that message is described
in Table A.4.
The structure of the CAN message to take over the control is described in Table A.5. The
control remains active until a message with the CAN master ID, not containing the magic
number, is sent (as seen in Figure 4.6).

Alias ID comment
CAN Device ID1 0xA0 car status 1
CAN Device ID2 0xA1 car status 2
CAN Device DBG 0xDB remote values
CAN Master ID 0x50 CAN take-over

Table A.1: CAN IDs.

Byte Content Comment
0 AutoMotorCurrent Motor Current in mA1
2 AutoBattVoltage Battery Voltage in mV3
4 AutoPower Power in mW5
6 AutoRotationSpeed Rotation speed in mm/s7

Table A.2: CAN message structure: CAN Device ID1.

A.5 Amplitude Reference Image

An approach to make the amplitude reference image available on the AURIX is to calculate
an approximation of it. A good approximation of the amplitude reference image can be
calculated with:

Aref (x, y) = 10 + 135 · cos(|x− 59| · 0.5◦)7 · cos(|y − 79| · 0.5◦)7

The Figure A.6 shows the surface plot of the measured and calculated amplitude reference
image. The calculated version is similar enough to the measured version, to use it for the
processing algorithm in this work. To make the calculation of the amplitude reference
feasible on the AURIX, the function cos(x · 0.5◦)7 is made available using a LUT for all
integer values of x between 0 and 80.

APPENDIX A. TECHNICAL ADDITIONS 107

Byte Content Comment
0 AutoMotorVoltage Motor Voltage in mV1
2 AutoTemp1 Temperature
3 AutoTemp2 Temperature
4 AutoTemp3 Temperature
5 AutoTemp4 Temperature
6 AutoTemp5 Temperature
7 AutoReserved Reserved

Table A.3: CAN message structure: CAN Device ID2.

Byte Content
0 Remote Ch1 Value1
2 Remote Ch2 Value3
4 Remote Ch3 Value5

Table A.4: CAN message structure: CAN Device DBG.

Byte Content Comment
0 Auto Mode Mode for driving (forward/backward/brake)
1 Auto Value Value for that mode2
3 Steering Mode Mode for steering (left/right)
4 Steering Value Value for that mode
5 - Reserved for future use
6 0xCA “Magic number”
7 0xFE “Magic number”

Table A.5: CAN message structure: CAN Master ID.

A.6 Additional Tools

PCAN View

PCAN View [Pea15] is a tool providing the functionality to send and receive CAN messages
with a PC. To use the program, a special CAN to USB adapter is required. The application
can be used to display received CAN messages, or to send certain CAN messages to the

108 APPENDIX A. TECHNICAL ADDITIONS

(a) Measured. (b) Calculated approximation.

Figure A.6: Amplitude reference image, measured and calculated approximation.

embedded system.

USBee Suite

The USBee Suite [Cwa16] is the software that comes with the USBee Test Pod, a USB
device with multiple input channels. The device provides the functionality of a logic
analyzer. With the software, it is possible to display and analyze the captured signals.
For debugging, certain pins of the AURIX can be connected to this oscilloscope. This could
also be done with a regular logic analyzer, but this tool is smaller and can be directly used
with the development workstation.

A.7 PC Debug Application

This section gives a description of the application developed in Visual Studio to support
the AURIX development process. Figure A.7 shows a screenshot of the application.

Input Source

• Live stream:
Live data from the AURIX can be streamed via Ethernet and directly viewed in this
application. The streaming data can include images, meta-data etc. If live-streaming
is selected, it is also possible to save the whole sequence for later use.

• Saved sequence:
Previously saved sequences can be used as input. In this mode it is possible to set
the FPS or evaluate single frames.

APPENDIX A. TECHNICAL ADDITIONS 109

Figure A.7: Screenshot of the application.

Data Mode

• Debug data:
If debug data is included, the size has to be stated here in order to have correct
alignment of the other data.

• Image data:
Then the structure of the transmitted image frames has to be selected. It is possible
to select between 0 and 4 frames. Examples for the image data: the four phase-
images or one single distance image.

• Processing mode:
These modes define what kind of processing the application performs on the trans-
mitted data. There is an emulation mode that performs calculations very similar
to the AURIX platform (same types, approximations etc.). Then there is an exact
calculation mode that uses no approximations in order to estimate the impact of
certain approximations. The availability of certain processing modes depends on the
type of the included frames.

Camera Parameters

The application performs a similar data-processing as the implementation on the AURIX.
To evaluate and control the intermediate results, it is possible to activate only certain steps
of the processing. Additionally, it is possible to modify certain parameters of the algorithm
during operation. This makes it very convenient to tweak the parameters, especially when
used with saved real-world sequences.

110 APPENDIX A. TECHNICAL ADDITIONS

Output

• Image data:
The displayed image depends on the processing mode. It can be the original received
image data from the AURIX or the output of the processing in this application. The
application can only display amplitude and distance data, other image data is not
supported.

• Debug data:
Additionally, there are multiple text-boxes available that can be filled with vari-
ous debug data. This data can include running numbers, sensor data, execution
time, histograms, control variables, meta-data etc. Displaying that data in the PC
application is a very good option to debug the AURIX code.

A.8 Sorting Network

To perform median filtering, the neighboring pixel values have to be sorted for every pixel
of the image. To minimize the execution time of the median filter, the sorting part has
to be implemented very efficiently. Using a sorting network is one way to accomplish
that. The implementation of a sorting network of size 9 consists of 25 if-statements
and introduces very little overhead compared to the implementation of a generic sorting
algorithm. Listing A.1 shows the program code of the sorting network.

A.9 Linker Description File

The linker description file is located in workspace\ld\iROM.ld and defines the memory
placement of the program code and the variables in the physical memory. Some important
details of the linker description file are explained here. The structure of the source folder
containing the AURIX code is shown in Figure A.8.

It is desired to map the variables into the corresponding CPU’s local DSPR. The code-
snippet in Listing A.2 shows the memory configuration within the linker description
file.

The DSPR of each CPU is separated into a global part DMI_DSPR and an exclusive part,
e.g., DMI_DSPR0_EX. To achieve the variable mapping separation by the contained directory
of the source file, the output section structure shown in Listing A.3 was used.

The wildcard pattern “*” matches any number of characters, while “?” matches a single
character only. So the input file wildcard pattern *src?cpu0* matches every file in the
cpu0 folder of the src directory, e.g., src\cpu0\main0.c. The output sections for the
other folders are defined as well and thus the exclusive mapping for every CPU is achieved.
This is a convenient solution, compared to manually setting a certain input section (e.g.,
.dspr0_extended) for each variable at the time of declaration.

APPENDIX A. TECHNICAL ADDITIONS 111

i f (a [0] > a [1]) { u int16 tmp = a [0] ; a [0] = a [1] ; a [1] = tmp ; }
i f (a [3] > a [4]) { u int16 tmp = a [3] ; a [3] = a [4] ; a [4] = tmp ; }
i f (a [6] > a [7]) { u int16 tmp = a [6] ; a [6] = a [7] ; a [7] = tmp ; }
i f (a [1] > a [2]) { u int16 tmp = a [1] ; a [1] = a [2] ; a [2] = tmp ; }
i f (a [4] > a [5]) { u int16 tmp = a [4] ; a [4] = a [5] ; a [5] = tmp ; }
i f (a [7] > a [8]) { u int16 tmp = a [7] ; a [7] = a [8] ; a [8] = tmp ; }
i f (a [0] > a [1]) { u int16 tmp = a [0] ; a [0] = a [1] ; a [1] = tmp ; }
i f (a [3] > a [4]) { u int16 tmp = a [3] ; a [3] = a [4] ; a [4] = tmp ; }
i f (a [6] > a [7]) { u int16 tmp = a [6] ; a [6] = a [7] ; a [7] = tmp ; }
i f (a [0] > a [3]) { u int16 tmp = a [0] ; a [0] = a [3] ; a [3] = tmp ; }
i f (a [3] > a [6]) { u int16 tmp = a [3] ; a [3] = a [6] ; a [6] = tmp ; }
i f (a [0] > a [3]) { u int16 tmp = a [0] ; a [0] = a [3] ; a [3] = tmp ; }
i f (a [1] > a [4]) { u int16 tmp = a [1] ; a [1] = a [4] ; a [4] = tmp ; }
i f (a [4] > a [7]) { u int16 tmp = a [4] ; a [4] = a [7] ; a [7] = tmp ; }
i f (a [1] > a [4]) { u int16 tmp = a [1] ; a [1] = a [4] ; a [4] = tmp ; }
i f (a [2] > a [5]) { u int16 tmp = a [2] ; a [2] = a [5] ; a [5] = tmp ; }
i f (a [5] > a [8]) { u int16 tmp = a [5] ; a [5] = a [8] ; a [8] = tmp ; }
i f (a [2] > a [5]) { u int16 tmp = a [2] ; a [2] = a [5] ; a [5] = tmp ; }
i f (a [1] > a [3]) { u int16 tmp = a [1] ; a [1] = a [3] ; a [3] = tmp ; }
i f (a [5] > a [7]) { u int16 tmp = a [5] ; a [5] = a [7] ; a [7] = tmp ; }
i f (a [2] > a [6]) { u int16 tmp = a [2] ; a [2] = a [6] ; a [6] = tmp ; }
i f (a [4] > a [6]) { u int16 tmp = a [4] ; a [4] = a [6] ; a [6] = tmp ; }
i f (a [2] > a [4]) { u int16 tmp = a [2] ; a [2] = a [4] ; a [4] = tmp ; }
i f (a [2] > a [3]) { u int16 tmp = a [2] ; a [2] = a [3] ; a [3] = tmp ; }
i f (a [5] > a [6]) { u int16 tmp = a [5] ; a [5] = a [6] ; a [6] = tmp ; }

Listing A.1: Sorting network of size 9.

ZYK

KX\HITT

7YMM AC?B ZW\YKM

%%%

KX\'

T^;@ ZW\YKM

UIQV'%K

%%%

KX\(

4;7 ZW\YKM

UIQV(%K

%%%

KX\)

UIQV)%K

%%%

Figure A.8: AURIX source code directory.

112 APPENDIX A. TECHNICAL ADDITIONS

MEMORY
{

PMU_PFLASH0 (rx ! p) : org = 0x80000000 , l en = 2M
PMU_PFLASH1 (rx ! p) : org = 0x80200000 , l en = 2M
PMU_PFLASH2 (rx ! p) : org = 0x80400000 , l en = 2M
PMU_PFLASH3 (rx ! p) : org = 0x80600000 , l en = 2M
PMU_DFLASH0 (r ! xp) : org = 0xAF000000 , l en = 1M
PMU_DFLASH0_1 (r ! xp) : org = 0xAF100000 , l en = 16K
PMU_DFLASH1 (r ! xp) : org = 0xAF110000 , l en = 64K
BROM (rx ! p) : org = 0x8FFF8000 , l en = 32K
PMI_PSPR (wx ! p) : org = 0xC0000000 , l en = 32K
DMI_DSPR (w! xp) : org = 0xD0000000 , l en = 20K
DMI_DSPR0_EX (w! xp) : org = 0x70005000 , l en = 100K
DMI_DSPR1_EX (w! xp) : org = 0x60005000 , l en = 220K
DMI_DSPR2_EX (w! xp) : org = 0x50005000 , l en = 220K
LMU_SRAM (w! xp) : org = 0x90000000 , l en = 32K

}

Listing A.2: Memory configuration.

. dspr0_extended :
{

∗ (. dspr0_extended)
∗ (. dspr0_extended ∗)
∗ s r c ?cpu0 ∗ (. bss)
∗ s r c ?cpu0 ∗ (. bss ∗)
∗ s r c ?cpu0 ∗ (. sb s s)
∗ s r c ?cpu0 ∗ (. sb s s ∗)
∗ s r c ?cpu0 ∗ (. bbss)
∗ s r c ?cpu0 ∗ (. bbss ∗)
∗ s r c ?cpu0 ∗ (. zbss)
∗ s r c ?cpu0 ∗ (. zbss ∗)

} > DMI_DSPR0_EX /∗ DMI_DSPR0_EX: Local Data RAM (DSPR0) Extended − CPU 0 ∗/

Listing A.3: Output section description.

APPENDIX A. TECHNICAL ADDITIONS 113

A.10 ToF Camera Configuration

The following code-snippet shows the values of the camera configuration registers. These
values are sent to the camera, before the continuous image capturing is started. The
initialization data can be found in the file workspace\h\cif\Mira_regs.h.
const uint16 init_data[INIT_LENGTH][2] =
{
{ANAIP_SENSEN, 0x00FF},
{ANAIP_GPIOMUX5, 0x0180},
{ANAIP_GPIOMUX7, 0x018D},
{ANAIP_PADGPIOCFG0, 0x1515},
{ANAIP_PADGPIOCFG1, 0x1515},
{ANAIP_PADGPIOCFG2, 0x1515},
{ANAIP_PADGPIOCFG3, 0x1515},
{ANAIP_PADGPIOCFG4, 0x1515},
{ANAIP_PADGPIOCFG5, 0x1515},
{ANAIP_PADGPIOCFG6, 0x1315},
{ANAIP_PADGPIOCFG7, 0x1513},
{ANAIP_PADGPIOCFG8, 0x1515},
{ANAIP_PADGPIOCFG9, 0x0415},
{ANAIP_PADGPIOCFG10, 0x0404},
{ANAIP_PADGPIOCFG11, 0x0004},
{ANAIP_ADCBG1, 0x0003},
{ANAIP_ADCEN, 0xFFFF},
{ANAIP_ADCRESET, 0x0001},
{ANAIP_PIXIFEN, 0xFFFF},
{ANAIP_PIXREFBGEN, 0x0003},
{ANAIP_PIXREFEN, 0x0FFF},
{ANAIP_PLLBGEN, 0x0001},
{ANAIP_PSPADCFG, 0x1513},
{ANAIP_VMODREG, 0x0007},
{CFGCNT_S00_EXPOTIME, 0x109A}, // 2ms @17MHz
{CFGCNT_S00_FRAMERATE, 0x0000},
{CFGCNT_S00_PS, 0x0000},
{CFGCNT_S00_PLLSET, 0x0002},
{CFGCNT_S01_EXPOTIME, 0x109A},
{CFGCNT_S01_FRAMERATE, 0x0000},
{CFGCNT_S01_PS, 0x0888},
{CFGCNT_S01_PLLSET, 0x0002},
{CFGCNT_S02_EXPOTIME, 0x109A},
{CFGCNT_S02_FRAMERATE, 0x0000},
{CFGCNT_S02_PS, 0x0444},
{CFGCNT_S02_PLLSET, 0x0002},
{CFGCNT_S03_EXPOTIME, 0x109A},
{CFGCNT_S03_FRAMERATE, 0x1000}, // ca 30 FPS
{CFGCNT_S03_PS, 0x0CCC},
{CFGCNT_S03_PLLSET, 0x0002},
{CFGCNT_TRIG, 0x0000},
{CFGCNT_STATUS, 0x0000},
{CFGCNT_CSICFG, 0x0080},
{CFGCNT_PIFCCFG, 0x1050},
{CFGCNT_PIFTCFG, 0x0000},
{CFGCNT_BINCFG, 0x0005}, //2x2 binning
{CFGCNT_ROICMINREG, 0x0010}, //center 160x120 with 2x2 binning
{CFGCNT_ROICMAXREG, 0x014F},
{CFGCNT_ROIRMINREG, 0x0018},

114 APPENDIX A. TECHNICAL ADDITIONS

{CFGCNT_ROIRMAXREG, 0x0107},
{CFGCNT_ROS1, 0x006},
{CFGCNT_ROS2, 0x0060},
{CFGCNT_IFDEL, 0x4088},
{CFGCNT_CTRLSEQ, 0x0003},
{CFGCNT_EXPCFG1, 0x0380},
{CFGCNT_EXPCFG2, 0x000F},
{CFGCNT_EXPCFG3, 0x1E0A},
{CFGCNT_EXPCFG4, 0x1C05},
{CFGCNT_PSOUT, 0x0313},
{CFGCNT_PLLCFG1_LUT1, 0x466D}, // 12MHz
{CFGCNT_PLLCFG2_LUT1, 0xEC4F}, // 12MHz
{CFGCNT_PLLCFG3_LUT1, 0x0BC4}, // 12MHz
{CFGCNT_PLLCFG1_LUT2, 0x2241}, // 30MHz
{CFGCNT_PLLCFG2_LUT2, 0x13B2}, // 30MHz
{CFGCNT_PLLCFG3_LUT2, 0x03BB}, // 30MHz
{CFGCNT_PLLCFG1_LUT3, 0x6449}, // 17MHz
{CFGCNT_PLLCFG2_LUT3, 0x2762}, // 17MHz
{CFGCNT_PLLCFG3_LUT3, 0x03F6}, // 17MHz
{CFGCNT_PLLCFG1_LUT4, 0x4059},
{CFGCNT_PLLCFG2_LUT4, 0xC4ED},
{CFGCNT_PLLCFG3_LUT4, 0x13CE},
{MTCU_POWERCTRL, 0x1408},
{PIF_PIFHSIZE, 0x00A0},
{PIF_PIFVSIZE, 0x0078}
};

List of Abbreviations

ADM Application Data Memory
AOI Area of Interest

AURIX Automotive Realtime Integrated NeXt Generation Architecture
BBB Back Bone Bus
CAN Controller Area Network

CARE Community Database on Accidents on the Roads in Europe
CIF Camera Interface

CMOS Complementary Metal–Oxide–Semiconductor
CN Common Neighborhood

CORDIC Coordinate Rotation Digital Computer
CPU Central Processing Unit
CSI-2 Camera Serial Interface-2

DC Direct Current
DFlash Data Flash
DMA Direct Memory Access
DSP Digital Signal Processing

DSPR Data Scratch-Pad RAM
EMEM Extended Memory
FPGA Field-Programmable Gate Array
FPS Frames per Second
GiST Generalized Search Tree
GPIO General-Purpose Input/Output
GUI Graphical User Interface

HSYNC Horizontal Synchronization
I2C Inter-Integrated Circuit
IC Integrated Circuit

LMU Local Memory Unit
LUT Look-up Table
lwIP Lightweight IP Stack

115

116 LIST OF ABBREVIATIONS

MSB Most Significant Bit
NiMH Nickel–Metal Hydride
PCB Printed Circuit Board

PFlash Program Flash
PIF Parallel Interface

PIXCLK Pixel Clock
PLL Phase-Locked Loop

PMD Photonic Mixing Device
PSPR Program Scratch-Pad RAM
RAM Random-Access Memory

RC Radio-Controlled
RF Radio Frequency

RISC Reduced Instruction Set Computing
ROI Region of Interest

RTOS Real-Time Operating System
SAE Society of Automotive Engineers
SDK Software Development Kit
SNR Signal-to-Noise Ratio
SVM Support Vector Machine

TCP/IP Transmission Control Protocol/Internet Protocol
TOF Time-of-Flight
TV Total Variation

UDP User Datagram Protocol
VSYNC Vertical Synchronization

XAM Extended Application Memory

Bibliography

[Ada11] Adam Dunkels. LwIP, lightweight IP. Version 1.3.2. 2011. url: http://savannah.
nongnu.org/projects/lwip/.

[Atm08] Atmel Corporation. 8-bit AVR Microcontroller with 32K/64K/128K Bytes of
ISP Flash and CAN Controller. AT90CAN128. Rev. 7679H–CAN–08/08. At-
mel. 2008.

[Bam15] Bamji, C. S., O’Connor, P., Elkhatib, T., Mehta, S., Thompson, B., Prather,
L. A., Snow, D., Akkaya, O. C., Daniel, A., Payne, A. D., et al. “A 0.13 µm
CMOS system-on-chip for a 512× 424 time-of-flight image sensor with multi-
frequency photo-demodulation up to 130 MHz and 2 GS/s ADC”. In: IEEE
Journal of Solid-State Circuits 50.1 (2015), pp. 303–319.

[Bel00] Bellis, S. J. and Marnane, W. P. “A CORDIC Arctangent FPGA Implemen-
tation for a High-Speed 3D-Camera System”. In: Field-Programmable Logic
and Applications: The Roadmap to Reconfigurable Computing: 10th Interna-
tional Conference, FPL 2000 Villach, Austria, August 27–30, 2000 Proceedings.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2000, pp. 485–494.

[Böh09] Böhme, M., Haker, M., Riemer, K., Martinetz, T., and Barth, E. “Face De-
tection Using a Time-of-Flight Camera”. In: Dynamic 3D Imaging: DAGM
2009 Workshop, Dyn3D 2009, Jena, Germany, September 9, 2009. Proceedings.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 167–176.

[Cwa16] CWAV, Inc. USBee Suite. Version 1.1.75. 2016. url: http://www.usbee.com.
[Dal14] Dalbah, Y., Rohr, S., and Wahl, F. M. “Detection of dynamic objects for en-

vironment mapping by time-of-flight cameras”. In: 2014 IEEE International
Conference on Image Processing (ICIP). Oct. 2014, pp. 971–975.

[Dru15] Druml, N., Fleischmann, G., Heidenreich, C., Leitner, A., Martin, H., Herndl,
T., and Holweg, G. “Time-of-Flight 3D imaging for mixed-critical systems”. In:
Industrial Informatics (INDIN), 2015 IEEE 13th International Conference on.
July 2015, pp. 1432–1437.

[Eag15] CadSoft Computer. EAGLE, Einfach Anzuwendender Grafischer Layout Editor.
Version 7.5.0. 2015. url: https://cadsoft.io/.

[Eur15] The European Commission. Annual Accident Report 2015. 2015.
[Far06] Fardi, B., Dousa, J., Wanielik, G., Elias, B., and Barke, A. “Obstacle Detec-

tion and Pedestrian Recognition Using A 3D PMD Camera”. In: 2006 IEEE
Intelligent Vehicles Symposium. 2006, pp. 225–230.

117

http://savannah.nongnu.org/projects/lwip/
http://savannah.nongnu.org/projects/lwip/
http://www.usbee.com
https://cadsoft.io/

118 BIBLIOGRAPHY

[Fis10] Fischer, J., Seitz, D., and Verl, A. “Face Detection using 3-D Time-of-Flight and
Colour Cameras”. In: Robotics (ISR), 2010 41st International Symposium on
and 2010 6th German Conference on Robotics (ROBOTIK). June 2010, pp. 1–
5.

[Gan10] Ganapathi, V., Plagemann, C., Koller, D., and Thrun, S. “Real time motion
capture using a single time-of-flight camera”. In: Computer Vision and Pattern
Recognition (CVPR), 2010 IEEE Conference on. June 2010, pp. 755–762.

[Gok04] Gokturk, S. B., Yalcin, H., and Bamji, C. “A Time-Of-Flight Depth Sensor -
System Description, Issues and Solutions”. In: Computer Vision and Pattern
Recognition Workshop, 2004. CVPRW ’04. Conference on. June 2004, pp. 35–
35.

[Han13] Hansard, M., Lee, S., Choi, O., and Horaud, R. Time-of-Flight Cameras, Prin-
ciples, Methods and Applications. Springer London, 2013.

[Hig15] HighTec EDV-Systeme GmbH. Free TriCore Entry Tool Chain. Version 1.0.
2015. url: http://www.hightec-rt.com/en/.

[Hoe13] Hoegg, T., Lefloch, D., and Kolb, A. “Real-Time Motion Artifact Compensa-
tion for PMD-ToF Images”. In: Time-of-Flight and Depth Imaging. Sensors,
Algorithms, and Applications: Dagstuhl 2012 Seminar on Time-of-Flight Imag-
ing and GCPR 2013 Workshop on Imaging New Modalities. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2013, pp. 273–288.

[Inf13] Infineon Technologies. Infineon 3D Image Sensor, IRS10x0C. Product Brief.
May 2013.

[Inf14] Infineon Technologies. MIRA Aurix TC299 Demonstrator. Version 0.1. Dec.
2014.

[Inf15] Infineon Technologies. REAL3 image sensor family, 3D depth sensing based on
Time-of-Flight. Product Brief. Nov. 2015.

[Inf16] Infineon Technologies. AURIX – TC297TA – AURIX family. Product Brief.
Aug. 2016.

[Lan00] Lange, R. “3D time-of-flight distance measurement with custom solid-state im-
age sensors in CMOS/CCD-technology”. PhD thesis. University of Siegen, 2000.

[Lan01] Lange, R. and Seitz, P. “Solid-state time-of-flight range camera”. In: Quantum
Electronics, IEEE Journal of 37.3 (Mar. 2001), pp. 390–397.

[Len11] Lenzen, F., Schäfer, H., and Garbe, C. “Denoising Time-Of-Flight Data with
Adaptive Total Variation”. In: Advances in Visual Computing: 7th International
Symposium, ISVC 2011, Las Vegas, NV, USA, September 26-28, 2011. Proceed-
ings, Part I. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 337–346.

[Len13] Lenzen, F., Kim, K. I., Schäfer, H., Nair, R., Meister, S., Becker, F., Garbe,
C. S., and Theobalt, C. “Denoising Strategies for Time-of-Flight Data”. In:
Time-of-Flight and Depth Imaging. Sensors, Algorithms, and Applications:
Dagstuhl 2012 Seminar on Time-of-Flight Imaging and GCPR 2013 Workshop
on Imaging New Modalities. Berlin, Heidelberg: Springer Berlin Heidelberg,
2013, pp. 25–45.

http://www.hightec-rt.com/en/

BIBLIOGRAPHY 119

[Lin10] Lindner, M. “Calibration and Realtime Processing of Time-of-Flight Range
Data”. PhD Thesis. Computer Graphics Group, University of Siegen, Dec. 2010.

[Mat15] The Mathworks, Inc. MATLAB version. Version 8.5.0.197613 (R2015a). 2015.
url: https://www.mathworks.com.

[Mic12] Microsoft Corporation. Microsoft Visual Studio Express 2012 for Windows
Desktop. Version 11.0.50727. 2012. url: https://www.visualstudio.com/.

[Möl05] Möller, T., Kraft, H., Frey, J., Albrecht, M., and Lange, R. “Robust 3D Mea-
surement with PMD Sensors”. In: In: Proceedings of the 1st Range Imaging
Research Day at ETH. 2005, pp. 3–906467.

[Mur07] Mure-Dubois, J. and Hügli, H. “Real-time scattering compensation for time-of-
flight camera”. In: Proceedings of the ICVS Workshop on Camera Calibration
Methods for Computer Vision Systems. 2007.

[Nat08] Natroshvili, K., Schmid, M., Stephan, M., Stiegler, A., and Schamm, T. “Real
time pedestrian detection by fusing PMD and CMOS cameras”. In: Intelligent
Vehicles Symposium, 2008 IEEE. June 2008, pp. 925–929.

[Pea15] PEAK-System Technik GmbH. PCAN-View. Version 4.0.29.426. 2015. url:
http://www.peak-system.com/.

[Pla10] Plagemann, C., Ganapathi, V., Koller, D., and Thrun, S. “Real-time iden-
tification and localization of body parts from depth images”. In: Robotics
and Automation (ICRA), 2010 IEEE International Conference on. May 2010,
pp. 3108–3113.

[Pla16] Plank, H., Holweg, G., Herndl, T., and Druml, N. “High performance Time-of-
Flight and color sensor fusion with image-guided depth super resolution”. In:
2016 Design, Automation Test in Europe Conference Exhibition (DATE). Mar.
2016, pp. 1213–1218.

[Pmd15] Pmdtechnologies gmbh. CamBoard pico flexx. Reference Design Brief. 2015.
[Rea11] Real Time Engineers Ltd. FreeRTOS. Version 7.1.0. 2011. url: http://www.

freertos.org.
[Sae14] SAE On-Road Automated Vehicle Standards Committee and others. Taxonomy

and definitions for terms related to on-road motor vehicle automated driving
systems. Technical Report J3016_201401. 2014.

[Sch07] Schamm, T., Vacek, S., Natroshvilli, K., Marius Zöllner, J., and Dillmann, R.
“Autonome Mobile Systeme 2007: 20. Fachgespräch Kaiserslautern, 18./19.
Oktober 2007”. In: Berlin, Heidelberg: Springer Berlin Heidelberg, 2007.
Chap. Hinderniserkennung und -verfolgung mit einer PMD-kamera im au-
tomobil, pp. 219–225.

[Sch09] Schmidt, M. and Jähne, B. “A Physical Model of Time-of-Flight 3D Imaging
Systems, Including Suppression of Ambient Light”. In: Dynamic 3D Imaging:
DAGM 2009 Workshop, Dyn3D 2009, Jena, Germany, September 9, 2009. Pro-
ceedings. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 1–15.

https://www.mathworks.com
https://www.visualstudio.com/
http://www.peak-system.com/
http://www.freertos.org
http://www.freertos.org

120 BIBLIOGRAPHY

[Sch11a] Schmidt, M. and Jähne, B. “Efficient and robust reduction of motion artifacts
for 3D Time-of-Flight cameras”. In: 2011 International Conference on 3D Imag-
ing (IC3D). Dec. 2011, pp. 1–8.

[Sch11b] Schmidt, M. “Analysis, Modeling and Dynamic Optimization of 3D Time-
of-Flight Imaging Systems”. PhD thesis. IWR, Fakultät für Physik und As-
tronomie, University of Heidelberg, 2011.

[Sch11c] Schwarz, L. A., Mkhitaryan, A., Mateus, D., and Navab, N. “Estimating human
3D pose from Time-of-Flight images based on geodesic distances and optical
flow”. In: Automatic Face Gesture Recognition and Workshops (FG 2011), 2011
IEEE International Conference on. Mar. 2011, pp. 700–706.

[Sch15] Schockaert, C., Garcia, F., and Mirbach, B. “Guidance image based method for
real-time motion artefact handling on Time-of-Flight cameras”. In: 2015 IEEE
Intelligent Vehicles Symposium (IV). June 2015, pp. 1246–1251.

[Uki11] Ukil, A., Shah, V. H., and Deck, B. “Fast computation of arctangent functions
for embedded applications: A comparative analysis”. In: 2011 IEEE Interna-
tional Symposium on Industrial Electronics. June 2011, pp. 1206–1211.

[Vol13] Volvo Car Corporation. Volvo car group initiates world unique swedish pi-
lot project with selfdriving cars on public roads. [Online; accessed 15-August-
2016]. Dec. 2013. url: https://www.media.volvocars.com/global/en-gb/media/
pressreleases / 136182 / volvo - car - group - initiates - world - unique - swedish - pilot -
project-with-self-driving-cars-on-public-roads.

[Vol16] Volvo Car Corporation. Volvo Car Group, Global Newsroom. [Online; accessed
27-July-2016]. 2016. url: https://www.media.volvocars.com/.

[Vol59] Volder, J. E. “The CORDIC Trigonometric Computing Technique”. In: IRE
Transactions on Electronic Computers EC-8.3 (Sept. 1959), pp. 330–334.

[Wal07] Wallhoff, F., Rub, M., Rigoll, G., Gobel, J., and Diehl, H. “Improved Image Seg-
mentation using Photonic Mixer Devices”. In: 2007 IEEE International Con-
ference on Image Processing. Vol. 6. Sept. 2007.

[Wei14] Wei, X., Phung, S. L., and Bouzerdoum, A. “Object segmentation and classi-
fication using 3-D range camera”. In: Journal of Visual Communication and
Image Representation 25.1 (2014), pp. 74–85.

[Win09] Winner, H., Hakuli, S., and Wolf, G. Handbuch Fahrerassistenzsysteme - Grund-
lagen, Komponenten und Systeme für aktive Sicherheit und Komfort : mit 550
Abbildungen und 45 Tabellen. 2009. Aufl. Berlin Heidelberg New York: Springer-
Verlag, 2009.

https://www.media.volvocars.com/global/en-gb/media/pressreleases/136182/volvo-car-group-initiates-world-unique-swedish-pilot-project-with-self-driving-cars-on-public-roads
https://www.media.volvocars.com/global/en-gb/media/pressreleases/136182/volvo-car-group-initiates-world-unique-swedish-pilot-project-with-self-driving-cars-on-public-roads
https://www.media.volvocars.com/global/en-gb/media/pressreleases/136182/volvo-car-group-initiates-world-unique-swedish-pilot-project-with-self-driving-cars-on-public-roads
https://www.media.volvocars.com/

	Introduction
	Motivation
	Objectives
	Outline

	Literature
	Automated Driving
	Levels of Automated Driving
	Sensors
	Range Imaging

	Time-of-Flight Imaging
	Basic Principle
	Characteristics
	Applications
	REAL3 Image Sensors

	Object Detection
	Pre-Processing
	Segmentation
	Classification

	Design
	Requirements
	Existing Platform
	Time-of-Flight System
	Scaled Vehicle

	Mobile Sensing Platform
	Overall System
	ToF Module
	AURIX Microcontroller
	Scaled Vehicle

	Emergency Braking
	Stopping Distance
	Automated Braking

	ToF Processing Algorithm
	Distance Image Calculation
	Pre-Processing
	Object Detection
	Decision-Making

	Debug System

	Implementation
	Development
	Tools
	Workflow

	Hardware Platform
	Overall System
	Power Supply
	Adapter Board
	Camera Mount

	Interfaces
	CAN Interface
	Camera Control Interface
	Parallel Sensor Interface
	Debug Interface

	AURIX Implementation
	CPU Partitioning
	Shared Memory
	Memory Partitioning
	UDP Data Buffering

	ToF Processing Algorithm
	Distance Image Calculation
	Pre-Processing
	Object Detection
	Decision-Making

	Results
	Built-up Platform
	Test Scene
	Camera Mount

	ToF Camera Configuration
	Illumination Time
	Modulation Frequency

	Performance
	Ambient Light
	Image Processing Steps
	Emergency Braking
	Time Behavior

	Conclusion and Future Work
	Conclusion
	Future Work

	Technical Additions
	ToF Module Connection
	Voltage Converter Board
	Rotation into the First Octant
	CAN Message Structure
	Amplitude Reference Image
	Additional Tools
	PC Debug Application
	Sorting Network
	Linker Description File
	ToF Camera Configuration

	List of Abbreviations
	Bibliography

